Science.gov

Sample records for airborne support equipment

  1. Television camera on RMS surveys insulation on Airborne Support Equipment

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The television camera on the end effector of the Canadian-built Remote Manipulator System (RMS) is seen surveying some of the insulation on the Airborne Support Equipment (ASE). Flight controllers called for the survey following the departure of the Advanced Communications Technology Satellite (ACTS) and its Transfer Orbit Stage (TOS).

  2. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  3. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  4. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  5. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  6. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  7. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  8. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  9. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  10. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  11. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  12. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  13. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  14. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  15. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  16. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  17. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne thunderstorm detection equipment... Aircraft and Equipment § 135.173 Airborne thunderstorm detection equipment requirements. (a) No person may... the aircraft is equipped with either approved thunderstorm detection equipment or approved...

  18. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne thunderstorm detection equipment... Aircraft and Equipment § 135.173 Airborne thunderstorm detection equipment requirements. (a) No person may... the aircraft is equipped with either approved thunderstorm detection equipment or approved...

  19. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne thunderstorm detection equipment... Aircraft and Equipment § 135.173 Airborne thunderstorm detection equipment requirements. (a) No person may... the aircraft is equipped with either approved thunderstorm detection equipment or approved...

  20. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne thunderstorm detection equipment... Aircraft and Equipment § 135.173 Airborne thunderstorm detection equipment requirements. (a) No person may... the aircraft is equipped with either approved thunderstorm detection equipment or approved...

  1. Wellhead equipment support

    SciTech Connect

    Nichols, R.P.

    1987-03-24

    A wellhead assembly is described for supporting equipment in a well, comprising: a suspension nut having a threaded outer surface; a wellhead member having an inner threaded surface adapted to mesh with the threaded outer surface of the suspension nut; the suspension nut having a projection extending axially from its threaded outer surface and having an inner surface adapted to support equipment in the well; at least a portion of the inner surface for supporting the equipment facing both inwardly and upwardly such that force exerted by the weight of the equipment against the inner surface is transformed at least in part to a radially outwardly directed force; the projecting having an outer surface sized such that the outer surface is spaced from an inner surface of the wellhead member in the absence of force exerted against the inner surface of the projection such that the projection is deflected outwardly by the force exerted by the weight of the equipment against the inner surface.

  2. 54. DETAIL OF GENERAL ELECTRIC AIRBORNE BEACON EQUIPMENT TEST SET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. DETAIL OF GENERAL ELECTRIC AIRBORNE BEACON EQUIPMENT TEST SET (LEFT) AND ASSOCIATED GOULD BRUSH CHART RECORDERS (RIGHT). ELAPSED TIME COUNTER SITS ATOP AIRBORNE BEACON EQUIPMENT TEST SET. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  3. Orbital construction support equipment

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Approximately 200 separate construction steps were defined for the three solar power satellite (SPS) concepts. Detailed construction scenarios were developed which describe the specific tasks to be accomplished, and identify general equipment requirements. The scenarios were used to perform a functional analysis, which resulted in the definition of 100 distinct SPS elements. These elements are the components, parts, subsystems, or assemblies upon which construction activities take place. The major SPS elements for each configuration are shown. For those elements, 300 functional requirements were identified in seven generic processes. Cumulatively, these processes encompass all functions required during SPS construction/assembly. Individually each process is defined such that it includes a specific type of activity. Each SPS element may involve activities relating to any or all of the generic processes. The processes are listed, and examples of the requirements defined for a typical element are given.

  4. 77 FR 21834 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... Federal Aviation Administration Airborne Radar Altimeter Equipment (For Air Carrier Aircraft) AGENCY..., Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). SUMMARY: This is a confirmation notice of the cancellation of TSO-C67, Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). The...

  5. Shuttle extravehicular life support equipment

    NASA Technical Reports Server (NTRS)

    Sutton, J. G.

    1973-01-01

    A Shuttle EVA/IVA Requirements Study was conducted by Hamilton Standard for NASA. The objectives of this study were to establish a baseline EVA approach for Shuttle and to prepare requirements for the EVA equipment required to support these operations. This paper presents the results of the EVA life support requirements definition effort and defines candidate configurations which meet these requirements. Various subsystem and system concepts were identified and evaluated to determine the most desirable approaches. Both independent and umbilical configurations are considered. Because certain EVA missions could involve contamination-sensitive payloads, the impact of integrating noncontaminating equipment is also considered.

  6. Electrical Ground Support Equipment Fabrication, Specification for

    NASA Technical Reports Server (NTRS)

    Denson, Erik C.

    2014-01-01

    This document specifies parts, materials, and processes used in the fabrication, maintenance, repair, and procurement of electrical and electronic control and monitoring equipment associated with ground support equipment (GSE) at the Kennedy Space Center (KSC).

  7. Introduction to an airborne remote sensing system equipped onboard the Chinese marine surveillance plane

    NASA Astrophysics Data System (ADS)

    Gong, Fang; Wang, Difeng; Pan, Delu; Hao, Zengzhou

    2008-10-01

    The airborne remote sensing system onboard the Chinese Marine Surveillance Plane have three scanners including marine airborne multi-spectrum scanner(MAMS), airborne hyper spectral system(AISA+) and optical-electric platform(MOP) currently. MAMS is developed by Shanghai Institute of Technology and Physics CAS with 11 bands from ultraviolet to infrared and mainly used for inversion of oceanic main factors and pollution information, like chlorophyll, sea surface temperature, red tide, etc. The AISA+ made by Finnish Specim company is a push broom system, consist of a high spectrum scanner head, a miniature GPS/INS sensor and data collecting PC. It is a kind of aviation imaging spectrometer and has the ability of ground target imaging and measuring target spectrum characteristic. The MOP mainly supports for object watching, recording and track. It mainly includes 3 equipments: digital CCD with Sony-DXC390, CANON EOS film camera and digital camera Sony F717. This paper mainly introduces these three remote sensing instruments as well as the ground processing information system, involving the system's hardware and software design, related algorithm research, etc.

  8. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... more in passenger-carrying operations, except a helicopter operating under day VFR conditions, unless... weather radar equipment. (b) No person may operate a helicopter that has a passenger seating configuration... flown, unless the helicopter is equipped with either approved thunderstorm detection equipment...

  9. 75 FR 22674 - Airborne Area Navigation Equipment Using Loran-C Inputs

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... Federal Aviation Administration Airborne Area Navigation Equipment Using Loran-C Inputs AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of cancellation of: (1) Loran-C navigation system Technical Standard Orders (TSO); and (2) the revocation of Loran-C navigation system TSO...

  10. 75 FR 42819 - Airborne Area Navigation Equipment Using Loran-C Inputs

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... Federal Aviation Administration Airborne Area Navigation Equipment Using Loran-C Inputs AGENCY: Federal Aviation Administration (FAA), DOT ACTION: Notice of cancellation of: (1) Loran-C navigation system Technical Standard Orders (TSO); and (2) the revocation of Loran-C navigation system TSO...

  11. Persistent unmanned airborne network support for cooperative sensors

    NASA Astrophysics Data System (ADS)

    Verma, Ajay; Fernandes, Ronald

    2013-05-01

    In future we expect that UAV platoon based military / civilian missions would require persistent airborne network support for command, control and communication needs for the mission. Highly-dynamic mobile-wireless sensor networks operating in a large region present unique challenges in end-to-end communication for sensor data sharing and data fusion, particularly caused by the time varying connectivity of high-velocity nodes combined with the unreliability of the wireless communication channel. To establish an airborne communication network, a UAV must maintain a link(s) with other UAV(s) and/or base stations. A link between two UAVs is deemed to be established when the linked UAVs are in line of sight as well as within the transmission range of each other. Ideally, all the UAVs as well as the ground stations involved in command, control and communication operations must be fully connected. However, the continuous motion of UAVs poses a challenge to ensure full connectivity of the network. In this paper we explore the dynamic topological network configuration control under mission-related constraints in order to maintain connectivity among sensors enabling data sharing.

  12. Theoretical support for the Airborne Antarctic Ozone Experiment. Final report

    SciTech Connect

    Hartmann, D.L.

    1992-03-01

    This investigation was to provide theoretical support during and after the deployment of NASA research aircraft to Punta Arenas, Chile during August and September of 1987 to conduct the Airborne Antarctic Ozone Experiment. The experiment was very successful in demonstrating the role of anthropogenic chlorine in producing the ozone hole over Antarctica during September and October of 1987. The PI worked primarily on using tracer data from the ER-2 aircraft to show that transport could not have caused the ozone hole in 1987, and that transport of chemical species into the polar vortex was very weak during the period of the experiment. The presence of gravity waves was also very apparent in the ER-2 data, and papers were published on this analysis and on the use of meteorological analyses to position the aircraft within the vortex.

  13. Goodard Space Flight Center/Wallops Flight Facility airborne geoscience support capability

    NASA Technical Reports Server (NTRS)

    Navarro, Roger L.

    1991-01-01

    Goddard Space Flight Center's Wallops Facility (GSFC/WFF), operates six aircraft which are used as airborne geoscience platforms. The aircraft complement consists of two UH-1B helicopters, one twin engine Skyvan, one twin jet T-39, and two four engine turboprop aircraft (P-3 and Electra) offering the research community a wide range of payload, altitude, speed, and range capabilities. WFF's support to a principal investigator include mission planning of all supporting elements, installation of equipment on the aircraft, fabrication of brackets, and adapters as required to adapt payloads to the aircraft, and planning of mission profiles to meet science objectives. The flight regime includes local, regional, and global missions. The WFF aircraft serve scientists at GSFC, other NASA centers, other government agencies, and universities. The WFF mode of operation features the walk on method of conducting research projects. The principal investigator requests aircraft support by letter to WFF and after approval is granted, works with the assigned mission manager to plan all phases of project support. The instrumentation is installed in WFF electronics racks, mounted on the aircraft, the missions are flown, and the equipment is removed when the scientific objectives are met. The principal investigator reimburses WFF for each flight hours, any overtime and travel expenses generated by the project, and for other mission-related expenses such as aircraft support services required at deployment bases.

  14. Ground equipment for the support of packet telemetry and telecommand

    NASA Technical Reports Server (NTRS)

    Hell, Wolfgang

    1994-01-01

    This paper describes ground equipment for packet telemetry and telecommand which has been recently developed by industry for the European Space Agency. The architectural concept for this type of equipment is outlined and the actual implementation is presented. Focus is put on issues related to cross support and telescience as far as they affect the design of the interfaces to the users of the services provided by the equipment and to the management entities in charge of equipment control and monitoring.

  15. Emergency Response Equipment and Related Training: Airborne Radiological Computer System (Model II)

    SciTech Connect

    David P. Colton

    2007-02-28

    The materials included in the Airborne Radiological Computer System, Model-II (ARCS-II) were assembled with several considerations in mind. First, the system was designed to measure and record the airborne gamma radiation levels and the corresponding latitude and longitude coordinates, and to provide a first overview look of the extent and severity of an accident's impact. Second, the portable system had to be light enough and durable enough that it could be mounted in an aircraft, ground vehicle, or watercraft. Third, the system must control the collection and storage of the data, as well as provide a real-time display of the data collection results to the operator. The notebook computer and color graphics printer components of the system would only be used for analyzing and plotting the data. In essence, the provided equipment is composed of an acquisition system and an analysis system. The data can be transferred from the acquisition system to the analysis system at the end of the data collection or at some other agreeable time.

  16. Development of Asset Management Decision Support Tools for Power Equipment

    NASA Astrophysics Data System (ADS)

    Okamoto, Tatsuki; Takahashi, Tsuguhiro

    Development of asset management decision support tools become very intensive in order to reduce maintenance cost of power equipment due to the liberalization of power business. This article reviews some aspects of present status of asset management decision support tools development for power equipment based on the papers published in international conferences, domestic conventions, and several journals.

  17. Interim Stabilization Equipment Essential and Support Drawing Plan

    SciTech Connect

    HORNER, T.M.

    2000-10-16

    The purpose of this document is to list the Interim Stabilization equipment drawings that are classified as Essential or Support drawings. Essential Drawings are those drawings identified by the facility staff as necessary to directly support the safe operation of the facility or equipment. [CHG 2000a]. Support Drawings are those drawings identified by the facility staff that further describe the design details of structures, systems or components shown on essential drawings. [CHG 2000a].

  18. Interim Stabilization Equipment Essential and Support Drawing Plan

    SciTech Connect

    KOCH, M.R.

    1999-11-17

    The purpose of this document is to list the Interim Stabilization equipment drawings that are classified as Essential or Support drawings. Essential Drawings: Those drawings identified by the facility staff as necessary to directly support the safe operation of the facility or equipment. Support Drawings: Those drawings identified by the facility staff that further describe the design details of structures, systems or components shown on essential drawings.

  19. Interim Stabilization Equipment Essential and Support Drawing Plan

    SciTech Connect

    KOCH, M.R.

    1999-10-22

    The purpose of this document is to list the Interim Stabilization equipment drawings that are classified as Essential or Support drawings. Essential Drawings: Those drawings identified by the facility staff as necessary to directly support the safe operation of the facility or equipment. Support Drawings: Those drawings identified by the facility staff that further describe the design details of structures, systems or components shown on essential drawings.

  20. Research on invulnerability of equipment support information network

    NASA Astrophysics Data System (ADS)

    Sun, Xiao; Liu, Bin; Zhong, Qigen; Cao, Zhiyi

    2013-03-01

    In this paper, the entity composition of equipment support information network is studied, and the network abstract model is built. The influence factors of the invulnerability of equipment support information network are analyzed, and the invulnerability capabilities under random attack are analyzed. According to the centrality theory, the materiality evaluation centralities of the nodes are given, and the invulnerability capabilities under selective attack are analyzed. Finally, the reasons that restrict the invulnerability of equipment support information network are summarized, and the modified principles and methods are given.

  1. Computer Maintenance Operations Center (CMOC), additional computer support equipment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Computer Maintenance Operations Center (CMOC), additional computer support equipment - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Techinical Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  2. Installation and Assembly, Electrical Ground Support Equipment (GSE), Specification for

    NASA Technical Reports Server (NTRS)

    Denson, Erik C.

    2014-01-01

    This specification covers the general workmanship requirements and procedures for the complete installation and assembly of electrical ground support equipment (EGSE) such as terminal distributors, junction boxes, conduit and fittings, cable trays and accessories, interconnecting cables (including routing requirements), motor-control equipment, and necessary hardware as specified by the applicable contract and drawings.

  3. Overview of Avionics and Electrical Ground Support Equipment

    NASA Technical Reports Server (NTRS)

    Clarke, Sean C.

    2011-01-01

    Presents an overview of the Crew Module Avionics and the associated Electrical Ground Support Equipment for the Pad Abort 1 flight test of the Orion Program. A limited selection of the technical challenges and solutions are highlighted.

  4. Support for equipment - Quick mounting with quick release

    NASA Technical Reports Server (NTRS)

    Chamberlain, W. W., II; Jacobson, H. B.

    1970-01-01

    Temporary support device for equipment consists of pin bracket for attachment to item and socket bracket for mounting on any structure. System is adaptable to broad range of temporary storage media. No engagement, release, or adjustment of components is required.

  5. NASA UAV Airborne Science Capabilities in Support of Water Resource Management

    NASA Technical Reports Server (NTRS)

    Fladeland, Matthew

    2015-01-01

    This workshop presentation focuses on potential uses of unmanned aircraft observations in support of water resource management and agriculture. The presentation will provide an overview of NASA Airborne Science capabilities with an emphasis on past UAV missions to provide context on accomplishments as well as technical challenges. I will also focus on recent NASA Ames efforts to assist in irrigation management and invasive species management using airborne and satellite datasets.

  6. Facility Systems, Ground Support Systems, and Ground Support Equipment General Design Requirements

    NASA Technical Reports Server (NTRS)

    Thaxton, Eric A.; Mathews, Roger E.

    2014-01-01

    This standard establishes requirements and guidance for design and fabrication of ground systems (GS) that includes: ground support equipment (GSE), ground support systems (GSS), and facility ground support systems (F GSS) to provide uniform methods and processes for design and development of robust, safe, reliable, maintainable, supportable, and cost-effective GS in support of space flight and institutional programs and projects.

  7. Spectroscopic Analysis Of The Hayabusa Re-Entry Using Airborne And Ground Based Equipment

    NASA Astrophysics Data System (ADS)

    Lohle, Stefan; Marynowski, Thomas; Mezger, Andreas

    2011-08-01

    The Hayabusa sample return capsule, which contained precious asteroid samples, re-entered the Earth’s atmosphere on June 13, 2010. An ablative carbon-phenolic thermal protection system (TPS) was used to enable a safe return for the small capsule and the containing samples. A research aircraft operated by NASA has been setup with a wide range of imaging and spectrographic cameras for remote sensing of the radiation of the Hayabusa capsule during its entry flight. We developed for this mission a new instrument aiming to measure the translational temperature from the line broadening of heated atmospheric gases in their plasma state. Therefore, a scanning Fabry-Perot interferometer was setup aboard the aircraft. Using an imaging spectrograph and an intensified camera it was possible to detect atomic oxygen and nitrogen emissions simultaneously with high resolution. We supported also the ground based observation with an infrared camera and a wide range miniature fibre spectrometer. The paper presents the setup of both, the airborne instrument and the ground based setup as well as first look results from the successful observation mission.

  8. Spectroscopic Analysis of the Hayabusa Re-Entry Using Airborne and Ground Based Equipment

    NASA Astrophysics Data System (ADS)

    2011-08-01

    The Hayabusa sample return capsule, which contained precious asteroid samples, re-entered the Earth's atmosphere on June 13, 2010. An ablative carbon-phenolic thermal protection system (TPS) was used to enable a safe return for the small capsule and the containing samples. A research aircraft operated by NASA has been setup with a wide range of imaging and spectrographic cameras for remote sensing of the radiation of the Hayabusa capsule during its entry flight. We developed for this mission a new instrument aiming to measure the translational temperature from the line broadening of heated atmospheric gases in their plasma state. Therefore, a scanning Fabry-Perot interferometer was setup aboard the aircraft. Using an imaging spectrograph and an intensified camera it was possible to detect atomic oxygen and nitrogen emissions simultaneously with high resolution. We supported also the ground based observation with an infrared camera and a wide range miniature fibre spectrometer. The paper presents the setup of both, the airborne instrument and the ground based setup as well as first look results from the successful observation mission.

  9. The ESA Laboratory Support Equipment for the ISS.

    PubMed

    Petrivelli, A

    2002-02-01

    The Laboratory Support Equipment (LSE) for the International Space Station (ISS) is a suite of general-purpose items that will be available onboard the Station either as self-standing facilities or as equipment that can be used at defined locations. Dedicated to supporting system maintenance and payload operations, some LSE items are derived from commercial equipment, while others have been specifically developed for the ISS. ESA is currently engaged in developing three pressurised facilities and one pointing mechanism that will become part of the LSE complement, namely: the Minus Eighty degree centigrade Laboratory Freezer for the ISS (MELFI), the Microgravity Science Glovebox (MSG), the cryogenic storage and quick/snap freezer system (Cryosystem), the external-payload pointing system (Hexapod).

  10. Orbital construction support equipment - Manned remote work station

    NASA Technical Reports Server (NTRS)

    Nassiff, S. H.

    1978-01-01

    The Manned Remote Work Station (MRWS) is a versatile piece of orbital construction support equipment which can support in-space construction in various modes of operation. Proposed near-term Space Shuttle mission support and future large orbiting systems support, along with the various construction modes of MRWS operation, are discussed. Preliminary flight subsystems requirements and configuration design are presented. Integration of the MRWS development test article with the JSC Mockup and Integration Facility, including ground-test objectives and techniques for zero-g simulations, is also presented.

  11. 2. Photocopy of photograph showing cable supports for radar equipment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Photocopy of photograph showing cable supports for radar equipment from Procedures and Drills for NIKE Ajax System, Department of the Army Field Manual, FM-44-80 from Institute for Military History, Carlisle Barracks, Carlisle, PA 1959 - NIKE Missile Battery PR-79, East Windsor Road south of State Route 101, Foster, Providence County, RI

  12. Aviation Support Equipment Technician E 3 & 2. Rate Training Manual.

    ERIC Educational Resources Information Center

    Naval Education and Training Command, Pensacola, FL.

    The training manual is designed as a self study text for use by Navy and Naval Reserve personnel preparing to meet the professional qualifications for advancement to Petty Officer Third Class and Petty Officer Second Class in the rating of Aviation Support Equipment (ASE) Technician E (Electrical). The first chapter provides information on the…

  13. Interior, equipment room, weather support area (from July, 1968 drawing) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior, equipment room, weather support area (from July, 1968 drawing) at north end of display area, looking west. Window looks south towards the main console - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  14. NASA COAST and OCEANIA Airborne Missions Support Ecosystem and Water Quality Research in the Coastal Zone

    NASA Astrophysics Data System (ADS)

    Guild, L. S.; Kudela, R. M.; Hooker, S. B.; Morrow, J. H.; Russell, P. B.; Palacios, S. L.; Livingston, J. M.; Negrey, K.; Torres-Perez, J. L.; Broughton, J.

    2014-12-01

    NASA has a continuing requirement to collect high-quality in situ data for the vicarious calibration of current and next generation ocean color satellite sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal is to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. The imaging spectrometer (Headwall) is optimized in the blue spectral domain to emphasize remote sensing of marine and freshwater ecosystems. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data are accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Flight operations are presented for the instrument payloads using the CIRPAS Twin Otter flown over Monterey Bay during the seasonal fall algal bloom in 2011 (COAST) and 2013 (OCEANIA) to support bio-optical measurements of phytoplankton for coastal zone research.

  15. 76 FR 50808 - Airborne Supplemental Navigation Equipment Using the Global Positioning System (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... standard for GPS sensors not augmented by satellite-based or ground- based systems (i.e., TSO-C129a Class B and Class C). The FAA has also published two GPS TSOs augmented by the satellite-based augmentation system (TSO-C145c, Airborne Navigation Sensors Using the Global Positioning System Augmented by...

  16. Qualification of Electrical Ground Support Equipment for New Space Programs

    NASA Technical Reports Server (NTRS)

    SotoToro, Felix A.; Vu, Bruce T.; Hamilton, Mark S.

    2011-01-01

    With the Space Shuttle program coming to an end, the National Aeronautics and Space Administration (NASA) is moving to a new space flight program that will allow expeditions beyond low earth orbit. The space vehicles required to comply with these missions will be carrying heavy payloads. This implies that the Earth departure stage capabilities must be of higher magnitudes, given the current propulsion technology. The engineering design of the new flight hardware comes with some structural, thermal, propulsion and other subsystems' challenges. Meanwhile, the necessary ground support equipment (GSE) used to test, validate, verify and process the flight hardware must withstand the new program specifications. This paper intends to provide the qualification considerations during implementation of new electrical GSE for space programs. A team of engineers was formed to embark on this task, and facilitate the logistics process and ensure that the electrical, mechanical and fluids subsystems conduct the proper level of testing. Ultimately, each subsystem must certify that each piece of ground support equipment used in the field is capable of withstanding the strenuous vibration, acoustics, environmental, thermal and Electromagnetic Interference (EMf) levels experienced during pre-launch, launch and post-launch activities. The benefits of capturing and sharing these findings will provide technical, cost savings and schedule impacts infon11ation to both the technical and management community. Keywords: Qualification; Testing; Ground Support Equipment; Electromagnetic Interference Testing; Vibration Testing; Acoustic Testing; Power Spectral Density.

  17. Airborne precursor missions in support of SIR-C/X-SAR

    NASA Technical Reports Server (NTRS)

    Evans, D.; Oettl, H.; Pampaloni, P.

    1991-01-01

    The NASA DC-8 and DLR E-SAR airborne imaging radars have been deployed over several sites in Europe and the U.S. in support of SIR-C/X-SAR (Shuttle Imaging Radar-C/X-Synthetic Aperture Radar) science team investigations. To date, data have been acquired in support of studies of alpine glaciers, forests, geology, oceanography, and calibration. An experimental campaign with airborne sensors will take place in Europe in June to July 1991 which will allow multitemporal surveys of several Europeans sites. Current plans are for calibration and ecology experiments to be undertaken in Germany, the Netherlands, Italy, France, and the United Kingdom. Coordinated multitemporal aircraft and ground campaigns are planned in support of hydrology experiments in Italy, the United Kingdom, and Austria. Data will also be acquired in support of oceanogrqhy in the Gulf of Genova, North Atlantic, Straits of Messina and the North Sea. Geology sites will include Campi Flegrei and Vesuvio, Italy.

  18. Evaluation of an Airborne Spacing Concept to Support Continuous Descent Arrival Operations

    NASA Technical Reports Server (NTRS)

    Murdoch, Jennifer L.; Barmore, Bryan E.; Baxley, Brian T.; Capron, William R.; Abbott, Terence S.

    2009-01-01

    This paper describes a human-in-the-loop experiment of an airborne spacing concept designed to support Continuous Descent Arrival (CDA) operations. The use of CDAs with traditional air traffic control (ATC) techniques may actually reduce an airport's arrival throughput since ATC must provide more airspace around aircraft on CDAs due to the variances in the aircraft trajectories. The intent of airborne self-spacing, where ATC delegates the speed control to the aircraft, is to maintain or even enhance an airport s landing rate during CDA operations by precisely achieving the desired time interval between aircraft at the runway threshold. This paper describes the operational concept along with the supporting airborne spacing tool and the results of a piloted evaluation of this concept, with the focus of the evaluation on pilot acceptability of the concept during off-nominal events. The results of this evaluation show a pilot acceptance of this airborne spacing concept with little negative performance impact over conventional CDAs.

  19. A Flight Deck Decision Support Tool for Autonomous Airborne Operations

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Sharma, Vivek; Vivona, Robert A.; Johnson, Edward J.; Ramiscal, Ermin

    2002-01-01

    NASA is developing a flight deck decision support tool to support research into autonomous operations in a future distributed air/ground traffic management environment. This interactive real-time decision aid, referred to as the Autonomous Operations Planner (AOP), will enable the flight crew to plan autonomously in the presence of dense traffic and complex flight management constraints. In assisting the flight crew, the AOP accounts for traffic flow management and airspace constraints, schedule requirements, weather hazards, aircraft operational limits, and crew or airline flight-planning goals. This paper describes the AOP and presents an overview of functional and implementation design considerations required for its development. Required AOP functionality is described, its application in autonomous operations research is discussed, and a prototype software architecture for the AOP is presented.

  20. National Multi-agency Support for Airborne Hazard Prediction

    SciTech Connect

    Nasstrom, J S; Sugiyama, G A; Baskett, R L; Larsen, S C; Bradley, M M; Aines, R D

    2005-11-28

    Lawrence Livermore National Laboratory (LLNL) provides hazardous material plume modeling tools and services for a large number of emergency managers and responders. This paper describes ongoing advancement of LLNL's support for multiple agencies through the National Atmospheric Release Advisory Center (NARAC) and the Interagency Atmospheric Modeling and Atmospheric Assessment Center (IMAAC). A suite of software tools developed by LLNL and collaborating organizations includes simple stand-alone, local-scale plume modeling tools for end user's computers, and Web- and Internet-based software to access advanced 3-D flow and atmospheric dispersion modeling tools and expert analyses from the national center at LLNL.

  1. Constellation Program Electrical Ground Support Equipment Research and Development

    NASA Technical Reports Server (NTRS)

    McCoy, Keegan S.

    2010-01-01

    At the Kennedy Space Center, I engaged in the research and development of electrical ground support equipment for NASA's Constellation Program. Timing characteristics playa crucial role in ground support communications. Latency and jitter are two problems that must be understood so that communications are timely and consistent within the Kennedy Ground Control System (KGCS). I conducted latency and jitter tests using Alien-Bradley programmable logic controllers (PLCs) so that these two intrinsic network properties can be reduced. Time stamping and clock synchronization also play significant roles in launch processing and operations. Using RSLogix 5000 project files and Wireshark network protocol analyzing software, I verified master/slave PLC Ethernet module clock synchronization, master/slave IEEE 1588 communications, and time stamping capabilities. All of the timing and synchronization test results are useful in assessing the current KGCS operational level and determining improvements for the future.

  2. STS-49 Astronaut By Mission Peculiar Equipment Support Structure (MPESS)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-49, the first flight of the Space Shuttle Orbiter Endeavour, lifted off from launch pad 39B on May 7, 1992 at 6:40 pm CDT. The STS-49 mission was the first U.S. orbital flight to feature 4 extravehicular activities (EVAs), and the first flight to involve 3 crew members working simultaneously outside of the spacecraft. The primary objective was the capture and redeployment of the INTELSAT VI (F-3), a communication satellite for the International Telecommunication Satellite organization, which was stranded in an unusable orbit since its launch aboard the Titan rocket in March 1990. In this onboard photo, astronaut Thomas Akers is positioned near the Mission Peculiar Equipment Support Structure (MPESS) in the cargo bay. The MPESS, developed by Marshall Space Flight Center, was used to support experiments.

  3. Airborne Measurements in Support of the NASA Atmospheric Carbon and Transport - America (ACT-America) Mission

    NASA Astrophysics Data System (ADS)

    Meadows, B.; Davis, K.; Barrick, J. D. W.; Browell, E. V.; Chen, G.; Dobler, J. T.; Fried, A.; Lauvaux, T.; Lin, B.; McGill, M. J.; Miles, N. L.; Nehrir, A. R.; Obland, M. D.; O'Dell, C.; Sweeney, C.; Yang, M. M.

    2015-12-01

    NASA announced the research opportunity Earth Venture Suborbital - 2 (EVS-2) mission in support of the NASA's science strategic goals and objectives in 2013. Penn State University, NASA Langley Research Center (LaRC), and other academic institutions, government agencies, and industrial companies together formulated and proposed the Atmospheric Carbon and Transport - America (ACT - America) suborbital mission, which was subsequently selected for implementation. The airborne measurements that are part of ACT-America will provide a unique set of remote and in-situ measurements of CO2 over North America at spatial and temporal scales not previously available to the science community and this will greatly enhance our understanding of the carbon cycle. ACT - America will consist of five airborne campaigns, covering all four seasons, to measure regional atmospheric carbon distributions and to evaluate the accuracy of atmospheric transport models used to assess carbon sinks and sources under fair and stormy weather conditions. This coordinated mission will measure atmospheric carbon in the three most important regions of the continental US carbon balance: Northeast, Midwest, and South. Data will be collected using 2 airborne platforms (NASA Wallops' C-130 and NASA Langley's B-200) with both in-situ and lidar instruments, along with instrumented ground towers and under flights of the Orbiting Carbon Observatory (OCO-2) satellite. This presentation provides an overview of the ACT-America instruments, with particular emphasis on the airborne CO2 and backscatter lidars, and the, rationale, approach, and anticipated results from this mission.

  4. Airborne Measurements in Support of the NASA Atmospheric Carbon and Transport - America (ACT-America) Mission

    NASA Technical Reports Server (NTRS)

    Meadows, Byron; Davis, Ken; Barrick, John; Browell, Edward; Chen, Gao; Dobler, Jeremy; Fried, Alan; Lauvaux, Thomas; Lin, Bing; McGill, Matt; Miles, Natasha; Nehrir, Amin; Obland, Michael; O'Dell, Chris; Sweeney, Colm; Yang, Melissa

    2015-01-01

    NASA announced the research opportunity Earth Venture Suborbital -2 (EVS-2) mission in support of the NASA's science strategic goals and objectives in 2013. Penn State University, NASA Langley Research Center (LaRC), and other academic institutions, government agencies, and industrial companies together formulated and proposed the Atmospheric Carbon and Transport -America (ACT -America) suborbital mission, which was subsequently selected for implementation. The airborne measurements that are part of ACT-America will provide a unique set of remote and in-situ measurements of CO2 over North America at spatial and temporal scales not previously available to the science community and this will greatly enhance our understanding of the carbon cycle. ACT -America will consist of five airborne campaigns, covering all four seasons, to measure regional atmospheric carbon distributions and to evaluate the accuracy of atmospheric transport models used to assess carbon sinks and sources under fair and stormy weather conditions. This coordinated mission will measure atmospheric carbon in the three most important regions of the continental US carbon balance: Northeast, Midwest, and South. Data will be collected using 2 airborne platforms (NASA Wallops' C-130 and NASA Langley's B-200) with both in-situ and lidar instruments, along with instrumented ground towers and under flights of the Orbiting Carbon Observatory (OCO-2) satellite. This presentation provides an overview of the ACT-America instruments, with particular emphasis on the airborne CO2and backscatter lidars, and the, rationale, approach, and anticipated results from this mission.

  5. Facility Systems, Ground Support Systems, and Ground Support Equipment General Design Requirements

    NASA Technical Reports Server (NTRS)

    Thaxton, Eric A.

    2014-01-01

    KSC-DE-512-SM establishes overall requirements and best design practices to be used at the John F. Kennedy Space Center (KSC) for the development of ground systems (GS) in support of operations at launch, landing, and retrieval sites. These requirements apply to the design and development of hardware and software for ground support equipment (GSE), ground support systems (GSS), and facility ground support systems (F-GSS) used to support the KSC mission for transportation, receiving, handling, assembly, test, checkout, servicing, and launch of space vehicles and payloads and selected flight hardware items for retrieval. This standards manual supplements NASA-STD-5005 by including KSC-site-specific and local environment requirements. These requirements and practices are optional for equipment used at manufacturing, development, and test sites.

  6. 77 FR 3323 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... [Federal Register Volume 77, Number 14 (Monday, January 23, 2012)] [Notices] [Pages 3323-3324] [FR... Engineering Division, Aircraft Certification Service. [FR Doc. 2012-1243 Filed 1-20-12; 8:45 am] BILLING CODE... Altimeter Equipment (For Air Carrier Aircraft) AGENCY: Federal Aviation Administration (FAA), DOT....

  7. Spectrum correction algorithm for detectors in airborne radioactivity monitoring equipment NH-UAV based on a ratio processing method

    NASA Astrophysics Data System (ADS)

    Cao, Ye; Tang, Xiao-Bin; Wang, Peng; Meng, Jia; Huang, Xi; Wen, Liang-Sheng; Chen, Da

    2015-10-01

    The unmanned aerial vehicle (UAV) radiation monitoring method plays an important role in nuclear accidents emergency. In this research, a spectrum correction algorithm about the UAV airborne radioactivity monitoring equipment NH-UAV was studied to measure the radioactive nuclides within a small area in real time and in a fixed place. The simulation spectra of the high-purity germanium (HPGe) detector and the lanthanum bromide (LaBr3) detector in the equipment were obtained using the Monte Carlo technique. Spectrum correction coefficients were calculated after performing ratio processing techniques about the net peak areas between the double detectors on the detection spectrum of the LaBr3 detector according to the accuracy of the detection spectrum of the HPGe detector. The relationship between the spectrum correction coefficient and the size of the source term was also investigated. A good linear relation exists between the spectrum correction coefficient and the corresponding energy (R2=0.9765). The maximum relative deviation from the real condition reduced from 1.65 to 0.035. The spectrum correction method was verified as feasible.

  8. EGSE (Electrical Ground Support Equipment) for ESA VEGA Launcher

    NASA Astrophysics Data System (ADS)

    Ferrante, M.; Ortenzi, A.; del Re, V.; Bordin, M.; Saccucci, Fr.

    2004-08-01

    Activities belonging to Assembly, Integration and Validation (AIV) phase of a launch vehicle are fundamental in development of a so much delicate system. The equipment used to support this long and crucial phase can be described as a set of Mechanical and Electrical Ground Support Equipment (EGSE). This paper describes the approach followed to develop such a system, and the benefits that this brings in terms of lower risk, more coordinated interfaces and improved functionality. The paper briefly outlines VEGA Electrical Ground Support Equipment major characteristics. In particular, this paper describes the EGSE design for a small launch vehicle such as VEGA. The objective of EGSE is to provide hardware and software for efficient electrical testing of either single stages and integrated launcher. The needs to develop a small launcher is a response to a Resolution in the Space Transportation Strategy adopted by the ESA Council in June 2000, aiming at: "completing, in the medium term, the range of launch services offered by the addition of European manufactured small and medium launcher, complementary to Ariane, consistent with diversified users' needs and relying on common elements, such as stages, subsystems, technologies, production facilities and operational infrastructure, thereby increasing the European launcher industry's competitiveness". Three different parts principally compose the Vega EGSE: TCS (Test Configuration System), TES (Test Execution System), PPS (Post Processing System). The TES is the part of the EGSE devoted to the tests execution; it has capabilities of immediate test data analysis, parameters monitoring and it is able to undertake pre-defined actions, in case of anomalous events happen, in order to put in safe conditions the Unity Under Test (UUT). The TES is composed of two main components: HLCS and LLCS. The HLCS is based on SCOS 2000 ESA product; it is mainly devoted to the interaction with operators. It allows loading Test Sequences and

  9. Passive Vibration Control of Airborne Equipment using a Circular Steel Ring

    NASA Technical Reports Server (NTRS)

    Ellison, Joseph; Ahmadi, Goodarz; Kehoe, Mike

    1997-01-01

    Vibration isolation is needed to protect avionics equipment from adverse aircraft vibration environments. Passive isolation is the simplest means to achieve this goal. The system used here consists of a circular steel ring with a lump mass on top and exposed to base excitation. Sinusoidal and filtered zero-mean Gaussian white noise are used to excite the structure and the acceleration response spectra at the top of the ring are computed. An experiment is performed to identify the natural frequencies and modal damping of the circular ring. Comparison is made between the analytical and experimental results and good agreement is observed. The ring response is also evaluated with a concentrated mass attached to the top of the ring. The effectiveness of the ring in isolating the equipment from base excitation is studied. The acceleration response spectra of a single degree of freedom system attached to the top of the ring are evaluated and the results are compared with those exposed directly to the base excitation. It is shown that a properly designed ring could effectively protect the avionics from possible damaging excitation levels.

  10. Extracting dynamic spatial data from airborne imaging sensors to support traffic flow estimation

    NASA Astrophysics Data System (ADS)

    Toth, C. K.; Grejner-Brzezinska, D.

    The recent transition from analog to totally digital data acquisition and processing techniques in airborne surveying represents a major milestone in the evolution of spatial information science and practice. On one hand, the improved quality of the primary sensor data can provide the foundation for better automation of the information extraction processes. This phenomenon is also strongly supported by continuously expanding computer technology, which offers almost unlimited processing power. On the other hand, the variety of the data, including rich information content and better temporal characteristics, acquired by the new digital sensors and coupled with rapidly advancing processing techniques, is broadening the applications of airborne surveying. One of these new application areas is traffic flow extraction aimed at supporting better traffic monitoring and management. Transportation mapping has always represented a significant segment of civilian mapping and is mainly concerned with road corridor mapping for design and engineering purposes, infrastructure mapping and facility management, and more recently, environmental mapping. In all these cases, the objective of the mapping is to extract the static features of the object space, such as man-made and natural objects, typically along the road network. In contrast, the traffic moving in the transportation network represents a very dynamic environment, which complicates the spatial data extraction processes as the signals of moving vehicles should be identified and removed. Rather than removing and discarding the signals, however, they can be turned into traffic flow information. This paper reviews initial research efforts to extract traffic flow information from laserscanner and digital camera sensors installed in airborne platforms.

  11. Spaceflight Ground Support Equipment Reliability & System Safety Data

    NASA Technical Reports Server (NTRS)

    Fernandez, Rene; Riddlebaugh, Jeffrey; Brinkman, John; Wilkinson, Myron

    2012-01-01

    Presented were Reliability Analysis, consisting primarily of Failure Modes and Effects Analysis (FMEA), and System Safety Analysis, consisting of Preliminary Hazards Analysis (PHA), performed to ensure that the CoNNeCT (Communications, Navigation, and Networking re- Configurable Testbed) Flight System was safely and reliably operated during its Assembly, Integration and Test (AI&T) phase. A tailored approach to the NASA Ground Support Equipment (GSE) standard, NASA-STD-5005C, involving the application of the appropriate Requirements, S&MA discipline expertise, and a Configuration Management system (to retain a record of the analysis and documentation) were presented. Presented were System Block Diagrams of selected GSE and the corresponding FMEA, as well as the PHAs. Also discussed are the specific examples of the FMEAs and PHAs being used during the AI&T phase to drive modifications to the GSE (via "redlining" of test procedures, and the placement of warning stickers to protect the flight hardware) before being interfaced to the Flight System. These modifications were necessary because failure modes and hazards were identified during the analysis that had not been properly mitigated. Strict Configuration Management was applied to changes (whether due to upgrades or expired calibrations) in the GSE by revisiting the FMEAs and PHAs to reflect the latest System Block Diagrams and Bill Of Material. The CoNNeCT flight system has been successfully assembled, integrated, tested, and shipped to the launch site without incident. This demonstrates that the steps taken to safeguard the flight system when it was interfaced to the various GSE were successful.

  12. Near-real-time TOMS, telecommunications and meteorological support for the 1987 Airborne Antarctic Ozone Experiment

    NASA Technical Reports Server (NTRS)

    Ardanuy, P.; Victorine, J.; Sechrist, F.; Feiner, A.; Penn, L.

    1988-01-01

    The goal of the 1987 Airborne Antarctic Ozone Experiment was to improve the understanding of the mechanisms involved in the formation of the Antarctic ozone hole. Total ozone data taken by the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) played a central role in the successful outcome of the experiment. During the experiment, the near-real-time TOMS total ozone observations were supplied within hours of real time to the operations center in Punta Arenas, Chile. The final report summarizes the role which Research and Data Systems (RDS) Corporation played in the support of the experiment. The RDS provided telecommunications to support the science and operations efforts for the Airborne Antarctic Ozone Experiment, and supplied near real-time weather information to ensure flight and crew safety; designed and installed the telecommunications network to link NASA-GSFC, the United Kingdom Meteorological Office (UKMO), Palmer Station, the European Center for Medium-Range Weather Forecasts (ECMWF) to the operation at Punta Arenas; engineered and installed stations and other stand-alone systems to collect data from designated low-orbiting polar satellites and beacons; provided analyses of Nimbus-7 TOMS data and backup data products to Punta Arenas; and provided synoptic meteorological data analysis and reduction.

  13. Flight equipment supporting metabolic experiments on SLS-1

    NASA Technical Reports Server (NTRS)

    Leach, Carolyn S.; Inners, L. D.

    1991-01-01

    Five experiments in different aspects of human metabolism will be performed on Spacelab Life Sciences-1. Nine items of equipment from the Life Sciences Laboratory Equipment inventory will be used: the rack-mounted centrifuge, the hematocrit centrifuge, the low-gravity centrifuge, a body-mass measurement device, a urine monitoring system, the Spacelab refrigerator/freezer, the Orbiter refrigerator, an in-flight blood collection system, and a pocket voice recorder. In addition, each experiment will require some specialized equipment such as incubators and culture blocks for an immunology experiment, and tracers for a fluid and electrolyte experiment and a hematology experiment. The equipment for these experiments has been developed over many years, in some cases since the Skylab program in the early 1970s, and has been certified for use on the Space Shuttle.

  14. MAPIR: An Airborne Polarmetric Imaging Radiometer in Support of Hydrologic Satellite Observations

    NASA Technical Reports Server (NTRS)

    Laymon, C.; Al-Hamdan, M.; Crosson, W.; Limaye, A.; McCracken, J.; Meyer, P.; Richeson, J.; Sims, W.; Srinivasan, K.; Varnevas, K.

    2010-01-01

    In this age of dwindling water resources and increasing demands, accurate estimation of water balance components at every scale is more critical to end users than ever before. Several near-term Earth science satellite missions are aimed at global hydrologic observations. The Marshall Airborne Polarimetric Imaging Radiometer (MAPIR) is a dual beam, dual angle polarimetric, scanning L band passive microwave radiometer system developed by the Observing Microwave Emissions for Geophysical Applications (OMEGA) team at MSFC to support algorithm development and validation efforts in support of these missions. MAPIR observes naturally-emitted radiation from the ground primarily for remote sensing of land surface brightness temperature from which we can retrieve soil moisture and possibly surface or water temperature and ocean salinity. MAPIR has achieved Technical Readiness Level 6 with flight heritage on two very different aircraft, the NASA P-3B, and a Piper Navajo.

  15. A Compute Perspective: Delivering Decision Support Products in 24 Hours from the Airborne Snow Observatory

    NASA Astrophysics Data System (ADS)

    Ramirez, P.; Mattmann, C. A.; Painter, T. H.; Seidel, F. C.; Trangsrud, A.; Hart, A. F.; Goodale, C. E.; Boardman, J. W.; Heneghan, C.; Verma, R.; Khudikyan, S.; Boustani, M.; Zimdars, P. A.; Horn, J.; Neely, S.

    2013-12-01

    The JPL Airborne Snow Observatory (ASO) must process 100s of GB of raw data to 100s of Terabytes of derived data in 24 hour Near Real Time (NRT) latency in a geographically distributed mobile compute and data-intensive processing setting. ASO provides meaningful information to water resource managers in the Western US letting them know how much water to maintain; or release, and what the prospectus of the current snow season is in the Sierra Nevadas. Providing decision support products processed from airborne data in a 24 hour timeframe is an emergent field and required the team to develop a novel solution as this process is typically done over months. We've constructed a system that combines Apache OODT; with Apache Tika; with the Interactive Data Analysis (IDL)/ENVI programming environment to rapidly and unobtrusively generate, distribute and archive ASO data as soon as the plane lands near Mammoth Lakes, CA. Our system is flexible, underwent several redeployments and reconfigurations, and delivered this critical information to stakeholders during the recent "Snow On" campaign March 2013 - June 2013. This talk will take you through a day in the life of the compute team from data acquisition, delivery, processing, and dissemination. Within this context, we will discuss the architecture of ASO; the open source software we used; the data we stored; and how it was delivered to its users. Moreover we will discuss the logistics, system engineering, and staffing that went into the developing, deployment, and operation of the mobile compute system.

  16. Public Playground Equipment: Suggested Safety Guidelines and Supporting Rationale for Public Playground Equipment.

    ERIC Educational Resources Information Center

    Mahajan, Bal M.; And Others

    The purpose of these Federal safety guidelines is to reduce the severity and frequency of injury associated with public playground equipment under conditions of normal use and reasonably foreseeable misuse. Safety guidelines regarding: (1) assembly, installation, maintenance instructions and identification; (2) materials of manufacture and…

  17. NASA COAST and OCEANIA Airborne Missions in Support of Ecosystem and Water Quality Research in the Coastal Zone

    NASA Technical Reports Server (NTRS)

    Guild, Liane S.; Hooker, Stanford B.; Kudela, Raphael; Morrow, John; Russell, Philip; Myers, Jeffrey; Dunagan, Stephen; Palacios, Sherry; Livingston, John; Negrey, Kendra; Torres-Perez, Juan

    2015-01-01

    Worldwide, coastal marine ecosystems are exposed to land-based sources of pollution and sedimentation from anthropogenic activities including agriculture and coastal development. Ocean color products from satellite sensors provide information on chlorophyll (phytoplankton pigment), sediments, and colored dissolved organic material. Further, ship-based in-water measurements and emerging airborne measurements provide in situ data for the vicarious calibration of current and next generation satellite ocean color sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal of the airborne missions was to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. Utilizing an imaging spectrometer optimized in the blue to green spectral domain enables higher signal for detection of the relatively dark radiance measurements from marine and freshwater ecosystem features. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic

  18. Benefits to space logistics and supportability using intelligent, decision-making self-prognostic equipment

    NASA Astrophysics Data System (ADS)

    Losik, L.

    To improve logistics and supportability for existing and future space systems, the key design driver needs to be changed from equipment and system performance to equipment usable life as is done on Air Force fighter aircraft and the new Boeing commercial passenger aircraft. Today, all space system procurement contracts require equipment performance to be measured and confirmed before purchase and delivery, but the same procurement contracts do not require the usable life of the equipment to be measured and confirmed resulting in equipment whose reliability/usable life is dominated by premature (infant mortality) failures. Premature failures drive space system logistics and supportability, increasing cost and decreasing serviceability and availability. However, reliability-centered systems measure equipment usable life to identify any equipment that suffer from an infant mortality for replacement before delivery, offer superior system availability, maintainability, reliability and supportability along with meeting or exceeding equipment and system performance requirements. Today, the expensive and outdated routine maintenance programs can be replaced by the cost-saving, condition-based maintenance (CBM) program. The CBM includes using intelligent, decision-making self-prognostic equipment that decrease increases availability while lowering the life cycle cost. The CBM is ideal for improving the logistics, availability and supportability for existing and tomorrow's space exploration programs that benefit financially from having the right equipment and supplies available at the right time.

  19. Airborne IPDA Lidar Measurements of Atmospheric Methane in Support of MERLIN

    NASA Astrophysics Data System (ADS)

    Kiemle, C.; Amediek, A.; Wirth, M.; Ehret, G.

    2015-12-01

    Space-based lidar missions targeting greenhouse gases are expected to close observational gaps, e.g., over subarctic permafrost and tropical wetlands, where in-situ and passive remote sensing techniques have difficulties. Consequently, a "Methane Remote Lidar Mission" (MERLIN) was proposed by the German and French space agencies DLR and CNES. MERLIN is now in Phase B, in which all mission components are planned in detail; launch is foreseen in 2020. An integrated path differential absorption (IPDA) lidar will measure weighted columns of atmospheric methane (XCH4) along the satellite track. Primary objective is to provide accurate global observations of methane concentration gradients for inverse numerical models in order to better quantify regional fluxes. DLR has developed an airborne demonstrator, CHARM-F, for technology demonstration and validation purposes. First successful flights on-board the German HALO research aircraft have been performed in May 2015 over Central Europe. The measurements are expected to help solve general retrieval issues for future space-borne IPDA lidars. For example, the CHARM-F flights over ocean and lakes help assess the strength and variability of backscatter from water surfaces. The IPDA weighting function, or measurement sensitivity, is dependent on atmospheric pressure and temperature, in particular close to the surface. We use ECMWF analyses interpolated in space and time to the aircraft track that provide these auxiliary data at 14 km horizontal resolution. Due to the coarse representation of orography the model's pressure and temperature profiles have to be extrapolated down to the true lidar's scattering surface elevation, which generates uncertainties that we assess. We also assess biases by spectroscopic uncertainties in the methane absorption lines' parameters. Overall, the airborne results will support the development of advanced processing algorithms for future space lidar missions such as MERLIN.

  20. Airborne Laser Altimetry (LIDAR) Support of Floodplain Inundation Modeling of Arid Southwest Stream Systems to Predict WoUS Boundaries

    NASA Astrophysics Data System (ADS)

    Finnegan, D. C.; Lichvar, R. W.; Ericsson, M. P.

    2004-12-01

    The U.S. Army Corps of Engineers (COE) is actively involved in floodplain management and regulation of dry wash floodplains in the western United States. The COE also regulates "Waters of the United States" (WoUS) under Sec. 404 of the Clean Water Act by determining the extent of surface indicators related to "ordinary" flood discharges known as Ordinary High Water Marks (OHWM). Currently, the return interval for inundation to the WoUS boundary is not well understood. Large flood inundation models (50, 100 yr flood events) currently available do not reflect features found in the field useful for placement of OHWM. At the present time, COE hydrologic models such as HEC-1 and HEC-RAS require detailed site information for rainfall and stream flow characteristics as well as on-site surveys to determine channel morphology, width, fluvial patterns, slope and other physical attributes. Typically, the fine-scale resolution necessary for 1-D hydrologic models is obtained from a limited number of channel cross sections obtained with survey equipment. The focus of this research is to develop a quantitative method to accurately reproduce determined flood return inundation levels in support of identifying the events that best represent the extent of the "ordinary" high water using high-resolution topography acquired through Light Infrared Detection and Ranging (LIDAR). Using NASA's Airborne Topographic Mapper (ATM) as a source of high-resolution topographic data we were able to acquire highly precise horizontal (~10cm) and vertical height locations (~5-10 cm) at several arid stream test reaches throughout the Mojave Desert, California. By incorporating LIDAR data into HEC-RAS models at a non-interpolated 2m cross section spacing our results have shown that 1-D flood inundation models that are typically used for high-flow events is capable of determining the geomorphic signature, extent and inundation frequency of "ordinary" flood events.

  1. Tree species identification in an African Savanna with airborne imaging spectroscopy and LiDAR from the Carnegie Airborne Observatory (CAO) using stacked support vector machines

    NASA Astrophysics Data System (ADS)

    Baldeck, C. A.; Colgan, M.; Féret, J.; Asner, G. P.

    2012-12-01

    Airborne remote sensing data provide promising opportunities for species identification of individual tree and shrub crowns across large areas which cannot be mapped from the ground. Previous investigations of the potential for species identification of crowns from airborne data have focused on pixel-level information (0.5-1m2), and thus have been unable to take advantage of the structural information that exist at the crown level. Hyperspectral data consisting of 58 bands from 517 to 1054nm and LiDAR (light detection and ranging) data providing vegetation height information were acquired over several landscapes within Kruger National Park, South Africa, by the CAO in 2008 at 1.1m spatial resolution. Over 1,000 individual trees and shrubs were mapped and identified in the field to construct species spectral and structural libraries. We used stacked support vector machines (SVM) that incorporate pixel-level spectral information and crown-level structural information to predict species identity for individual tree crowns. The addition of a crown-level classification step that incorporates crown structural information significantly improved model accuracy by ~6% and our prediction accuracy of the final model was ~75% for 16 species classes. This model was then used to predict the species identity of individual crowns across multiple airborne-mapped landscapes, made possible by an automated crown segmentation algorithm. The resultant species maps will make it possible to examine the environmental controls over individual species distributions and tree community composition, and provide important landscape-scale species distribution information relevant to park management and conservation.

  2. Space shuttle EVA/IVA support equipment requirements study. Volume 1: Final summary report

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A study was conducted to determine the support equipment requirements for space shuttle intravehicular and extravehicular activities. The subjects investigated are; (1) EVA/IVA task identification and analysis,. (2) primary life support system, (3) emergency life support system, (4) pressure suit assembly, (5) restraints, (6) work site provision, (7) emergency internal vehicular emergencies, and (8) vehicular interfaces.

  3. Algorithm for selecting appropriate transfer support equipment and a robot based on user physical ability.

    PubMed

    Matsushita, S; Fujie, M G

    2013-01-01

    In this present paper, we propose an algorithm for selecting appropriate transfer support equipment and robot based on the physical ability of the user. In addition, we describe the relationship between physical human features and the burden during standing when using a standing support robot. Although a number of care support devices have been developed, assistive robots are not yet popular because users do not know which devices are appropriate for their needs or physical abilities. In this study, we focus on a transfer support device and propose an algorithm for selecting transfer support equipment and a robot that suits the user's physical ability. We investigated the relationship between standing support equipment including a robot and the physical burden during standing, which is a basic transfer motion. Experimentally, we analyzed and calculated the knee and ankle joint moments and discussed the relationship between standing support equipment and knee and ankle joint moments during standing; we also investigated and the relationship between physical human features and the knee joint moment during standing. Our results identified standing support equipment that was appropriate to the user's physical ability. We found that it was effective to provide an up/down seat to persons having low residual ability; a standing support robot is appropriate for people having less residual ability in the knees, and a railing is suitable for people having low residual ability in the ankles.

  4. Landslides Identification Using Airborne Laser Scanning Data Derived Topographic Terrain Attributes and Support Vector Machine Classification

    NASA Astrophysics Data System (ADS)

    Pawłuszek, Kamila; Borkowski, Andrzej

    2016-06-01

    Since the availability of high-resolution Airborne Laser Scanning (ALS) data, substantial progress in geomorphological research, especially in landslide analysis, has been carried out. First and second order derivatives of Digital Terrain Model (DTM) have become a popular and powerful tool in landslide inventory mapping. Nevertheless, an automatic landslide mapping based on sophisticated classifiers including Support Vector Machine (SVM), Artificial Neural Network or Random Forests is often computationally time consuming. The objective of this research is to deeply explore topographic information provided by ALS data and overcome computational time limitation. For this reason, an extended set of topographic features and the Principal Component Analysis (PCA) were used to reduce redundant information. The proposed novel approach was tested on a susceptible area affected by more than 50 landslides located on Rożnów Lake in Carpathian Mountains, Poland. The initial seven PCA components with 90% of the total variability in the original topographic attributes were used for SVM classification. Comparing results with landslide inventory map, the average user's accuracy (UA), producer's accuracy (PA), and overall accuracy (OA) were calculated for two models according to the classification results. Thereby, for the PCA-feature-reduced model UA, PA, and OA were found to be 72%, 76%, and 72%, respectively. Similarly, UA, PA, and OA in the non-reduced original topographic model, was 74%, 77% and 74%, respectively. Using the initial seven PCA components instead of the twenty original topographic attributes does not significantly change identification accuracy but reduce computational time.

  5. Airborne Camera System for Real-Time Applications - Support of a National Civil Protection Exercise

    NASA Astrophysics Data System (ADS)

    Gstaiger, V.; Romer, H.; Rosenbaum, D.; Henkel, F.

    2015-04-01

    In the VABENE++ project of the German Aerospace Center (DLR), powerful tools are being developed to aid public authorities and organizations with security responsibilities as well as traffic authorities when dealing with disasters and large public events. One focus lies on the acquisition of high resolution aerial imagery, its fully automatic processing, analysis and near real-time provision to decision makers in emergency situations. For this purpose a camera system was developed to be operated from a helicopter with light-weight processing units and microwave link for fast data transfer. In order to meet end-users' requirements DLR works close together with the German Federal Office of Civil Protection and Disaster Assistance (BBK) within this project. One task of BBK is to establish, maintain and train the German Medical Task Force (MTF), which gets deployed nationwide in case of large-scale disasters. In October 2014, several units of the MTF were deployed for the first time in the framework of a national civil protection exercise in Brandenburg. The VABENE++ team joined the exercise and provided near real-time aerial imagery, videos and derived traffic information to support the direction of the MTF and to identify needs for further improvements and developments. In this contribution the authors introduce the new airborne camera system together with its near real-time processing components and share experiences gained during the national civil protection exercise.

  6. Regional Modeling Support for Planning Airborne Campaigns to Observe CO2 and Other Trace Gases

    NASA Astrophysics Data System (ADS)

    Uliasz, M.; Schuh, A. E.; Denning, A.

    2010-12-01

    Lagrangian particle models (e.g., CSU LPDM, STILT) driven by regional meteorological models (e.g., WRF, SiB-RAMS) are useful tools in regional CO2 research including inversion studies, design of tower network, or testing and supporting flight scenarios. They are typically used in backward in time mode as an adjoint transport model providing, for each data point, influence functions (footprints) for surface fluxes and inflow fluxes across a domain perimeter. The following modeling framework is proposed to support a design of observational networks and field campaigns for measurement of CO2 concentrations in regional and continental scales: (1) atmospheric transport climatology covering several months for selected towers or flight transects, (2) testing specific flight scenarios (shorter time periods, but higher resolution), and (3) using model generated pseudo-data and inversion techniques to optimize observational strategies for specific objectives in terms of uncertainty reduction in estimated CO2 surface fluxes. This framework will be presented using examples from previous regional CO2 studies over North America with the aid of CSU SiB-RAMS and LPDM models. Then, it will be used to explore how column integrated measurements of CO2 from aircraft (active laser sounding) together with airborne sampling can complement the NOAA tall tower network of continuous CO2 measurements for inversion studies. Hypothetical flight scenarios are designed to collect information on both surface fluxes and boundary conditions around US domain perimeter using model simulations for the entire year of 2007. Example of three concentration sampling strategies (WBI tower continuous, and two flights during 4 afternoon hours every day), one month average (July, 2007) for a passive tracer (top), CO2 respiration flux (middle) and CO2 assimilation flux (bottom)

  7. Electrical Ground Support Equipment (EGSE) Design for Small Satellite

    NASA Astrophysics Data System (ADS)

    Park, Jong-Oh; Choi, Jong-Yoen; Lim, Seong-Bin; Kwon, Jae-Wook; Youn, Young-Su; Chun, Yong-Sik; Lee, Sang-Seol

    2002-09-01

    This paper describes EGSE design for the small satellite such like KOMPSAT-2 satellite. Recent design trend of small satellite and EGSE is to take short development time and less cost. For this purpose, the design for KOMPSAT-2 satellite and EGSE are not much modified from KOMPSAT-1 heritage. It means that it is able to be accommodated the verified hardware and software modules used in KOMPSAT-1 satellite program if possible. The objective of EGSE is to provide hardware and software for efficient electrical testing of integrated KOMPSAT-2 satellite in three general categories. (1) Simulators for ground testing (e.g. solar-simulation power, earth scenes, horizons and sun sensor). (2) Ground station type satellite data acquisition and processing test sets. (3) Overall control of satellite using hardline datum. In KOMPSAT (KOrea Multi-Purpose SATellite) program, KOMPSAT-2 EGSE was developed to support satellite integration and test activities. The KOMPSAT-2 EGSE was designed in parallel with satellite design. Consequently, the KOMPSAT-2 EGSE was based on the KOMPSAT-1 heritage since the spacecraft design followed the heritage. The KOMPSAT-2 baseline was elaborated by taking advantage of experience from KOMPSAT-1 program. The EGSE of KOMPSAT-2 design concept is generic modular design with preference in part selection with commercial off-the-shelf which were proven from KOMPSAT-1 programs, flexible/user friendly operational environment (graphical interface preferred), minimized new design and self test capability.

  8. Effects of supporting structures on dynamic response of nuclear power plant equipment and piping systems

    SciTech Connect

    Stoykovich, M.

    1982-05-01

    This paper presents the evaluation of the effects of supporting structures in dynamic analysis of equipment or piping systems, which involves formulations for determining reduced stiffness and mass matrices associated with the number of degrees of freedom corresponding to the support nodal points of a finite element model. Also, evaluation of a composite damping matrix associated with different damping properties of supporting structures, equipment, and piping systems is considered. Determination of spring constants, effective masses and mass moments of inertia, and damping values as fractions of critical damping on the basis of the theory of rigid bases on the surfaces of an elastic halfspace is demonstrated.

  9. 30 CFR 75.214 - Supplemental support materials, equipment and tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Supplemental support materials, equipment and tools. 75.214 Section 75.214 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support §...

  10. Equipment

    NASA Astrophysics Data System (ADS)

    Szumski, Michał

    This chapter describes the most important features of capillary electrophoretic equipment. A presentation of the important developments in high voltage power supplies for chip CE is followed by preparation of fused silica capillaries for use in CE. Detection systems that are used in capillary electrophoresis are widely described. Here, UV-Vis absorbance measurements are discussed including different types of detection cells—also those less popular (u-shaped, Z-shaped, mirror-coated). Fluorescence detection and laser-induced fluorescence detection are the most sensitive detection systems. Several LIF setups, such as collinear, orthogonal, confocal, and sheath-flow cuvette, are presented from the point of view of the sensitivity they can provide. Several electrochemical detectors for CE, such as conductivity, amperometric, and potentiometric, are also shown and their constructions discussed. CE-MS and much less known CE (CEC)-NMR systems are also described. The examples of automation and robotized CE systems together with their potential fields of application are also presented.

  11. Airborne lidar mapping of vertical ozone distributions in support of the 1990 Clean Air Act Amendments

    NASA Technical Reports Server (NTRS)

    Uthe, Edward E.; Nielsen, Norman B.; Livingston, John M.

    1992-01-01

    The 1990 Clean Air Act Amendments mandated attainment of the ozone standard established by the U.S. Environmental Protection Agency. Improved photochemical models validated by experimental data are needed to develop strategies for reducing near surface ozone concentrations downwind of urban and industrial centers. For more than 10 years, lidar has been used on large aircraft to provide unique information on ozone distributions in the atmosphere. However, compact airborne lidar systems are needed for operation on small aircraft of the type typically used on regional air quality investigations to collect data with which to develop and validate air quality models. Data presented in this paper will consist of a comparison between airborne differential absorption lidar (DIAL) and airborne in-situ ozone measurements. Also discussed are future plans to improve the airborne ultraviolet-DIAL for ozone and other gas observations and addition of a Fourier Transform Infrared (FTIR) emission spectrometer to investigate the effects of other gas species on vertical ozone distribution.

  12. Developing a Logistics Data Process for Support Equipment for NASA Ground Operations

    NASA Technical Reports Server (NTRS)

    Chakrabarti, Suman

    2010-01-01

    The United States NASA Space Shuttle has long been considered an extremely capable yet relatively expensive rocket. A great part of the roughly US $500 million per launch expense was the support footprint: refurbishment and maintenance of the space shuttle system, together with the long list of resources required to support it, including personnel, tools, facilities, transport and support equipment. NASA determined to make its next rocket system with a smaller logistics footprint, and thereby more cost-effective and quicker turnaround. The logical solution was to adopt a standard Logistics Support Analysis (LSA) process based on GEIA-STD-0007 http://www.logisticsengineers.org/may09pres/GEIASTD0007DEXShortIntro.pdf which is the successor of MIL-STD-1388-2B widely used by U.S., NATO, and other world military services and industries. This approach is unprecedented at NASA: it is the first time a major program of programs, Project Constellation, is factoring logistics and supportability into design at many levels. This paper will focus on one of those levels NASA ground support equipment for the next generation of NASA rockets and on building a Logistics Support Analysis Record (LSAR) for developing and documenting a support solution and inventory of resources for. This LSAR is actually a standards-based database, containing analyses of the time and tools, personnel, facilities and support equipment required to assemble and integrate the stages and umbilicals of a rocket. This paper will cover building this database from scratch: including creating and importing a hierarchical bill of materials (BOM) from legacy data; identifying line-replaceable units (LRUs) of a given piece of equipment; analyzing reliability and maintainability of said LRUs; and therefore making an assessment back to design whether the support solution for a piece of equipment is too much work, i.e., too resource-intensive. If one must replace or inspect an LRU too much, perhaps a modification of

  13. Optical instrumentation support for the airborne ionospheric observatory. Report for 1 July 1987-30 June 1988

    SciTech Connect

    Eather, R.H.; Lance, C.A.

    1988-07-01

    The objectives were to participate in ionospheric research programs using the new optical equipment that was planned to be installed on the Airborne Ionospheric Observatory (AIO), a research aircraft operated by the Ionospheric Effects Branch at AFGL. This participation was to include: (a) testing, improvement, and continuing development of the software operating systems that control the instrument operation, (b) Complete testing, calibration, and documentation of all optical properties of the optical systems, (c) Improvements and continuing development of data recording systems for all instruments, and techniques for quick-look data presentation, (d) Assistance in analysis of optical data obtained on airglow and auroral experiments, and (e) Provide personnel assistance on research flights and field trips as required by AFGL.

  14. 77 FR 37733 - Technical Standard Order (TSO)-C68a, Airborne Automatic Dead Reckoning Computer Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ... Computer Equipment Utilizing Aircraft Heading and Doppler Ground Speed and Drift Angle Data (for Air... heading and Doppler ground speed and drift angle data (for air carrier aircraft). SUMMARY: This notice... utilizing aircraft heading and Doppler ground speed and drift angle data. The effect of the cancelled...

  15. 77 FR 53962 - Technical Standard Order (TSO)-C68a, Airborne Automatic Dead Reckoning Computer Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... proposed cancellation of TSO-C68a as published in 77 FR 37733, June 22, 2012, produced no comments... Computer Equipment Utilizing Aircraft Heading and Doppler Ground Speed and Drift Angle Data (for Air... Heading and Doppler Ground Speed and Drift Angle Data (for Air Carrier Aircraft). SUMMARY: This...

  16. 76 FR 63714 - Technical Standard Order (TSO)-C129a, Airborne Supplemental Navigation Equipment Using the Global...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... on August 16, 2011 (76 FR 50808) describing our intent to cancel TSO- C129a to solicit feedback. We... Equipment Using the Global Positioning System (GPS) AGENCY: Federal Aviation Administration (FAA), DOT... Positioning System (GPS). SUMMARY: This notice announces the FAA's cancellation of TSO-C129a,...

  17. Aviation Support Equipment Technician M 3 & 2. Rate Training Manual and Nonresident Career Course.

    ERIC Educational Resources Information Center

    Naval Education and Training Command, Pensacola, FL.

    One of a series of training manuals prepared for enlisted personnel in the Navy and Naval Reserve, this self-study unit relates directly to the occupational qualifications of the Aviation Support Equipment Technician M rating. Contents include a 15-chapter text followed by a subject index, qualifications for advancement, and the associated…

  18. Airborne electromagnetics supporting salinity and natural resource management decisions at the field scale in Australia

    NASA Astrophysics Data System (ADS)

    Cresswell, Richard G.; Mullen, Ian C.; Kingham, Rob; Kellett, Jim; Dent, David L.; Jones, Grant L.

    2007-05-01

    Airborne geophysics has been used at the catchment scale to map salt stores, conduits and soil variability, but few studies have evaluated its usefulness as a land management tool at the field scale. We respond to questions posed by land managers with: (1) comparison of airborne and ground-based electromagnetic surveys in the Lower Balonne catchment, Queensland, and (2) comparison with historical and anecdotal knowledge of landscape response in the country around Jamestown in mid-South Australia. In the Lower Balonne, direct comparison between ground electromagnetic survey (EM) and airborne electromagnetics (AEM) showed a strong relationship for both the absolute values and spatial patterns of conductivity. The penetration of AEM to greater than 100 m is valuable in defining hydrological barriers. In the Jamestown area, AEM conductivity corresponded well with specific outbreaks of salinity and observed variability in crop response; local inconsistencies at the ground surface could be resolved when sub-surface data were considered. AEM can provide valuable information at the field scale that is relevant to salinity management. Farmers can have confidence in any of these techniques (historical information, EM and AEM) and they may directly compare or integrate the results.

  19. Analysis of commercial equipment and instrumentation for Spacelab payloads, volume 2

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Technical results are presented of a study to investigate analytically the feasibility of using commercially available laboratory equipment and instrumentation in the spacelab in support of various experiments. The feasibility is demonstrated by the breadth of application of commercial, airborne, and military equipment to experiment equipment requirements in the spacelab, and the cost effectiveness of utilizing this class of equipment instead of custom-built aerospace equipment typical of past designs. Equipment design and specifications are discussed.

  20. Development of Decision Support Tools for Maintenance Strategy of Electric Power Equipment

    NASA Astrophysics Data System (ADS)

    Takahashi, Tsuguhiro; Okamoto, Tatsuki

    Development of decision support tools for maintenance strategy of electric power equipment based on the asset management technique becomes very intensive in order to reduce maintenance cost due to the liberalization of power business. In these years many theses have been presented about asset management in this area, but there are not yet so many concrete researches. This article introduces two approaches of decision support tool development for power equipment in CRIEPI. One is to support evaluation of dissolved gas analysis for oil-immersed transformers. It provides comparison to data obtained from the same kind of transformers, and criteria among them. The other is to evaluate average annual maintenance cost by considering an overhaul effect and failure risk. It provides an optimum overhaul strategy with suitable parameters.

  1. Managing the equipment service life in rendering engineering support to NPP operation

    NASA Astrophysics Data System (ADS)

    Ryasnyy, S. I.

    2015-05-01

    Apart from subjecting metal to nondestructive testing and determining its actual state, which are the traditional methods used for managing the service life of NPP equipment during its operation, other approaches closely linked with rendering engineering support to NPP operation have emerged in recent decades, which, however, have been covered in publications to a lesser extent. Service life management matters occupy the central place in the structure of engineering support measures. Application of the concept of repairing NPP equipment based on assessing its technical state and the risk of its failure makes it possible to achieve significantly smaller costs for maintenance and repairs and produce a larger amount of electricity due to shorter planned outages. Decreasing the occurrence probability of a process-related abnormality through its prediction is a further development of techniques for monitoring the technical state of equipment and systems. The proposed and implemented procedure for predicting the occurrence of process-related deviations from normal NPP operation opens the possibility to record in the online mode the trends in changes of process parameters that are likely to lead to malfunctions in equipment operation and to reduce the probability of power unit unloading when an abnormal technical state of equipment occurs and develops by recording changes in the state at an early stage and taking timely corrective measures. The article presents the structure of interconnections between the objectives and conditions of adjustment and commissioning tests, in which the management of equipment service life (saving and optimizing the service life) occupies the central place. Special attention is paid to differences in resource saving and optimization measures.

  2. Module Equipped with a Life-Support System for Space Experiments with Mongolian Gerbils (Meriones Unguiculatus)

    NASA Astrophysics Data System (ADS)

    Ilyin, E. A.; Smirnov, I. A.; Soldatov, P. E.; Guryeva, T. S.; Mednikova, E. I.

    2008-06-01

    A successful experiment with 12 Mongolian gerbils was performed during the 12-day flight of Russian automatic spacecraft Foton-M3 (September 14-26, 2007). Foton-M3 was not equipped with an air supply system. Due to this, a self-contained "CONTOUR" module equipped with its own Life-Support System, was developed. The cage for animals was equipped with yellow LEDs. The day/night cycle was 12:12 hours. In addition, the module was equipped with a digital video recorder located on the outside surface in front of a transparent window. In space flight, the animals were provided with food bars made of natural products and contained about 20% of water. This moisture met gerbils requirements in water; therefore, the module was not equipped with a water supply system. In the module, the environmental parameters were as follows: p02 = 143-156 (mean 150) mm Hg, pC02 - not more than 0.76 (mean 0.64) mm Hg, temperature = 23-28 (mean 26.7) °C, and RH = 29% at the beginning and 57% at the end of flight (mean 39%). Throughout the entire flight video recording of the animals was performed continuously during the daytime.

  3. Controlling stress corrosion cracking in mechanism components of ground support equipment

    NASA Technical Reports Server (NTRS)

    Majid, W. A.

    1988-01-01

    The selection of materials for mechanism components used in ground support equipment so that failures resulting from stress corrosion cracking will be prevented is described. A general criteria to be used in designing for resistance to stress corrosion cracking is also provided. Stress corrosion can be defined as combined action of sustained tensile stress and corrosion to cause premature failure of materials. Various aluminum, steels, nickel, titanium and copper alloys, and tempers and corrosive environment are evaluated for stress corrosion cracking.

  4. A unique challenge: Emergency egress and life support equipment at KSC

    NASA Technical Reports Server (NTRS)

    Waddell, H. M., Jr.

    1975-01-01

    As a result of the investigation following the January 1967 fire, which took the lives of three astronauts, materials were developed, flight hardware was modified, and test procedures were rewritten in order to establish the framework within which a more effective rescue concept could be developed. Topics discussed include breathing units, improved life support equipment, miniresuscitators, and hazardous tasks during space shuttle launch and landing operations.

  5. Kennedy Space Center: Constellation Program Electrical Ground Support Equipment Research and Development

    NASA Technical Reports Server (NTRS)

    McCoy, Keegan

    2010-01-01

    The Kennedy Space Center (KSC) is NASA's spaceport, launching rockets into space and leading important human spaceflight research. This spring semester, I worked at KSC on Constellation Program electrical ground support equipment through NASA's Undergraduate Student Research Program (USRP). This report includes a discussion of NASA, KSC, and my individual research project. An analysis of Penn State's preparation of me for an internship and my overall impressions of the Penn State and NASA internship experience conclude the report.

  6. Definition of common support equipment and space station interface requirements for IOC model technology experiments

    NASA Technical Reports Server (NTRS)

    Russell, Richard A.; Waiss, Richard D.

    1988-01-01

    A study was conducted to identify the common support equipment and Space Station interface requirements for the IOC (initial operating capabilities) model technology experiments. In particular, each principal investigator for the proposed model technology experiment was contacted and visited for technical understanding and support for the generation of the detailed technical backup data required for completion of this study. Based on the data generated, a strong case can be made for a dedicated technology experiment command and control work station consisting of a command keyboard, cathode ray tube, data processing and storage, and an alert/annunciator panel located in the pressurized laboratory.

  7. Airborne electromagnetic surveys in support of groundwater models in western Nebraska

    NASA Astrophysics Data System (ADS)

    Abraham, J. D.; Viezzoli, A.; Cannia, J. C.; Smith, B. D.; Brown, W.; Peterson, S. M.

    2010-12-01

    The USGS, SkyTEM, Aarhus Geophysics, North Platte, South Platte and Twin Platte Natural Resource Districts have collaborated to collect airborne time domain geophysical surveys over selected of areas of western Nebraska. The objective of the surveys was to map the aquifers and bedrock topography of the area to help improve the understanding of groundwater-surface water relations to be used in water management decisions. The base of aquifer in many of these areas is in excess of 100 meters deep and little detailed information of the configuration of the bedrock exits. Many of the aquifers exist as alluvial fills in paleochannels upon complex bedrock topography. Controlling factors for groundwater flow are the variations of the hydraulic properties of the fill and the boundary geometry of the paleochannels. Results from groundwater modeling efforts prior to the addition of the airborne data revealed the hydrogeologic framework was sufficient for the regional scale models, but when these models were reduced to 40 acres cell size, the lack of detail adversely affected model results. The SkyTEM system is a helicopter-borne time-domain electromagnetic system capable of detecting small changes in resistivity from the near-surface down to depths of up to 300 m and is well-suited for aquifer mapping. An innovative design of the receiver coils and transmitter pattern eliminates the self response that is characteristic of airborne systems and spatial measurement sensors mounted on a rigid frame enable rigorous quantitative interpretation of the EM data. The ability to quickly collect and deliver high quality, high resolution geophysical data contributes significantly to modeling efforts and further understanding of subsurface hydrological systems. The raw AEM data have to be edited to exclude data that have been affected by coupling with man made infrastructures. For resistivity data to be related to lithologic information to refine groundwater model inputs, and to make the

  8. Airborne imaging sensors for environmental monitoring & surveillance in support of oil spills & recovery efforts

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R.; Jones, James; Frystacky, Heather; Coppin, Gaelle; Leavaux, Florian; Neyt, Xavier

    2011-11-01

    Collection of pushbroom sensor imagery from a mobile platform requires corrections using inertial measurement units (IMU's) and DGPS in order to create useable imagery for environmental monitoring and surveillance of shorelines in freshwater systems, coastal littoral zones and harbor areas. This paper describes a suite of imaging systems used during collection of hyperspectral imagery in northern Florida panhandle and Gulf of Mexico airborne missions to detect weathered oil in coastal littoral zones. Underlying concepts of pushbroom imagery, the needed corrections for directional changes using DGPS and corrections for platform yaw, pitch, and roll using IMU data is described as well as the development and application of optimal band and spectral regions associated with weathered oil. Pushbroom sensor and frame camera data collected in response to the recent Gulf of Mexico oil spill disaster is presented as the scenario documenting environmental monitoring and surveillance techniques using mobile sensing platforms. Data was acquired during the months of February, March, April and May of 2011. The low altitude airborne systems include a temperature stabilized hyperspectral imaging system capable of up to 1024 spectral channels and 1376 spatial across track pixels flown from 3,000 to 4,500 feet altitudes. The hyperspectral imaging system is collocated with a full resolution high definition video recorder for simultaneous HD video imagery, a 12.3 megapixel digital, a mapping camera using 9 inch film types that yields scanned aerial imagery with approximately 22,200 by 22,200 pixel multispectral imagery (~255 megapixel RGB multispectral images in order to conduct for spectral-spatial sharpening of fused multispectral, hyperspectral imagery. Two high spectral (252 channels) and radiometric sensitivity solid state spectrographs are used for collecting upwelling radiance (sub-meter pixels) with downwelling irradiance fiber optic attachment. These sensors are utilized for

  9. Supporting relief efforts of the 2010 Haitian earthquake using an airborne multimodal remote sensing platform

    NASA Astrophysics Data System (ADS)

    Faulring, Jason W.; McKeown, Donald M.; van Aardt, Jan; Casterline, May V.; Bartlett, Brent D.; Raqueno, Nina

    2011-06-01

    The small island nation of Haiti was devastated in early 2010 following a massive 7.0 earthquake that brought about widespread destruction of infrastructure, many deaths and large-scale displacement of the population in the nation's major cities. The World Bank and ImageCat, Inc tasked the Rochester Institute of Technology's (RIT) Wildfire Airborne Sensor Platform (WASP) to gather a multi-spectral and multi-modal assessment of the disaster over a seven-day period to be used for relief and reconstruction efforts. Traditionally, private sector aerial remote sensing platforms work on processing and product delivery timelines measured in days, a scenario that has the potential to reduce the value of the data in time-sensitive situations such as those found in responding to a disaster. This paper will describe the methodologies and practices used by RIT to deliver an open set of products typically within a twenty-four hour period from when they were initially collected. Response to the Haiti disaster can be broken down into four major sections: 1) data collection and logistics, 2) transmission of raw data from a remote location to a central processing and dissemination location, 3) rapid image processing of a massive amount of raw data, and 4) dissemination of processed data to global organizations utilizing it to provide the maximum benefit. Each section required it's own major effort to ensure the success of the overall mission. A discussion of each section will be provided along with an analysis of methods that could be implemented in future exercises to increase efficiency and effectiveness.

  10. Optimal Medical Equipment Maintenance Service Proposal Decision Support System combining Activity Based Costing (ABC) and the Analytic Hierarchy Process (AHP).

    PubMed

    da Rocha, Leticia; Sloane, Elliot; M Bassani, Jose

    2005-01-01

    This study describes a framework to support the choice of the maintenance service (in-house or third party contract) for each category of medical equipment based on: a) the real medical equipment maintenance management system currently used by the biomedical engineering group of the public health system of the Universidade Estadual de Campinas located in Brazil to control the medical equipment maintenance service, b) the Activity Based Costing (ABC) method, and c) the Analytic Hierarchy Process (AHP) method. Results show the cost and performance related to each type of maintenance service. Decision-makers can use these results to evaluate possible strategies for the categories of equipment.

  11. Optimal Medical Equipment Maintenance Service Proposal Decision Support System combining Activity Based Costing (ABC) and the Analytic Hierarchy Process (AHP).

    PubMed

    da Rocha, Leticia; Sloane, Elliot; M Bassani, Jose

    2005-01-01

    This study describes a framework to support the choice of the maintenance service (in-house or third party contract) for each category of medical equipment based on: a) the real medical equipment maintenance management system currently used by the biomedical engineering group of the public health system of the Universidade Estadual de Campinas located in Brazil to control the medical equipment maintenance service, b) the Activity Based Costing (ABC) method, and c) the Analytic Hierarchy Process (AHP) method. Results show the cost and performance related to each type of maintenance service. Decision-makers can use these results to evaluate possible strategies for the categories of equipment. PMID:17281912

  12. Applying spectral unmixing and support vector machine to airborne hyperspectral imagery for detecting giant reed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated linear spectral unmixing (LSU), mixture tuned matched filtering (MTMF) and support vector machine (SVM) techniques for detecting and mapping giant reed (Arundo donax L.), an invasive weed that presents a severe threat to agroecosystems and riparian areas throughout the southern ...

  13. The mechanical ground support equipment for the AIV and calibration of the AGILE integrated payload

    NASA Astrophysics Data System (ADS)

    Trifoglio, Massimo; Traci, Alessandro; Gianotti, Fulvio; Bulgarelli, Andrea; Di Cocco, Guido; Labanti, Claudio; Celesti, Enrico; Mauri, Alessandro

    2004-10-01

    AGILE is an ASI (Italian Space Agency) Small Space Mission for high energy astrophysics in the range 30 MeV - 50 GeV which is planned to be launched in 2005. Mechanical equipments are required for the Assembly, Integration and Verification (AIV) of the various subsystems together, forming the Payload complement. Furthermore, the calibration of the AGILE's performances requires to test with a beam line and with discrete X and γ ray sources the instrument response as a function of the energy of the incoming photons and particles and of their inclination with respect to the instrument axis. These AIV and Calibration activities lead to require an ad hoc Mechanical Ground Support Equipment (MGSE) which is able to move the instrument up and down, left and right as well as to rotate the instrument around the vertical axes and to tilt it by an angle between 0 and 180° with reference to the direction of the beam. We present here the MGSE we have designed in order to provide these functionalities with the required performances, and taking into account the working environment of the AIV and calibration sites.

  14. Shuttle Ground Support Equipment (GSE) T-0 Umbilical to Space Shuttle Program (SSP) Flight Elements Consultation

    NASA Technical Reports Server (NTRS)

    Wilson, Timmy R.; Kichak, Robert A.; McManamen, John P.; Kramer-White, Julie; Raju, Ivatury S.; Beil, Robert J.; Weeks, John F.; Elliott, Kenny B.

    2009-01-01

    The NASA Engineering and Safety Center (NESC) was tasked with assessing the validity of an alternate opinion that surfaced during the investigation of recurrent failures at the Space Shuttle T-0 umbilical interface. The most visible problem occurred during the Space Transportation System (STS)-112 launch when pyrotechnics used to separate Solid Rocket Booster (SRB) Hold-Down Post (HDP) frangible nuts failed to fire. Subsequent investigations recommended several improvements to the Ground Support Equipment (GSE) and processing changes were implemented, including replacement of ground-half cables and connectors between flights, along with wiring modifications to make critical circuits quad-redundant across the interface. The alternate opinions maintained that insufficient data existed to exonerate the design, that additional data needed to be gathered under launch conditions, and that the interface should be further modified to ensure additional margin existed to preclude failure. The results of the assessment are contained in this report.

  15. Welfare support-equipment for character input with head tilting and breathing

    NASA Astrophysics Data System (ADS)

    Nakazawa, Nobuaki; Yamada, Kou; Matsui, Toshikazu; Itoh, Isao

    2005-12-01

    This paper describes support-equipment of operating a personal computer for users who have an obstacle on the regions of upper limb. The user wears a head set device with an angle sensor, and holds a plastic pipe connected to a pressure sensor in his or her mouth. Tilting his or her head and breathing are used for mouse cursor operation and characters input. Considering user's body conditions, the voluntary angle range of head tilting and strength of breathing are memorized to the controller beforehand, and obtained information is reflected for operations without fatigue. The character display board is used to indicate the Japanese characters and input options such as Back Space or Enter. Tilting motions change the indicated character and breathing actions can select and input the illuminated functions on the character display board. In test trial, it is confirmed that Japanese characters including Kanji and Katakana can be input with head tilting and breathing, instead of a general keyboard.

  16. Prospective technologies and equipment for sanitary hygienic measures for life support systems

    NASA Astrophysics Data System (ADS)

    Shumilina, I. V.

    Creation of optimal sanitary hygienic conditions is a prerequisite for good health and performance of crews on extended space missions. There is a rich assortment of associated means, methods and equipment developed and experimentally tested in orbital flights. However, over a one-year period a crew of three uses up about 800 kg of ground-supplied wet wipes and towels for personal needs. The degree of closure of life support systems for long-duration orbital flights should be maximized, particularly for interplanetary missions, which exclude any possibility of re-supply. Washing with regenerated water is the ultimate sanitary hygienic goal. That is why it is so important to design devices for crew bathing during long-term space missions. Investigations showed that regeneration of wash water (WW) using membrane processes (reverse osmosis, nanofiltration etc.), unlike sorption, would not require much additional expendables. A two-stage membrane recovery unit eliminated >85% of permeate from real WW with organic and inorganic selectivity of 82 95%. The two-stage WW recovery unit was tested with artificial and real WW containing detergents available for space crews. Investigations into the ways of doing laundry and drying along with which detergents will be the best fit for space flight are also planned. Testing of a technology for water extraction from used textiles using a conventional period of contact of 1 s or more, showed that the humidity of the outgoing air flow neared 100%. Issues related to designing the next generation of space life support systems should consider the benefits of integrating new sanitary hygienic technologies, equipment, and methods.

  17. Design of a Multi-mode Flight Deck Decision Support System for Airborne Conflict Management

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Krishnamurthy, Karthik

    2004-01-01

    NASA Langley has developed a multi-mode decision support system for pilots operating in a Distributed Air-Ground Traffic Management (DAG-TM) environment. An Autonomous Operations Planner (AOP) assists pilots in performing separation assurance functions, including conflict detection, prevention, and resolution. Ongoing AOP design has been based on a comprehensive human factors analysis and evaluation results from previous human-in-the-loop experiments with airline pilot test subjects. AOP considers complex flight mode interactions and provides flight guidance to pilots consistent with the current aircraft control state. Pilots communicate goals to AOP by setting system preferences and actively probing potential trajectories for conflicts. To minimize training requirements and improve operational use, AOP design leverages existing alerting philosophies, displays, and crew interfaces common on commercial aircraft. Future work will consider trajectory prediction uncertainties, integration with the TCAS collision avoidance system, and will incorporate enhancements based on an upcoming air-ground coordination experiment.

  18. University of Washington Airborne Studies in Support of the CLAMS-2001 Field Study

    NASA Technical Reports Server (NTRS)

    Hobbs, Peter V.

    2003-01-01

    The main activity under this grant was participation in the Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) field study from 10 July through 2 August 2001. The Cloud and Aerosol Research Group (CARG) from the University of Washington (UW) flew its Convair-580 research aircraft on thirteen occasions, for a total of 45 research flight hours, in support of CLAMS. Some of the main accomplishments of these flights were: 1) Aerosol and trace gas measurements and sunphotometer measurements of aerosol optical depth and column water vapor and ozone from close to Ocean surface to approx. 10,000 ft off Delmarva Peninsula on various occasions; 2) Measurements of aerosol properties on seven occasions beneath the Terra satellite, once beneath AVHRR, and five times beneath the ER-2 aircraft; 3) Measurements of aerosol properties in the vicinity of the (CERES instrumented) Chesapeake Bay lighthouse (COVE) on nine occasions; 4) Use of the NASA Goddard Cloud Absorption Radiometer (CAR) to obtain measurements of BRDF of the ocean surface on fifteen occasions and over Great Dismal Swamp on two occasions; 5) Measurements of aerosol properties over instrumented buoys 44014, 44004, and 41001. 6) On July 17 (a CLAMS 'Golden Day') six aircraft, including the Convair-580 and ER-2, were stacked above the Chesapeake Bay lighthouse under clear skies at the time of the Terra overpass.

  19. The electrical ground support equipment for the ExoMars 2016 DREAMS scientific instrument

    NASA Astrophysics Data System (ADS)

    Molfese, C.; Schipani, P.; Marty, L.; Esposito, F.; D'Orsi, S.; Mannetta, M.; Debei, S.; Bettanini, C.; Aboudan, A.; Colombatti, G.; Mugnuolo, R.; Marchetti, E.; Pirrotta, S.

    2014-08-01

    This paper describes the Electrical Ground Support Equipment (EGSE) of the Dust characterization, Risk assessment, and Environment Analyser on the Martian Surface (DREAMS) scientific instrument, an autonomous surface payload package to be accommodated on the Entry, Descendent and landing Module (EDM) of the ExoMars 2016 European Space Agency (ESA) mission. DREAMS will perform several kinds of measurements, such as the solar irradiance with different optical detectors in the UVA band (315-400nm), NIR band (700-1100nm) and in "total luminosity" (200 -1100 nm). It will also measure environmental parameters such as the intensity of the electric field, temperature, pressure, humidity, speed and direction of the wind. The EGSE is built to control the instrument and manage the data acquisition before the integration of DREAMS within the Entry, Descendent and landing Module (EDM) and then to retrieve data from the EDM Central Checkout System (CCS), after the integration. Finally it will support also the data management during mission operations. The EGSE is based on commercial off-the-shelf components and runs custom software. It provides power supply and simulates the spacecraft, allowing the exchange of commands and telemetry according to the protocol defined by the spacecraft prime contractor. This paper describes the architecture of the system, as well as its functionalities to test the DREAMS instrument during all development activities before the ExoMars 2016 launch.

  20. Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Poellot, Michael R.; Kucera, Paul A.

    2004-01-01

    This report describes the work performed by the University of North Dakota (UND) under NASA Grant NAG5-11509, titled Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE. This work focused on the collection of data by two key platforms: the UND Citation II research aircraft and the NASA NPOL radar system. The CRYSTAL-FACE (C-F) mission addresses several key issues from the NASA Earth System Enterprise, including the variability of water in the atmosphere, the forcing provided by tropical cirrus and the response of the Earth system to this forcing. In situ measurements and radar observations of tropical convection, cirrus clouds and their environment are core elements of C-F. One of the primary issues that C-F is addressing is the relationship of tropical cirrus anvils to precipitating deep convection. The in situ measurements from C-F are being used to validate remote sensing of Earth-Atmosphere properties, increase our knowledge of upper tropospheric water vapor and its distribution, and increase our knowledge of tropical cirrus cloud morphology and composition. Radar measurements, especially polarimetric diversity observations available fiom the NASA NPOL radar, are providing essential information about the initiation, modulation, and dissipation of convective cores and the generation of associated anvils in tropical convection. Specifically, NPOL radar measurements contain information about convective intensity and its vertical structure for comparison with thermodynamic and kinematic environmental measurements observed from soundings. Because of the polarimetric diversity of MOL, statistics on bulk microphysical properties can be retrieved and compared to the other characteristics of convection and associated cirrus anvils. In summary, the central objectives of this proposal were to deploy the UND Citation research aircraft as an in situ sensing platform for this mission and to provide collaborative

  1. Electric Ground Support Equipment Advanced Battery Technology Demonstration Project at the Ontario Airport

    SciTech Connect

    Tyler Gray; Jeremy Diez; Jeffrey Wishart; James Francfort

    2013-07-01

    The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.

  2. Contamination measurements during IUS thermal vacuum tests in a large space chamber. [IUS equipment support system

    NASA Technical Reports Server (NTRS)

    Mullen, C. R.; Shaw, C. G.

    1984-01-01

    The levels of contamination that originate from inside the IUS equipment support section (ESS) due to outgassing from electronics components and wiring operating at elevated temperatures (80-160 F) were investigated. Pressure was measured inside and outside the ESS. Mass deposition measurements were made with quartz crystal microbalances (QCM) facing into and away from ESS vents. The OCM's were operated at -50 C and -180 C using thermoelectrically and cryogenically cooled QCM's. Gaseous nitrogen flow inside the ESS was used to obtain the effective molecular flow vent area of the ESS, which was evaluated to be 359 sq cm (56 sq in) compared to the 978 sq cm (150 sq in) estimated by an earlier atmosphere pressure billowing test. The total outgassing rate of the ESS materials at a temperature of 60 C (140 F) decays with a time constant of 11.5 hours based on pressure measurements during the hot cycle. A time constant of 22 hours was estimated for the fraction of the outgassing which will condense on a -50 C surface. In contrast, the time constant is only 10.1 hours for the outgassing material which condenses on a surface at -180 C. A surface at -180 C collects approximately one half of the material vented from the ESS which impinges on it. Pressure measurements show very good correlation with the mass deposition measurements.

  3. The difficult business model for mask equipment makers and mask infrastructure development support from consortia and governments

    NASA Astrophysics Data System (ADS)

    Hector, Scott

    2005-11-01

    The extension of optical projection lithography through immersion to patterning features with half pitch <=65 nm is placing greater demands on the mask. Strong resolution enhancement techniques (RETs), such as embedded and alternating phase shift masks and complex model-based optical proximity correction, are required to compensate for diffraction and limited depth of focus (DOF). To fabricate these masks, many new or upgraded tools are required to write patterns, measure feature sizes and placement, inspect for defects, review defect printability and repair defects on these masks. Beyond the significant technical challenges, suppliers of mask fabrication equipment face the challenge of being profitable in the small market for mask equipment while encountering significant R&D expenses to bring new generations of mask fabrication equipment to market. The total available market for patterned masks is estimated to be $2.5B to $2.9B per year. The patterned mask market is about 20% of the market size for lithography equipment and materials. The total available market for mask-making equipment is estimated to be about $800M per year. The largest R&D affordability issue arises for the makers of equipment for fabricating masks where total available sales are typically less than ten units per year. SEMATECH has used discounted cash flow models to predict the affordable R&D while maintaining industry accepted internal rates of return. The results have been compared to estimates of the total R&D cost to bring a new generation of mask equipment to market for various types of tools. The analysis revealed that affordability of the required R&D is a significant problem for many suppliers of mask-making equipment. Consortia such as SEMATECH and Selete have played an important role in cost sharing selected mask equipment and material development projects. Governments in the United States, in Europe and in Japan have also helped equipment suppliers with support for R&D. This paper

  4. A decision support tool to optimize IMRT QA workflow in a multi-vendor equipment environment

    NASA Astrophysics Data System (ADS)

    Arumugam, Sankar; Xing, Aitang; Vial, Philip; Holloway, Lois

    2014-03-01

    Development of a software tool to ease the Intensity Modulated Radiation Therapy (IMRT) pre-treatment Quality Assurance process is presented in this study. The delivery of IMRT involves equipment from multiple vendors. The limitations of the equipment involved in this chain will impact on the best choice of equipment. This often results in the user needing to use multiple pieces of equipment before determining the most appropriate choices to optimise the QA work flow. This is a time consuming process and potentially delays the start of patient treatment. Software was developed in-house to assist the decision making process, validating deliverability of beam delivery parameters and selecting appropriate detector systems and configuration for QA of IMRT plans. The software has been demonstrated to be accurate and improves efficiency of IMRT pre-treatment QA.

  5. Supporting management of medical equipment for inpatient service in public hospitals: a case study.

    PubMed

    Figueroa, Rosa L; Vallejos, Guido E

    2013-01-01

    This work presents a study of medical equipment availability in the short and long term. The work is divided in two parts. The first part is an analysis of the medical equipment inventory for the institution of study. We consider the replacement, maintenance, and reinforcement of the available medical equipment by considering local guidelines and surveying clinical personnel appreciation. The resulting recommendation is to upgrade the current equipment inventory if necessary. The second part considered a demand analysis in the short and medium term. We predicted the future demand with a 5-year horizon using Holt-Winters models. Inventory analysis showed that 27% of the medical equipment in stock was not functional. Due to this poor performance result we suggested that the hospital gradually addresses this situation by replacing 29 non-functional equipment items, reinforcing stock with 40 new items, and adding 11 items not available in the inventory but suggested by the national guidelines. The results suggest that general medicine inpatient demand has a tendency to increase within the time e.g. for general medicine inpatient service the highest increment is obtained by respiratory (12%, RMSE=8%) and genitourinary diseases (20%, RMSE=9%). This increment did not involve any further upgrading of the proposed inventory.

  6. Optimal facility and equipment specification to support cost-effective recycling

    SciTech Connect

    Redus, K.S.; Yuracko, K.L.

    1998-06-01

    The authors demonstrate a project management approach for D and D projects to select those facility areas or equipment systems on which to concentrate resources so that project materials disposition costs are minimized, safety requirements are always met, recycle and reuse goals are achieved, and programmatic or stakeholder concerns are met. The authors examine a facility that contains realistic areas and equipment, and they apply the approach to illustrate the different results that can be obtained depending on the strength or weakness of safety risk requirements, goals for recycle and reuse of materials, and programmatic or stakeholder concerns.

  7. Furnace and support equipment for space processing. [space manufacturing - Czochralski method

    NASA Technical Reports Server (NTRS)

    Mazelsky, R.; Duncan, C. S.; Seidensticker, R. G.; Johnson, R. A.; Hopkins, R. H.; Roland, G. W.

    1975-01-01

    A core facility capable of performing a majority of materials processing experiments is discussed. Experiment classes are described, the needs peculiar to each experiment type are outlined, and projected facility requirements to perform the experiments are treated. Control equipment (automatic control) and variations of the Czochralski method for use in space are discussed.

  8. 42 CFR 414.330 - Payment for home dialysis equipment, supplies, and support services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... AND OTHER HEALTH SERVICES Determination of Reasonable Charges Under the ESRD Program § 414.330 Payment... home dialysis equipment and supplies. This certification is made on CMS Form 382 (the “ESRD Beneficiary... Facilities) of this chapter. This includes maintaining a complete medical record of ESRD related items...

  9. 42 CFR 414.330 - Payment for home dialysis equipment, supplies, and support services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HEALTH SERVICES Determination of Reasonable Charges Under the ESRD Program § 414.330 Payment for home... dialysis equipment and supplies. This certification is made on CMS Form 382 (the “ESRD Beneficiary... Facilities) of this chapter. This includes maintaining a complete medical record of ESRD related items...

  10. Status of Activities to Implement a Sustainable System of MC&A Equipment and Methodological Support at Rosatom Facilities

    SciTech Connect

    J.D. Sanders

    2010-07-01

    Under the U.S.-Russian Material Protection, Control and Accounting (MPC&A) Program, the Material Control and Accounting Measurements (MCAM) Project has supported a joint U.S.-Russian effort to coordinate improvements of the Russian MC&A measurement system. These efforts have resulted in the development of a MC&A Equipment and Methodological Support (MEMS) Strategic Plan (SP), developed by the Russian MEM Working Group. The MEMS SP covers implementation of MC&A measurement equipment, as well as the development, attestation and implementation of measurement methodologies and reference materials at the facility and industry levels. This paper provides an overview of the activities conducted under the MEMS SP, as well as a status on current efforts to develop reference materials, implement destructive and nondestructive assay measurement methodologies, and implement sample exchange, scrap and holdup measurement programs across Russian nuclear facilities.

  11. Procurement of State-of-the-Art Research Equipment to Support Faculty Members Within the RNAi Therapeutics Institute

    SciTech Connect

    Terence Flotte, MD; Patricia McNulty

    2010-06-29

    This project funded the procurement of state-of-the-art research equipment to support world class faculty members within the RNAi Therapeutics Institute, a central program of the Advanced Therapeutics Cluster (ATC) project. The equipment purchased under this grant supports the RNA Therapeutics Institute (RTI) at the University of Massachusetts Medical School which seeks to build a community of scientists passionate about RNA. By uniting researchers studying the fundamental biology and mechanisms of cellular RNAs with those working to devise human therapies using or targeting nucleic acids, the RTI represents a new model for scientific exploration. By interweaving basic and applied nucleic acid scientists with clinicians dedicated to finding new cures, our goal is to create a new paradigm for organizing molecular research that enables the rapid application of new biological discoveries to solutions for unmet challenges in human health.

  12. Development of KSC program for investigating and generating field failure rates. Reliability handbook for ground support equipment

    NASA Technical Reports Server (NTRS)

    Bloomquist, C. E.; Kallmeyer, R. H.

    1972-01-01

    Field failure rates and confidence factors are presented for 88 identifiable components of the ground support equipment at the John F. Kennedy Space Center. For most of these, supplementary information regarding failure mode and cause is tabulated. Complete reliability assessments are included for three systems, eight subsystems, and nine generic piece-part classifications. Procedures for updating or augmenting the reliability results are also included.

  13. A priori models in the testing of diving life support equipment.

    PubMed

    Clarke, J R

    1996-01-01

    A priori models have been effectively used at the Navy Experimental Diving Unit (NEDU) to aid in the design of tests for diving equipment. These models are computer simulations conducted prior to the initial testing effort, using mechanistic models derived from first principles or based on prior testing. One example of such a model involves the freeze-up susceptibility of SCUBA regulators used in very cold water at depths to 58 msw (190 fsw). The influence of various dive profiles on the risk of regulator freeze-up was estimated for a variety of model parameters. In a second example, a simple model of CO2 canister duration was used to reveal the relative benefits of various competing diver work/rest profiles. The a priori modeling efforts helped NEDU define relatively efficient and unambiguous designs for testing diving equipment.

  14. Equipment for nondestructive evaluation of the strength of the Fort St. Vrain core-support blocks

    SciTech Connect

    Morgan, W.C.; Prince, J.M.; Posakony, G.J.

    1982-09-01

    A novel sweep-frequency eddy current instrument has been constructed for measuring density-depth profiles in oxidized graphite. Development work on additional parts of the instrumentation package, that was to be tested in the Fort St. Vrain High Temperature Gas-Cooled Reactor, has been temporarily halted. This report documents the work which has been accomplished to date and presents the current status of the equipment development effort.

  15. Special environmental control and life support equipment test analyses and hardware

    NASA Technical Reports Server (NTRS)

    Callahan, David M.

    1995-01-01

    This final report summarizes NAS8-38250 contract events, 'Special Environmental Control and Life Support Systems Test Analysis and Hardware'. This report is technical and includes programmatic development. Key to the success of this contract was the evaluation of Environmental Control and Life Support Systems (ECLSS) test results via sophisticated laboratory analysis capabilities. The history of the contract, including all subcontracts, is followed by the support and development of each Task.

  16. Design concept of the electrical ground support equipment for the AIV and calibration of the Euclid NISP instrument

    NASA Astrophysics Data System (ADS)

    Trifoglio, Massimo; Bonoli, Carlotta; Bortoletto, Favio; Bulgarelli, Andrea; Butler, Chris. R.; Colodro-Conde, Carlos; Conforti, Vito; Corcione, Leonardo; Franceschi, Enrico; Gianotti, Fulvio; Ligori, Sebastiano; Maciaszek, Thierry; Morgante, Gianluca; Muñoz, Jacinto; Nicastro, Luciano; Prieto, Eric; Rebolo-López, Rafael; Riva, Mario; Spano, Paolo; Toledo-Moreo, Rafael; Valenziano, Luca; Villó, Isidro; Zerbi, Filippo Maria

    2012-09-01

    The Near Infrared Spectro-Photometer (NISP) on board the Euclid ESA mission will be developed and tested at various levels of integration using various test equipment which shall be designed and procured through a collaborative and coordinated effort. In this paper we describe the Electrical Ground Support Equipment (EGSE) which shall be required to support the assembly, integration, verification and testing (AIV/AIT) and calibration activities at instrument level before delivery to ESA, and at satellite level, when the NISP instrument is mounted on the spacecraft. We present the EGSE conceptual design as defined in order to be compliant with the AIV/AIT and calibration requirements. The proposed concept is aimed at maximizing the re-use in the EGSE configuration of the Test Equipment developed for subsystem level activities, as well as, at allowing a smooth transition from instrument level to satellite level, and, possibly, at Ground Segment level. This paper mainly reports the technical status at the end of the Definition phase and it is presented on behalf of the Euclid Consortium.

  17. A study on the structural characteristics and shape of outfitting equipment support in 300K DWT crude oil tanker

    NASA Astrophysics Data System (ADS)

    Jeong, K.; Jeong, H.; Ji, M.; Kim, J.; Park, J.; Chung, H.

    2015-09-01

    With the increase in the size and speed of recently built vessels, the output and speed (rpm) of propulsion or generation engines have continuously increased, and the high-output, highspeed engine has become a major cause of excessive vessel noise and vibration. Accordingly, resonance occurs in the equipment and other outfitting equipment installed in a vessel, and thus, periodic requests for correction are received from ship owners or officers. In this study, to resolve this problem, supports that stably fix the outfitting equipment installed in the engine room of a very large crude oil tanker and provide protection from physical or external shock were classified into seven types for three kinds of widely used standard shapes, and an optimized shape was developed and suggested by analyzing the structural characteristics of the shapes of the supports (the maximum bending moment, maximum bending stress, and maximum deformation) using DNV NATICUS HULL 3D BEAM, a structural analysis program, so that it could be used for the outfitting design of a vessel.

  18. Airborne Transparencies.

    ERIC Educational Resources Information Center

    Horne, Lois Thommason

    1984-01-01

    Starting from a science project on flight, art students discussed and investigated various means of moving in space. Then they made acetate illustrations which could be used as transparencies. The projection phenomenon made the illustrations look airborne. (CS)

  19. SCADA-based Operator Support System for Power Plant Equipment Fault Forecasting

    NASA Astrophysics Data System (ADS)

    Mayadevi, N.; Ushakumari, S. S.; Vinodchandra, S. S.

    2014-12-01

    Power plant equipment must be monitored closely to prevent failures from disrupting plant availability. Online monitoring technology integrated with hybrid forecasting techniques can be used to prevent plant equipment faults. A self learning rule-based expert system is proposed in this paper for fault forecasting in power plants controlled by supervisory control and data acquisition (SCADA) system. Self-learning utilizes associative data mining algorithms on the SCADA history database to form new rules that can dynamically update the knowledge base of the rule-based expert system. In this study, a number of popular associative learning algorithms are considered for rule formation. Data mining results show that the Tertius algorithm is best suited for developing a learning engine for power plants. For real-time monitoring of the plant condition, graphical models are constructed by K-means clustering. To build a time-series forecasting model, a multi layer preceptron (MLP) is used. Once created, the models are updated in the model library to provide an adaptive environment for the proposed system. Graphical user interface (GUI) illustrates the variation of all sensor values affecting a particular alarm/fault, as well as the step-by-step procedure for avoiding critical situations and consequent plant shutdown. The forecasting performance is evaluated by computing the mean absolute error and root mean square error of the predictions.

  20. 42 CFR 414.330 - Payment for home dialysis equipment, supplies, and support services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... into account variables like the terrain, whether the patient's home is located in an urban or rural... chapter. (ii) For support services furnished by an independent ESRD facility, Medicare pays on the...

  1. 42 CFR 414.330 - Payment for home dialysis equipment, supplies, and support services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... into account variables like the terrain, whether the patient's home is located in an urban or rural... chapter. (ii) For support services furnished by an independent ESRD facility, Medicare pays on the...

  2. Delivering on Industry Equipment Reliability Goals By Leveraging an Integration Platform and Decision Support Environment

    SciTech Connect

    Coveney, Maureen K.; Bailey, W. Henry; Parkinson, William

    2004-07-01

    Utilities have invested in many costly enterprise systems - computerized maintenance management systems, document management systems, enterprise grade portals, to name but a few - and often very specialized systems, like data historians, high end diagnostic systems, and other focused and point solutions. From recent industry reports, we now know that the average nuclear power utilizes on average 1900 systems to perform daily work, of which 250 might facilitate the equipment reliability decision-making process. The time has come to leverage the investment in these systems by providing a common platform for integration and decision-making that will further the collective industry aim of enhancing the reliability of our nuclear generation assets to maintain high plant availability and to deliver on plant life extension goals without requiring additional large scale investment in IT infrastructure. (authors)

  3. Telemetry recording and reduction equipment for shipboard support of missile exercises

    NASA Astrophysics Data System (ADS)

    Daniel, J. T.; Jones, G. P.

    The Telemetry Recording and Reduction Equipment (TRRE) is designed to process both the pulse amplitude modulation (PAM) telemetry data formats of existing missile designs and the pulse code modulation (PCM) data formats of evolving missile designs. Through preprogrammed telemeter formats and programmable decommutation tables, the TRRE design minimizes the required operator interface. The decommutation hardware configuration is programmed by a microprocessor. The TRRE system comprises two signal-processing chassis, a magnetic tape recorder, and an oscillograph; interfaces are provided for an external printer and spectrum analyzer. The primary purpose of the TRRE on board a ship is to document the missile firing by making a telemetry recording and providing a 'quick-look' and analysis capability at the completion of the flight.

  4. Cost Benefit Analysis Modeling Tool for Electric vs. ICE Airport Ground Support Equipment – Development and Results

    SciTech Connect

    James Francfort; Kevin Morrow; Dimitri Hochard

    2007-02-01

    This report documents efforts to develop a computer tool for modeling the economic payback for comparative airport ground support equipment (GSE) that are propelled by either electric motors or gasoline and diesel engines. The types of GSE modeled are pushback tractors, baggage tractors, and belt loaders. The GSE modeling tool includes an emissions module that estimates the amount of tailpipe emissions saved by replacing internal combustion engine GSE with electric GSE. This report contains modeling assumptions, methodology, a user’s manual, and modeling results. The model was developed based on the operations of two airlines at four United States airports.

  5. Simulation of Terminal-Area Flight Management System Arrivals with Airborne Spacing

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.; Lee, Paul U.; Mercer, Joey S.; Palmer, Everett A.; Prevot, Thomas

    2007-01-01

    A simulation evaluated the feasibility and potential benefits of using decision support tools to support time-based airborne spacing and merging for aircraft arriving in the terminal area on charted Flight Management System (FMS) routes. Sixteen trials were conducted in each treatment combination of a 2X2 repeated-measures design. In trials 'with ground tools' air traffic controller participants managed traffic using sequencing and spacing tools. In trials 'with air tools' approximately seventy-five percent of aircraft assigned to the primary landing runway were equipped for airborne spacing, including flight simulators flown by commercial pilots. The results indicate that airborne spacing improves spacing accuracy and is feasible for FMS operations and mixed spacing equipage. Controllers and pilots can manage spacing clearances that contain two call signs without difficulty. For best effect, both decision support tools and spacing guidance should exhibit consistently predictable performance, and merging traffic flows should be well coordinated.

  6. Investigations of perspective technologies, equipment and sanitary - hygienic means for Life-Support System of new generation

    NASA Astrophysics Data System (ADS)

    Shumilina, I. V.

    Creation of optimal sanitary - hygienic conditions allows to keep health and capacity of the crewmembers work at increase of space flight duration. There is a wide application experience of means, methods and equipment for sanitary - hygienic supply, which were developed and experimentally tested for space flights. However, about 800 kg personal hygiene means (napkins and towels are made with water and delivered with the Earth) are necessary for 3 crewmembers per one year. For long orbital and interplanetary flights (without an opportunity of stocks updating) it is necessary to increase a degree of Life-Support System isolation and optimization of goods turnover. Washing combined with water regeneration system is most perspective for sanitary - hygienic procedures. Therefore, creation of space equipment for washing with sanitary - hygienic water (SHW) regeneration system is especially important. The researches have shown, that to processes, which can be applied for SHW regeneration in space conditions and require insignificant quantity of additional materials (as against sorption), concern membrane methods (reverse osmosis, nanofiltration etc.). Two-step membrane unit for SHW regeneration recovered no less than 85 % of permeate with the organic and inorganic selectivity of 82-95 %. The tests of two-step membrane unit for SHW regeneration carried out on mock up solutions and real SHW, containing detergents really used in space flight conditions. The researches on a substantiation of an opportunity of clothing washing, clothing drying and the estimation of an opportunity of application of various detergents for clothing washing are urgent. The tests of water extraction technology from textile materials are carried out. Is established, that at conditional time of contact 1s, humidity of a leaving air flow from clothing drying unit comes nearer to 100 %. It is necessary to solve the problem for creation of Life-Support System of new generation for long-term space

  7. Radiation dose assessments to support evaluations of radiological control levels for recycling or reuse of materials and equipment

    SciTech Connect

    Hill, R.L.; Aaberg, R.L.; Baker, D.A.; Kennedy, W.E. Jr.

    1995-07-01

    Pacific Northwest Laboratory is providing Environmental Protection Support and Assistance to the USDOE, Office of Environmental Guidance. Air, Water, and Radiation Division. As part of this effort, PNL is collecting data and conducting technical evaluations to support DOE analyses of the feasibility of developing radiological control levels for recycling or reuse of metals, concrete, or equipment containing residual radioactive contamination from DOE operations. The radiological control levels will be risk-based, as developed through a radiation exposure scenario and pathway analysis. The analysis will include evaluation of relevant radionuclides, potential mechanisms of exposure, and both health and non-health-related impacts. The main objective of this report is to develop a methodology for establishing radiological control levels for recycle or reuse. This report provides the results of the radiation exposure scenario and pathway analyses for 42 key radionuclides generated during DOE operations that may be contained in metals or equipment considered for either recycling or reuse. The scenarios and information developed by the IAEA. Application of Exemption Principles to the Recycle and Reuse of Materials from Nuclear Facilities, are used as the initial basis for this study. The analyses were performed for both selected worker populations at metal smelters and for the public downwind of a smelter facility. Doses to the public downwind were estimated using the US (EPA) CAP88-PC computer code with generic data on atmospheric dispersion and population density. Potential non-health-related effects of residual activity on electronics and on film were also analyzed.

  8. SECOND GENERATION EXPERIMENTAL EQUIPMENT DESIGN TO SUPPORT VOLOXIDATION TESTING AT INL

    SciTech Connect

    Dennis L. Wahlquit; Kenneth J. Bateman; Brian R. Westphal

    2008-05-01

    Voloxidation is a potential head-end process used prior to aqueous or pyrochemical spent-oxide-fuel treatment. The spent oxide fuel is heated to an elevated temperature in oxygen or air to promote separation of the fuel from the cladding as well as volatize the fission products. The Idaho National Laboratory (INL) and the Korea Atomic Energy Research Institute (KAERI) have been collaborating on voloxidation research through a joint International Nuclear Energy Research Initiative (I-NERI). A new furnace and off-gas trapping system (OTS) with enhanced capability was necessary to perform further testing. The design criteria for the OTS were jointly agreed upon by INL and KAERI. First, the equipment must accommodate the use of spent nuclear fuel and be capable of operating in the Hot Fuel Examination Facility (HFEF) at the INL. This primarily means the furnace and OTS must be remotely operational and maintainable. The system requires special filters and distinctive temperature zones so that the fission products can be uniquely captured. The OTS must be sealed to maximize the amount of fission products captured. Finally, to accommodate the largest range of operating conditions, the OTS must be capable of handling high temperatures and various oxidizing environments. The constructed system utilizes a vertical split-tube furnace with four independently controlled zones. One zone is capable of reaching 1200°C to promote the release of volatile fission products. The three additional zones that capture fission products can be controlled to operate between 100-1100°C. A detailed description of the OTS will be presented as well as some initial background information on high temperature seal options.

  9. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  10. The ESA Large Space Simulator Mechanical Ground Support Equipment for Spacecraft Testing

    NASA Technical Reports Server (NTRS)

    Hagelschuer, Dirk; Messing, Rene; Westera, Roel

    2008-01-01

    Environmental test facilities are not suitable in any case to comply with special or complex test requirements without modifications. Dedicated upgrades of the test facility and their subsystems with respect to the test requirements and specifications are often necessary. The Flight Model of the Planck Space Telescope was tested in the Large Space Simulator (LSS) of the ESTEC Test Centre. Main goals of the test were the verification of the deformation of the Telescope during thermal vacuum conditions at different temperature levels and the validation of the Thermal Model. The deformations of the telescope have been traced by two Videogrammetry canisters. In order to provide different view positions with respect to the PLANCK Telescope it was necessary to rotate the specimen by +/- 180deg. In addition very stringent requirements for the low temperature level of the thermal environment has lead to a comprehensive test set-up which was divided in four main elements: Dedicated support structure for the Videogrammetry canisters providing several DoF for adjustment. Structure to support three Infrared panels around the specimen. MLI curtain to cover the LSS 8m auxiliary chamber opening. System providing LN2 supply for the rotating PLANCK telescope cold panel. The design, manufacturing and integration of the necessary mechanical ground support to install for instance the canisters and to ensure the 180 rotation of the telescope under cold and high vacuum conditions was an extensive and important part of the entire test program. This paper will concentrate on the design issues, the implementation and verification of the MGSE provided for the Planck Space Telescope FM Videogrammetry Test in the LSS and the troubleshooting caused by a failure during the first rotation under cold conditions.

  11. Airborne Imagery

    NASA Technical Reports Server (NTRS)

    1983-01-01

    ATM (Airborne Thematic Mapper) was developed for NSTL (National Space Technology Companies) by Daedalus Company. It offers expanded capabilities for timely, accurate and cost effective identification of areas with prospecting potential. A related system is TIMS, Thermal Infrared Multispectral Scanner. Originating from Landsat 4, it is also used for agricultural studies, etc.

  12. Autonomous Operations Planner: A Flexible Platform for Research in Flight-Deck Support for Airborne Self-Separation

    NASA Technical Reports Server (NTRS)

    Karr, David A.; Vivona, Robert A.; DePascale, Stephen M.; Wing, David J.

    2012-01-01

    The Autonomous Operations Planner (AOP), developed by NASA, is a flexible and powerful prototype of a flight-deck automation system to support self-separation of aircraft. The AOP incorporates a variety of algorithms to detect and resolve conflicts between the trajectories of its own aircraft and traffic aircraft while meeting route constraints such as required times of arrival and avoiding airspace hazards such as convective weather and restricted airspace. This integrated suite of algorithms provides flight crew support for strategic and tactical conflict resolutions and conflict-free trajectory planning while en route. The AOP has supported an extensive set of experiments covering various conditions and variations on the self-separation concept, yielding insight into the system s design and resolving various challenges encountered in the exploration of the concept. The design of the AOP will enable it to continue to evolve and support experimentation as the self-separation concept is refined.

  13. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  14. Key Residential Building Equipment Technologies for Control and Grid Support PART I (Residential)

    SciTech Connect

    Starke, Michael R; Onar, Omer C; DeVault, Robert C

    2011-09-01

    Electrical energy consumption of the residential sector is a crucial area of research that has in the past primarily focused on increasing the efficiency of household devices such as water heaters, dishwashers, air conditioners, and clothes washer and dryer units. However, the focus of this research is shifting as objectives such as developing the smart grid and ensuring that the power system remains reliable come to the fore, along with the increasing need to reduce energy use and costs. Load research has started to focus on mechanisms to support the power system through demand reduction and/or reliability services. The power system relies on matching generation and load, and day-ahead and real-time energy markets capture most of this need. However, a separate set of grid services exist to address the discrepancies in load and generation arising from contingencies and operational mismatches, and to ensure that the transmission system is available for delivery of power from generation to load. Currently, these grid services are mostly provided by generation resources. The addition of renewable resources with their inherent variability can complicate the issue of power system reliability and lead to the increased need for grid services. Using load as a resource, through demand response programs, can fill the additional need for flexible resources and even reduce costly energy peaks. Loads have been shown to have response that is equal to or better than generation in some cases. Furthermore, price-incentivized demand response programs have been shown to reduce the peak energy requirements, thereby affecting the wholesale market efficiency and overall energy prices. The residential sector is not only the largest consumer of electrical energy in the United States, but also has the highest potential to provide demand reduction and power system support, as technological advancements in load control, sensor technologies, and communication are made. The prevailing loads

  15. High Level Waste Remote Handling Equipment in the Melter Cave Support Handling System at the Hanford Waste Treatment Plant

    SciTech Connect

    Bardal, M.A.; Darwen, N.J.

    2008-07-01

    Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's (DOE) Hanford site. Bechtel National, Inc. is building the largest nuclear Waste Treatment Plant in the world located at the Department of Energy's Hanford site to immobilize the millions of gallons of radioactive waste. The site comprises five main facilities; Pretreatment, High Level Waste vitrification, Low Active Waste vitrification, an Analytical Lab and the Balance of Facilities. The pretreatment facilities will separate the high and low level waste. The high level waste will then proceed to the HLW facility for vitrification. Vitrification is a process of utilizing a melter to mix molten glass with radioactive waste to form a stable product for storage. The melter cave is designated as the High Level Waste Melter Cave Support Handling System (HSH). There are several key processes that occur in the HSH cell that are necessary for vitrification and include: feed preparation, mixing, pouring, cooling and all maintenance and repair of the process equipment. Due to the cell's high level radiation, remote handling equipment provided by PaR Systems, Inc. is required to install and remove all equipment in the HSH cell. The remote handling crane is composed of a bridge and trolley. The trolley supports a telescoping tube set that rigidly deploys a TR 4350 manipulator arm with seven degrees of freedom. A rotating, extending, and retracting slewing hoist is mounted to the bottom of the trolley and is centered about the telescoping tube set. Both the manipulator and slewer are unique to this cell. The slewer can reach into corners and the manipulator's cross pivoting wrist provides better operational dexterity and camera viewing angles at the end of the arm. Since the crane functions will be operated remotely, the entire cell and crane have been modeled with 3-D software. Model simulations have been used to confirm operational and maintenance

  16. Routing architecture and security for airborne networks

    NASA Astrophysics Data System (ADS)

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  17. Auxiliary DCP data acquisition system. [airborne system

    NASA Technical Reports Server (NTRS)

    Snyder, R. V.

    1975-01-01

    An airborne DCP Data Aquisition System has been designed to augment the ERTS satellite data recovery system. The DCP's are data collection platforms located at pertinent sites. With the appropriate sensors they are able to collect, digitally encode and transmit environmental parameters to the ERTS satellite. The satellite in turn relays these transmissions to a ground station for processing. The satellite is available for such relay duty a minimum of two times in a 24-hour period. The equipment is to obtain continuous DCP data during periods of unusual environmental activity--storms, floods, etc. Two circumstances contributed to the decision to design such a system; (1) Wallops Station utilizes surveillance aircraft in support of rocket launches and also in support of earth resources activities; (2) the area in which Wallops is located, the Delaware and Chesapeake Bay areas, are fertile areas for DCP usage. Therefore, by developing an airborne DCP receiving station and installing it on aircraft more continuous DCP data can be provided from sites in the surrounding areas at relatively low cost.

  18. Parameterization of gaseous constituencies concentration profiles in the planetary boundary layer as required in support of airborne and satellite borne sensors

    NASA Technical Reports Server (NTRS)

    Kindle, E. C.; Condon, E.; Casas, J.

    1976-01-01

    The research to develop the capabilities for sensing air pollution constituencies using satellite or airborne remote sensors is reported. Sensor evaluation and calibration are analyzed including data reduction. The proposed follow-on research is presented.

  19. A Study to Compare the Failure Rates of Current Space Shuttle Ground Support Equipment with the New Pathfinder Equipment and Investigate the Effect that the Proposed GSE Infrastructure Upgrade Might Have to Reduce GSE Infrastructure Failures

    NASA Technical Reports Server (NTRS)

    Kennedy, Barbara J.

    2004-01-01

    The purposes of this study are to compare the current Space Shuttle Ground Support Equipment (GSE) infrastructure with the proposed GSE infrastructure upgrade modification. The methodology will include analyzing the first prototype installation equipment at Launch PAD B called the "Pathfinder". This study will begin by comparing the failure rate of the current components associated with the "Hardware interface module (HIM)" at the Kennedy Space Center to the failure rate of the neW Pathfinder components. Quantitative data will be gathered specifically on HIM components and the PAD B Hypergolic Fuel facility and Hypergolic Oxidizer facility areas which has the upgraded pathfinder equipment installed. The proposed upgrades include utilizing industrial controlled modules, software, and a fiber optic network. The results of this study provide evidence that there is a significant difference in the failure rates of the two studied infrastructure equipment components. There is also evidence that the support staff for each infrastructure system is not equal. A recommendation to continue with future upgrades is based on a significant reduction of failures in the new' installed ground system components.

  20. Magnetic airborne survey - geophysical flight

    NASA Astrophysics Data System (ADS)

    de Barros Camara, Erick; Nei Pereira Guimarães, Suze

    2016-06-01

    This paper provides a technical review process in the area of airborne acquisition of geophysical data, with emphasis for magnetometry. In summary, it addresses the calibration processes of geophysical equipment as well as the aircraft to minimize possible errors in measurements. The corrections used in data processing and filtering are demonstrated with the same results as well as the evolution of these techniques in Brazil and worldwide.

  1. Airborne Visible Laser Optical Communications Program (AVLOC)

    NASA Technical Reports Server (NTRS)

    Ward, J. H.

    1975-01-01

    The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.

  2. Airborne seeker evaluation and test system

    NASA Astrophysics Data System (ADS)

    Jollie, William B.

    1991-08-01

    The Airborne Seeker Evaluation Test System (ASETS) is an airborne platform for development, test, and evaluation of air-to-ground seekers and sensors. ASETS consists of approximately 10,000 pounds of equipment, including sixteen racks of control, display, and recording electronics, and a very large stabilized airborne turret, all carried by a modified C- 130A aircraft. The turret measures 50 in. in diameter and extends over 50 in. below the aircraft. Because of the low ground clearance of the C-130, a unique retractor mechanism was designed to raise the turret inside the aircraft for take-offs and landings, and deploy the turret outside the aircraft for testing. The turret has over 7 cubic feet of payload space and can accommodate up to 300 pounds of instrumentation, including missile seekers, thermal imagers, infrared mapping systems, laser systems, millimeter wave radar units, television cameras, and laser rangers. It contains a 5-axis gyro-stabilized gimbal system that will maintain a line of sight in the pitch, roll, and yaw axes to an accuracy better than +/- 125 (mu) rad. The rack-mounted electronics in the aircraft cargo bay can be interchanged to operate any type of sensor and record the data. Six microcomputer subsystems operate and maintain all of the system components during a test mission. ASETS is capable of flying at altitudes between 200 and 20,000 feet, and at airspeeds ranging from 100 to 250 knots. Mission scenarios can include air-to-surface seeker testing, terrain mapping, surface target measurement, air-to-air testing, atmospheric transmission studies, weather data collection, aircraft or missile tracking, background signature measurements, and surveillance. ASETS is fully developed and available to support test programs.

  3. Aviation Support Equipment Technician (ASE 3 & 2 and ASM 3 & 2). Volume 1, Basics. Rate Training Manual and Nonresident Career Course.

    ERIC Educational Resources Information Center

    Grant, Jesse R.; And Others

    This Rate Training Manual and Nonresident Career Course (RTM/NRCC) form a self-study package that will enable aviation support equipment personnel to help themselves fulfill the requirements for advancement. Designed for individual study and not formal classroom instruction, the RTM provides subject matter that relates directly to the occupational…

  4. Airborne laser communication technology and flight test

    NASA Astrophysics Data System (ADS)

    Meng, Li-xin; Zhang, Li-zhong; Li, Xiao-ming; Li, Ying-chao; Jiang, Hui-lin

    2015-11-01

    Reconnaissance aircraft is an important node of the space-air-ground integrated information network, on which equipped with a large number of high-resolution surveillance equipment, and need high speed communications equipment to transmit detected information in real time. Currently RF communication methods cannot meet the needs of communication bandwidth. Wireless laser communication has outstanding advantages high speed, high capacity, security, etc., is an important means to solve the high-speed information transmission of airborne platforms. In this paper, detailed analysis of how the system works, the system components, work processes, link power and the key technologies of airborne laser communication were discussed. On this basis, a prototype airborne laser communications was developed, and high-speed, long-distance communications tests were carried out between the two fixed-wing aircraft, and the airborne precision aiming, atmospheric laser communication impacts on laser communication were tested. The experiments ultimately realize that, the communication distance is 144km, the communication rate is 2.5Gbps. The Airborne laser communication experiments provide technical basis for the application of the conversion equipment.

  5. Second International Airborne Remote Sensing Conference and Exhibition

    NASA Technical Reports Server (NTRS)

    1996-01-01

    cloud cover analysis, Quadantid meteor shower studies, extra-solar far infrared ionic structure lines measurement, Cape Kennedy launch support, and studies in air pollution, The Products and Services Exhibit showcased new sensor and image processing technologies, aircraft data collection services, unmanned vehicle technology, platform equipment, turn-key services, software a workstations, GPS services, publications, and processing and integration systems by 58 exhibitors. The participation of aircraft users and crews provided unique dialogue between those who plan data collection a operate the remote sensing technology, and those who supply the data processing and integration equipment. Research results using hyperspectral imagery, radar and optical sensors, lidar, digital aerial photography, a integrated systems were presented. Major research and development programs and campaigns we reviewed, including CNR's LARA Project and European Space Agency's 1991-1995 Airborne Campaign. The pre-conference short courses addressed airborne video, photogrammetry, hyperspectral data analysis, digital orthophotography, imagery and GIS integration, IFSAR, GPS, and spectrometer calibration.

  6. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  7. Laser Communications Airborne Testbed: Potential For An Air-To-Satellite Laser Communications Link

    NASA Astrophysics Data System (ADS)

    Feldmann, Robert J.

    1988-05-01

    The Laser Communications Airborne Testbed (LCAT) offers an excellent opportunity for testing of an air-to-satellite laser communications link with the NASA Advanced Communications Technology Satellite (ACTS). The direct detection laser portion of the ACTS is suitable for examining the feasibility of an airborne terminal. Development of an airborne laser communications terminal is not currently part of the ACTS program; however, an air-to-satellite link is of interest. The Air Force performs airborne laser communications experiments to examine the potential usefulness of this technology to future aircraft. Lasers could be used, for example, by future airborne command posts and reconnaissance aircraft to communicate via satellite over long distances and transmit large quantities of data in the fastest way possible from one aircraft to another or to ground sites. Lasers are potentially secure, jam resistant and hard to detect and in this regard increase the survivability of the users. Under a contract awarded by Aeronautical Systems Division's Avionics Laboratory, a C-135E testbed aircraft belonging to ASD's 4950th Test Wing will be modified to create a Laser Communications Airborne Testbed. The contract is for development and fabrication of laser testbed equipment and support of the aircraft modification effort by the Test Wing. The plane to be modified is already in use as a testbed for other satellite communications projects and the LCAT effort will expand those capabilities. This analysis examines the characteristics of an LCAT to ACTS direct detection communications link. The link analysis provides a measure of the feasibility of developing an airborne laser terminal which will interface directly to the LCAT. Through the existence of the LCAT, the potential for development of an air-to-satellite laser communications terminal for the experimentation with the ACTS system is greatly enhanced.

  8. Alternative analysis of airborne laser data collected within conventional multi-parameter airborne geophysical surveys

    NASA Astrophysics Data System (ADS)

    Ahl, Andreas; Supper, R.; Motschka, K.; Schattauer, I.

    2010-05-01

    For the interpretation of airborne gamma-ray spectrometry as well as airborne electromagnetics it is of great importance to determine the distance between the geophysical sensor and the ground surface. Since radar altimeters do not penetrate vegetation, laser altimeters became popular in airborne geophysics over the past years. Currently the airborne geophysical platform of the Geological Survey of Austria (GBA) is equipped with a Riegl LD90-3800VHS-FLP high resolution laser altimeter, measuring the distances according to the first and the last reflected pulse. The goal of the presented study was to explore the possibilities of deriving additional information about the survey area from the laser data and to determine the accuracy of such results. On one hand the difference between the arrival time of the first and the last reflected pulse can be used to determine the height of the vegetation. This parameter is for example important for the correction of damping effects on airborne gamma-ray measurements caused by vegetation. Moreover especially for groundwater studies at catchment scale, this parameter can also be applied to support the spatial assessment of evapotranspiration. In combination with the altitude above geoid, determined by a GPS receiver, a rough digital elevation model of the survey area can be derived from the laser altimetry. Based on a data set from a survey area in the northern part of Austria, close to the border with the Czech Republic, the reliability of such a digital elevation model and the calculated vegetation height was tested. In this study a mean deviation of -1.4m, with a standard deviation of ±3.4m, between the digital elevation model from Upper Austria (25m spatial resolution) and the determined elevation model was determined. We also found an obvious correlation between the calculated vegetation heights greater 15m and the mapped forest published by the ‘Department of Forest Inventory' of the ‘Federal Forest Office' of Austria

  9. Active airborne contamination control using electrophoresis

    SciTech Connect

    Veatch, B.D.

    1994-06-01

    In spite of our best efforts, radioactive airborne contamination continues to be a formidable problem at many of the Department of Energy (DOE) weapons complex sites. For workers that must enter areas with high levels of airborne contamination, personnel protective equipment (PPE) can become highly restrictive, greatly diminishing productivity. Rather than require even more restrictive PPE for personnel in some situations, the Rocky Flats Plant (RFP) is actively researching and developing methods to aggressively combat airborne contamination hazards using electrophoretic technology. With appropriate equipment, airborne particulates can be effectively removed and collected for disposal in one simple process. The equipment needed to implement electrophoresis is relatively inexpensive, highly reliable, and very compact. Once airborne contamination levels are reduced, less PPE is required and a significant cost savings may be realized through decreased waste and maximized productivity. Preliminary ``cold,`` or non-radioactive, testing results at the RFP have shown the technology to be effective on a reasonable scale, with several potential benefits and an abundance of applications.

  10. Airborne Gamma-Spectrometry in Switzerland

    SciTech Connect

    Butterweck, Gernot; Bucher, Benno; Rybach, Ladislaus

    2008-08-07

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of {sup 137}Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  11. Adaptive Driving Equipment: Selection and Major Considerations [and] Battery Powered Scooters and 3-Wheelers. Information Support Packets #1 and #2.

    ERIC Educational Resources Information Center

    Stevens, John H.

    Two brief guides offer suggestions for persons with physical disabilities who are considering the purchase of adaptive driving equipment, battery-powered scooters, or three wheelers. The first guide offers guidelines for individuals considering purchase of special hand controls or other modifications or a van lift to enhance their independence in…

  12. Development of KSC program for investigating and generating field failure rates. Volume 2: Recommended format for reliability handbook for ground support equipment

    NASA Technical Reports Server (NTRS)

    Bloomquist, C. E.; Kallmeyer, R. H.

    1972-01-01

    Field failure rates and confidence factors are presented for 88 identifiable components of the ground support equipment at the John F. Kennedy Space Center. For most of these, supplementary information regarding failure mode and cause is tabulated. Complete reliability assessments are included for three systems, eight subsystems, and nine generic piece-part classifications. Procedures for updating or augmenting the reliability results presented in this handbook are also included.

  13. Airborne Satcom Terminal Research at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Hoder, Doug; Zakrajsek, Robert

    2002-01-01

    NASA Glenn has constructed an airborne Ku-band satellite terminal, which provides wideband full-duplex ground-aircraft communications. The terminal makes use of novel electronically-steered phased array antennas and provides IP connectivity to and from the ground. The satcom terminal communications equipment may be easily changed whenever a new configuration is required, enhancing the terminal's versatility.

  14. Ontology-Based Gap Analysis for Technology Selection: A Knowledge Management Framework for the Support of Equipment Purchasing Processes

    NASA Astrophysics Data System (ADS)

    Macris, Aristomenis M.; Georgakellos, Dimitrios A.

    Technology selection decisions such as equipment purchasing and supplier selection are decisions of strategic importance to companies. The nature of these decisions usually is complex, unstructured and thus, difficult to be captured in a way that will be efficiently reusable. Knowledge reusability is of paramount importance since it enables users participate actively in process design/redesign activities stimulated by the changing technology selection environment. This paper addresses the technology selection problem through an ontology-based approach that captures and makes reusable the equipment purchasing process and assists in identifying (a) the specifications requested by the users' organization, (b) those offered by various candidate vendors' organizations and (c) in performing specifications gap analysis as a prerequisite for effective and efficient technology selection. This approach has practical appeal, operational simplicity, and the potential for both immediate and long-term strategic impact. An example from the iron and steel industry is also presented to illustrate the approach.

  15. An Overview of the Summer 2014 Airborne Study of Oil Sands Air Pollutants in Support of the Joint Oil Sands Monitoring Plan

    NASA Astrophysics Data System (ADS)

    Li, S. M.; Hayden, K. L.; Cober, S.; Wolde, M.; Liggio, J.; Liu, P.; Leithead, A.; O'brien, J.; Wang, D. K.; Moussa, S. G.; Gordon, M.; Darlington, A. L.; McLaren, R.; Makar, P.; Stroud, C.; Wentzell, J. J. B.; Brook, J.; Narayan, J.; Elford, A.; Sung, K.; Sheppard, A.

    2014-12-01

    A short term airborne study of oil sands air pollutants was carried out in August and September 2013. The study had three objectives: 1. to validate emissions of criteria air contaminants (CACs) and other air pollutants from surface mining facilities in the Athabasca oil sands region, using airborne ambient air measurements; 2. to understand the transport and transformation of primary pollutants; and 3. to provide data for model and satellite retrieval validation. The data will be used for the evaluation and improvement of high-resolution air quality models for eventual application in determining the fates of these pollutants and their deposition to the downwind ecosystems. Various chemical species were measured from the National Research Council of Canada Convair-580 aircraft at high time resolution of 1-10 seconds. A total of 22 flights were flown, with 14 flights dedicated to emission validation, 5 flights to transport and transformation of oil sands pollutants, and 5 flights to satellite data validation. An algorithm will be shown to demonstrate how the data from the emission flights can be used to derive a top-down estimate of SO2 emission rates.

  16. The Beginnings of Airborne Astronomy, 1920 - 1930: an Historical Narrative

    NASA Technical Reports Server (NTRS)

    Craine, E. R.

    1984-01-01

    The emergence of airborne astronomy in the early twentieth century is recounted. The aerial expedition to observe the solar eclipse on September 10, 1923, is described. Observation of the total solar eclipse of January 24, 1925, is discussed. The Honey Lake aerial expedition to study the solar eclipse of April 28, 1930, is also described. Four major accomplishments in airborne astronomy during the period 1920 to 1930 are listed. Airborne expeditions were undertaken at every logical opportunity, starting a continuous sequence of airborne astronomical expeditions which was to remain unbroken, except by World War II, to the present day. Although the scientific returns of the first ten years were modest, they did exist. Interest in, and support for, airborne astronomy was generated not only among astronomers but also among the public. Albert Stevens, arguably the true father of airborne astronomy, was to become interested in applying his considerable skill and experience to the airborne acquisition of astronomical data.

  17. Modeling for Airborne Contamination

    SciTech Connect

    F.R. Faillace; Y. Yuan

    2000-08-31

    The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of sufficient thickness to simulate the drift

  18. Formal methods and digital systems validation for airborne systems

    NASA Technical Reports Server (NTRS)

    Rushby, John

    1993-01-01

    This report has been prepared to supplement a forthcoming chapter on formal methods in the FAA Digital Systems Validation Handbook. Its purpose is as follows: to outline the technical basis for formal methods in computer science; to explain the use of formal methods in the specification and verification of software and hardware requirements, designs, and implementations; to identify the benefits, weaknesses, and difficulties in applying these methods to digital systems used on board aircraft; and to suggest factors for consideration when formal methods are offered in support of certification. These latter factors assume the context for software development and assurance described in RTCA document DO-178B, 'Software Considerations in Airborne Systems and Equipment Certification,' Dec. 1992.

  19. Airborne lidar experiments at the Savannah River Plant

    NASA Technical Reports Server (NTRS)

    Krabill, William B.; Swift, Robert N.

    1985-01-01

    The results of remote sensing experiments at the Department of Energy (DOE) Savannah River Nuclear Facility utilizing the NASA Airborne Oceanographic Lidar (AOL) are presented. The flights were conducted in support of the numerous environmental monitoring requirements associated with the operation of the facility and for the purpose of furthering research and development of airborne lidar technology. Areas of application include airborne laser topographic mapping, hydrologic studies using fluorescent tracer dye, timber volume estimation, baseline characterization of wetlands, and aquatic chlorophyll and photopigment measurements. Conclusions relative to the usability of airborne lidar technology for the DOE for each of these remote sensing applications are discussed.

  20. DC-8 Airborne Laboratory in flight over Palmdale, CA

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The DC-8 Airborne Laboratory in a left banking turn above the airport at Palmdale, California. The right wing is silhouetted against the blue sky, while the left wing contrasts with the desert terrain. The former airliner is a 'dash-72' model and has a range of 5,400 miles. The craft can stay airborne for 12 hours and has an operational speed range between 300 and 500 knots. The research flights are made at between 500 and 41,000 feet. The aircraft can carry up to 30,000 lbs of research/science payload equipment installed in 15 mission-definable spaces. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  1. Adaptive Restoration of Airborne Daedalus AADS1268 ATM Thermal Data

    SciTech Connect

    D. Yuan; E. Doak; P. Guss; A. Will

    2002-01-01

    To incorporate the georegistration and restoration processes into airborne data processing in support of U.S. Department of Energy's nuclear emergency response task, we developed an adaptive restoration filter for airborne Daedalus AADS1268 ATM thermal data based on the Wiener filtering theory. Preliminary assessment shows that this filter enhances the detectability of small weak thermal anomalies in AADS1268 thermal images.

  2. Adaptive restoration of airborne Daedalus AADS1268 ATM thermal data

    NASA Astrophysics Data System (ADS)

    Yuan, Ding; Doak, Edwin L.; Guss, Paul; Will, Alan

    2002-03-01

    To incorporate the georegistration and restoration processes into airborne data processing in support of DOE's nuclear emergency response task, we developed an adaptive restoration filter for airborne Daedalus AADS1268 ATM thermal data based on the Wiener filtering theory. Preliminary assessment shows that this filter enhances the detectability of small weak thermal anomalies in AADS1268 thermal images.

  3. A novel transient rotor current control scheme of a doubly-fed induction generator equipped with superconducting magnetic energy storage for voltage and frequency support

    NASA Astrophysics Data System (ADS)

    Shen, Yang-Wu; Ke, De-Ping; Sun, Yuan-Zhang; Daniel, Kirschen; Wang, Yi-Shen; Hu, Yuan-Chao

    2015-07-01

    A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator (DFIG) equipped with a superconducting magnetic energy storage (SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter (GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter (RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive (priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method. Project supported by the National Natural Science Foundation of China (Grant No. 51307124) and the Major Program of the National Natural Science Foundation of China (Grant No. 51190105).

  4. 47 CFR 54.635 - Eligible equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... equipment. (a) Both individual and consortium applicants may receive support for network equipment necessary...) Consortium applicants may also receive support for network equipment necessary to manage, control, or maintain an eligible service or a dedicated health care broadband network. Support for network equipment...

  5. The ground support equipment for the E-NIS instrument on-board the ESA-Euclid Dark Energy Mission in the baseline configuration presented in phase A

    NASA Astrophysics Data System (ADS)

    Trifoglio, Massimo; Gianotti, Fulvio; Bulgarelli, Andrea; Franceschi, Enrico; Nicastro, Luciano; Valenziano, Luca; Zerbi, Filippo Maria; Cimatti, Andrea

    2010-07-01

    Euclid is a high-precision survey mission to map the geometry of the Dark Universe. The Euclid Mission concept presented in the Assessment Phase Study Report1 was selected by ESA on February 2010 to undergo a competitive Definition Phase. Euclid is a candidate for launch in the first slice of the Cosmic Vision Plan (M1/M2), with a possible launch date of 2018. In this paper we refer to the instrument baseline configuration identified in the Assessment Phase. It consisted of a Korsch telescope with a primary mirror of 1.2 m diameter and a focal plane hosting 3 scientific instruments, each with a field of view of 0.5 deg2: (1) E-VIS: a CCD based optical imaging channel, (2) E-NIP: a NIR imaging photometry channel, and (3) E-NIS: a NIR slitless spectral channel. We present the conceptual design developed in the Assessment Phase study for the Ground Support Equipment required to support the assembly, integration and verification operations at instrument level for the E-NIS baseline configuration, with particular regards to the scientific and calibration activities.

  6. Mars Airborne Prospecting Spectrometer

    NASA Astrophysics Data System (ADS)

    Steinkraus, J. M.; Wright, M. W.; Rheingans, B. E.; Steinkraus, D. E.; George, W. P.; Aljabri, A.; Hall, J. L.; Scott, D. C.

    2012-06-01

    One novel approach towards addressing the need for innovative instrumentation and investigation approaches is the integration of a suite of four spectrometer systems to form the Mars Airborne Prospecting Spectrometers (MAPS) for prospecting on Mars.

  7. Initial success and substantial government savings may mandate prime vendor contracts for Table of Organization and Equipment units and development support.

    PubMed

    Rembold, J M; Berry, T R

    1997-01-01

    In November 1994, the Department of Pharmacy at Madigan Army Medical Center and the 62nd Medical Group Logistics (Fort Lewis, Washington) examined the feasibility of prime vendor support for the 18th Mobile Army Surgical Hospital in a Table of Organization and Equipment (TOE) unit rapid deployment. The TOE medication list was deemed to be out of date and a state-of-the-art formulary was developed. By identifying three National Drug Code bioequivalent substitutes for each National Stock Number, a 94% prime vendor match was achieved for pharmaceuticals form the new formulary serving as our template. The 6% of medications that were not able to be matched consisted of items deemed as military-unique or items not covered by the prime vendor government contracts with wholesalers. On August 7, 1995, a trial was conducted to determine whether the local prime vendor had the capacity to support a deployment under its present contract with Madigan Army Medical Center. Two hundred eighty-six line items were ordered, mocking the deployment of two medical units. More than 95% of the line items were filled within 5 days from the local prime vendor. Under the local contract, the prime vendor was under no obligation to have out-of-stock medications provided by overnight shipment from other national distribution sites. This advantage, which is standard in national pharmaceutical prime vendor contracts negotiated by large civilian group purchasing organizations, would have substantially decreased the period of time to attain a > 95% fill. The results of this trial have provided strong support for prime vendor utilization in future deployments. PMID:9002708

  8. NASA's Coastal and Ocean Airborne Science Testbed

    NASA Astrophysics Data System (ADS)

    Guild, L. S.; Dungan, J. L.; Edwards, M.; Russell, P. B.; Morrow, J. H.; Hooker, S.; Myers, J.; Kudela, R. M.; Dunagan, S.; Soulage, M.; Ellis, T.; Clinton, N. E.; Lobitz, B.; Martin, K.; Zell, P.; Berthold, R. W.; Smith, C.; Andrew, D.; Gore, W.; Torres, J.

    2011-12-01

    The Coastal and Ocean Airborne Science Testbed (COAST) Project is a NASA Earth-science flight mission that will advance coastal ecosystems research by providing a unique airborne payload optimized for remote sensing in the optically complex coastal zone. Teaming NASA Ames scientists and engineers with Biospherical Instruments, Inc. (San Diego) and UC Santa Cruz, the airborne COAST instrument suite combines a customized imaging spectrometer, sunphotometer system, and a new bio-optical radiometer package to obtain ocean/coastal/atmosphere data simultaneously in flight for the first time. The imaging spectrometer (Headwall) is optimized in the blue region of the spectrum to emphasize remote sensing of marine and freshwater ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data will be accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Based on optical detectors called microradiometers, the NASA Ocean Biology and Biogeochemistry Calibration and Validation (cal/val) Office team has deployed advanced commercial off-the-shelf instrumentation that provides in situ measurements of the apparent optical properties at the land/ocean boundary including optically shallow aquatic ecosystems (e.g., lakes, estuaries, coral reefs). A complimentary microradiometer instrument package (Biospherical Instruments, Inc.), optimized for use above water, will be flown for the first time with the airborne instrument suite. Details of the October 2011 COAST airborne mission over Monterey Bay demonstrating this new airborne instrument suite capability will be presented, with associated preliminary data on coastal ocean color products, coincident spatial and temporal data on aerosol optical depth and water vapor column content, as well as derived exact water-leaving radiances.

  9. National center for airborne laser mapping proposed

    NASA Astrophysics Data System (ADS)

    Carter, Bill; Shrestha, Ramesh L.; Dietrich, Bill

    Researchers from universities, U.S. government agencies, U.S. national laboratories, and private industry met in the spring to learn about the current capabilities of Airborne Laser Swath Mapping (ALSM), share their experiences in using the technology for a wide variety of research applications, outline research that would be made possible by research-grade ALSM data, and discuss the proposed operation and management of the brand new National Center for Airborne Laser Mapping (NCALM).The workshop successfully identified a community of researchers with common interests in the advancement and use of ALSM—a community which strongly supports the immediate establishment of the NCALM.

  10. Improved Airborne System for Sensing Wildfires

    NASA Technical Reports Server (NTRS)

    McKeown, Donald; Richardson, Michael

    2008-01-01

    The Wildfire Airborne Sensing Program (WASP) is engaged in a continuing effort to develop an improved airborne instrumentation system for sensing wildfires. The system could also be used for other aerial-imaging applications, including mapping and military surveillance. Unlike prior airborne fire-detection instrumentation systems, the WASP system would not be based on custom-made multispectral line scanners and associated custom- made complex optomechanical servomechanisms, sensors, readout circuitry, and packaging. Instead, the WASP system would be based on commercial off-the-shelf (COTS) equipment that would include (1) three or four electronic cameras (one for each of three or four wavelength bands) instead of a multispectral line scanner; (2) all associated drive and readout electronics; (3) a camera-pointing gimbal; (4) an inertial measurement unit (IMU) and a Global Positioning System (GPS) receiver for measuring the position, velocity, and orientation of the aircraft; and (5) a data-acquisition subsystem. It would be necessary to custom-develop an integrated sensor optical-bench assembly, a sensor-management subsystem, and software. The use of mostly COTS equipment is intended to reduce development time and cost, relative to those of prior systems.

  11. Cryospheric Applications of Modern Airborne Photogrammetry

    NASA Astrophysics Data System (ADS)

    Nolan, M.

    2014-12-01

    Airborne photogrammetry is undergoing a renaissance. Lower-cost equipment, more powerful software, and simplified methods have lowered the barriers-to-entry significantly and now allow repeat-mapping of cryospheric dynamics that were previously too expensive to consider. The current state-of-the-art is the ability to use an airborne equipment package costing less than $20,000 to make topographic maps on landscape-scales at 10 cm pixel size with a vertical repeatability of about 10 cm. Nearly any surface change on the order of decimeters can be measured using these techniques through analysis of time-series of such maps. This presentation will discuss these new methods and their application to cryospheric dynamics such as the measurement of snow depth, coastal erosion, valley-glacier volume-change, permafrost thaw, frost heave of infrastructure, river bed geomorphology, and aufeis melt. Because of the expense of other airborne methods, by necessity measurements of these dynamics are currently most often made on the ground along benchmark transects that are then extrapolated to the broader scale. The ability to directly measure entire landscapes with equal or higher accuracy than transects eliminates the need to extrapolate them and the ability to do so at lower costs than transects may revolutionize the way we approach studying change in the cryosphere, as well as our understanding of the cryosphere itself.

  12. What the aircrew automated escape system and aircrew life support system equipment designers need from the investigating medical officer and pathologist.

    PubMed

    Guill, F C

    1989-10-01

    A major problem apparent in many safety investigation reports concerning aviation mishaps, and especially in their component Flight Surgeon's Reports (FSRs), is the failure of the investigators to recognize needs beyond those of their immediate organizational structures and chains of command in conducting the investigation, and reporting the resultant facts and findings. If aircrew losses and serious injuries are to be reduced, other needs must also be considered and addressed. These additional needs include those of aircrew automated escape system (AAES) and aircrew life support system (ALSS) acquisition personnel who formulate, design, and test requirements, and AAES and ALSS designers and manufacturers who need to know how well and under what conditions of use their equipment is performing. Each mishap, in a sense, constitutes an extremely costly yet highly realistic test of the AAES and ALSS involved. If properly and thoroughly examined, these mishaps will yield exceptionally valuable insights into AAES and ALSS problems and successes and the reasons underlying system behavioral differences. This paper discusses a number of the AAES and ALSS community's needs which investigating medical officers should consider if the U.S. Navy is to gain from these expensive and often tragic mishaps.

  13. Integration for Airborne Dust Prediction Systems and Vegetation Phenology to Track Pollen for Asthma Alerts in Public Health Decision Support Systems

    NASA Technical Reports Server (NTRS)

    Luvall, J. C.; Sprigg, W. A.; Nickovic, S.; Huete, A.; Budge, A.; Flowers, L.

    2008-01-01

    The objective of the program is to assess the feasibility of combining a dust transport model with MODIS derived phenology to study pollen transport for integration with a public health decision support system. The use of pollen information has specifically be identified as a critical need by the New Mexico State Health department for inclusion in the Environmental Public Health Tracking (EPHT) program. Material and methods: Pollen can be transported great distances. Local observations of plan phenology may be consistent with the timing and source of pollen collected by pollen sampling instruments. The Dust REgional Atmospheric Model (DREAM) is an integrated modeling system designed to accurately describe the dust cycle in the atmosphere. The dust modules of the entire system incorporate the state of the art parameterization of all the major phases of the atmospheric dust life such as production, diffusion, advection, and removal. These modules also include effects of the particles size distribution on aerosol dispersion. The model was modified to use pollen sources instead of dust. Pollen release was estimated based on satellite-derived phenology of key plan species and vegetation communities. The MODIS surface reflectance product (MOD09) provided information on the start of the plant growing season, growth stage, and pollen release. The resulting deterministic model is useful for predicting and simulating pollen emission and downwind concentration to study details of phenology and meteorology and their dependencies. The proposed linkage in this project provided critical information on the location timing and modeled transport of pollen directly to the EPHT> This information is useful to support the centers for disease control and prevention (CDC)'s National EPHT and the state of New Mexico environmental public health decision support for asthma and allergies alerts.

  14. Simulation system of airborne FLIR searcher

    NASA Astrophysics Data System (ADS)

    Sun, Kefeng; Li, Yu; Gao, Jiaobo; Wang, Jun; Wang, Jilong; Xie, Junhu; Ding, Na; Sun, Dandan

    2014-11-01

    Airborne Forward looking infra-red (FLIR) searcher simulation system can provide multi-mode simulated test environment that almost actual field environment, and can simulate integrated performance and external interface of airborne FLIR simulation system. Furthermore, the airborne FLIR searcher simulation system can support the algorithm optimization of image processing, and support the test and evaluation of electro-optical system, and also support the line test of software and evaluate the performance of the avionics system. The detailed design structure and information cross-linking relationship of each component are given in this paper. The simulation system is composed of the simulation center, the FLIR actuator, the FLIR emulator, and the display control terminal. The simulation center can generate the simulated target and aircraft flying data in the operation state of the airborne FLIR Searcher. The FLIR actuator can provide simulation scene. It can generate the infrared target and landform based scanning scene, response to the commands from simulation center and the FLIR actuator and operation control unit. The infrared image generated by the FLIR actuator can be processed by the FLIR emulator using PowerPC hardware framework and processing software based on VxWorks system. It can detect multi-target and output the DVI video and the multi-target detection information which corresponds to the working state of the FLIR searcher. Display control terminal can display the multi-target detection information in two-dimension situation format, and realize human-computer interaction function.

  15. Characterization equipment essential drawing plan

    SciTech Connect

    WILSON, G.W.

    1999-05-18

    The purpose of this document is to list the Characterization equipment drawings that are classified as Essential Drawings. Essential Drawings: Are those drawings identified by the facility staff as necessary to directly support the safe operation of the facility or equipment (HNF 1997a). The Characterization equipment drawings identified in this report are deemed essential drawings as defined in HNF-PRO-242, Engineering Drawing Requirements (HNF 1997a). These drawings will be prepared, revised, and maintained per HNF-PRO-440, Engineering Document Change Control (HNF 1997b). All other Characterization equipment drawings not identified in this document will be considered Support drawings until the Characterization Equipment Drawing Evaluation Report is completed.

  16. Stellar Occultations from Airborne Platforms: 1988 to 2016

    NASA Astrophysics Data System (ADS)

    Bosh, Amanda S.; Dunham, Edward W.; Zuluaga, Carlos; Levine, Stephen; Person, Michael J.; Van Cleve, Jeffrey E.

    2016-10-01

    Observing a stellar occultation by a solar system body with an airborne telescope requires precise positioning of the observer within the shadow cast onto the Earth. For small bodies like Pluto and Kuiper Belt objects, smaller than the Earth, the challenge is particularly intense, with the accuracy of the astrometric and flight planning determining whether the observation succeeds or fails. From our first airborne occultation by Pluto in 1988 aboard the Kuiper Airborne Observatory (KAO), to our most recent event by Pluto in 2015 aboard the Stratospheric Observatory for Infrared Astronomy (SOFIA), we have refined our astrometric and flight planning systems to the point where we can now place an airborne observer into the small central flash zone. We will discuss the history of airborne observation of occultations while detailing the improvements in the astrometric processes. Support for this work was provided by NASA SSO grant NNX15AJ82G to Lowell Observatory.

  17. Airborne data acquisition techniques

    SciTech Connect

    Arro, A.A.

    1980-01-01

    The introduction of standards on acceptable procedures for assessing building heat loss has created a dilemma for the contractor performing airborne thermographic surveys. These standards impose specifications on instrumentation, data acquisition, recording, interpretation, and presentation. Under the standard, the contractor has both the obligation of compliance and the requirement of offering his services at a reasonable price. This paper discusses the various aspects of data acquisition for airborne thermographic surveys and various techniques to reduce the costs of this operation. These techniques include the calculation of flight parameters for economical data acquisition, the selection and use of maps for mission planning, and the use of meteorological forecasts for flight scheduling and the actual execution of the mission. The proper consideration of these factors will result in a cost effective data acquisition and will place the contractor in a very competitive position in offering airborne thermographic survey services.

  18. Regional airborne flux measurements in Europe

    NASA Astrophysics Data System (ADS)

    Gioli, B.; Miglietta, F.; Vaccari, F. P.; Zaldei, A.; Hutjes, R. W. A.

    2003-04-01

    The problem of identifying the spatial and temporal distribution of sources and sinks of atmospheric CO2 is the subject of considerable scientific and political debate. Even if it is now possible to estimate within reasonable accuracy the sink strength of European forests at the local scale, difficulties still exist in determining the partitioning of the sinks at the global and regional scales. The aim of the EU-project RECAB (Regional Assessment of the Carbon Balance in Europe) that is coordinated by Alterra, Wageningen (NL), is to bridge the gap between local scale flux measurements and continental scale inversion models by a generic modelling effort and measurement program, focussing on a limited number of selected regions in Europe for which previous measurements exists. This required the establishment of a European facility for airborne measurement of surface fluxes of CO2 at very low altitude, and a research aircraft capable of performing airborne eddy covariance measurements has been acquired by this project and used on several occasions at the different RECAB sites. The aircraft is the italian Sky Arrows ERA (Environmental Research Aircraft) equipped with the NOAA/ARA Mobile Flux Platform (MFP), and a commercial open-path infrared gas analyser. Airborne eddy covariance measurements were made from June 2001 onwards in Southern Spain near Valencia (June and December 2001), in Central Germany near Jena (July 2001), in Sweden near Uppsala (August 2001), in The Netherlands near Wageningen (January and July 2002) and in Italy near Rome (June 2002). Flux towers were present at each site to provide a validation of airborne eddy covariance measurements. This contribution reports some validation results based on the comparison between airborne and ground based flux measurements and some regional scale results for different locations and different seasons, in a wide range of meteorological and ecological settings.

  19. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  20. Airborne rain mapping radar

    NASA Technical Reports Server (NTRS)

    Wilson, W. J.; Parks, G. S.; Li, F. K.; Im, K. E.; Howard, R. J.

    1988-01-01

    An airborne scanning radar system for remote rain mapping is described. The airborne rain mapping radar is composed of two radar frequency channels at 13.8 and 24.1 GHz. The radar is proposed to scan its antenna beam over + or - 20 deg from the antenna boresight; have a swath width of 7 km; a horizontal spatial resolution at nadir of about 500 m; and a range resolution of 120 m. The radar is designed to be applicable for retrieving rainfall rates from 0.1-60 mm/hr at the earth's surface, and for measuring linear polarization signatures and raindrop's fall velocity.

  1. Phase II - Procurement of State of the Art Research Equipment to Support Faculty Members with the RNA Therapeutics Institute, a component of the Advanced Therapeutics Cluster at the University of Massachusetts Medical School

    SciTech Connect

    Moore, Melissa

    2011-10-14

    This project supported the continued development of the RNA Therapeutics Institute at the UMass Medical School. This funding allows for the purchase of critical equipment that will enable faculty members to develop RNA technology in order to better understand the complexity that separates genome sequence from biological function, as well as to reduce the hyperactivity of harmful genes.

  2. NASA Airborne Lidar July 1991

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar July 1991 Data from the 1991 NASA Langley Airborne Lidar flights following the eruption of Pinatubo in July ... and Osborn [1992a, 1992b]. Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  3. NASA Airborne Lidar May 1992

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar May 1992 An airborne Nd:YAG (532 nm) lidar was operated by the NASA Langley Research Center about a year following the June 1991 eruption of ... Osborn [1992a, 1992b].  Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  4. Airborne system for testing multispectral reconnaissance technologies

    NASA Astrophysics Data System (ADS)

    Schmitt, Dirk-Roger; Doergeloh, Heinrich; Keil, Heiko; Wetjen, Wilfried

    1999-07-01

    There is an increasing demand for future airborne reconnaissance systems to obtain aerial images for tactical or peacekeeping operations. Especially Unmanned Aerial Vehicles (UAVs) equipped with multispectral sensor system and with real time jam resistant data transmission capabilities are of high interest. An airborne experimental platform has been developed as testbed to investigate different concepts of reconnaissance systems before their application in UAVs. It is based on a Dornier DO 228 aircraft, which is used as flying platform. Great care has been taken to achieve the possibility to test different kinds of multispectral sensors. Hence basically it is capable to be equipped with an IR sensor head, high resolution aerial cameras of the whole optical spectrum and radar systems. The onboard equipment further includes system for digital image processing, compression, coding, and storage. The data are RF transmitted to the ground station using technologies with high jam resistance. The images, after merging with enhanced vision components, are delivered to the observer who has an uplink data channel available to control flight and imaging parameters.

  5. Airborne Fraunhofer Line Discriminator

    NASA Technical Reports Server (NTRS)

    Gabriel, F. C.; Markle, D. A.

    1969-01-01

    Airborne Fraunhofer Line Discriminator enables prospecting for fluorescent materials, hydrography with fluorescent dyes, and plant studies based on fluorescence of chlorophyll. Optical unit design is the coincidence of Fraunhofer lines in the solar spectrum occurring at the characteristic wavelengths of some fluorescent materials.

  6. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  7. Airborne asbestos in buildings.

    PubMed

    Lee, R J; Van Orden, D R

    2008-03-01

    The concentration of airborne asbestos in buildings nationwide is reported in this study. A total of 3978 indoor samples from 752 buildings, representing nearly 32 man-years of sampling, have been analyzed by transmission electron microscopy. The buildings that were surveyed were the subject of litigation related to suits alleging the general building occupants were exposed to a potential health hazard as a result the presence of asbestos-containing materials (ACM). The average concentration of all airborne asbestos structures was 0.01structures/ml (s/ml) and the average concentration of airborne asbestos > or = 5microm long was 0.00012fibers/ml (f/ml). For all samples, 99.9% of the samples were <0.01 f/ml for fibers longer than 5microm; no building averaged above 0.004f/ml for fibers longer than 5microm. No asbestos was detected in 27% of the buildings and in 90% of the buildings no asbestos was detected that would have been seen optically (> or = 5microm long and > or = 0.25microm wide). Background outdoor concentrations have been reported at 0.0003f/ml > or = 5microm. These results indicate that in-place ACM does not result in elevated airborne asbestos in building atmospheres approaching regulatory levels and that it does not result in a significantly increased risk to building occupants.

  8. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  9. An approach to evaluating reactive airborne wind shear systems

    NASA Technical Reports Server (NTRS)

    Gibson, Joseph P., Jr.

    1992-01-01

    An approach to evaluating reactive airborne windshear detection systems was developed to support a deployment study for future FAA ground-based windshear detection systems. The deployment study methodology assesses potential future safety enhancements beyond planned capabilities. The reactive airborne systems will be an integral part of planned windshear safety enhancements. The approach to evaluating reactive airborne systems involves separate analyses for both landing and take-off scenario. The analysis estimates the probability of effective warning considering several factors including NASA energy height loss characteristics, reactive alert timing, and a probability distribution for microburst strength.

  10. Photoreactivation in Airborne Mycobacterium parafortuitum

    PubMed Central

    Peccia, Jordan; Hernandez, Mark

    2001-01-01

    Photoreactivation was observed in airborne Mycobacterium parafortuitum exposed concurrently to UV radiation (254 nm) and visible light. Photoreactivation rates of airborne cells increased with increasing relative humidity (RH) and decreased with increasing UV dose. Under a constant UV dose with visible light absent, the UV inactivation rate of airborne M. parafortuitum cells decreased by a factor of 4 as RH increased from 40 to 95%; however, under identical conditions with visible light present, the UV inactivation rate of airborne cells decreased only by a factor of 2. When irradiated in the absence of visible light, cellular cyclobutane thymine dimer content of UV-irradiated airborne M. parafortuitum and Serratia marcescens increased in response to RH increases. Results suggest that, unlike in waterborne bacteria, cyclobutane thymine dimers are not the most significant form of UV-induced DNA damage incurred by airborne bacteria and that the distribution of DNA photoproducts incorporated into UV-irradiated airborne cells is a function of RH. PMID:11526027

  11. MITAS: multisensor imaging technology for airborne surveillance

    NASA Astrophysics Data System (ADS)

    Thomas, John D.

    1991-08-01

    MITAS, a unique and low-cost solution to the problem of collecting and processing multisensor imaging data for airborne surveillance operations has been developed, MITAS results from integrating the established and proven real-time video processing, target tracking, and sensor management software of TAU with commercially available image exploitation and map processing software. The MITAS image analysis station (IAS) supports airborne day/night reconnaissance and surveillance missions involving low-altitude collection platforms employing a suite of sensors to perform reconnaissance functions against a variety of ground and sea targets. The system will detect, locate, and recognize threats likely to be encountered in support of counternarcotic operations and in low-intensity conflict areas. The IAS is capable of autonomous, near real-time target exploitation and has the appropriate communication links to remotely located IAS systems for more extended analysis of sensor data. The IAS supports the collection, fusion, and processing of three main imaging sensors: daylight imagery (DIS), forward looking infrared (FLIR), and infrared line scan (IRLS). The MITAS IAS provides support to all aspects of the airborne surveillance mission, including sensor control, real-time image enhancement, automatic target tracking, sensor fusion, freeze-frame capture, image exploitation, target data-base management, map processing, remote image transmission, and report generation.

  12. Airborne Multisensor Pod System (AMPS) data management overview

    SciTech Connect

    Wiberg, J.D.; Blough, D.K.; Daugherty, W.R.; Hucks, J.A.; Gerhardstein, L.H.; Meitzler, W.D.; Melton, R.B.; Shoemaker, S.V.

    1994-09-01

    An overview of the Data Management Plan for the Airborne Multisensor Pod System (AMPS) pro-grain is provided in this document. The Pacific Northwest Laboratory (PNL) has been assigned the responsibility of data management for the program, which includes defining procedures for data management and data quality assessment. Data management is defined as the process of planning, acquiring, organizing, qualifying and disseminating data. The AMPS program was established by the U.S. Department of Energy (DOE), Office of Arms Control and Non-Proliferation (DOE/AN) and is integrated into the overall DOE AN-10.1 technology development program. Sensors used for collecting the data were developed under the on-site inspection, effluence analysis, and standoff sensor program, the AMPS program interacts with other technology programs of DOE/NN-20. This research will be conducted by both government and private industry. AMPS is a research and development program, and it is not intended for operational deployment, although the sensors and techniques developed could be used in follow-on operational systems. For a complete description of the AMPS program, see {open_quotes}Airborne Multisensor Pod System (AMPS) Program Plan{close_quotes}. The primary purpose of the AMPS is to collect high-quality multisensor data to be used in data fusion research to reduce interpretation problems associated with data overload and to derive better information than can be derived from any single sensor. To collect the data for the program, three wing-mounted pods containing instruments with sensors for collecting data will be flight certified on a U.S. Navy RP-3A aircraft. Secondary objectives of the AMPS program are sensor development and technology demonstration. Pod system integrators and instrument developers will be interested in the performance of their deployed sensors and their supporting data acquisition equipment.

  13. Clean enough for industry? An airborne geophysical case study

    SciTech Connect

    Nyquist, J.E.; Beard, L.P.

    1996-11-01

    Data from two airborne geophysical surveys of the Department of Energy`s Oak Ridge Reservation (ORR) were extremely valuable in deciding whether a 1000-acre (400 hectare) parcel of the ORR should be leased to the City of Oak Ridge for industrial development. Our findings, based on electromagnetic and magnetic data, were incorporated in the federally mandated Environmental Assessment Statement (EAS), and in general supported claims that this land was never used as a hazardous waste disposal site. We estimated the amount of iron required to produce each anomaly using a simple dipole model. All anomalies with equivalent sources greater than approximately 1000 kg of iron were checked in the field, and the source of all but one identified as either a bridge, reinforced concrete debris, or a similarly benign object. Additionally, some smaller anomalies (equivalent sources of roughly 500 kg) have been checked; thus far, these also have innocuous sources. Airborne video proved invaluable in identifying logging equipment as the source of some of these anomalies. Geologic noise may account for some of the remaining anomalies. Naturally occurring accumulations of magnetic minerals in the soil on the ORR have been shown to produce anomalies which, at a sensor height of 30 in, are comparable to the anomaly produced by about 500 kg of iron. By comparison, the electronic noise of the magnetic gradiometer, 0.01- 0.02 nT/m, is equivalent to only about 50-100 kg of iron at a 30 m sensor height. The electromagnetic data, combined with field mapping of karst structures, provided evidence of a northeast-southwest striking conduit spanning the parcel. The possible existence of a karst conduit led the EAS authors to conclude that this is a {open_quotes}sensitive hydrologic setting.{close_quotes} We conclude that aerial geophysics is an extremely cost-effective, and efficient technique for screening large tracts of land for environmental characterization.

  14. Clean enough for industry? An airborne geophysical case study

    SciTech Connect

    Nyquist, J.E.; Beard, L.P.

    1996-02-01

    Data from two airborne geophysical surveys of the Department of Energy`s Oak Ridge Reservation (ORR) were extremely valuable in deciding whether a 1000-acre (400 hectare) parcel of the ORR should be released to the City of Oak Ridge for industrial development. Our findings, based on electromagnetic and magnetic data, were incorporated in the federally mandated Environmental Assessment Statement (EAS), and in general supported claims that this land was never used as a hazardous waste disposal site. We estimated the amount of iron required to produce each anomaly using a simple dipole model. All anomalies with equivalent sources greater than approximately 1000 kg of iron were checked in the field, and the source of all but one identified as either a bridge, reinforced concrete debris, or a similarly benign object. Additionally, some smaller anomalies (equivalent sources of roughly 500 kg) have been checked; thus far, these also have innocuous sources. Airborne video proved invaluable in identifying logging equipment as the source of some of these anomalies. Geologic noise may account for some of the remaining anomalies. Naturally occurring accumulations of magnetic minerals in the soil on the ORR have been shown to produce anomalies which, at a sensor height of 30 m, are comparable to the anomaly produced by about 500 kg of iron. By comparison, the electronic noise of the magnetic gradiometer, 0.01--0.02 nT/m, is equivalent to only about 50--100 kg of iron at a 30 m sensor height. The electromagnetic data, combined with field mapping of karst structures, provided evidence of a northeast-southwest striking conduit spanning the parcel. The possible existence of a karst conduit led the EAS authors to conclude that this is a ``sensitive hydrologic setting.`` We conclude that aerial geophysics is an extremely cost-effective, and efficient technique for screening large tracts of land for environmental characterization.

  15. User definition and mission requirements for unmanned airborne platforms, revised

    NASA Technical Reports Server (NTRS)

    Kuhner, M. B.; Mcdowell, J. R.

    1979-01-01

    The airborne measurement requirements of the scientific and applications experiment user community were assessed with respect to the suitability of proposed strawman airborne platforms. These platforms provide a spectrum of measurement capabilities supporting associated mission tradeoffs such as payload weight, operating altitude, range, duration, flight profile control, deployment flexibility, quick response, and recoverability. The results of the survey are used to examine whether the development of platforms is warranted and to determine platform system requirements as well as research and technology needs.

  16. [Air-borne disease].

    PubMed

    Lameiro Vilariño, Carmen; del Campo Pérez, Victor M; Alonso Bürger, Susana; Felpeto Nodar, Irene; Guimarey Pérez, Rosa; Pérez Alvarellos, Alberto

    2003-11-01

    Respiratory protection is a factor which worries nursing professionals who take care of patients susceptible of transmitting microorganisms through the air more as every day passes. This type of protection covers the use of surgical or hygienic masks against the transmission of infection by airborne drops to the use of highly effective masks or respirators against the transmission of airborne diseases such as tuberculosis or SARS, a recently discovered disease. The adequate choice of this protective device and its correct use are fundamental in order to have an effective protection for exposed personnel. The authors summarize the main protective respiratory devices used by health workers, their characteristics and degree of effectiveness, as well as the circumstances under which each device is indicated for use. PMID:14705591

  17. Solar Equipment

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A medical refrigeration and a water pump both powered by solar cells that convert sunlight directly into electricity are among the line of solar powered equipment manufactured by IUS (Independent Utility Systems) for use in areas where conventional power is not available. IUS benefited from NASA technology incorporated in the solar panel design and from assistance provided by Kerr Industrial Applications Center.

  18. Telescope Equipment

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Renaissance Telescope for high resolution and visual astronomy has five 82-degree Field Tele-Vue Nagler Eyepieces, some of the accessories that contribute to high image quality. Telescopes and eyepieces are representative of a family of optical equipment manufactured by Tele-Vue Optics, Inc.

  19. NASA'S Coastal and Ocean Airborne Science Testbed (COAST): Early Results

    NASA Astrophysics Data System (ADS)

    Guild, L. S.; Dungan, J. L.; Edwards, M.; Russell, P. B.; Morrow, J. H.; Kudela, R. M.; Myers, J. S.; Livingston, J.; Lobitz, B.; Torres-Perez, J.

    2012-12-01

    The NASA Coastal and Ocean Airborne Science Testbed (COAST) project advances coastal ecosystems research and ocean color calibration and validation capability by providing a unique airborne payload optimized for remote sensing in the optically complex coastal zone. The COAST instrument suite combines a customized imaging spectrometer, sunphotometer system, and a new bio-optical radiometer package to obtain ocean/coastal/atmosphere data simultaneously in flight for the first time. The imaging spectrometer (Headwall) is optimized in the blue region of the spectrum to emphasize remote sensing of marine and freshwater ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data is accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Coastal Airborne In situ Radiometers (C-AIR, Biospherical Instruments, Inc.), developed for COAST for airborne campaigns from field-deployed microradiometer instrumentation, will provide measurements of apparent optical properties at the land/ocean boundary including optically shallow aquatic ecosystems. Ship-based measurements allowed validation of airborne measurements. Radiative transfer modeling on in-water measurements from the HyperPro and Compact-Optical Profiling System (C-OPS, the in-water companion to C-AIR) profiling systems allows for comparison of airborne and in-situ water leaving radiance measurements. Results of the October 2011 Monterey Bay COAST mission include preliminary data on coastal ocean color products, coincident spatial and temporal data on aerosol optical depth and water vapor column content, as well as derived exact water-leaving radiances.

  20. STDN ranging equipment

    NASA Technical Reports Server (NTRS)

    Jones, C. E.

    1975-01-01

    Final results of the Spaceflight Tracking and Data Network (STDN) Ranging Equipment program are summarized. Basic design concepts and final design approaches are described. Theoretical analyses which define requirements and support the design approaches are presented. Design verification criteria are delineated and verification test results are specified.

  1. MLS airborne antenna research

    NASA Technical Reports Server (NTRS)

    Yu, C. L.; Burnside, W. D.

    1975-01-01

    The geometrical theory of diffraction was used to analyze the elevation plane pattern of on-aircraft antennas. The radiation patterns for basic elements (infinitesimal dipole, circumferential and axial slot) mounted on fuselage of various aircrafts with or without radome included were calculated and compared well with experimental results. Error phase plots were also presented. The effects of radiation patterns and error phase plots on the polarization selection for the MLS airborne antenna are discussed.

  2. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  3. Mutagenicity of airborne particles.

    PubMed

    Chrisp, C E; Fisher, G L

    1980-09-01

    The physical and chemical properties of airborne particles are important for the interpretation of their potential biologic significance as genotoxic hazards. For polydisperse particle size distributions, the smallest, most respirable particles are generally the most mutagenic. Particulate collection for testing purposes should be designed to reduce artifact formation and allow condensation of mutagenic compounds. Other critical factors such as UV irradiation, wind direction, chemical reactivity, humidity, sample storage, and temperature of combustion are important. Application of chemical extraction methods and subsequent class fractionation techniques influence the observed mutagenic activity. Particles from urban air, coal fly ash, automobile and diesel exhaust, agricultural burning and welding fumes contain primarily direct-acting mutagens. Cigarette smoke condensate, smoke from charred meat and protein pyrolysates, kerosene soot and cigarette smoke condensates contain primarily mutagens which require metabolic activation. Fractionation coupled with mutagenicity testing indicates that the most potent mutagens are found in the acidic fractions of urban air, coal fly ash, and automobile diesel exhaust, whereas mutagens in rice straw smoke and cigarette smoke condensate are found primarily in the basic fractions. The interaction of the many chemical compounds in complex mixtures from airborne particles is likely to be important in determining mutagenic or comutagenic potentials. Because the mode of exposure is generally frequent and prolonged, the presence of tumor-promoting agents in complex mixtures may be a major factor in evaluation of the carcinogenic potential of airborne particles.

  4. Mammalian airborne allergens.

    PubMed

    Aalberse, Rob C

    2014-01-01

    Historically, horse dandruff was a favorite allergen source material. Today, however, allergic symptoms due to airborne mammalian allergens are mostly a result of indoor exposure, be it at home, at work or even at school. The relevance of mammalian allergens in relation to the allergenic activity of house dust extract is briefly discussed in the historical context of two other proposed sources of house dust allergenic activity: mites and Maillard-type lysine-sugar conjugates. Mammalian proteins involved in allergic reactions to airborne dust are largely found in only 2 protein families: lipocalins and secretoglobins (Fel d 1-like proteins), with a relatively minor contribution of serum albumins, cystatins and latherins. Both the lipocalin and the secretoglobin family are very complex. In some instances this results in a blurred separation between important and less important allergenic family members. The past 50 years have provided us with much detailed information on the genomic organization and protein structure of many of these allergens. However, the complex family relations, combined with the wide range of post-translational enzymatic and non-enzymatic modifications, make a proper qualitative and quantitative description of the important mammalian indoor airborne allergens still a significant proteomic challenge. PMID:24925404

  5. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  6. Progress on detection of radioactivity by airborne equipment

    USGS Publications Warehouse

    Stead, Frank W.

    1949-01-01

    Coincidence and anti-coincidence counting rate meters and also an air conductivity meter have been installed in a transport plane to measure gamma radiation from ground sources. Materials containing 0.01 percent uranium can be detected at 500 feet and at an airspeed of 150 miles per hour.

  7. Specially equipped aircraft used in Florida airborne field mill research

    NASA Technical Reports Server (NTRS)

    2000-01-01

    CO2 study site manager and plant physiologist Graham Hymus (left) examines scrub oak foliage while project engineer David Johnson (right) looks on. The life sciences study is showing that rising levels of carbon dioxide in our atmosphere, caused by the burning of fossil fuels, could spur plant growth globally. The site of KSC's study is a natural scrub oak area near the Vehicle Assembly Building. Twelve-foot areas of scrub oak have been enclosed in 16 open-top test chambers into which CO2 has been blown. Five scientists from NASA and the Smithsonian Environmental Research Center in Edgewater, Md., work at the site to monitor experiments and keep the site running. Scientists hope to continue the study another five to 10 years. More information on this study can be found in Release No. 57- 00. Additional photos can be found at: www- pao.ksc.nasa.gov/captions/subjects/co2study.htm

  8. Airborne laser sensors and integrated systems

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the

  9. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    PHARUS (phased array universal SAR) is an airborne SAR concept which is being developed in the Netherlands. The PHARUS system differs from other airborne SARs by the use of a phased array antenna, which provides both for the flexibility in the design as well as for a compact, light-weight instrument that can be carried on small aircraft. The concept allows for the construction of airborne SAR systems on a common generic basis but tailored to specific user needs and can be seen as a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna. The whole approach is aimed at providing an economic and yet technically sophisticated solution to remote sensing or surveying needs of a specific user. The solid state phased array antenna consists of a collection of radiating patches; the design flexibility for a large part resides in the freedom to choose the number of patches, and thereby the essential radar performance parameters such as resolution and swath width. Another consequence of the use of the phased array antenna is the system's compactness and the possibility to rigidly mount it on a small aircraft. The use of small aircraft of course considerably improves the cost/benefit ratio of the use of airborne SAR. Flight altitude of the system is flexible between about 7,000 and 40,000 feet, giving much operational freedom within the meteo and airspace control limits. In the PHARUS concept the airborne segment is complemented by a ground segment, which consists of a SAR processor, possibly extended by a matching image processing package. (A quick look image is available in real-time on board the aircraft.) The SAR processor is UNIX based and runs on easily available hardware (SUN station). Although the additional image processing software is available, the SAR processing software is nevertheless designed to be able to interface with commercially available image processing software, as well as being able

  10. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  11. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown.

  12. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  13. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown. PMID:23406937

  14. Airborne Wind Shear Detection and Warning Systems: First Combined Manufacturers' and Technologists' Conference

    NASA Technical Reports Server (NTRS)

    Spady, Amos A., Jr. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1988-01-01

    The purpose of the meeting was to transfer significant, ongoing results gained during the first year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-looking technology concepts and for technologists to gain an understanding of FAA certification requirements and the problems encountered by the manufacturers during the development of airborne equipment.

  15. Innovativ Airborne Sensors for Disaster Management

    NASA Astrophysics Data System (ADS)

    Altan, M. O.; Kemper, G.

    2016-06-01

    Disaster management by analyzing changes in the DSM before and after the "event". Advantage of Lidar is that beside rain and clouds, no other weather conditions limit their use. As an active sensor, missions in the nighttime are possible. The new mid-format cameras that make use CMOS sensors (e.g. Phase One IXU1000) can capture data also under poor and difficult light conditions and might will be the first choice for remotely sensed data acquisition in aircrafts and UAVs. UAVs will surely be more and more part of the disaster management on the detailed level. Today equipped with video live cams using RGB and Thermal IR, they assist in looking inside buildings and behind. Thus, they can continue with the aerial survey where airborne anomalies have been detected.

  16. Orbiter electrical equipment utilization baseline

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The baseline for utilization of Orbiter electrical equipment in both electrical and Environmental Control and Life Support System (ECLSS) thermal analyses is established. It is a composite catalog of Space Shuttle equipment, as defined in the Shuttle Operational Data Book. The major functions and expected usage of each component type are described. Functional descriptions are designed to provide a fundamental understanding of the Orbiter electrical equipment, to insure correlation of equipment usage within nominal analyses, and to aid analysts in the formulation of off-nominal, contingency analyses.

  17. Prioritizing equipment for replacement.

    PubMed

    Capuano, Mike

    2010-01-01

    It is suggested that clinical engineers take the lead in formulating evaluation processes to recommend equipment replacement. Their skill, knowledge, and experience, combined with access to equipment databases, make them a logical choice. Based on ideas from Fennigkoh's scheme, elements such as age, vendor support, accumulated maintenance cost, and function/risk were used.6 Other more subjective criteria such as cost benefits and efficacy of newer technology were not used. The element of downtime was also omitted due to the data element not being available. The resulting Periop Master Equipment List and its rationale was presented to the Perioperative Services Program Council. They deemed the criteria to be robust and provided overwhelming acceptance of the list. It was quickly put to use to estimate required capital funding, justify items already thought to need replacement, and identify high-priority ranked items for replacement. Incorporating prioritization criteria into an existing equipment database would be ideal. Some commercially available systems do have the basic elements of this. Maintaining replacement data can be labor-intensive regardless of the method used. There is usually little time to perform the tasks necessary for prioritizing equipment. However, where appropriate, a clinical engineering department might be able to conduct such an exercise as shown in the following case study.

  18. Technical basis for removal of 221-T tunnel from airborne radiological area status

    SciTech Connect

    Geuther, W.J., Westinghouse Hanford

    1996-08-30

    This document provides the technical basis for removal of the 221-T Tunnel from airborne radiological control. T Plant Radiological Control has evaluated air sampling data and engineering controls, and determined the necessary administrative controls to make this transition. With these administrative controls (specified within document) in place, the tunnel can be removed from Airborne Radioactive Area status. The removal of the tunnel from airborne status will allow work to be performed within the tunnel under controlled conditions, as outlined in this technical basis, without the use of respiratory protection equipment.

  19. Functional requirements document for measuring emissions of airborne radioactive materials

    SciTech Connect

    Criddle, J.D. Jr.

    1994-09-01

    This document states the functional requirements and procedures for systems making measurements of radioactive airborne emissions from facilities at the Hanford Site. The following issues are addressed in this document: Definition of the program objectives; Selection of the overall approach to collecting the samples; Sampling equipment design; Sampling equipment maintenance, and quality assurance issues. The intent of this document is to assist WHC in demonstrating a high quality of air emission measurements with verified system performance based on documented system design, testing, inspection, and maintenance.

  20. SWUIS-A: a versatile low-cost UV/VIS/IR imaging system for airborne astronomy and aeronomy research

    NASA Astrophysics Data System (ADS)

    Durda, Daniel D.; Stern, S. Alan; Tomlinson, William; Slater, David C.; Vilas, Faith

    2000-11-01

    We have developed and successfully flight-tested on 14 different airborne missions the hardware and techniques for routinely conducting valuable astronomical and aeronomical observations from high-performance, two-seater military-type aircraft. The SWUIS-A (Southwest Universal Imaging System- Airborne_ system consists of an image-intensified CCD camera with broad band response from the near-UV to the near IR, high-quality foreoptics, a miniaturized video recorder, and aircraft-to-camera power and telemetry interface with associated camera controls, and associated cables, filters, and other minor equipments. SWUIS-A's suite of high-quality foreoptics gives it selectable, variable focal length/variable field-of-view capabilities. The SWUIS-A camera frames at 60Hz video rates, which is a key requirement for both jitter compensation and high time resolution (useful fro occultation, lightning, and auroral studies). Broadband SWUIS-A image coadds can exceed a limiting magnitude of V=10.5 in<1sec with dark sky conditions. A valuable attribute of SWUIS-A airborne observations is the fact that the astronomer flies with the instrument, thereby providing Space Shuttle-like payload specialist capability to close-the-loop in real-time on the research done on each research mission. Key advantages of the small, high-performance aircraft on which we can fly SWUIS-A include significant cost savings over larger, more conventional airborne platforms, worldwide basing obviating the need for expensive, campaign-style movement of specialized large aircraft and their logistics support teams, and ultimately faster reaction times to transient events. Compared to ground-based instruments, airborne research platforms offer superior atmospheric transmission, the mobility to reach remote and often-times otherwise unreachable locations over the Earth, and virtually- guaranteed good weather for observing the sky. Compared to space-based instruments, airborne platforms typically offer substantial

  1. SWUIS-A: A Versatile, Low-Cost UV/VIS/IR Imaging System for Airborne Astronomy and Aeronomy Research

    NASA Technical Reports Server (NTRS)

    Durda, Daniel D.; Stern, S. Alan; Tomlinson, William; Slater, David C.; Vilas, Faith

    2001-01-01

    We have developed and successfully flight-tested on 14 different airborne missions the hardware and techniques for routinely conducting valuable astronomical and aeronomical observations from high-performance, two-seater military-type aircraft. The SWUIS-A (Southwest Universal Imaging System - Airborne) system consists of an image-intensified CCD camera with broad band response from the near-UV to the near IR, high-quality foreoptics, a miniaturized video recorder, an aircraft-to-camera power and telemetry interface with associated camera controls, and associated cables, filters, and other minor equipment. SWUIS-A's suite of high-quality foreoptics gives it selectable, variable focal length/variable field-of-view capabilities. The SWUIS-A camera frames at 60 Hz video rates, which is a key requirement for both jitter compensation and high time resolution (useful for occultation, lightning, and auroral studies). Broadband SWUIS-A image coadds can exceed a limiting magnitude of V = 10.5 in <1 sec with dark sky conditions. A valuable attribute of SWUIS-A airborne observations is the fact that the astronomer flies with the instrument, thereby providing Space Shuttle-like "payload specialist" capability to "close-the-loop" in real-time on the research done on each research mission. Key advantages of the small, high-performance aircraft on which we can fly SWUIS-A include significant cost savings over larger, more conventional airborne platforms, worldwide basing obviating the need for expensive, campaign-style movement of specialized large aircraft and their logistics support teams, and ultimately faster reaction times to transient events. Compared to ground-based instruments, airborne research platforms offer superior atmospheric transmission, the mobility to reach remote and often-times otherwise unreachable locations over the Earth, and virtually-guaranteed good weather for observing the sky. Compared to space-based instruments, airborne platforms typically offer

  2. NASA's Airborne Astronomy Program - Lessons For SOFIA

    NASA Astrophysics Data System (ADS)

    Erickson, Edwin F.

    2007-07-01

    Airborne astronomy was pioneered and has evolved at NASA Ames Research Center near San Francisco, California, since 1965. Nowhere else in the world has a similar program been implemented. Its many unique features deserve description, especially for the benefit of planning the operation of SOFIA, the Stratospheric Observatory for Infrared Astronomy, and in particular since NASA Headquarters’ recent decision to base SOFIA operations at Dryden Flight Research Center at Edwards, California instead of at Ames. The history of Ames’ airborne astronomy program is briefly summarized. Discussed in more detail are the operations and organization of the 21-year Kuiper Airborne Observatory (KAO) program, which provide important lessons for SOFIA. The KAO program is our best prototype for planning effective SOFIA operations. Principal features of the KAO program which should be retained on SOFIA are: unique science, innovative new science instruments and technologies, training of young scientists, an effective education and public outreach program, flexibility, continuous improvement, and efficient operations with a lean, well integrated team. KAO program features which should be improved upon with SOFIA are: (1) a management structure that is dedicated primarily to safely maximizing scientific productivity for the resources available, headed by a scientist who is the observatory director, and (2) stimuli to assure prompt distribution and accessibility of data to the scientific community. These and other recommendations were recorded by the SOFIA Science Working Group in 1995, when the KAO was decommissioned to start work on SOFIA. Further operational and organizational factors contributing to the success of the KAO program are described. Their incorporation into SOFIA operations will help assure the success of this new airborne observatory. SOFIA is supported by NASA in the U.S. and DLR (the German Aerospace Center) in Germany.

  3. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  4. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  5. CO2 Budget and Rectification Airborne Study

    NASA Technical Reports Server (NTRS)

    Grainger, C. A.

    2004-01-01

    The main purpose of this award was to supply a platform for the airborne measurements of gases associated with the CO2 Budget and Regional Airborne Study (COBRA). The original program was to consist of three field programs: the first was to be in 1999, the second in 2000, and the third in 2001. At the end of the second field program, it was agreed that the science could better be served by making the measurements in northern Brazil, rather than in North America. The final North American program would be postponed until after two field programs in Brazil. A substantial amount of effort was diverted into making plans and preparations for the Brazil field programs. The Brazil field programs were originally scheduled to take place in the Fall of 2002 and Spring of 2003. Carrying out the field program in Brazil was going to logistically much more involved than a program in the US. Shipping of equipment, customs, and site preparations required work to begin many months prior to the actual measurement program. Permission to fly in that country was also not trivial and indeed proved to be a major obstacle. When we were not able to get permission to fly in Brazil for the 2002 portion of the experiment, the program was pushed back to 2003. When permission by the Brazilian government was not given in time for a Spring of 2003 field program, the experiment was postponed again to begin in the Fall of 2003.

  6. Airborne Radar Interferometric Repeat-Pass Processing

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Michel, Thierry R.; Jones, Cathleen E.; Muellerschoen, Ronald J.; Chapman, Bruce D.; Fore, Alexander; Simard, Marc; Zebker, Howard A.

    2011-01-01

    Earth science research often requires crustal deformation measurements at a variety of time scales, from seconds to decades. Although satellites have been used for repeat-track interferometric (RTI) synthetic-aperture-radar (SAR) mapping for close to 20 years, RTI is much more difficult to implement from an airborne platform owing to the irregular trajectory of the aircraft compared with microwave imaging radar wavelengths. Two basic requirements for robust airborne repeat-pass radar interferometry include the ability to fly the platform to a desired trajectory within a narrow tube and the ability to have the radar beam pointed in a desired direction to a fraction of a beam width. Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is equipped with a precision auto pilot developed by NASA Dryden that allows the platform, a Gulfstream III, to nominally fly within a 5 m diameter tube and with an electronically scanned antenna to position the radar beam to a fraction of a beam width based on INU (inertial navigation unit) attitude angle measurements.

  7. The GeoTASO airborne spectrometer project

    NASA Astrophysics Data System (ADS)

    Leitch, J. W.; Delker, T.; Good, W.; Ruppert, L.; Murcray, F.; Chance, K.; Liu, X.; Nowlan, C.; Janz, S. J.; Krotkov, N. A.; Pickering, K. E.; Kowalewski, M.; Wang, J.

    2014-10-01

    The NASA ESTO-funded Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) development project demonstrates a reconfigurable multi-order airborne spectrometer and tests the performance of spectra separation and filtering on the sensor spectral measurements and subsequent trace gas and aerosol retrievals. The activities support mission risk reduction for the UV-Visible air quality measurements from geostationary orbit for the TEMPO and GEMS missions1 . The project helps advance the retrieval algorithm readiness through retrieval performance tests using scene data taken with varying sensor parameters. We report initial results of the project.

  8. Handling Trajectory Uncertainties for Airborne Conflict Management

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Doble, Nathan A.; Karr, David; Palmer, Michael T.

    2005-01-01

    Airborne conflict management is an enabling capability for NASA's Distributed Air-Ground Traffic Management (DAG-TM) concept. DAGTM has the goal of significantly increasing capacity within the National Airspace System, while maintaining or improving safety. Under DAG-TM, autonomous aircraft maintain separation from each other and from managed aircraft unequipped for autonomous flight. NASA Langley Research Center has developed the Autonomous Operations Planner (AOP), an onboard decision support system that provides airborne conflict management (ACM) and strategic flight planning support for autonomous aircraft pilots. The AOP performs conflict detection, prevention, and resolution from nearby traffic aircraft and area hazards. Traffic trajectory information is assumed to be provided by Automatic Dependent Surveillance Broadcast (ADS-B). Reliable trajectory prediction is a key capability for providing effective ACM functions. Trajectory uncertainties due to environmental effects, differences in aircraft systems and performance, and unknown intent information lead to prediction errors that can adversely affect AOP performance. To accommodate these uncertainties, the AOP has been enhanced to create cross-track, vertical, and along-track buffers along the predicted trajectories of both ownship and traffic aircraft. These buffers will be structured based on prediction errors noted from previous simulations such as a recent Joint Experiment between NASA Ames and Langley Research Centers and from other outside studies. Currently defined ADS-B parameters related to navigation capability, trajectory type, and path conformance will be used to support the algorithms that generate the buffers.

  9. Aquatic Equipment Information.

    ERIC Educational Resources Information Center

    Sova, Ruth

    Equipment usually used in water exercise programs is designed for variety, intensity, and program necessity. This guide discusses aquatic equipment under the following headings: (1) equipment design; (2) equipment principles; (3) precautions and contraindications; (4) population contraindications; and (5) choosing equipment. Equipment is used…

  10. 77 FR 37470 - Technical Standard Order (TSO)-C65a, Airborne Doppler Radar Ground Speed and/or Drift Angle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... Federal Aviation Administration Technical Standard Order (TSO)-C65a, Airborne Doppler Radar Ground Speed... Doppler radar ground speed and/or drift angle measuring equipment (for air carrier aircraft). SUMMARY: This notice announces the FAA's intent to cancel TSO-C65a, Airborne Doppler radar ground speed...

  11. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  12. Airborne Electro-Optical Sensor Simulation System. Final Report.

    ERIC Educational Resources Information Center

    Hayworth, Don

    The total system capability, including all the special purpose and general purpose hardware comprising the Airborne Electro-Optical Sensor Simulation (AEOSS) System, is described. The functional relationship between hardware portions is described together with interface to the software portion of the computer image generation. Supporting rationale…

  13. Open Source Software Reuse in the Airborne Cloud Computing Environment

    NASA Astrophysics Data System (ADS)

    Khudikyan, S. E.; Hart, A. F.; Hardman, S.; Freeborn, D.; Davoodi, F.; Resneck, G.; Mattmann, C. A.; Crichton, D. J.

    2012-12-01

    Earth science airborne missions play an important role in helping humans understand our climate. A challenge for airborne campaigns in contrast to larger NASA missions is that their relatively modest budgets do not permit the ground-up development of data management tools. These smaller missions generally consist of scientists whose primary focus is on the algorithmic and scientific aspects of the mission, which often leaves data management software and systems to be addressed as an afterthought. The Airborne Cloud Computing Environment (ACCE), developed by the Jet Propulsion Laboratory (JPL) to support Earth Science Airborne Program, is a reusable, multi-mission data system environment for NASA airborne missions. ACCE provides missions with a cloud-enabled platform for managing their data. The platform consists of a comprehensive set of robust data management capabilities that cover everything from data ingestion and archiving, to algorithmic processing, and to data delivery. Missions interact with this system programmatically as well as via browser-based user interfaces. The core components of ACCE are largely based on Apache Object Oriented Data Technology (OODT), an open source information integration framework at the Apache Software Foundation (ASF). Apache OODT is designed around a component-based architecture that allows for selective combination of components to create highly configurable data management systems. The diverse and growing community that currently contributes to Apache OODT fosters on-going growth and maturation of the software. ACCE's key objective is to reduce cost and risks associated with developing data management systems for airborne missions. Software reuse plays a prominent role in mitigating these problems. By providing a reusable platform based on open source software, ACCE enables airborne missions to allocate more resources to their scientific goals, thereby opening the doors to increased scientific discovery.

  14. Remote monitoring of soil moisture using airborne microwave radiometers

    NASA Technical Reports Server (NTRS)

    Kroll, C. L.

    1973-01-01

    The current status of microwave radiometry is provided. The fundamentals of the microwave radiometer are reviewed with particular reference to airborne operations, and the interpretative procedures normally used for the modeling of the apparent temperature are presented. Airborne microwave radiometer measurements were made over selected flight lines in Chickasha, Oklahoma and Weslaco, Texas. Extensive ground measurements of soil moisture were made in support of the aircraft mission over the two locations. In addition, laboratory determination of the complex permittivities of soil samples taken from the flight lines were made with varying moisture contents. The data were analyzed to determine the degree of correlation between measured apparent temperatures and soil moisture content.

  15. A Brief History of Airborne Self-Spacing Concepts

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2009-01-01

    This paper presents a history of seven of the more significant airborne and airborne-assisted aircraft spacing concepts that have been developed and evaluated during the past 40 years. The primary focus of the earlier concepts was on enhancing airport terminal area productivity and reducing air traffic controller workload. The more recent efforts were designed to increase runway throughput through improved aircraft spacing precision at landing. The latest concepts are aimed at supporting more fuel efficient and lower community noise operations while maintaining or increasing runway throughput efficiency.

  16. Airborne GLM Simulator (FEGS)

    NASA Astrophysics Data System (ADS)

    Quick, M.; Blakeslee, R. J.; Christian, H. J., Jr.; Stewart, M. F.; Podgorny, S.; Corredor, D.

    2015-12-01

    Real time lightning observations have proven to be useful for advanced warning and now-casting of severe weather events. In anticipation of the launch of the Geostationary Lightning Mapper (GLM) onboard GOES-R that will provide continuous real time observations of total (both cloud and ground) lightning, the Fly's Eye GLM Simulator (FEGS) is in production. FEGS is an airborne instrument designed to provide cal/val measurements for GLM from high altitude aircraft. It consists of a 5 x 5 array of telescopes each with a narrow passband filter to isolate the 777.4 nm neutral oxygen emission triplet radiated by lightning. The telescopes will measure the optical radiance emitted by lightning that is transmitted through the cloud top with a temporal resolution of 10 μs. When integrated on the NASA ER-2 aircraft, the FEGS array with its 90° field-of-view will observe a cloud top area nearly equal to a single GLM pixel. This design will allow FEGS to determine the temporal and spatial variation of light that contributes to a GLM event detection. In addition to the primary telescope array, the instrument includes 5 supplementary optical channels that observe alternate spectral emission features and will enable the use of FEGS for interesting lightning physics applications. Here we present an up-to-date summary of the project and a description of its scientific applications.

  17. Airborne Gravity Data Enhances NGS Experimental Gravimetric Geoid in Alaska

    NASA Astrophysics Data System (ADS)

    Holmes, S. A.; Childers, V. A.; Li, X.; Roman, D. R.

    2014-12-01

    The U.S. National Geodetic Survey [NGS], through their Gravity for the Redefinition of the American Vertical Datum [GRAV-D] program, continues to update its gravimetry holdings by flying new airborne gravity surveys over a large fraction of the USA and its territories. By 2022, NGS intends that all orthometric heights in the USA will be determined in the field by using a reliable national gravimetric geoid model to transform from geodetic heights obtained from GPS. Several airborne campaigns have already been flown over Alaska and its coastline. Some of this Alaskan coastal data have been incorporated into a new NGS experimental geoid model - xGEOID14. The xGEOID14 model is the first in a series of annual experimental geoid models that will incorporate NGS GRAV-D airborne data. This series provides a useful benchmark for assessing and improving current techniques by which the airborne and land-survey data are filtered and cleaned, and then combined with satellite gravity models, elevation data (etc.) with the ultimate aim of computing a geoid model that can support a national physical height system by 2022. Here we will examine the NGS GRAV-D airborne data in Alaska, and assess its contribution to xGEOID14. Future prospects for xGEOID15 will also be considered.

  18. Airborne Separation Assurance and Traffic Management: Research of Concepts and Technology

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Wing, David J.; Hughes, Monica F.; Conway, Sheila R.

    1999-01-01

    To support the need for increased flexibility and capacity in the future National Airspace System, NASA is pursuing an approach that distributes air traffic separation and management tasks to both airborne and ground-based systems. Details of the distributed operations and the benefits and technical challenges of such a system are discussed. Technology requirements and research issues are outlined, and NASA s approach for establishing concept feasibility, which includes development of the airborne automation necessary to support the concept, is described.

  19. Airborne Laser Polar Nephelometer

    NASA Technical Reports Server (NTRS)

    Grams, Gerald W.

    1973-01-01

    A polar nephelometer has been developed at NCAR to measure the angular variation of the intensity of light scattered by air molecules and particles. The system has been designed for airborne measurements using outside air ducted through a 5-cm diameter airflow tube; the sample volume is that which is common to the intersection of a collimated source beam and the detector field of view within the airflow tube. The source is a linearly polarized helium-neon laser beam. The optical system defines a collimated field-of-view (0.5deg half-angle) through a series of diaphragms located behind a I72-mm focal length objective lens. A photomultiplier tube is located immediately behind an aperture in the focal plane of the objective lens. The laser beam is mechanically chopped (on-off) at a rate of 5 Hz; a two-channel pulse counter, synchronized to the laser output, measures the photomultiplier pulse rate with the light beam both on and off. The difference in these measured pulse rates is directly proportional to the intensity of the scattered light from the volume common to the intersection of the laser beam and the detector field-of-view. Measurements can be made at scattering angles from 15deg to 165deg with reference to the direction of propagation of the light beam. Intermediate angles are obtained by selecting the angular increments desired between these extreme angles (any multiple of 0.1deg can be selected for the angular increment; 5deg is used in normal operation). Pulses provided by digital circuits control a stepping motor which sequentially rotates the detector by pre-selected angular increments. The synchronous photon-counting system automatically begins measurement of the scattered-light intensity immediately after the rotation to a new angle has been completed. The instrument has been flown on the NASA Convair 990 airborne laboratory to obtain data on the complex index of refraction of atmospheric aerosols. A particle impaction device is operated simultaneously

  20. Airborne hyperspectral systems for solving remote sensing problems

    NASA Astrophysics Data System (ADS)

    Rodionov, I. D.; Rodionov, A. I.; Vedeshin, L. A.; Vinogradov, A. N.; Egorov, V. V.; Kalinin, A. P.

    2014-12-01

    A retrospective of airborne hyperspectrometer projects carried out in the ZAO Reagent Scientific Technical Center is presented. Hyperspectral devices developed during the period since the end of 1990s to the present day are described. The line of hyperspectrometers designed in recent times covers the ranges from ultraviolet (0.2 μm) to near infrared (1.0 μm). These devices can be mounted on airborne and automobile carriers, including small-size ones. By now, the developments of hyperspectral devices in ZAO Reagent have reached the finished state and have been prepared for serial production. Their technical characteristics permit one to speak of the creation of wide-range high-aperture ultraspectral high spatial resolution equipment with a possibility of real-time data processing on board.

  1. Assess program: Interactive data management systems for airborne research

    NASA Technical Reports Server (NTRS)

    Munoz, R. M.; Reller, J. O., Jr.

    1974-01-01

    Two data systems were developed for use in airborne research. Both have distributed intelligence and are programmed for interactive support among computers and with human operators. The C-141 system (ADAMS) performs flight planning and telescope control functions in addition to its primary role of data acquisition; the CV-990 system (ADDAS) performs data management functions in support of many research experiments operating concurrently. Each system is arranged for maximum reliability in the first priority function, precision data acquisition.

  2. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    SciTech Connect

    Not Available

    1993-11-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  3. Airborne laser topographic mapping results

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Collins, J. G.; Link, L. E.; Swift, R. N.; Butler, M. L.

    1984-01-01

    The results of terrain mapping experiments utilizing the National Aeronautics and Space Administration (NASA) Airborne Oceanographic Lidar (AOL) over forested areas are presented. The flight tests were conducted as part of a joint NASA/U.S. Army Corps of Engineers (CE) investigation aimed at evaluating the potential of an airborne laser ranging system to provide cross-sectional topographic data on flood plains that are difficult and expensive to survey using conventional techniques. The data described in this paper were obtained in the Wolf River Basin located near Memphis, TN. Results from surveys conducted under winter 'leaves off' and summer 'leaves on' conditions, aspects of day and night operation, and data obtained from decidous and coniferous tree types are compared. Data processing techniques are reviewed. Conclusions relative to accuracy and present limitations of the AOL, and airborne lidar systems in general, to terrain mapping over forested areas are discussed.

  4. An airborne isothermal haze chamber

    NASA Technical Reports Server (NTRS)

    Hindman, E. E.

    1981-01-01

    Thermal gradient diffusion cloud chambers (TGDCC) are used to determine the concentrations of cloud condensation nuclei (CCN) with critical supersaturations greater than or equal to about 0.2%. The CCN concentrations measured with the airborne IHC were lower than theoretically predicted by factors ranging between 7.9 and 9.0. The CCN concentrations measured with the airborne IHC were lower than the concentrations measured with the larger laboratory IHC's by factors ranging between 3.9 and 7.5. The bounds of the supersaturation ranges of the airborne IHC and the CSU-Mee TGDCC do not overlap. Nevertheless, the slopes of the interpolated data between the bounds agree favorably with the theoretical slopes.

  5. Detecting Airborne Mercury by Use of Polymer/Carbon Films

    NASA Technical Reports Server (NTRS)

    Shevade, Abhijit; Ryan, Margaret; Homer, Margie; Kisor, Adam; Jewell, April; Yen, Shiao-Pin; Manatt, Kenneth; Blanco, Mario; Goddard, William

    2009-01-01

    Films made of certain polymer/carbon composites have been found to be potentially useful as sensing films for detecting airborne elemental mercury at concentrations on the order of tens of parts per billion or more. That is to say, when the polymer/carbon composite films are exposed to air containing mercury vapor, their electrical resistances decrease by measurable amounts. Because airborne mercury is a health hazard, it is desirable to detect it with great sensitivity, especially in enclosed environments in which there is a risk of a mercury leak from lamps or other equipment. The present effort to develop polymerbased mercury-vapor sensors complements the work reported in NASA Tech Briefs Detecting Airborne Mercury by Use of Palladium Chloride (NPO- 44955), Vol. 33, No. 7 (July 2009), page 48 and De tecting Airborne Mer cury by Use of Gold Nanowires (NPO-44787), Vol. 33, No. 7 (July 2009), page 49. Like those previously reported efforts, the present effort is motivated partly by a need to enable operation and/or regeneration of sensors under relatively mild conditions more specifically, at temperatures closer to room temperature than to the elevated temperatures (greater than 100 C ) needed for regeneration of sensors based on noble-metal films. The present polymer/carbon films are made from two polymers, denoted EYN1 and EYN2 (see Figure 1), both of which are derivatives of poly-4-vinyl pyridine with amine functional groups. Composites of these polymers with 10 to 15 weight percent of carbon were prepared and solution-deposited onto the JPL ElectronicNose sensor substrates for testing. Preliminary test results showed that the resulting sensor films gave measurable indications of airborne mercury at concentrations on the order of tens of parts per billion (ppb) or more. The operating temperature range for the sensing films was 28 to 40 C and that the sensor films regenerated spontaneously, without heating above operating temperature (see Figure 2).

  6. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT RESEARCH PLAN

    EPA Science Inventory

    The goal of the Western Airborne Contaminants Assessment Project (WACAP) is to assess the deposition of airborne contaminants in Western National Parks, providing regional and local information on exposure, accumulation, impacts, and probable sources. This project is being desig...

  7. An airborne multispectral imaging system based on two consumer-grade cameras for agricultural remote sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the design and evaluation of an airborne multispectral imaging system based on two identical consumer-grade cameras for agricultural remote sensing. The cameras are equipped with a full-frame complementary metal oxide semiconductor (CMOS) sensor with 5616 × 3744 pixels. One came...

  8. Airborne Transmission of Bordetella pertussis

    PubMed Central

    Warfel, Jason M.; Beren, Joel; Merkel, Tod J.

    2012-01-01

    Pertussis is a contagious, acute respiratory illness caused by the bacterial pathogen Bordetella pertussis. Although it is widely believed that transmission of B. pertussis occurs via aerosolized respiratory droplets, no controlled study has ever documented airborne transmission of pertussis. We set out to determine if airborne transmission occurs between infected and naive animals, utilizing the baboon model of pertussis. Our results showed that 100% of exposed naive animals became infected even when physical contact was prevented, demonstrating that pertussis transmission occurs via aerosolized respiratory droplets. PMID:22807521

  9. Airborne remote sensing for geology and the environment; present and future

    USGS Publications Warehouse

    Watson, Ken; Knepper, Daniel H.

    1994-01-01

    In 1988, a group of leading experts from government, academia, and industry attended a workshop on airborne remote sensing sponsored by the U.S. Geological Survey (USGS) and hosted by the Branch of Geophysics. The purpose of the workshop was to examine the scientific rationale for airborne remote sensing in support of government earth science in the next decade. This report has arranged the six resulting working-group reports under two main headings: (1) Geologic Remote Sensing, for the reports on geologic mapping, mineral resources, and fossil fuels and geothermal resources; and (2) Environmental Remote Sensing, for the reports on environmental geology, geologic hazards, and water resources. The intent of the workshop was to provide an evaluation of demonstrated capabilities, their direct extensions, and possible future applications, and this was the organizational format used for the geologic remote sensing reports. The working groups in environmental remote sensing chose to present their reports in a somewhat modified version of this format. A final section examines future advances and limitations in the field. There is a large, complex, and often bewildering array of remote sensing data available. Early remote sensing studies were based on data collected from airborne platforms. Much of that technology was later extended to satellites. The original 80-m-resolution Landsat Multispectral Scanner System (MSS) has now been largely superseded by the 30-m-resolution Thematic Mapper (TM) system that has additional spectral channels. The French satellite SPOT provides higher spatial resolution for channels equivalent to MSS. Low-resolution (1 km) data are available from the National Oceanographic and Atmospheric Administration's AVHRR system, which acquires reflectance and day and night thermal data daily. Several experimental satellites have acquired limited data, and there are extensive plans for future satellites including those of Japan (JERS), Europe (ESA), Canada

  10. NASA Airborne Lidar 1982-1984 Flights

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar 1982-1984 Flights Data from the 1982 NASA Langley Airborne Lidar flights following the eruption of El Chichon ... continuing to January 1984. Transcribed from the following NASA Tech Reports: McCormick, M. P., and M. T. Osborn, Airborne lidar ...

  11. A Concept for Airborne Precision Spacing for Dependent Parallel Approaches

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Baxley, Brian T.; Abbott, Terence S.; Capron, William R.; Smith, Colin L.; Shay, Richard F.; Hubbs, Clay

    2012-01-01

    The Airborne Precision Spacing concept of operations has been previously developed to support the precise delivery of aircraft landing successively on the same runway. The high-precision and consistent delivery of inter-aircraft spacing allows for increased runway throughput and the use of energy-efficient arrivals routes such as Continuous Descent Arrivals and Optimized Profile Descents. This paper describes an extension to the Airborne Precision Spacing concept to enable dependent parallel approach operations where the spacing aircraft must manage their in-trail spacing from a leading aircraft on approach to the same runway and spacing from an aircraft on approach to a parallel runway. Functionality for supporting automation is discussed as well as procedures for pilots and controllers. An analysis is performed to identify the required information and a new ADS-B report is proposed to support these information needs. Finally, several scenarios are described in detail.

  12. Laboratory and field portable system for calibrating airborne multispectral scanners

    SciTech Connect

    Kuhlow, W.W.

    1981-01-01

    Manufacturers of airborne multispectral scanners suggest procedures for calibration and alignment that are usually awkward and even questionable. For example, the procedures may require: separating the scanner from calibration and alignment sources by 100 feet or more, employing folding mirrors, tampering with the detectors after the procedures are finished, etc. Under the best of conditions such procedures require about three hours yielding questionable confidence in the results; under many conditions, however, procedures commonly take six to eight hours, yielding no satisfactory results. EG and G, Inc. has designed and built a calibration and alignment system for airborne scanners which solves those problems, permitting the procedures to be carried out in about two to three hours. This equipment can be quickly disassembled, transported with the scanner in all but the smallest single engine aircraft, and reassembled in a few hours. The subsystems of this equipment are commonly available from manufacturers of optical and electronic equipment. The other components are easily purchased, or fabricated. The scanner discussed is the Model DS-1260 digital line scanner manufactured by Daedalus Enterprises, Inc. It is a dual-sensor system which is operated in one of two combination of sensors: one spectrometer head (which provides simultaneous coverage in ten visible channels) and one thermal infrared detector, or simply two thermal infrared detectors.

  13. Data System for HS3 Airborne Field Campaign

    NASA Astrophysics Data System (ADS)

    Maskey, M.; Mceniry, M.; Berendes, T.; Bugbee, K.; Conover, H.; Ramachandran, R.

    2014-12-01

    Hurricane and Severe Storm Sentinel (HS3) is a NASA airborne field campaign aimed at better understanding the physical processes that control hurricane intensity change. HS3 will help answer questions related to the roles of environmental conditions and internal storm structures to storm intensification. Due to the nature of the questions that HS3 mission is addressing, it involves a variety of in-situ, satellite observations, airborne data, meteorological analyses, and simulation data. This variety of datasets presents numerous data management challenges for HS3. The methods used for airborne data management differ greatly from the methods used for space-borne data. In particular, metadata extraction, spatial and temporal indexing, and the large number of instruments and subsequent variables are a few of the data management challenges unique to airborne missions. A robust data system is required to successfully help HS3 scientist achieve their mission goals. Furthermore, the data system also needs to provide for data management that assists in broader use of HS3 data to enable future research activities. The Global Hydrology Resource Center (GHRC) is considering all these needs and designing a data system for HS3. Experience with past airborne field campaign puts GHRC in a good position to address HS3 needs. However, the scale of this mission along with science requirements separates HS3 from previous field campaigns. The HS3 data system will include automated services for geo-location, metadata extraction, discovery, and distribution for all HS3 data. To answer the science questions, the data system will include a visual data exploration tool that is fully integrated into the data catalog. The tool will allow visually augmenting airborne data with analyses and simulations. Satellite data will provide contextual information during such data explorations. All HS3 tools will be supported by an enterprise service architecture that will allow scaling, easy integration

  14. Airborne Imagery Collections Barrow 2013

    DOE Data Explorer

    Cherry, Jessica; Crowder, Kerri

    2015-07-20

    The data here are orthomosaics, digital surface models (DSMs), and individual frames captured during low altitude airborne flights in 2013 at the Barrow Environmental Observatory. The orthomosaics, thermal IR mosaics, and DSMs were generated from the individual frames using Structure from Motion techniques.

  15. Airborne fungi--a resurvey

    SciTech Connect

    Meyer, G.H.; Prince, H.E.; Raymer, W.J.

    1983-07-01

    A 15-month survey of airborne fungi at 14 geographical stations was conducted to determine the incidence of different fungal genera. Five of these stations were surveyed 25 years earlier. A comparison between previous studies and present surveys revealed similar organisms at each station with slight shifts in frequency of dominant genera.

  16. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  17. Airborne chemicals and forest health

    SciTech Connect

    Woodman, J.N.; Cowling, E.B.

    1987-02-01

    Over the past few years the possible contribution of acid rain to the problem of forest decline has been a cause of increasing public concern. Research has begun to determine whether airborne chemicals are causing or contributing to visible damage and mortality in eastern spruce-fir and sugar maple forests and to changes in tree growth, usually without visible symptoms, in other parts of North America. This paper describes some of the complex biological relationships that determine health and productivity of forests and that make it difficult to distinguish effects of airborne chemicals from effects of natural stress. It describes four major research approaches for assessment of the effects of airborne chemicals on forests, and it summarizes current understanding of the known and possible effects of airborne chemicals on forest trees in North America and Europe. It also briefly describes the major air quality and forest health research programs in North America, and it assesses how ell these programs are likely to meet information needs during the coming decade. 69 references, 2 figures, 1 table.

  18. Airborne asbestos in public buildings

    SciTech Connect

    Chesson, J.; Hatfield, J.; Schultz, B.; Dutrow, E.; Blake, J. )

    1990-02-01

    The U.S. Environmental Protection Agency sampled air in 49 government-owned buildings (six buildings with no asbestos-containing material, six buildings with asbestos-containing material in generally good condition, and 37 buildings with damaged asbestos-containing material). This is the most comprehensive study to date of airborne asbestos levels in U.S. public buildings during normal building activities. The air outside each building was also sampled. Air samples were analyzed by transmission electron microscopy using a direct transfer preparation technique. The results show an increasing trend in average airborne asbestos levels; outdoor levels are lowest and levels in buildings with damaged asbestos-containing material are highest. However, the measured levels and the differences between indoors and outdoors and between building categories are small in absolute magnitude. Comparable studies from Canada and the UK, although differing in their estimated concentrations, also conclude that while airborne asbestos levels may be elevated in buildings that contain asbestos, levels are generally low. This conclusion does not eliminate the possibility of higher airborne asbestos levels during maintenance or renovation that disturbs the asbestos-containing material.

  19. Modular airborne remote sampling and sensing system (MARSSS)

    SciTech Connect

    Woods, R.O.

    1982-04-01

    Sandia is developing a modular airborne instrumentation system for the Environmental Protection Agency. This system will allow flexibility in the choice of instruments by standardizing mountings, power supplies and sampling modes. The objective is to make it possible to perform aerial surveys from chartered aircraft that have not been adapted in a more than superficial manner. It will also allow the experimenter to tailor his choice of instruments to the specific problem. Since the equipment will have a stand-alone capability, it can be applied to other problems such as long-term unattended use at remote locations or in toxic or otherwise hazardous environments.

  20. [Airborne Fungal Aerosol Concentration and Distribution Characteristics in Air- Conditioned Wards].

    PubMed

    Zhang, Hua-ling; Feng, He-hua; Fang, Zi-liang; Wang, Ben-dong; Li, Dan

    2015-04-01

    The effects of airborne fungus on human health in the hospital environment are related to not only their genera and concentrations, but also their particle sizes and distribution characteristics. Moreover, the mechanisms of aerosols with different particle sizes on human health are different. Fungal samples were obtained in medicine wards of Chongqing using a six-stage sampler. The airborne fungal concentrations, genera and size distributions of all the sampling wards were investigated and identified in detail. Results showed that airborne fungal concentrations were not correlated to the diseases or personnel density, but were related to seasons, temperature, and relative humidity. The size distribution rule had roughly the same for testing wards in winter and summer. The size distributions were not related with diseases and seasons, the percentage of airborne fungal concentrations increased gradually from stage I to stage III, and then decreased dramatically from stage V to stage VI, in general, the size of airborne fungi was a normal distribution. There was no markedly difference for median diameter of airborne fungi which was less 3.19 μm in these wards. There were similar dominant genera in all wards. They were Aspergillus spp, Penicillium spp and Alternaria spp. Therefore, attention should be paid to improve the filtration efficiency of particle size of 1.1-4.7 μm for air conditioning system of wards. It also should be targeted to choose appropriate antibacterial methods and equipment for daily hygiene and air conditioning system operation management.

  1. EUFAR the unique portal for airborne research in Europe

    NASA Astrophysics Data System (ADS)

    Gérard, Elisabeth; Brown, Philip

    2016-04-01

    Created in 2000 and supported by the EU Framework Programmes since then, EUFAR was born out of the necessity to create a central network and access point for the airborne research community in Europe. With the aim to support researchers by granting them access to research infrastructures, not accessible in their home countries, EUFAR also provides technical support and training in the field of airborne research for the environmental and geo-sciences. Today, EUFAR2 (2014-2018) coordinates and facilitates transnational access to 18 instrumented aircraft and 3 remote-sensing instruments through the 13 operators who are part of EUFAR's current 24-partner European consortium. In addition, the current project supports networking and research activities focused on providing an enabling environment for and promoting airborne research. The EUFAR2 activities cover three objectives, supported by the internet website www.eufar.net: (I - Institutional) improvement of the access to the research infrastructures and development of the future fleet according to the strategic advisory committee (SAC) recommendations; (ii - Innovation) improvement of the scientific knowledge and promotion of innovating instruments, processes and services for the emergence of new industrial technologies, with an identification of industrial needs by the SAC; (iii - Service) optimisation and harmonisation of the use of the research infrastructures through the development of the community of young researches in airborne science, of the standards and protocols and of the airborne central database. With the launch of a brand new website (www.eufar.net) in mid-November 2015, EUFAR aims to improve user experience on the website, which serves as a source of information and a hub where users are able to collaborate, learn, share expertise and best practices, and apply for transnational access, and education and training funded opportunities within the network. With its newly designed eye-catching interface

  2. Airborne Tactical Intent-Based Conflict Resolution Capability

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Vivona, Robert A.; Roscoe, David A.

    2009-01-01

    Trajectory-based operations with self-separation involve the aircraft taking the primary role in the management of its own trajectory in the presence of other traffic. In this role, the flight crew assumes the responsibility for ensuring that the aircraft remains separated from all other aircraft by at least a minimum separation standard. These operations are enabled by cooperative airborne surveillance and by airborne automation systems that provide essential monitoring and decision support functions for the flight crew. An airborne automation system developed and used by NASA for research investigations of required functionality is the Autonomous Operations Planner. It supports the flight crew in managing their trajectory when responsible for self-separation by providing monitoring and decision support functions for both strategic and tactical flight modes. The paper focuses on the latter of these modes by describing a capability for tactical intent-based conflict resolution and its role in a comprehensive suite of automation functions supporting trajectory-based operations with self-separation.

  3. Fourth Airborne Geoscience Workshop: Summary Minutes

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The general theme for the workshop revolved around global environmental change. Over 170 individuals participated in the presentations and ensuing discussions about the many agency activities using airborne platforms and sensors in support of the U.S. Global Change Research Program (GCRP). The U.S. GCRP was developed as a central component of the U.S. Government's approach to global change and its contribution to worldwide efforts. An all-encompassing U.S. plan was developed by the Committee on Earth and Environmental Sciences (CEES), which continues as the interagency coordinating group for the program. The U.S. GCRP was established as a Presidential initiative in the FY90 budget, making it a particularly relevant topic for the workshop. The following are presented in the appendices: (1) final agenda and list of registrants; (2) final list of poster presenters; (3) steering group luncheon participants; (4) the draft resolution; and (5) selected handouts.

  4. CNR LARA project, Italy: Airborne laboratory for environmental research

    NASA Technical Reports Server (NTRS)

    Bianchi, R.; Cavalli, R. M.; Fiumi, L.; Marino, C. M.; Pignatti, S.

    1995-01-01

    The increasing interest for the environmental problems and the study of the impact on the environment due to antropic activity produced an enhancement of remote sensing applications. The Italian National Research Council (CNR) established a new laboratory for airborne hyperspectral imaging, the LARA Project (Laboratorio Aero per Ricerche Ambientali - Airborne Laboratory for Environmental Research), equipping its airborne laboratory, a CASA-212, mainly with the Daedalus AA5000 MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) instrument. MIVIS's channels, spectral bandwidths, and locations are chosen to meet the needs of scientific research for advanced applications of remote sensing data. MIVIS can make significant contributions to solving problems in many diverse areas such as geologic exploration, land use studies, mineralogy, agricultural crop studies, energy loss analysis, pollution assessment, volcanology, forest fire management and others. The broad spectral range and the many discrete narrow channels of MIVIS provide a fine quantization of spectral information that permits accurate definition of absorption features from a variety of materials, allowing the extraction of chemical and physical information of our environment. The availability of such a hyperspectral imager, that will operate mainly in the Mediterranean area, at the present represents a unique opportunity for those who are involved in environmental studies and land-management to collect systematically large-scale and high spectral-spatial resolution data of this part of the world. Nevertheless, MIVIS deployments will touch other parts of the world, where a major interest from the international scientific community is present.

  5. High Resolution Airborne Digital Imagery for Precision Agriculture

    NASA Technical Reports Server (NTRS)

    Herwitz, Stanley R.

    1998-01-01

    The Environmental Research Aircraft and Sensor Technology (ERAST) program is a NASA initiative that seeks to demonstrate the application of cost-effective aircraft and sensor technology to private commercial ventures. In 1997-98, a series of flight-demonstrations and image acquisition efforts were conducted over the Hawaiian Islands using a remotely-piloted solar- powered platform (Pathfinder) and a fixed-wing piloted aircraft (Navajo) equipped with a Kodak DCS450 CIR (color infrared) digital camera. As an ERAST Science Team Member, I defined a set of flight lines over the largest coffee plantation in Hawaii: the Kauai Coffee Company's 4,000 acre Koloa Estate. Past studies have demonstrated the applications of airborne digital imaging to agricultural management. Few studies have examined the usefulness of high resolution airborne multispectral imagery with 10 cm pixel sizes. The Kodak digital camera integrated with ERAST's Airborne Real Time Imaging System (ARTIS) which generated multiband CCD images consisting of 6 x 106 pixel elements. At the designated flight altitude of 1,000 feet over the coffee plantation, pixel size was 10 cm. The study involved the analysis of imagery acquired on 5 March 1998 for the detection of anomalous reflectance values and for the definition of spectral signatures as indicators of tree vigor and treatment effectiveness (e.g., drip irrigation; fertilizer application).

  6. Study of cloud properties using airborne and satellite measurements

    NASA Astrophysics Data System (ADS)

    Boscornea, Andreea; Stefan, Sabina; Vajaiac, Sorin Nicolae

    2014-08-01

    The present study investigates cloud microphysics properties using aircraft and satellite measurements. Cloud properties were drawn from data acquired both from in situ measurements with state of the art airborne instrumentation and from satellite products of the MODIS06 System. The used aircraft was ATMOSLAB - Airborne Laboratory for Environmental Atmospheric Research, property of the National Institute for Aerospace Research "Elie Carafoli" (INCAS), Bucharest, Romania, which is specially equipped for this kind of research. The main tool of the airborne laboratory is a Cloud, Aerosol and Precipitation Spectrometer - CAPS (30 bins, 0.51- 50 μm). The data was recorded during two flights during the winter 2013-2014, over a flat region in the south-eastern part of Romania (between Bucharest and Constanta). The analysis of cloud particle size variations and cloud liquid water content provided by CAPS can explain cloud processes, and can also indicate the extent of aerosols effects on clouds. The results, such as cloud coverage and/or cloud types, microphysical parameters of aerosols on the one side and the cloud microphysics parameters obtained from aircraft flights on the other side, was used to illustrate the importance of microphysics cloud properties for including the radiative effects of clouds in the regional climate models.

  7. Design, development, and fabrication of extravehicular activity tools for support of the transfer orbit stage

    NASA Technical Reports Server (NTRS)

    Albritton, L. M.; Redmon, J. W.; Tyler, T. R.

    1993-01-01

    Seven extravehicular activity (EVA) tools and a tool carrier have been designed and developed by MSFC in order to provide a two fault tolerant system for the transfer orbit stage (TOS) shuttle mission. The TOS is an upper stage booster for delivering payloads to orbits higher than the shuttle can achieve. Payloads are required not to endanger the shuttle even after two failures have occurred. The Airborne Support Equipment (ASE), used in restraining and deploying TOS, does not meet this criteria. The seven EVA tools designed will provide the required redundancy with no impact to the TOS hardware.

  8. Airborne Wind Shear Detection and Warning Systems. Second Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Spady, Amos A., Jr. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1990-01-01

    The Second Combined Manufacturers' and Technologists' Conference hosted jointly by NASA Langley (LaRC) and the Federal Aviation Administration (FAA) was held in Williamsburg, Virginia, on October 18 to 20, 1988. The purpose of the meeting was to transfer significant, ongoing results gained during the second year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.

  9. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1991-01-01

    The Third Combined Manufacturers' and Technologists' Conference was held in Hampton, Va., on October 16-18, 1990. The purpose of the meeting was to transfer significant on-going results of the NASA/FAA joint Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.

  10. Airborne Wind Shear Detection and Warning Systems: Fourth Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Passman, Robert H. (Compiler)

    1992-01-01

    The purpose of the meeting was to transfer significant ongoing results of the NASA/FAA joint Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements. The present document was compiled to record the essence of the technology updates and discussions which follow each.

  11. Effect of an electrostatic space charge system on airborne dust and subsequent potential transmission of microorganisms to broiler breeder pullets by airborne dust.

    PubMed

    Richardson, L J; Mitchell, B W; Wilson, J L; Hofacre, C L

    2003-01-01

    High levels of dust and microorganisms are known to be associated with animal confinement rearing facilities. Many of the microorganisms are carried by dust particles, thus providing an excellent vector for horizontal disease transmission between birds. Two environmentally controlled rooms containing female broiler breeder pullets (n = 300) were used to evaluate the effectiveness of an electrostatic space charge system (ESCS) in reducing airborne dust and gram-negative bacteria levels over an 8-wk period (starting when the birds were 10 wk old). The ESCS was used to evaluate the effectiveness of reducing airborne microorganism levels by charging airborne dust particles and causing the particles to be attracted to grounded surfaces (i.e., walls, floor, equipment). The use of the ESCS resulted in a 64% mean reduction in gram-negative bacteria. Airborne dust levels were reduced an average of 37% over a 1-wk period in the experimental room compared with the control room on the basis of samples taken every 10 min. The reductions of airborne dust and bacteria in this study are comparable with earlier results obtained with the ESCS in commercial hatching cabinets and experimental caged layer rooms, suggesting the system could also be applied to other types of enclosed animal housing. PMID:12713167

  12. Towards a Multi-Mission, Airborne Science Data System Environment

    NASA Astrophysics Data System (ADS)

    Crichton, D. J.; Hardman, S.; Law, E.; Freeborn, D.; Kay-Im, E.; Lau, G.; Oswald, J.

    2011-12-01

    NASA earth science instruments are increasingly relying on airborne missions. However, traditionally, there has been limited common infrastructure support available to principal investigators in the area of science data systems. As a result, each investigator has been required to develop their own computing infrastructures for the science data system. Typically there is little software reuse and many projects lack sufficient resources to provide a robust infrastructure to capture, process, distribute and archive the observations acquired from airborne flights. At NASA's Jet Propulsion Laboratory (JPL), we have been developing a multi-mission data system infrastructure for airborne instruments called the Airborne Cloud Computing Environment (ACCE). ACCE encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation. This includes improving data system interoperability across each instrument. A principal characteristic is being able to provide an agile infrastructure that is architected to allow for a variety of configurations of the infrastructure from locally installed compute and storage services to provisioning those services via the "cloud" from cloud computer vendors such as Amazon.com. Investigators often have different needs that require a flexible configuration. The data system infrastructure is built on the Apache's Object Oriented Data Technology (OODT) suite of components which has been used for a number of spaceborne missions and provides a rich set of open source software components and services for constructing science processing and data management systems. In 2010, a partnership was formed between the ACCE team and the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to support the data processing and data management needs

  13. The alpine Swiss-French airborne gravity survey

    NASA Astrophysics Data System (ADS)

    Verdun, Jérôme; Klingelé, Emile E.; Bayer, Roger; Cocard, Marc; Geiger, Alain; Kahle, Hans-Gert

    2003-01-01

    In February 1998, a regional-scale, airborne gravity survey was carried out over the French Occidental Alps within the framework of the GéoFrance 3-D research program.The survey consisted of 18 NS and 16 EW oriented lines with a spacing of 10 and 20 km respectively, covering the whole of the Western French Alps (total area: 50 000 km2; total distance of lines flown: 10 000 km). The equipment was mounted in a medium-size aircraft (DeHavilland Twin Otter) flowing at a constant altitude of 5100 m a.s.l, and at a mean ground speed of about 280 km h-1. Gravity was measured using a LaCoste & Romberg relative, air/sea gravimeter (type SA) mounted on a laser gyro stabilized platform. Data from 5 GPS antennae located on fuselage and wings and 7 ground-based GPS reference stations were used to determine position and aircraft induced accelerations.The gravimeter passband was derived by comparing the vertical accelerations provided by the gravimeter with those estimated from the GPS positions. This comparison showed that the gravimeter is not sensitive to very short wavelength aircraft accelerations, and therefore a simplified formulation for computing airborne gravity measurements was developed. The intermediate and short wavelength, non-gravitational accelerations were eliminated by means of digital, exponential low-pass filters (cut-off wavelength: 16 km). An important issue in airborne gravimetry is the reliability of the airborne gravity surveys when compared to ground surveys. In our studied area, the differences between the airborne-acquired Bouguer anomaly and the ground upward-continued Bouguer anomaly of the Alps shows a good agreement: the rms of these differences is equal to 7.68 mGal for a spatial resolution of 8 km. However, in some areas with rugged topography, the amplitudes of those differences have a striking correlation with the topography. We then argue that the choice of an appropriate density (reduction by a factor of 10 per cent) for computing the

  14. Large aperture scanning airborne lidar

    NASA Technical Reports Server (NTRS)

    Smith, J.; Bindschadler, R.; Boers, R.; Bufton, J. L.; Clem, D.; Garvin, J.; Melfi, S. H.

    1988-01-01

    A large aperture scanning airborne lidar facility is being developed to provide important new capabilities for airborne lidar sensor systems. The proposed scanning mechanism allows for a large aperture telescope (25 in. diameter) in front of an elliptical flat (25 x 36 in.) turning mirror positioned at a 45 degree angle with respect to the telescope optical axis. The lidar scanning capability will provide opportunities for acquiring new data sets for atmospheric, earth resources, and oceans communities. This completed facility will also make available the opportunity to acquire simulated EOS lidar data on a near global basis. The design and construction of this unique scanning mechanism presents exciting technological challenges of maintaining the turning mirror optical flatness during scanning while exposed to extreme temperatures, ambient pressures, aircraft vibrations, etc.

  15. Airborne chemistry: acoustic levitation in chemical analysis.

    PubMed

    Santesson, Sabina; Nilsson, Staffan

    2004-04-01

    This review with 60 references describes a unique path to miniaturisation, that is, the use of acoustic levitation in analytical and bioanalytical chemistry applications. Levitation of small volumes of sample by means of a levitation technique can be used as a way to avoid solid walls around the sample, thus circumventing the main problem of miniaturisation, the unfavourable surface-to-volume ratio. Different techniques for sample levitation have been developed and improved. Of the levitation techniques described, acoustic or ultrasonic levitation fulfils all requirements for analytical chemistry applications. This technique has previously been used to study properties of molten materials and the equilibrium shape()and stability of liquid drops. Temperature and mass transfer in levitated drops have also been described, as have crystallisation and microgravity applications. The airborne analytical system described here is equipped with different and exchangeable remote detection systems. The levitated drops are normally in the 100 nL-2 microL volume range and additions to the levitated drop can be made in the pL-volume range. The use of levitated drops in analytical and bioanalytical chemistry offers several benefits. Several remote detection systems are compatible with acoustic levitation, including fluorescence imaging detection, right angle light scattering, Raman spectroscopy, and X-ray diffraction. Applications include liquid/liquid extractions, solvent exchange, analyte enrichment, single-cell analysis, cell-cell communication studies, precipitation screening of proteins to establish nucleation conditions, and crystallisation of proteins and pharmaceuticals. PMID:14762640

  16. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Overview

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.; Moninger, William R.; Mamrosh, Richard D.

    2008-01-01

    This paper is an overview of the Tropospheric Airborne Meteorological Data Reporting (TAMDAR) project, giving some history on the project, various applications of the atmospheric data, and future ideas and plans. As part of NASA's Aviation Safety and Security Program, the TAMDAR project developed a small low-cost sensor that collects useful meteorological data and makes them available in near real time to improve weather forecasts. This activity has been a joint effort with FAA, NOAA, universities, and industry. A tri-agency team collaborated by developing a concept of operations, determining the sensor specifications, and evaluating sensor performance as reported by Moosakhanian et. al. (2006). Under contract with Georgia Tech Research Institute, NASA worked with AirDat of Raleigh, NC to develop the sensor. The sensor is capable of measuring temperature, relative humidity, pressure, and icing. It can compute pressure altitude, indicated and true air speed, ice accretion rate, wind speed and direction, peak and average turbulence, and eddy dissipation rate. The overall development process, sensor capabilities, and performance based on ground and flight tests is reported by Daniels (2002), Daniels et. al. (2004) and by Tsoucalas et. al. (2006). An in-service evaluation of the sensor was performed called the Great Lakes Fleet Experiment (GLFE), first reported by Moninger et. al. (2004) and Mamrosh et. al. (2005). In this experiment, a Mesaba Airlines fleet was equipped to collect meteorological data over the Great Lakes region during normal revenue-producing flights.

  17. An un-obscured four spherical mirrors based" collimator as a tradeoff solution for the Optical Ground Support Equipment (OGSE) of the High Resolution Camera (HRIC) of Simbio-Sys

    NASA Astrophysics Data System (ADS)

    Barilli, M.; Bartoli, A.; Dami, M.; Flamini, E.; Formaro, R.; Grifoni, F.; Longo, F.; Pompei, C.

    2012-09-01

    The authors present the tradeoff and the merit criteria that lead to the selection of the M. Brunn [1] "un obscured four mirrors based telescope" as the collimator of the Optical Ground Support Equipment in the frame of the Assembly Integration and Verification (AIV) activities forecast for the optical characterization of the High Resolution Camera (HRIC) on board of the Simbio-sys mission to Mercury, instrument currently under development and manufacturing at Selex Galileo (SG) facilities in its Florence site. Several optical configurations have been accounted for the design and manufacturing of the three meters focal length, diffraction limited and wide field of view (0.4X0.6 degs) toolkit. From the classical un obscured systems such as the aspheric solution based onto two hyperbolic mirror, working under an f - number of 13.6, the Brunn solution revealed excellent optical quality free from coma, astigmatism and spherical aberration accomplished by an ultra compact design in within a volume of 1.2x1.0 x0.5 cubic meters and other basic advantages such as the relative easy way in aligning and manufacturing the mirrors.

  18. A Comparison between Airborne and Mountaintop Cloud Microphysics

    NASA Astrophysics Data System (ADS)

    David, R.; Lowenthal, D. H.; Hallar, A. G.; McCubbin, I.; Avallone, L. M.; Mace, G. G.; Wang, Z.

    2014-12-01

    Complex terrain has a large impact on cloud dynamics and microphysics. Several studies have examined the microphysical details of orographically-enhanced clouds from either an aircraft or from a mountain top location. However, further research is needed to characterize the relationships between mountain top and airborne microphysical properties. During the winter of 2011, an airborne study, the Colorado Airborne Mixed-Phase Cloud Study (CAMPS), and a ground-based field campaign, the Storm Peak Lab (SPL) Cloud Property Validation Experiment (StormVEx) were conducted in the Park Range of the Colorado Rockies. The CAMPS study utilized the University of Wyoming King Air (UWKA) to provide airborne cloud microphysical and meteorological data on 29 flights totaling 98 flight hours over the Park Range from December 15, 2010 to February 28, 2011. The UWKA was equipped with instruments that measured both cloud droplet and ice crystal size distributions, liquid water content, total water content (vapor, liquid, and ice), and 3-dimensional wind speed and direction. The Wyoming Cloud Radar and Lidar were also deployed during the campaign. These measurements are used to characterize cloud structure upwind and above the Park Range. StormVEx measured cloud droplet, ice crystal, and aerosol size distributions at SPL, located on the west summit of Mt. Werner at 3220m MSL. The observations from SPL are used to determine mountain top cloud microphysical properties at elevations lower than the UWKA was able to sample in-situ. Comparisons showed that cloud microphysics aloft and at the surface were consistent with respect to snow growth processes while small crystal concentrations were routinely higher at the surface, suggesting ice nucleation near cloud base. The effects of aerosol concentrations and upwind stability on mountain top and downwind microphysics are considered.

  19. Detecting Airborne Mercury by Use of Palladium Chloride

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret; Shevade, Abhijit; Kisor, Adam; Homer, Margie; Jewell, April; Manatt, Kenneth; Torres, Julia; Soler, Jessica; Taylor, Charles

    2009-01-01

    Palladium chloride films have been found to be useful as alternatives to the gold films heretofore used to detect airborne elemental mercury at concentrations of the order of parts per billion (ppb). Somewhat more specifically, when suitably prepared palladium chloride films are exposed to parts-per-billion or larger concentrations of airborne mercury, their electrical resistances change by amounts large enough to be easily measurable. Because airborne mercury adversely affects health, it is desirable to be able to detect it with high sensitivity, especially in enclosed environments in which there is a risk of leakage of mercury from lamps or other equipment. The detection of mercury by use of gold films involves the formation of gold/mercury amalgam. Gold films offer adequate sensitivity for detection of airborne mercury and could easily be integrated into an electronic-nose system designed to operate in the temperature range of 23 to 28 C. Unfortunately, in order to regenerate a gold-film mercury sensor, one must heat it to a temperature of 200 C for several minutes in clean flowing air. In preparation for an experiment to demonstrate the present sensor concept, palladium chloride was deposited from an aqueous solution onto sets of gold electrodes and sintered in air to form a film. Then while using the gold electrodes to measure the electrical resistance of the films, the films were exposed, at a temperature of 25 C, to humidified air containing mercury at various concentrations from 0 to 35 ppb (see figure). The results of this and other experiments have been interpreted as signifying that sensors of this type can detect mercury in room-temperature air at concentrations of at least 2.5 ppb and can readily be regenerated at temperatures <40 C.

  20. Plutonium Immobilization Can Loading Equipment Review

    SciTech Connect

    Kriikku, E.; Ward, C.; Stokes, M.; Randall, B.; Steed, J.; Jones, R.; Hamilton, L.

    1998-05-01

    This report lists the operations required to complete the Can Loading steps on the Pu Immobilization Plant Flow Sheets and evaluates the equipment options to complete each operation. This report recommends the most appropriate equipment to support Plutonium Immobilization Can Loading operations.

  1. Exposure Evaluation for Benzene, Lead and Noise in Vehicle and Equipment Repair Shops

    SciTech Connect

    Sweeney, Lynn C.

    2013-04-01

    An exposure assessment was performed at the equipment and vehicle maintenance repair shops operating at the U. S. Department of Energy Hanford site, in Richland, Washington. The maintenance shops repair and maintain vehicles and equipment used in support of the Hanford cleanup mission. There are three general mechanic shops and one auto body repair shop. The mechanics work on heavy equipment used in construction, cranes, commercial motor vehicles, passenger-type vehicles in addition to air compressors, generators, and farm equipment. Services include part fabrication, installation of equipment, repair and maintenance work in the engine compartment, and tire and brake services. Work performed at the auto body shop includes painting and surface preparation which involves applying body filler and sanding. 8-hour time-weighted-average samples were collected for benzene and noise exposure and task-based samples were collected for lead dust work activities involving painted metal surfaces. Benzene samples were obtained using 3M™ 3520 sampling badges and were analyzed for additional volatile organic compounds. These compounds were selected based on material safety data sheet information for the aerosol products used by the mechanics for each day of sampling. The compounds included acetone, ethyl ether, toluene, xylene, VM&P naphtha, methyl ethyl ketone, and trichloroethylene. Laboratory data for benzene, VM&P naphtha, methyl ethyl ketone and trichloroethylene were all below the reporting detection limit. Airborne concentrations for acetone, ethyl ether, toluene and xylene were all less than 10% of their occupational exposure limit. The task-based samples obtained for lead dusts were submitted for a metal scan analysis to identify other metals that might be present. Laboratory results for lead dusts were all below the reporting detection limit and airborne concentration for the other metals observed in the samples were less than 10% of the occupational exposure limit

  2. Airborne particulate matter in spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  3. NASA Student Airborne Research Program

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.; Shetter, R. E.

    2012-12-01

    The NASA Student Airborne Research Program (SARP) is a unique summer internship program for advanced undergraduates and early graduate students majoring in the STEM disciplines. SARP participants acquire hands-on research experience in all aspects of an airborne research campaign, including flying onboard an major NASA resource used for studying Earth system processes. In summer 2012, thirty-two participants worked in four interdisciplinary teams to study surface, atmospheric, and oceanographic processes. Participants assisted in the operation of instruments onboard the NASA P-3B aircraft where they sampled and measured atmospheric gases and imaged land and water surfaces in multiple spectral bands. Along with airborne data collection, students participated in taking measurements at field sites. Mission faculty and research mentors helped to guide participants through instrument operation, sample analysis, and data reduction. Over the eight-week program, each student developed an individual research project from the data collected and delivered a conference-style final presentation on his/her results. We will discuss the results and effectiveness of the program from the first four summers and discuss plans for the future.

  4. Overview and Initial Results from the DEEPWAVE Airborne and Ground-Based Measurement Program

    NASA Astrophysics Data System (ADS)

    Fritts, D. C.

    2015-12-01

    The deep-propagating gravity wave experiment (DEEPWAVE) was performed on and over New Zealand, the Tasman Sea, and the Southern Ocean with core airborne measurements extending from 5 June to 21 July 2014 and supporting ground-based measurements spanning a longer interval. The NSF/NCAR GV employed standard flight-level measurements and new airborne lidar and imaging measurements of gravity waves (GWs) from sources at lower altitudes throughout the stratosphere and into the mesosphere and lower thermosphere (MLT). The new GV lidars included a Rayleigh lidar measuring atmospheric density and temperature from ~20-60 km and a sodium resonance lidar measuring sodium density and temperature at ~75-105 km. An airborne Advanced Mesosphere Temperature Mapper (AMTM) and two IR "wing" cameras imaged the OH airglow temperature and/or intensity fields extending ~900 km across the GV flight track. The DLR Falcon was equipped with its standard flight-level instruments and an aerosol Doppler lidar measuring radial winds below the Falcon. DEEPWAVE also included extensive ground-based measurements in New Zealand, Tasmania, and Southern Ocean Islands. DEEPWAVE performed 26 GV flights and 13 Falcon flights, and ground-based measurements occurred whether or not the aircraft were flying. Collectively, many diverse cases of GW forcing, propagation, refraction, and dissipation spanning altitudes of 0-100 km were observed. Examples include strong mountain wave (MW) forcing and breaking in the lower and middle stratosphere, weak MW forcing yielding MW penetration into the MLT having very large amplitudes and momentum fluxes, MW scales at higher altitudes ranging from ~10-250 km, large-scale trailing waves from orography refracting into the polar vortex and extending to high altitudes, GW generation by deep convection, large-scale GWs arising from jet stream sources, and strong MWs in the MLT arising from strong surface flow over a small island. DEEPWAVE yielded a number of surprises, among

  5. Decoupling criteria for multi-connected equipment

    SciTech Connect

    Reddy, G.R.; Kushwaha, H.S.; Mahajan, S.C.; Suzuki, Kohei

    1996-12-01

    Nuclear Power Plant structures generally support equipment, piping systems, computing/controlling systems etc. These equipment and structures may interact with each other during an earthquake. This results in variation in the uncoupled response wherein uncoupled response is calculated for equipment and structure separately. The best way of accounting for interaction effects of structure and equipment is by coupling together and analyzing for a given earthquake load. However, it may not be practicable to couple all the equipment to the structure because of three main reasons. These are: firstly, at the initial design stage of power plant structure all the details of equipment may not be available, secondly, coupling all the equipment may lead to numerical problems in computation because of large difference in stiffness and thirdly, the cost of computation may become very high and time consuming because by coupling all the equipment, size (e.g. number of numerical equations) of the problem becomes very large. In this paper the authors endeavor to present a decoupling model for multi-connected structure-equipment. The applicability of the model will be demonstrated with practical problems like reactor building and equipment. Here onwards equipment is referred as Secondary System (S.S) and structure of Primary System (P.S).

  6. Evaluation of airborne topographic lidar for quantifying beach changes

    USGS Publications Warehouse

    Sallenger, A.H.; Krabill, W.B.; Swift, R.N.; Brock, J.; List, J.; Hansen, M.; Holman, R.A.; Manizade, S.; Sontag, J.; Meredith, A.; Morgan, K.; Yunkel, J.K.; Frederick, E.B.; Stockdon, H.

    2003-01-01

    A scanning airborne topographic lidar was evaluated for its ability to quantify beach topography and changes during the Sandy Duck experiment in 1997 along the North Carolina coast. Elevation estimates, acquired with NASA's Airborne Topographic Mapper (ATM), were compared to elevations measured with three types of ground-based measurements - 1) differential GPS equipped all-terrain vehicle (ATV) that surveyed a 3-km reach of beach from the shoreline to the dune, 2) GPS antenna mounted on a stadia rod used to intensely survey a different 100 m reach of beach, and 3) a second GPS-equipped ATV that surveyed a 70-km-long transect along the coast. Over 40,000 individual intercomparisons between ATM and ground surveys were calculated. RMS vertical differences associated with the ATM when compared to ground measurements ranged from 13 to 19 cm. Considering all of the intercomparisons together, RMS ??? 15 cm. This RMS error represents a total error for individual elevation estimates including uncertainties associated with random and mean errors. The latter was the largest source of error and was attributed to drift in differential GPS. The ??? 15 cm vertical accuracy of the ATM is adequate to resolve beach-change signals typical of the impact of storms. For example, ATM surveys of Assateague Island (spanning the border of MD and VA) prior to and immediately following a severe northeaster showed vertical beach changes in places greater than 2 m, much greater than expected errors associated with the ATM. A major asset of airborne lidar is the high spatial data density. Measurements of elevation are acquired every few m2 over regional scales of hundreds of kilometers. Hence, many scales of beach morphology and change can be resolved, from beach cusps tens of meters in wavelength to entire coastal cells comprising tens to hundreds of kilometers of coast. Topographic lidars similar to the ATM are becoming increasingly available from commercial vendors and should, in the future

  7. Airborne Management of Traffic Conflicts in Descent With Arrival Constraints

    NASA Technical Reports Server (NTRS)

    Doble, Nathan A.; Barhydt, Richard; Krishnamurthy, Karthik

    2005-01-01

    NASA is studying far-term air traffic management concepts that may increase operational efficiency through a redistribution of decisionmaking authority among airborne and ground-based elements of the air transportation system. One component of this research, En Route Free Maneuvering, allows trained pilots of equipped autonomous aircraft to assume responsibility for traffic separation. Ground-based air traffic controllers would continue to separate traffic unequipped for autonomous operations and would issue flow management constraints to all aircraft. To evaluate En Route Free Maneuvering operations, a human-in-the-loop experiment was jointly conducted by the NASA Ames and Langley Research Centers. In this experiment, test subject pilots used desktop flight simulators to resolve conflicts in cruise and descent, and to adhere to air traffic flow constraints issued by test subject controllers. Simulators at NASA Langley were equipped with a prototype Autonomous Operations Planner (AOP) flight deck toolset to assist pilots with conflict management and constraint compliance tasks. Results from the experiment are presented, focusing specifically on operations during the initial descent into the terminal area. Airborne conflict resolution performance in descent, conformance to traffic flow management constraints, and the effects of conflicting traffic on constraint conformance are all presented. Subjective data from subject pilots are also presented, showing perceived levels of workload, safety, and acceptability of autonomous arrival operations. Finally, potential AOP functionality enhancements are discussed along with suggestions to improve arrival procedures.

  8. Personal protective equipment

    MedlinePlus

    ... protective equipment. Available at: www.cdc.gov/niosh/ppe . Accessed October 27, 2015. Holland MG, Cawthon D. Personal protective equipment and decontamination of adults and children. Emerg Med Clin N ...

  9. Medical Issues: Equipment

    MedlinePlus

    ... Pool Living With SMA Medical Issues Palliative Breathing Orthopedics Nutrition Equipment Daily Life At School At Home ... Diagnosed Living With SMA Medical Issues Palliative Breathing Orthopedics Nutrition Equipment Daily Life Grief & Loss Community & Local ...

  10. Exercise Equipment: Neutral Buoyancy

    NASA Technical Reports Server (NTRS)

    Shackelford, Linda; Valle, Paul

    2016-01-01

    Load Bearing Equipment for Neutral Buoyancy (LBE-NB) is an exercise frame that holds two exercising subjects in position as they apply counter forces to each other for lower extremity and spine loading resistance exercises. Resistance exercise prevents bone loss on ISS, but the ISS equipment is too massive for use in exploration craft. Integrating the human into the load directing, load generating, and motion control functions of the exercise equipment generates safe exercise loads with less equipment mass and volume.

  11. Mobile Equipment Expands Inventory.

    ERIC Educational Resources Information Center

    McGough, Robert L.; And Others

    1978-01-01

    Describes the Mobile Equipment Modules (MEM) system in Duluth, Minnesota. MEM is a way to hold down costs and increase learning opportunities by consolidating purchases of expensive shop equipment within the school district, grouping the equipment in modules, and scheduling and moving it from school to school as needed. (MF)

  12. SOFIA'S Challenge: Scheduling Airborne Astronomy Observations

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy

    2005-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is NASA's next generation airborne astronomical observatory, and will commence operations in 2005. The facility consists of a 747-SP modified to accommodate a 2.5 meter telescope. SOFIA is expected to fly an average of 140 science flights per year over its 20 year lifetime. Depending on the nature of the instrument used during flight, 5-15 observations per flight are expected. The SOFIA telescope is mounted aft of the wings on the port side of the aircraft and is articulated through a range of 20deg to 60deg of elevation. The telescope has minimal lateral flexibility; thus, the aircraft must turn constantly to maintain the telescope's focus on an object during observations. A significant problem in future SOFIA operations is that of scheduling flights in support of observations. Investigators are expected to propose small numbers of observations, and many observations must be grouped together to make up single flights. Flight planning for the previous generation airborne observatory, the Kuiper Airborne Observatory (KAO), was done by hand; planners had to choose takeoff time, observations to perform, and decide on setup-actions (called "dead-legs") to position the aircraft prior to observing. This task frequently required between 6-8 hours to plan one flight The scope of the flight planning problem for supporting GI observations with the anticipated flight rate for SOFIA makes the manual approach for flight planning daunting. In response, we have designed an Automated Flight Planner (AFP) that accepts as input a set of requested observations, designated flight days, weather predictions and fuel limitations, and searches automatically for high-quality flight plans that satisfy all relevant aircraft and astronomer specified constraints. The AFP can generate one candidate flight plan in 5-10 minutes, of computation time, a feat beyond the capabilities of human flight planners. The rate at which the AFP can

  13. Preliminary Assessment of Operational Hazards and Safety Requirements for Airborne Trajectory Management (ABTM) Roadmap Applications

    NASA Technical Reports Server (NTRS)

    Cotton, William B.; Hilb, Robert; Koczo, Stefan, Jr.; Wing, David J.

    2016-01-01

    A set of five developmental steps building from the NASA TASAR (Traffic Aware Strategic Aircrew Requests) concept are described, each providing incrementally more efficiency and capacity benefits to airspace system users and service providers, culminating in a Full Airborne Trajectory Management capability. For each of these steps, the incremental Operational Hazards and Safety Requirements are identified for later use in future formal safety assessments intended to lead to certification and operational approval of the equipment and the associated procedures. Two established safety assessment methodologies that are compliant with the FAA's Safety Management System were used leading to Failure Effects Classifications (FEC) for each of the steps. The most likely FEC for the first three steps, Basic TASAR, Digital TASAR, and 4D TASAR, is "No effect". For step four, Strategic Airborne Trajectory Management, the likely FEC is "Minor". For Full Airborne Trajectory Management (Step 5), the most likely FEC is "Major".

  14. Identifying Airborne Pathogens in Time to Respond

    SciTech Connect

    Hazi, A

    2006-01-25

    Among the possible terrorist activities that might threaten national security is the release of an airborne pathogen such as anthrax. Because the potential damage to human health could be severe, experts consider 1 minute to be an operationally useful time limit for identifying the pathogen and taking action. Many commercial systems can identify airborne pathogenic microbes, but they take days or, at best, hours to produce results. The Department of Homeland Security (DHS) and other U.S. government agencies are interested in finding a faster approach. To answer this national need, a Livermore team, led by scientist Eric Gard, has developed the bioaerosol mass spectrometry (BAMS) system--the only instrument that can detect and identify spores at low concentrations in less than 1 minute. BAMS can successfully distinguish between two related but different spore species. It can also sort out a single spore from thousands of other particles--biological and nonbiological--with no false positives. The BAMS team won a 2005 R&D 100 Award for developing the system. Livermore's Laboratory Directed Research and Development (LDRD) Program funded the biomedical aspects of the BAMS project, and the Department of Defense's Technical Support Working Group and Defense Advanced Research Project Agency funded the biodefense efforts. Developing a detection system that can analyze small samples so quickly has been challenging. Livermore engineer Vincent Riot, who worked on the BAMS project, explains, ''A typical spore weighs approximately one-trillionth of a gram and is dispersed in the atmosphere, which contains naturally occurring particles that could be present at concentrations thousands of times higher. Previous systems also had difficulty separating benign organisms from those that are pathogenic but very similar, which has resulted in false alarms''.

  15. Potential of Airborne Imaging Spectroscopy at Czechglobe

    NASA Astrophysics Data System (ADS)

    Hanuš, J.; Fabiánek, T.; Fajmon, L.

    2016-06-01

    Ecosystems, their services, structures and functions are affected by complex environmental processes, which are both natural and human-induced and globally changing. In order to understand how ecosystems behave in globally changing environment, it is important to monitor the current status of ecosystems and their structural and functional changes in time and space. An essential tool allowing monitoring of ecosystems is remote sensing (RS). Many ecosystems variables are being translated into a spectral response recorded by RS instruments. It is however important to understand the complexity and synergies of the key ecosystem variables influencing the reflected signal. This can be achieved by analysing high resolution RS data from multiple sources acquired simultaneously from the same platform. Such a system has been recently built at CzechGlobe - Global Change Research Institute (The Czech Academy of Sciences). CzechGlobe has been significantly extending its research infrastructure in the last years, which allows advanced monitoring of ecosystem changes at hierarchical levels spanning from molecules to entire ecosystems. One of the CzechGlobe components is a laboratory of imaging spectroscopy. The laboratory is now operating a new platform for advanced remote sensing observations called FLIS (Flying Laboratory of Imaging Spectroscopy). FLIS consists of an airborne carrier equipped with passive RS systems. The core instrument of FLIS is a hyperspectral imaging system provided by Itres Ltd. The hyperspectral system consists of three spectroradiometers (CASI 1500, SASI 600 and TASI 600) that cover the reflective spectral range from 380 to 2450 nm, as well as the thermal range from 8 to 11.5 μm. The airborne platform is prepared for mounting of full-waveform laser scanner Riegl-Q780 as well, however a laser scanner is not a permanent part of FLIS. In 2014 the installation of the hyperspectral scanners was completed and the first flights were carried out with all

  16. Subsea equipment marriage is top ROV priority

    SciTech Connect

    Redden, J.

    1985-04-01

    Interfacing subsea equipment with remotely operated vehicles (ROV's) and the further development of arctic-class units are the primary challenges facing manufacturers. Worldwide use of the ROV for drilling support has exploded during this decade as oil companies continue their search in deeper waters. If the unmanned vehicles are to become an even more integral tool of the oilman, experts say they must be able to perform more complex tasks. The evolution of more multi-purpose ROVs, however, hinges on the redesigning of subsea equipment. The severe limitations on subsea support (by ROVs) is the obsolete design associated with the subsea equipment itself. These limitations are discussed.

  17. Renewal of radiological equipment.

    PubMed

    2014-10-01

    In this century, medical imaging is at the heart of medical practice. Besides providing fast and accurate diagnosis, advances in radiology equipment offer new and previously non-existing options for treatment guidance with quite low morbidity, resulting in the improvement of health outcomes and quality of life for the patients. Although rapid technological development created new medical imaging modalities and methods, the same progress speed resulted in accelerated technical and functional obsolescence of the same medical imaging equipment, consequently creating a need for renewal. Older equipment has a high risk of failures and breakdowns, which might cause delays in diagnosis and treatment of the patient, and safety problems both for the patient and the medical staff. The European Society of Radiology is promoting the use of up-to-date equipment, especially in the context of the EuroSafe Imaging Campaign, as the use of up-to-date equipment will improve quality and safety in medical imaging. Every healthcare institution or authority should have a plan for medical imaging equipment upgrade or renewal. This plan should look forward a minimum of 5 years, with annual updates. Teaching points • Radiological equipment has a definite life cycle span, resulting in unavoidable breakdown and decrease or loss of image quality which renders equipment useless after a certain time period.• Equipment older than 10 years is no longer state-of-the art equipment and replacement is essential. Operating costs of older equipment will be high when compared with new equipment, and sometimes maintenance will be impossible if no spare parts are available.• Older equipment has a high risk of failure and breakdown, causing delays in diagnosis and treatment of the patient and safety problems both for the patient and the medical staff.• Every healthcare institution or authority should have a plan for medical imaging equipment upgrade or replacement. This plan should look forward a

  18. Renewal of radiological equipment.

    PubMed

    2014-10-01

    In this century, medical imaging is at the heart of medical practice. Besides providing fast and accurate diagnosis, advances in radiology equipment offer new and previously non-existing options for treatment guidance with quite low morbidity, resulting in the improvement of health outcomes and quality of life for the patients. Although rapid technological development created new medical imaging modalities and methods, the same progress speed resulted in accelerated technical and functional obsolescence of the same medical imaging equipment, consequently creating a need for renewal. Older equipment has a high risk of failures and breakdowns, which might cause delays in diagnosis and treatment of the patient, and safety problems both for the patient and the medical staff. The European Society of Radiology is promoting the use of up-to-date equipment, especially in the context of the EuroSafe Imaging Campaign, as the use of up-to-date equipment will improve quality and safety in medical imaging. Every healthcare institution or authority should have a plan for medical imaging equipment upgrade or renewal. This plan should look forward a minimum of 5 years, with annual updates. Teaching points • Radiological equipment has a definite life cycle span, resulting in unavoidable breakdown and decrease or loss of image quality which renders equipment useless after a certain time period.• Equipment older than 10 years is no longer state-of-the art equipment and replacement is essential. Operating costs of older equipment will be high when compared with new equipment, and sometimes maintenance will be impossible if no spare parts are available.• Older equipment has a high risk of failure and breakdown, causing delays in diagnosis and treatment of the patient and safety problems both for the patient and the medical staff.• Every healthcare institution or authority should have a plan for medical imaging equipment upgrade or replacement. This plan should look forward a

  19. The NASA Airborne Science Data And Telemetry System (NASDAT)

    NASA Astrophysics Data System (ADS)

    Sorenson, C. E.; Forgione, J.; Barnes, C.

    2011-12-01

    A system providing a common core set of facility data services across the NASA Airborne Science Program research aircraft fleet is described. The NASA Airborne Science Data And Telemetry System (NASDAT) is a rugged avionics box that fits in a standard aeronautical radio rack mounting tray, and provides both aircraft and experimenter data interfaces. Ethernet, satcom, and legacy connections are supported. Standardized protocols allow this system to serve as an abstraction layer for interfacing any instrument to any aircraft. Built-in Iridium modems allow low rate baseline global data communications. Built on open standards and dynamically reconfigurable, the NASDAT enables any research platform to participate in the wider sensor web, such that remote experimenters can control their instruments, and display applications can receive near real time data. The production NASDAT was built this year, based in part on prototypes which have been flying on several research aircraft such as the NASA DC-8 and Global Hawk.

  20. A Simulation Testbed for Airborne Merging and Spacing

    NASA Technical Reports Server (NTRS)

    Santos, Michel; Manikonda, Vikram; Feinberg, Art; Lohr, Gary

    2008-01-01

    The key innovation in this effort is the development of a simulation testbed for airborne merging and spacing (AM&S). We focus on concepts related to airports with Super Dense Operations where new airport runway configurations (e.g. parallel runways), sequencing, merging, and spacing are some of the concepts considered. We focus on modeling and simulating a complementary airborne and ground system for AM&S to increase efficiency and capacity of these high density terminal areas. From a ground systems perspective, a scheduling decision support tool generates arrival sequences and spacing requirements that are fed to the AM&S system operating on the flight deck. We enhanced NASA's Airspace Concept Evaluation Systems (ACES) software to model and simulate AM&S concepts and algorithms.

  1. Airborne Precision Spacing (APS) Dependent Parallel Arrivals (DPA)

    NASA Technical Reports Server (NTRS)

    Smith, Colin L.

    2012-01-01

    The Airborne Precision Spacing (APS) team at the NASA Langley Research Center (LaRC) has been developing a concept of operations to extend the current APS concept to support dependent approaches to parallel or converging runways along with the required pilot and controller procedures and pilot interfaces. A staggered operations capability for the Airborne Spacing for Terminal Arrival Routes (ASTAR) tool was developed and designated as ASTAR10. ASTAR10 has reached a sufficient level of maturity to be validated and tested through a fast-time simulation. The purpose of the experiment was to identify and resolve any remaining issues in the ASTAR10 algorithm, as well as put the concept of operations through a practical test.

  2. Airborne Four-Dimensional Flight Management in a Time-based Air Traffic Control Environment

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Green, Steven M.

    1991-01-01

    Advanced Air Traffic Control (ATC) systems are being developed which contain time-based (4D) trajectory predictions of aircraft. Airborne flight management systems (FMS) exist or are being developed with similar 4D trajectory generation capabilities. Differences between the ATC generated profiles and those generated by the airborne 4D FMS may introduce system problems. A simulation experiment was conducted to explore integration of a 4D equipped aircraft into a 4D ATC system. The NASA Langley Transport Systems Research Vehicle cockpit simulator was linked in real time to the NASA Ames Descent Advisor ATC simulation for this effort. Candidate procedures for handling 4D equipped aircraft were devised and traffic scenarios established which required time delays absorbed through speed control alone or in combination with path stretching. Dissimilarities in 4D speed strategies between airborne and ATC generated trajectories were tested in these scenarios. The 4D procedures and FMS operation were well received by airline pilot test subjects, who achieved an arrival accuracy at the metering fix of 2.9 seconds standard deviation time error. The amount and nature of the information transmitted during a time clearance were found to be somewhat of a problem using the voice radio communication channel. Dissimilarities between airborne and ATC-generated speed strategies were found to be a problem when the traffic remained on established routes. It was more efficient for 4D equipped aircraft to fly trajectories with similar, though less fuel efficient, speeds which conform to the ATC strategy. Heavy traffic conditions, where time delays forced off-route path stretching, were found to produce a potential operational benefit of the airborne 4D FMS.

  3. Geophex airborne unmanned survey system

    SciTech Connect

    Won, I.J.; Taylor, D.W.A.

    1995-03-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This nonintrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits two operators to rapidly conduct geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance, of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak anomalies can be detected.

  4. Airborne wavemeter validation and calibration

    NASA Technical Reports Server (NTRS)

    Goad, Joseph H., Jr.; Rinsland, Pamela L.; Kist, Edward H., Jr.; Geier, Erika B.; Banziger, Curtis G.

    1992-01-01

    This manuscript outlines a continuing effort to validate and verify the performance of an airborne autonomous wavemeter for tuning solid state lasers to a desired wavelength. The application is measuring the vertical profiles of atmospheric water vapor using a differential absorption lidar (DIAL) technique. Improved wavemeter performance data for varying ambient temperatures are presented. This resulted when the electronic grounding and shielding were improved. The results with short pulse duration lasers are also included. These lasers show that similar performance could be obtained with lasers operating in the continuous and the pulsed domains.

  5. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.J.; Keiswetter, D.

    1995-10-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits rapid geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected.

  6. Airborne Research Experience for Educators

    NASA Astrophysics Data System (ADS)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data

  7. Cyberinfrastructure for Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.

    2009-01-01

    Since 2004 the NASA Airborne Science Program has been prototyping and using infrastructure that enables researchers to interact with each other and with their instruments via network communications. This infrastructure uses satellite links and an evolving suite of applications and services that leverage open-source software. The use of these tools has increased near-real-time situational awareness during field operations, resulting in productivity improvements and the collection of better data. This paper describes the high-level system architecture and major components, with example highlights from the use of the infrastructure. The paper concludes with a discussion of ongoing efforts to transition to operational status.

  8. Requirements for airborne vector gravimetry

    NASA Technical Reports Server (NTRS)

    Schwarz, K. P.; Colombo, O.; Hein, G.; Knickmeyer, E. T.

    1992-01-01

    The objective of airborne vector gravimetry is the determination of the full gravity disturbance vector along the aircraft trajectory. The paper briefly outlines the concept of this method using a combination of inertial and GPS-satellite data. The accuracy requirements for users in geodesy and solid earth geophysics, oceanography and exploration geophysics are then specified. Using these requirements, accuracy specifications for the GPS subsystem and the INS subsystem are developed. The integration of the subsystems and the problems connected with it are briefly discussed and operational methods are indicated that might reduce some of the stringent accuracy requirements.

  9. Biological monitoring of airborne pollution

    SciTech Connect

    Ditz, D.W. )

    1990-01-01

    Common plants such as grasses, mosses, and even goldenrod may turn out to have a new high-tech role as monitors of airborne pollution from solid waste incinerators. Certain plants that respond to specific pollutants can provide continuous surveillance of air quality over long periods of time: they are bio-indicators. Other species accumulate pollutants and can serve as sensitive indicators of pollutants and of food-chain contamination: they are bio-accumulators. Through creative use of these properties, biological monitoring can provide information that cannot be obtained by current methods such as stack testing.

  10. Toolsets for Airborne Data - URS and New Documentation

    Atmospheric Science Data Center

    2015-03-23

    ... airborne field missions, documentation, and EOSDIS User Registration System (URS) authentication. This web application features an intuitive user interface for variable selection across different airborne field studies and ...

  11. Use of Airborne Thermal Imagery to Detect and Monitor Inshore Oil Spill Residues During Darkness Hours.

    PubMed

    GRIERSON

    1998-11-01

    / Trials were conducted using an airborne video system operating in the visible, near-infrared, and thermal wavelengths to detect two known oil spill releases during darkness at a distance of 10 nautical miles from the shore in St. Vincent's Gulf, South Australia. The oil spills consisted of two 20-liter samples released at 2-h intervals, one sample consisted of paraffinic neutral material and the other of automotive diesel oil. A tracking buoy was sent overboard in conjunction with the release of sample 1, and its movement monitored by satellite relay. Both oil residues were overflown by a light aircraft equipped with thermal, visible, and infrared imagers at a period of approximately 1 h after the release of the second oil residue. Trajectories of the oil residue releases were also modeled and the results compared to those obtained by the airborne video and the tracking buoy. Airborne imagery in the thermal wavelengths successfully located and mapped both oil residue samples during nighttime conditions. Results from the trial suggest that the most advantageous technique would be the combined use of the tracking beacon to obtain an approximate location of the oil spill and the airborne imagery to ascertain its extent and characteristics.KEY WORDS: Airborne video; Thermal imagery; Global positioning; Oil-spill monitoring; Tracking beacon

  12. Effect of reactive oxygen species (ROS) generating system for control of airborne microorganisms in meat processing environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effectiveness of reactive oxygen species (ROS) generating AirOcare equipment on the reduction of airborne bacteria in a meat processing environment was determined. Serratia marcescens and lactic acid bacteria (Lactococcus lactis subsp. lactis and Lactobacillus plantarum) were used to artificiall...

  13. RTAP: A mobile real time analytical platform for assessment of airborne contaminants

    SciTech Connect

    Mehta, U.J.; Paul, D.G.

    1995-12-31

    The Real Time Analytical Platform (RTAP) provides mobile airborne exposure level assessments for the Monitoring Branch of the US Army Operations Directorate, Chemical Support Division. In order to ensure worker safety and the protection of the environment, a variety of military compounds must be monitored during site-remediation and disposal operations. The instrumentation fielded in the RTAP incorporates an air sampling technique utilizing solid sorbent collection and thermal desorption technology combined with capillary gas chromatography and multiple gas chromatographic detectors. The mobile unit is equipped to analyze a number of surety compounds, delivering documentation to meet regulatory requirements with a high level of sensitivity and selectivity, in real time or near-real time. The system can sample continuously through a heated transfer hose for direct, on-line requirements during site monitoring projects, or easily switch to off-site sampling capability using solid sorbent cartridges for sample collection that are returned to the mobile unit or laboratory for analysis. A description of the instrumentation, screening and confirmation techniques, and instances where the units have been fielded as part of emergency response efforts at several sites will be included in the presentation.

  14. Meeting Review: Airborne Aerosol Inlet Workshop

    NASA Technical Reports Server (NTRS)

    Baumgardner, Darrel; Huebert, Barry; Wilson, Chuck

    1991-01-01

    Proceedings from the Airborne Aerosol Inlet Workshop are presented. The two central topics of discussion were the role of aerosols in atmospheric processes and the difficulties in characterizing aerosols. The following topics were discussed during the working sessions: airborne observations to date; identification of inlet design issues; inlet modeling needs and directions; objectives for aircraft experiments; and future laboratory and wind tunnel studies.

  15. Airborne Relay-Based Regional Positioning System

    PubMed Central

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-01-01

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations. PMID:26029953

  16. Airborne Oceanographic Lidar (AOL) (Global Carbon Cycle)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This bimonthly contractor progress report covers the operation, maintenance and data management of the Airborne Oceanographic Lidar and the Airborne Topographic Mapper. Monthly activities included: mission planning, sensor operation and calibration, data processing, data analysis, network development and maintenance and instrument maintenance engineering and fabrication.

  17. Global Test Range: Toward Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.; Freudinger, Larry; DelFrate John H.

    2008-01-01

    This viewgraph presentation reviews the planned global sensor network that will monitor the Earth's climate, and resources using airborne sensor systems. The vision is an intelligent, affordable Earth Observation System. Global Test Range is a lab developing trustworthy services for airborne instruments - a specialized Internet Service Provider. There is discussion of several current and planned missions.

  18. A Simple Method for Collecting Airborne Pollen

    ERIC Educational Resources Information Center

    Kevan, Peter G.; DiGiovanni, Franco; Ho, Rong H.; Taki, Hisatomo; Ferguson, Kristyn A.; Pawlowski, Agata K.

    2006-01-01

    Pollination is a broad area of study within biology. For many plants, pollen carried by wind is required for successful seed set. Airborne pollen also affects human health. To foster studies of airborne pollen, we introduce a simple device--the "megastigma"--for collecting pollen from the air. This device is flexible, yielding easily obtained data…

  19. The Continuous wavelet in airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Liang, X.; Liu, L.

    2013-12-01

    Airborne gravimetry is an efficient method to recover medium and high frequency band of earth gravity over any region, especially inaccessible areas, which can measure gravity data with high accuracy,high resolution and broad range in a rapidly and economical way, and It will play an important role for geoid and geophysical exploration. Filtering methods for reducing high-frequency errors is critical to the success of airborne gravimetry due to Aircraft acceleration determination based on GPS.Tradiontal filters used in airborne gravimetry are FIR,IIR filer and so on. This study recommends an improved continuous wavelet to process airborne gravity data. Here we focus on how to construct the continuous wavelet filters and show their working principle. Particularly the technical parameters (window width parameter and scale parameter) of the filters are tested. Then the raw airborne gravity data from the first Chinese airborne gravimetry campaign are filtered using FIR-low pass filter and continuous wavelet filters to remove the noise. The comparison to reference data is performed to determinate external accuracy, which shows that continuous wavelet filters applied to airborne gravity in this thesis have good performances. The advantages of the continuous wavelet filters over digital filters are also introduced. The effectiveness of the continuous wavelet filters for airborne gravimetry is demonstrated through real data computation.

  20. Restraining Loose Equipment Aboard the International Space Station: The Payload Equipment Restraint System

    NASA Technical Reports Server (NTRS)

    Smith Kenneth A.; Reynolds, David W.

    2003-01-01

    As the International Space Station (ISS) grows, so do the supplies and equipment needed to support its daily operations. Each day many items must be unstowed and moved to various worksites so that they are readily available to the crew. Due to the lack of gravity, these items ,may become loose and float away if not restrained. The Payload Equipment Restraint System (PERS) was developed to meet the new and unique challenge of restraining loose equipment aboard the ISS.

  1. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.L.; Keiswetter, D.

    1995-12-31

    Ground-based surveys place personnel at risk due to the proximity of buried unexploded ordnance (UXO) items or by exposure to radioactive materials and hazardous chemicals. The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide stand-off capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected. The Geophex Airborne Unmanned Survey System (GAUSS) is designed to detect and locate small-scale anomalies at hazardous sites using magnetic and electromagnetic survey techniques. The system consists of a remotely-piloted, radio-controlled, model helicopter (RCH) with flight computer, light-weight geophysical sensors, an electronic positioning system, a data telemetry system, and a computer base-station. The report describes GAUSS and its test results.

  2. Airborne cw Doppler lidar (ADOLAR)

    NASA Astrophysics Data System (ADS)

    Rahm, Stefan; Werner, Christian; Nagel, E.; Herrmann, H.; Klier, M.; Knott, H. P.; Haering, R.; Wildgruber, J.

    1994-12-01

    During the last 10 years the DLR container LDA (Laser Doppler Anemometer) was used for many wind related measurements in the atmospheric boundary layer. The experience out of this were used to construct an airborne Doppler lidar ADOLAR. Based on the available Doppler lidars it is now proposed to perform a campaign to demonstrate the concept of the spaceborne sensor ALADIN, and to answer some questions concerning the signal quality from clouds, water and land. For the continuous wave CO2 laser, the energy is focused by the telescope into the region of investigation. Some of the radiation is back scattered by small aerosol particles drifting with the wind speed through the sensing volume. The back scattered radiation is collected by the telescope and detected by coherent technique. With the laser Doppler method one gets the radial wind component. To determine the magnitude and direction of the horizontal wind, some form of scanning in azimuth and elevation is required. To keep the airborne system compact, the transceiver optics is directly coupled to a wedge scanner which provides the conical scan with the axis in Nadir direction from the aircraft. The system ADOLAR was tested in 1994. Results of the flight over the lake Ammersee are presented and are compared with the data of the inertial reference system of the aircraft.

  3. Airborne thermography applications in Argentina

    NASA Astrophysics Data System (ADS)

    Castro, Eduardo H.; Selles, Eduardo J.; Costanzo, Marcelo; Franco, Oscar; Diaz, Jose

    2002-03-01

    Forest fires in summer and sheep buried under the snow in winter have become important problems in the south of our country, in the region named Patagonia. We are studying to find a solution by means of an airborne imaging system whose construction we have just finished. It is a 12 channel multispectral airborne scanner system that can be mounted in a Guarani airplane or in a Learjet; the first is a non- pressurized aircraft for flight at low height and the second is a pressurized one for higher flights. The scanner system is briefly described. Their sensors can detect radiation from the ultra violet to the thermal infrared. The images are visualized in real time in a monitor screen and can be stored in the hard disc of the PC for later processing. The use of this scanner for some applications that include the prevention and fighting of forest fires and the study of the possibility of detection of sheep under snow in the Patagonia is now being accomplished. Theoretical and experimental results in fire detection and a theoretical model for studying the possibility of detection of the buried sheep are presented.

  4. Airborne Synthetic Aperature Radar (AIRSAR) on left rear fuselage of DC-8 Airborne Laboratory

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A view of the Airborne Synthetic Aperature Radar (AIRSAR) antenna on the left rear fuselage of the DC-8. The AIRSAR captures images of the ground from the side of the aircraft and can provide precision digital elevation mapping capabilities for a variety of studies. The AIRSAR is one of a number of research systems that have been added to the DC-8. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  5. MGR COMPLIANCE PROGRAM GUIDANCE PACKAGE FOR RADIATION PROTECTION EQUIPMENT, INSTRUMENTATION AND FACILITIES

    SciTech Connect

    N /A

    2000-02-01

    This Compliance Program Guidance Package identifies the regulatory guidance and industry codes and standards addressing radiation protection equipment, instrumentation, and support facilities considered to be appropriate for radiation protection at the Monitored Geologic Repository (MGR). Included are considerations relevant to radiation monitoring instruments, calibration, contamination control and decontamination, respiratory protection equipment, and general radiation protection facilities. The scope of this Guidance Package does not include design guidance relevant to criticality monitoring, area radiation monitoring, effluent monitoring, and airborne radioactivity monitoring systems since they are considered to be the topics of specific design and construction requirements (i.e., ''fixed'' or ''built-in'' systems). This Guidance Package does not address radiation protection design issues; it addresses the selection and calibration of radiation monitoring instrumentation to the extent that the guidance is relevant to the operational radiation protection program. Radon and radon progeny monitoring instrumentation is not included in the Guidance Package since such naturally occurring radioactive materials do not fall within the NRC's jurisdiction at the MGR.

  6. Airborne derivation of microburst alerts from ground-based Terminal Doppler Weather Radar information: A flight evaluation

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1993-01-01

    An element of the NASA/FAA windshear program is the integration of ground-based microburst information on the flight deck, to support airborne windshear alerting and microburst avoidance. NASA conducted a windshear flight test program in the summer of 1991 during which airborne processing of Terminal Doppler Weather Radar (TDWR) data was used to derive microburst alerts. Microburst information was extracted from TDWR, transmitted to a NASA Boeing 737 in flight via data link, and processed to estimate the windshear hazard level (F-factor) that would be experienced by the aircraft in each microburst. The microburst location and F-factor were used to derive a situation display and alerts. The situation display was successfully used to maneuver the aircraft for microburst penetrations, during which atmospheric 'truth' measurements were made. A total of 19 penetrations were made of TDWR-reported microburst locations, resulting in 18 airborne microburst alerts from the TDWR data and two microburst alerts from the airborne reactive windshear detection system. The primary factors affecting alerting performance were spatial offset of the flight path from the region of strongest shear, differences in TDWR measurement altitude and airplane penetration altitude, and variations in microburst outflow profiles. Predicted and measured F-factors agreed well in penetrations near microburst cores. Although improvements in airborne and ground processing of the TDWR measurements would be required to support an airborne executive-level alerting protocol, the practicality of airborne utilization of TDWR data link data has been demonstrated.

  7. 21 CFR 110.40 - Equipment and utensils.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Equipment § 110.40 Equipment and utensils. (a) All plant equipment and utensils shall be so designed and of... particles, dirt, and organic matter and thus minimize the opportunity for growth of microorganisms. (c... storage compartment used to store and hold food capable of supporting growth of microorganisms shall...

  8. 21 CFR 110.40 - Equipment and utensils.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Equipment § 110.40 Equipment and utensils. (a) All plant equipment and utensils shall be so designed and of... particles, dirt, and organic matter and thus minimize the opportunity for growth of microorganisms. (c... storage compartment used to store and hold food capable of supporting growth of microorganisms shall...

  9. 30 CFR 57.4561 - Stationary diesel equipment underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Stationary diesel equipment underground. 57... Fire Prevention and Control Installation/construction/maintenance § 57.4561 Stationary diesel equipment underground. Stationary diesel equipment underground shall be— (a) Supported on a noncombustible base; and...

  10. 30 CFR 57.4561 - Stationary diesel equipment underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stationary diesel equipment underground. 57... Fire Prevention and Control Installation/construction/maintenance § 57.4561 Stationary diesel equipment underground. Stationary diesel equipment underground shall be— (a) Supported on a noncombustible base; and...

  11. 30 CFR 57.4561 - Stationary diesel equipment underground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Stationary diesel equipment underground. 57... Fire Prevention and Control Installation/construction/maintenance § 57.4561 Stationary diesel equipment underground. Stationary diesel equipment underground shall be— (a) Supported on a noncombustible base; and...

  12. 30 CFR 77.810 - High-voltage equipment; grounding.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage equipment; grounding. 77.810... COAL MINES Surface High-Voltage Distribution § 77.810 High-voltage equipment; grounding. Frames, supporting structures, and enclosures of stationary, portable, or mobile high-voltage equipment shall...

  13. 30 CFR 77.810 - High-voltage equipment; grounding.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage equipment; grounding. 77.810... COAL MINES Surface High-Voltage Distribution § 77.810 High-voltage equipment; grounding. Frames, supporting structures, and enclosures of stationary, portable, or mobile high-voltage equipment shall...

  14. 30 CFR 77.810 - High-voltage equipment; grounding.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-voltage equipment; grounding. 77.810... COAL MINES Surface High-Voltage Distribution § 77.810 High-voltage equipment; grounding. Frames, supporting structures, and enclosures of stationary, portable, or mobile high-voltage equipment shall...

  15. Airborne exposure patterns from a passenger source in aircraft cabins

    PubMed Central

    Bennett, James S.; Jones, Byron W.; Hosni, Mohammad H.; Zhang, Yuanhui; Topmiller, Jennifer L.; Dietrich, Watts L.

    2015-01-01

    Airflow is a critical factor that influences air quality, airborne contaminant distribution, and disease transmission in commercial airliner cabins. The general aircraft-cabin air-contaminant transport effect model seeks to build exposure-spatial relationships between contaminant sources and receptors, quantify the uncertainty, and provide a platform for incorporation of data from a variety of studies. Knowledge of infection risk to flight crews and passengers is needed to form a coherent response to an unfolding epidemic, and infection risk may have an airborne pathogen exposure component. The general aircraf-tcabin air-contaminant transport effect model was applied to datasets from the University of Illinois and Kansas State University and also to case study information from a flight with probable severe acute respiratory syndrome transmission. Data were fit to regression curves, where the dependent variable was contaminant concentration (normalized for source strength and ventilation rate), and the independent variable was distance between source and measurement locations. The data-driven model showed exposure to viable small droplets and post-evaporation nuclei at a source distance of several rows in a mock-up of a twin-aisle airliner with seven seats per row. Similar behavior was observed in tracer gas, particle experiments, and flight infection data for severe acute respiratory syndrome. The study supports the airborne pathway as part of the matrix of possible disease transmission modes in aircraft cabins. PMID:26526769

  16. Airborne Precision Spacing for Dependent Parallel Operations Interface Study

    NASA Technical Reports Server (NTRS)

    Volk, Paul M.; Takallu, M. A.; Hoffler, Keith D.; Weiser, Jarold; Turner, Dexter

    2012-01-01

    This paper describes a usability study of proposed cockpit interfaces to support Airborne Precision Spacing (APS) operations for aircraft performing dependent parallel approaches (DPA). NASA has proposed an airborne system called Pair Dependent Speed (PDS) which uses their Airborne Spacing for Terminal Arrival Routes (ASTAR) algorithm to manage spacing intervals. Interface elements were designed to facilitate the input of APS-DPA spacing parameters to ASTAR, and to convey PDS system information to the crew deemed necessary and/or helpful to conduct the operation, including: target speed, guidance mode, target aircraft depiction, and spacing trend indication. In the study, subject pilots observed recorded simulations using the proposed interface elements in which the ownship managed assigned spacing intervals from two other arriving aircraft. Simulations were recorded using the Aircraft Simulation for Traffic Operations Research (ASTOR) platform, a medium-fidelity simulator based on a modern Boeing commercial glass cockpit. Various combinations of the interface elements were presented to subject pilots, and feedback was collected via structured questionnaires. The results of subject pilot evaluations show that the proposed design elements were acceptable, and that preferable combinations exist within this set of elements. The results also point to potential improvements to be considered for implementation in future experiments.

  17. Airborne trace contaminants of possible interest in CELSS

    NASA Technical Reports Server (NTRS)

    Garavelli, J. S.

    1986-01-01

    One design goal of Closed Ecological Life Support Systems (CELSS) for long duration space missions is to maintain an atmosphere which is healthy for all the desirable biological species and not deleterious to any of the mechanical components in that atmosphere. CELESS design must take into account the interactions of at least six major components; (1) humans and animals, (2) higher plants, (3) microalgae, (4) bacteria and fungi, (5) the waste processing system, and (6) other mechanical systems. Each of these major components can be both a source and a target of airborne trace contaminants in a CELSS. A range of possible airborne trace contaminants is discussed within a chemical classification scheme. These contaminants are analyzed with respect to their probable sources among the six major components and their potential effects on those components. Data on airborne chemical contaminants detected in shuttle missions is presented along with this analysis. The observed concentrations of several classes of compounds, including hydrocarbons, halocarbons, halosilanes, amines and nitrogen oxides, are considered with respect to the problems which they present to CELSS.

  18. Airborne exposure patterns from a passenger source in aircraft cabins.

    PubMed

    Bennett, James S; Jones, Byron W; Hosni, Mohammad H; Zhang, Yuanhui; Topmiller, Jennifer L; Dietrich, Watts L

    2013-01-01

    Airflow is a critical factor that influences air quality, airborne contaminant distribution, and disease transmission in commercial airliner cabins. The general aircraft-cabin air-contaminant transport effect model seeks to build exposure-spatial relationships between contaminant sources and receptors, quantify the uncertainty, and provide a platform for incorporation of data from a variety of studies. Knowledge of infection risk to flight crews and passengers is needed to form a coherent response to an unfolding epidemic, and infection risk may have an airborne pathogen exposure component. The general aircraf-tcabin air-contaminant transport effect model was applied to datasets from the University of Illinois and Kansas State University and also to case study information from a flight with probable severe acute respiratory syndrome transmission. Data were fit to regression curves, where the dependent variable was contaminant concentration (normalized for source strength and ventilation rate), and the independent variable was distance between source and measurement locations. The data-driven model showed exposure to viable small droplets and post-evaporation nuclei at a source distance of several rows in a mock-up of a twin-aisle airliner with seven seats per row. Similar behavior was observed in tracer gas, particle experiments, and flight infection data for severe acute respiratory syndrome. The study supports the airborne pathway as part of the matrix of possible disease transmission modes in aircraft cabins. PMID:26526769

  19. A Performance Assessment of a Tactical Airborne Separation Assistance System using Realistic, Complex Traffic Flows

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Neitzke, Kurt W.; Bussink, Frank J. L.

    2008-01-01

    This paper presents the results from a study that investigates the performance of aspects of an Airborne Separation Assistance System (ASAS) under varying demand levels using realistic traffic patterns. This study only addresses the tactical aspects of an ASAS using aircraft state data (latitude, longitude, altitude, heading and speed) to detect and resolve projected conflicts. The main focus of this paper is to determine the extent to which sole reliance on the proposed tactical ASAS can maintain aircraft separation at demand levels up to three times current traffic. The effect of mixing ASAS equipped aircraft with non-equipped aircraft that do not have the capability to self-separate is also investigated.

  20. Airborne Evaluation and Demonstration of a Time-Based Airborne Inter-Arrival Spacing Tool

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Oseguera-Lohr, Rosa M.; Abbott, Terence S.; Capron, William R.; Howell, Charles T.

    2005-01-01

    An airborne tool has been developed that allows an aircraft to obtain a precise inter-arrival time-based spacing interval from the preceding aircraft. The Advanced Terminal Area Approach Spacing (ATAAS) tool uses Automatic Dependent Surveillance-Broadcast (ADS-B) data to compute speed commands for the ATAAS-equipped aircraft to obtain this inter-arrival spacing behind another aircraft. The tool was evaluated in an operational environment at the Chicago O'Hare International Airport and in the surrounding terminal area with three participating aircraft flying fixed route area navigation (RNAV) paths and vector scenarios. Both manual and autothrottle speed management were included in the scenarios to demonstrate the ability to use ATAAS with either method of speed management. The results on the overall delivery precision of the tool, based on a target spacing of 90 seconds, were a mean of 90.8 seconds with a standard deviation of 7.7 seconds. The results for the RNAV and vector cases were, respectively, M=89.3, SD=4.9 and M=91.7, SD=9.0.

  1. AUDIOVISUAL EQUIPMENT STANDARDS.

    ERIC Educational Resources Information Center

    PATTERSON, PIERCE E.; AND OTHERS

    RECOMMENDED STANDARDS FOR AUDIOVISUAL EQUIPMENT WERE PRESENTED SEPARATELY FOR GRADES KINDERGARTEN THROUGH SIX, AND FOR JUNIOR AND SENIOR HIGH SCHOOLS. THE ELEMENTARY SCHOOL EQUIPMENT CONSIDERED WAS THE FOLLOWING--CLASSROOM LIGHT CONTROL, MOTION PICTURE PROJECTOR WITH MOBILE STAND AND SPARE REELS, COMBINATION 2 INCH X 2 INCH SLIDE AND FILMSTRIP…

  2. Shipboard Electronic Equipments.

    ERIC Educational Resources Information Center

    Naval Personnel Program Support Activity, Washington, DC.

    Fundamentals of major electronic equipments on board ships are presented in this text prepared for naval officers in general. Basic radio principles are discussed in connection with various types of transmitters, receivers, antennas, couplers, transfer panels, remote-control units, frequency standard equipments, teletypewriters, and facsimile…

  3. Technology Equipment Rooms.

    ERIC Educational Resources Information Center

    Day, C. William

    2001-01-01

    Examines telecommunications equipment room design features that allow for growth and can accommodate numerous equipment replacements and upgrades with minimal service disruption and with minimal cost. Considerations involving the central hub, power and lighting needs, air conditioning, and fire protection are discussed. (GR)

  4. Laboratory Equipment Criteria.

    ERIC Educational Resources Information Center

    State Univ. Construction Fund, Albany, NY.

    Requirements for planning, designing, constructing and installing laboratory furniture are given in conjunction with establishing facility criteria for housing laboratory equipment. Furniture and equipment described include--(1) center tables, (2) reagent racks, (3) laboratory benches and their mechanical fixtures, (4) sink and work counters, (5)…

  5. Equipment & New Products.

    ERIC Educational Resources Information Center

    Poitras, Adrian W., Ed.

    1977-01-01

    Presents several new products and equipment for teaching college science courses such as laser optics bench, portable digital thermometer, solar energy furnaces and blackboard optics kit. A description of all equipment or products, cost, and addresses of manufacturers are also included. (HM)

  6. Adaptive Recreational Equipment.

    ERIC Educational Resources Information Center

    Schilling, Mary Lou, Ed.

    1983-01-01

    Designed for teachers interested in therapeutic recreation, the document lists sources of adaptive recreational equipment and their homemade counterparts. Brief descriptions for ordering or constructing recreational equipment for the visually impaired, poorly coordinated, physically impaired, and mentally retarded are given. Specific adaptations…

  7. Equipment Operator 1 & C.

    ERIC Educational Resources Information Center

    Naval Education and Training Program Development Center, Pensacola, FL.

    The Rate Training Manual and Nonresident Career Course (RTM/NRCC) form a self-study package to assist Navy Equipment Operators First and Chief in fulfilling the requirements of their rating. (Navy Equipment Operators First and Chief direct and coordinate efforts of individuals and crews in construction, earthmoving, roadbuilding, quarrying, and…

  8. Troubleshooting rotating equipment

    SciTech Connect

    Wong, R.F. )

    1992-10-01

    This paper reports that equipment problems in a Peruvian refinery illustrate the process engineer's role as a troubleshooter. Examples show that rotating equipment problems can stem from mechanical or process factors and involve both inspection/maintenance specialists and process engineers.

  9. Generation of airborne Listeria innocua from model floor drains.

    PubMed

    Berrang, Mark E; Frank, Joseph F

    2012-07-01

    Listeria monocytogenes can colonize floor drains in poultry processing and further processing facilities, remaining present even after cleaning and disinfection. Therefore, during wash down, workers exercise caution to avoid spraying hoses directly into drains in an effort to prevent the escape and transfer of drain microflora to food contact surfaces. The objective of this study was to examine the extent to which an inadvertent water spray into a colonized floor drain can cause the spread of airborne Listeria. Listeria innocua was used to inoculate a polyvinyl chloride model floor drain, resulting in approximately 10(8) cells per ml of phosphate-buffered saline and 10(4) attached cells per square centimeter of inner surface. Each model drain was subjected to a 2-s spray of tap water at 68.9 kPa from a distance of 1 m. Drains were sprayed while filled and again after emptying. Airborne cells were collected by using sedimentation plates containing Listeria selective agar which were placed on the floor and walls of a contained room at incremental horizontal and vertical distances of 0.6, 1.2, 2.4, or 4.0 m from the drain. Sedimentation plates were exposed for 10 min. A mechanical sampler was used to also collect air by impaction on the surface of Listeria selective agar to determine the number of cells per liter of air. The experiment was conducted in triplicate rooms for each of four replications. L. innocua was detected on sedimentation plates on the floor as far as 4.0 m from the drain and on walls as high as 2.4 m above the floor and 4 m from the drain. A 2-s spray with a water hose into a contaminated drain can cause airborne spread of Listeria, resulting in the potential for cross-contamination of food contact surfaces, equipment, and exposed product.

  10. Generation of airborne Listeria innocua from model floor drains.

    PubMed

    Berrang, Mark E; Frank, Joseph F

    2012-07-01

    Listeria monocytogenes can colonize floor drains in poultry processing and further processing facilities, remaining present even after cleaning and disinfection. Therefore, during wash down, workers exercise caution to avoid spraying hoses directly into drains in an effort to prevent the escape and transfer of drain microflora to food contact surfaces. The objective of this study was to examine the extent to which an inadvertent water spray into a colonized floor drain can cause the spread of airborne Listeria. Listeria innocua was used to inoculate a polyvinyl chloride model floor drain, resulting in approximately 10(8) cells per ml of phosphate-buffered saline and 10(4) attached cells per square centimeter of inner surface. Each model drain was subjected to a 2-s spray of tap water at 68.9 kPa from a distance of 1 m. Drains were sprayed while filled and again after emptying. Airborne cells were collected by using sedimentation plates containing Listeria selective agar which were placed on the floor and walls of a contained room at incremental horizontal and vertical distances of 0.6, 1.2, 2.4, or 4.0 m from the drain. Sedimentation plates were exposed for 10 min. A mechanical sampler was used to also collect air by impaction on the surface of Listeria selective agar to determine the number of cells per liter of air. The experiment was conducted in triplicate rooms for each of four replications. L. innocua was detected on sedimentation plates on the floor as far as 4.0 m from the drain and on walls as high as 2.4 m above the floor and 4 m from the drain. A 2-s spray with a water hose into a contaminated drain can cause airborne spread of Listeria, resulting in the potential for cross-contamination of food contact surfaces, equipment, and exposed product. PMID:22980019

  11. Profiling the atmosphere with the airborne radio occultation technique

    NASA Astrophysics Data System (ADS)

    Muradyan, Paytsar

    The GNSS Instrument System for Multistatic and Occultation Sensing (GISMOS) was designed for dense sampling of meteorological targets using the airborne radio occultation (RO) technique. Airborne RO refers to an atmospheric limb sounding technique in which Global Positioning System (GPS) signals are recorded at a receiver onboard an aircraft as the satellites descend beyond the limb of the Earth. The GPS signals, that are unaffected by clouds and precipitation, experience refractive bending as well as a delay in the travel time through the atmosphere. Bending can be used to retrieve information about atmospheric refractivity, which depends on atmospheric moisture and temperature. The new system has the potential for improving numerical weather prediction (NWP) forecasts through assimilation of many high-resolution atmospheric profiles in an area of interest, compared to spaceborne RO, which samples sparsely around the globe. In February 2008, GISMOS was deployed on the National Science Foundation Gulfstream-V aircraft to make atmospheric observations in the Gulf of Mexico coastal region with an objective to test the performance of the profiling system. Recordings from this flight campaign made with the conventional phase lock loop GPS receivers descend from flight level to 5 km altitude. However, below that level strong refractivity gradients, especially those associated with the boundary layer, cause rapid phase accelerations resulting in loss of lock in the receiver. To extend the RO profiles deeper in the atmosphere, the GISMOS system was also equipped with a GPS Recording System (GRS) that records the raw RF signals. Post-processing this dataset in open-loop (OL) tracking mode enables reliable atmospheric profiling at lower altitudes. We present a comprehensive analysis of the performance of the airborne system OL tracking algorithm during a 5 hour flight on 15 February 2008. Excess phase and amplitude profiles for 5 setting and 5 rising occultations were

  12. Challenges and Successes Managing Airborne Science Data for CARVE

    NASA Astrophysics Data System (ADS)

    Hardman, S. H.; Dinardo, S. J.; Lee, E. C.

    2014-12-01

    The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission collects detailed measurements of important greenhouse gases on local to regional scales in the Alaskan Arctic and demonstrates new remote sensing and improved modeling capabilities to quantify Arctic carbon fluxes and carbon cycle-climate processes. Airborne missions offer a number of challenges when it comes to collecting and processing the science data and CARVE is no different. The biggest challenge relates to the flexibility of the instrument payload. Within the life of the mission, instruments may be removed from or added to the payload, or even reconfigured on a yearly, monthly or daily basis. Although modification of the instrument payload provides a distinct advantage for airborne missions compared to spaceborne missions, it does tend to wreak havoc on the underlying data system when introducing changes to existing data inputs or new data inputs that require modifications to the pipeline for processing the data. In addition to payload flexibility, it is not uncommon to find unsupported files in the field data submission. In the case of CARVE, these include video files, photographs taken during the flight and screen shots from terminal displays. These need to captured, saved and somehow integrated into the data system. The CARVE data system was built on a multi-mission data system infrastructure for airborne instruments called the Airborne Cloud Computing Environment (ACCE). ACCE encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation. This well-tested and proven infrastructure allows the CARVE data system to be easily adapted in order to handle the challenges posed by the CARVE mission and to successfully process, manage and distribute the mission's science data. This

  13. Global deposition of airborne dioxin.

    PubMed

    Booth, Shawn; Hui, Joe; Alojado, Zoraida; Lam, Vicky; Cheung, William; Zeller, Dirk; Steyn, Douw; Pauly, Daniel

    2013-10-15

    We present a global dioxin model that simulates one year of atmospheric emissions, transport processes, and depositions to the earth's terrestrial and marine habitats. We map starting emission levels for each land area, and we also map the resulting deposits to terrestrial and marine environments. This model confirms that 'hot spots' of deposition are likely to be in northern Europe, eastern North America, and in parts of Asia with the highest marine dioxin depositions being the northeast and northwest Atlantic, western Pacific, northern Indian Ocean and the Mediterranean. It also reveals that approximately 40% of airborne dioxin emissions are deposited to marine environments and that many countries in Africa receive more dioxin than they produce, which results in these countries being disproportionately impacted. Since human exposure to dioxin is largely through diet, this work highlights food producing areas that receive higher atmospheric deposits of dioxin than others.

  14. The Sandia Airborne Computer (SANDAC)

    SciTech Connect

    Nava, E.J.

    1992-06-01

    The Sandia Airborne Computer (SANDAC) is a small, modular, high performance, multiprocessor computer originally designed for aerospace applications. It can use a combination of Motorola 68020 and 68040 based processor modules along with AT&T DSP32C based signal processing modules. The system is designed to use up to 15 processors in almost any combination and a complete system can include up to 20 modules. Depending on the mix of processors, total computational throughput can range from 2.5 to greater than 225 Million Instructions Per Second (MIPS). The system is designed so that processors can access all resources in the machine and the inter-processor communication details are completely transparent to the software. In addition to processors, the system includes input/output, memory, and special function modules. Because of its ease of use, small size, durability, and configuration flexibility, SANDAC has been used on applications ranging from missile navigation, guidance, and control systems to medical imaging systems.

  15. Modis-N airborne simulator

    NASA Technical Reports Server (NTRS)

    Cech, Steven D.

    1992-01-01

    All required work associated with the above referenced contract has been successfully completed at this time. The Modis-N Airborne Simulator has been developed from existing AB184 Wildfire spectrometer parts as well as new detector arrays, optical components, and associated mechanical and electrical hardware. The various instrument components have been integrated into an operational system which has undergone extensive laboratory calibration and testing. The instrument has been delivered to NASA Ames where it will be installed on the NASA ER-2. The following paragraphs detail the specific tasks performed during the contract effort, the results obtained during the integration and testing of the instrument, and the conclusions which can be drawn from this effort.

  16. Airborne thermography or infrared remote sensing.

    PubMed

    Goillot, C C

    1975-01-01

    Airborne thermography is part of the more general remote sensing activity. The instruments suitable for image display are infrared line scanners. A great deal of interest has developed during the past 10 years in airborne thermal remote sensing and many applications are in progress. Infrared scanners on board a satellite are used for observation of cloud cover; airborne infrared scanners are used for forest fire detection, heat budget of soils, detecting insect attack, diseases, air pollution damage, water stress, salinity stress on vegetation, only to cite some main applications relevant to agronomy. Using this system it has become possible to get a 'picture' of our thermal environment.

  17. Simulation Results for Airborne Precision Spacing along Continuous Descent Arrivals

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.; Baxley, Brian T.

    2008-01-01

    This paper describes the results of a fast-time simulation experiment and a high-fidelity simulator validation with merging streams of aircraft flying Continuous Descent Arrivals through generic airspace to a runway at Dallas-Ft Worth. Aircraft made small speed adjustments based on an airborne-based spacing algorithm, so as to arrive at the threshold exactly at the assigned time interval behind their Traffic-To-Follow. The 40 aircraft were initialized at different altitudes and speeds on one of four different routes, and then merged at different points and altitudes while flying Continuous Descent Arrivals. This merging and spacing using flight deck equipment and procedures to augment or implement Air Traffic Management directives is called Flight Deck-based Merging and Spacing, an important subset of a larger Airborne Precision Spacing functionality. This research indicates that Flight Deck-based Merging and Spacing initiated while at cruise altitude and well prior to the Terminal Radar Approach Control entry can significantly contribute to the delivery of aircraft at a specified interval to the runway threshold with a high degree of accuracy and at a reduced pilot workload. Furthermore, previously documented work has shown that using a Continuous Descent Arrival instead of a traditional step-down descent can save fuel, reduce noise, and reduce emissions. Research into Flight Deck-based Merging and Spacing is a cooperative effort between government and industry partners.

  18. Airborne Systems Technology Application to the Windshear Threat

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. Douglas; Lewis, Michael S.; Hinton, David A.

    1996-01-01

    The general approach and products of the NASA/FAA Airborne Windshear Program conducted by NASA Langley Research Center are summarized, with references provided for the major technical contributions. During this period, NASA conducted 2 years of flight testing to characterize forward-looking sensor performance. The NASA/FAA Airborne Windshear Program was divided into three main elements: Hazard Characterization, Sensor Technology, and Flight Management Systems. Simulation models developed under the Hazard Characterization element are correlated with flight test data. Flight test results comparing the performance and characteristics of the various Sensor Technologies (microwave radar, lidar, and infrared) are presented. Most of the activities in the Flight Management Systems element were conducted in simulation. Simulation results from a study evaluating windshear crew procedures and displays for forward-looking sensor-equipped airplanes are discussed. NASA Langley researchers participated heavily in the FAA process of generating certification guidelines for predictive windshear detection systems. NASA participants felt that more valuable technology products were generated by the program because of this interaction. NASA involvement in the process and the resulting impact on products and technology transfer are discussed in this paper.

  19. Microprocessor-Based Airborne Spectrometer System

    NASA Astrophysics Data System (ADS)

    Kates, John C.

    1980-08-01

    A system for airborne infrared spectral signature measurements has been developed using a Fourier transform spectrometer interfaced to a microprocessor data acquisition, control and display system. The microprocessor is a DEC LSI-ll with 20KW RAM, 4KW EPROM, DMA spectrometer interface, digital magnetic tape, and dot-matrix video graphic display. A real-time executive tailored to the requirements and resources available allows concurrent data acquisition, recording, reduction and display. Using multiple buffers, acquisition of spectrometer data via DMA is overlapped with magnetic tape output. A background task selects the most recent spectrometer data and processes it using an FFT into a raw spectrum. A reference background spectrum is subtracted to isolate the data component, then a reference instrument response function is applied to obtain a calibrated absolute irradiance spectrum. The irradiance spectrum is displayed on the video graphic display and mixed with boresight camera video to show the target spectrum superimposed on the target image. Extensive selftest facilities are incorporated for testing all system components and compatibility with data reduction systems. System calibration is supported by selection of reference blackbody temperatures, apertures, and distances. The instrument response curve obtained during calibration is displayed for verification of correct spectrometer operation or diagnosis of faults.

  20. Airborne measured analytic signal for UXO detection

    SciTech Connect

    Gamey, T.J.; Holladay, J.S.; Mahler, R.

    1997-10-01

    The Altmark Tank Training Range north of Haldensleben, Germany has been in operation since WWI. Weapons training and testing has included cavalry, cannon, small arms, rail guns, and tank battalions. Current plans are to convert the area to a fully digital combat training facility. Instead of using blank or dummy ordnance, hits will be registered with lasers and computers. Before this can happen, the 25,000 ha must be cleared of old debris. In support of this cleanup operation, Aerodat Inc., in conjunction with IABG of Germany, demonstrated a new high resolution magnetic survey technique involving the measurement of 3-component magnetic gradient data. The survey was conducted in May 1996, and covered 500 ha in two blocks. The nominal line spacing was 10 m, and the average sensor altitude was 7 m. The geologic column consisted of sands over a sedimentary basin. Topographic relief was generally flat with approximately 3 m rolling dunes and occasional man-made features such as fox holes, bunkers, tank traps and reviewing stands. Trees were sparse and short (2-3 metres) due to frequent burn off and tank activity. As such, this site was nearly ideal for low altitude airborne surveying.

  1. Gas insulated substation equipment for industrial applications

    SciTech Connect

    Kenedy, J.J.

    1984-11-01

    Until recently the only available method for construction of high voltage systems was to use exposed air insulated equipment supported on porcelain columns. The past decade has witnessed the introduction and wide acceptance of compressed gas insulated equipment as a viable alternative to the conventional substation system. The characteristics of gas insulated substations (GIS) and their application for industrial use at service voltages at 69 kV and above are discussed.

  2. Long Length Contaminated Equipment Maintenance Plan

    SciTech Connect

    ESVELT, C.A.

    2000-02-01

    The purpose of this document is to provide the maintenance requirements of the Long Length Contaminated Equipment (LLCE) trailers and provide a basis for the maintenance frequencies selected. This document is applicable to the LLCE Receiver trailer and Transport trailer assembled by Mobilized Systems Inc. (MSI). Equipment used in conjunction with, or in support of, these trailers is not included. This document does not provide the maintenance requirements for checkout and startup of the equipment following the extended lay-up status which began in the mid 1990s. These requirements will be specified in other documentation.

  3. Technology-enabled Airborne Spacing and Merging

    NASA Technical Reports Server (NTRS)

    Hull, James; Barmore, Bryan; Abbott, Tetence

    2005-01-01

    Over the last several decades, advances in airborne and groundside technologies have allowed the Air Traffic Service Provider (ATSP) to give safer and more efficient service, reduce workload and frequency congestion, and help accommodate a critically escalating traffic volume. These new technologies have included advanced radar displays, and data and communication automation to name a few. In step with such advances, NASA Langley is developing a precision spacing concept designed to increase runway throughput by enabling the flight crews to manage their inter-arrival spacing from TRACON entry to the runway threshold. This concept is being developed as part of NASA s Distributed Air/Ground Traffic Management (DAG-TM) project under the Advanced Air Transportation Technologies Program. Precision spacing is enabled by Automatic Dependent Surveillance-Broadcast (ADS-B), which provides air-to-air data exchange including position and velocity reports; real-time wind information and other necessary data. On the flight deck, a research prototype system called Airborne Merging and Spacing for Terminal Arrivals (AMSTAR) processes this information and provides speed guidance to the flight crew to achieve the desired inter-arrival spacing. AMSTAR is designed to support current ATC operations, provide operationally acceptable system-wide increases in approach spacing performance and increase runway throughput through system stability, predictability and precision spacing. This paper describes problems and costs associated with an imprecise arrival flow. It also discusses methods by which Air Traffic Controllers achieve and maintain an optimum interarrival interval, and explores means by which AMSTAR can assist in this pursuit. AMSTAR is an extension of NASA s previous work on in-trail spacing that was successfully demonstrated in a flight evaluation at Chicago O Hare International Airport in September 2002. In addition to providing for precision inter-arrival spacing, AMSTAR

  4. A multisensor system for airborne surveillance of oil pollution

    NASA Technical Reports Server (NTRS)

    Edgerton, A. T.; Ketchal, R.; Catoe, C.

    1973-01-01

    The U.S. Coast Guard is developing a prototype airborne oil surveillance system for use in its Marine Environmental Protection Program. The prototype system utilizes an X-band side-looking radar, a 37-GHz imaging microwave radiometer, a multichannel line scanner, and a multispectral low light level system. The system is geared to detecting and mapping oil spills and potential pollution violators anywhere within a 25 nmi range of the aircraft flight track under all but extreme weather conditions. The system provides for false target discrimination and maximum identification of spilled materials. The system also provides an automated detection alarm, as well as a color display to achieve maximum coupling between the sensor data and the equipment operator.

  5. Automatic Searching Radioactive Sources by Airborne Radioactive Survey Using Multicopter

    NASA Astrophysics Data System (ADS)

    Rim, H.; Eun, S. B.; Kim, K.; Park, S.; Jung, H. K.

    2015-12-01

    In order to prepare emergency situation lost a dangerous radioelement source in advance and to search a radioactive source automatically, we develop airborne radioelement survey system by multicopter. This multicopter radioelement survey system consists of a small portable customized BGO (Bismuth Germanate Oxide) detector, video recording part, wireless connecting part to ground pilot, GPS, and several equipments for automatic flight. This system is possible to search flight by preprogramed lines. This radioactive detecting system are tested to find intentional hidden source, The performance of detecting a source is well proved with very low flight altitude in spite of depending on the magnitude of radioelement sources. The advantage of multicopter system, one of UAV (Unmanned Aerial Vehicle), is to avoid the potential of close access to a dangerous radioactive source by using fully automatic searching capability. In this paper, we introduce our multicopter system for detecting radioactive source and synthetic case history for demonstrating this system.

  6. [Medical Equipment Maintenance Methods].

    PubMed

    Liu, Hongbin

    2015-09-01

    Due to the high technology and the complexity of medical equipment, as well as to the safety and effectiveness, it determines the high requirements of the medical equipment maintenance work. This paper introduces some basic methods of medical instrument maintenance, including fault tree analysis, node method and exclusive method which are the three important methods in the medical equipment maintenance, through using these three methods for the instruments that have circuit drawings, hardware breakdown maintenance can be done easily. And this paper introduces the processing methods of some special fault conditions, in order to reduce little detours in meeting the same problems. Learning is very important for stuff just engaged in this area.

  7. An airborne laser polarimeter system (ALPS) for terrestrial physics research

    NASA Technical Reports Server (NTRS)

    Kalshoven, James E., Jr.; Dabney, Philip W.

    1988-01-01

    The design of a multispectral polarized laser system for characterizing the depolarization properties of the earth's surface is described. Using a laser as the light source, this airborne system measures the Stokes parameters of the surface to simultaneously arrive at the polarization degree, azimuthal angle, and ellipticity for each wavelength. The technology will be studied for the feasibility of expansion of the sensor to do surface polarization imaging. The data will be used in support of solar polarization studies and to develop laser radiometry as a tool in environmental remote sensing.

  8. An airborne remote sensing system for urban air quality

    NASA Technical Reports Server (NTRS)

    Duncan, L. J.; Friedman, E. J.; Keitz, E. L.; Ward, E. A.

    1974-01-01

    Several NASA sponsored remote sensors and possible airborne platforms were evaluated. Outputs of dispersion models for SO2 and CO pollution in the Washington, D.C. area were used with ground station data to establish the expected performance and limitations of the remote sensors. Aircraft/sensor support requirements are discussed. A method of optimum flight plan determination was made. Cost trade offs were performed. Conclusions about the implementation of various instrument packages as parts of a comprehensive air quality monitoring system in Washington are presented.

  9. Principles for Sampling Airborne Radioactivity from Stacks

    SciTech Connect

    Glissmeyer, John A.

    2010-10-18

    This book chapter describes the special processes involved in sampling the airborne effluents from nuclear faciities. The title of the book is Radioactive Air Sampling Methods. The abstract for this chapter was cleared as PNNL-SA-45941.

  10. SOURCES OF HUMAN EXPOSURE TO AIRBORNE PAH

    EPA Science Inventory

    Personal exposures to airborne particulate polycyclic aromatic hydrocarbons (PAHs) were studied in several populations in the US, Japan, and Czech Republic. Personal exposure monitors, developed for human exposure biomonitoring studies were used to collect fine particles (<_ 1....

  11. Leasing versus buying equipment.

    PubMed

    Grossman, R

    1983-01-01

    For the upgrading of equipment that is necessary in radiologic practice, leasing is more convenient and less expensive than buying. Changes in tax laws, embodied in the Economic Recovery Act of 1981, have increased tax benefits of this arrangement.

  12. Cleaning supplies and equipment

    MedlinePlus

    ... something means to clean it to destroy germs. Disinfectants are the cleaning solutions that are used to ... each solution. You may need to allow the disinfectant to dry on the equipment for a set ...

  13. Equipment & New Products.

    ERIC Educational Resources Information Center

    Poitras, Adrian W., Ed.

    1979-01-01

    Reviews new science equipment and products for the laboratory. Includes hand-held calculators, fiberglass fume hoods, motorized microtomy, disposable mouse cages, and electric timers. Describes 11 products total. Provides manufacturer name, address, and price. (MA)

  14. Selecting Library Furniture & Equipment.

    ERIC Educational Resources Information Center

    Media & Methods, 1997

    1997-01-01

    Offers suggestions for selecting school library furniture and equipment. Describes various models of computer workstations; reading tables and chairs; and shelving. Sidebar lists names and addresses of library furniture manufactures and distributors. (AEF)

  15. Airborne Geodetic Imaging Using the L-band UAVSAR Instrument (Invited)

    NASA Astrophysics Data System (ADS)

    Hensley, S.; Zebker, H. A.; Jones, C. E.; Michel, T.; Chapman, B. D.; Muellerschoen, R.; Fore, A.; Simard, M.

    2009-12-01

    Radar interferometry using both airborne and spaceborne platforms has become an integral tool in geodetics sciences over the past 3 decades for both fine resolution topographic mapping and for measuring surface deformation from a variety of both natural and anthropogenic sources. The UAVSAR instrument, employing an L-band actively electronically scanned antenna, had its genesis in the ESTO Instrument Incubator Program and after 3 years of development has begun the regular collection of science data in support of various geodetic applications. System design was motivated by solid Earth applications where repeat pass radar interferometry can be used to measure subtle deformation of the surface, however flexibility and extensibility to support other applications were also major design drivers. Initial testing and deployments are being carried out with the NASA Gulfstream III aircraft, which has been modified to accommodate the radar pod and has been equipped with precision autopilot capability developed by NASA Dryden Flight Research Center. With this the aircraft can fly within a 10 m diameter tube on any specified trajectory necessary for repeat-pass radar interferometric applications. To maintain the required pointing for repeat-pass interferometric applications we have employed an actively scanned antenna steered using INU measurement data. This talk will present some early deformation results made by the UAVSAR instrument over volcanoes (Mt St Helens), landslides near Parkfield CA, ice sheet motion in Greenland and Iceland, anthropogenic induced surface deformation from oil pumping near Lost Hills, CA and changes in agricultural surfaces in California’s San Joaquin Valley. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  16. Downscaling of Airborne Wind Energy Systems

    NASA Astrophysics Data System (ADS)

    Fechner, Uwe; Schmehl, Roland

    2016-09-01

    Airborne wind energy systems provide a novel solution to harvest wind energy from altitudes that cannot be reached by wind turbines with a similar nominal generator power. The use of a lightweight but strong tether in place of an expensive tower provides an additional cost advantage, next to the higher capacity factor and much lower total mass. This paper investigates the scaling effects of airborne wind energy systems. The energy yield of airborne wind energy systems, that work in pumping mode of operation is at least ten times higher than the energy yield of conventional solar systems. For airborne wind energy systems the yield is defined per square meter wing area. In this paper the dependency of the energy yield on the nominal generator power for systems in the range of 1 kW to 1 MW is investigated. For the onshore location Cabauw, The Netherlands, it is shown, that a generator of just 1.4 kW nominal power and a total system mass of less than 30 kg has the theoretical potential to harvest energy at only twice the price per kWh of large scale airborne wind energy systems. This would make airborne wind energy systems a very attractive choice for small scale remote and mobile applications as soon as the remaining challenges for commercialization are solved.

  17. Challenges and opportunities of airborne metagenomics.

    PubMed

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles.

  18. Challenges and Opportunities of Airborne Metagenomics

    PubMed Central

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-01-01

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. PMID:25953766

  19. Vibration budget for observatory equipment

    NASA Astrophysics Data System (ADS)

    MacMartin, Douglas G.; Thompson, Hugh

    2015-07-01

    Vibration from equipment mounted on the telescope and in summit support buildings has been a source of performance degradation at existing astronomical observatories, particularly for adaptive optics performance. Rather than relying only on best practices to minimize vibration, we present here a vibration budget that specifies allowable force levels from each source of vibration in the observatory (e.g., pumps, chillers, cryocoolers, etc.). This design tool helps ensure that the total optical performance degradation due to vibration is less than the corresponding error budget allocation and is also useful in design trade-offs, specifying isolation requirements for equipment, and tightening or widening individual equipment vibration specifications as necessary. The vibration budget relies on model-based analysis of the optical consequences that result from forces applied at different locations and frequencies, including both image jitter and primary mirror segment motion. We develop this tool here for the Thirty Meter Telescope but hope that this approach will be broadly useful to other observatories, not only in the design phase, but for verification and operations as well.

  20. Study of airborne science experiment management concepts for application to space shuttle. Volume 3: Appendixes

    NASA Technical Reports Server (NTRS)

    Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

    1973-01-01

    Detailed information is presented concerning specific airborne missions in support of the ASSESS program. These missions are the AIDJEX expeditions, meteor shower expeditions, CAT and atmospheric sampling missions, ocean color expeditions, and the Lear Jet missions. For Vol. 2, see N73-31729.

  1. Use of airborne thermal imagery to detect and monitor inshore oil spill residues during darkness hours

    SciTech Connect

    Grierson, I.T.

    1998-11-01

    Trials were conducted using an airborne video system operating in the visible, near-infrared, and thermal wavelengths to detect two known oil spill releases during darkness at a distance of 10 nautical miles from the shore in St. Vincent`s Gulf, South Australia. The oil spills consisted of two 20-liter samples released at 2-h intervals, one sample consisted of paraffinic neutral material and the other of automotive diesel oil. A tracking buoy was sent overboard in conjunction with the release of sample 1, and its movement monitored by satellite relay. Both oil residues were overflown by a light aircraft equipped with thermal, visible, and infrared imagers at a period of approximately 1 h after the release of the second oil residue. Trajectories of the oil residue releases were also modeled and the results compared to those obtained by the airborne video and the tracking buoy. Airborne imagery in the thermal wavelengths successfully located and mapped both oil residue samples during nighttime conditions. Results from the trial suggest that the most advantageous technique would be the combined use of the tracking beacon to obtain an approximate location of the oil spill and the airborne imagery to ascertain its extent and characteristics.

  2. Icepod: A modular approach to the development of an airborne remote sensing and data acquisition platform

    NASA Astrophysics Data System (ADS)

    Frearson, N.; Bell, R. E.; Tinto, K. J.; Zappa, C. J.

    2013-12-01

    The New York Air National Guard [NYANG] provides regular airborne support to the National Science Foundation [NSF] moving science parties and their equipment onto and around the ice-sheets in both polar regions during the respective summer seasons. Icepod has been developed to utilize this readily available resource, providing the aircraft with a modular external pod attached to the rear-paratrooper door on either side of the NYANG's ski-equipped LC-130s. The pod is divided into five separate bays each approximately a 2ft cube within which can be mounted an array of remote sensors. Power, heating, sensor control and data management services are provided to each bay. An Ethernet network is used to transfer commands and data packets between the individual sensors and data acquisition system located inside the aircraft. Data for each sensor is stored on ruggedized and removable hard-drives that can be taken off the aircraft at the end of a flight for further analysis. In its current configuration the pod is equipped for the remote sensing of ice sheets and their margins and the bay's contain two radar systems, radar antennas, a vibration isolated optics bay including a scanning laser, Infra-red camera and high-definition visible wave camera. Sensor data is geo-referenced using GNSS and orientation sensors located inside the pod. A Pyrometer provides the downward looking IR Camera with the current sky temperature. In January 2013, the Icepod system was flight certified at the Stratton air base in Schenectady, New York. The system deployed to Greenland in April and July 2013 to test the instrumentation suite over ice and its ease of deployment with the NYANG. Icepod can be operated in two modes, a traditional dedicated science flight mode and a piggy-back mode. In piggy-back mode science parties and their cargo are delivered to their destinations with Icepod installed but stowed. Once they have been delivered the Icepod is deployed and measurements can be taken on the

  3. Airborne-Managed Spacing in Multiple Arrival Streams

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan; Abbott, Terence; Krishnamurthy, Karthik

    2004-01-01

    A significant bottleneck in the current air traffic system occurs at the runway. Expanding airports and adding new runways will help solve this problem; however, this comes at a significant cost, financially, politically and environmentally. A complementary solution is to safely increase the capacity of current runways. This can be achieved by precise spacing at the runway threshold with a resulting reduction in the spacing buffer required under today s operations. At the NASA Langley Research Center, the Advanced Air Transportation Technologies (AATT) Project is investigating airborne technologies and procedures that will assist the pilot in achieving precise spacing behind another aircraft. This new spacing clearance instructs the pilot to follow speed cues from a new on-board guidance system called Airborne Merging and Spacing for Terminal Arrivals (AMSTAR). AMSTAR receives Automatic Dependent Surveillance-Broadcast (ADS-B) reports from the leading aircraft and calculates the appropriate speed for the ownership to fly in order to achieve the desired spacing interval, time or distance-based, at the runway threshold. Since the goal is overall system capacity, the speed guidance algorithm is designed to provide system benefit over individual efficiency. This paper discusses the concept of operations and design of AMSTAR to support airborne precision spacing. Results from the previous stage of development, focused only on in-trail spacing, are discussed along with the evolution of the concept to include merging of converging streams of traffic. This paper also examines how this operation might support future wake vortex-based separation and other advances in terminal area operations. Finally, the research plan for the merging capabilities, to be performed during the summer and fall of 2004 is presented.

  4. Visualizing Airborne and Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Bierwirth, Victoria A.

    2011-01-01

    Remote sensing is a process able to provide information about Earth to better understand Earth's processes and assist in monitoring Earth's resources. The Cloud Absorption Radiometer (CAR) is one remote sensing instrument dedicated to the cause of collecting data on anthropogenic influences on Earth as well as assisting scientists in understanding land-surface and atmospheric interactions. Landsat is a satellite program dedicated to collecting repetitive coverage of the continental Earth surfaces in seven regions of the electromagnetic spectrum. Combining these two aircraft and satellite remote sensing instruments will provide a detailed and comprehensive data collection able to provide influential information and improve predictions of changes in the future. This project acquired, interpreted, and created composite images from satellite data acquired from Landsat 4-5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper plus (ETM+). Landsat images were processed for areas covered by CAR during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCT AS), Cloud and Land Surface Interaction Campaign (CLASIC), Intercontinental Chemical Transport Experiment-Phase B (INTEXB), and Southern African Regional Science Initiative (SAFARI) 2000 missions. The acquisition of Landsat data will provide supplemental information to assist in visualizing and interpreting airborne and satellite imagery.

  5. Medicinal smoke reduces airborne bacteria.

    PubMed

    Nautiyal, Chandra Shekhar; Chauhan, Puneet Singh; Nene, Yeshwant Laxman

    2007-12-01

    This study represents a comprehensive analysis and scientific validation of our ancient knowledge about the effect of ethnopharmacological aspects of natural products' smoke for therapy and health care on airborne bacterial composition and dynamics, using the Biolog microplate panels and Microlog database. We have observed that 1h treatment of medicinal smoke emanated by burning wood and a mixture of odoriferous and medicinal herbs (havan sámagri=material used in oblation to fire all over India), on aerial bacterial population caused over 94% reduction of bacterial counts by 60 min and the ability of the smoke to purify or disinfect the air and to make the environment cleaner was maintained up to 24h in the closed room. Absence of pathogenic bacteria Corynebacterium urealyticum, Curtobacterium flaccumfaciens, Enterobacter aerogenes (Klebsiella mobilis), Kocuria rosea, Pseudomonas syringae pv. persicae, Staphylococcus lentus, and Xanthomonas campestris pv. tardicrescens in the open room even after 30 days is indicative of the bactericidal potential of the medicinal smoke treatment. We have demonstrated that using medicinal smoke it is possible to completely eliminate diverse plant and human pathogenic bacteria of the air within confined space. PMID:17913417

  6. Pulsed Doppler lidar airborne scanner

    NASA Technical Reports Server (NTRS)

    Dimarzio, C. A.; Mcvicker, D. B.; Morrow, C. E.; Negus, C. C.

    1985-01-01

    This report covers the work accomplished during the reporting period on Pulsed Doppler Lidar Airborne Scanner and describes plans for the next reporting period. The objectives during the current phase of the contract are divided into four phases. Phase 1 includes ground testing of the system and analysis of data from the 1981 Severe Storms Test Flights. Phase 2 consists of preflight preparation and planning for the 1983 flight series. The flight test itself will be performed during Phase 3, and Phase 4 consists of post-flight analysis and operation of the system after that flight test. The range profile from five samples taken during Flight 10, around 1700 Z is given. The lowest curve is taken from data collected upwind of Mt. Shasta at about 10,000 feet of altitude, in a clear atmosphere, where no signals were observed. It thus is a good representation of the noise level as a function of range. The next curve was taken downwind of the mountain, and shows evidence of atmospheric returns. There is some question as to whether the data are valid at all ranges, or some ranges are contaminated by the others.

  7. Performance Basis for Airborne Separation

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    2008-01-01

    Emerging applications of Airborne Separation Assistance System (ASAS) technologies make possible new and powerful methods in Air Traffic Management (ATM) that may significantly improve the system-level performance of operations in the future ATM system. These applications typically involve the aircraft managing certain components of its Four Dimensional (4D) trajectory within the degrees of freedom defined by a set of operational constraints negotiated with the Air Navigation Service Provider. It is hypothesized that reliable individual performance by many aircraft will translate into higher total system-level performance. To actually realize this improvement, the new capabilities must be attracted to high demand and complexity regions where high ATM performance is critical. Operational approval for use in such environments will require participating aircraft to be certified to rigorous and appropriate performance standards. Currently, no formal basis exists for defining these standards. This paper provides a context for defining the performance basis for 4D-ASAS operations. The trajectory constraints to be met by the aircraft are defined, categorized, and assessed for performance requirements. A proposed extension of the existing Required Navigation Performance (RNP) construct into a dynamic standard (Dynamic RNP) is outlined. Sample data is presented from an ongoing high-fidelity batch simulation series that is characterizing the performance of an advanced 4D-ASAS application. Data of this type will contribute to the evaluation and validation of the proposed performance basis.

  8. Webinar: Airborne Data Discovery and Analysis with Toolsets for Airborne Data (TAD)

    Atmospheric Science Data Center

    2016-10-18

    Webinar: Airborne Data Discovery and Analysis with Toolsets for Airborne Data (TAD) Wednesday, October 26, 2016 Join us on ... based on high-level parameter groups, mission, platform and flight data ranges are available. Registration is now open.  Access the full ...

  9. An efficient analytical method for particle counting in evaluating airborne infectious isolation containment using fluorescent microspheres.

    PubMed

    Johnson, David L; Lynch, Robert A

    2008-04-01

    The containment performance of patient isolation enclosures, particularly expedient surge capacity enclosures, must be verified to protect health care providers and staff, other patients, and hospital visitors. Tracer gas methods are often used, but requirements for special equipment and training limit the technique's utility. A technologically simple yet accurate and precise particle-based technique is needed to measure the low count concentrations of escaping airborne particles that might be present outside an isolation enclosure. Reported here is the performance of such a technique employing micrometer-sized fluorescent polystyrene latex microspheres as a surrogate for pathogenic bioaerosols. Particles are released into the isolation enclosure, air is sampled inside and outside the room to capture airborne particles on 25 mm diameter filters, and the number of particles deposited on a filter is quantified using an optimized random field counting approach. The technique accurately estimates the number of surrogate bioaerosol particles on the filter, allowing calculation of the airborne particle concentrations inside and outside the enclosure, and the containment efficiency. This technique can be employed using generally available equipment and inexpensive supplies and also can minimize the number of particle counts that must be performed. The method is shown to be specific, sensitive, and accurate.

  10. An efficient analytical method for particle counting in evaluating airborne infectious isolation containment using fluorescent microspheres.

    PubMed

    Johnson, David L; Lynch, Robert A

    2008-04-01

    The containment performance of patient isolation enclosures, particularly expedient surge capacity enclosures, must be verified to protect health care providers and staff, other patients, and hospital visitors. Tracer gas methods are often used, but requirements for special equipment and training limit the technique's utility. A technologically simple yet accurate and precise particle-based technique is needed to measure the low count concentrations of escaping airborne particles that might be present outside an isolation enclosure. Reported here is the performance of such a technique employing micrometer-sized fluorescent polystyrene latex microspheres as a surrogate for pathogenic bioaerosols. Particles are released into the isolation enclosure, air is sampled inside and outside the room to capture airborne particles on 25 mm diameter filters, and the number of particles deposited on a filter is quantified using an optimized random field counting approach. The technique accurately estimates the number of surrogate bioaerosol particles on the filter, allowing calculation of the airborne particle concentrations inside and outside the enclosure, and the containment efficiency. This technique can be employed using generally available equipment and inexpensive supplies and also can minimize the number of particle counts that must be performed. The method is shown to be specific, sensitive, and accurate. PMID:18286424

  11. Drawing Evaluation Report for Sampling Equipment

    SciTech Connect

    BOGER, R.M.

    1999-09-09

    This document presents the results of a task to update the evaluation of River Protection Project (WP) sampling equipment drawings and updates the assigned drawings category as either essential, support, or general drawings. This report updates the drawing evaluation that was originally done per Engineering Task Plan For Truck 3 & 4 Drawing Compliance and Evaluation. The scope of this report is limited to updating the evaluation and identification of drawing category for drawings of certain tank waste sampling equipment for which the RPP Characterization Project has been assigned custody, including: vapor sampling, grab sampling, auger sampling, all core sampling equipment, and Light Duty Utility Arm (LDUA) (see LMHC contract No. 519, release 10). This report does not address drawings for other waste tank deployed equipment systems having similar assigned custody, such as, Cone Penetrometer system, or Long Length Contaminated Equipment (LLCE). The Cone Penetrometer system, which is depicted on vendor drawings, (not H- series), is not currently turned over to operations for deployment. The LLCE equipment was just recently assigned to Characterization Project and was not included in the original scope for this update and will be addressed in the evaluation update scheduled for later in fiscal year 1999, when equipment ownership is determined.

  12. Equipment of medical backpacks in mountain rescue.

    PubMed

    Elsensohn, Fidel; Soteras, Inigo; Resiten, Oliver; Ellerton, John; Brugger, Hermann; Paal, Peter

    2011-01-01

    We conducted a survey of equipment in medical backpacks for mountain rescuers and mountain emergency physicians. The aim was to investigate whether there are standards for medical equipment in mountain rescue organizations associated with the International Commission for Mountain Emergency Medicine (ICAR MEDCOM). A questionnaire was completed by 18 member organizations from 14 countries. Backpacks for first responders are well equipped to manage trauma, but deficiencies in equipment to treat medical emergencies were found. Paramedic and physicians' backpacks were well equipped to provide advanced life support and contained suitable drugs. We recommend that medical backpacks should be equipped in accordance with national laws, the medical emergencies in a given region, and take into account the climate, geography, medical training of rescuers, and funding of the organization. Automated external defibrillator provision should be improved. The effects of temperature on the drugs and equipment should be considered. Standards for training in the use and maintenance of medical tools should be enforced. First responders and physicians should only use familiar tools and drugs.

  13. Digital data from the Great Sand Dunes airborne gravity gradient survey, south-central Colorado

    USGS Publications Warehouse

    Drenth, B.J.; Abraham, J.D.; Grauch, V.J.S.; Labson, V.F.; Hodges, G.

    2013-01-01

    This report contains digital data and supporting explanatory files describing data types, data formats, and survey procedures for a high-resolution airborne gravity gradient (AGG) survey at Great Sand Dunes National Park, Alamosa and Saguache Counties, south-central Colorado. In the San Luis Valley, the Great Sand Dunes survey covers a large part of Great Sand Dunes National Park and Preserve. The data described were collected from a high-resolution AGG survey flown in February 2012, by Fugro Airborne Surveys Corp., on contract to the U.S. Geological Survey. Scientific objectives of the AGG survey are to investigate the subsurface structural framework that may influence groundwater hydrology and seismic hazards, and to investigate AGG methods and resolution using different flight specifications. Funding was provided by an airborne geophysics training program of the U.S. Department of Defense's Task Force for Business & Stability Operations.

  14. Assessing human exposure to airborne pollutants: Advances and opportunities

    SciTech Connect

    Lioy, P.J. )

    1991-08-01

    A committee which was convened by the National Research Council, recently completed an analysis of new methods and technologies for assessing exposure to air pollutants. The committee identified three major ways of determining human exposure to airborne pollutants. Monitoring the air around an individual with a portable personal air sampler is, of course, the most comprehensive and most accurate. It is also the costliest and most time consuming. The second method is more indirect and involves techniques such as measuring the amount of a contaminant with a stationary monitor and extrapolating exposure by means of personal activity records or mathematical models. Exposure to carbon monoxide inside a car, for example, might be roughly calculated from the amount of time spent in the car and the quantity of carbon monoxide in the car under typical operating conditions. The third method involves biological markers as a measure of the integrated dose within the body and of past contact with pollutants. For example, a marker for airborne lead exposure can be elevated lead levels in the blood. However, this must be weighed against contributions from other media. A final and major point made in the report is the need to have accurate and realistic assessments to ensure optimal reduction of human exposure. To accomplish this, exposure assessment research should be supported by government programs. Although not stated, such research should also be supported by other sectors, including the regulated community.

  15. [Medical Equipment Maintenance Methods].

    PubMed

    Liu, Hongbin

    2015-09-01

    Due to the high technology and the complexity of medical equipment, as well as to the safety and effectiveness, it determines the high requirements of the medical equipment maintenance work. This paper introduces some basic methods of medical instrument maintenance, including fault tree analysis, node method and exclusive method which are the three important methods in the medical equipment maintenance, through using these three methods for the instruments that have circuit drawings, hardware breakdown maintenance can be done easily. And this paper introduces the processing methods of some special fault conditions, in order to reduce little detours in meeting the same problems. Learning is very important for stuff just engaged in this area. PMID:26904890

  16. German mining equipment

    SciTech Connect

    Not Available

    1993-10-01

    The German mining equipment industry developed to supply machines and services to the local mining industry, i.e., coal, lignite, salt, potash, ore mining, industrial minerals, and quarrying. The sophistication and reliability of its technology also won it worldwide export markets -- which is just as well since former major domestic mining sectors such as coal and potash have declined precipitously, and others such as ore mining have all but disappeared. Today, German mining equipment suppliers focus strongly on export sales, and formerly unique German mining technologies such as continuous mining with bucket wheel excavators and conveyors for open pits, or plowing of underground coal longwalls are widely used abroad. The status of the German mining equipment industry is reviewed.

  17. Equipment Operational Requirements

    SciTech Connect

    Greenwalt, B; Henderer, B; Hibbard, W; Mercer, M

    2009-06-11

    The Iraq Department of Border Enforcement is rich in personnel, but poor in equipment. An effective border control system must include detection, discrimination, decision, tracking and interdiction, capture, identification, and disposition. An equipment solution that addresses only a part of this will not succeed, likewise equipment by itself is not the answer without considering the personnel and how they would employ the equipment. The solution should take advantage of the existing in-place system and address all of the critical functions. The solutions are envisioned as being implemented in a phased manner, where Solution 1 is followed by Solution 2 and eventually by Solution 3. This allows adequate time for training and gaining operational experience for successively more complex equipment. Detailed descriptions of the components follow the solution descriptions. Solution 1 - This solution is based on changes to CONOPs, and does not have a technology component. It consists of observers at the forts and annexes, forward patrols along the swamp edge, in depth patrols approximately 10 kilometers inland from the swamp, and checkpoints on major roads. Solution 2 - This solution adds a ground sensor array to the Solution 1 system. Solution 3 - This solution is based around installing a radar/video camera system on each fort. It employs the CONOPS from Solution 1, but uses minimal ground sensors deployed only in areas with poor radar/video camera coverage (such as canals and streams shielded by vegetation), or by roads covered by radar but outside the range of the radar associated cameras. This document provides broad operational requirements for major equipment components along with sufficient operational details to allow the technical community to identify potential hardware candidates. Continuing analysis will develop quantities required and more detailed tactics, techniques, and procedures.

  18. SILEX Beacon equipment

    NASA Astrophysics Data System (ADS)

    Crepin, Pierre-Jean; Leblay, Pierrick; Haller, Regine; Tremillon, Isabelle; Sonon, Jean-Pierre

    1990-07-01

    The design of this equipment based on the use of nineteen 500 mW laser diodes is presented. The Beacon is a powerful and collimated optical source based upon semi-conductor lasers. This equipment is implemented in the SILEX GEO2 terminal and its function is to provide a continuous wave light beam towards the LEO or GEO1 satellites during the acquisition phases. The design was experimentally validated with a functional breadboard, and test results demonstrated the feasibility of every performance required by the SILEX system.

  19. Equipment Management Manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The NASA Equipment Management Manual (NHB 4200.1) is issued pursuant to Section 203(c)(1) of the National Aeronautics and Space Act of 1958, as amended (42 USC 2473), and sets forth policy, uniform performance standards, and procedural guidance to NASA personnel for the acquisition, management, and use of NASA-owned equipment. This revision is effective upon receipt. This is a controlled manual, issued in loose-leaf form, and revised through page changes. Additional copies for internal use may be obtained through normal distribution.

  20. Airborne radioactivity surveys in the Mojave Desert region, Kern, Riverside, and San Bernardino Counties, California

    USGS Publications Warehouse

    Moxham, Robert M.

    1952-01-01

    Airborne radioactivity surveys in the Mojave Desert region Kern, Riverside, and Bernardino counties were made in five areas recommended as favorable for the occurrence of radioactive raw materials: (1) Rock Corral area, San Bernardino County. (2) Searles Station area, Kern county. (3) Soledad area, Kern County. (4) White Tank area, Riverside and San Bernardino counties. (5) Harvard Hills area, San Bernardino County. Anomalous radiation was detected in all but the Harvard Hills area. The radioactivity anomalies detected in the Rock Corral area are of the greatest amplitude yet recorded by the airborne equipment over natural sources. The activity is apparently attributable to the thorium-beating mineral associated with roof pendants of crystalline metamorphic rocks in a granitic intrusive. In the Searles Station, Soledad, and White Tank area, several radioactivity anomalies of medium amplitude were recorded, suggesting possible local concentrations of radioactive minerals.

  1. Airborne Wind Shear Detection and Warning Systems. Second Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Spady, Amos A., Jr. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1990-01-01

    The Second Combined Manufacturers' and Technologists' Conference was hosted jointly by NASA Langley (LaRC) and the Federal Aviation Administration (FAA) in Williamsburg, Virginia, on October 18 to 20, 1988. The meeting was co-chaired by Dr. Roland Bowles of LaRC and Herbrt Schlickenmaier of the FAA. The purpose of the meeting was to transfer significant, ongoing results gained during the second year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.

  2. Airborne Wind Shear Detection and Warning Systems. Fourth Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Passman, Robert H. (Compiler)

    1992-01-01

    The Fourth Combined Manufacturers' and Technologists' Conference was hosted jointly by NASA Langley Research Center (LaRC) and the Federal Aviation Administration (FAA) in Williamsburg, Virginia, on April 14-16, 1992. The meeting was co-chaired by Dr. Roland Bowles of LaRC and Bob Passman of the FAA. The purpose of the meeting was to transfer significant ongoing results of the NASA/FAA Joint Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements. The present document has been compiled to record the essence of the technology updates and discussions which follow each.

  3. NASA SMD Airborne Science Capabilities for Development and Testing of New Instruments

    NASA Technical Reports Server (NTRS)

    Fladeland, Matthew

    2015-01-01

    The SMD NASA Airborne Science Program operates and maintains a fleet of highly modified aircraft to support instrument development, satellite instrument calibration, data product validation and earth science process studies. This poster will provide an overview of aircraft available to NASA researchers including performance specifications and modifications for instrument support, processes for requesting aircraft time and developing cost estimates for proposals, and policies and procedures required to ensure safety of flight.

  4. Lennox - Student Training Equipment.

    ERIC Educational Resources Information Center

    Lennox Industries, Inc., Marshalltown, IA.

    Presents a series of demonstration units designed by Lennox Industries for the purpose of training students to become familiar with Lennox mechanical equipment. Demonstrators are designed to present technical information in a clear simplified manner thus reducing frustration for the beginning trainee. The following demonstrators are available--(1)…

  5. Engineer Equipment Chief.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by engineer equipment chiefs. Addressed in the five individual units of the course are the following topics: construction management (planning, scheduling, and supervision);…

  6. The EQUIP Program

    ERIC Educational Resources Information Center

    Gibbs, John C.; Potter, Granville Bud; DiBiase, Ann-Marie; Devlin, Renee

    2008-01-01

    Youth who present anti-social behavior need powerful interventions that strengthen empathy, counter negative peer influence, and challenge thinking errors. This article recaps some key points about EQUIP, a Positive Peer Culture (PPC)-based cognitive behavioral intervention program for behaviorally at-risk youth, and notes how the program has…

  7. Dairy Equipment Lubrication

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Lake To Lake Dairy Cooperative, Manitowoc, Wisconsin, operates four plants in Wisconsin for processing milk, butter and cheese products from its 1,300 member farms. The large co-op was able to realize substantial savings by using NASA information for improved efficiency in plant maintenance. Under contract to Marshall Space Flight Center, Midwest Research Institute compiled a handbook consolidating information about commercially available lubricants. The handbook details chemical and physical properties, applications, specifications, test procedures and test data for liquid and solid lubricants. Lake To Lake's plant engineer used the handbook to effect savings in maintenance labor and materials costs by reducing the number of lubricants used on certain equipment. Strict U.S. Department of Agriculture and Food and Drug Administration regulations preclude lubrication changes n production equipment, but the co-op's maintenance chief was able to eliminate seven types of lubricants for ancillary equipment, such as compressors and high pressure pumps. Handbook data enabled him to select comparable but les expensive lubricants in the materials consolidation process, and simplified lubrication schedules and procedures. The handbook is in continuing use as a reference source when a new item of equipment is purchased.

  8. Equipment & New Products.

    ERIC Educational Resources Information Center

    Poitras, Adrian W., Ed.

    1977-01-01

    Presents information about equipment and new products such as the melting point instrument and TV-microscope coupler which are helpful in college science teaching. Descriptions of each product, how it operates, its prices, and address for ordering are presented. (HM)

  9. Engineer Equipment Operator.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by engineer equipment operators. Addressed in the seven individual units of the course are the following topics: introduction to Military Occupation Specialty (MOS) 1345…

  10. Basic Engineer Equipment Mechanic.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by basic engineer equipment mechanics. Addressed in the four individual units of the course are the following topics: mechanics and their tools (mechanics, hand tools, and power…

  11. 34 CFR 80.32 - Equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... TO STATE AND LOCAL GOVERNMENTS Post-Award Requirements Changes, Property, and Subawards § 80.32... paragraphs (c) through (e) of this section. (c) Use. (1) Equipment shall be used by the grantee or subgrantee... programs currently or previously supported by the Federal Government, providing such use will not...

  12. Graphic arts techniques and equipment: A compilation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Technology utilization of NASA sponsored projects involving graphic arts techniques and equipment is discussed. The subjects considered are: (1) modification to graphics tools, (1) new graphics tools, (3) visual aids for graphics, and (4) graphic arts shop hints. Photographs and diagrams are included to support the written material.

  13. 28 CFR 70.34 - Equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (INCLUDING SUBAWARDS) WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS AND OTHER NON-PROFIT ORGANIZATIONS...) The recipient must use the equipment in the project or program for which it was acquired as long as needed, whether or not the project or program continues to be supported by Federal funds and must...

  14. 32 CFR 32.34 - Equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... REQUIREMENTS FOR GRANTS AND AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT...) The recipient shall use the equipment in the project or program for which it was acquired as long as needed, whether or not the project or program continues to be supported by Federal funds and shall...

  15. 45 CFR 74.34 - Equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AND SUBAWARDS TO INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, OTHER NONPROFIT ORGANIZATIONS, AND... use the equipment in the project or program for which it was acquired as long as needed, whether or not the project or program continues to be supported by Federal funds and shall not encumber...

  16. 15 CFR 14.34 - Equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... GRANTS AND AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, OTHER NON-PROFIT, AND COMMERCIAL...) The recipient shall use the equipment in the project or program for which it was acquired as long as needed, whether or not the project or program continues to be supported by Federal funds and shall...

  17. 14 CFR 1260.134 - Equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Administrative Requirements for Grants and Cooperative Agreements With Institutions of Higher Education... the equipment in the project or program for which it was acquired as long as needed, whether or not the project or program continues to be supported by Federal funds and shall not encumber the...

  18. Airborne Microalgae: Insights, Opportunities, and Challenges.

    PubMed

    Tesson, Sylvie V M; Skjøth, Carsten Ambelas; Šantl-Temkiv, Tina; Löndahl, Jakob

    2016-04-01

    Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concentration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment, possibly influencing their deposition rates. This minireview presents a summary of these studies and traces the possible route, step by step, from established ecosystems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition, and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and the environment and state-of-the-art techniques to detect and model airborne microalga dispersal. More-detailed studies on the microalga atmospheric cycle, including, for instance, ice nucleation activity and transport simulations, are crucial for improving our understanding of microalga ecology, identifying microalga interactions with the environment, and preventing unwanted contamination events or invasions. PMID:26801574

  19. Airborne space laser communication system and experiments

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Ming; Zhang, Li-zhong; Meng, Li-Xin

    2015-11-01

    Airborne space laser communication is characterized by its high speed, anti-electromagnetic interference, security, easy to assign. It has broad application in the areas of integrated space-ground communication networking, military communication, anti-electromagnetic communication. This paper introduce the component and APT system of the airborne laser communication system design by Changchun university of science and technology base on characteristic of airborne laser communication and Y12 plan, especially introduce the high communication speed and long distance communication experiment of the system that among two Y12 plans. In the experiment got the aim that the max communication distance 144Km, error 10-6 2.5Gbps - 10-7 1.5Gbps capture probability 97%, average capture time 20s. The experiment proving the adaptability of the APT and the high speed long distance communication.

  20. Airborne pollen trends in the Iberian Peninsula.

    PubMed

    Galán, C; Alcázar, P; Oteros, J; García-Mozo, H; Aira, M J; Belmonte, J; Diaz de la Guardia, C; Fernández-González, D; Gutierrez-Bustillo, M; Moreno-Grau, S; Pérez-Badía, R; Rodríguez-Rajo, J; Ruiz-Valenzuela, L; Tormo, R; Trigo, M M; Domínguez-Vilches, E

    2016-04-15

    Airborne pollen monitoring is an effective tool for studying the reproductive phenology of anemophilous plants, an important bioindicator of plant behavior. Recent decades have revealed a trend towards rising airborne pollen concentrations in Europe, attributing these trends to an increase in anthropogenic CO2 emissions and temperature. However, the lack of water availability in southern Europe may prompt a trend towards lower flowering intensity, especially in herbaceous plants. Here we show variations in flowering intensity by analyzing the Annual Pollen Index (API) of 12 anemophilous taxa across 12 locations in the Iberian Peninsula, over the last two decades, and detecting the influence of the North Atlantic Oscillation (NAO). Results revealed differences in the distribution and flowering intensity of anemophilous species. A negative correlation was observed between airborne pollen concentrations and winter averages of the NAO index. This study confirms that changes in rainfall in the Mediterranean region, attributed to climate change, have an important impact on the phenology of plants.

  1. Airborne Microalgae: Insights, Opportunities, and Challenges

    PubMed Central

    Skjøth, Carsten Ambelas; Šantl-Temkiv, Tina; Löndahl, Jakob

    2016-01-01

    Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concentration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment, possibly influencing their deposition rates. This minireview presents a summary of these studies and traces the possible route, step by step, from established ecosystems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition, and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and the environment and state-of-the-art techniques to detect and model airborne microalga dispersal. More-detailed studies on the microalga atmospheric cycle, including, for instance, ice nucleation activity and transport simulations, are crucial for improving our understanding of microalga ecology, identifying microalga interactions with the environment, and preventing unwanted contamination events or invasions. PMID:26801574

  2. Urban greenness influences airborne bacterial community composition.

    PubMed

    Mhuireach, Gwynne; Johnson, Bart R; Altrichter, Adam E; Ladau, Joshua; Meadow, James F; Pollard, Katherine S; Green, Jessica L

    2016-11-15

    Urban green space provides health benefits for city dwellers, and new evidence suggests that microorganisms associated with soil and vegetation could play a role. While airborne microorganisms are ubiquitous in urban areas, the influence of nearby vegetation on airborne microbial communities remains poorly understood. We examined airborne microbial communities in parks and parking lots in Eugene, Oregon, using high-throughput sequencing of the bacterial 16S rRNA gene on the Illumina MiSeq platform to identify bacterial taxa, and GIS to measure vegetation cover in buffer zones of different diameters. Our goal was to explore variation among highly vegetated (parks) versus non-vegetated (parking lots) urban environments. A secondary objective was to evaluate passive versus active collection methods for outdoor airborne microbial sampling. Airborne bacterial communities from five parks were different from those of five parking lots (p=0.023), although alpha diversity was similar. Direct gradient analysis showed that the proportion of vegetated area within a 50m radius of the sampling station explained 15% of the variation in bacterial community composition. A number of key taxa, including several Acidobacteriaceae were substantially more abundant in parks, while parking lots had higher relative abundance of Acetobacteraceae. Parks had greater beta diversity than parking lots, i.e. individual parks were characterized by unique bacterial signatures, whereas parking lot communities tended to be similar to each other. Although parks and parking lots were selected to form pairs of nearby sites, spatial proximity did not appear to affect compositional similarity. Our results also showed that passive and active collection methods gave comparable results, indicating the "settling dish" method is effective for outdoor airborne sampling. This work sets a foundation for understanding how urban vegetation may impact microbial communities, with potential implications for designing

  3. Urban greenness influences airborne bacterial community composition.

    PubMed

    Mhuireach, Gwynne; Johnson, Bart R; Altrichter, Adam E; Ladau, Joshua; Meadow, James F; Pollard, Katherine S; Green, Jessica L

    2016-11-15

    Urban green space provides health benefits for city dwellers, and new evidence suggests that microorganisms associated with soil and vegetation could play a role. While airborne microorganisms are ubiquitous in urban areas, the influence of nearby vegetation on airborne microbial communities remains poorly understood. We examined airborne microbial communities in parks and parking lots in Eugene, Oregon, using high-throughput sequencing of the bacterial 16S rRNA gene on the Illumina MiSeq platform to identify bacterial taxa, and GIS to measure vegetation cover in buffer zones of different diameters. Our goal was to explore variation among highly vegetated (parks) versus non-vegetated (parking lots) urban environments. A secondary objective was to evaluate passive versus active collection methods for outdoor airborne microbial sampling. Airborne bacterial communities from five parks were different from those of five parking lots (p=0.023), although alpha diversity was similar. Direct gradient analysis showed that the proportion of vegetated area within a 50m radius of the sampling station explained 15% of the variation in bacterial community composition. A number of key taxa, including several Acidobacteriaceae were substantially more abundant in parks, while parking lots had higher relative abundance of Acetobacteraceae. Parks had greater beta diversity than parking lots, i.e. individual parks were characterized by unique bacterial signatures, whereas parking lot communities tended to be similar to each other. Although parks and parking lots were selected to form pairs of nearby sites, spatial proximity did not appear to affect compositional similarity. Our results also showed that passive and active collection methods gave comparable results, indicating the "settling dish" method is effective for outdoor airborne sampling. This work sets a foundation for understanding how urban vegetation may impact microbial communities, with potential implications for designing

  4. Predictors of airborne endotoxin concentrations in inner city homes.

    PubMed

    Mazique, D; Diette, G B; Breysse, P N; Matsui, E C; McCormack, M C; Curtin-Brosnan, J; Williams, D L; Peng, R D; Hansel, N N

    2011-05-01

    Few studies have assessed in home factors which contribute to airborne endotoxin concentrations. In 85 inner city Baltimore homes, we found no significant correlation between settled dust and airborne endotoxin concentrations. Certain household activities and characteristics, including frequency of dusting, air conditioner use and type of flooring, explained 36-42% of the variability of airborne concentrations. Measurements of both airborne and settled dust endotoxin concentrations may be needed to fully characterize domestic exposure in epidemiologic investigations. PMID:21429483

  5. Sandia Multispectral Airborne Lidar for UAV Deployment

    SciTech Connect

    Daniels, J.W.; Hargis,Jr. P.J.; Henson, T.D.; Jordan, J.D.; Lang, A.R.; Schmitt, R.L.

    1998-10-23

    Sandia National Laboratories has initiated the development of an airborne system for W laser remote sensing measurements. System applications include the detection of effluents associated with the proliferation of weapons of mass destruction and the detection of biological weapon aerosols. This paper discusses the status of the conceptual design development and plans for both the airborne payload (pointing and tracking, laser transmitter, and telescope receiver) and the Altus unmanned aerospace vehicle platform. Hardware design constraints necessary to maintain system weight, power, and volume limitations of the flight platform are identified.

  6. Assessing inhalation exposure from airborne soil contaminants

    SciTech Connect

    Shinn, J.H.

    1998-04-01

    A method of estimation of inhalation exposure to airborne soil contaminants is presented. this method is derived from studies of airborne soil particles with radioactive tags. The concentration of contaminants in air (g/m{sup 3}) can be derived from the product of M, the suspended respirable dust mass concentration (g/m{sup 3}), S, the concentration of contaminant in the soil (g/g), and E{sub f}, an enhancement factor. Typical measurement methods and values of M, and E{sub f} are given along with highlights of experiences with this method.

  7. Detection and enumeration of airborne biocontaminants.

    PubMed

    Stetzenbach, Linda D; Buttner, Mark P; Cruz, Patricia

    2004-06-01

    The sampling and analysis of airborne microorganisms has received attention in recent years owing to concerns with mold contamination in indoor environments and the threat of bioterrorism. Traditionally, the detection and enumeration of airborne microorganisms has been conducted using light microscopy and/or culture-based methods; however, these analyses are time-consuming, laborious, subjective and lack sensitivity and specificity. The use of molecular methods, such as quantitative polymerase chain reaction amplification, can enhance monitoring strategies by increasing sensitivity and specificity, while decreasing the time required for analysis.

  8. 14 CFR 91.227 - Automatic Dependent Surveillance-Broadcast (ADS-B) Out equipment performance requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... once per second while airborne or while moving on the airport surface. (4) The aircraft must transmit its position at least once every 5 seconds while stationary on the airport surface. (f) Equipment with... Office of the Federal Register under 5 U.S.C. 552(a) and 1 CFR part 51. All approved materials...

  9. 14 CFR 91.227 - Automatic Dependent Surveillance-Broadcast (ADS-B) Out equipment performance requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... once per second while airborne or while moving on the airport surface. (4) The aircraft must transmit its position at least once every 5 seconds while stationary on the airport surface. (f) Equipment with... Office of the Federal Register under 5 U.S.C. 552(a) and 1 CFR part 51. All approved materials...

  10. Carbon Absorber Retrofit Equipment (CARE)

    SciTech Connect

    Klein, Eric

    2015-12-23

    During Project DE-FE0007528, CARE (Carbon Absorber Retrofit Equipment), Neumann Systems Group (NSG) designed, installed and tested a 0.5MW NeuStream® carbon dioxide (CO2) capture system using the patented NeuStream® absorber equipment and concentrated (6 molal) piperazine (PZ) as the solvent at Colorado Springs Utilities’ (CSU’s) Martin Drake pulverized coal (PC) power plant. The 36 month project included design, build and test phases. The 0.5MW NeuStream® CO2 capture system was successfully tested on flue gas from both coal and natural gas combustion sources and was shown to meet project objectives. Ninety percent CO2 removal was achieved with greater than 95% CO2product purity. The absorbers tested support a 90% reduction in absorber volume compared to packed towers and with an absorber parasitic power of less than 1% when configured for operation with a 550MW coal plant. The preliminary techno-economic analysis (TEA) performed by the Energy and Environmental Research Center (EERC) predicted an over-the-fence cost of $25.73/tonne of CO2 captured from a sub-critical PC plant.

  11. Real-time Data Processing and Visualization for the Airborne Scanning High-resolution Interferometer Sounder (S-HIS)

    NASA Astrophysics Data System (ADS)

    Taylor, J. K.; Revercomb, H. E.; Hoese, D.; Garcia, R. K.; Smith, W. L.; Weisz, E.; Tobin, D. C.; Best, F. A.; Knuteson, R. O.; Sullivan, D. V.; Barnes, C. M.; Van Gilst, D. P.

    2015-12-01

    The Hurricane and Severe Storm Sentinel (HS3) is a five-year NASA mission targeted to enhance the understanding of the formation and evolution of hurricanes in the Atlantic basin. Measurements were made from two NASA Global Hawk Unmanned Aircraft Systems (UAS) during the 2012 through 2014 hurricane seasons, with flights conducted from the NASA Wallops Flight Facility. The Global Hawk aircraft are capable of high altitude flights with durations of up to 30 hours, which allow extensive observations over distant storms, not typically possible with manned aircraft. The two NASA Global Hawks were equipped with instrument suites to study the storm environment, and inner core structure and processes, respectively. The Scanning High-resolution Interferometer Sounder (S-HIS), designed and built by the University of Wisconsin (UW) Space Science and Engineering Center (SSEC), measures emitted thermal radiation at high spectral resolution between 3.3 and 18 microns. The radiance measurements are used to obtain temperature and water vapor profiles of the Earth's atmosphere. The S-HIS spatial resolution is 2 km at nadir, across a 40 km ground swath from a nominal altitude of 20 kilometers. Since 1998, the S-HIS has participated in 33 field campaigns and has proven to be extremely dependable, effective, and highly accurate. It has flown on the NASA ER-2, DC-8, Proteus, WB-57, and Global Hawk airborne platforms. The UW S-HIS infrared sounder instrument is equipped with a real-time ground data processing system capable of delivering atmospheric profiles, radiance data, and engineering status to mission support scientists - all within less than one minute from the time of observation. This ground data processing system was assembled by a small team using existing software and proven practical techniques similar to a satellite ground system architecture. This summary outlines the design overview for the system and illustrates the data path, content, and outcomes.

  12. The Kauring Airborne Gravity Test Site, Western Australia

    NASA Astrophysics Data System (ADS)

    Lane, R. J.; Grujic, M.; Aravanis, T.; Tracey, R.; Dransfield, M.; Howard, D.; Smith, B.

    2009-12-01

    A test site for airborne gravity (AG) systems has been established at Kauring, approximately 100 km east of Perth, Western Australia. The site was chosen using a range of criteria that included being within 200 km of Jandakot Airport in Perth where most of the airborne systems would be based at one time or another when operating in Australia, being free of low level flight restrictions, having minimal human infrastructure in the central 20 by 20 km area, and the presence of gentle to rolling terrain rather than deeply incised topography or an extensive flat plain with very low relief. In anticipation of catering for airborne gravity gradiometer (AGG) systems, the site was required to have a gravity gradient feature with clear response in the wavelength range of 100 m to 2 km in a 5 by 5 km core region. The existence of closely-spaced, high quality ground gravity data would have been a positive factor for selecting a test site, but a search of the national gravity database indicated that there were no such data sets in the search area. Consequently, a ground vertical gravity acquisition program for the chosen site at Kauring was arranged by the Geological Survey of Western Australia (GSWA), Geoscience Australia (GA), and Rio Tinto Exploration. To support AG system tests, a 150 by 150 km area was covered with a maximum station spacing of 2 by 2 km, and the central area of 20 by 20 km was covered with a maximum station spacing of 0.5 by 0.5 km. These data are freely available from GSWA and GA. To support AGG system tests, the core 5 by 5 km area would need to have stations with much closer spacing (e.g., 100 by 100 m). A variety of publicly available digital terrain data sets are available (e.g., SRTM 3-second data (~90 m), ASTER GDEM 1-second data (~30 m), GEODATA 9-second data (~300 m), etc.). Acquisition of a LIDAR-based high-resolution digital terrain model (DTM) for the central 20 by 20 km area is being considered. A DTM of this nature for the core 5 by 5 km area

  13. Changing the Way NASA Airborne Science Data Are Managed: Challenges and Benefits

    NASA Astrophysics Data System (ADS)

    Walter, J.; Ramapriyan, H. K.

    2011-12-01

    For many years NASA has supported the collection of in-situ and remotely sensed science data through the use of airborne platforms. The Airborne Science Program, as part of NASA's Earth Science Division (ESD), currently supports and manages these investigations. The data collected under this program have many uses including, but certainly not limited to, calibration and validation of satellite based measurements and retrieval algorithms, testing new sensor technologies, and measuring the vertical and horizontal distribution of atmospheric constituents. In the past, management of the data was typically the responsibility of the individual principal investigators. Along the way many highly customized strategies for dealing with data discovery, access, distribution, formatting, and preservation issues were developed. In an effort to assure that airborne science data are managed in a more coherent and uniform manner across the program, airborne missions are now being required to adhere to the NASA Earth science data policy and a specific set of Level 1 data management requirements derived from that policy. These requirements include use of NASA ESD-approved data formats and metadata specifications, elimination of periods of exclusive access, and the transfer of data products to a NASA ESD-assigned Data Center. In addition, the manner in which each mission plans to meet these requirements must be documented in a data management plan. The good news is that there is a significant Earth science data management infrastructure in place that can be leveraged to help meet these requirements. However, much of this infrastructure was developed to support satellite missions. Since airborne data are different than satellite data in many ways, this presents some challenges. This presentation will describe the challenges as well as the benefits of this new data management policy.

  14. HVAC equipment and noise

    SciTech Connect

    Cerami, V.J.

    1996-03-01

    The purpose of this article is to define how the selection of HVAC equipment and layout impact the achievable noise criteria (NC) levels in occupied spaces. It will focus on the design of HVAC systems that employ floor-by-floor air handling/air conditioning units and their acoustical ramifications. This is of increasing importance since tenants require incorporation of noise limits in lease agreements.

  15. Antenna Calibration and Measurement Equipment

    NASA Technical Reports Server (NTRS)

    Rochblatt, David J.; Cortes, Manuel Vazquez

    2012-01-01

    A document describes the Antenna Calibration & Measurement Equipment (ACME) system that will provide the Deep Space Network (DSN) with instrumentation enabling a trained RF engineer at each complex to perform antenna calibration measurements and to generate antenna calibration data. This data includes continuous-scan auto-bore-based data acquisition with all-sky data gathering in support of 4th order pointing model generation requirements. Other data includes antenna subreflector focus, system noise temperature and tipping curves, antenna efficiency, reports system linearity, and instrument calibration. The ACME system design is based on the on-the-fly (OTF) mapping technique and architecture. ACME has contributed to the improved RF performance of the DSN by approximately a factor of two. It improved the pointing performances of the DSN antennas and productivity of its personnel and calibration engineers.

  16. Tropospheric Emission Spectrometer and Airborne Emission Spectrometer

    NASA Technical Reports Server (NTRS)

    Glavich, T.; Beer, R.

    1996-01-01

    The Tropospheric Emission Spectrometer (TES) is an instrument being developed for the NASA Earth Observing System Chemistry Platform. TES will measure the distribution of ozone and its precursors in the lower atmosphere. The Airborne Emission Spectrometer (AES) is an aircraft precursor to TES. Applicable descriptions are given of instrument design, technology challenges, implementation and operations for both.

  17. Toolsets for Airborne Data Beta Release

    Atmospheric Science Data Center

    2014-09-17

    ... for Airborne Data (TAD), developed at the Atmospheric Science Data Center (ASDC) at NASA Langley Research Center (LaRC) to promote ... and Houston, and DC3 will be added shortly. Early next year we plan to add DISCOVER-AQ Colorado and SEAC4RS to the TAD database. We ...

  18. A Technique for Airborne Aerobiological Sampling

    ERIC Educational Resources Information Center

    Mill, R. A.; And Others

    1972-01-01

    Report of a study of airborne micro-organisms collected over the Oklahoma City Metropolitan area and immediate environments, to investigate the possibility that a cloud of such organisms might account for the prevalence of some respiratory diseases in and around urban areas. (LK)

  19. 12. VIEW OF REMOTELY OPERATED EQUIPMENT. OPERATORS VIEWED THE EQUIPMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW OF REMOTELY OPERATED EQUIPMENT. OPERATORS VIEWED THE EQUIPMENT THROUGH A WATER-FILLED WINDOW. (10/8/81) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  20. Infrared airborne spectroradiometer survey results in the western Nevada area

    NASA Technical Reports Server (NTRS)

    Collins, W.; Chang, S. H.; Kuo, J. T.

    1982-01-01

    The Mark II airborne spectroradiometer system was flown over several geologic test sites in western Nevada. The infrared mineral absorption bands were observed and recorded for the first time using an airborne system with high spectral resolution in the 2.0 to 2.5 micron region. The data show that the hydrothermal alteration zone minerals, carbonates, and other minerals are clearly visible in the airborne survey mode. The finer spectral features that distinguish the various minerals with infrared bands are also clearly visible in the airborne survey data. Using specialized computer pattern recognition methods, it is possible to identify mineralogy and map alteration zones and lithologies by airborne spectroradiometer survey techniques.

  1. CALIOPE airborne CO{sub 2} DIAL (CACDI) system design

    SciTech Connect

    Mietz, D.; Archuleta, B.; Archuleta, J.

    1997-09-01

    Los Alamos National Laboratory is currently developing an airborne CO{sub 2} Differential Absorption Lidar (DIAL) system based on second generation technology demonstrated last summer at NTS. The CALIOPE Airborne CO{sub 2} DIAL (CACDI) system requirements have been compiled based on the mission objectives and SONDIAL model trade studies. Subsystem designs have been developed based on flow down from these system requirements, as well as experience gained from second generation ground tests and N-ABLE (Non-proliferation AirBorne Lidar Experiments) airborne experiments. This paper presents the CACDI mission objectives, system requirements, the current subsystem design, and provides an overview of the airborne experimental plan.

  2. Rapid assessment of water pollution by airborne measurement of chlorophyll content.

    NASA Technical Reports Server (NTRS)

    Arvesen, J. C.; Weaver, E. C.; Millard, J. P.

    1971-01-01

    Present techniques of airborne chlorophyll measurement are discussed as an approach to water pollution assessment. The differential radiometer, the chlorophyll correlation radiometer, and an infrared radiometer for water temperature measurements are described as the key components of the equipment. Also covered are flight missions carried out to evaluate the capability of the chlorophyll correlation radiometer in measuring the chlorophyll content in water bodies with widely different levels of nutrients, such as fresh-water lakes of high and low eutrophic levels, marine waters of high and low productivity, and an estuary with a high sediment content. The feasibility and usefulness of these techniques are indicated.

  3. Implementation plan for HANDI 2000 TWRS master equipment list

    SciTech Connect

    BENNION, S.I.

    1999-03-25

    This document presents the implementation plan for an additional deliverable of the HANDI 2000 Project. The PassPort Equipment Data module processes include those portions of the COTS PassPort system required to support tracking and management of the Master Equipment List for Lockheed Martin Hanford Company (LMHC) and custom software created to work with the COTS products.

  4. 14 CFR § 1260.27 - Equipment and other property.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... not included in the approved proposal budget, requires the prior approval of the NASA Grant Officer... February 2004 (a) NASA permits acquisition of special purpose and general purpose equipment specifically... the NASA Grant Officer for the acquisition of equipment shall be supported by written...

  5. 14 CFR 1260.27 - Equipment and other property.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... not included in the approved proposal budget, requires the prior approval of the NASA Grant Officer... 2004 (a) NASA permits acquisition of special purpose and general purpose equipment specifically... the NASA Grant Officer for the acquisition of equipment shall be supported by written...

  6. Twenty-Second Annual NASA Supply and Equipment Management Conference

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The status of actions from the 1988 conference is reviewed. Environmental safety issues, definitions, and regulations; contract transition, payload logistics transition, and safety and support equipment; supply products and services, bar code technology, and inventory accuracy; equipment management workshop topics; and contract property workshop topics are outlined.

  7. 14 CFR 1260.27 - Equipment and other property.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the NASA Grant Officer for the acquisition of equipment shall be supported by written documentation... 2004 (a) NASA permits acquisition of special purpose and general purpose equipment specifically... not included in the approved proposal budget, requires the prior approval of the NASA Grant...

  8. 14 CFR 1260.27 - Equipment and other property.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the NASA Grant Officer for the acquisition of equipment shall be supported by written documentation... 2004 (a) NASA permits acquisition of special purpose and general purpose equipment specifically... not included in the approved proposal budget, requires the prior approval of the NASA Grant...

  9. 14 CFR 1260.27 - Equipment and other property.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the NASA Grant Officer for the acquisition of equipment shall be supported by written documentation... 2004 (a) NASA permits acquisition of special purpose and general purpose equipment specifically... not included in the approved proposal budget, requires the prior approval of the NASA Grant...

  10. 45 CFR 304.24 - Equipment-Federal financial participation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 2 2010-10-01 2010-10-01 false Equipment-Federal financial participation. 304.24... HUMAN SERVICES FEDERAL FINANCIAL PARTICIPATION § 304.24 Equipment—Federal financial participation. Claims for Federal financial participation in the cost of equipment under the Child Support...

  11. Plutonium finishing plant safety systems and equipment list

    SciTech Connect

    Bergquist, G.G.

    1995-01-06

    The Safety Equipment List (SEL) supports Analysis Report (FSAR), WHC-SD-CP-SAR-021 and the Plutonium Finishing Plant Operational Safety Requirements (OSRs), WHC-SD-CP-OSR-010. The SEL is a breakdown and classification of all Safety Class 1, 2, and 3 equipment, components, or system at the Plutonium Finishing Plant complex.

  12. Highway Maintenance Equipment Operator. Miscellaneous Equipment. Training Materials.

    ERIC Educational Resources Information Center

    Perky, Sandra Dutreau; And Others

    This curriculum guide provides instructional materials to assist in training equipment operators in the safe and effective use of highway maintenance equipment. It includes six units of instruction covering the small, specialized equipment used in maintenance operations. Each unit of instruction consists of eight basic components: performance…

  13. Getting Equipped and Staying Equipped, Part 2: Finding the Funds.

    ERIC Educational Resources Information Center

    Jordahl, Gregory; Orwig, Ann

    1995-01-01

    Suggests how school libraries can fund computer equipment; gain assistance from high-tech businesses; develop business partnerships and foundations; lease equipment; accept equipment donations; fund raise; build money into the budget; and communicate school needs with budget voters. Sidebars include leasing advice; resources for parent-teacher…

  14. Highway Maintenance Equipment Operator. Specialized Equipment. Training Materials.

    ERIC Educational Resources Information Center

    Perky, Sandra Dutreau; And Others

    This curriculum guide provides instructional materials to assist in training equipment operators in the safe and effective use of highway maintenance equipment. It includes 18 units of instruction covering the large equipment used in maintenance operations. Each unit of instruction consists of eight basic components: performance objectives,…

  15. Initial Results from the DEEPWAVE Airborne and Ground-Based Measurement Program in New Zealand in 2014

    NASA Astrophysics Data System (ADS)

    Fritts, Dave; Smith, Ron; Taylor, Mike; Doyle, Jim; Eckermann, Steve; Dörnbrack, Andreas; Rapp, Markus; Williams, Biff; Bossert, Katrina; Pautet, Dominique

    2015-04-01

    The deep-propagating gravity wave experiment (DEEPWAVE) was performed on and over New Zealand, Tasmania, the Tasman Sea, and the Southern Ocean with core airborne measurements extending from 5 June to 21 July 2014 and supporting ground-based measurements beginning in late May and extending beyond the airborne component. DEEPWAVE employed two aircraft, the NSF/NCAR GV and the German DLR Falcon. The GV carried the standard flight-level instruments, dropsondes, and the Microwave Temperature Profiler (MTP). It also hosted new airborne lidar and imaging instruments built specifically to allow quantification of gravity waves (GWs) from sources at lower altitudes (e.g., orography, convection, jet streams, fronts, and secondary GW generation) throughout the stratosphere and into the mesosphere and lower thermosphere (MLT). The new GV lidars included a Rayleigh lidar measuring atmospheric density and temperature from ~20-60 km and a sodium resonance lidar measuring sodium density and temperature at ~75-100 km. An airborne Advanced Mesosphere Temperature Mapper (AMTM) was also developed for the GV, and together with additional IR "wing" cameras, imaged the OH airglow temperature and/or intensity fields extending ~900 km across the GV flight track. The DLR Falcon was equipped with its standard flight-level instruments and an aerosol Doppler lidar able to measure radial winds below the Falcon where aerosol backscatter was sufficient. Additional ground-based instruments included a 449 MHz boundary layer radar, balloons at multiple sites, two ground-based Rayleigh lidars, a second ground-based AMTM, a Fabry Perot interferometer measuring winds and temperatures at ~87 and 95 km, and a meteor radar measuring winds from ~80-100 km. DEEPWAVE performed 26 GV flights, 13 Falcon flights, and an extensive series of ground-based measurements whether or not the aircraft were flying. Together, these observed many diverse cases of GW forcing, propagation, refraction, and dissipation

  16. LESSONS LEARNED IN TESTING OF SAFEGUARDS EQUIPMENT.

    SciTech Connect

    PEPPER,S.; FARNITANO,M.; CARELLI,J.; HAZELTINE,J.; BAILEY,D.

    2001-10-29

    The International Atomic Energy Agency's (IAEA) Department of Safeguards uses complex instrumentation for the application of safeguards at nuclear facilities around the world. Often, this equipment is developed through cooperation with member state support programs because the Agency's requirements are unique and are not met by commercially available equipment. Before approving an instrument or system for routine inspection use, the IAEA subjects it to a series of tests designed to evaluate its reliability. In 2000, the IAEA began to observe operational failures in digital surveillance systems. In response to the observed failures, the IAEA worked with the equipment designer and manufacturer to determine the cause of failure. An action plan was developed to correct the performance issues and further test the systems to make sure that additional operational issues would not surface later. This paper addresses the steps taken to address operation issues related to digital image surveillance systems and the lessons learned during this process.

  17. Industry Support

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA Glenn Research Center (GRC) is responsible for the Advanced Communications for Air Traffic Management (AC/ATM) Project, a sub-element task of the Advanced Air Transportation Technologies (AATT) Project of the NASA Aviation System Capacity Program (ASC). The AC/ATM Project is developing new communications technologies and tools that will improve throughput in the U.S. Air Traffic Control System. The goal of the AC/ATM Project is to enable a communications infrastructure providing the capacity, efficiency, and flexibility necessary to realize benefits of the future mature Free-Flight environment. The capabilities and scope of communications technologies needed to accomplish this goal depend on characteristics of the future Free-Flight environment. There are many operational concepts being proposed for a future ATM system to enable user flexibility and efficiency. GRC s focus is on developing new technologies and techniques to support the digital communication of information involving airborne and ground-based users. However, the technologies and techniques must be integrated with the systems and services that industry and the Federal Aviation Administration (FAA) are developing. Thus, GRC needs to monitor and provide input to the various industry and FAA organizations and committees that are specifying new systems and services. Adoption of technologies by the FAA is partially dependent on acceptance of the technology by the aviation community. The commercial aviation community in particular would like to adopt technologies that can be used throughout the world. As a result, the adoption of common or at least compatible technologies by European countries is a key factor in getting commitments to those technologies by the US aviation community. GRC desires to keep informed of European activities that relate to aviation communication technologies, particularly those that are being supported by Eurocontrol.

  18. How to Use Equipment Therapeutically.

    ERIC Educational Resources Information Center

    Bowne, Douglas

    1986-01-01

    Shares therapeutic and economic practices surrounding equipment used in New York's Higher Horizons adventure program of therapy for troubled youth. Encourages educators, therapists, and administrators to explore relationship between equipment selection, program goals, and clients. (NEC)

  19. Precision Instrument and Equipment Repairers.

    ERIC Educational Resources Information Center

    Wyatt, Ian

    2001-01-01

    Explains the job of precision instrument and equipment repairers, who work on cameras, medical equipment, musical instruments, watches and clocks, and industrial measuring devices. Discusses duties, working conditions, employment and earnings, job outlook, and skills and training. (JOW)

  20. Monitoring equipment for multitasking multimicroprocessors

    SciTech Connect

    Negrini, R.; Pozzi, F.; Scarabottolo, N.

    1983-01-01

    The structure of monitoring equipment capable of evaluating performances of multimicroprocessor systems is described. The goals and field of application of such equipment are discussed, along with characteristics both at the hardware and software levels. 4 references.

  1. The use of an experimental room for monitoring of airborne concentrations of microorganisms, glass fibers, and total particles

    SciTech Connect

    Buttner, M.P.; Stetzenbach, L.D.

    1996-12-31

    An experimental room was used as a microcosm for studies of airborne particles and microorganisms in indoor environments. The interior of the room measures 4 by 4 by 2.2 m high and has a hardwood floor and the walls and ceiling are sheetrocked and coated with interior latex paint. Exterior walls are 11.4-cm thick plywood panels consisting of two outer sections of plywood insulated with fiber glass batts. The ceiling is of similar construction with 17.1-cm thick panels. Attached to the room entrance is an anteroom equipped with a HEPA-filtered air shower to reduce mixing of air resulting from entering and exiting during experiments. The room is equipped with a computer-controlled heating, ventilation, and cooling system. Temperature, relative humidity, air flow, and room pressure can be continuously monitored by probes located in the room and air handling system components. Several research projects have been conducted using this room including monitoring the potential for airborne glass fibers released from rigid fibrous ductboard, comparisons of commercially available samplers for monitoring of airborne fungal spores, and a study on the efficacy of vacuum bags to minimize dispersal of particles, including fungal spores from fungal-contaminated carpet. During studies designed to monitor airborne fiberglass, air samples were taken in the room serviced by new rigid fibrous glass ductwork, and the results were compared to those obtained in the room with bare metal ductwork installed. Monitoring of airborne fungal spores using the Andersen six-stage sampler, the high flow Spiral Biotech sampler, the Biotest RCS Plus sampler, and the Burkard spore trap sampler was performed following the release of Penicillium spores into the room through the supply register. Dispersal of carpet-associated particles and fungal spores was measured after vacuuming using conventional cellulose vacuum bags in comparison to recently developed bags.

  2. 13. EQUIPMENT USED IN CLEAN ROOM (102), INCLUDING ROYCO PARTICLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. EQUIPMENT USED IN CLEAN ROOM (102), INCLUDING ROYCO PARTICLE COUNTER (LEFT) AND STEREOSCOPE FOR MANUAL PARTICLE COUNTING (RIGHT) - Vandenberg Air Force Base, Space Launch Complex 3, Vehicle Support Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  3. 12. VIEW OF THE NONDESTRUCTIVE TESTING EQUIPMENT BEING USED TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW OF THE NON-DESTRUCTIVE TESTING EQUIPMENT BEING USED TO DETECT FLAWS IN FABRICATED COMPONENTS. (6/76) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  4. 45 CFR 304.24 - Equipment-Federal financial participation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Program are to be determined in accordance with subpart G of 45 CFR part 95. Requirements concerning the management and disposition of equipment under the Child Support Enforcement Program are also prescribed in subpart G of 45 CFR part 95....

  5. 45 CFR 304.24 - Equipment-Federal financial participation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Program are to be determined in accordance with subpart G of 45 CFR part 95. Requirements concerning the management and disposition of equipment under the Child Support Enforcement Program are also prescribed in subpart G of 45 CFR part 95....

  6. 45 CFR 304.24 - Equipment-Federal financial participation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Program are to be determined in accordance with subpart G of 45 CFR part 95. Requirements concerning the management and disposition of equipment under the Child Support Enforcement Program are also prescribed in subpart G of 45 CFR part 95....

  7. 45 CFR 304.24 - Equipment-Federal financial participation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Program are to be determined in accordance with subpart G of 45 CFR part 95. Requirements concerning the management and disposition of equipment under the Child Support Enforcement Program are also prescribed in subpart G of 45 CFR part 95....

  8. Shielding analysis of the long length contaminated equipment transportation package

    SciTech Connect

    Nelson, J.V., Westinghouse Hanford

    1996-05-10

    A shielding analysis of a potential long length contaminated equipment transportation package was completed. The analysis was performed to support the design of the transportation package and external shielding.

  9. 49 CFR 238.230 - Safety appliances-new equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... or supports considered part of the car body. Safety appliance brackets or supports will be considered part of the car body and will not be required to be mechanically fastened to the piece of passenger... appliance brackets and supports on passenger equipment shall not be welded to the car body unless the...

  10. Latest Advancement In Airborne Relative Gravity Instrumentation.

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2011-12-01

    Airborne gravity surveying has been performed with widely varying degrees of success since early experimentation with the Lacoste and Romberg dynamic meter in the 1950s. There are a number of different survey systems currently in operation including relative gravity meters and gradiometers. Airborne gravity is ideally suited to rapid, wide coverage surveying and is not significantly more expensive in more remote and inhospitable terrain which makes airborne measurements one of the few viable options available for cost effective exploration. As improved instrumentation has become available, scientific applications have also been able to take advantage for use in determining sub surface geologic structures, for example under ice sheets in Antarctica, and more recently direct measurement of the geoid to improve the vertical datum in the United States. In 2004, Lacoste and Romberg (now Micro-g Lacoste) decided to build on their success with the newly developed AirSea II dynamic meter and use that system as the basis for a dedicated airborne gravity instrument. Advances in electronics, timing and positioning technology created the opportunity to refine both the hardware and software, and to develop a truly turnkey system that would work well for users with little or no airborne gravity experience as well as those with more extensive experience. The resulting Turnkey Airborne Gravity System (TAGS) was successfully introduced in 2007 and has since been flown in applications from oil, gas and mineral exploration surveys to regional gravity mapping and geoid mapping. The system has been mounted in a variety of airborne platforms including depending on the application of interest. The development experience with the TAGS enabled Micro-g Lacoste to embark on a new project in 2010 to completely redesign the mechanical and electronic components of the system rather than continuing incremental upgrades. Building on the capabilities of the original TAGS, the objectives for the

  11. Validation of International Atomic Energy Agency Equipment Performance Requirements

    SciTech Connect

    Chiaro, PJ

    2004-02-17

    Performance requirements and testing protocols are needed to ensure that equipment used by the International Atomic Energy Agency (IAEA) is reliable. Oak Ridge National Laboratory (ORNL), through the US Support Program, tested equipment to validate performance requirements protocols used by the IAEA for the subject equipment categories. Performance protocol validation tests were performed in the Environmental Effects Laboratory in the categories for battery, DC power supply, and uninterruptible power supply (UPS). Specific test results for each piece of equipment used in the validation process are included in this report.

  12. Decision Analysis for Equipment Selection

    ERIC Educational Resources Information Center

    Cilliers, J. J.

    2005-01-01

    Equipment selection during process design is a critical aspect of chemical engineering and requires engineering judgment and subjective analysis. When educating chemical engineering students in the selection of proprietary equipment during design, the focus is often on the types of equipment available and their operating characteristics. The…

  13. Guidelines for Purchasing Playground Equipment.

    ERIC Educational Resources Information Center

    Neugebauer, Roger

    1998-01-01

    Notes that the purchase of playground equipment is one of the most important decisions center directors make. Offers advice from a number of playground equipment manufacturers that suggests directors consider activities, safety, construction, installation, and warranty when purchasing equipment. Also suggests interviewing other directors about…

  14. Airborne Oceanographic Lidar results. Spring removal experiments, April 1985

    SciTech Connect

    Hoge, F.

    1985-06-21

    This document contains the preliminary results from the analysis of data acquired with the NASA Airborne Oceanographic Lidar (AOL) during the recent Spring Removal Experiment (SPREX). A total of four flights were made with the NASA P-3A aircraft in direct support of the SPREX studies. In addition, a single pass extending from the Sargasso Sea, across the Gulf Stream, and into Savannah was flown as the final leg of the ONR sponsored BIOWATT experiment. The relative distribution of surface temperature and the concentration of chlorophyll and phycoerythrin photopigments across the study area are provided. Also included are along track profiles of sea surface temperature and chlorophyll and phycoerythrin fluorescence emission for each of the individual flight lines. Both the chlorophyll and phycoerythrin laser induced fluorescence signals have been normalized by the water Raman backscatter signal and are each expressed as relative ratio's.

  15. Aerosol classification by airborne high spectral resolution lidar observations

    NASA Astrophysics Data System (ADS)

    Groß, S.; Esselborn, M.; Weinzierl, B.; Wirth, M.; Fix, A.; Petzold, A.

    2013-03-01

    During four aircraft field experiments with the DLR research aircraft Falcon in 1998 (LACE), 2006 (SAMUM-1) and 2008 (SAMUM-2 and EUCAARI), airborne High Spectral Resolution Lidar (HSRL) and in situ measurements of aerosol microphysical and optical properties were performed. Altogether, the properties of six different aerosol types and aerosol mixtures - Saharan mineral dust, Saharan dust mixtures, Canadian biomass burning aerosol, African biomass burning mixture, anthropogenic pollution aerosol, and marine aerosol have been studied. On the basis of this extensive HSRL data set, we present an aerosol classification scheme which is also capable to identify mixtures of different aerosol types. We calculated mixing lines that allowed us to determine the contributing aerosol types. The aerosol classification scheme was supported by backward trajectory analysis and validated with in-situ measurements. Our results demonstrate that the developed aerosol mask is capable to identify complex stratifications with different aerosol types throughout the atmosphere.

  16. An Airborne Conflict Resolution Approach Using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Mondoloni, Stephane; Conway, Sheila

    2001-01-01

    An airborne conflict resolution approach is presented that is capable of providing flight plans forecast to be conflict-free with both area and traffic hazards. This approach is capable of meeting constraints on the flight plan such as required times of arrival (RTA) at a fix. The conflict resolution algorithm is based upon a genetic algorithm, and can thus seek conflict-free flight plans meeting broader flight planning objectives such as minimum time, fuel or total cost. The method has been applied to conflicts occurring 6 to 25 minutes in the future in climb, cruise and descent phases of flight. The conflict resolution approach separates the detection, trajectory generation and flight rules function from the resolution algorithm. The method is capable of supporting pilot-constructed resolutions, cooperative and non-cooperative maneuvers, and also providing conflict resolution on trajectories forecast by an onboard FMC.

  17. Automated counting of airborne asbestos fibers by a high-throughput microscopy (HTM) method.

    PubMed

    Cho, Myoung-Ock; Yoon, Seonghee; Han, Hwataik; Kim, Jung Kyung

    2011-01-01

    Inhalation of airborne asbestos causes serious health problems such as lung cancer and malignant mesothelioma. The phase-contrast microscopy (PCM) method has been widely used for estimating airborne asbestos concentrations because it does not require complicated processes or high-priced equipment. However, the PCM method is time-consuming and laborious as it is manually performed off-site by an expert. We have developed a high-throughput microscopy (HTM) method that can detect fibers distinguishable from other spherical particles in a sample slide by image processing both automatically and quantitatively. A set of parameters for processing and analysis of asbestos fiber images was adjusted for standard asbestos samples with known concentrations. We analyzed sample slides containing airborne asbestos fibers collected at 11 different workplaces following PCM and HTM methods, and found a reasonably good agreement in the asbestos concentration. Image acquisition synchronized with the movement of the robotic sample stages followed by an automated batch processing of a stack of sample images enabled us to count asbestos fibers with greatly reduced time and labors. HTM should be a potential alternative to conventional PCM, moving a step closer to realization of on-site monitoring of asbestos fibers in air.

  18. Airborne gamma radiation measurements of soil moisture during FIFE: Activities and results

    NASA Technical Reports Server (NTRS)

    Peck, Eugene L.

    1992-01-01

    Soil moisture measurements were obtained during the summer of 1987 and 1989 near Manhattan, Kansas, using the National Weather Service (NWS) airborne gamma radiation system. A network of 24 flight lines were established over the research area. Airborne surveys were flown daily during two intensive field campaigns. The data collected was sufficient to modify the NWS standard operational method for estimating soil moisture for the Field Experiment (FIFE) flight lines. The average root mean square error of the soil moisture estimates for shorter FIFE flight lines was found to be 2.5 percent, compared with a reported value of 3.9 percent for NWS flight lines. Techniques were developed to compute soil moisture estimates for portions of the flight lines. Results of comparisons of the airborne gamma radiation soil moisture estimates with those obtained using the NASA Pushbroom Microwave Radiation (PBMR) system and hydrological model are presented. The airborne soil moisture measurements, and real averages computed using all remotely sensed and ground data, have been in support of the research of the many FIFE investigators whose overall goal was the upscale integration of models and the application of satellite remote sensing.

  19. A Mission Management Application Suite for Airborne Science Operations

    NASA Astrophysics Data System (ADS)

    Goodman, H. M.; Meyer, P. J.; Blakeslee, R.; Regner, K.; Hall, J.; He, M.; Conover, H.; Garrett, M.; Harper, J.; Smith, T.; Grewe, A.; Real Time Mission Monitor Team

    2011-12-01

    Collection of data during airborne field campaigns is a critically important endeavor. It is imperative to observe the correct phenomena at the right time - at the right place to maximize the instrument observations. Researchers at NASA Marshall Space Flight Center have developed an application suite known as the Real Time Mission Monitor (RTMM). This suite is comprised of tools for mission design, flight planning, aircraft visualization and tracking. The mission design tool allows scientists to set mission parameters such as geographic boundaries and dates of the campaign. Based on these criteria, the tool intelligently selects potential data sets from a data resources catalog from which the scientist is able to choose the aircraft, instruments, and ancillary Earth science data sets to be provided for use in the remaining tool suite. The scientists can easily reconfigure and add data sets of their choosing for use during the campaign. The flight planning tool permits the scientist to assemble aircraft flight plans and to plan coincident observations with other aircraft, spacecraft or in situ observations. Satellite and ground-based remote sensing data and modeling data are used as background layers to aid the scientist in the flight planning process. Planning is crucial to successful collection of data and the ability to modify the plan and upload to aircraft navigators and pilots is essential for the agile collection of data. Most critical to successful and cost effective collection of data is the capability to visualize the Earth science data (airborne instruments, radiosondes, radar, dropsondes, etc.) and track the aircraft in real time. In some instances, aircraft instrument data is provided to ground support personnel in near-real time to visualize with the flight track. This visualization and tracking aspect of RTMM provides a decision support capability in conjunction with scientific collaboration portals to allow for scientists on the ground to communicate

  20. Report of the first annual airborne weapons training technology review

    SciTech Connect

    Snyder, C.E. ); Payne, G.B.; Treitler, I.E. )

    1990-01-01

    This report documents the First Annual Airborne Weapons Training Technology Review. The Review was held at Oak Ridge Associated Universities from March 29 to 31, 1989. It was an exchange of ideas and information among the members of the network supporting the Naval Air Systems Command's (NAVAIR's) PMA205-11, Program Manager for Ordnance Training. This report describes the briefings and demonstrations presented at the Review, and summarizes the discussion at the informal caucus where significant issues were raised from the first two days' presentations. The report also contains the meeting agenda, a participant list with addresses and telephone numbers, a list of the Department of Defense activities represented, NAVAIR's follow-up communication, and a brief description of Martin Marietta Energy Systems, Inc.'s training technology project support. A broad range of topics related to training systems and training support was covered during the Review. Synopses of the presentations and demonstrations included here cover computer-based and interactive systems, portability of software, reuse of training systems for different weapons, standardization of trainers, instructional systems design, cognitive task analysis, tracking of training resources, and the application of Computer-aided Acquisition and Logistic Support.