Science.gov

Sample records for airborne system uas

  1. Airborne Collision Detection and Avoidance for Small UAS Sense and Avoid Systems

    NASA Astrophysics Data System (ADS)

    Sahawneh, Laith Rasmi

    The increasing demand to integrate unmanned aircraft systems (UAS) into the national airspace is motivated by the rapid growth of the UAS industry, especially small UAS weighing less than 55 pounds. Their use however has been limited by the Federal Aviation Administration regulations due to collision risk they pose, safety and regulatory concerns. Therefore, before civil aviation authorities can approve routine UAS flight operations, UAS must be equipped with sense-and-avoid technology comparable to the see-and-avoid requirements for manned aircraft. The sense-and-avoid problem includes several important aspects including regulatory and system-level requirements, design specifications and performance standards, intruder detecting and tracking, collision risk assessment, and finally path planning and collision avoidance. In this dissertation, our primary focus is on developing an collision detection, risk assessment and avoidance framework that is computationally affordable and suitable to run on-board small UAS. To begin with, we address the minimum sensing range for the sense-and-avoid (SAA) system. We present an approximate close form analytical solution to compute the minimum sensing range to safely avoid an imminent collision. The approach is then demonstrated using a radar sensor prototype that achieves the required minimum sensing range. In the area of collision risk assessment and collision prediction, we present two approaches to estimate the collision risk of an encounter scenario. The first is a deterministic approach similar to those been developed for Traffic Alert and Collision Avoidance (TCAS) in manned aviation. We extend the approach to account for uncertainties of state estimates by deriving an analytic expression to propagate the error variance using Taylor series approximation. To address unanticipated intruders maneuvers, we propose an innovative probabilistic approach to quantify likely intruder trajectories and estimate the probability of

  2. Airborne Collision Detection and Avoidance for Small UAS Sense and Avoid Systems

    NASA Astrophysics Data System (ADS)

    Sahawneh, Laith Rasmi

    The increasing demand to integrate unmanned aircraft systems (UAS) into the national airspace is motivated by the rapid growth of the UAS industry, especially small UAS weighing less than 55 pounds. Their use however has been limited by the Federal Aviation Administration regulations due to collision risk they pose, safety and regulatory concerns. Therefore, before civil aviation authorities can approve routine UAS flight operations, UAS must be equipped with sense-and-avoid technology comparable to the see-and-avoid requirements for manned aircraft. The sense-and-avoid problem includes several important aspects including regulatory and system-level requirements, design specifications and performance standards, intruder detecting and tracking, collision risk assessment, and finally path planning and collision avoidance. In this dissertation, our primary focus is on developing an collision detection, risk assessment and avoidance framework that is computationally affordable and suitable to run on-board small UAS. To begin with, we address the minimum sensing range for the sense-and-avoid (SAA) system. We present an approximate close form analytical solution to compute the minimum sensing range to safely avoid an imminent collision. The approach is then demonstrated using a radar sensor prototype that achieves the required minimum sensing range. In the area of collision risk assessment and collision prediction, we present two approaches to estimate the collision risk of an encounter scenario. The first is a deterministic approach similar to those been developed for Traffic Alert and Collision Avoidance (TCAS) in manned aviation. We extend the approach to account for uncertainties of state estimates by deriving an analytic expression to propagate the error variance using Taylor series approximation. To address unanticipated intruders maneuvers, we propose an innovative probabilistic approach to quantify likely intruder trajectories and estimate the probability of

  3. An airborne low SWaP-C UAS sense and avoid system

    NASA Astrophysics Data System (ADS)

    Wang, Zhonghai; Lin, Xingping; Xiang, Xingyu; Blasch, Erik; Pham, Khanh; Chen, Genshe; Shen, Dan; Jia, Bin; Wang, Gang

    2016-05-01

    This paper presents a low size, weight and power - cost (SWaP-C) airborne sense and avoid (ABSAA) system, which is based on a linear frequency modulated continuous wave (LFMCW) radar and can be mounted on small unmanned aircraft system (UAS). The system satisfies the constraint of the available sources on group 2/3 UAS. To obtain the desired sense and avoid range, a narrow band frequency (or range) scanning technique is applied for reducing the receiver's noise floor to improve its sensitivity, and a digital signal integration with fast Fourier transform (FFT) is applied to enhance the signal to noise ratio (SNR). The gate length and chirp rate are intelligently adapted to not only accommodate different object distances, speeds and approaching angle conditions, but also optimize the detection speed, resolution and coverage range. To minimize the radar blind zone, a higher chirp rate and a narrowband intermediate frequency (IF) filter are applied at the near region with a single antenna signal for target detection. The offset IF frequency between transmitter (TX) and receiver (RX) is designed to mitigate the TX leakage to the receiver, especially at close distances. Adaptive antenna gain and beam-width are utilized for searching at far distance and fast 360 degree middle range. For speeding up the system update rate, lower chirp rates and wider IF and baseband filters are applied for obtaining larger range scanning step length out of the near region. To make the system working with a low power transmitter (TX), multiple-antenna beamforming, digital signal integration with FFT, and a much narrower receiver (RX) bandwidth are applied at the far region. The ABSAA system working range is 2 miles with a 1W transmitter and single antenna signal detection, and it is 5 miles when a 5W transmitter and 4-antenna beamforming (BF) are applied.

  4. NASA's UAS [Unmanned Aircraft Systems] Related Activities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey

    2012-01-01

    NASA continues to operate all sizes of UAS in all classes of airspace both domestically and internationally. Missions range from highly complex operations in coordination with piloted aircraft, ground, and space systems in support of science objectives to single aircraft operations in support of aeronautics research. One such example is a scaled commercial transport aircraft being used to study recovery techniques due to large upsets. NASA's efforts to support routine UAS operations continued on several fronts last year. At the national level in the United States (U.S.), NASA continued its support of the UAS Executive Committee (ExCom) comprised of the Federal Aviation Administration (FAA), Department of Defense (DoD), Department of Homeland Security (DHS), and NASA. The committee was formed in recognition of the need of UAS operated by these agencies to access to the National Airspace System (NAS) to support operational, training, development and research requirements. Recommendations were received on how to operate both manned and unmanned aircraft in class D airspace and plans are being developed to validate and implement those recommendations. In addition the UAS ExCom has begun developing recommendations for how to achieve routine operations in remote areas as well as for small UAS operations in class G airspace. As well as supporting the UAS ExCom, NASA is a participant in the recently formed Aviation Rule Making Committee for UAS. This committee, established by the FAA, is intended to propose regulatory guidance which would enable routine civil UAS operations. As that effort matures NASA stands ready to supply the necessary technical expertise to help that committee achieve its objectives. By supporting both the UAS ExCom and UAS ARC, NASA is positioned to provide its technical expertise across the full spectrum of UAS airspace access related topic areas. The UAS NAS Access Project got underway this past year under the leadership of NASA s Aeronautics

  5. Unmanned Aerial System (UAS) Traffic Management (UTM): Enabling Low-Altitude Airspace and UAS Operations

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.

    2014-01-01

    Many civilian applications of Unmanned Aerial Systems (UAS) have been imagined ranging from remote to congested urban areas, including goods delivery, infrastructure surveillance, agricultural support, and medical services delivery. Further, these UAS will have different equipage and capabilities based on considerations such as affordability, and mission needs applications. Such heterogeneous UAS mix, along with operations such as general aviation, helicopters, gliders must be safely accommodated at lower altitudes. However, key infrastructure to enable and safely manage widespread use of low-altitude airspace and UAS operations therein does not exist. Therefore, NASA is exploring functional design, concept and technology development, and a prototype UAS Traffic Management (UTM) system. UTM will support safe and efficient UAS operations for the delivery of goods and services

  6. Unlocking the potential of small unmanned aircraft systems (sUAS) for Earth observation

    NASA Astrophysics Data System (ADS)

    Hugenholtz, C.; Riddell, K.; Barchyn, T. E.

    2012-12-01

    Small unmanned aircraft systems (sUAS, < 25 kg) are emerging as a viable alternative to conventional remote sensing platforms for Earth observation (EO). sUAS technology affords greater control, lower cost, and flexibility for scientists, and provides new opportunities to match the scale of sUAS data to the scale of the geophysical phenomenon under investigation. Although a mechanism is in place to make sUAS available to researchers and other non-military users through the US Federal Aviation Administration's Modernization and Reform Act of 2012 (FAAMRA), there are many regulatory hurdles before they are fully accepted and integrated into the National Airspace System. In this talk we will provide a brief overview of the regulatory landscape for sUAS, both in the USA and in Canada, where sUAS regulations are more flexible. We critically outline potential advantages and disadvantages of sUAS for EO applications under current and potential regulations. We find advantages: relatively low cost, potentially high temporal resolution, rapidly improving technology, and operational flexibility. We also find disadvantages: limited temporal and spatial extent, limited accuracy assessment and methodological development, and an immature regulatory landscape. From a case study we show an example of the accuracy of a photogrammetrically-derived digital terrain map (DTM) from sUAS imagery. We also compare the sUAS DTM to a LiDAR DTM. Our results suggest that sUAS-acquired imagery may provide a low-cost, rapid, and flexible alternative to airborne LiDAR. Overall, we are encouraged about the potential of sUAS for geophysical measurements; however, understanding and compliance with regulations is paramount to ensure that research is conducted legally and responsibly. Because UAS are new outside of military operations, we hope researchers will proceed carefully to ensure this great scientific opportunity remains a long term tool.

  7. Registration and Marking Requirements for UAS. Unmanned Aircraft System (UAS) Registration

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The registration of an aircraft is a prerequisite for issuance of a U.S. certificate of airworthiness by the FAA. The procedures and requirements for aircraft registration, and the subsequent issuance of registration numbers, are contained in FAR Part 47. However, the process/method(s) for applying the requirements of Parts 45 & 47 to Unmanned Aircraft Systems (UAS) has not been defined. This task resolved the application of 14 CFR Parts 45 and 47 to UAS. Key Findings: UAS are aircraft systems and as such the recommended approach to registration is to follow the same process for registration as manned aircraft. This will require manufacturers to comply with the requirements for 14 CFR 47, Aircraft Registration and 14 CFR 45, Identification and Registration Marking. In addition, only the UA should be identified with the N number registration markings. There should also be a documentation link showing the applicability of the control station and communication link to the UA. The documentation link can be in the form of a Type Certificate Data Sheet (TCDS) entry or a UAS logbook entry. The recommended process for the registration of UAS is similar to the manned aircraft process and is outlined in a 6-step process in the paper.

  8. Unmanned Aerial Systems (UAS): Evolving Trends

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal

    2015-01-01

    Near-term Goal: Enable initial low-altitude airspace and UAS operations with demonstrated safety as early as possible, within 5 years; Long-term Goal: Accommodate increased UAS operations with highest safety, efficiency, and capacity as much autonomously as possible (10-15 years).

  9. NASA UAS Integration into the NAS Project: Human Systems Integration

    NASA Technical Reports Server (NTRS)

    Shively, Jay

    2016-01-01

    This presentation provides an overview of the work the Human Systems Integration (HSI) sub-project has done on detect and avoid (DAA) displays while working on the UAS (Unmanned Aircraft System) Integration into the NAS project. The most recent simulation on DAA interoperability with Traffic Collision Avoidance System (TCAS) is discussed in the most detail. The relationship of the work to the larger UAS community and next steps are also detailed.

  10. High-Resolution Debris Flow Volume Mapping with Unmanned Aerial Systems (uas) and Photogrammetric Techniques

    NASA Astrophysics Data System (ADS)

    Adams, M. S.; Fromm, R.; Lechner, V.

    2016-06-01

    Debris flows cause an average € 30 million damages and 1-2 fatalities every year in Austria. Detailed documentation of their extent and magnitude is essential for understanding, preventing and mitigating these natural hazard events. The recent development of unmanned aerial systems (UAS) has provided a new possibility for on-demand high-resolution monitoring and mapping. Here, we present a study, where the spatial extent and volume of a large debris flow event were mapped with different UAS, fitted with commercial off-the-shelf sensors. Orthophotos and digital terrain models (DTM) were calculated using structure-from-motion photogrammetry software. Terrain height differences caused by the debris flow in the catchment and valley floor were derived by subtracting the pre-event airborne laser scanning (ALS) DTM from a post-event UAS-DTM. The analysis of the volumetric sediment budget showed, that approximately 265,000 m³ material was mobilised in the catchment, of which 45,000 m³ settled there; of the material, which reached the valley floor, 120,000 m³ was deposited, while another 10,000 m³ was eroded from there. The UAS-results were validated against ALS data and imagery from a traditional manned-aircraft photogrammetry campaign. In conclusion, the UAS-data can reach an accuracy and precision comparable to manned aircraft data, but with the added benefits of higher flexibility, easier repeatability, less operational constraints and higher spatial resolution.

  11. UAS-Systems Integration, Validation, and Diagnostics Simulation Capability

    NASA Technical Reports Server (NTRS)

    Buttrill, Catherine W.; Verstynen, Harry A.

    2014-01-01

    As part of the Phase 1 efforts of NASA's UAS-in-the-NAS Project a task was initiated to explore the merits of developing a system simulation capability for UAS to address airworthiness certification requirements. The core of the capability would be a software representation of an unmanned vehicle, including all of the relevant avionics and flight control system components. The specific system elements could be replaced with hardware representations to provide Hardware-in-the-Loop (HWITL) test and evaluation capability. The UAS Systems Integration and Validation Laboratory (UAS-SIVL) was created to provide a UAS-systems integration, validation, and diagnostics hardware-in-the-loop simulation capability. This paper discusses how SIVL provides a robust and flexible simulation framework that permits the study of failure modes, effects, propagation paths, criticality, and mitigation strategies to help develop safety, reliability, and design data that can assist with the development of certification standards, means of compliance, and design best practices for civil UAS.

  12. Modeling and Simulation of an UAS Collision Avoidance Systems

    NASA Technical Reports Server (NTRS)

    Oliveros, Edgardo V.; Murray, A. Jennifer

    2010-01-01

    This paper describes a Modeling and Simulation of an Unmanned Aircraft Systems (UAS) Collision Avoidance System, capable of representing different types of scenarios for UAS collision avoidance. Commercial and military piloted aircraft currently utilize various systems for collision avoidance such as Traffic Alert and Collision A voidance System (TCAS), Automatic Dependent Surveillance-Broadcast (ADS-B), Radar and ElectroOptical and Infrared Sensors (EO-IR). The integration of information from these systems is done by the pilot in the aircraft to determine the best course of action. In order to operate optimally in the National Airspace System (NAS) UAS have to work in a similar or equivalent manner to a piloted aircraft by applying the principle of "detect-see and avoid" (DSA) to other air traffic. Hence, we have taken these existing sensor technologies into consideration in order to meet the challenge of researching the modeling and simulation of an approximated DSA system. A Schematic Model for a UAS Collision Avoidance System (CAS) has been developed ina closed loop block diagram for that purpose. We have found that the most suitable software to carry out this task is the Satellite Tool Kit (STK) from Analytical Graphics Inc. (AGI). We have used the Aircraft Mission Modeler (AMM) for modeling and simulation of a scenario where a UAS is placed on a possible collision path with an initial intruder and then with a second intruder, but is able to avoid them by executing a right tum maneuver and then climbing. Radars have also been modeled with specific characteristics for the UAS and both intruders. The software provides analytical, graphical user interfaces and data controlling tools which allow the operator to simulate different conditions. Extensive simulations have been carried out which returned excellent results.

  13. Next Generation UAS Based Spectral Systems for Environmental Monitoring

    NASA Technical Reports Server (NTRS)

    Campbell, P.; Townsend, P.; Mandl, D.; Kingdon, C.; Ly, V.; Sohlberg, R.; Corp, L.; Cappelaere, P.; Frye, S.; Handy, M.; Nagol, J.; Ambrosia, V.; Navarro, F.

    2015-01-01

    This presentation provides information on the development of a small Unmanned Aerial System(UAS) with a low power, high performance Intelligent Payload Module (IPM) and a hyperspectral imager to enable intelligent gathering of science grade vegetation data over agricultural fields at about 150 ft. The IPM performs real time data processing over the image data and then enables the navigation system to move the UAS to locations where measurements are optimal for science. This is important because the small UAS typically has about 30 minutes of battery power and therefore over large agricultural fields, resource utilization efficiency is important. The key innovation is the shrinking of the IPM and the cross communication with the navigation software to allow the data processing to interact with desired way points while using Field Programmable Gate Arrays to enable high performance on large data volumes produced by the hyperspectral imager.

  14. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  15. Unmanned aircraft systems (UAS) activities at the Department of the Interior

    USGS Publications Warehouse

    Quirk, Bruce K.; Hutt, Michael E.

    2014-01-01

    informed decisions. It will also provide a digital baseline record that can be archived and used when monitoring future events or conditions. One possible future scenario has scientists carrying sUAS into the field allowing quick deployment and operation to observe the environment or for emergency response. This scenario could also include a persistent monitoring capability provided by a UAS that can stay airborne over a small geographic area for days or weeks, or possibly longer. While the DOI focus is on sUAS, the Department recognizes that larger UAS systems will also play a role in meeting its mission. The Department anticipates meeting long-duration or specialized acquisition commitments, such as state or national aerial photography, by collaboration with other agencies or through commercial contracts. Even though the DOI continues to evaluate UAS and sensor technology to meet the Department’s mission, some of its bureaus are already moving towards an operational capability. The authors fully anticipate that by 2020 UAS will emerge as one of the primary platforms for DOI remote sensing applications.

  16. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project, UAS Control and Non-Payload Communication System Phase-1 Flight Test Results

    NASA Technical Reports Server (NTRS)

    Griner, James H.

    2014-01-01

    NASA's UAS Integration in the NAS project, has partnered with Rockwell Collins to develop a concept Control and Non-Payload Communication (CNPC) system prototype radio, operating on recently allocated UAS frequency spectrum bands. This prototype radio is being used to validate initial proposed performance requirements for UAS control communications. This presentation will give an overview of the current status of the prototype radio development, and results from phase 1 flight tests conducted during 2013.

  17. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project

    NASA Technical Reports Server (NTRS)

    Griner, James H.

    2013-01-01

    NASA's UAS Integration in the NAS project, has partnered with Rockwell Collins to develop a concept Control and Non-Payload Communication system prototype radio, operating on recently allocated UAS frequency spectrum bands. The prototype radio will be used to validate initial proposed performance requirements for UAS control communications. This presentation will give an overview of the current status of the design, development, and flight test planning for this prototype radio.

  18. Analysis of UAS hybrid propulsion systems

    NASA Astrophysics Data System (ADS)

    Rupe, Ryan M.

    Hybrid propulsion technology has been growing over last several years. With the steadily increasing cost of fuel and demand for unmanned aircraft systems to meet an ever expanding variety of responsibilities, research must be conducted into the development of alternative propulsion systems to reduce operating costs and optimize for strategic missions. One of the primary roles of unmanned aircraft systems is to provide aerial surveillance without detection. While electric propulsion systems provide a great option for lower acoustic signatures due to the lack of combustion and exhaust noise, they typically have low flight endurance due to battery limitations. Gas burning propulsion systems are ideal for long range/endurance missions due to the high energy density of hydrocarbon fuel, but can be much easier to detect. Research is conducted into the feasibility of gas/electric hybrid propulsion systems and the tradeoffs involved for reconnaissance mission scenarios. An analysis program is developed to optimize each component of the system and examine their effects on the overall performance of the aircraft. Each subsystem is parameterized and simulated within the program and tradeoffs between payload weight, range, and endurance are tested and evaluated to fulfill mission requirements.

  19. Georeferencing experiments with UAS imagery

    NASA Astrophysics Data System (ADS)

    Jóźków, G.; Toth, C.

    2014-11-01

    Comparing typical airborne mapping systems with Unmanned Airborne Systems (UAS) developed for mapping purposes, there are several advantages and disadvantages of both systems. The unquestionable benefits of UAS are the much lower costs of equipment and the simple operation; though, the regulations to fly UAS greatly vary by country. Low cost, however, means small sensor size and low weight, thus, sensors usually lack the quality, negatively impacting the accuracy of UAS data and, consequently, any derived mapping products. This work compares the performance of three different positioning approaches used for UAS image geolocation. The first one is based on using dual-frequency GPS data, post-processed in kinematic mode. The second approach uses the single frequency, code only GPS data that was acquired and processed by a geotagger, attached to mapping camera. Finally, the third one employs indirect image georeferencing, based on aerial triangulation using ground controls. As expected, the quality of data provided by the inexpensive GPS receiver (geotagger) is not suitable for mapping purposes. The two other approaches provided similar and reliable results, confirming that commonly used indirect georeferencing, which usually assures good solution, can be replaced by direct georeferencing. The latter technique results not only in reduction of field work, e.g. Ground Control Points (GCPs) surveying, but is appropriate for use with other sensors, such as active imaging technology, LiDAR, further extending UAS application potential.

  20. NASA Dryden's UAS Service Capabilities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeff

    2007-01-01

    The vision of NASA s Dryden Flight Research Center is to "fly what others only imagine." Its mission is to advance technology and science through flight. Objectives supporting the mission include performing flight research and technology integration to revolutionize aviation and pioneer aerospace technology, validating space exploration concepts, conducting airborne remote sensing and science missions, and supporting operations of the Space Shuttle and the International Space Station. A significant focus of effort in recent years has been on Unmanned Aircraft Systems (UAS), both in support of the Airborne Science Program and as research vehicles to advance the state of the art in UAS. Additionally, the Center has used its piloted aircraft in support of UAS technology development. In order to facilitate greater access to the UAS expertise that exists at the Center, that expertise has been organized around three major capabilities. The first is access to high-altitude, long-endurance UAS. The second is the establishment of a test range for small UAS. The third is safety case assessment support.

  1. UAS Integration into the NAS: Unmanned Aircraft System (UAS) Delegation of Separation

    NASA Technical Reports Server (NTRS)

    Fern, Lisa Carolynn; Kenny, Caitlin Ailis

    2012-01-01

    FAA Modernization and Reform Act of 2012 mandates UAS integration in the NAS by 2015. Operators must be able to safely maneuver UAS to maintain separation and collision avoidance. Delegated Separation is defined as the transfer of responsibility for maintaining separation between aircraft or vehicles from the air navigation service provider to the relevant flight operator, and will likely begin in sparsely trafficked areas before moving to more heavily populated airspace. As UAS operate primarily in areas with lower traffic density and perform maneuvers routinely that are currently managed through special handling, they have the advantage of becoming an early adopter of delegated separation. This experiment will examine if UAS are capable of performing delegated separation in 5 nm horizontal and 1000 ft vertical distances under two delegation conditions. In Extended Delegation, ATC are in charge of identifying problems and delegating to pilot identification and implementation of the solution and monitoring. In Full Delegation, the pilots are responsible for all tasks related to separation assurance: identification of problems and solutions, implementation and monitoring.

  2. Human Factors Guidelines for UAS in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Hobbs, Alan; Shively, R. Jay

    2013-01-01

    The ground control stations (GCS) of some UAS have been characterized by less-than-adequate human-system interfaces. In some cases this may reflect a failure to apply an existing regulation or human factors standard. In other cases, the problem may indicate a lack of suitable guidance material. NASA is leading a community effort to develop recommendations for human factors guidelines for GCS to support routine beyond-line-of-sight UAS operations in the national airspace system (NAS). In contrast to regulations, guidelines are not mandatory requirements. However, by encapsulating solutions to identified problems or areas of risk, guidelines can provide assistance to system developers, users and regulatory agencies. To be effective, guidelines must be relevant to a wide range of systems, must not be overly prescriptive, and must not impose premature standardization on evolving technologies. By assuming that a pilot will be responsible for each UAS operating in the NAS, and that the aircraft will be required to operate in a manner comparable to conventionally piloted aircraft, it is possible to identify a generic set of pilot tasks and the information, control and communication requirements needed to support these tasks. Areas where guidelines will be useful can then be identified, utilizing information from simulations, operational experience and the human factors literature. In developing guidelines, we recognize that existing regulatory and guidance material will, at times, provide adequate coverage of an area. In other cases suitable guidelines may be found in existing military or industry human factors standards. In cases where appropriate existing standards cannot be identified, original guidelines will be proposed.

  3. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  4. UAS Integration Into the NAS: An Examination of Baseline Compliance in the Current Airspace System

    NASA Technical Reports Server (NTRS)

    Fern, Lisa; Kenny, Caitlin A.; Shively, Robert J.; Johnson, Walter

    2012-01-01

    As a result of the FAA Modernization and Reform Act of 2012, Unmanned Aerial Systems (UAS) are expected to be integrated into the National Airspace System (NAS) by 2015. Several human factors challenges need to be addressed before UAS can safely and routinely fly in the NAS with manned aircraft. Perhaps the most significant challenge is for the UAS to be non-disruptive to the air traffic management system. Another human factors challenge is how to provide UAS pilots with intuitive traffic information in order to support situation awareness (SA) of their airspace environment as well as a see-and-avoid capability comparable to manned aircraft so that a UAS pilot could safely maneuver the aircraft to maintain separation and collision avoidance if necessary. A simulation experiment was conducted to examine baseline compliance of UAS operations in the current airspace system. Researchers also examined the effects of introducing a Cockpit Situation Display (CSD) into a UAS Ground Control Station (GCS) on UAS pilot performance, workload and situation awareness while flying in a positively controlled sector. Pilots were tasked with conducting a highway patrol police mission with a Medium Altitude Long Endurance (MALE) UAS in L.A. Center airspace with two mission objectives: 1) to reroute the UAS when issued new instructions from their commander, and 2) to communicate with Air Traffic Control (ATC) to negotiate flight plan changes and respond to vectoring and altitude change instructions. Objective aircraft separation data, workload ratings, SA data, and subjective ratings regarding UAS operations in the NAS were collected. Results indicate that UAS pilots were able to comply appropriately with ATC instructions. In addition, the introduction of the CSD improved pilot SA and reduced workload associated with UAS and ATC interactions.

  5. Safely Enabling Civilian Unmanned Aerial System (UAS) Operations in Low-Altitude Airspace by Unmanned Aerial System Traffic Management (UTM)

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal Hemchandra

    2015-01-01

    Many UAS will operate at lower altitude (Class G, below 2000 feet). There is an urgent need for a system for civilian low-altitude airspace and UAS operations. Stakeholders want to work with NASA to enable safe operations.

  6. Safely Enabling Civilian Unmanned Aerial System (UAS) Operations In Low-Altitude Airspace By Unmanned Aerial System Traffic Management (UTM)

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.

    2015-01-01

    Many UAS will operate at lower altitude (Class G, below 2000 feet)There is urgent need for a system for civilian low-altitude airspace and UAS operations. Stakeholders want to work with NASA to enable safe operations.

  7. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  8. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project Subcommittee Final

    NASA Technical Reports Server (NTRS)

    Johnson, Chuck; Griner, James H.; Hayhurst, Kelly J.; Shively, Robert J.; Consiglio, Maria; Muller, Eric; Murphy, James; Kim, Sam

    2012-01-01

    UAS Integration in the NAS Project overview with details from each of the subprojects. Subprojects include: Communications, Certification, Integrated Test and Evaluation, Human Systems Integration, and Separation Assurance/Sense and Avoid Interoperability.

  9. Rangeland remote sensing applications with unmanned aerial systems (UAS) in the national airspace: challenges and experiences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, civilian applications of unmanned aerial systems (UAS) have increased considerably due to their greater availability and the miniaturization of sensors, GPS, inertial measurement units, and other hardware. UAS are well suited for rangeland remote sensing applications, because of the...

  10. Classification of Unmanned Aircraft Systems. UAS Classification/Categorization for Certification

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Category, class, and type designations are primary means to identify appropriate aircraft certification basis, operating rules/limitations, and pilot qualifications to operate in the National Airspace System (NAS). The question is whether UAS fit into existing aircraft categories or classes, or are unique enough to justify the creation of a new category/class. In addition, the characteristics or capabilities, which define when an UAS becomes a regulated aircraft, must also be decided. This issue focuses on UAS classification for certification purposes. Several approaches have been considered for classifying UAS. They basically group into either using a weight/mass basis, or a safety risk basis, factoring in the performance of the UAS, including where the UAS would operate. Under existing standards, aircraft must have a Type Certificate and Certificate of Airworthiness, in order to be used for "compensation or hire", a major difference from model aircraft. Newer technologies may make it possible for very small UAS to conduct commercial services, but that is left for a future discussion to extend the regulated aircraft to a lower level. The Access 5 position is that UAS are aircraft and should be regulated above the weight threshold differentiating them from model airplanes. The recommended classification grouping is summarized in a chart.

  11. 76 FR 75565 - NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems (UAS) Subcommittee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-02

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Advisory Council; Aeronautics Committee; Unmanned Aircraft Systems (UAS) Subcommittee Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of Meeting....

  12. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  13. NASA Unmanned Aircraft (UA) Control and Non-Payload Communication (CNPC) System Waveform Trade Studies

    NASA Technical Reports Server (NTRS)

    Chavez, Carlos; Hammel, Bruce; Hammel, Allan; Moore, John R.

    2014-01-01

    Unmanned Aircraft Systems (UAS) represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the National Airspace System (NAS). To address this deficiency, NASA has established a project called UAS Integration in the NAS (UAS in the NAS), under the Integrated Systems Research Program (ISRP) of the Aeronautics Research Mission Directorate (ARMD). This project provides an opportunity to transition concepts, technology, algorithms, and knowledge to the Federal Aviation Administration (FAA) and other stakeholders to help them define the requirements, regulations, and issues for routine UAS access to the NAS. The safe, routine, and efficient integration of UAS into the NAS requires new radio frequency (RF) spectrum allocations and a new data communications system which is both secure and scalable with increasing UAS traffic without adversely impacting the Air Traffic Control (ATC) communication system. These data communications, referred to as Control and Non-Payload Communications (CNPC), whose purpose is to exchange information between the unmanned aircraft and the ground control station to ensure safe, reliable, and effective unmanned aircraft flight operation. A Communications Subproject within the UAS in the NAS Project has been established to address issues related to CNPC development, certification and fielding. The focus of the Communications Subproject is on validating and allocating new RF spectrum and data link communications to enable civil UAS integration into the NAS. The goal is to validate secure, robust data links within the allocated frequency spectrum for UAS. A vision, architectural concepts, and seed requirements for the future commercial UAS CNPC system have been developed by RTCA Special Committee 203 (SC-203) in the process

  14. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project - Gen-4 and Gen-5 Radio Plans

    NASA Technical Reports Server (NTRS)

    Griner, James H.

    2014-01-01

    NASA's UAS Integration in the NAS project, has partnered with Rockwell Collins to develop a concept Control and Non-Payload Communication (CNPC) system prototype radio, operating on recently allocated UAS frequency spectrum bands. This prototype radio is being used to validate initial proposed performance requirements for UAS control communications. This presentation will give an overview of the current plans for the prototype radio development.

  15. Ergonomics and workplace design: application of Ergo-UAS System in Fiat Group Automobiles.

    PubMed

    Vitello, M; Galante, L G; Capoccia, M; Caragnano, G

    2012-01-01

    Since 2008 Fiat Group Automobiles has introduced Ergo-UAS system for the balancing of production lines and to detect ergonomic issues. Ergo-UAS system integrates 2 specific methods: MTM-UAS for time measurement and EAWS as ergonomic method to evaluate biomechanical effort for each workstation. Fiat is using a software system to manage time evaluation and ergo characterization of production cycle (UAS) to perform line balancing and obtain allowance factor in all Italian car manufacturing plant. For new car models, starting from New Panda, FGA is applying Ergo-UAS for workplace design since the earliest phase of product development. This means that workplace design is based on information about new product, new layout, new work organization and is performed by a multidisciplinary team (Work Place Integration Team), focusing on several aspects of product and process: safety, quality and productivity. This allows to find and solve ergonomic threats before the start of production, by means of a strict cooperation between product development, engineering and design, manufacturing. Three examples of workstation design are presented in which application of Ergo-UAS was determinant to find out initial excessive levels of biomechanical load and helped the process designer to improve the workstations and define limits of acceptability. Technical activities (on product or on process), or organizational changes, that have been implemented in order to solve the problems are presented. A comparison between "before" and "new" ergonomic scores necessary to bring workstations in acceptable conditions were made.

  16. Ergonomics and workplace design: application of Ergo-UAS System in Fiat Group Automobiles.

    PubMed

    Vitello, M; Galante, L G; Capoccia, M; Caragnano, G

    2012-01-01

    Since 2008 Fiat Group Automobiles has introduced Ergo-UAS system for the balancing of production lines and to detect ergonomic issues. Ergo-UAS system integrates 2 specific methods: MTM-UAS for time measurement and EAWS as ergonomic method to evaluate biomechanical effort for each workstation. Fiat is using a software system to manage time evaluation and ergo characterization of production cycle (UAS) to perform line balancing and obtain allowance factor in all Italian car manufacturing plant. For new car models, starting from New Panda, FGA is applying Ergo-UAS for workplace design since the earliest phase of product development. This means that workplace design is based on information about new product, new layout, new work organization and is performed by a multidisciplinary team (Work Place Integration Team), focusing on several aspects of product and process: safety, quality and productivity. This allows to find and solve ergonomic threats before the start of production, by means of a strict cooperation between product development, engineering and design, manufacturing. Three examples of workstation design are presented in which application of Ergo-UAS was determinant to find out initial excessive levels of biomechanical load and helped the process designer to improve the workstations and define limits of acceptability. Technical activities (on product or on process), or organizational changes, that have been implemented in order to solve the problems are presented. A comparison between "before" and "new" ergonomic scores necessary to bring workstations in acceptable conditions were made. PMID:22317404

  17. Unmanned Aircraft System (UAS) Assessment of Melt Lakes in Greenland

    NASA Astrophysics Data System (ADS)

    Adler, J.; Steffen, K.

    2007-12-01

    The objective of this August 2007 week-long test campaign was to assess the viability of supraglacial lake depths with high-resolution hyperspectral measurements. The knowledge of melt lake depth is essential in determining the volume of water which forms on top of glacial surfaces during the annual melt season. The assessment of melt water volume is a crucial input parameter for modeling the Greenland ice sheet dynamics. UAS operations were flown out of western Greenland. Preliminary results from five hyperspectral data cubes are presented, indicating that supraglacial water depths can be determined from low altitude, high-resolution hyperspectral imaging. The pixel resolution of the hyperspectral sensor is 0.2 meters at an altitude of 300 meters above the ice surface; this provides accuracy that is two orders of magnitude better than imagery obtained by the MODIS sensor or other similar satellite-based methods. Further, a UAS-based hyperspectral approach enables the measurement of supraglacial lake depths under most cloud cover conditions. The capabilities of three UAS types (Manta, Silver Fox, and electric Silver Fox) flight tested in Greenland are discussed. Also, we present future field planning (2008 and 2009) to measure supraglacial lake depths with hyperspectral imagery in conjunction with a green laser altimeter.

  18. Targeted gene expression using the GAL4/UAS system in the silkworm Bombyx mori.

    PubMed Central

    Imamura, Morikazu; Nakai, Junichi; Inoue, Satoshi; Quan, Guo Xing; Kanda, Toshio; Tamura, Toshiki

    2003-01-01

    The silkworm Bombyx mori is one of the most well-studied insects in terms of both genetics and physiology and is recognized as the model lepidopteran insect. To develop an efficient system for analyzing gene function in the silkworm, we investigated the feasibility of using the GAL4/UAS system in conjunction with piggyBac vector-mediated germ-line transformation for targeted gene expression. To drive the GAL4 gene, we used two endogenous promoters that originated from the B. mori actin A3 (BmA3) and fibroin light-chain (FiL) genes and the artificial promoter 3xP3. GFP was used as the reporter. In initial tests of the function of the GAL4/UAS system, we generated transgenic animals that carried the UAS-GFP construct plus either BmA3-GAL4 or 3xP3-GAL4. GFP fluorescence was observed in the tissues of GFP-positive animals, in which both promoters drove GAL4 gene expression. Animals that possessed only the GAL4 gene or UAS-GFP construct did not show GFP fluorescence. In addition, as a further test of the ability of the GAL4/UAS system to drive tissue-specific expression we constructed FiL-GAL4 lines with 3xP3-CFP as the transformation marker. FiL-GAL4 x UAS-GFP crosses showed GFP expression in the posterior silk gland, in which the endogenous FiL gene is normally expressed. These results show that the GAL4/UAS system is applicable to B. mori and emphasize the potential of this system for controlled analyses of B. mori gene function. PMID:14668386

  19. Meeting of Experts on NASA's Unmanned Aircraft System (UAS) Integration in the National Airspace Systems (NAS) Project

    NASA Technical Reports Server (NTRS)

    Wolfe, Jean; Bauer, Jeff; Bixby, C.J.; Lauderdale, Todd; Shively, Jay; Griner, James; Hayhurst, Kelly

    2010-01-01

    Topics discussed include: Aeronautics Research Mission Directorate Integrated Systems Research Program (ISRP) and UAS Integration in the NAS Project; UAS Integration into the NAS Project; Separation Assurance and Collision Avoidance; Pilot Aircraft Interface Objectives/Rationale; Communication; Certification; and Integrated Tests and Evaluations.

  20. Geophex airborne unmanned survey system

    SciTech Connect

    Won, I.J.; Taylor, D.W.A.

    1995-03-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This nonintrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits two operators to rapidly conduct geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance, of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak anomalies can be detected.

  1. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.J.; Keiswetter, D.

    1995-10-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits rapid geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected.

  2. Evaluation of the Trade Space Between UAS Maneuver Performance and SAA System Performance Requirements

    NASA Technical Reports Server (NTRS)

    Jack, Devin P.; Hoffler, Keith D.; Johnson, Sally C.

    2014-01-01

    A need exists to safely integrate Unmanned Aircraft Systems (UAS) into the National Airspace System. Replacing manned aircraft's see-and-avoid capability in the absence of an onboard pilot is one of the key challenges associated with safe integration. Sense-and-avoid (SAA) systems will have to achieve yet-to-be-determined required separation distances for a wide range of encounters. They will also need to account for the maneuver performance of the UAS they are paired with. The work described in this paper is aimed at developing an understanding of the trade space between UAS maneuver performance and SAA system performance requirements. An assessment of current manned and unmanned aircraft performance was used to establish potential UAS performance test matrix bounds. Then, nearterm UAS integration work was used to narrow down the scope. A simulator was developed with sufficient fidelity to assess SAA system performance requirements for a wide range of encounters. The simulator generates closest-point-of-approach (CPA) data from the wide range of UAS performance models maneuvering against a single intruder with various encounter geometries. The simulator is described herein and has both a graphical user interface and batch interface to support detailed analysis of individual UAS encounters and macro analysis of a very large set of UAS and encounter models, respectively. Results from the simulator using approximate performance data from a well-known manned aircraft is presented to provide insight into the problem and as verification and validation of the simulator. Analysis of climb, descent, and level turn maneuvers to avoid a collision is presented. Noting the diversity of backgrounds in the UAS community, a description of the UAS aerodynamic and propulsive design and performance parameters is included. Initial attempts to model the results made it clear that developing maneuver performance groups is required. Discussion of the performance groups developed and how

  3. Use of Unmanned Aircraft System (UAS) in Response to the 2014 Eruption of Ontake Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Mori, T.; Hashimoto, T.; Terada, A.; Shinohara, H.; Kazahaya, R.; Yoshimoto, M.; Tanaka, R.

    2015-12-01

    On Sept. 27, 2014, a phreatic eruption occurred at Ontake volcano (3067 m a.s.l.), central Japan. The eruption caused an unprecedented volcanic disaster in the last 70 years in Japan. Search and rescue operations started soon after the eruption until they were suspended due to snowfall in late October. Considering the potential hazards of further explosive events and the severe winter condition, an approach to the summit area after late October was very difficult. To reveal the condition of the volcanic activity and foresee the trend, we considered it important to carry out volcanic gas surveys for the dense plumes in the vicinity of the vents using an unmanned aircraft system (UAS). For the surveys at Ontake volcano, the UAS was expected to fly about 8 km roundtrip distance at an altitude of over 3000 m. A multicopter with 8 rotors was adopted and we targeted four types of plume monitoring using the UAS; in-plume monitoring of multiple gas concentrations, SO2 flux measurement with UV spectroscopy, thermography of the vents, and in-plume particle sampling. In order to meet the 1 kg payload of the multicopter, some of the instruments were slimmed down.The UAS campaigns at Ontake volcano were carried out on Nov. 20-21, 2014 and on Jun. 2, 2015 from the safety distance of 3-3.5 km away from the crater. With the UAS surveys, we revealed that the SO2/H2S ratios of volcanic gas were closer to the hydrothermal origin instead of direct magma degassing. The second survey also pointed out that the SO2 emission decreased down below 10 ton/day by June 2015, by taking an advantage of flying the vicinity of the vents before the plume was diluted. Our surveys showed decreasing activity of the volcano, together with the advantages of using UAS in volcano monitoring for inaccessible conditions.

  4. Evaluating Alerting and Guidance Performance of a UAS Detect-And-Avoid System

    NASA Technical Reports Server (NTRS)

    Lee, Seung Man; Park, Chunki; Thipphavong, David P.; Isaacson, Douglas R.; Santiago, Confesor

    2016-01-01

    A key challenge to the routine, safe operation of unmanned aircraft systems (UAS) is the development of detect-and-avoid (DAA) systems to aid the UAS pilot in remaining "well clear" of nearby aircraft. The goal of this study is to investigate the effect of alerting criteria and pilot response delay on the safety and performance of UAS DAA systems in the context of routine civil UAS operations in the National Airspace System (NAS). A NAS-wide fast-time simulation study was conducted to assess UAS DAA system performance with a large number of encounters and a broad set of DAA alerting and guidance system parameters. Three attributes of the DAA system were controlled as independent variables in the study to conduct trade-off analyses: UAS trajectory prediction method (dead-reckoning vs. intent-based), alerting time threshold (related to predicted time to LoWC), and alerting distance threshold (related to predicted Horizontal Miss Distance, or HMD). A set of metrics, such as the percentage of true positive, false positive, and missed alerts, based on signal detection theory and analysis methods utilizing the Receiver Operating Characteristic (ROC) curves were proposed to evaluate the safety and performance of DAA alerting and guidance systems and aid development of DAA system performance standards. The effect of pilot response delay on the performance of DAA systems was evaluated using a DAA alerting and guidance model and a pilot model developed to support this study. A total of 18 fast-time simulations were conducted with nine different DAA alerting threshold settings and two different trajectory prediction methods, using recorded radar traffic from current Visual Flight Rules (VFR) operations, and supplemented with DAA-equipped UAS traffic based on mission profiles modeling future UAS operations. Results indicate DAA alerting distance threshold has a greater effect on DAA system performance than DAA alerting time threshold or ownship trajectory prediction method

  5. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.L.; Keiswetter, D.

    1995-12-31

    Ground-based surveys place personnel at risk due to the proximity of buried unexploded ordnance (UXO) items or by exposure to radioactive materials and hazardous chemicals. The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide stand-off capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected. The Geophex Airborne Unmanned Survey System (GAUSS) is designed to detect and locate small-scale anomalies at hazardous sites using magnetic and electromagnetic survey techniques. The system consists of a remotely-piloted, radio-controlled, model helicopter (RCH) with flight computer, light-weight geophysical sensors, an electronic positioning system, a data telemetry system, and a computer base-station. The report describes GAUSS and its test results.

  6. The system of forward-backward drift chambers in the UA2 detector

    NASA Astrophysics Data System (ADS)

    Conta, C.; Fraternali, M.; Fumagalli, G.; Gildemeister, O.; Goggi, V. G.; Hansen, J. D.; Hansen, P.; Impellizzeri, F.; Iuvino, G.; Kofoed-Hansen, O.; Livan, M.; Madsen, B.; Mantovani, G. C.; Mapelli, L.; Möllerud, R.; Pastore, F.; Rimoldi, A.; Rossini, B.; Vicini, A.

    1984-07-01

    The system of multiplane drift chambers for the forward-backward toroidal spectrometers of the UA2 experiment at the SPS pp¯ collider is described. Details about mechanical design and construction techniques are given. Results on the performance of the chambers are reported.

  7. Mapping with Small UAS: A Point Cloud Accuracy Assessment

    NASA Astrophysics Data System (ADS)

    Toth, Charles; Jozkow, Grzegorz; Grejner-Brzezinska, Dorota

    2015-12-01

    Interest in using inexpensive Unmanned Aerial System (UAS) technology for topographic mapping has recently significantly increased. Small UAS platforms equipped with consumer grade cameras can easily acquire high-resolution aerial imagery allowing for dense point cloud generation, followed by surface model creation and orthophoto production. In contrast to conventional airborne mapping systems, UAS has limited ground coverage due to low flying height and limited flying time, yet it offers an attractive alternative to high performance airborne systems, as the cost of the sensors and platform, and the flight logistics, is relatively low. In addition, UAS is better suited for small area data acquisitions and to acquire data in difficult to access areas, such as urban canyons or densely built-up environments. The main question with respect to the use of UAS is whether the inexpensive consumer sensors installed in UAS platforms can provide the geospatial data quality comparable to that provided by conventional systems. This study aims at the performance evaluation of the current practice of UAS-based topographic mapping by reviewing the practical aspects of sensor configuration, georeferencing and point cloud generation, including comparisons between sensor types and processing tools. The main objective is to provide accuracy characterization and practical information for selecting and using UAS solutions in general mapping applications. The analysis is based on statistical evaluation as well as visual examination of experimental data acquired by a Bergen octocopter with three different image sensor configurations, including a GoPro HERO3+ Black Edition, a Nikon D800 DSLR and a Velodyne HDL-32. In addition, georeferencing data of varying quality were acquired and evaluated. The optical imagery was processed by using three commercial point cloud generation tools. Comparing point clouds created by active and passive sensors by using different quality sensors, and finally

  8. High Altitude Long Endurance (HALE) Unmanned Aircraft System (UAS): Pilot Knowledge, Skills and Abilities

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This report summarizes the initial work accomplished by the ACCESS 5 Human System Integration (HSI) team to identify Unmanned Aircraft System (UAS) Pilot Knowledge, Skill and Ability (KSA), Training and Medical requirements. To derive this information the following tasks were accomplished: a) Mission and Function analyses were performed; b) Applicable FARs and FAA Advisory Circulars (ACs) were reviewed; c) Meetings were conducted with NASA and FAA Human Factors personnel; d) Surveys were completed by ACCESS 5 HSI Working group UA Pilots; e) Coordination meetings were conducted with the ACCESS 5 Policy IPT. The results of these efforts were used to develop a summary of the current qualifications. for an individual to function as a Pilot In Command (PIC) for UAs currently flown by UNITE companies, to develop preliminary Pilot KSAs for each phase of flight, and to delineate preliminary Pilot Training and Medical requirements. These results are to be provided to the Policy IPT to support their development of recommendations for UA Pilot Rating Criteria, training and medical qualifications. It is expected that the initially an instrument rated pilot will be required to serve as the PIC. However, as operational experience is gained, and automation is applied to accomplish various system functions, it is expected that pilot rating criteria could be lessened.

  9. Unmanned Aircraft System (UAS) Delegation of Separation in NextGen Airspace

    NASA Technical Reports Server (NTRS)

    Kenny, Caitlin A.; Shively, Robert J.; Jordan, Kevin

    2014-01-01

    The purpose of this study was to determine the feasibility of unmanned aircraft systems (UAS) performing delegated separation in the national airspace system (NAS). Delegated separation is the transfer of responsibility for maintaining separation between aircraft or vehicles from air navigation service providers to the relevant pilot or flight operator. The effects of delegated separation and traffic display information level were collected through performance, workload, and situation awareness measures. The results of this study show benefits related to the use of conflict detection alerts being shown on the UAS operator's cockpit situation display (CSD), and to the use of full delegation. Overall, changing the level of separation responsibility and adding conflict detection alerts on the CSD was not found to have an adverse effect on performance as shown by the low amounts of losses of separation. The use of conflict detection alerts on the CSD and full delegation responsibilities given to the UAS operator were found to create significantly reduced workload, significantly increased situation awareness and significantly easier communications between the UAS operator and air traffic controller without significantly increasing the amount of losses of separation.

  10. NASA UAS Update

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey Ervin; Mulac, Brenda Lynn

    2010-01-01

    Last year may prove to be a pivotal year for the National Aeronautics and Space Administration (NASA) in the Unmanned Aircraft Systems (UAS) arena, especially in relation to routine UAS access to airspace as NASA accepted an invitation to join the UAS Executive Committee (UAS ExCom). The UAS ExCom is a multi-agency, Federal executive-level committee comprised of the Federal Aviation Administration (FAA), Department of Defense (DoD), Department of Homeland Security (DHS), and NASA with the goals to: 1) Coordinate and align efforts between key Federal Government agencies to achieve routine safe federal public UAS operations in the National Airspace System (NAS); 2) Coordinate and prioritize technical, procedural, regulatory, and policy solutions needed to deliver incremental capabilities; 3) Develop a plan to accommodate the larger stakeholder community at the appropriate time; and 4) Resolve conflicts between Federal Government agencies (FAA, DoD, DHS, and NASA), related to the above goals. The committee was formed in recognition of the need of UAS operated by these agencies to access to the National Airspace System (NAS) to support operational, training, development and research requirements. In order to meet that need, technical, procedural, regulatory, and policy solutions are required to deliver incremental capabilities leading to routine access. The formation of the UAS ExCom is significant in that it represents a tangible commitment by FAA senior leadership to address the UAS access challenge. While the focus of the ExCom is government owned and operated UAS, civil UAS operations are bound to benefit by the progress made in achieving routine access for government UAS. As the UAS ExCom was forming, NASA's Aeronautics Research Mission Directorate began to show renewed interest in UAS, particularly in relation to the future state of the air transportation system under the Next Generation Air Transportation System (NextGen). NASA made funding from the American

  11. Airborne Relay-Based Regional Positioning System

    PubMed Central

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-01-01

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations. PMID:26029953

  12. Enabling Civilian Low-Altitude Airspace and Unmanned Aerial System (UAS) Operations

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal

    2014-01-01

    UAS operations will be safer if a UTM system is available to support the functions associated with Airspace management and geo-fencing (reduce risk of accidents, impact to other operations, and community concerns); Weather and severe wind integration (avoid severe weather areas based on prediction); Predict and manage congestion (mission safety);Terrain and man-made objects database and avoidance; Maintain safe separation (mission safety and assurance of other assets); Allow only authenticated operations (avoid unauthorized airspace use).

  13. Parameter Impact on Sharing Studies Between UAS CNPC Satellite Transmitters and Terrestrial Systems

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Wilson, Jeffrey D.; Bishop, William D.

    2015-01-01

    In order to provide a control and non-payload communication (CNPC) link for civil-use unmanned aircraft systems (UAS) when operating in beyond-line-of-sight (BLOS) conditions, satellite communication links are generally required. The International Civil Aviation Organization (ICAO) has determined that the CNPC link must operate over protected aviation safety spectrum allocations. Although a suitable allocation exists in the 5030-5091 MHz band, no satellites provide operations in this band and none are currently planned. In order to avoid a very lengthy delay in the deployment of UAS in BLOS conditions, it has been proposed to use existing satellites operating in the Fixed Satellite Service (FSS), of which many operate in several spectrum bands. Regulatory actions by the International Telecommunications Union (ITU) are needed to enable such a use on an international basis, and indeed Agenda Item (AI) 1.5 for the 2015 World Radiocommunication Conference (WRC) was established to decide on the enactment of possible regulatory provisions. As part of the preparation for AI 1.5, studies on the sharing FSS bands between existing services and CNPC for UAS are being contributed by NASA and others. These studies evaluate the potential impact of satellite CNPC transmitters operating from UAS on other in-band services, and on the potential impact of other in-band services on satellite CNPC receivers operating on UAS platforms. Such studies are made more complex by the inclusion of what are essentially moving FSS earth stations, compared to typical sharing studies between fixed elements. Hence, the process of determining the appropriate technical parameters for the studies meets with difficulty. In order to enable a sharing study to be completed in a less-than-infinite amount of time, the number of parameters exercised must be greatly limited. Therefore, understanding the impact of various parameter choices is accomplished through selectivity analyses. In the case of sharing

  14. UAS CNPC Satellite Link Performance - Sharing Spectrum with Terrestrial Systems

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Wilson, Jeffrey D.; Bishop, William D.

    2016-01-01

    In order to provide for the safe integration of unmanned aircraft systems into the National Airspace System, the control and non-payload communications (CNPC) link connecting the ground-based pilot with the unmanned aircraft must be highly reliable. A specific requirement is that it must operate using aviation safety radiofrequency spectrum. The 2012 World Radiocommunication Conference (WRC-12) provided a potentially suitable allocation for radio line-of-sight (LOS), terrestrial based CNPC link at 5030-5091 MHz. For a beyond radio line-of-sight (BLOS), satellite-based CNPC link, aviation safety spectrum allocations are currently inadequate. Therefore, the 2015 WRC will consider the use of Fixed Satellite Service (FSS) bands to provide BLOS CNPC under Agenda Item 1.5. This agenda item requires studies to be conducted to allow for the consideration of how unmanned aircraft can employ FSS for BLOS CNPC while maintaining existing systems. Since there are terrestrial Fixed Service systems also using the same frequency bands under consideration in Agenda Item 1.5 one of the studies required considered spectrum sharing between earth stations on-board unmanned aircraft and Fixed Service station receivers. Studies carried out by NASA have concluded that such sharing is possible under parameters previously established by the International Telecommunications Union. As the preparation for WRC-15 has progressed, additional study parameters Agenda Item 1.5 have been proposed, and some studies using these parameters have been added. This paper examines the study results for the original parameters as well as results considering some of the more recently proposed parameters to provide insight into the complicated process of resolving WRC-15 Agenda Item 1.5 and achieving a solution for BLOS CNPC for unmanned aircraft.

  15. Downscaling of Airborne Wind Energy Systems

    NASA Astrophysics Data System (ADS)

    Fechner, Uwe; Schmehl, Roland

    2016-09-01

    Airborne wind energy systems provide a novel solution to harvest wind energy from altitudes that cannot be reached by wind turbines with a similar nominal generator power. The use of a lightweight but strong tether in place of an expensive tower provides an additional cost advantage, next to the higher capacity factor and much lower total mass. This paper investigates the scaling effects of airborne wind energy systems. The energy yield of airborne wind energy systems, that work in pumping mode of operation is at least ten times higher than the energy yield of conventional solar systems. For airborne wind energy systems the yield is defined per square meter wing area. In this paper the dependency of the energy yield on the nominal generator power for systems in the range of 1 kW to 1 MW is investigated. For the onshore location Cabauw, The Netherlands, it is shown, that a generator of just 1.4 kW nominal power and a total system mass of less than 30 kg has the theoretical potential to harvest energy at only twice the price per kWh of large scale airborne wind energy systems. This would make airborne wind energy systems a very attractive choice for small scale remote and mobile applications as soon as the remaining challenges for commercialization are solved.

  16. Aeronautics Research Mission Directorate Integrated Systems Research Program (ISRP) and UAS Integration in the NAS Project

    NASA Technical Reports Server (NTRS)

    Wolfe, Jean

    2010-01-01

    Program Goal: Conduct research at an integrated system-level on promising concepts and technologies and explore, assess, or demonstrate the benefits in a relevant environment.Criteria for selection of projects for Integrated Systems Research: a) Technology has attained enough maturity in the foundational research program that they merit more in-depth evaluation at an integrated system level in a relevant environment. b) Technologies which systems analysis indicates have the most potential for contributing to the simultaneous attainment of goals. c) Technologies identified through stakeholder input as having potential for simultaneous attainment of goals. d) Research not being done by other government agencies and appropriate for NASA to conduct. e) Budget augmentation. Environmentally Responsible Aviation (ERA) Project Explore and assess new vehicle concepts and enabling technologies through system-level experimentation to simultaneously reduce fuel burn, noise, and emissions Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project Contribute capabilities that reduce technical barriers related to the safety and operational challenges associated with enabling routine UAS access to the NAS Innovative Concepts for Green Aviation (ICGA) Project Spur innovation by offering research opportunities to the broader aeronautics community through peer-reviewed proposals, with a focus on making aviation more eco-friendly. Establish incentive prizes similar to the Centennial Challenges and sponsor innovation demonstrations of selected technologies that show promise of reducing aviation s impact on the environment

  17. UAS Modeling of the Communication Links Study Results

    NASA Technical Reports Server (NTRS)

    Birr, Richard B.; Girgis, Nancy; Murray, Jennifer

    2011-01-01

    to ensure the 99.9% availability, certain values for the telemetry transmitter will have to be increased slightly from I watt up to about 4 watts which is reasonable. The results of this analysis show that it is possible to send commands, during the airborne segment, to the Unmanned Aircraft (UA) and have the UA send back the system health and status with high availability of at least 99.9% of the time. This 99.9% availability included the condition of heavy rain at 90 mm/hr as well as interference from adjacent satellites. The link budget values used in this report were based on the work from the working group.

  18. Analysis of Well-Clear Boundary Models for the Integration of UAS in the NAS

    NASA Technical Reports Server (NTRS)

    Upchurch, Jason M.; Munoz, Cesar A.; Narkawicz, Anthony J.; Chamberlain, James P.; Consiglio, Maria C.

    2014-01-01

    The FAA-sponsored Sense and Avoid Workshop for Unmanned Aircraft Systems (UAS) defnes the concept of sense and avoid for remote pilots as "the capability of a UAS to remain well clear from and avoid collisions with other airborne traffic." Hence, a rigorous definition of well clear is fundamental to any separation assurance concept for the integration of UAS into civil airspace. This paper presents a family of well-clear boundary models based on the TCAS II Resolution Advisory logic. Analytical techniques are used to study the properties and relationships satisfied by the models. Some of these properties are numerically quantifed using statistical methods.

  19. NASA's UAS Integration into the NAS: A Report on the Human Systems Integration Phase 1 Simulation Activities

    NASA Technical Reports Server (NTRS)

    Fern, Lisa; Rorie, R. Conrad; Shively, R. Jay

    2014-01-01

    In 2011 the National Aeronautics and Space Administration (NASA) began a five-year Project to address the technical barriers related to routine access of Unmanned Aerial Systems (UAS) in the National Airspace System (NAS). Planned in two phases, the goal of the first phase was to lay the foundations for the Project by identifying those barriers and key issues to be addressed to achieve integration. Phase 1 activities were completed two years into the five-year Project. The purpose of this paper is to review activities within the Human Systems Integration (HSI) subproject in Phase 1 toward its two objectives: 1) develop GCS guidelines for routine UAS access to the NAS, and 2) develop a prototype display suite within an existing Ground Control Station (GCS). The first objective directly addresses a critical barrier for UAS integration into the NAS - a lack of GCS design standards or requirements. First, the paper describes the initial development of a prototype GCS display suite and supporting simulation software capabilities. Then, three simulation experiments utilizing this simulation architecture are summarized. The first experiment sought to determine a baseline performance of UAS pilots operating in civil airspace under current instrument flight rules for manned aircraft. The second experiment examined the effect of currently employed UAS contingency procedures on Air Traffic Control (ATC) participants. The third experiment compared three GCS command and control interfaces on UAS pilot response times in compliance with ATC clearances. The authors discuss how the results of these and future simulation and flight-testing activities contribute to the development of GCS guidelines to support the safe integration of UAS into the NAS. Finally, the planned activities for Phase 2, including an integrated human-in-the-loop simulation and two flight tests are briefly described.

  20. Mapping of riparian invasive species with supervised classification of Unmanned Aerial System (UAS) imagery

    NASA Astrophysics Data System (ADS)

    Michez, Adrien; Piégay, Hervé; Jonathan, Lisein; Claessens, Hugues; Lejeune, Philippe

    2016-02-01

    Riparian zones are key landscape features, representing the interface between terrestrial and aquatic ecosystems. Although they have been influenced by human activities for centuries, their degradation has increased during the 20th century. Concomitant with (or as consequences of) these disturbances, the invasion of exotic species has increased throughout the world's riparian zones. In our study, we propose a easily reproducible methodological framework to map three riparian invasive taxa using Unmanned Aerial Systems (UAS) imagery: Impatiens glandulifera Royle, Heracleum mantegazzianum Sommier and Levier, and Japanese knotweed (Fallopia sachalinensis (F. Schmidt Petrop.), Fallopia japonica (Houtt.) and hybrids). Based on visible and near-infrared UAS orthophoto, we derived simple spectral and texture image metrics computed at various scales of image segmentation (10, 30, 45, 60 using eCognition software). Supervised classification based on the random forests algorithm was used to identify the most relevant variable (or combination of variables) derived from UAS imagery for mapping riparian invasive plant species. The models were built using 20% of the dataset, the rest of the dataset being used as a test set (80%). Except for H. mantegazzianum, the best results in terms of global accuracy were achieved with the finest scale of analysis (segmentation scale parameter = 10). The best values of overall accuracies reached 72%, 68%, and 97% for I. glandulifera, Japanese knotweed, and H. mantegazzianum respectively. In terms of selected metrics, simple spectral metrics (layer mean/camera brightness) were the most used. Our results also confirm the added value of texture metrics (GLCM derivatives) for mapping riparian invasive species. The results obtained for I. glandulifera and Japanese knotweed do not reach sufficient accuracies for operational applications. However, the results achieved for H. mantegazzianum are encouraging. The high accuracies values combined to

  1. Auxiliary DCP data acquisition system. [airborne system

    NASA Technical Reports Server (NTRS)

    Snyder, R. V.

    1975-01-01

    An airborne DCP Data Aquisition System has been designed to augment the ERTS satellite data recovery system. The DCP's are data collection platforms located at pertinent sites. With the appropriate sensors they are able to collect, digitally encode and transmit environmental parameters to the ERTS satellite. The satellite in turn relays these transmissions to a ground station for processing. The satellite is available for such relay duty a minimum of two times in a 24-hour period. The equipment is to obtain continuous DCP data during periods of unusual environmental activity--storms, floods, etc. Two circumstances contributed to the decision to design such a system; (1) Wallops Station utilizes surveillance aircraft in support of rocket launches and also in support of earth resources activities; (2) the area in which Wallops is located, the Delaware and Chesapeake Bay areas, are fertile areas for DCP usage. Therefore, by developing an airborne DCP receiving station and installing it on aircraft more continuous DCP data can be provided from sites in the surrounding areas at relatively low cost.

  2. Airborne space laser communication system and experiments

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Ming; Zhang, Li-zhong; Meng, Li-Xin

    2015-11-01

    Airborne space laser communication is characterized by its high speed, anti-electromagnetic interference, security, easy to assign. It has broad application in the areas of integrated space-ground communication networking, military communication, anti-electromagnetic communication. This paper introduce the component and APT system of the airborne laser communication system design by Changchun university of science and technology base on characteristic of airborne laser communication and Y12 plan, especially introduce the high communication speed and long distance communication experiment of the system that among two Y12 plans. In the experiment got the aim that the max communication distance 144Km, error 10-6 2.5Gbps - 10-7 1.5Gbps capture probability 97%, average capture time 20s. The experiment proving the adaptability of the APT and the high speed long distance communication.

  3. Tol2-mediated transgenesis, gene trapping, enhancer trapping, and Gal4-UAS system.

    PubMed

    Kawakami, K; Asakawa, K; Muto, A; Wada, H

    2016-01-01

    The Tol2 element is an active transposon that was found from the genome of the Japanese medaka fish. Since the Tol2 transposition system is active in all vertebrate cells tested so far, it has been applied to germ line transgenesis in various model animals including fish, frog, chicken, and mouse, and to gene transfer in culture cells. In zebrafish, the Tol2 system consists of the transposase mRNA and a Tol2 transposon-donor plasmid, and is introduced into fertilized eggs by microinjection. Thus genomic integrations of the Tol2 construct are generated in the germ lineage and transmitted to the offspring very efficiently. By using the Tol2 transposition system, we have developed important genetic methods, such as transgenesis, gene trapping, enhancer trapping, and the Gal4-UAS system in zebrafish and applied to many aspects of biological studies. In this chapter, we describe how these methods are performed. PMID:27443919

  4. Supporting the Use of Unmanned Aircraft Systems(UAS) for Global Science Observations in Civil and Segregated Airspace

    NASA Technical Reports Server (NTRS)

    Mulac, B. L.; Reider. K/

    2010-01-01

    Unmanned Aircraft Systems (UAS) are growing more popular within the earth science community as a way to augment measurements currently made with manned aircraft. UAS arc uniquely suited for applications that require long dwell times and/or in locations that are generally too dangerous for manned aircraft. Environmental monitoring in areas like the Arctic or obtaining data within a hurricane are just a couple of examples of many applications to which UAS are ideally suited. However, UAS are not without their challenges. Most unmanned aircraft are unable to meet current airspace regulations that are in place for manned aircraft, and specific airspace standards and regulations for unmanned aircraft do not exist. As a result, gaining access to civil airspace for flights is very difficult around the world. Under Term of Reference 48 within the ISPRS Commission 1, WGI/I: Standardization of Aircraft Interfaces, efforts have been made to understand and quantify the current state of UAS airspace access on a global scale. The results of these efforts will be presented along with examples of successful science missions that have been conducted internationally during the past year.

  5. Simulation system of airborne FLIR searcher

    NASA Astrophysics Data System (ADS)

    Sun, Kefeng; Li, Yu; Gao, Jiaobo; Wang, Jun; Wang, Jilong; Xie, Junhu; Ding, Na; Sun, Dandan

    2014-11-01

    Airborne Forward looking infra-red (FLIR) searcher simulation system can provide multi-mode simulated test environment that almost actual field environment, and can simulate integrated performance and external interface of airborne FLIR simulation system. Furthermore, the airborne FLIR searcher simulation system can support the algorithm optimization of image processing, and support the test and evaluation of electro-optical system, and also support the line test of software and evaluate the performance of the avionics system. The detailed design structure and information cross-linking relationship of each component are given in this paper. The simulation system is composed of the simulation center, the FLIR actuator, the FLIR emulator, and the display control terminal. The simulation center can generate the simulated target and aircraft flying data in the operation state of the airborne FLIR Searcher. The FLIR actuator can provide simulation scene. It can generate the infrared target and landform based scanning scene, response to the commands from simulation center and the FLIR actuator and operation control unit. The infrared image generated by the FLIR actuator can be processed by the FLIR emulator using PowerPC hardware framework and processing software based on VxWorks system. It can detect multi-target and output the DVI video and the multi-target detection information which corresponds to the working state of the FLIR searcher. Display control terminal can display the multi-target detection information in two-dimension situation format, and realize human-computer interaction function.

  6. Airborne laser sensors and integrated systems

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the

  7. Communications Technology Assessment for the Unmanned Aircraft System (UAS) Control and Non-Payload Communications (CNPC) Link

    NASA Technical Reports Server (NTRS)

    Bretmersky, Steven C.; Bishop, William D.; Dailey, Justin E.; Chevalier, Christine T.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is performing communications systems research for the Unmanned Aircraft System (UAS) in the National Airspace System (NAS) Project. One of the goals of the communications element is to select and test a communications technology for the UAS Control and Non-Payload Communications (CNPC) link. The GRC UAS Modeling and Simulation (M/S) Sub Team will evaluate the performance of several potential technologies for the CNPC link through detailed software simulations. In parallel, an industry partner will implement a technology in hardware to be used for flight testing. The task necessitated a technical assessment of existing Radio Frequency (RF) communications technologies to identify the best candidate systems for use as the UAS CNPC link. The assessment provides a basis for selecting the technologies for the M/S effort and the hardware radio design. The process developed for the technical assessments for the Future Communications Study1 (FCS) was used as an initial starting point for this assessment. The FCS is a joint Federal Aviation Administration (FAA) and Eurocontrol study on technologies for use as a future aeronautical communications link. The FCS technology assessment process methodology can be applied to the UAS CNPC link; however the findings of the FCS are not directly applicable because of different requirements between a CNPC link and a general aeronautical data link. Additional technologies were added to the potential technologies list from the State of the Art Unmanned Aircraft System Communication Assessment developed by NASA GRC2. This document investigates the state of the art of communications as related to UAS. A portion of the document examines potential communications systems for a UAS communication architecture. Like the FCS, the state of the art assessment surveyed existing communications technologies. It did not, however, perform a detailed assessment of the

  8. Airborne electronics for automated flight systems

    NASA Technical Reports Server (NTRS)

    Graves, G. B., Jr.

    1975-01-01

    The increasing importance of airborne electronics for use in automated flight systems is briefly reviewed with attention to both basic aircraft control functions and flight management systems for operational use. The requirements for high levels of systems reliability are recognized. Design techniques are discussed and the areas of control systems, computing and communications are considered in terms of key technical problems and trends for their solution.

  9. A Bird's-Eye View of Eco-Geomorphology From a Small Unmanned Aircraft System (UAS)

    NASA Astrophysics Data System (ADS)

    LeClair, A. J.; Hugenholtz, C.

    2012-12-01

    Physical disturbance regimes play important roles in shaping ecosystems and landscapes; however, our ability to detect disturbance often depends on the method and scale of observation. Here we use a relatively new method in order to detect and map the eco-geomorphic impacts of fossorial mammals in a grassland setting. It is well-known that digging and mound building activity by these animals is a form of biological disturbance that has a number of eco-geomorphic consequences, including: soil formation, hydrology, nutrient cycling, and succession. All these processes contribute to landscape heterogeneity and often increase local micro-topographic variations through mound formation. Most studies that have examined the eco-geomorphic role of fossorial mammals have been limited to observations using traditional field-based methods. While this has yielded important data about the localized effects, the cumulative, landscape-level impacts of such small-scale disturbance events are still largely unknown. While fossorial mammals such as pocket gophers (family Geomyidae) are assumed to be ubiquitous in the environments in which they occur, the small size of individual mounds has meant that mapping their biological footprint using traditional methods has been extremely difficult. Individual mounds disappear in the pixels of conventional remote sensing imagery, while their spatial distribution makes it impractical to study them beyond the plot scale. However, recent advances in both low cost, high-resolution digital cameras, and unmanned aerial systems (UAS), have made it possible to acquire landscape-level data that matches the scale of their disturbance, thus potentially bridging the gap between ground-based field methods and traditional remote sensing imagery. In this study we used UAS-acquired, sub-decimeter resolution imagery to map and quantify the extent of fossorial mammal disturbance in a 4 km2 area of the Great Sand Hills - a stabilized dune field in southwestern

  10. Enabling Earth Science Measurements with NASA Uas Capabilities

    NASA Astrophysics Data System (ADS)

    Albertson, R.; Schoenung, S.; Fladeland, M.; Cutler, F.; Tagg, B.

    2015-04-01

    NASA's Airborne Science Program (ASP) maintains a fleet of manned and unmanned aircraft for Earth Science measurements and observations. The unmanned aircraft systems (UAS) range in size from very large (Global Hawks) to medium (SIERRA, Viking) and relatively small (DragonEye). UAS fly from very low (boundary layer) to very high altitude (stratosphere). NASA also supports science and applied science projects using UAS operated by outside companies or agencies. The aircraft and accompanying data and support systems have been used in numerous investigations. For example, Global Hawks have been used to study both hurricanes and atmospheric composition. SIERRA has been used to study ice, earthquake faults, and coral reefs. DragonEye is being used to measure volcanic emissions. As a foundation for NASA's UAS work, Altair and Ikhana not only flew wildfires in the US, but also provided major programs for the development of real-time data download and processing capabilities. In 2014, an advanced L-band Synthetic Aperture Radar flew for the first time on Global Hawk, demonstrating UAVSAR, which has been flying successfully on a manned aircraft. This paper focuses on two topics: 1) results of a NASA program called UAS-Enabled Earth Science, in which three science teams flew UAS to demonstrate platform and sensor performance, airspace integration, and applied science results from the data collected; 2) recent accomplishments with the high altitude, long-duration Global Hawks. The challenges experienced with flying UAS are discussed. Recent upgrades to data processing, communications, tracking and flight planning systems are described.

  11. UAS-NAS Stakeholder Feedback Report

    NASA Technical Reports Server (NTRS)

    Randall, Debra; Murphy, Jim; Grindle, Laurie

    2016-01-01

    The need to fly UAS in the NAS to perform missions of vital importance to national security and defense, emergency management, science, and to enable commercial applications has been continually increasing over the past few years. To address this need, the NASA Aeronautics Research Mission Directorate (ARMD) Integrated Aviation Systems Program (IASP) formulated and funded the Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project (hereafter referred to as UAS-NAS Project) from 2011 to 2016. The UAS-NAS Project identified the following need statement: The UAS community needs routine access to the global airspace for all classes of UAS. The Project identified the following goal: To provide research findings to reduce technical barriers associated with integrating UAS into the NAS utilizing integrated system level tests in a relevant environment. This report provides a summary of the collaborations between the UAS-NAS Project and its primary stakeholders and how the Project applied and incorporated the feedback.

  12. Improved Airborne System for Sensing Wildfires

    NASA Technical Reports Server (NTRS)

    McKeown, Donald; Richardson, Michael

    2008-01-01

    The Wildfire Airborne Sensing Program (WASP) is engaged in a continuing effort to develop an improved airborne instrumentation system for sensing wildfires. The system could also be used for other aerial-imaging applications, including mapping and military surveillance. Unlike prior airborne fire-detection instrumentation systems, the WASP system would not be based on custom-made multispectral line scanners and associated custom- made complex optomechanical servomechanisms, sensors, readout circuitry, and packaging. Instead, the WASP system would be based on commercial off-the-shelf (COTS) equipment that would include (1) three or four electronic cameras (one for each of three or four wavelength bands) instead of a multispectral line scanner; (2) all associated drive and readout electronics; (3) a camera-pointing gimbal; (4) an inertial measurement unit (IMU) and a Global Positioning System (GPS) receiver for measuring the position, velocity, and orientation of the aircraft; and (5) a data-acquisition subsystem. It would be necessary to custom-develop an integrated sensor optical-bench assembly, a sensor-management subsystem, and software. The use of mostly COTS equipment is intended to reduce development time and cost, relative to those of prior systems.

  13. CALIOPE airborne CO{sub 2} DIAL (CACDI) system design

    SciTech Connect

    Mietz, D.; Archuleta, B.; Archuleta, J.

    1997-09-01

    Los Alamos National Laboratory is currently developing an airborne CO{sub 2} Differential Absorption Lidar (DIAL) system based on second generation technology demonstrated last summer at NTS. The CALIOPE Airborne CO{sub 2} DIAL (CACDI) system requirements have been compiled based on the mission objectives and SONDIAL model trade studies. Subsystem designs have been developed based on flow down from these system requirements, as well as experience gained from second generation ground tests and N-ABLE (Non-proliferation AirBorne Lidar Experiments) airborne experiments. This paper presents the CACDI mission objectives, system requirements, the current subsystem design, and provides an overview of the airborne experimental plan.

  14. U.S. Geological Survey Unmanned Aircraft Systems (UAS) Roadmap 2014

    USGS Publications Warehouse

    Cress, Jill J.; Hutt, Michael E.; Sloan, Jeff L.; Bauer, Mark A.; Feller, Mark R.; Goplen, Susan E.

    2015-01-01

    This Roadmap provides operational procedures and lessons learned from completed proof-of-concept UAS missions in areas such as wildlife management, resource monitoring, and public land inspections. This information provides not only an implementation framework but can also help increase the awareness by resource managers, scientists, and others of the ability of UAS technology to advance data quality, improve personnel safety, and reduce data acquisition costs.

  15. UA in Review, 1999.

    ERIC Educational Resources Information Center

    Pitney, Pat; Dupee, Betty; Reid, James; Meckel, Steven; Tissier, Isabelle; Gillispie, Juli; Armstrong, Linda; Crabb, Michael; Cook, Linda

    This document provides statistics that describe the University of Alaska (UA) statewide system of higher education, which encompasses 4-year institutions and community and 2-year colleges. The student profile information includes: (1) headcount by campus, gender and ethnicity; (2) part-time/full-time student enrollment; (3) non-credit student…

  16. Performance metrics for an airborne imaging system

    NASA Astrophysics Data System (ADS)

    Dayton, David C.; Gonglewski, John D.

    2004-11-01

    A series of airborne imaging experiments have been conducted on the island of Maui and at North Oscura Peak in New Mexico. Two platform altitudes were considered 3000 meters and 600 meters, both with a slant range to the target up to 10000 meters. The airborne imaging platform was a Twin Otter aircraft, which circled ground target sites. The second was a fixed platform on a mountain peak overlooking a valley 600 meters below. The experiments were performed during the day using solar illuminated target buildings. Imaging system performance predictions were calculated using standard atmospheric turbulence models, and aircraft boundary layer models. Several different measurement approaches were then used to estimate the actual system performance, and make comparisons with the calculations.

  17. Airborne HCl - CO sensing system

    NASA Technical Reports Server (NTRS)

    Bartle, E. R.; Hall, G.

    1977-01-01

    A system for measuring air pollutants in-situ using an aircraft was designed, fabricated, and tested. The system is based upon a technique called Gas Filter Correlation (GFC) which provides for high sensitivity and specificity in the presence of interfering species. This particular system was designed for measuring hydrochloric acid and carbon monoxide gases emitted from rocket exhaust effluents.

  18. Development of U.S. Government General Technical Requirements for UAS Flight Safety Systems Utilizing the Iridium Satellite Constellation

    NASA Technical Reports Server (NTRS)

    Murray, Jennifer; Birr, Richard

    2010-01-01

    This slide presentation reviews the development of technical requirements for Unmanned Aircraft Systems (UAS) utilization of the Iridium Satellite Constellation to provide flight safety. The Federal Aviation Authority (FAA) required an over-the-horizon communication standard to guarantee flight safety before permitting widespread UAS flights in the National Air Space (NAS). This is important to ensure reliable control of UASs during loss-link and over-the-horizon scenarios. The core requirement was to utilize a satellite system to send GPS tracking data and other telemetry from a flight vehicle down to the ground. Iridium was chosen as the system because it is one of the only true satellite systems that has world wide coverage, and the service has a highly reliable link margin. The Iridium system, the flight modems, and the test flight are described.

  19. Development of an Unmanned Aerial System (UAS) for Scaling Terrestrial Ecosystem Traits

    NASA Astrophysics Data System (ADS)

    Meng, R.; McMahon, A. M.; Serbin, S.; Rogers, A.

    2015-12-01

    The next generation of Ecosystem and Earth System Models (EESMs) will require detailed information on ecosystem structure and function, including properties of vegetation related to carbon (C), water, and energy cycling, in order to project the future state of ecosystems. High spatial-temporal resolution measurements of terrestrial ecosystem are also important for EESMs, because they can provide critical inputs and benchmark datasets for evaluation of EESMs simulations across scales. The recent development of high-quality, low-altitude remote sensing platforms or small UAS (< 25 kg) enables measurements of terrestrial ecosystems at unprecedented temporal and spatial scales. Specifically, these new platforms can provide detailed information on patterns and processes of terrestrial ecosystems at a critical intermediate scale between point measurements and suborbital and satellite platforms. Given their potential for sub-decimeter spatial resolution, improved mission safety, high revisit frequency, and reduced operation cost, these platforms are of particular interest in the development of ecological scaling algorithms to parameterize and benchmark EESMs, particularly over complex and remote terrain. Our group is developing a small UAS platform and integrated sensor package focused on measurement needs for scaling and informing ecosystem modeling activities, as well as scaling and mapping plant functional traits. To do this we are developing an integrated software workflow and hardware package using off-the-shelf instrumentation including a high-resolution digital camera for Structure from Motion, spectroradiometer, and a thermal infrared camera. Our workflow includes platform design, measurement, image processing, data management, and information extraction. The fusion of 3D structure information, thermal-infrared imagery, and spectroscopic measurements, will provide a foundation for the development of ecological scaling and mapping algorithms. Our initial focus is

  20. Cooperative Autonomous Observation of Volcanic Environments with sUAS

    NASA Astrophysics Data System (ADS)

    Ravela, S.

    2015-12-01

    The Cooperative Autonomous Observing System Project (CAOS) at the MIT Earth Signals and Systems Group has developed methodology and systems for dynamically mapping coherent fluids such as plumes using small unmanned aircraft systems (sUAS). In the CAOS approach, two classes of sUAS, one remote the other in-situ, implement a dynamic data-driven mapping system by closing the loop between Modeling, Estimation, Sampling, Planning and Control (MESPAC). The continually gathered measurements are assimilated to produce maps/analyses which also guide the sUAS network to adaptively resample the environment. Rather than scan the volume in fixed Eulerian or Lagrangian flight plans, the adaptive nature of the sampling process enables objectives for efficiency and resilience to be incorporated. Modeling includes realtime prediction using two types of reduced models, one based on nowcasting remote observations of plume tracer using scale-cascaded alignment, and another based on dynamically-deformable EOF/POD developed for coherent structures. Ensemble-based Information-theoretic machine learning approaches are used for the highly non-linear/non-Gaussian state/parameter estimation, and for planning. Control of the sUAS is based on model reference control coupled with hierarchical PID. MESPAC is implemented in part on a SkyCandy platform, and implements an airborne mesh that provides instantaneous situational awareness and redundant communication to an operating fleet. SkyCandy is deployed on Itzamna Aero's I9X/W UAS with low-cost sensors, and is currently being used to study the Popocatepetl volcano. Results suggest that operational communities can deploy low-cost sUAS to systematically monitor whilst optimizing for efficiency/maximizing resilience. The CAOS methodology is applicable to many other environments where coherent structures are present in the background. More information can be found at caos.mit.edu.

  1. Airborne Atmospheric Aerosol Measurement System

    NASA Astrophysics Data System (ADS)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  2. Targeted expression in zebrafish primordial germ cells by Cre/loxP and Gal4/UAS systems.

    PubMed

    Xiong, Feng; Wei, Zhi-Qiang; Zhu, Zuo-Yan; Sun, Yong-Hua

    2013-10-01

    In zebrafish and other vertebrates, primordial germ cells (PGCs) are a population of embryonic cells that give rise to sperm and eggs in adults. Any type of genetically manipulated lines have to be originated from the germ cells of the manipulated founders, thus it is of great importance to establish an effective technology for highly specific PGC-targeted gene manipulation in vertebrates. In the present study, we used the Cre/loxP recombinase system and Gal4/UAS transcription system for induction and regulation of mRFP (monomer red fluorescent protein) gene expression to achieve highly efficient PGC-targeted gene expression in zebrafish. First, we established two transgenic activator lines, Tg(kop:cre) and Tg(kop:KalTA4), to express the Cre recombinases and the Gal4 activator proteins in PGCs. Second, we generated two transgenic effector lines, Tg(kop:loxP-SV40-loxP-mRFP) and Tg(UAS:mRFP), which intrinsically showed transcriptional silence of mRFP. When Tg(kop:cre) females were crossed with Tg(kop:loxP-SV40-loxP-mRFP) males, the loxP flanked SV40 transcriptional stop sequence was 100 % removed from the germ cells of the transgenic hybrids. This led to massive production of PGC-specific mRFP transgenic line, Tg(kop:loxP-mRFP), from an mRFP silent transgenic line, Tg(kop:loxP-SV40-loxP-mRFP). When Tg(kop:KalTA4) females were crossed with Tg(UAS:mRFP) males, the hybrid embryos showed PGC specifically expressed mRFP from shield stage till 25 days post-fertilization (pf), indicating the high sensitivity, high efficiency, and long-lasting effect of the Gal4/UAS system. Real-time PCR analysis showed that the transcriptional amplification efficiency of the Gal4/UAS system in PGCs can be about 300 times higher than in 1-day-pf embryos. More importantly, when the UAS:mRFP-nos1 construct was directly injected into the Tg(kop:KalTA4) embryos, it was possible to specifically label the PGCs with high sensitivity, efficiency, and persistence. Therefore, we have established two

  3. Generic OPC UA Server Framework

    NASA Astrophysics Data System (ADS)

    Nikiel, Piotr P.; Farnham, Benjamin; Filimonov, Viatcheslav; Schlenker, Stefan

    2015-12-01

    This paper describes a new approach for generic design and efficient development of OPC UA servers. Development starts with creation of a design file, in XML format, describing an object-oriented information model of the target system or device. Using this model, the framework generates an executable OPC UA server application, which exposes the per-design OPC UA address space, without the developer writing a single line of code. Furthermore, the framework generates skeleton code into which the developer adds the necessary logic for integration to the target system or device. This approach allows both developers unfamiliar with the OPC UA standard, and advanced OPC UA developers, to create servers for the systems they are experts in while greatly reducing design and development effort as compared to developments based purely on COTS OPC UA toolkits. Higher level software may further benefit from the explicit OPC UA server model by using the XML design description as the basis for generating client connectivity configuration and server data representation. Moreover, having the XML design description at hand facilitates automatic generation of validation tools. In this contribution, the concept and implementation of this framework is detailed along with examples of actual production-level usage in the detector control system of the ATLAS experiment at CERN and beyond.

  4. Measurements of Atmospheric Aerosol Vertical Distributions above Svalbard, Norway using Unmanned Aerial Systems (UAS)

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Johnson, J. E.; Stalin, S.; Telg, H.; Murphy, D. M.; Burkhart, J. F.; Quinn, P.; Storvold, R.

    2015-12-01

    Atmospheric aerosol vertical distributions were measured above Svalbard, Norway in April 2015 to investigate the processes controlling aerosol concentrations and radiative effects. The aerosol payload was flown in a NOAA/PMEL MANTA Unmanned Aerial System (UAS) on 9 flights totaling 19 flight hours. Measurements were made of particle number concentration and aerosol light absorption at three wavelengths, similar to those conducted in April 2011 (Bates et al., Atmos. Meas. Tech., 6, 2115-2120, 2013). A filter sample was collected on each flight for analyses of trace elements. Additional measurements in the aerosol payload in 2015 included aerosol size distributions obtained using a Printed Optical Particle Spectrometer (POPS) and aerosol optical depth obtained using a four wavelength miniature Scanning Aerosol Sun Photometer (miniSASP). The data show most of the column aerosol mass and resulting optical depth in the boundary layer but frequent aerosol layers aloft with high particle number concentration (2000 cm-3) and enhanced aerosol light absorption (1 Mm-1). Transport of these aerosol layers was assessed using FLEXPART particle dispersion models. The data contribute to an assessment of sources of BC to the Arctic and potential climate impacts.

  5. Enabling Earth Science Measurements with NASA UAS Capabilites

    NASA Technical Reports Server (NTRS)

    Albertson, Randal; Schoenung, Susan; Fladeland, Matthew M.; Cutler, Frank; Tagg, Bruce

    2015-01-01

    NASA's Airborne Science Program (ASP) maintains a fleet of manned and unmanned aircraft for Earth Science measurements and observations. The unmanned aircraft systems (UAS) range in size from very large (Global Hawks) to medium (SIERRA, Viking) and relatively small (DragonEye). UAS fly from very low (boundary layer) to very high altitude (stratosphere). NASA also supports science and applied science projects using UAS operated by outside companies or agencies. The aircraft and accompanying data and support systems have been used in numerous investigations. For example, Global Hawks have been used to study both hurricanes and atmospheric composition. SIERRA has been used to study ice, earthquake faults, and coral reefs. DragonEye is being used to measure volcanic emissions. As a foundation for NASA's UAS work, Altair and Ikkana not only flew wildfires in the Western US, but also provided major programs for the development of real-time data download and processing capabilities. In early 2014, an advanced L-band Synthetic Aperture Radar (SAR) also flew for the first time on Global Hawk, proving the utility of UAVSAR, which has been flying successfully on a manned aircraft. In this paper, we focus on two topics: 1) the results of a NASA program called UAS-Enabled Earth Science, in which three different science teams flew (at least) two different UAS to demonstrate platform performance, airspace integration, sensor performance, and applied science results from the data collected; 2) recent accomplishments with the high altitude, long-duration Global Hawks, especially measurements from several payload suites consisting of multiple instruments. The latest upgrades to data processing, communications, tracking and flight planning systems will also be described.

  6. Quantifying streambank erosion: a comparative study using an unmanned aerial system (UAS) and a terrestrial laser scanner

    NASA Astrophysics Data System (ADS)

    Rizzo, D.; Hamshaw, S. D.; Dewoolkar, M.; ONeil-Dunne, J.; Frolik, J.; Bryce, T. G.; Waldron, A. Y.

    2015-12-01

    Streambank erosion is a common non-point source contributing to suspended sediment and nutrient loading of waterways, and recently has been estimated to account for 30-80% of sediment loading into receiving waters. There is interest in developing reliable methods to quantify bank erosion in watersheds, so effective management strategies can be devised. However, current methods can be either cost prohibitive or unreliable. Direct measurement approaches (surveys and erosion pins) are labor intensive and yield site-specific measurements that are limited for extrapolation to larger scales. Similar issues arise with analytical methods such as slope stability analysis, which require material parameters that are resource intensive to determine. Newer approaches such as use of aerial LiDAR data have proved effective for watershed level assessment, but come with long turnaround times and high cost. Terrestrial laser scanning (TLS) is also effective and offers high accuracy, however collection over large areas is impractical and post-processing is labor intensive. New technology in the form of unmanned aerial systems (UAS) has the potential to significantly enhance the ability to monitor channel migration and quantify bank erosion at variable scales. In this study, 20 km of the Mad and Winooski Rivers in Vermont were flown using a senseFly eBee UAS. Flights were made in spring and fall 2015 in leaf-off conditions with selected portions also flown after large storms in the summer. Change in bank profiles between spring and fall flights provide a comprehensive estimate of bank erosion along the study reaches. Six sites with varying bank heights, erosion sensitivity, and vegetation conditions were selected for simultaneous surveying using a TLS. Point cloud data from both the TLS and UAS were compared to assess the accuracy of the UAS for capturing the bank profile. Changes in bank cross-sections and in volumes calculated from 3D digital surface models were used to compare the

  7. Airborne seeker evaluation and test system

    NASA Astrophysics Data System (ADS)

    Jollie, William B.

    1991-08-01

    The Airborne Seeker Evaluation Test System (ASETS) is an airborne platform for development, test, and evaluation of air-to-ground seekers and sensors. ASETS consists of approximately 10,000 pounds of equipment, including sixteen racks of control, display, and recording electronics, and a very large stabilized airborne turret, all carried by a modified C- 130A aircraft. The turret measures 50 in. in diameter and extends over 50 in. below the aircraft. Because of the low ground clearance of the C-130, a unique retractor mechanism was designed to raise the turret inside the aircraft for take-offs and landings, and deploy the turret outside the aircraft for testing. The turret has over 7 cubic feet of payload space and can accommodate up to 300 pounds of instrumentation, including missile seekers, thermal imagers, infrared mapping systems, laser systems, millimeter wave radar units, television cameras, and laser rangers. It contains a 5-axis gyro-stabilized gimbal system that will maintain a line of sight in the pitch, roll, and yaw axes to an accuracy better than +/- 125 (mu) rad. The rack-mounted electronics in the aircraft cargo bay can be interchanged to operate any type of sensor and record the data. Six microcomputer subsystems operate and maintain all of the system components during a test mission. ASETS is capable of flying at altitudes between 200 and 20,000 feet, and at airspeeds ranging from 100 to 250 knots. Mission scenarios can include air-to-surface seeker testing, terrain mapping, surface target measurement, air-to-air testing, atmospheric transmission studies, weather data collection, aircraft or missile tracking, background signature measurements, and surveillance. ASETS is fully developed and available to support test programs.

  8. Airborne system for testing multispectral reconnaissance technologies

    NASA Astrophysics Data System (ADS)

    Schmitt, Dirk-Roger; Doergeloh, Heinrich; Keil, Heiko; Wetjen, Wilfried

    1999-07-01

    There is an increasing demand for future airborne reconnaissance systems to obtain aerial images for tactical or peacekeeping operations. Especially Unmanned Aerial Vehicles (UAVs) equipped with multispectral sensor system and with real time jam resistant data transmission capabilities are of high interest. An airborne experimental platform has been developed as testbed to investigate different concepts of reconnaissance systems before their application in UAVs. It is based on a Dornier DO 228 aircraft, which is used as flying platform. Great care has been taken to achieve the possibility to test different kinds of multispectral sensors. Hence basically it is capable to be equipped with an IR sensor head, high resolution aerial cameras of the whole optical spectrum and radar systems. The onboard equipment further includes system for digital image processing, compression, coding, and storage. The data are RF transmitted to the ground station using technologies with high jam resistance. The images, after merging with enhanced vision components, are delivered to the observer who has an uplink data channel available to control flight and imaging parameters.

  9. CARABAS - an airborne VHF SAR system

    SciTech Connect

    Larsson, B.; Frolined, P.O.; Gustavsson, A.

    1996-11-01

    There is an increasing interest in imaging radar systems operating at low frequencies, Examples of civilian and military applications are detection of stealth-designed man-made objects, targets hidden under foliage, biomass estimation, and penetration into glaciers or ground. CARABAS (Coherent All Radio Band Sensing) is a new airborne SAR system developed by FOA. It is designed for operation in the lowest part of the VHF band (20-90 NHz), using horizontal polarisation. This frequency region gives the system a good ability to penetrate vegetation and to some extent ground. CARABAS is the first known SAR sensor with a capability of diffraction limited imaging, i.e. a resolution in magnitude of the adopted wavelengths. A Sabreliner business jet aircraft is used as the airborne platform. Critical parts in the development have been the antenna system, the receiver and the processing algorithms. Based upon the experiences gained with CARABAS I a major system upgrade is now taking place. The new CARABAS II system is scheduled to fly in May 1996. This system is designed to give operational performance while CARABAS I was used to verify the feasibility. The first major field campaigns are planned for the second half of 1996. CARABAS II is jointly developed by FOA and Ericsson Microwave Systems AB in Sweden. This paper will give an overview of the system design and data collected with the current radar system, including some results for forested regions. The achieved system performance will be discussed, with a presentation of the major modifications made in the new CARABAS 11 system. 12 refs., 7 figs., 2 tabs.

  10. Bridging Estimates of Greenness in an Arid Grassland Using Field Observations, Phenocams, and Time Series Unmanned Aerial System (UAS) Imagery

    NASA Astrophysics Data System (ADS)

    Browning, D. M.; Tweedie, C. E.; Rango, A.

    2013-12-01

    Spatially extensive grasslands and savannas in arid and semi-arid ecosystems (i.e., rangelands) require cost-effective, accurate, and consistent approaches for monitoring plant phenology. Remotely sensed imagery offers these capabilities; however contributions of exposed soil due to modest vegetation cover, susceptibility of vegetation to drought, and lack of robust scaling relationships challenge biophysical retrievals using moderate- and coarse-resolution satellite imagery. To evaluate methods for characterizing plant phenology of common rangeland species and to link field measurements to remotely sensed metrics of land surface phenology, we devised a hierarchical study spanning multiple spatial scales. We collect data using weekly standardized field observations on focal plants, daily phenocam estimates of vegetation greenness, and very high spatial resolution imagery from an Unmanned Aerial System (UAS) throughout the growing season. Field observations of phenological condition and vegetation cover serve to verify phenocam greenness indices along with indices derived from time series UAS imagery. UAS imagery is classified using object-oriented image analysis to identify species-specific image objects for which greenness indices are derived. Species-specific image objects facilitate comparisons with phenocam greenness indices and scaling spectral responses to footprints of Landsat and MODIS pixels. Phenocam greenness curves indicated rapid canopy development for the widespread deciduous shrub Prosopis glandulosa over 14 (in April 2012) to 16 (in May 2013) days. The modest peak in greenness for the dominant perennial grass Bouteloua eriopoda occurred in October 2012 following peak summer rainfall. Weekly field estimates of canopy development closely coincided with daily patterns in initial growth and senescence for both species. Field observations improve the precision of the timing of phenophase transitions relative to inflection points calculated from phenocam

  11. 76 FR 76333 - Notification for Airborne Wind Energy Systems (AWES)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... Statement can be found in the Federal Register published on April 11, 2000 (65 FR 19477-19478), as well as... Federal Aviation Administration 14 CFR Part 77 Notification for Airborne Wind Energy Systems (AWES) AGENCY...,'' to airborne wind energy systems (AWES). In addition, this notice requests information from...

  12. A multiprocessor airborne lidar data system

    NASA Technical Reports Server (NTRS)

    Wright, C. W.; Bailey, S. A.; Heath, G. E.; Piazza, C. R.

    1988-01-01

    A new multiprocessor data acquisition system was developed for the existing Airborne Oceanographic Lidar (AOL). This implementation simultaneously utilizes five single board 68010 microcomputers, the UNIX system V operating system, and the real time executive VRTX. The original data acquisition system was implemented on a Hewlett Packard HP 21-MX 16 bit minicomputer using a multi-tasking real time operating system and a mixture of assembly and FORTRAN languages. The present collection of data sources produce data at widely varied rates and require varied amounts of burdensome real time processing and formatting. It was decided to replace the aging HP 21-MX minicomputer with a multiprocessor system. A new and flexible recording format was devised and implemented to accommodate the constantly changing sensor configuration. A central feature of this data system is the minimization of non-remote sensing bus traffic. Therefore, it is highly desirable that each micro be capable of functioning as much as possible on-card or via private peripherals. The bus is used primarily for the transfer of remote sensing data to or from the buffer queue.

  13. The magnetic phase diagram of the UAs 1- xSe x system studied by neutron diffraction from single crystals

    NASA Astrophysics Data System (ADS)

    Kuznietz, M.; Burlet, P.; Rossat-Mignod, J.; Vogt, O.

    1987-10-01

    The magnetic phase diagram of the UAs 1- xSe x system (temperature versus composition) has been determined from neutron diffraction measurements in zero applied magnetic field on single crystals with x=0.03, 0.05, 0.10, 0.20, 0.25, 0.30, 0.40 and 0.50, as well as from measurements in finite applied magnetic fields on single crystals with x=0.10, 0.20, 0.25 and 0.30. For x⩽0.40 an incommensurate magnetic ordering ( k=[0,0, k]; mk ∥ k) develops below TN down to TIC. The k- value at TN decreases with the increase of x; in decreasing temperatures the k-value approaches the commensurate value below TIC. At TIC an incommensurate-commensurate transition leads to the type-I phase ( k=1) for x ⩽0.05 (with a subsequent transition to type-IA at TO), to the type-IA phase ( k= {1}/{2}) for 0.05 ⩽ x⩽ 0.30, and to the squaring-up of the (5+,4-) phase ( k≈0.244) for x=0.40 below T≈90 K. For x⩽0.50 the ordering is ferromagnetic. The nature of the multi- k structure is determined from measurements in finite fields. With the previously established single- k structure of type-I (in UAs), the UAs 1- xSe x system exhibits single- k, double- k and triple- k structures. A double- k-triple- k transition occurs for x ≈0.15 in the type-IA phase and for x≈0.22 in the incommensurate phase. The ordered magnetic moment at T=4.2 K is practically independent of the ordering ( m≈2μ B).

  14. Microprocessor-Based Airborne Spectrometer System

    NASA Astrophysics Data System (ADS)

    Kates, John C.

    1980-08-01

    A system for airborne infrared spectral signature measurements has been developed using a Fourier transform spectrometer interfaced to a microprocessor data acquisition, control and display system. The microprocessor is a DEC LSI-ll with 20KW RAM, 4KW EPROM, DMA spectrometer interface, digital magnetic tape, and dot-matrix video graphic display. A real-time executive tailored to the requirements and resources available allows concurrent data acquisition, recording, reduction and display. Using multiple buffers, acquisition of spectrometer data via DMA is overlapped with magnetic tape output. A background task selects the most recent spectrometer data and processes it using an FFT into a raw spectrum. A reference background spectrum is subtracted to isolate the data component, then a reference instrument response function is applied to obtain a calibrated absolute irradiance spectrum. The irradiance spectrum is displayed on the video graphic display and mixed with boresight camera video to show the target spectrum superimposed on the target image. Extensive selftest facilities are incorporated for testing all system components and compatibility with data reduction systems. System calibration is supported by selection of reference blackbody temperatures, apertures, and distances. The instrument response curve obtained during calibration is displayed for verification of correct spectrometer operation or diagnosis of faults.

  15. Miniaturized Airborne Imaging Central Server System

    NASA Technical Reports Server (NTRS)

    Sun, Xiuhong

    2011-01-01

    In recent years, some remote-sensing applications require advanced airborne multi-sensor systems to provide high performance reflective and emissive spectral imaging measurement rapidly over large areas. The key or unique problem of characteristics is associated with a black box back-end system that operates a suite of cutting-edge imaging sensors to collect simultaneously the high throughput reflective and emissive spectral imaging data with precision georeference. This back-end system needs to be portable, easy-to-use, and reliable with advanced onboard processing. The innovation of the black box backend is a miniaturized airborne imaging central server system (MAICSS). MAICSS integrates a complex embedded system of systems with dedicated power and signal electronic circuits inside to serve a suite of configurable cutting-edge electro- optical (EO), long-wave infrared (LWIR), and medium-wave infrared (MWIR) cameras, a hyperspectral imaging scanner, and a GPS and inertial measurement unit (IMU) for atmospheric and surface remote sensing. Its compatible sensor packages include NASA s 1,024 1,024 pixel LWIR quantum well infrared photodetector (QWIP) imager; a 60.5 megapixel BuckEye EO camera; and a fast (e.g. 200+ scanlines/s) and wide swath-width (e.g., 1,920+ pixels) CCD/InGaAs imager-based visible/near infrared reflectance (VNIR) and shortwave infrared (SWIR) imaging spectrometer. MAICSS records continuous precision georeferenced and time-tagged multisensor throughputs to mass storage devices at a high aggregate rate, typically 60 MB/s for its LWIR/EO payload. MAICSS is a complete stand-alone imaging server instrument with an easy-to-use software package for either autonomous data collection or interactive airborne operation. Advanced multisensor data acquisition and onboard processing software features have been implemented for MAICSS. With the onboard processing for real time image development, correction, histogram-equalization, compression, georeference, and

  16. An approach to evaluating reactive airborne wind shear systems

    NASA Technical Reports Server (NTRS)

    Gibson, Joseph P., Jr.

    1992-01-01

    An approach to evaluating reactive airborne windshear detection systems was developed to support a deployment study for future FAA ground-based windshear detection systems. The deployment study methodology assesses potential future safety enhancements beyond planned capabilities. The reactive airborne systems will be an integral part of planned windshear safety enhancements. The approach to evaluating reactive airborne systems involves separate analyses for both landing and take-off scenario. The analysis estimates the probability of effective warning considering several factors including NASA energy height loss characteristics, reactive alert timing, and a probability distribution for microburst strength.

  17. The Unmanned Mission Avionics Test Heliciopter - a Flexible and Versatile Vtol-Uas Experimental System

    NASA Astrophysics Data System (ADS)

    Schulz, H.-W., , Dr.

    2011-09-01

    civil customers. These applications cover a wide spectrum from R&D programs for the military customer to special services for the civil customer. This paper focuses on the technical conversion of a commercially available VTOL-UAS to ESG's Unmanned Mission Avionics Test Helicopter (UMAT), its concept and operational capabilities. At the end of the paper, the current integration of a radar sensor is described as an example of the UMATs flexibility. The radar sensor is developed by the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR). It is integrated by ESG together with the industrial partner SWISS UAV.

  18. NASA's UAS NAS Access Project

    NASA Technical Reports Server (NTRS)

    Johnson, Charles W.

    2011-01-01

    The vision of the Unmanned Aircraft System (UAS) Integration in the National Airspace System (NAS) Project is "A global transportation system which allows routine access for all classes of UAS." The goal of the UAS Integration in the NAS Project is to "contribute capabilities that reduce technical barriers related to the safety and operational challenges associated with enabling routine UAS access to the NAS." This goal will be accomplished through a two-phased approach based on development of system-level integration of key concepts, technologies and/or procedures, and demonstrations of integrated capabilities in an operationally relevant environment. Phase 1 will take place the first two years of the Project and Phase 2 will take place the following three years. The Phase 1 and 2 technical objectives are: Phase 1: Developing a gap analysis between current state of the art and the Next Generation Air Transportation System (NextGen) UAS Concept of Operations . Validating the key technical areas identified by this Project . Conducting initial modeling, simulation, and flight testing activities . Completing Sub-project Phase 1 deliverables (spectrum requirements, comparative analysis of certification methodologies, etc.) and continue Phase 2 preparation (infrastructure, tools, etc.) Phase 2: Providing regulators with a methodology for developing airworthiness requirements for UAS, and data to support development of certifications standards and regulatory guidance . Providing systems-level, integrated testing of concepts and/or capabilities that address barriers to routine access to the NAS. Through simulation and flight testing, address issues including separation assurance, communications requirements, and human systems integration in operationally relevant environments. The UAS in the NAS Project will demonstrate solutions in specific technology areas, which will address operational/safety issues related to UAS access to the NAS. Since the resource allocation for

  19. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project. NASA Contributions to the SARP WC Definition

    NASA Technical Reports Server (NTRS)

    Randall, Debra K.; Consiglio, Maria Cristina; Santiago, Confesor

    2014-01-01

    To better inform sense and avoid research needs and to understand ongoing investigation of potential solutions that ultimately lead to the assisting the FAA with their Congressional mandate to fly UAS in the NAS.

  20. Point Cloud Generation from sUAS-Mounted iPhone Imagery: Performance Analysis

    NASA Astrophysics Data System (ADS)

    Ladai, A. D.; Miller, J.

    2014-11-01

    The rapidly growing use of sUAS technology and fast sensor developments continuously inspire mapping professionals to experiment with low-cost airborne systems. Smartphones has all the sensors used in modern airborne surveying systems, including GPS, IMU, camera, etc. Of course, the performance level of the sensors differs by orders, yet it is intriguing to assess the potential of using inexpensive sensors installed on sUAS systems for topographic applications. This paper focuses on the quality analysis of point clouds generated based on overlapping images acquired by an iPhone 5s mounted on a sUAS platform. To support the investigation, test data was acquired over an area with complex topography and varying vegetation. In addition, extensive ground control, including GCPs and transects were collected with GSP and traditional geodetic surveying methods. The statistical and visual analysis is based on a comparison of the UAS data and reference dataset. The results with the evaluation provide a realistic measure of data acquisition system performance. The paper also gives a recommendation for data processing workflow to achieve the best quality of the final products: the digital terrain model and orthophoto mosaic. After a successful data collection the main question is always the reliability and the accuracy of the georeferenced data.

  1. A Family of Well-Clear Boundary Models for the Integration of UAS in the NAS

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar A.; Narkawicz, Anthony; Chamberlain, James; Consiglio, Maria; Upchurch, Jason

    2014-01-01

    The FAA-sponsored Sense and Avoid Workshop for Unmanned Aircraft Systems (UAS) defines the concept of sense and avoid for remote pilots as "the capability of a UAS to remain well clear from and avoid collisions with other airborne traffic." Hence, a rigorous definition of well clear is fundamental to any separation assurance concept for the integration of UAS into civil airspace. This paper presents a family of well-clear boundary models based on the TCAS II Resolution Advisory logic. For these models, algorithms that predict well-clear violations along aircraft current trajectories are provided. These algorithms are analogous to conflict detection algorithms but instead of predicting loss of separation, they predict whether well-clear violations will occur during a given lookahead time interval. Analytical techniques are used to study the properties and relationships satisfied by the models.

  2. Development of a new airborne humidigraph system.

    SciTech Connect

    Pekour, Mikhail S.; Schmid, Beat; Chand, Duli; Hubbe, John M.; Kluzek, Celine D.; Nelson, Danny A.; Tomlinson, Jason M.; Cziczo, Daniel J.

    2012-12-06

    Modeling and measurements of aerosol properties is complicated by the hygroscopic behavior of the aerosols adding significant uncertainty to our best estimates of the direct effect aerosols exert on the radiative balance of the atmosphere. Airborne measurements of aerosol hygroscopicity are particularly challenging but critically needed. This motivated the development of a newly designed system which can measure the dependence of the aerosol light scattering coefficient (σsp) on relative humidity (RH), known as f(RH), in real-time at a rapid rate (<10 s) on an aerial platform. The new system has several advantages over existing systems. It consists of three integrating nephelometers and humidity conditioners for simultaneous measurement of the σsp at three different RHs. The humidity is directly controlled in exchanger cells without significant temperature disturbances and without particle dilution, heating or loss of volatile compounds. The single-wavelength nephelometers are illuminated by LED-based light sources thereby minimizing heating of the sample stream. The flexible design of the RH conditioners, consisting of a number of specially designed exchanger cells (driers or humidifiers), enables us to measure f(RH) under hydration or dehydration conditions (always starting with the aerosol in a known state) with a simple system re-configuration. These exchanger cells have been characterized for losses of particles using latex spheres and laboratory generated ammonium sulfate aerosols. Residence times of 6 - 9 s in the exchangers and subsequent lines is sufficient for most aerosols to attain equilibrium with the new water vapor content. The performance of this system has been assessed aboard DOE’s G-1 research aircraft during test flights over California, Oregon, and Washington.

  3. Airborne optical tracking control system design study

    NASA Astrophysics Data System (ADS)

    1992-09-01

    The Kestrel LOS Tracking Program involves the development of a computer and algorithms for use in passive tracking of airborne targets from a high altitude balloon platform. The computer receivers track error signals from a video tracker connected to one of the imaging sensors. In addition, an on-board IRU (gyro), accelerometers, a magnetometer, and a two-axis inclinometer provide inputs which are used for initial acquisitions and course and fine tracking. Signals received by the control processor from the video tracker, IRU, accelerometers, magnetometer, and inclinometer are utilized by the control processor to generate drive signals for the payload azimuth drive, the Gimballed Mirror System (GMS), and the Fast Steering Mirror (FSM). The hardware which will be procured under the LOS tracking activity is the Controls Processor (CP), the IRU, and the FSM. The performance specifications for the GMS and the payload canister azimuth driver are established by the LOS tracking design team in an effort to achieve a tracking jitter of less than 3 micro-rad, 1 sigma for one axis.

  4. Assessment of lightweight mobile nuclear power systems. [for airborne vehicles

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.; Rom, F. E.

    1973-01-01

    A review was made of lightweight mobile nuclear power systems (LMNPS). Data cover technical feasibility studies of LMNPS and airborne vehicles, mission studies, and non-technical conditions that are required to develop and use LMNPS.

  5. UAS Integration in the NAS Project and Future Autonomy Research

    NASA Technical Reports Server (NTRS)

    Johnson, Charles W.

    2014-01-01

    This presentation highlights NASA use of unmanned aircraft systems (UAS) and related technologies for civil purposes. This briefing will give more insight into the UAS projects progress and future goals.

  6. Definition and test of the electromagnetic immunity of UAS for first responders

    NASA Astrophysics Data System (ADS)

    Adami, C.; Chmel, S.; Jöster, M.; Pusch, T.; Suhrke, M.

    2015-11-01

    Recent technological developments considerably lowered the barrier for unmanned aerial systems (UAS) to be employed in a variety of usage scenarios, comprising live video transmission from otherwise inaccessible vantage points. As an example, in the French-German ANCHORS project several UAS guided by swarm intelligence provide aerial views and environmental data of a disaster site while deploying an ad-hoc communication network for first responders. Since being able to operate in harsh environmental conditions is a key feature, the immunity of the UAS against radio frequency (RF) exposure has been studied. Conventional Electromagnetic Compatibility (EMC) applied to commercial and industrial electronics is not sufficient since UAS are airborne and can as such move beyond the bounds within which RF exposure is usually limited by regulatory measures. Therefore, the EMC requirements have been complemented by a set of specific RF test frequencies and parameters where strong sources are expected to interfere in the example project test case of an inland port environment. While no essential malfunctions could be observed up to field strengths of 30 V m-1, a sophisticated, more exhaustive approach for testing against potential sources of interference in key scenarios of UAS usage should be derived from our present findings.

  7. Initial Experimental Airworthiness Certification Guidance for UAS. UAS Experimental Certification Process and Guidance

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This paper addresses the regulatory processes and requirements already in place by which an applicant might obtain experimental airworthiness certification for a civil Unmanned Aircraft System (UAS). It is more extensive and subsequent to an earlier, similar deliverable, PD007, which was an interim study of the same topic. Since few regulatory airworthiness and operating standards exist for UAS like those for traditional manned aircraft and since most UAS have historically been developed and operated under military auspices, civil use of UAS in the NAS is a new and unfamiliar challenge requiring specific and unique considerations. Experimental certification is the most basic level of FAA approval toward routine UAS operation in the NAS. The paper reviews and explains existing FAA requirements for an applicant seeking experimental airworthiness approval and details the process for submission of necessary information. It summarizes the limited purposes for which experimental aircraft may be used and addresses pertinent aspects of UAS design, construction and operation in the NAS in harmony with traditional manned aircraft. Policy IPT position is that UAS, while different from manned aircraft, can use the same initial processes to gain civil operating experience under the experimental approval. Particular note is taken of those UAS-unique characteristics which require extra attention to assure equivalent safety of operation, such as the UAS control station and sense-and-avoid. The paper also provides "best practices" guidance for UAS manufacturers and FAA personnel in two appendices. The material in Appendix A is intended to provide guidance on assuring UAS safety to FAA, and provides FAA personnel with a suggested list of items to review, with a focus on UAS unique factors, prior to issuance of an experimental airworthiness certificate. Appendix B provides an outline for a program letter which a manufacturer could use in preparing the application for an UAS

  8. Influence of UAS Pilot Communication and Execution Delay on Controller's Acceptability Ratings of UAS-ATC Interactions

    NASA Technical Reports Server (NTRS)

    Vu, Kim-Phuong L.; Morales, Gregory; Chiappe, Dan; Strybel, Thomas Z.; Battiste, Vernol; Shively, Jay; Buker, Timothy J

    2013-01-01

    Successful integration of UAS in the NAS will require that UAS interactions with the air traffic management system be similar to interactions between manned aircraft and air traffic management. For example, UAS response times to air traffic controller (ATCo) clearances should be equivalent to those that are currently found to be acceptable with manned aircraft. Prior studies have examined communication delays with manned aircraft. Unfortunately, there is no analogous body of research for UAS. The goal of the present study was to determine how UAS pilot communication and execution delays affect ATCos' acceptability ratings of UAS pilot responses when the UAS is operating in the NAS. Eight radar-certified controllers managed traffic in a modified ZLA sector with one UAS flying in it. In separate scenarios, the UAS pilot verbal communication and execution delays were either short (1.5 s) or long (5 s) and either constant or variable. The ATCo acceptability of UAS pilot communication and execution delays were measured subjectively via post trial ratings. UAS verbal pilot communication delay, were rated as acceptable 92% of the time when the delay was short. This acceptability level decreased to 64% when the delay was long. UAS pilot execution delay had less of an influence on ATCo acceptability ratings in the present stimulation. Implications of these findings for UAS in the NAS integration are discussed.

  9. UAS in the NAS: Survey Responses by ATC, Manned Aircraft Pilots, and UAS Pilots

    NASA Technical Reports Server (NTRS)

    Comstock, James R., Jr.; McAdaragh, Raymon; Ghatas, Rania W.; Burdette, Daniel W.; Trujillo, Anna C.

    2013-01-01

    NASA currently is working with industry and the Federal Aviation Administration (FAA) to establish future requirements for Unmanned Aircraft Systems (UAS) flying in the National Airspace System (NAS). To work these issues NASA has established a multi-center UAS Integration in the NAS project. In order to establish Ground Control Station requirements for UAS, the perspective of each of the major players in NAS operations was desired. Three on-line surveys were administered that focused on Air Traffic Controllers (ATC), pilots of manned aircraft, and pilots of UAS. Follow-up telephone interviews were conducted with some survey respondents. The survey questions addressed UAS control, navigation, and communications from the perspective of small and large unmanned aircraft. Questions also addressed issues of UAS equipage, especially with regard to sense and avoid capabilities. From the ATC and military ATC perspective, of particular interest is how mixed-operations (manned/UAS) have worked in the past and the role of aircraft equipage. Knowledge gained from this information is expected to assist the NASA UAS in the NAS project in directing research foci thus assisting the FAA in the development of rules, regulations, and policies related to UAS in the NAS.

  10. UAS in the NAS: Survey Responses by ATC, Manned Aircraft Pilots, and UAS Pilots

    NASA Technical Reports Server (NTRS)

    Comstock, James R., Jr.; McAdaragh, Raymon; Ghatas, Rania W.; Burdette, Daniel W.; Trujillo, Anna C.

    2014-01-01

    NASA currently is working with industry and the Federal Aviation Administration (FAA) to establish future requirements for Unmanned Aircraft Systems (UAS) flying in the National Airspace System (NAS). To work these issues NASA has established a multi-center "UAS Integration in the NAS" project. In order to establish Ground Control Station requirements for UAS, the perspective of each of the major players in NAS operations was desired. Three on-line surveys were administered that focused on Air Traffic Controllers (ATC), pilots of manned aircraft, and pilots of UAS. Follow-up telephone interviews were conducted with some survey respondents. The survey questions addressed UAS control, navigation, and communications from the perspective of small and large unmanned aircraft. Questions also addressed issues of UAS equipage, especially with regard to sense and avoid capabilities. From the civilian ATC and military ATC perspectives, of particular interest are how mixed operations (manned / UAS) have worked in the past and the role of aircraft equipage. Knowledge gained from this information is expected to assist the NASA UAS Integration in the NAS project in directing research foci thus assisting the FAA in the development of rules, regulations, and policies related to UAS in the NAS.

  11. Combination of the ALCR/alcA ethanol switch and GAL4/VP16-UAS enhancer trap system enables spatial and temporal control of transgene expression in Arabidopsis.

    PubMed

    Jia, Hongge; Van Loock, Bram; Liao, Mingjun; Verbelen, Jean-Pierre; Vissenberg, Kris

    2007-07-01

    The experimental control of gene expression in specific tissues or cells at defined time points is a useful tool for the analysis of gene function. GAL4/VP16-UAS enhancer trap lines can be used to selectively express genes in specific tissues or cells, and an ethanol-inducible system can help to control the time of expression. In this study, the combination of the two methods allowed the successful regulation of gene expression in both time and space. For this purpose, a binary vector, 962-UAS::GUS, was constructed in which the ALCR activator and beta-glucuronidase (GUS) reporter gene were placed under the control of upstream activator sequence (UAS) elements and the alcA response element, respectively. Three different GAL4/VP16-UAS enhancer trap lines of Arabidopsis were transformed, resulting in transgenic plants in which GUS activity was detected only on ethanol induction and exclusively in the predicted tissues of the enhancer trap lines. As a library of different enhancer trap lines with distinct green fluorescent protein (GFP) patterns exist, transformation with a similar vector, in which GUS is replaced by another gene, would enable the control of the time and place of transgene expression. We have constructed two vectors for easy cloning of the gene of interest, one with a polylinker site and one that is compatible with the GATEWAY vector conversion system. The method can be extended to other species when enhancer trap lines become available.

  12. Unmanned Aircraft System (UAS) Traffic Management (UTM): Enabling Civilian Low-Altitude Airspace and Unmanned Aerial System Operations

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal Hemchandra

    2016-01-01

    Just a year ago we laid out the UTM challenges and NASA's proposed solutions. During the past year NASA's goal continues to be to conduct research, development and testing to identify airspace operations requirements to enable large-scale visual and beyond visual line-of-sight UAS operations in the low-altitude airspace. Significant progress has been made, and NASA is continuing to move forward.

  13. Data System for HS3 Airborne Field Campaign

    NASA Astrophysics Data System (ADS)

    Maskey, M.; Mceniry, M.; Berendes, T.; Bugbee, K.; Conover, H.; Ramachandran, R.

    2014-12-01

    Hurricane and Severe Storm Sentinel (HS3) is a NASA airborne field campaign aimed at better understanding the physical processes that control hurricane intensity change. HS3 will help answer questions related to the roles of environmental conditions and internal storm structures to storm intensification. Due to the nature of the questions that HS3 mission is addressing, it involves a variety of in-situ, satellite observations, airborne data, meteorological analyses, and simulation data. This variety of datasets presents numerous data management challenges for HS3. The methods used for airborne data management differ greatly from the methods used for space-borne data. In particular, metadata extraction, spatial and temporal indexing, and the large number of instruments and subsequent variables are a few of the data management challenges unique to airborne missions. A robust data system is required to successfully help HS3 scientist achieve their mission goals. Furthermore, the data system also needs to provide for data management that assists in broader use of HS3 data to enable future research activities. The Global Hydrology Resource Center (GHRC) is considering all these needs and designing a data system for HS3. Experience with past airborne field campaign puts GHRC in a good position to address HS3 needs. However, the scale of this mission along with science requirements separates HS3 from previous field campaigns. The HS3 data system will include automated services for geo-location, metadata extraction, discovery, and distribution for all HS3 data. To answer the science questions, the data system will include a visual data exploration tool that is fully integrated into the data catalog. The tool will allow visually augmenting airborne data with analyses and simulations. Satellite data will provide contextual information during such data explorations. All HS3 tools will be supported by an enterprise service architecture that will allow scaling, easy integration

  14. Airborne Electro-Optical Sensor Simulation System. Final Report.

    ERIC Educational Resources Information Center

    Hayworth, Don

    The total system capability, including all the special purpose and general purpose hardware comprising the Airborne Electro-Optical Sensor Simulation (AEOSS) System, is described. The functional relationship between hardware portions is described together with interface to the software portion of the computer image generation. Supporting rationale…

  15. Development of the ACS+OPC UA based control system for a CTA medium size telescope prototype

    NASA Astrophysics Data System (ADS)

    Behera, Bagmeet; Oya, Igor; Birsin, Emrah; Köppel, Hendryk; Melkumyan, David; Schlenstedt, Stefan; Schmidt, Torsten; Schwanke, Ullrich; Wegner, Peter; Wiesand, Stephan; Winde, Michael

    2012-09-01

    The Cherenkov Telescope Array (CTA) is the next generation Very High Energy (VHE, defined as > 50GeV to several 100TeV) telescope facility, currently in the design and prototyping phase, and expected to come on-line around 2016. The array would have both a Northern and Southern hemisphere site, together delivering nearly complete sky coverage. The CTA array is planned to have ~100 telescopes of several different sizes to fulfill the sensitivity and energy coverage needs. Each telescope has a number of subsystems with varied hardware and control mechanisms; a drive system that gets commands and inputs via OPC UA (OPC Unified Architecture), mirror alignment systems based on XBee/ZigBee protocol and/or CAN bus, weather monitor accessed via serial/Ethernet ports, CCD cameras for calibration, Cherenkov camera, and the data read out electronics, etc. Integrating the control and data-acquisitions of such a distributed heterogeneous system calls for a framework that can handle such a multi-platform, multi-protocol scenario. The CORBA based ALMA Common software satisfies these needs very well and is currently being evaluated as the base software for developing the control system for CTA. A prototype for a Medium Size Telescope (MST, ~12m) is being developed and will be deployed in Berlin, by end of 2012. We present the development being carried out to integrate and control the various hardware subsystems of this MST prototype using ACS.

  16. The Ediacaran Rio Doce magmatic arc revisited (Araçuaí-Ribeira orogenic system, SE Brazil)

    NASA Astrophysics Data System (ADS)

    Tedeschi, Mahyra; Novo, Tiago; Pedrosa-Soares, Antônio; Dussin, Ivo; Tassinari, Colombo; Silva, Luiz Carlos; Gonçalves, Leonardo; Alkmim, Fernando; Lana, Cristiano; Figueiredo, Célia; Dantas, Elton; Medeiros, Sílvia; De Campos, Cristina; Corrales, Felipe; Heilbron, Mônica

    2016-07-01

    Described half a century ago, the Galiléia tonalite represents a milestone in the discovery of plate margin magmatic arcs in the Araçuaí-Ribeira orogenic system (southeastern Brazil). In the 1990's, analytical studies on the Galiléia tonalite finally revealed the existence of a Late Neoproterozoic calc-alkaline magmatic arc in the Araçuaí orogen. Meanwhile, the name Rio Doce magmatic arc was applied to calc-alkaline plutons found in the Araçuaí-Ribeira boundary. After those pioneer studies, the calc-alkaline plutons showing a pre-collisional volcanic arc signature and age between 630 Ma and 585 Ma have been grouped in the G1 supersuite, corresponding to the Rio Doce arc infrastructure. Here, we revisit the Rio Doce arc with our solid field knowledge of the region and a robust analytical database (277 lithochemical analyses, and 47 U-Pb, 53 Sm-Nd, 25 87Sr/86Sr and 7 Lu-Hf datasets). The G1 supersuite consists of regionally deformed, tonalitic to granodioritic batholiths and stocks, generally rich in melanocratic to mesocratic enclaves and minor gabbroic to dioritic plutons. Gabbroic to dioritic enclaves show evidence of magma mixing processes. The lithochemical and isotopic signatures clearly reveal a volcanic arc formed on a continental margin setting. Melts from a Rhyacian basement form the bulk of the magma produced, whilst gabbroic plutons and enclaves record involvement of mantle magmas in the arc development. Tonalitic stocks (U-Pb age: 618-575 Ma, εNd(t): -5.7 to -7.8, Nd TDM ages: 1.28-1.68 Ga, 87Sr/86Sr(t): 0.7059-0.7118, and εHf(t): -5.2 to -11.7) form the northernmost segment of the Rio Doce arc, which dies out in the ensialic sector of the Araçuaí orogen. At arc eastern and central zones, several batholiths (e.g., Alto Capim, Baixo Guandu, Galiléia, Muniz Freire, São Vítor) record a long-lasting magmatic history (632-580 Ma; εNd(t): -5.6 to -13.3; Nd TDM age: 1.35-1.80 Ga; 87Sr/86Sr(t): 0.7091-0.7123). At arc western border, the magmatic

  17. Formal methods and digital systems validation for airborne systems

    NASA Technical Reports Server (NTRS)

    Rushby, John

    1993-01-01

    This report has been prepared to supplement a forthcoming chapter on formal methods in the FAA Digital Systems Validation Handbook. Its purpose is as follows: to outline the technical basis for formal methods in computer science; to explain the use of formal methods in the specification and verification of software and hardware requirements, designs, and implementations; to identify the benefits, weaknesses, and difficulties in applying these methods to digital systems used on board aircraft; and to suggest factors for consideration when formal methods are offered in support of certification. These latter factors assume the context for software development and assurance described in RTCA document DO-178B, 'Software Considerations in Airborne Systems and Equipment Certification,' Dec. 1992.

  18. Low cost airborne microwave landing system receiver, task 3

    NASA Technical Reports Server (NTRS)

    Hager, J. B.; Vancleave, J. R.

    1979-01-01

    Work performed on the low cost airborne Microwave Landing System (MLS) receiver is summarized. A detailed description of the prototype low cost MLS receiver is presented. This detail includes block diagrams, schematics, board assembly drawings, photographs of subassemblies, mechanical construction, parts lists, and microprocessor software. Test procedures are described and results are presented.

  19. Assess program: Interactive data management systems for airborne research

    NASA Technical Reports Server (NTRS)

    Munoz, R. M.; Reller, J. O., Jr.

    1974-01-01

    Two data systems were developed for use in airborne research. Both have distributed intelligence and are programmed for interactive support among computers and with human operators. The C-141 system (ADAMS) performs flight planning and telescope control functions in addition to its primary role of data acquisition; the CV-990 system (ADDAS) performs data management functions in support of many research experiments operating concurrently. Each system is arranged for maximum reliability in the first priority function, precision data acquisition.

  20. Weather Requirements and Procedures for Step 1: High Altitude Long Endurance (HALE) Unmanned Aircraft System (UAS) Flight Operations in the National Air Space (NAS)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This cover sheet is for version 2 of the weather requirements document along with Appendix A. The purpose of the requirements document was to identify and to list the weather functional requirements needed to achieve the Access 5 vision of "operating High Altitude, Long Endurance (HALE) Unmanned Aircraft Systems (UAS) routinely, safely, and reliably in the National Airspace System (NAS) for Step 1." A discussion of the Federal Aviation Administration (FAA) references and related policies, procedures, and standards is provided as basis for the recommendations supported within this document. Additional procedures and reference documentation related to weather functional requirements is also provided for background. The functional requirements and related information are to be proposed to the FAA and various standards organizations for consideration and approval. The appendix was designed to show that sources of flight weather information are readily available to UAS pilots conducting missions in the NAS. All weather information for this presentation was obtained from the public internet.

  1. NASA Experience with UAS Science Applications

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.; Jennison, Chris

    2007-01-01

    Viewgraphs of NASA's Unmanned Aerial Systems (UAS) as it applies to Earth science missions is presented. The topics include: 1) Agenda; 2) Background; 3) NASA Science Aircraft Endurance; 4) Science UAS Development Challenges; 5) USCG Alaskan Maritime Surveillance; 6) NOAA/NASA UAV Demonstration Project; 7) Western States Fire Mission; 8) Esperanza Fire Emergency Response; 9) Ikhana (Predator B); 10) UAV Synthetic Aperture Radar (UAVSAR); 11) Global Hawk; and 12) Related Technologies

  2. BioSAR Airborne Biomass Sensing System

    SciTech Connect

    Graham, R.L.; Johnson, P.

    2007-05-24

    This CRADA was developed to enable ORNL to assist American Electronics, Inc. test a new technology--BioSAR. BioSAR is a an airborne, low frequency (80-120 MHz {approx} FM radio frequencies) synthetic aperture radar (SAR) technology which was designed and built for NASA by ZAI-Amelex under Patrick Johnson's direction. At these frequencies, leaves and small branches are nearly transparent and the majority of the energy reflected from the forest and returned to the radar is from the tree trunks. By measuring the magnitude of the back scatter, the volume of the tree trunk and therefore the biomass of the trunks can be inferred. The instrument was successfully tested on tropical rain forests in Panama. Patrick Johnson, with American Electronics, Inc received a Phase II SBIR grant from DOE Office of Climate Change to further test and refine the instrument. Mr Johnson sought ORNL expertise in measuring forest biomass in order for him to further validate his instrument. ORNL provided ground truth measurements of forest biomass at three locations--the Oak Ridge Reservation, Weyerhaeuser Co. commercial pine plantations in North Carolina, and American Energy and Power (AEP) Co. hardwood forests in southern Ohio, and facilitated flights over these forests. After Mr. Johnson processed the signal data from BioSAR instrument, the processed data were given to ORNL and we attempted to derive empirical relationships between the radar signals and the ground truth forest biomass measurements using standard statistical techniques. We were unsuccessful in deriving such relationships. Shortly before the CRADA ended, Mr Johnson discovered that FM signal from local radio station broadcasts had interfered with the back scatter measurements such that the bulk of the signal received by the BioSAR instrument was not backscatter from the radar but rather was local radio station signals.

  3. Towards a Multi-Mission, Airborne Science Data System Environment

    NASA Astrophysics Data System (ADS)

    Crichton, D. J.; Hardman, S.; Law, E.; Freeborn, D.; Kay-Im, E.; Lau, G.; Oswald, J.

    2011-12-01

    NASA earth science instruments are increasingly relying on airborne missions. However, traditionally, there has been limited common infrastructure support available to principal investigators in the area of science data systems. As a result, each investigator has been required to develop their own computing infrastructures for the science data system. Typically there is little software reuse and many projects lack sufficient resources to provide a robust infrastructure to capture, process, distribute and archive the observations acquired from airborne flights. At NASA's Jet Propulsion Laboratory (JPL), we have been developing a multi-mission data system infrastructure for airborne instruments called the Airborne Cloud Computing Environment (ACCE). ACCE encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation. This includes improving data system interoperability across each instrument. A principal characteristic is being able to provide an agile infrastructure that is architected to allow for a variety of configurations of the infrastructure from locally installed compute and storage services to provisioning those services via the "cloud" from cloud computer vendors such as Amazon.com. Investigators often have different needs that require a flexible configuration. The data system infrastructure is built on the Apache's Object Oriented Data Technology (OODT) suite of components which has been used for a number of spaceborne missions and provides a rich set of open source software components and services for constructing science processing and data management systems. In 2010, a partnership was formed between the ACCE team and the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to support the data processing and data management needs

  4. Determination of juvenile hormone titers by means of LC-MS/MS/MS and a juvenile hormone-responsive Gal4/UAS system in Aedes aegypti mosquitoes.

    PubMed

    Zhao, Bo; Hou, Yuan; Wang, Jianjun; Kokoza, Vladimir A; Saha, Tusar T; Wang, Xue-Li; Lin, Ling; Zou, Zhen; Raikhel, Alexander S

    2016-10-01

    In anautogenous mosquitoes, juvenile hormone III (JH) plays an essential role in female post-eclosion (PE) development, preparing them for subsequent blood feeding and egg growth. We re-examined the JH titer during the reproductive cycle of female Aedes aegypti mosquitoes. Using liquid chromatography coupled with triple tandem mass spectrometry (LC-MS/MS/MS), we have shown that it reaches its peak at 48-54 h PE in the female hemolymph and at 72 h PE in whole body extracts. This method represents an effective assay for determination of JH titers. The 2.1-kb 5' promoter region of the Early Trypsin (ET) gene, which is specifically expressed in the female midgut under the control of JH during the PE phase, was utilized to genetically engineer the Ae. aegypti mosquito line with the ET-Gal4 activator. We then established the ET-GAL4>UAS-enhanced green fluorescent protein (EGFP) system in Ae. aegypti. In ET-Gal4>UAS-EGFP female mosquitoes, the intensity of the midgut-specific EGFP signal was observed to correspond to the ET gene transcript level and follow the JH titer during the PE phase. The EGFP signal and the EGFP transcript level were significantly diminished in midguts of transgenic female mosquitoes after RNA interference depletion of the JH receptor Methoprene-tolerant (Met), providing evidence of the control of ET gene expression by Met. Topical JH application caused premature enhancement of the EGFP signal and the EGFP transcript level in midguts of newly eclosed ET-Gal4>UAS-EGFP female mosquitoes, in which endogenous JH titer is still low. Hence, this novel ET-Gal4>UAS system permits JH-dependent gene overexpression in the midgut of Ae. aegypti female mosquitoes prior to a blood meal. PMID:27530057

  5. Covariance analysis of the airborne laser ranging system

    NASA Technical Reports Server (NTRS)

    Englar, T. S., Jr.; Hammond, C. L.; Gibbs, B. P.

    1981-01-01

    The requirements and limitations of employing an airborne laser ranging system for detecting crustal shifts of the Earth within centimeters over a region of approximately 200 by 400 km are presented. The system consists of an aircraft which flies over a grid of ground deployed retroreflectors, making six passes over the grid at two different altitudes. The retroreflector baseline errors are assumed to result from measurement noise, a priori errors on the aircraft and retroreflector positions, tropospheric refraction, and sensor biases.

  6. The NASA Airborne Science Data And Telemetry System (NASDAT)

    NASA Astrophysics Data System (ADS)

    Sorenson, C. E.; Forgione, J.; Barnes, C.

    2011-12-01

    A system providing a common core set of facility data services across the NASA Airborne Science Program research aircraft fleet is described. The NASA Airborne Science Data And Telemetry System (NASDAT) is a rugged avionics box that fits in a standard aeronautical radio rack mounting tray, and provides both aircraft and experimenter data interfaces. Ethernet, satcom, and legacy connections are supported. Standardized protocols allow this system to serve as an abstraction layer for interfacing any instrument to any aircraft. Built-in Iridium modems allow low rate baseline global data communications. Built on open standards and dynamically reconfigurable, the NASDAT enables any research platform to participate in the wider sensor web, such that remote experimenters can control their instruments, and display applications can receive near real time data. The production NASDAT was built this year, based in part on prototypes which have been flying on several research aircraft such as the NASA DC-8 and Global Hawk.

  7. Water depth measurement using an airborne pulsed neon laser system

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.; Frederick, E. B.

    1980-01-01

    The paper presents the water depth measurement using an airborne pulsed neon laser system. The results of initial base-line field test results of NASA airborne oceanographic lidar in the bathymetry mode are given, with water-truth measurements of depth and beam attenuation coefficients by boat taken at the same time as overflights to aid in determining the system's operational performance. The nadir-angle tests and field-of-view data are presented; this laser bathymetry system is an improvement over prior models in that (1) the surface-to-bottom pulse waveform is digitally recorded on magnetic tape, and (2) wide-swath mapping data may be routinely acquired using a 30 deg full-angle conical scanner.

  8. Coupling the GAL4 UAS system with alcR for versatile cell type-specific chemically inducible gene expression in Arabidopsis.

    PubMed

    Sakvarelidze, Lali; Tao, Zheng; Bush, Max; Roberts, Gethin R; Leader, David J; Doonan, John H; Rawsthorne, Stephen

    2007-07-01

    The Aspergillus alc regulon encodes a transcription factor, ALCR, which regulates transcription from cognate promoters such as alcA(p). In the presence of suitable chemical inducers, ALCR activates gene expression from alcA(p). The alc regulon can be transferred to other species and can be used to control the expression of reporter, metabolic and developmental genes in response to low-level ethanol exposure. In this paper, we describe a versatile system for targeting the alc regulon to specific cell types in Arabidopsis by driving ALCR expression from the GAL4 upstream activator sequence (UAS). Large numbers of Arabidopsis lines are available in which GAL4 is expressed in a variety of spatial patterns and, in turn, drives the expression of any gene cloned downstream of the UAS. We have used a previously characterized line that directs gene expression to the endosperm to demonstrate spatially restricted ethanol-inducible gene expression. We also show that the domain of inducible gene expression can easily be altered by crossing the UAS::ALCR cassette into different driver lines. We conclude that this gene switch can be used to drive gene expression in a highly responsive, but spatially restricted, manner.

  9. Airborne change detection system for the detection of route mines

    NASA Astrophysics Data System (ADS)

    Donzelli, Thomas P.; Jackson, Larry; Yeshnik, Mark; Petty, Thomas E.

    2003-09-01

    The US Army is interested in technologies that will enable it to maintain the free flow of traffic along routes such as Main Supply Routes (MSRs). Mines emplaced in the road by enemy forces under cover of darkness represent a major threat to maintaining a rapid Operational Tempo (OPTEMPO) along such routes. One technique that shows promise for detecting enemy mining activity is Airborne Change Detection, which allows an operator to detect suspicious day-to-day changes in and around the road that may be indicative of enemy mining. This paper presents an Airborne Change Detection that is currently under development at the US Army Night Vision and Electronic Sensors Directorate (NVESD). The system has been tested using a longwave infrared (LWIR) sensor on a vertical take-off and landing unmanned aerial vehicle (VTOL UAV) and a midwave infrared (MWIR) sensor on a fixed wing aircraft. The system is described and results of the various tests conducted to date are presented.

  10. Airborne antenna polarization study for the microwave landing system

    NASA Technical Reports Server (NTRS)

    Gilreath, M. C.

    1976-01-01

    The feasibility of the microwave landing system (MLS) airborne antenna pattern coverage requirements are investigated for a large commercial aircraft using a single omnidirectional antenna. Omnidirectional antennas having vertical and horizontal polarizations were evaluated at several different station locations on a one-eleventh scale model Boeing 737 aircraft. The results obtained during this experimental program are presented which include principal plane antenna patterns and complete volumetric coverage plots.

  11. Possibilities of Uas for Maritime Monitoring

    NASA Astrophysics Data System (ADS)

    Klimkowska, A.; Lee, I.; Choi, K.

    2016-06-01

    In the last few years, Unmanned Aircraft Systems (UAS) have become more important and its use for different application is appreciated. At the beginning UAS were used for military purposes. These successful applications initiated interest among researchers to find uses of UAS for civilian purposes, as they are alternative to both manned and satellite systems in acquiring high-resolution remote sensing data at lower cost while long flight duration. As UAS are built from many components such as unmanned aerial vehicle (UAV), sensing payloads, communication systems, ground control stations, recovery and launch equipment, and supporting equipment, knowledge about its functionality and characteristics is crucial for missions. Therefore, finding appropriate configuration of all elements to fulfill requirements of the mission is a very difficult, yet important task. UAS may be used in various maritime applications such as ship detection, red tide detection and monitoring, border patrol, tracking of pollution at sea and hurricane monitoring just to mention few. One of the greatest advantages of UAV is their ability to fly over dangerous and hazardous areas, where sending manned aircraft could be risky for a crew. In this article brief description of aerial unmanned system components is introduced. Firstly characteristics of unmanned aerial vehicles are presented, it continues with introducing inertial navigation system, communication systems, sensing payloads, ground control stations, and ground and recovery equipment. Next part introduces some examples of UAS for maritime applications. This is followed by suggestions of key indicators which should be taken into consideration while choosing UAS. Last part talks about configuration schemes of UAVs and sensor payloads suggested for some maritime applications.

  12. A new COmpact hyperSpectral Imaging system (COSI) for UAS

    NASA Astrophysics Data System (ADS)

    Sima, Aleksandra; Baeck, Pieter-Jan; Delalieux, Stephanie; Livens, Stefan; Blommaert, Joris; Delauré, Bavo; Boonen, Miet

    2016-04-01

    This presentation gives an overview of the new COmpact hyperSpectral Imaging (COSI) system recently developed at the Flemish Institute for Technological Research (VITO, Belgium) and suitable for multirotor Remotely Piloted Aircraft Systems (RPAS) platforms. The camera is compact and lightweight, with a total mass of less than 500g including: an embedded computer, storage and power distribution unit. Such device miniaturization was possible thanks to the application of linear variable filters technology, in which image lines in the across flight direction correspond to different spectral bands as well as a different location on the ground (frame camera). The scanning motion is required to retrieve the complete spectrum for every point on the ground. The COSI camera captures data in 72 narrow (FWHM: 5nm to 10 nm) bands in the spectral range of 600-900 nm. Such spectral information is highly favourable for vegetation studies, since the main chlorophyll absorption feature centred around 680 nm is measured, as well as, the red-edge region (680 nm to 730 nm) which is often linked to plant stress. The NIR region furthermore reflects the internal plant structure, and is often linked to leaf area index and plant biomass. Next to the high spectral resolution, the COSI imager also provides a very high spatial data resolution i.e. images captured with a 9mm lens at 40m altitude cover a swath of ~40m with a ~2cm ground sampling distance. A dedicated data processing chain transforms the raw images into various information and action maps representing the status of the vegetation health and thus allowing for optimization of the management decisions within agricultural fields. In a number of test flights, hyperspectral COSI imager data were acquired covering diverse environments, e.g.: strawberry fields, natural grassland or pear orchards. Next to the COSI system overview, examples of collected data will be presented together with the results of the spectral data analysis. Lessons

  13. Inter-agency Working Group for Airborne Data and Telemetry Systems (IWGADTS)

    NASA Technical Reports Server (NTRS)

    Webster, Chris; Freudinge, Lawrence; Sorenson, Carl; Myers, Jeff; Sullivan, Don; Oolman, Larry

    2009-01-01

    The Interagency Coordinating Committee for Airborne Geosciences Research and Applications (ICCAGRA) was established to improve cooperation and communication among agencies sponsoring airborne platforms and instruments for research and applications, and to serve as a resource for senior level management on airborne geosciences issues. The Interagency Working Group for Airborne Data and Telecommunications Systems (IWGADTS) is a subgroup to ICCAGRA for the purpose of developing recommendations leading to increased interoperability among airborne platforms and instrument payloads, producing increased synergy among research programs with similar goals, and enabling the suborbital layer of the Global Earth Observing System of Systems.

  14. Unmanned Airborne System Deployment at Turrialba Volcano for Real Time Eruptive Cloud Measurements

    NASA Astrophysics Data System (ADS)

    Diaz, J. A.; Pieri, D. C.; Fladeland, M. M.; Bland, G.; Corrales, E.; Alan, A., Jr.; Alegria, O.; Kolyer, R.

    2015-12-01

    The development of small unmanned aerial systems (sUAS) with a variety of instrument packages enables in situ and proximal remote sensing measurements of volcanic plumes, even when the active conditions of the volcano do not allow volcanologists and emergency response personnel to get too close to the erupting crater. This has been demonstrated this year by flying a sUAS through the heavy ash driven erupting volcanic cloud of Turrialba Volcano, while conducting real time in situ measurement of gases over the crater summit. The event also achieved the collection of newly released ash samples from the erupting volcano. The interception of the Turrialba ash cloud occurred during the CARTA 2015 field campaign carried out as part of an ongoing program for remote sensing satellite calibration and validation purposes, using active volcanic plumes. These deployments are timed to support overflights of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) onboard the NASA Terra satellite on a bimonthly basis using airborne platforms such as tethered balloons, free-flying fixed wing small UAVs at altitudes up to 12.5Kft ASL within about a 5km radius of the summit crater. The onboard instrument includes the MiniGas payload which consists of an array of single electrochemical and infrared gas detectors (SO2, H2S CO2), temperature, pressure, relative humidity and GPS sensors, all connected to an Arduino-based board, with data collected at 1Hz. Data are both stored onboard and sent by telemetry to the ground operator within a 3 km range. The UAV can also carry visible and infrared cameras as well as other payloads, such as a UAV-MS payload that is currently under development for mass spectrometer-based in situ measurements. The presentation describes the ongoing UAV- based in situ remote sensing validation program at Turrialba Volcano, the results of a fly-through the eruptive cloud, as well as future plans to continue these efforts. Work presented here was

  15. Algorithms used in the Airborne Lidar Processing System (ALPS)

    USGS Publications Warehouse

    Nagle, David B.; Wright, C. Wayne

    2016-05-23

    The Airborne Lidar Processing System (ALPS) analyzes Experimental Advanced Airborne Research Lidar (EAARL) data—digitized laser-return waveforms, position, and attitude data—to derive point clouds of target surfaces. A full-waveform airborne lidar system, the EAARL seamlessly and simultaneously collects mixed environment data, including submerged, sub-aerial bare earth, and vegetation-covered topographies.ALPS uses three waveform target-detection algorithms to determine target positions within a given waveform: centroid analysis, leading edge detection, and bottom detection using water-column backscatter modeling. The centroid analysis algorithm detects opaque hard surfaces. The leading edge algorithm detects topography beneath vegetation and shallow, submerged topography. The bottom detection algorithm uses water-column backscatter modeling for deeper submerged topography in turbid water.The report describes slant range calculations and explains how ALPS uses laser range and orientation measurements to project measurement points into the Universal Transverse Mercator coordinate system. Parameters used for coordinate transformations in ALPS are described, as are Interactive Data Language-based methods for gridding EAARL point cloud data to derive digital elevation models. Noise reduction in point clouds through use of a random consensus filter is explained, and detailed pseudocode, mathematical equations, and Yorick source code accompany the report.

  16. Algorithms used in the Airborne Lidar Processing System (ALPS)

    USGS Publications Warehouse

    Nagle, David B.; Wright, C. Wayne

    2016-01-01

    The Airborne Lidar Processing System (ALPS) analyzes Experimental Advanced Airborne Research Lidar (EAARL) data—digitized laser-return waveforms, position, and attitude data—to derive point clouds of target surfaces. A full-waveform airborne lidar system, the EAARL seamlessly and simultaneously collects mixed environment data, including submerged, sub-aerial bare earth, and vegetation-covered topographies.ALPS uses three waveform target-detection algorithms to determine target positions within a given waveform: centroid analysis, leading edge detection, and bottom detection using water-column backscatter modeling. The centroid analysis algorithm detects opaque hard surfaces. The leading edge algorithm detects topography beneath vegetation and shallow, submerged topography. The bottom detection algorithm uses water-column backscatter modeling for deeper submerged topography in turbid water.The report describes slant range calculations and explains how ALPS uses laser range and orientation measurements to project measurement points into the Universal Transverse Mercator coordinate system. Parameters used for coordinate transformations in ALPS are described, as are Interactive Data Language-based methods for gridding EAARL point cloud data to derive digital elevation models. Noise reduction in point clouds through use of a random consensus filter is explained, and detailed pseudocode, mathematical equations, and Yorick source code accompany the report.

  17. NASA three-laser airborne differential absorption lidar system electronics

    NASA Technical Reports Server (NTRS)

    Allen, R. J.; Copeland, G. D.

    1984-01-01

    The system control and signal conditioning electronics of the NASA three laser airborne differential absorption lidar (DIAL) system are described. The multipurpose DIAL system was developed for the remote measurement of gas and aerosol profiles in the troposphere and lower stratosphere. A brief description and photographs of the majority of electronics units developed under this contract are presented. The precision control system; which includes a master control unit, three combined NASA laser control interface/quantel control units, and three noise pulse discriminator/pockels cell pulser units; is described in detail. The need and design considerations for precision timing and control are discussed. Calibration procedures are included.

  18. Airborne Advanced Reconfigurable Computer System (ARCS)

    NASA Technical Reports Server (NTRS)

    Bjurman, B. E.; Jenkins, G. M.; Masreliez, C. J.; Mcclellan, K. L.; Templeman, J. E.

    1976-01-01

    A digital computer subsystem fault-tolerant concept was defined, and the potential benefits and costs of such a subsystem were assessed when used as the central element of a new transport's flight control system. The derived advanced reconfigurable computer system (ARCS) is a triple-redundant computer subsystem that automatically reconfigures, under multiple fault conditions, from triplex to duplex to simplex operation, with redundancy recovery if the fault condition is transient. The study included criteria development covering factors at the aircraft's operation level that would influence the design of a fault-tolerant system for commercial airline use. A new reliability analysis tool was developed for evaluating redundant, fault-tolerant system availability and survivability; and a stringent digital system software design methodology was used to achieve design/implementation visibility.

  19. Uas Topographic Mapping with Velodyne LiDAR Sensor

    NASA Astrophysics Data System (ADS)

    Jozkow, G.; Toth, C.; Grejner-Brzezinska, D.

    2016-06-01

    Unmanned Aerial System (UAS) technology is nowadays willingly used in small area topographic mapping due to low costs and good quality of derived products. Since cameras typically used with UAS have some limitations, e.g. cannot penetrate the vegetation, LiDAR sensors are increasingly getting attention in UAS mapping. Sensor developments reached the point when their costs and size suit the UAS platform, though, LiDAR UAS is still an emerging technology. One issue related to using LiDAR sensors on UAS is the limited performance of the navigation sensors used on UAS platforms. Therefore, various hardware and software solutions are investigated to increase the quality of UAS LiDAR point clouds. This work analyses several aspects of the UAS LiDAR point cloud generation performance based on UAS flights conducted with the Velodyne laser scanner and cameras. The attention was primarily paid to the trajectory reconstruction performance that is essential for accurate point cloud georeferencing. Since the navigation sensors, especially Inertial Measurement Units (IMUs), may not be of sufficient performance, the estimated camera poses could allow to increase the robustness of the estimated trajectory, and subsequently, the accuracy of the point cloud. The accuracy of the final UAS LiDAR point cloud was evaluated on the basis of the generated DSM, including comparison with point clouds obtained from dense image matching. The results showed the need for more investigation on MEMS IMU sensors used for UAS trajectory reconstruction. The accuracy of the UAS LiDAR point cloud, though lower than for point cloud obtained from images, may be still sufficient for certain mapping applications where the optical imagery is not useful.

  20. Airborne water vapor DIAL system development

    NASA Technical Reports Server (NTRS)

    Higdon, Noah S.; Browell, Edward V.; Ponsardin, Patrick; Grossmann, Benoist E.

    1990-01-01

    A differential absorption lidar (DIAL) system developed at NASA Langley Research Center for the remote measurement of atmospheric H2O and aerosols from an aircraft is briefly discussed. This DIAL system utilizes a Nd:YAG laser-pumped dye laser as the off-line transmitter and a narrowband, tunable Alexandrite laser as the on-line transmitter. A 1-m monochromator and a multipass absorption cell are used to position the on-line laser to the center of the H2O line. The receiver system has a 14-in. diameter, f/7 Celestron telescope to collect the backscattered laser light and focus in into the detector optics. Return signals are converted to electrical signals by the optical detector and are digitalized and stored on magnetic tape. The results of fligh tests of the system are shown.

  1. Development of an airborne remote sensing system for crop pest management: System integration and verification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing along with Global Positioning Systems, Geographic Information Systems, and variable rate technology has been developed, which scientists can implement to help farmers maximize the economic and environmental benefits of crop pest management through precision agriculture. Airborne remo...

  2. A comparison of multicopter and fixed-wing unmanned aerial systems (UAS) applied to mapping debris flows in small alpine catchments

    NASA Astrophysics Data System (ADS)

    Sotier, Bernadette; Lechner, Veronika

    2016-04-01

    The use of unmanned aerial systems (UAS) for documenting natural hazard events (e.g. debris flows) is becoming increasingly popular, as UAS allow on-demand, flexible and cost-efficient data acquisition. In this paper, we present the results of a comparison of multicopter and fixed-wing UAS. They were employed in the summer of 2015 to map two small alpine catchments located in Western Austria, where debris flows had occurred recently: The first event took place in the Seigesbach (Tyrol), the second occurred in the Plojergraben (Salzburg). For the Seigesbach mission, a fixed-wing UAS (Multiplex Mentor), equipped with a Sony NEX5 (50 mm prime lens, 14 MP sensor resolution) was employed to acquire approximately 4,000 images. In the Plojergraben an AustroDrones X18 octocopter was used, carrying a Sony ILCE-7R (35 mm prime lens, 36 MP sensor resolution) to record 1,700 images. Both sites had a size of approximately 2km². 20 ground control points (GCP) were distributed within both catchments, and their location was measured (Trimble GeoXT, expected accuracy 0.15 m). Using standard structure-from-motion photogrammetry software (AgiSoft PhotoScan Pro, v. 1.1.6), orthophotos (5 cm ground sampling distance - GSD) and digital surface models (DSM) (20 cm GSD) were calculated. Volume differences caused by the debris flow (i.e. deposition heights and erosion depths) computed by subtracting post-event from pre-event DSMs. Even though the terrain conditions in the two catchments were comparable, the challenges during the field campaign and the evaluation of the aerial images were very different. The main difference between the two campaigns was the number of flights required to cover the catchment: only four were needed by the fixed-wing UAS, while the multicopter required eleven in the Plojergraben. The fixed-wing UAS is specially designed for missions in hardly accessible regions, requiring only two people to carry the whole equipment, while in this case a car was needed for the

  3. Airborne Tomographic Swath Ice Sounding Processing System

    NASA Technical Reports Server (NTRS)

    Wu, Xiaoqing; Rodriquez, Ernesto; Freeman, Anthony; Jezek, Ken

    2013-01-01

    Glaciers and ice sheets modulate global sea level by storing water deposited as snow on the surface, and discharging water back into the ocean through melting. Their physical state can be characterized in terms of their mass balance and dynamics. To estimate the current ice mass balance, and to predict future changes in the motion of the Greenland and Antarctic ice sheets, it is necessary to know the ice sheet thickness and the physical conditions of the ice sheet surface and bed. This information is required at fine resolution and over extensive portions of the ice sheets. A tomographic algorithm has been developed to take raw data collected by a multiple-channel synthetic aperture sounding radar system over a polar ice sheet and convert those data into two-dimensional (2D) ice thickness measurements. Prior to this work, conventional processing techniques only provided one-dimensional ice thickness measurements along profiles.

  4. An airborne laser polarimeter system (ALPS) for terrestrial physics research

    NASA Technical Reports Server (NTRS)

    Kalshoven, James E., Jr.; Dabney, Philip W.

    1988-01-01

    The design of a multispectral polarized laser system for characterizing the depolarization properties of the earth's surface is described. Using a laser as the light source, this airborne system measures the Stokes parameters of the surface to simultaneously arrive at the polarization degree, azimuthal angle, and ellipticity for each wavelength. The technology will be studied for the feasibility of expansion of the sensor to do surface polarization imaging. The data will be used in support of solar polarization studies and to develop laser radiometry as a tool in environmental remote sensing.

  5. Modular airborne remote sampling and sensing system (MARSSS)

    SciTech Connect

    Woods, R.O.

    1982-04-01

    Sandia is developing a modular airborne instrumentation system for the Environmental Protection Agency. This system will allow flexibility in the choice of instruments by standardizing mountings, power supplies and sampling modes. The objective is to make it possible to perform aerial surveys from chartered aircraft that have not been adapted in a more than superficial manner. It will also allow the experimenter to tailor his choice of instruments to the specific problem. Since the equipment will have a stand-alone capability, it can be applied to other problems such as long-term unattended use at remote locations or in toxic or otherwise hazardous environments.

  6. Composite design of an advanced airborne monitoring system

    SciTech Connect

    Busness, K. M.; Alkezweeny, A. J.; Easter, R. C.; Hales, J. M.; Lee, R. N.

    1981-12-01

    Atmospheric chemistry investigations often require a multitude of measurements which can be obtained only through the utilization of airborne sampling platforms. Instrument limitations and the aircraft environment present several considerations for sampling-system design, including such factors as instrument sensitivities and response times, altitude effects, sampling intervals for acquiring samples, and physical compatibility with the aircraft. An aircraft system with an extensive evolutionary instrument array has been in development at PNL for several years during which several special systems have been developed to improve aircraft measurement capabilities. A high-volume air sampling system providing flows of up to 4 m/sup 3//min and simultaneous collection of three filters in parallel has been constructued to reduce filter collection times. A constant pressure inlet system was developed to overcome adverse effects in instrument response resulting from altitude changes. The system functions so that instruments which are connected experinece a constant pre-set pressure regardless of the sampling altitude. This system is particularly useful for airborne operation of a flame photometric sulfur analyzer. Special chemiluminescence NO/NO/sub x/ analyzers utilizing photon counting were built which are capable of fast response and detecton of concentrations in the sub-ppB range.

  7. Expanding the Envelope of UAS Certification: What it Takes to Type Certify a UAS for Precision Agricultural Spraying

    NASA Technical Reports Server (NTRS)

    Maddalon, J. M.; Hayhurst, K. J.; Neogi, N. A.; Verstynen, H. A.; Clothier, R. A.

    2016-01-01

    One of the key challenges to the development of a commercial Unmanned Air-craft System (UAS) market is the lack of explicit consideration of UAS in the current regulatory framework. Despite recent progress, additional steps are needed to enable broad UAS types and operational models. This paper discusses recent research that examines how a risk-based approach for safety might change the process and substance of airworthiness requirements for UAS. The project proposed risk-centric airworthiness requirements for a midsize un-manned rotorcraft used for agricultural spraying and also identified factors that may contribute to distinguishing safety risk among different UAS types and operational concepts. Lessons learned regarding how a risk-based approach can expand the envelope of UAS certification are discussed.

  8. Transmitter Pulse Estimation and Measurements for Airborne TDEM Systems

    NASA Astrophysics Data System (ADS)

    Vetrov, A.; Mejzr, I.

    2013-12-01

    The processing and interpretation of Airborne Time Domain EM data requires precise description of the transmitter parameters, including shape, amplitude and length of the transmitted pulse. There are several ways to measure pulse shape of the transmitter loop. Transmitted pulse can be recorded by a current monitor installed on the loop. The current monitor readings do not give exact image due to own time-domain physical characteristics of the current monitor. Another way is to restore the primary pulse shape from the receiver data recorded on-time, if such is possible. The receiver gives exact image of the primary field projection combined with the ground response, which can be minimized at high altitude pass, usually with a transmitter elevation higher than 1500 ft from the ground. The readings on the receiver are depending on receiver position and orientation. Modeling of airborne TDEM transmitter pulse allows us to compare estimated and measured shape of the pulse and apply required corrections. Airborne TDEM system transmitter pulse shape has been studied by authors while developing P-THEM system. The data has been gathered during in-doors and out-doors ground tests in Canada, as well as during flight tests in Canada and in India. The P-THEM system has three-axes receiver that is suspended on a tow-cable in the midpoint between the transmitter and the helicopter. The P-THEM receiver geometry does not require backing coils to dump the primary field. The system records full-wave data from the receiver and current monitor installed on the transmitter loop, including on-time and off-time data. The modeling of the transmitter pulse allowed us to define the difference between estimated and measured values. The higher accuracy pulse shape can be used for better data processing and interpretation. A developed model can be applied to similar systems and configurations.

  9. Remote sensing and in situ payloads for atmosphere-ocean and earth observations aboard a Manta Unmanned Aerial System (UAS)

    NASA Astrophysics Data System (ADS)

    Zappa, C. J.; Brown, S.; Dhakal, T.; Bates, T. S.; Gao, R. S.; Murphy, D. M.; Telg, H.; Stalin, S.

    2014-12-01

    Several new payloads have been developed for use on the NOAA/PMEL Manta UAS. Lamont-Doherty Earth Observatory (LDEO) has improved its visible and infrared imaging payload to provide precise measurements of ice/snow/ocean surface temperatures accurate to 0.1°C. LDEO has also developed a number of new payloads that include: i) hyperspectral aberration-corrected imaging spectrometers to measure VNIR (400-1000 nm) and NIR (900-1700 nm) spectral radiance of the upper-ocean and sea ice to determine ocean color, ice-age distributions and ice-surface type; ii) up- and down-looking hemispheric pyrgeometers and pyranometers to measure the net longwave and net shortwave radiation for ice-ocean albedo studies with an onboard visible camera to determine the sea ice fraction and whitecapping; iii) meteorological measurements of the turbulent momentum, sensible, and latent fluxes as well as wave height, ice freeboard, and surface roughness with a LIDAR; iv) four dropsonde-microbuoys (DMB) deployed from the Manta. The DMB measures temperature, pressure, and relative humidity as it descends through the atmosphere. Once it lands on the ocean's surface, it deploys a string of sensors that measures temperature and salinity of the upper three meters of the ocean. The ocean sensors telemeter data back to the UAS on subsequent flights. The DMB can also be dropped on an ice flow to measure the rate of the ice movement. The DMB collect and store data and then transmit the data back to the UAS when it comes overhead. The NOAA/PMEL aerosol payload has been expanded to include a printed optical particle spectrometer to obtain aerosol size distributions and an upward looking radiometer to measure radiant flux densities through aerosol layers. Details of these payloads and example data will be reported.

  10. A multisensor system for airborne surveillance of oil pollution

    NASA Technical Reports Server (NTRS)

    Edgerton, A. T.; Ketchal, R.; Catoe, C.

    1973-01-01

    The U.S. Coast Guard is developing a prototype airborne oil surveillance system for use in its Marine Environmental Protection Program. The prototype system utilizes an X-band side-looking radar, a 37-GHz imaging microwave radiometer, a multichannel line scanner, and a multispectral low light level system. The system is geared to detecting and mapping oil spills and potential pollution violators anywhere within a 25 nmi range of the aircraft flight track under all but extreme weather conditions. The system provides for false target discrimination and maximum identification of spilled materials. The system also provides an automated detection alarm, as well as a color display to achieve maximum coupling between the sensor data and the equipment operator.

  11. An airborne remote sensing system for urban air quality

    NASA Technical Reports Server (NTRS)

    Duncan, L. J.; Friedman, E. J.; Keitz, E. L.; Ward, E. A.

    1974-01-01

    Several NASA sponsored remote sensors and possible airborne platforms were evaluated. Outputs of dispersion models for SO2 and CO pollution in the Washington, D.C. area were used with ground station data to establish the expected performance and limitations of the remote sensors. Aircraft/sensor support requirements are discussed. A method of optimum flight plan determination was made. Cost trade offs were performed. Conclusions about the implementation of various instrument packages as parts of a comprehensive air quality monitoring system in Washington are presented.

  12. Prediction and removal of rotation noise in airborne EM systems

    NASA Astrophysics Data System (ADS)

    Kratzer, Terence 12Macnae, James

    2014-03-01

    We aim to eliminate or reduce significant impediments to conductive target detection and conductive cover penetration in airborne electromagnetic (AEM) systems. Existing limitations come from the very high noise encountered at low base frequencies, caused by rotations of vector magnetic field sensors in the Earth's magnetic field. We use the output of tri-axial rotation-rate sensors to predict and subtract the rotation noise from rigidly coupled ARMIT magnetic field sensors. The approach is successful in reducing rotation noise by one to two orders of magnitude at low frequencies.

  13. Airborne tunable diode laser system for trace gas measurements

    NASA Technical Reports Server (NTRS)

    Sachse, G. W.; Hill, G. F.; Hoell, J. M., Jr.

    1983-01-01

    Sachse et al. (1976) have reported the development of an airborne tunable diode laser (TDL) system, named the Differential Absorption CO Monitor (DACOM). The absorption path was 10 m long and located in the free airstream along the fuselage of a C-54 aircraft. The present investigation is concerned with a modification of the DACOM instrument. Differences between the new instrument and the original one are related to a replacement of the external absorption path with a White cell. The instrument has the capability to suppress TDL excess noise. The laser refrigerator has been redesigned to permit an alternative method of cooling the TDL when electric power is not available.

  14. The NASA/JPL Airborne Synthetic Aperture Radar System

    NASA Technical Reports Server (NTRS)

    Lou, Yunling; Kim,Yunjin; vanZyl, Jakob

    1996-01-01

    In this paper we will briefly describe the instrument characteristics, the evolution of various radar modes, the instrument performance and improvement in the knowledge of the positioning and attitude information of the NASA/JPL airborne synthetic aperture radar (SAR). This system operates in the fully polarimetric mode in the P, L, and C band simultaneously or in the interferometric mode in both the L and C band simultaneously. We also summarize the progress of the data processing effort, especially in the interferometry processing and we address the issue of processing and calibrating the cross-track interferometry data.

  15. Performance assessment of MEMS adaptive optics in tactical airborne systems

    NASA Astrophysics Data System (ADS)

    Tyson, Robert K.

    1999-09-01

    Tactical airborne electro-optical systems are severely constrained by weight, volume, power, and cost. Micro- electrical-mechanical adaptive optics provide a solution that addresses the engineering realities without compromising spatial and temporal compensation requirements. Through modeling and analysis, we determined that substantial benefits could be gained for laser designators, ladar, countermeasures, and missile seekers. The developments potential exists for improving seeker imagery resolution 20 percent, extending countermeasures keep-out range by a factor of 5, doubling the range for ladar detection and identification, and compensating for supersonic and hypersonic aircraft boundary layers. Innovative concepts are required for atmospheric pat hand boundary layer compensation. We have developed design that perform these tasks using high speed scene-based wavefront sensing, IR aerosol laser guide stars, and extended-object wavefront beacons. We have developed a number of adaptive optics system configurations that met the spatial resolution requirements and we have determined that sensing and signal processing requirements can be met. With the help of micromachined deformable mirrors and sensor, we will be able to integrate the systems into existing airborne pods and missiles as well as next generation electro-optical systems.

  16. A Real-Time Advisory System For Airborne Early Warning

    NASA Astrophysics Data System (ADS)

    Kirk, D. B.; Cromwell, M. E.; Donnell, M. L.; Barrett, C. L.

    1987-05-01

    Decision speed and quality can be greatly enhanced by the use of decision augmentation software to assist operators in information analysis and tactical problem solving, dynamic resource allocation, and in determining strategies which optimize overall system performance. One example of such software is the real-time advisory system (RTAS) being constructed to assist in tactical decision-making for airborne early warning (AEW) aircraft, particularly the carrier-based Navy E-2C. Using a vector logic approach, the current AEW RTAS is a real-time backward chaining expert system which provides advice for both threat interception and refueling in the complex Outer Air Battle Scenario. This paper describes the current system, discusses a number of design issues for such a system, and describes ongoing modifications to the current AEW RTAS using SAIC's frame-based knowledge repre-sentation language (KRL).

  17. An automated data exploitation system for airborne sensors

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Wen; McGurr, Mike

    2014-06-01

    Advanced wide area persistent surveillance (WAPS) sensor systems on manned or unmanned airborne vehicles are essential for wide-area urban security monitoring in order to protect our people and our warfighter from terrorist attacks. Currently, human (imagery) analysts process huge data collections from full motion video (FMV) for data exploitation and analysis (real-time and forensic), providing slow and inaccurate results. An Automated Data Exploitation System (ADES) is urgently needed. In this paper, we present a recently developed ADES for airborne vehicles under heavy urban background clutter conditions. This system includes four processes: (1) fast image registration, stabilization, and mosaicking; (2) advanced non-linear morphological moving target detection; (3) robust multiple target (vehicles, dismounts, and human) tracking (up to 100 target tracks); and (4) moving or static target/object recognition (super-resolution). Test results with real FMV data indicate that our ADES can reliably detect, track, and recognize multiple vehicles under heavy urban background clutters. Furthermore, our example shows that ADES as a baseline platform can provide capability for vehicle abnormal behavior detection to help imagery analysts quickly trace down potential threats and crimes.

  18. Airborne Systems Technology Application to the Windshear Threat

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. Douglas; Lewis, Michael S.; Hinton, David A.

    1996-01-01

    The general approach and products of the NASA/FAA Airborne Windshear Program conducted by NASA Langley Research Center are summarized, with references provided for the major technical contributions. During this period, NASA conducted 2 years of flight testing to characterize forward-looking sensor performance. The NASA/FAA Airborne Windshear Program was divided into three main elements: Hazard Characterization, Sensor Technology, and Flight Management Systems. Simulation models developed under the Hazard Characterization element are correlated with flight test data. Flight test results comparing the performance and characteristics of the various Sensor Technologies (microwave radar, lidar, and infrared) are presented. Most of the activities in the Flight Management Systems element were conducted in simulation. Simulation results from a study evaluating windshear crew procedures and displays for forward-looking sensor-equipped airplanes are discussed. NASA Langley researchers participated heavily in the FAA process of generating certification guidelines for predictive windshear detection systems. NASA participants felt that more valuable technology products were generated by the program because of this interaction. NASA involvement in the process and the resulting impact on products and technology transfer are discussed in this paper.

  19. Calibration of UAS imagery inside and outside of shadows for improved vegetation index computation

    NASA Astrophysics Data System (ADS)

    Bondi, Elizabeth; Salvaggio, Carl; Montanaro, Matthew; Gerace, Aaron D.

    2016-05-01

    Vegetation health and vigor can be assessed with data from multi- and hyperspectral airborne and satellite- borne sensors using index products such as the normalized difference vegetation index (NDVI). Recent advances in unmanned aerial systems (UAS) technology have created the opportunity to access these same image data sets in a more cost effective manner with higher temporal and spatial resolution. Another advantage of these systems includes the ability to gather data in almost any weather condition, including complete cloud cover, when data has not been available before from traditional platforms. The ability to collect in these varied conditions, meteorological and temporal, will present researchers and producers with many new challenges. Particularly, cloud shadows and self-shadowing by vegetation must be taken into consideration in imagery collected from UAS platforms to avoid variation in NDVI due to changes in illumination within a single scene, and between collection flights. A workflow is presented to compensate for variations in vegetation indices due to shadows and variation in illumination levels in high resolution imagery collected from UAS platforms. Other calibration methods that producers may currently be utilizing produce NDVI products that still contain shadow boundaries and variations due to illumination, whereas the final NDVI mosaic from this workflow does not.

  20. UAS remote sensing for precision agriculture: An independent assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small Unmanned Aircraft Systems (sUAS) are recognized as potentially important remote-sensing platforms for precision agriculture. However, research is required to determine which sensors and data processing methods are required to use sUAS in an efficient and cost-effective manner. Oregon State U...

  1. Multisensor airborne imagery collection and processing onboard small unmanned systems

    NASA Astrophysics Data System (ADS)

    Linne von Berg, Dale; Anderson, Scott A.; Bird, Alan; Holt, Niel; Kruer, Melvin; Walls, Thomas J.; Wilson, Michael L.

    2010-04-01

    FEATHAR (Fusion, Exploitation, Algorithms, and Targeting for High-Altitude Reconnaissance) is an ONR funded effort to develop and test new tactical sensor systems specifically designed for small manned and unmanned platforms (payload weight < 50 lbs). This program is being directed and executed by the Naval Research Laboratory (NRL) in conjunction with the Space Dynamics Laboratory (SDL). FEATHAR has developed and integrated EyePod, a combined long-wave infrared (LWIR) and visible to near infrared (VNIR) optical survey & inspection system, with NuSAR, a combined dual band synthetic aperture radar (SAR) system. These sensors are being tested in conjunction with other ground and airborne sensor systems to demonstrate intelligent real-time cross-sensor cueing and in-air data fusion. Results from test flights of the EyePod and NuSAR sensors will be presented.

  2. An airborne meteorological data collection system using satellite relay (ASDAR)

    NASA Technical Reports Server (NTRS)

    Bagwell, J. W.; Lindow, B. G.

    1978-01-01

    The National Aeronautics and Space Administration (NASA) has developed an airborne data acquisition and communication system for the National Oceanic and Atmospheric Administration (NOAA). This system known as ASDAR, the Aircraft to Satellite Data Relay, consists of a microprocessor based controller, time clock, transmitter and antenna. Together they acquire meteorological and position information from existing aircraft systems on B-747 aircraft, convert and format these, and transmit them to the ground via the GOES meteorological satellite series. The development and application of the ASDAR system is described with emphasis on unique features. Performance to date is exceptional, providing horizon-to-horizon coverage of aircraft flights. The data collected is of high quality and is considered a valuable addition to the data base from which NOAA generates its weather forecasts.

  3. Laboratory and field portable system for calibrating airborne multispectral scanners

    SciTech Connect

    Kuhlow, W.W.

    1981-01-01

    Manufacturers of airborne multispectral scanners suggest procedures for calibration and alignment that are usually awkward and even questionable. For example, the procedures may require: separating the scanner from calibration and alignment sources by 100 feet or more, employing folding mirrors, tampering with the detectors after the procedures are finished, etc. Under the best of conditions such procedures require about three hours yielding questionable confidence in the results; under many conditions, however, procedures commonly take six to eight hours, yielding no satisfactory results. EG and G, Inc. has designed and built a calibration and alignment system for airborne scanners which solves those problems, permitting the procedures to be carried out in about two to three hours. This equipment can be quickly disassembled, transported with the scanner in all but the smallest single engine aircraft, and reassembled in a few hours. The subsystems of this equipment are commonly available from manufacturers of optical and electronic equipment. The other components are easily purchased, or fabricated. The scanner discussed is the Model DS-1260 digital line scanner manufactured by Daedalus Enterprises, Inc. It is a dual-sensor system which is operated in one of two combination of sensors: one spectrometer head (which provides simultaneous coverage in ten visible channels) and one thermal infrared detector, or simply two thermal infrared detectors.

  4. Potential scientific research which will benefit from an airborne Doppler lidar measurement system

    NASA Technical Reports Server (NTRS)

    Frost, W.

    1980-01-01

    Areas of research which can be significantly aided by the Doppler lidar airborne system are described. The need for systematic development of the airborne Doppler lidar is discussed. The technology development associated with the systematic development of the system will have direct application to satellite systems for which the lidar also promises to be an effective instrument for atmospheric research.

  5. MARA (Multimode Airborne Radar Altimeter) system documentation. Volume 1: MARA system requirements document

    NASA Technical Reports Server (NTRS)

    Parsons, C. L. (Editor)

    1989-01-01

    The Multimode Airborne Radar Altimeter (MARA), a flexible airborne radar remote sensing facility developed by NASA's Goddard Space Flight Center, is discussed. This volume describes the scientific justification for the development of the instrument and the translation of these scientific requirements into instrument design goals. Values for key instrument parameters are derived to accommodate these goals, and simulations and analytical models are used to estimate the developed system's performance.

  6. Spectrum for UAS Control and Non-Payload Communications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.

    2013-01-01

    There is an increasing need to fly UAS in the NAS to perform missions of vital importance to National Security and Defense, Emergency Management, and Science as well as commercial applications (e.g. cargo transport). To enable integration of UAS into the National Airspace System, several critical technical barriers must be eliminated, including: Separation Assurance/Sense and Avoid - the uncertainty surrounding the ability to interoperate in ATC environments and maintain safe separation from other aircraft in the absence of an on-board pilot. Human Systems Integration - lack of standards and guidelines with respect to UAS display information as well as lack of Ground Control Station (GCS) design requirements to operate in the NAS. Certification - lack of airworthiness requirements and safety-related data specific to the full range of UAS, or for their avionics systems or other components. Communications - lack of standard, certifiable data links and aviation safety spectrum to operate such links for civil UAS control communications.

  7. The airborne laser ranging system, its capabilities and applications

    NASA Technical Reports Server (NTRS)

    Kahn, W. D.; Degnan, J. J.; Englar, T. S., Jr.

    1982-01-01

    The airborne laser ranging system is a multibeam short pulse laser ranging system on board an aircraft. It simultaneously measures the distances between the aircraft and six laser retroreflectors (targets) deployed on the Earth's surface. The system can interrogate over 100 targets distributed over an area of 25,000 sq, kilometers in a matter of hours. Potentially, a total of 1.3 million individual range measurements can be made in a six hour flight. The precision of these range measurements is approximately + or - 1 cm. These measurements are used in procedure which is basically an extension of trilateration techniques to derive the intersite vector between the laser ground targets. By repeating the estimation of the intersite vector, strain and strain rate errors can be estimated. These quantities are essential for crustal dynamic studies which include determination and monitoring of regional strain in the vicinity of active fault zones, land subsidence, and edifice building preceding volcanic eruptions.

  8. An airborne real-time hyperspectral target detection system

    NASA Astrophysics Data System (ADS)

    Skauli, Torbjorn; Haavardsholm, Trym V.; Kåsen, Ingebjørg; Arisholm, Gunnar; Kavara, Amela; Opsahl, Thomas Olsvik; Skaugen, Atle

    2010-04-01

    An airborne system for hyperspectral target detection is described. The main sensor is a HySpex pushbroom hyperspectral imager for the visible and near-infrared spectral range with 1600 pixels across track, supplemented by a panchromatic line imager. An optional third sensor can be added, either a SWIR hyperspectral camera or a thermal camera. In real time, the system performs radiometric calibration and georeferencing of the images, followed by image processing for target detection and visualization. The current version of the system implements only spectral anomaly detection, based on normal mixture models. Image processing runs on a PC with a multicore Intel processor and an Nvidia graphics processing unit (GPU). The processing runs in a software framework optimized for large sustained data rates. The platform is a Cessna 172 aircraft based close to FFI, modified with a camera port in the floor.

  9. Characterization of the airborne activity confinement system prefilter material

    SciTech Connect

    Long, T.A.; Monson, P.R.

    1992-05-01

    A general concern with assessing the effects of postulated severe accidents is predicting and preventing the release of radioactive isotopes to the environment at the Savannah River Site (SRS) reactor. Unless the confinement systems are breached in an accident the Airborne Activity Confinement System forces all of the internal air through the filter compartments. Proper modeling of the radioactivity released to the environment requires knowledge of the filtering characteristics of the demisters, the HEPA`s, and the charcoal beds. An investigation of the mass loading characteristics for a range of particle sizes was performed under the direction of Vince Novick of Argonne National Laboratory (ANL) for the Savannah River Technology Center (SRTC) in connection with the restart of the K reactor. Both solid and liquid aerosols were used to challenge sample prefilter and HEPA filters. The results of the ANL investigation are reported in this document.

  10. Characterization of the airborne activity confinement system prefilter material

    SciTech Connect

    Long, T.A.; Monson, P.R.

    1992-05-01

    A general concern with assessing the effects of postulated severe accidents is predicting and preventing the release of radioactive isotopes to the environment at the Savannah River Site (SRS) reactor. Unless the confinement systems are breached in an accident the Airborne Activity Confinement System forces all of the internal air through the filter compartments. Proper modeling of the radioactivity released to the environment requires knowledge of the filtering characteristics of the demisters, the HEPA's, and the charcoal beds. An investigation of the mass loading characteristics for a range of particle sizes was performed under the direction of Vince Novick of Argonne National Laboratory (ANL) for the Savannah River Technology Center (SRTC) in connection with the restart of the K reactor. Both solid and liquid aerosols were used to challenge sample prefilter and HEPA filters. The results of the ANL investigation are reported in this document.

  11. The Airborne Ocean Color Imager - System description and image processing

    NASA Technical Reports Server (NTRS)

    Wrigley, Robert C.; Slye, Robert E.; Klooster, Steven A.; Freedman, Richard S.; Carle, Mark; Mcgregor, Lloyd F.

    1992-01-01

    The Airborne Ocean Color Imager was developed as an aircraft instrument to simulate the spectral and radiometric characteristics of the next generation of satellite ocean color instrumentation. Data processing programs have been developed as extensions of the Coastal Zone Color Scanner algorithms for atmospheric correction and bio-optical output products. The latter include several bio-optical algorithms for estimating phytoplankton pigment concentration, as well as one for the diffuse attenuation coefficient of the water. Additional programs have been developed to geolocate these products and remap them into a georeferenced data base, using data from the aircraft's inertial navigation system. Examples illustrate the sequential data products generated by the processing system, using data from flightlines near the mouth of the Mississippi River: from raw data to atmospherically corrected data, to bio-optical data, to geolocated data, and, finally, to georeferenced data.

  12. The NASA/JPL Airborne Synthetic Aperture Radar System

    NASA Technical Reports Server (NTRS)

    Kim, Yun-Jin; Lou, Yun-Ling; vanZyl, Jakob

    1996-01-01

    The NASA/JPL airborne SAR (AIRSAR) system operates in the fully polarimetric mode at P-, L- and C-band simultaneously or in the interferometric mode in both L- and C-band simultaneously. The system became operational in late 1987 and flew its first mission aboard a DC-8 aircraft operated by NASA's Ames Research Center in Mountain View, California. Since then, the AIRSAR has flown missions every year and acquired images in North, Central and South America, Europe and Australia. In this paper, we will briefly describe the instrument characteristics, the evolution of the various radar modes, the instrument performance, and improvement in the knowledge of the positioning and attitude information of the radar. In addition, we will summarize the progress of the data processing effort especially in the interferometry processing. Finally, we will address the issue of processing and calibrating the cross-track interferometry (XTI) data.

  13. Airborne Multisensor Pod System (AMPS) data management overview

    SciTech Connect

    Wiberg, J.D.; Blough, D.K.; Daugherty, W.R.; Hucks, J.A.; Gerhardstein, L.H.; Meitzler, W.D.; Melton, R.B.; Shoemaker, S.V.

    1994-09-01

    An overview of the Data Management Plan for the Airborne Multisensor Pod System (AMPS) pro-grain is provided in this document. The Pacific Northwest Laboratory (PNL) has been assigned the responsibility of data management for the program, which includes defining procedures for data management and data quality assessment. Data management is defined as the process of planning, acquiring, organizing, qualifying and disseminating data. The AMPS program was established by the U.S. Department of Energy (DOE), Office of Arms Control and Non-Proliferation (DOE/AN) and is integrated into the overall DOE AN-10.1 technology development program. Sensors used for collecting the data were developed under the on-site inspection, effluence analysis, and standoff sensor program, the AMPS program interacts with other technology programs of DOE/NN-20. This research will be conducted by both government and private industry. AMPS is a research and development program, and it is not intended for operational deployment, although the sensors and techniques developed could be used in follow-on operational systems. For a complete description of the AMPS program, see {open_quotes}Airborne Multisensor Pod System (AMPS) Program Plan{close_quotes}. The primary purpose of the AMPS is to collect high-quality multisensor data to be used in data fusion research to reduce interpretation problems associated with data overload and to derive better information than can be derived from any single sensor. To collect the data for the program, three wing-mounted pods containing instruments with sensors for collecting data will be flight certified on a U.S. Navy RP-3A aircraft. Secondary objectives of the AMPS program are sensor development and technology demonstration. Pod system integrators and instrument developers will be interested in the performance of their deployed sensors and their supporting data acquisition equipment.

  14. Uas Based Tree Species Identification Using the Novel FPI Based Hyperspectral Cameras in Visible, NIR and SWIR Spectral Ranges

    NASA Astrophysics Data System (ADS)

    Näsi, R.; Honkavaara, E.; Tuominen, S.; Saari, H.; Pölönen, I.; Hakala, T.; Viljanen, N.; Soukkamäki, J.; Näkki, I.; Ojanen, H.; Reinikainen, J.

    2016-06-01

    Unmanned airborne systems (UAS) based remote sensing offers flexible tool for environmental monitoring. Novel lightweight Fabry-Perot interferometer (FPI) based, frame format, hyperspectral imaging in the spectral range from 400 to 1600 nm was used for identifying different species of trees in a forest area. To the best of the authors' knowledge, this was the first research where stereoscopic, hyperspectral VIS, NIR, SWIR data is collected for tree species identification using UAS. The first results of the analysis based on fusion of two FPI-based hyperspectral imagers and RGB camera showed that the novel FPI hyperspectral technology provided accurate geometric, radiometric and spectral information in a forested scene and is operational for environmental remote sensing applications.

  15. Uas for Geo-Information Current Status and Perspectives

    NASA Astrophysics Data System (ADS)

    Haarbrink, R. B.

    2011-09-01

    Recent and ongoing developments of state-of-the-art sensor technologies have resulted in smaller and lighter photogrammetric cameras with IMU, lidar scanners and other sensors that can now be integrated with and mounted on the larger Light UAS. This paper describes as an example the successful automatic flight of the 50-megapixel DigiCAM with AEROcontrol IMU developed by IGI flown on Geocopter's GC-201 unmanned helicopter system. The operational and technical requirements of UAS defined in new legislation remain however the safeguard to protect people and costly sensor payload assets. The current prospects of UAS-g face additional challenges related to end-user awareness and the return on investment. The current status of UAS legislation is given in this paper. This legislation justifies UAS-g operations of mapping coastal zones, forests, agricultural fields, and open mines. Sooner return on investment happens when the UAS legislation will be opening up airspace over urban areas (Class 2 approved UAS-g), to longer distances (BLOS operations), and to higher altitudes. UAS-g flights then become feasible to the maximum extent for cadastral mapping of larger areas, oil and gas pipeline monitoring, power line surveys, dike inspection, and highway and railway mapping.

  16. Progress in Development of an Airborne Turbulence Detection System

    NASA Technical Reports Server (NTRS)

    Hamilton, David W.; Proctor, Fred H.

    2006-01-01

    Aircraft encounters with turbulence are the leading cause of in-flight injuries (Tyrvanas 2003) and have occasionally resulted in passenger and crew fatalities. Most of these injuries are caused by sudden and unexpected encounters with severe turbulence in and around convective activity (Kaplan et al 2005). To alleviate this problem, the Turbulence Prediction and Warning Systems (TPAWS) element of NASA s Aviation Safety program has investigated technologies to detect and warn of hazardous in-flight turbulence. This effort has required the numerical modeling of atmospheric convection: 1) for characterizing convectively induced turbulence (CIT) environments, 2) for defining turbulence hazard metrics, and 3) as a means of providing realistic three-dimensional data sets that can be used to test and evaluate turbulence detection sensors. The data sets are being made available to industry and the FAA for certification of future airborne turbulence-detection systems (ATDS) with warning capability. Early in the TPAWS project, a radar-based ATDS was installed and flight tested on NASA s research aircraft, a B-757. This ATDS utilized new algorithms and hazard metrics that were developed for use with existing airborne predictive windshear radars, thus avoiding the installation of new hardware. This system was designed to detect and warn of hazardous CIT even in regions with weak radar reflectivity (i.e. 5-15 dBz). Results from an initial flight test of the ATDS were discussed in Hamilton and Proctor (2002a; 2002b). In companion papers (Proctor et al 2002a; 2002b), a numerical simulation of the most significant encounter from that flight test was presented. Since the presentation of these papers a second flight test has been conducted providing additional cases for examination. In this paper, we will present results from NASA s flight test and a numerical model simulation of a turbulence environment encountered on 30 April 2002. Progress leading towards FAA certification of

  17. Clocks for airborne systems. [performance of rubidium oscillators

    NASA Technical Reports Server (NTRS)

    Houlding, N.

    1982-01-01

    The potential performance of compact oscillators, needed for the development of accurate clocks for future airborne systems (such as Identification Friend or Foe schemes), is addressed. In particular, extensive testing of rubidium oscillators manufactured by Efratom is discussed. The results indicate that an accuracy of better than 10 microseconds should be achievable in tactical aircraft provided that appropriate measures are adopted to counter the many environmental factors. In a favorable environment a stability of better than 5 x 10 to the -13th power for one day is achievable with present commercial units, but improvements are required to suit operation in an aircraft. With further development of rubidium controlled clocks the ultimate limitation on time accuracy in aircraft will probably be associated with time dissemination, maintenance difficulties and doctrinal hurdles.

  18. UAS Integration in the NAS FY15 Annual Review

    NASA Technical Reports Server (NTRS)

    Grindle, Laurie; Randall, Debra; Hackenburg, Davis

    2015-01-01

    This presentation gives insight into the research activities and efforts being executed in order to integrate unmanned aircraft systems into the national airspace system. This briefing is to inform others of the UAS-NAS progress and future directions.

  19. UAS Integration in the NAS Project - FY 14 Annual Review

    NASA Technical Reports Server (NTRS)

    Grindle, Laurie; Randall, Debra; Hackenberg, Davis

    2014-01-01

    This briefing gives insight into the research activities and efforts being executed in order to integrate unmanned aircraft systems into the national airspace system. This briefing is to inform others of the UAS-NAS Projects progress and future directions.

  20. Dual-Frequency Airborne Scanning Rain Radar Antenna System

    NASA Technical Reports Server (NTRS)

    Hussein, Ziad A.; Green, Ken

    2004-01-01

    A compact, dual-frequency, dual-polarization, wide-angle-scanning antenna system has been developed as part of an airborne instrument for measuring rainfall. This system is an upgraded version of a prior single-frequency airborne rain radar antenna system and was designed to satisfy stringent requirements. One particularly stringent combination of requirements is to generate two dual-polarization (horizontal and vertical polarizations) beams at both frequencies (13.405 and 35.605 GHz) in such a way that the beams radiated from the antenna point in the same direction, have 3-dB angular widths that match within 25 percent, and have low sidelobe levels over a wide scan angle at each polarization-and-frequency combination. In addition, the system is required to exhibit low voltage standing-wave ratios at both frequencies. The system (see figure) includes a flat elliptical scanning reflector and a stationary offset paraboloidal reflector illuminated by a common-aperture feed system that comprises a corrugated horn with four input ports one port for each of the four frequency-and-polarization combinations. The feed horn is designed to simultaneously (1) under-illuminate the reflectors 35.605 GHz and (2) illuminate the reflectors with a 15-dB edge taper at 13.405 GHz. The scanning mirror is rotated in azimuth to scan the antenna beam over an angular range of 20 in the cross-track direction for wide swath coverage, and in elevation to compensate for the motion of the aircraft. The design of common-aperture feed horn makes it possible to obtain the required absolute gain and low side-lobe levels in wide-angle beam scanning. The combination of the common-aperture feed horn with the small (0.3) focal-length-to-diameter ratio of the paraboloidal reflector makes it possible for the overall system to be compact enough that it can be mounted on a DC-8 airplane.

  1. Mapping of invasive Acacia species in Brazilian Mussununga ecosystems using high- resolution IR remote sensing data acquired with an autonomous Unmanned Aerial System (UAS)

    NASA Astrophysics Data System (ADS)

    Lehmann, Jan Rudolf Karl; Zvara, Ondrej; Prinz, Torsten

    2015-04-01

    The biological invasion of Australian Acacia species in natural ecosystems outside Australia has often a negative impact on native and endemic plant species and the related biodiversity. In Brazil, the Atlantic rainforest of Bahia and Espirito Santo forms an associated type of ecosystem, the Mussununga. In our days this biologically diverse ecosystem is negatively affected by the invasion of Acacia mangium and Acacia auriculiformis, both introduced to Brazil by the agroforestry to increase the production of pulp and high grade woods. In order to detect the distribution of Acacia species and to monitor the expansion of this invasion the use of high-resolution imagery data acquired with an autonomous Unmanned Aerial System (UAS) proved to be a very promising approach. In this study, two types of datasets - CIR and RGB - were collected since both types provide different information. In case of CIR imagery attention was paid on spectral signatures related to plants, whereas in case of RGB imagery the focus was on surface characteristics. Orthophoto-mosaics and DSM/DTM for both dataset were extracted. RGB/IHS transformations of the imagery's colour space were utilized, as well as NDVIblue index in case of CIR imagery to discriminate plant associations. Next, two test areas were defined in order validate OBIA rule sets using eCognition software. In case of RGB dataset, a rule set based on elevation distinction between high vegetation (including Acacia) and low vegetation (including soils) was developed. High vegetation was classified using Nearest Neighbour algorithm while working with the CIR dataset. The IHS information was used to mask shadows, soils and low vegetation. Further Nearest Neighbour classification was used for distinction between Acacia and other high vegetation types. Finally an accuracy assessment was performed using a confusion matrix. One can state that the IHS information appeared to be helpful in Acacia detection while the surface elevation

  2. Recommendations for UAS Crew Ratings. Pilot Ratings and Authorization Requirements for UAS

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This position paper is intended to recommend the minimum certificate and rating requirements for a pilot to operate an Unmanned Aircraft System (UAS) in the National Airspace System. The paper will recommend the minimum requirements based on the Knowledge, Skills, and Abilities (KSA) required of a UAS pilot and show how those compare to the KSAs required by regulation for manned-aircraft pilots. The paper will provide substantiation based on studies conducted using analyses, simulation and flight experience. The paper is not yet complete; only initial working material is included. The material provided describes the body of work completed thus far and the plan for remaining tasks to complete the recommendation. The HSI Pilot KSA document provides an analysis of the knowledge, skills, and abilities required for UAS operation in the NAS. It is the source document used for the position paper.

  3. UAS Detection Classification and Neutralization: Market Survey 2015

    SciTech Connect

    Birch, Gabriel Carisle; Griffin, John Clark; Erdman, Matthew Kelly

    2015-07-01

    The purpose of this document is to briefly frame the challenges of detecting low, slow, and small (LSS) unmanned aerial systems (UAS). The conclusion drawn from internal discussions and external reports is the following; detection of LSS UAS is a challenging problem that can- not be achieved with a single detection modality for all potential targets. Classification of LSS UAS, especially classification in the presence of background clutter (e.g., urban environment) or other non-threating targets (e.g., birds), is under-explored. Though information of avail- able technologies is sparse, many of the existing options for UAS detection appear to be in their infancy (when compared to more established ground-based air defense systems for larger and/or faster threats). Companies currently providing or developing technologies to combat the UAS safety and security problem are certainly worth investigating, however, no company has provided the statistical evidence necessary to support robust detection, identification, and/or neutralization of LSS UAS targets. The results of a market survey are included that highlights potential commercial entities that could contribute some technology that assists in the detection, classification, and neutral- ization of a LSS UAS. This survey found no clear and obvious commercial solution, though recommendations are given for further investigation of several potential systems.

  4. Airborne laser systems for atmospheric sounding in the near infrared

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Jia, Huamin; Zammit-Mangion, David

    2012-06-01

    This paper presents new techniques for atmospheric sounding using Near Infrared (NIR) laser sources, direct detection electro-optics and passive infrared imaging systems. These techniques allow a direct determination of atmospheric extinction and, through the adoption of suitable inversion algorithms, the indirect measurement of some important natural and man-made atmospheric constituents, including Carbon Dioxide (CO2). The proposed techniques are suitable for remote sensing missions performed by using aircraft, satellites, Unmanned Aerial Vehicles (UAV), parachute/gliding vehicles, Roving Surface Vehicles (RSV), or Permanent Surface Installations (PSI). The various techniques proposed offer relative advantages in different scenarios. All are based on measurements of the laser energy/power incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Experimental results are presented relative to ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 KHz PRF NIR laser systems in a variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft above ground level. Future activities are planned to validate the atmospheric retrieval algorithms developed for CO2 column density measurements, with emphasis on aircraft related emissions at airports and other high air-traffic density environments.

  5. The Use of Uas for Assessing Agricultural Systems in AN Wetland in Tanzania in the - and Wet-Season for Sustainable Agriculture and Providing Ground Truth for Terra-Sar X Data

    NASA Astrophysics Data System (ADS)

    Thamm, H.-P.; Menz, G.; Becker, M.; Kuria, D. N.; Misana, S.; Kohn, D.

    2013-08-01

    The paper describes the assessment of the vegetation and the land use systems of the Malinda Wetland in the Usambara Mountains in Tanzania with the parachute UAS (unmanned aerial system) SUSI 62. The area of investigation was around 8 km2. In two campaigns, one in the wet season and one in the dry season, approximately 2600 aerial photos of the wetland were taken using the parachute UAS SUSI 62; of these images, ortho-photos with a spatial resolution of 20 cm x 20 cm, were computed with an advanced block bundle approach. The block bundles were geo-referenced using control points taken with differential GPS. As well a digital surface model (DSM) of the wetland was created out of the UAS photos. Using the ortho-photos it is possible to assess the different land use systems; the differences in the phenology of the vegetation between wet and dry season can be investigated. In addition, the regionalisation of bio mass samples on smaller test plots was possible. The ortho-photos and the DSM derived from the UAS proved to be a valuable ground truth for the interpretation of Terra-SAR X images. The campaigns demonstrated that SUSI 62 was a suitable, robust tool to obtain the valuable information under harsh conditions.

  6. Exposure to airborne particulate matter in the subway system.

    PubMed

    Martins, Vânia; Moreno, Teresa; Minguillón, María Cruz; Amato, Fulvio; de Miguel, Eladio; Capdevila, Marta; Querol, Xavier

    2015-04-01

    The Barcelona subway system comprises eight subway lines, at different depths, with different tunnel dimensions, station designs and train frequencies. An extensive measurement campaign was performed in this subway system in order to characterise the airborne particulate matter (PM) measuring its concentration and investigating its variability, both inside trains and on platforms, in two different seasonal periods (warmer and colder), to better understand the main factors controlling it, and therefore the way to improve air quality. The majority of PM in the underground stations is generated within the subway system, due to abrasion and wear of rail tracks, wheels and braking pads caused during the motion of the trains. Substantial variation in average PM concentrations between underground stations was observed, which might be associated to different ventilation and air conditioning systems, characteristics/design of each station and variations in the train frequency. Average PM2.5 concentrations on the platforms in the subway operating hours ranged from 20 to 51 and from 41 to 91 μg m(-3) in the warmer and colder period, respectively, mainly related to the seasonal changes in the subway ventilation systems. The new subway lines with platform screen doors showed PM2.5 concentrations lower than those in the conventional system, which is probably attributable not only to the more advanced ventilation setup, but also to the lower train frequency and the design of the stations. PM concentrations inside the trains were generally lower than those on the platforms, which is attributable to the air conditioning systems operating inside the trains, which are equipped with air filters. This study allows the analysis and quantification of the impact of different ventilation settings on air quality, which provides an improvement on the knowledge for the general understanding and good management of air quality in the subway system.

  7. Exposure to airborne particulate matter in the subway system.

    PubMed

    Martins, Vânia; Moreno, Teresa; Minguillón, María Cruz; Amato, Fulvio; de Miguel, Eladio; Capdevila, Marta; Querol, Xavier

    2015-04-01

    The Barcelona subway system comprises eight subway lines, at different depths, with different tunnel dimensions, station designs and train frequencies. An extensive measurement campaign was performed in this subway system in order to characterise the airborne particulate matter (PM) measuring its concentration and investigating its variability, both inside trains and on platforms, in two different seasonal periods (warmer and colder), to better understand the main factors controlling it, and therefore the way to improve air quality. The majority of PM in the underground stations is generated within the subway system, due to abrasion and wear of rail tracks, wheels and braking pads caused during the motion of the trains. Substantial variation in average PM concentrations between underground stations was observed, which might be associated to different ventilation and air conditioning systems, characteristics/design of each station and variations in the train frequency. Average PM2.5 concentrations on the platforms in the subway operating hours ranged from 20 to 51 and from 41 to 91 μg m(-3) in the warmer and colder period, respectively, mainly related to the seasonal changes in the subway ventilation systems. The new subway lines with platform screen doors showed PM2.5 concentrations lower than those in the conventional system, which is probably attributable not only to the more advanced ventilation setup, but also to the lower train frequency and the design of the stations. PM concentrations inside the trains were generally lower than those on the platforms, which is attributable to the air conditioning systems operating inside the trains, which are equipped with air filters. This study allows the analysis and quantification of the impact of different ventilation settings on air quality, which provides an improvement on the knowledge for the general understanding and good management of air quality in the subway system. PMID:25616190

  8. Medium altitude airborne Geiger-mode mapping LIDAR system

    NASA Astrophysics Data System (ADS)

    Clifton, William E.; Steele, Bradley; Nelson, Graham; Truscott, Antony; Itzler, Mark; Entwistle, Mark

    2015-05-01

    Over the past 15 years the Massachusetts Institute of Technology, Lincoln Laboratory (MIT/LL), Defense Advanced Research Projects Agency (DARPA) and private industry have been developing airborne LiDAR systems based on arrays of Geiger-mode Avalanche Photodiode (GmAPD) detectors capable of detecting a single photon. The extreme sensitivity of GmAPD detectors allows operation of LiDAR sensors at unprecedented altitudes and area collection rates in excess of 1,000 km2/hr. Up until now the primary emphasis of this technology has been limited to defense applications despite the significant benefits of applying this technology to non-military uses such as mapping, monitoring critical infrastructure and disaster relief. This paper briefly describes the operation of GmAPDs, design and operation of a Geiger-mode LiDAR, a comparison of Geiger-mode and traditional linear mode LiDARs, and a description of the first commercial Geiger-mode LiDAR system, the IntelliEarth™ Geospatial Solutions Geiger-mode LiDAR sensor.

  9. Resolution analyses for selecting an appropriate airborne electromagnetic (AEM) system

    NASA Astrophysics Data System (ADS)

    Christensen, Niels B. 13Lawrie, Ken C.

    2012-07-01

    The choice of an appropriate airborne electromagnetic system for a given task should be based on a comparative analysis of candidate systems, consisting of both theoretical considerations and field studies including test lines. It has become common practice to quantify the system resolution for a series of models relevant to the survey area by comparing the sum over the data of squares of noise-normalised derivatives. We compare this analysis method with a resolution analysis based on the posterior covariance matrix of an inversion formulation. Both of the above analyses depend critically on the noise models of the systems being compared. A reasonable estimate of data noise and other sources of error is therefore of primary importance. However, data processing and noise reduction procedures, as well as other system parameters important for the modelling, are commonly proprietary, and generally it is not possible to verify whether noise figures have been arrived at by reasonable means. Consequently, it is difficult - sometimes impossible - to know if a comparative analysis has a sound basis. Nevertheless, in the real world choices have to be made, a comparative system analysis is necessary and has to be approached in a pragmatic way involving a range of different aspects. In this paper, we concentrate on the resolution analysis perspective and demonstrate that the inversion analysis must be preferred over the derivative analysis because it takes parameter coupling into account, and, furthermore, that the derivative analysis generally overestimates the resolution capability. Finally we show that impulse response data are to be preferred over step response data for near-surface resolution.

  10. Control Parameters Optimization Based on Co-Simulation of a Mechatronic System for an UA-Based Two-Axis Inertially Stabilized Platform.

    PubMed

    Zhou, Xiangyang; Zhao, Beilei; Gong, Guohao

    2015-01-01

    This paper presents a method based on co-simulation of a mechatronic system to optimize the control parameters of a two-axis inertially stabilized platform system (ISP) applied in an unmanned airship (UA), by which high control performance and reliability of the ISP system are achieved. First, a three-dimensional structural model of the ISP is built by using the three-dimensional parametric CAD software SOLIDWORKS(®); then, to analyze the system's kinematic and dynamic characteristics under operating conditions, dynamics modeling is conducted by using the multi-body dynamics software ADAMS™, thus the main dynamic parameters such as displacement, velocity, acceleration and reaction curve are obtained, respectively, through simulation analysis. Then, those dynamic parameters were input into the established MATLAB(®) SIMULINK(®) controller to simulate and test the performance of the control system. By these means, the ISP control parameters are optimized. To verify the methods, experiments were carried out by applying the optimized parameters to the control system of a two-axis ISP. The results show that the co-simulation by using virtual prototyping (VP) is effective to obtain optimized ISP control parameters, eventually leading to high ISP control performance. PMID:26287210

  11. Control Parameters Optimization Based on Co-Simulation of a Mechatronic System for an UA-Based Two-Axis Inertially Stabilized Platform.

    PubMed

    Zhou, Xiangyang; Zhao, Beilei; Gong, Guohao

    2015-08-14

    This paper presents a method based on co-simulation of a mechatronic system to optimize the control parameters of a two-axis inertially stabilized platform system (ISP) applied in an unmanned airship (UA), by which high control performance and reliability of the ISP system are achieved. First, a three-dimensional structural model of the ISP is built by using the three-dimensional parametric CAD software SOLIDWORKS(®); then, to analyze the system's kinematic and dynamic characteristics under operating conditions, dynamics modeling is conducted by using the multi-body dynamics software ADAMS™, thus the main dynamic parameters such as displacement, velocity, acceleration and reaction curve are obtained, respectively, through simulation analysis. Then, those dynamic parameters were input into the established MATLAB(®) SIMULINK(®) controller to simulate and test the performance of the control system. By these means, the ISP control parameters are optimized. To verify the methods, experiments were carried out by applying the optimized parameters to the control system of a two-axis ISP. The results show that the co-simulation by using virtual prototyping (VP) is effective to obtain optimized ISP control parameters, eventually leading to high ISP control performance.

  12. HALE UAS Concept of Operations. Version 3.0

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This document is a system level Concept of Operations (CONOPS) from the perspective of future High Altitude Long Endurance (HALE) Unmanned Aircraft Systems (UAS) service providers and National Airspace System (NAS) users. It describes current systems (existing UAS), describes HALE UAS functions and operations to be performed (via sample missions), and offers insight into the user s environment (i.e., the UAS as a system of systems). It is intended to be a source document for NAS UAS operational requirements, and provides a construct for government agencies to use in guiding their regulatory decisions, architecture requirements, and investment strategies. Although it does not describe the technical capabilities of a specific HALE UAS system (which do, and will vary widely), it is intended to aid in requirements capture and to be used as input to the functional requirements and analysis process. The document provides a basis for development of functional requirements and operational guidelines to achieve unrestricted access into the NAS. This document is an FY06 update to the FY05 Access 5 Project-approved Concept of Operations document previously published in the Public Domain on the Access 5 open website. This version is recommended to be approved for public release also. The updates are a reorganization of materials from the previous version with the addition of an updated set of operational requirements, inclusion of sample mission scenarios, and identification of roles and responsibilities of interfaces within flight phases.

  13. NASA GRC UAS Project: Communications Modeling and Simulation Status

    NASA Technical Reports Server (NTRS)

    Kubat, Greg

    2013-01-01

    The integration of Unmanned Aircraft Systems (UAS) in the National Airspace represents new operational concepts required in civil aviation. These new concepts are evolving as the nation moves toward the Next Generation Air Transportation System (NextGen) under the leadership of the Joint Planning and Development Office (JPDO), and through ongoing work by the Federal Aviation Administration (FAA). The desire and ability to fly UAS in the National Air Space (NAS) in the near term has increased dramatically, and this multi-agency effort to develop and implement a national plan to successfully address the challenges of UAS access to the NAS in a safe and timely manner is well underway. As part of the effort to integrate UAS in the National Airspace, NASA Glenn Research Center is currently involved with providing research into Communications systems and Communication system operations in order to assist with developing requirements for this implementation. In order to provide data and information regarding communication systems performance that will be necessary, NASA GRC is tasked with developing and executing plans for simulations of candidate future UAS command and control communications, in line with architectures and communications technologies being developed and/or proposed by NASA and relevant aviation organizations (in particular, RTCA SC-203). The simulations and related analyses will provide insight into the ability of proposed communications technologies and system architectures to enable safe operation of UAS, meeting UAS in the NAS project goals (including performance requirements, scalability, and interoperability), and ultimately leading to a determination of the ability of NextGen communication systems to accommodate UAS. This presentation, compiled by the NASA GRC team, will provide a view of the overall planned simulation effort and objectives, a description of the simulation concept and status of the design and development that has occurred to date.

  14. Next-Generation NASA Airborne Oceanographic Lidar System.

    PubMed

    Wright, C W; Hoge, F E; Swift, R N; Yungel, J K; Schirtzinger, C R

    2001-01-20

    The complete design and flight test of the next-generation Airborne Oceanographic Lidar (AOL-3) is detailed. The application of new technology has allowed major reductions in weight, volume, and power requirements compared with the earlier AOL sensor. Subsystem designs for the new AOL sensor include new technology in fiber optics, spectrometer detector optical train, miniature photomultiplier modules, dual-laser wavelength excitation from a single small laser source, and new receiver optical configuration. The new design reduced telescope size and maintained the same principal fluorescence and water Raman bands but essentially retained a comparable measurement accuracy. A major advancement is the implementation of single-laser simultaneous excitation of two physically separate oceanic target areas: one stimulated by 532 nm and the other by 355 nm. Backscattered fluorescence and Raman signals from both targets are acquired simultaneously by use of the same telescope and spectrometer-detector system. Two digital oscilloscopes provide temporal- and depth-resolved data from each of seven spectral emission bands.

  15. Airborne laser ranging system for monitoring regional crustal deformation

    NASA Technical Reports Server (NTRS)

    Degnan, J. J.

    1981-01-01

    Alternate approaches for making the atmospheric correction without benefit of a ground-based meteorological network are discussed. These include (1) a two-color channel that determines the atmospheric correction by measuring the time delay induced by dispersion between pulses at two optical frequencies; (2) single-color range measurements supported by an onboard temperature sounder, pressure altimeter readings, and surface measurements by a few existing meteorological facilities; and (3) inclusion of the quadratic polynomial coefficients as variables to be solved for along with target coordinates in the reduction of the single-color range data. It is anticipated that the initial Airborne Laser Ranging System (ALRS) experiments will be carried out in Southern California in a region bounded by Santa Barbara on the norht and the Mexican border on the south. The target area will be bounded by the Pacific Ocean to the west and will extend eastward for approximately 400 km. The unique ability of the ALRS to provide a geodetic 'snapshot' of such a large area will make it a valuable geophysical tool.

  16. Control Parameters Optimization Based on Co-Simulation of a Mechatronic System for an UA-Based Two-Axis Inertially Stabilized Platform

    PubMed Central

    Zhou, Xiangyang; Zhao, Beilei; Gong, Guohao

    2015-01-01

    This paper presents a method based on co-simulation of a mechatronic system to optimize the control parameters of a two-axis inertially stabilized platform system (ISP) applied in an unmanned airship (UA), by which high control performance and reliability of the ISP system are achieved. First, a three-dimensional structural model of the ISP is built by using the three-dimensional parametric CAD software SOLIDWORKS®; then, to analyze the system’s kinematic and dynamic characteristics under operating conditions, dynamics modeling is conducted by using the multi-body dynamics software ADAMS™, thus the main dynamic parameters such as displacement, velocity, acceleration and reaction curve are obtained, respectively, through simulation analysis. Then, those dynamic parameters were input into the established MATLAB® SIMULINK® controller to simulate and test the performance of the control system. By these means, the ISP control parameters are optimized. To verify the methods, experiments were carried out by applying the optimized parameters to the control system of a two-axis ISP. The results show that the co-simulation by using virtual prototyping (VP) is effective to obtain optimized ISP control parameters, eventually leading to high ISP control performance. PMID:26287210

  17. A Summary of Two Recent UAS Command and Control (C2) Communications Feasibility Studies

    NASA Technical Reports Server (NTRS)

    Ponchak, Denise S.; Auld, Elisabeth; Church, Gary; Henriksen, Stephen

    2016-01-01

    In Spring of 2015, the NextGen Institute conducted two UAS C2 Communications Feasibility Studies on behalf of the FAA UAS Integration Office to develop two limited UAS C2 operational examples, each involving low-altitude BLOS (Beyond Line of Sight) Line of Communication (LOC) UAS applications, as part of assessing the myriad practical UAS C2 deployment challenges associated with these approaches. The studies investigated the feasibility of "Point-to-Point" (PTP) and "Network" approaches to UAS C2 to better understand potential user needs and to explore evolutionary paths to establishing a nation-wide system for delivering UAS C2 communications. This paper will summarize the solicitation, approach and results of the two studies teams led by Aviation Management Associates, Inc. and Exelis Inc.

  18. SYSIPHE system: a state of the art airborne hyperspectral imaging system: initial results from the first airborne campaign

    NASA Astrophysics Data System (ADS)

    Rousset-Rouviere, Laurent; Coudrain, Christophe; Fabre, Sophie; Poutier, Laurent; Løke, Trond; Fridman, Andrei; Blaaberg, Søren; Baarstad, Ivar; Skauli, Torbjorn; Mocoeur, Isabelle

    2014-10-01

    SYSIPHE is an airborne hyperspectral imaging system, result of a cooperation between France (Onera and DGA) and Norway (NEO and FFI). It is a unique system by its spatial sampling -0.5m with a 500m swath at a ground height of 2000m- combined with its wide spectral coverage -from 0.4μm to 11.5μm in the atmospheric transmission bands. Its infrared component, named SIELETERS, consists in two high étendue imaging static Fourier transform spectrometers, one for the midwave infrared and one for the longwave infrared. These two imaging spectrometers are closely similar in design, since both are made of a Michelson interferometer, a refractive imaging system, and a large IRFPA (1016x440 pixels). Moreover, both are cryogenically cooled and mounted on their own stabilization platform which allows the line of sight to be controlled and recorded. These data are useful to reconstruct and to georeference the spectral image from the raw interferometric images. The visible and shortwave infrared component, named Hyspex ODIN-1024, consists of two spectrographs for VNIR and SWIR based on transmissive gratings. These share a common fore-optics and a common slit, to ensure perfect registration between the VNIR and the SWIR images. The spectral resolution varies from 5nm in the visible to 6nm in the shortwave infrared. In addition, the STAD, the post processing and archiving system, is developed to provide spectral reflectance and temperature products (SRT products) from calibrated georeferenced and inter-band registered spectral images at the sensor level acquired and pre-processed by SIELETERS and Hyspex ODIN-1024 systems.

  19. UAS-NAS Flight Test Series 3: Test Environment Report

    NASA Technical Reports Server (NTRS)

    Hoang, Ty; Murphy, Jim; Otto, Neil

    2016-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration in the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability (SSI), Human Systems Integration (HSI), and Communications (Comm), and Certification to support reducing the barriers of UAS access to the NAS. This research is broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Detect and Avoid (DAA) performance standards, command and control performance standards, and human systems integration. The focus of Test Infrastructure is to enable development and validation of airspace integration procedures and performance standards, including integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project will develop an adaptable, scalable, and schedulable relevant test environment capable of evaluating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project is conducting a series of human-in-the-loop (HITL) and flight test activities that integrate key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events will build on the technical achievements, fidelity, and

  20. Airborne Asbestos Exposures from Warm Air Heating Systems in Schools.

    PubMed

    Burdett, Garry J; Dewberry, Kirsty; Staff, James

    2016-01-01

    The aim of this study was to investigate the concentrations of airborne asbestos that can be released into classrooms of schools that have amosite-containing asbestos insulation board (AIB) in the ceiling plenum or other spaces, particularly where there is forced recirculation of air as part of a warm air heating system. Air samples were collected in three or more classrooms at each of three schools, two of which were of CLASP (Consortium of Local Authorities Special Programme) system-built design, during periods when the schools were unoccupied. Two conditions were sampled: (i) the start-up and running of the heating systems with no disturbance (the background) and (ii) running of the heating systems during simulated disturbance. The simulated disturbance was designed to exceed the level of disturbance to the AIB that would routinely take place in an occupied classroom. A total of 60 or more direct impacts that vibrated and/or flexed the encapsulated or enclosed AIB materials were applied over the sampling period. The impacts were carried out at the start of the sampling and repeated at hourly intervals but did not break or damage the AIB. The target air volume for background samples was ~3000 l of air using a static sampler sited either below or ~1 m from the heater outlet. This would allow an analytical sensitivity (AS) of 0.0001 fibres per millilitre (f ml(-1)) to be achieved, which is 1000 times lower than the EU and UK workplace control limit of 0.1 f ml(-1). Samples with lower volumes of air were also collected in case of overloading and for the shorter disturbance sampling times used at one site. The sampler filters were analysed by phase contrast microscopy (PCM) to give a rapid determination of the overall concentration of visible fibres (all types) released and/or by analytical transmission electron microscopy (TEM) to determine the concentration of asbestos fibres. Due to the low number of fibres, results were reported in terms of both the calculated

  1. Airborne Asbestos Exposures from Warm Air Heating Systems in Schools

    PubMed Central

    Burdett, Garry J.; Dewberry, Kirsty; Staff, James

    2016-01-01

    The aim of this study was to investigate the concentrations of airborne asbestos that can be released into classrooms of schools that have amosite-containing asbestos insulation board (AIB) in the ceiling plenum or other spaces, particularly where there is forced recirculation of air as part of a warm air heating system. Air samples were collected in three or more classrooms at each of three schools, two of which were of CLASP (Consortium of Local Authorities Special Programme) system-built design, during periods when the schools were unoccupied. Two conditions were sampled: (i) the start-up and running of the heating systems with no disturbance (the background) and (ii) running of the heating systems during simulated disturbance. The simulated disturbance was designed to exceed the level of disturbance to the AIB that would routinely take place in an occupied classroom. A total of 60 or more direct impacts that vibrated and/or flexed the encapsulated or enclosed AIB materials were applied over the sampling period. The impacts were carried out at the start of the sampling and repeated at hourly intervals but did not break or damage the AIB. The target air volume for background samples was ~3000 l of air using a static sampler sited either below or ~1 m from the heater outlet. This would allow an analytical sensitivity (AS) of 0.0001 fibres per millilitre (f ml−1) to be achieved, which is 1000 times lower than the EU and UK workplace control limit of 0.1 f ml−1. Samples with lower volumes of air were also collected in case of overloading and for the shorter disturbance sampling times used at one site. The sampler filters were analysed by phase contrast microscopy (PCM) to give a rapid determination of the overall concentration of visible fibres (all types) released and/or by analytical transmission electron microscopy (TEM) to determine the concentration of asbestos fibres. Due to the low number of fibres, results were reported in terms of both the calculated

  2. Optimization of UA of heat exchangers and BOG compressor exit pressure of LNG boil-off gas reliquefaction system using exergy analysis

    NASA Astrophysics Data System (ADS)

    Kochunni, Sarun Kumar; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2015-12-01

    Boil-off gas (BOG) generation and its handling are important issues in Liquefied natural gas (LNG) value chain because of economic, environment and safety reasons. Several variants of reliquefaction systems of BOG have been proposed by researchers. Thermodynamic analyses help to configure them and size their components for improving performance. In this paper, exergy analysis of reliquefaction system based on nitrogen-driven reverse Brayton cycle is carried out through simulation using Aspen Hysys 8.6®, a process simulator and the effects of heat exchanger size with and without related pressure drop and BOG compressor exit pressure are evaluated. Nondimensionalization of parameters with respect to the BOG load allows one to scale up or down the design. The process heat exchanger (PHX) requires much higher surface area than that of BOG condenser and it helps to reduce the quantity of methane vented out to atmosphere. As pressure drop destroys exergy, optimum UA of PHX decreases for highest system performance if pressure drop is taken into account. Again, for fixed sizes of heat exchangers, as there is a range of discharge pressures of BOG compressor at which the loss of methane in vent minimizes, the designer should consider choosing the pressure at lower value.

  3. Rapid System to Quantitatively Characterize the Airborne Microbial Community

    NASA Technical Reports Server (NTRS)

    Macnaughton, Sarah J.

    1998-01-01

    Bioaerosols have been linked to a wide range of different allergies and respiratory illnesses. Currently, microorganism culture is the most commonly used method for exposure assessment. Such culture techniques, however, generally fail to detect between 90-99% of the actual viable biomass. Consequently, an unbiased technique for detecting airborne microorganisms is essential. In this Phase II proposal, a portable air sampling device his been developed for the collection of airborne microbial biomass from indoor (and outdoor) environments. Methods were evaluated for extracting and identifying lipids that provide information on indoor air microbial biomass, and automation of these procedures was investigated. Also, techniques to automate the extraction of DNA were explored.

  4. Aspects of dem Generation from Uas Imagery

    NASA Astrophysics Data System (ADS)

    Greiwe, A.; Gehrke, R.; Spreckels, V.; Schlienkamp, A.

    2013-08-01

    Since a few years, micro UAS (unmanned aerial systems) with vertical take off and landing capabilities like quadro- or octocopter are used as sensor platform for Aerophotogrammetry. Since the restricted payload of micro UAS with a total weight up of 5 kg (payload only up to 1.5 kg), these systems are often equipped with small format cameras. These cameras can be classified as amateur cameras and it is often the case, that these systems do not meet the requirements of a geometric stable camera for photogrammetric measurement purposes. However, once equipped with a suitable camera system, an UAS is an interesting alternative to expensive manned flights for small areas. The operating flight height of the above described UAS is about 50 up to 150 meters above ground level. This low flight height lead on the one hand to a very high spatial resolution of the aerial imagery. Depending on the cameras focal length and the sensor's pixel size, the ground sampling distance (GSD) is usually about 1 up to 5 cm. This high resolution is useful especially for the automatic generation of homologous tie-points, which are a precondition for the image alignment (bundle block adjustment). On the other hand, the image scale depends on the object's height and the UAV operating height. Objects like mine heaps or construction sites show high variations of the object's height. As a result, operating the UAS with a constant flying height will lead to high variations in the image scale. For some processing approaches this will lead to problems e.g. the automatic tie-point generation in stereo image pairs. As precondition to all DEM generating approaches, first of all a geometric stable camera, sharp images are essentially. Well known calibration parameters are necessary for the bundle adjustment, to control the exterior orientations. It can be shown, that a simultaneous on site camera calibration may lead to misaligned aerial images. Also, the success rate of an automatic tie-point generation

  5. Cooperative Uas Localization Using Lowcost Sensors

    NASA Astrophysics Data System (ADS)

    Goel, Salil; Kealy, Allison; Lohani, Bharat

    2016-06-01

    Networks of small, low cost Unmanned Aerial Systems (UASs) have the potential to improve responsiveness and situational awareness across an increasing number of applications including defense, surveillance, mapping, search and rescue, disaster management, mineral exploration, assisted guidance and navigation etc. These ad hoc UAS networks typically have the capability to communicate with each other and can share data between the individual UAS nodes. Thus these networks can operate as robust and efficient information acquisition platforms. For any of the applications involving UASs, a primary requirement is the localization i.e. determining the position and orientation of the UAS. The performance requirements of localization can vary with individual applications, for example: mapping applications need much higher localization accuracy as compared to the applications involving only surveillance. The sharing of appropriate data between UASs can prove to be advantageous when compared to a single UAS, in terms of improving the positioning accuracy and reliability particularly in partially or completely GNSS denied environments. This research aims to integrate low cost positioning sensors and cooperative localization technique for a network of UASs. Our hypothesis is that it is possible to achieve high accurate, real-time localization of each of the nodes in the network even with cheaper sensors if the nodes of the network share information among themselves. This hypothesis is validated using simulations and the results are analyzed both for centralized and distributed estimation architectures. At first, the results are studied for a two node network which is then expanded for a network containing more number of nodes. Having more nodes in the network allows us to study the properties of the network including the effect of size and shape of the network on accuracy of the nodes.

  6. UAS-Based Radar Sounding of Ice

    NASA Astrophysics Data System (ADS)

    Hale, R. D.; Keshmiri, S.; Leuschen, C.; Ewing, M.; Yan, J. B.; Rodriguez-Morales, F.; Gogineni, S.

    2014-12-01

    The University of Kansas Center for Remote Sensing of Ice Sheets developed two Unmanned Aerial Systems (UASs) to support polar research. We developed a mid-range UAS, called the Meridian, for operating a radar depth sounder/imager at 195 MHz with an eight-element antenna array. The Meridian weighs 1,100 lbs, has a 26-foot wingspan, and a range of 950 nm at its full payload capacity of 120 lbs. Ice-penetrating radar performance drove the configuration design, though additional payloads and sensors were considered to ensure adaptation to multi-mission science payloads. We also developed a short range UAS called the G1X for operating a low-frequency radar sounder that operates at 14 and 35 MHz. The G1X weighs 85 lbs, has a 17-foot wingspan, and a range of about 60 nm per gallon of fuel. The dual-frequency HF/VHF radar depth sounder transmits at 100 W peak power at a pulse repetition frequency of 10 KHz and weighs approximately 4.5 lbs. We conducted flight tests of the G1X integrated with the radar at the Sub-glacial Lake Whillans ice stream and the WISSARD drill site. The tests included pilot-controlled and fully autonomous flights to collect data over closely-spaced lines to synthesize a 2-D aperture. We obtained clear bed echoes with a signal-to-noise (S/N) ratio of more than 50 dB at this location. These are the first-ever successful soundings of glacial ice with a UAS-based radar. Although ice attenuation losses in this location are low in comparison to more challenging targets, in-field performance improvements to the UAS and HF/VHF radar system enabled significant gains in the signal-to-noise ratio, such that the system can now be demonstrated on more challenging outlet glaciers. We are upgrading the G1X UAS and radar system for further tests and data collection in Greenland. We are reducing the weight and volume of the radar, which, when coupled with further reductions in airframe and avionics weight and a larger fuel bladder, will offer extended range. Finally

  7. Gaze interaction in UAS video exploitation

    NASA Astrophysics Data System (ADS)

    Hild, Jutta; Brüstle, Stefan; Heinze, Norbert; Peinsipp-Byma, Elisabeth

    2013-05-01

    A frequently occurring interaction task in UAS video exploitation is the marking or selection of objects of interest in the video. If an object of interest is visually detected by the image analyst, its selection/marking for further exploitation, documentation and communication with the team is a necessary task. Today object selection is usually performed by mouse interaction. As due to sensor motion all objects in the video move, object selection can be rather challenging, especially if strong and fast and ego-motions are present, e.g., with small airborne sensor platforms. In addition to that, objects of interest are sometimes too shortly visible to be selected by the analyst using mouse interaction. To address this issue we propose an eye tracker as input device for object selection. As the eye tracker continuously provides the gaze position of the analyst on the monitor, it is intuitive to use the gaze position for pointing at an object. The selection is then actuated by pressing a button. We integrated this gaze-based "gaze + key press" object selection into Fraunhofer IOSB's exploitation station ABUL using a Tobii X60 eye tracker and a standard keyboard for the button press. Representing the object selections in a spatial relational database, ABUL enables the image analyst to efficiently query the video data in a post processing step for selected objects of interest with respect to their geographical and other properties. An experimental evaluation is presented, comparing gaze-based interaction with mouse interaction in the context of object selection in UAS videos.

  8. Unmanned aircraft systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned platforms have become increasingly more common in recent years for acquiring remotely sensed data. These aircraft are referred to as Unmanned Airborne Vehicles (UAV), Remotely Piloted Aircraft (RPA), Remotely Piloted Vehicles (RPV), or Unmanned Aircraft Systems (UAS), the official term used...

  9. Airborne hyperspectral systems for solving remote sensing problems

    NASA Astrophysics Data System (ADS)

    Rodionov, I. D.; Rodionov, A. I.; Vedeshin, L. A.; Vinogradov, A. N.; Egorov, V. V.; Kalinin, A. P.

    2014-12-01

    A retrospective of airborne hyperspectrometer projects carried out in the ZAO Reagent Scientific Technical Center is presented. Hyperspectral devices developed during the period since the end of 1990s to the present day are described. The line of hyperspectrometers designed in recent times covers the ranges from ultraviolet (0.2 μm) to near infrared (1.0 μm). These devices can be mounted on airborne and automobile carriers, including small-size ones. By now, the developments of hyperspectral devices in ZAO Reagent have reached the finished state and have been prepared for serial production. Their technical characteristics permit one to speak of the creation of wide-range high-aperture ultraspectral high spatial resolution equipment with a possibility of real-time data processing on board.

  10. Charging system using solar panels and a highly resonant wireless power transfer model for small UAS applications

    NASA Astrophysics Data System (ADS)

    Hallman, Sydney N.; Huck, Robert C.; Sluss, James J.

    2016-05-01

    The use of a wireless charging system for small, unmanned aircraft system applications is useful for both military and commercial consumers. An efficient way to keep the aircraft's batteries charged without interrupting flight would be highly marketable. While the general concepts behind highly resonant wireless power transfer are discussed in a few publications, the details behind the system designs are not available even in academic journals, especially in relation to avionics. Combining a highly resonant charging system with a solar panel charging system can produce enough power to extend the flight time of a small, unmanned aircraft system without interruption. This paper provides an overview of a few of the wireless-charging technologies currently available and outlines a preliminary design for an aircraft-mounted battery charging system.

  11. Validation of Spaceborne Radar Surface Water Mapping with Optical sUAS Images

    NASA Astrophysics Data System (ADS)

    Li-Chee-Ming, J.; Murnaghan, K.; Sherman, D.; Poncos, V.; Brisco, B.; Armenakis, C.

    2015-08-01

    The Canada Centre for Remote Sensing (CCRS) has over 40 years of experience with airborne and spaceborne sensors and is now starting to use small Unmanned Aerial Systems (sUAS) to validate products from large coverage area sensors and create new methodologies for very high resolution products. Wetlands have several functions including water storage and retention which can reduce flooding and provide continuous flow for hydroelectric generation and irrigation for agriculture. Synthetic Aperture Radar is well suited as a tool for monitoring surface water by supplying acquisitions irrespective of cloud cover or time of day. Wetlands can be subdivided into three classes: open water, flooded vegetation and upland which can vary seasonally with time and water level changes. RADARSAT-2 data from the Wide-Ultra Fine, Spotlight and Fine Quad-Pol modes has been used to map the open water in the Peace-Athabasca Delta, Alberta using intensity thresholding. We also use spotlight modes for higher resolution and the fully polarimetric mode (FQ) for polarimetric decomposition. Validation of these products will be done using a low altitude flying sUAS to generate optical georeferenced images. This project provides methodologies which could be used for flood mapping as well as ecological monitoring.

  12. Monitoring Coastal Processes at Local and Regional Geographic Scales with UAS

    NASA Astrophysics Data System (ADS)

    Starek, M. J.; Bridges, D.; Prouty, D.; Berryhill, J.; Williams, D.; Jeffress, G.

    2014-12-01

    Unmanned Aerial Systems (UAS) provide a powerful tool for coastal mapping due to attractive features such as low cost data acquisition, flexibility in data capture and resolution, rapid response, and autonomous flight. We investigate two different scales of UAS platforms for monitoring coastal processes along the central Texas Gulf coast. Firstly, the eBee is a small-scale UAS weighing ~0.7 kg designed for localized mapping. The imaging payload consists of a hand held RGB digital camera and NIR digital camera, both with 16.1 megapixel resolutions. The system can map up to 10 square kilometers on a single flight and is capable of acquiring imagery down to 1.5 cm ground sample distance. The eBee is configured with a GPS receiver, altitude sensor, gyroscope and a radio transmitter enabling autonomous flight. The system has a certificate of authorization (COA) from the FAA to fly over the Ward Island campus of Texas A&M University-Corpus Christi (TAMUCC). The campus has an engineered beach, called University Beach, located along Corpus Christi Bay. A set of groins and detached breakwaters were built in an effort to protect the beach from erosive wave action. The eBee is being applied to periodically survey the beach (Figure 1A). Through Structure from Motion (SfM) techniques, eBee-derived image sequences are post-processed to extract 3D topography and measure volumetric change. Additionally, when water clarity suffices, this approach enables the extraction of shallow-water bathymetry. Results on the utilization of the eBee to monitor beach morphodynamics will be presented including a comparison of derived estimates to RTK GPS and airborne lidar. Secondly, the RS-16 UAS has a 4 m wingspan and 11 kg sensor payload. The system is remotely piloted and has a flight endurance of 12 to 16 hours making it suitable for regional scale coastal mapping. The imaging payload consists of a multispectral sensor suite measuring in the visible, thermal IR, and ultraviolet ranges of the

  13. 76 FR 50808 - Airborne Supplemental Navigation Equipment Using the Global Positioning System (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... standard for GPS sensors not augmented by satellite-based or ground- based systems (i.e., TSO-C129a Class B and Class C). The FAA has also published two GPS TSOs augmented by the satellite-based augmentation system (TSO-C145c, Airborne Navigation Sensors Using the Global Positioning System Augmented by...

  14. Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring.

    PubMed

    Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael

    2015-09-30

    Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge.

  15. Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring

    PubMed Central

    Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael

    2015-01-01

    Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge. PMID:26437413

  16. Airborne lidar measurements of wave energy dissipation in a coral reef lagoon system

    NASA Astrophysics Data System (ADS)

    Huang, Zhi-Cheng; Reineman, Benjamin D.; Lenain, Luc; Melville, W. Kendall; Middleton, Jason H.

    2012-03-01

    Quantification of the turbulent kinetic energy dissipation rate in the water column, ɛ, is very important for assessing nutrient uptake rates of corals and therefore the health of coral reef lagoon systems. However, the availability of such data is limited. Recently, at Lady Elliot Island (LEI), Australia, we showed that there was a strong correlation between in situ measurements of surface-wave energy dissipation and ɛ. Previously, Reineman et al. (2009), we showed that a small airborne scanning lidar system could measure the surface wavefield remotely. Here we present measurements demonstrating the use of the same airborne lidar to remotely measure surface wave energy fluxes and dissipation and thereby estimate ɛ in the LEI reef-lagoon system. The wave energy flux and wave dissipation rate across the fore reef and into the lagoon are determined from the airborne measurements of the wavefield. Using these techniques, observed spatial profiles of energy flux and wave energy dissipation rates over the LEI reef-lagoon system are presented. The results show that the high lidar backscatter intensity and point density coming from the high reflectivity of the foam from depth-limited breaking waves coincides with the high wave-energy dissipation rates. Good correlations between the airborne measurements and in situ observations demonstrate that it is feasible to apply airborne lidar systems for large-scale, long-term studies in monitoring important physical processes in coral reef environments. When added to other airborne techniques, the opportunities for efficient monitoring of large reef systems may be expanded significantly.

  17. Michigan experimental multispectral mapping system: A description of the M7 airborne sensor and its performance

    NASA Technical Reports Server (NTRS)

    Hasell, P. G., Jr.

    1974-01-01

    The development and characteristics of a multispectral band scanner for an airborne mapping system are discussed. The sensor operates in the ultraviolet, visual, and infrared frequencies. Any twelve of the bands may be selected for simultaneous, optically registered recording on a 14-track analog tape recorder. Multispectral imagery recorded on magnetic tape in the aircraft can be laboratory reproduced on film strips for visual analysis or optionally machine processed in analog and/or digital computers before display. The airborne system performance is analyzed.

  18. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1991-01-01

    Papers presented at the conference on airborne wind shear detection and warning systems are compiled. The following subject areas are covered: terms of reference; case study; flight management; sensor fusion and flight evaluation; Terminal Doppler Weather Radar data link/display; heavy rain aerodynamics; and second generation reactive systems.

  19. Effect of an electrostatic space charge system on airborne dust and subsequent potential transmission of microorganisms to broiler breeder pullets by airborne dust.

    PubMed

    Richardson, L J; Mitchell, B W; Wilson, J L; Hofacre, C L

    2003-01-01

    High levels of dust and microorganisms are known to be associated with animal confinement rearing facilities. Many of the microorganisms are carried by dust particles, thus providing an excellent vector for horizontal disease transmission between birds. Two environmentally controlled rooms containing female broiler breeder pullets (n = 300) were used to evaluate the effectiveness of an electrostatic space charge system (ESCS) in reducing airborne dust and gram-negative bacteria levels over an 8-wk period (starting when the birds were 10 wk old). The ESCS was used to evaluate the effectiveness of reducing airborne microorganism levels by charging airborne dust particles and causing the particles to be attracted to grounded surfaces (i.e., walls, floor, equipment). The use of the ESCS resulted in a 64% mean reduction in gram-negative bacteria. Airborne dust levels were reduced an average of 37% over a 1-wk period in the experimental room compared with the control room on the basis of samples taken every 10 min. The reductions of airborne dust and bacteria in this study are comparable with earlier results obtained with the ESCS in commercial hatching cabinets and experimental caged layer rooms, suggesting the system could also be applied to other types of enclosed animal housing. PMID:12713167

  20. UAS-NAS Project Demo - Mini HITL Week 2 Stats

    NASA Technical Reports Server (NTRS)

    Murphy, James R.; Fern, Lisa C.; Rorie, Robert C.; Shively, Robert; Jovic, Srboljub

    2016-01-01

    The UAS-NAS Project demo will showcase recent research efforts to ensure the interoperability between proposed UAS detect and avoid (DAA) human machine interface requirements (developed within RTCA SC-228) and existing collision avoidance displays. Attendees will be able to view the current state of the art of the DAA pilot traffic, alerting and guidance displays integrated with Traffic advisory and Collision Avoidance (TCAS) II in the UAS-NAS Project's research UAS ground control station (developed in partnership with the Air Force Research Laboratory). In addition, attendees will have the opportunity to interact with the research UAS ground control station and "fly" encounters, using the DAA and TCAS II displays to avoid simulated aircraft. The display of the advisories will be hosted on a laptop with an external 30" monitor, running the Vigilant Spirit system. DAA advisories will be generated by the JADEM software tool, connected to the system via the LVC Gateway. A repeater of the primary flight display will be shown on a 55" monitor mounted on a stand at the back of the booth to show the pilot interaction to the passersby.

  1. Simulating and testing autonomous behaviour in multiple airborne sensor systems

    NASA Astrophysics Data System (ADS)

    Smith, Moira I.; Hernandez, Marcel L.; Cooper, Matthew

    2007-04-01

    The Multiple Airborne Sensor Targeting and Evaluation Rig (MASTER) is a high fidelity simulation environment in which data fusion, tracking and sensor management algorithms developed within QinetiQ Ltd. can be demonstrated and evaluated. In this paper we report an observer trajectory planning tool that adds considerable functionality to MASTER. This planning tool can coordinate multiple sensor platforms in tracking highly manoeuvring targets. It does this by applying instantaneous thrusts to each platform, the magnitude of which is chosen to gain maximum observability of the target. We use an efficient search technique to determine the thrust that should be applied to each platform at each time step, and the planning horizon can either be one-step (greedy) or two-step. The measure of performance used in evaluating each potential sensor manoeuvre (thrust) is the posterior Cramer-Rao lower bound (PCRLB), which gives the best possible (lowest mean square error) tracking performance. We exploit a recent novel approach to approximating the PCRLB for manoeuvring target tracking (the "best-fitting Gaussian" (BFG) approach: Hernandez et al., 2005). A closed-form expression gives the BFG approximation at each sampling time. Hence, the PCRLB can be approximated with a very low computational overhead. As a result, the planning tool can be implemented as an aid to decision-making in real-time, even in this time-critical airborne domain. The functionality of MASTER enables one to access the performance of the planning tool in a range of sensor-target scenarios, enabling one to determine the minimal sensor requirement in order to satisfy mission requirements.

  2. The UA9 experimental layout

    SciTech Connect

    Scandale, W.; Robert-Demolaize, G.; Arduini, G.; Assmann, R.; Bracco, C.; et al

    2011-10-13

    The UA9 experimental equipment was installed in the CERN-SPS in March '09 with the aim of investigating crystal assisted collimation in coasting mode. Its basic layout comprises silicon bent crystals acting as primary collimators mounted inside two vacuum vessels. A movable 60 cm long block of tungsten located downstream at about 90 degrees phase advance intercepts the deflected beam. Scintillators, Gas Electron Multiplier chambers and other beam loss monitors measure nuclear loss rates induced by the interaction of the beam halo in the crystal. Two Roman pots installed in the path of the deflected particles are equipped with a Medipix detector to reconstruct the transverse distribution of the impinging beam. Finally UA9 takes advantage of an LHC-collimator prototype installed close to the first Roman pot to help in setting the beam conditions and to analyze the efficiency to deflect the beam. This paper describes in details the hardware installed to study the crystal collimation during 2010.

  3. Simulation of Terminal-Area Flight Management System Arrivals with Airborne Spacing

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.; Lee, Paul U.; Mercer, Joey S.; Palmer, Everett A.; Prevot, Thomas

    2007-01-01

    A simulation evaluated the feasibility and potential benefits of using decision support tools to support time-based airborne spacing and merging for aircraft arriving in the terminal area on charted Flight Management System (FMS) routes. Sixteen trials were conducted in each treatment combination of a 2X2 repeated-measures design. In trials 'with ground tools' air traffic controller participants managed traffic using sequencing and spacing tools. In trials 'with air tools' approximately seventy-five percent of aircraft assigned to the primary landing runway were equipped for airborne spacing, including flight simulators flown by commercial pilots. The results indicate that airborne spacing improves spacing accuracy and is feasible for FMS operations and mixed spacing equipage. Controllers and pilots can manage spacing clearances that contain two call signs without difficulty. For best effect, both decision support tools and spacing guidance should exhibit consistently predictable performance, and merging traffic flows should be well coordinated.

  4. NASA GRC UAS Project - Communications Modeling and Simulation Development Status

    NASA Technical Reports Server (NTRS)

    Apaza, Rafael; Bretmersky, Steven; Dailey, Justin; Satapathy, Goutam; Ditzenberger, David; Ye, Chris; Kubat, Greg; Chevalier, Christine; Nguyen, Thanh

    2014-01-01

    The integration of Unmanned Aircraft Systems (UAS) in the National Airspace represents new operational concepts required in civil aviation. These new concepts are evolving as the nation moves toward the Next Generation Air Transportation System (NextGen) under the leadership of the Joint Planning and Development Office (JPDO), and through ongoing work by the Federal Aviation Administration (FAA). The desire and ability to fly UAS in the National Air Space (NAS) in the near term has increased dramatically, and this multi-agency effort to develop and implement a national plan to successfully address the challenges of UAS access to the NAS in a safe and timely manner is well underway. As part of the effort to integrate UAS in the National Airspace, NASA Glenn Research Center is currently involved with providing research into Communications systems and Communication system operations in order to assist with developing requirements for this implementation. In order to provide data and information regarding communication systems performance that will be necessary, NASA GRC is tasked with developing and executing plans for simulations of candidate future UAS command and control communications, in line with architectures and communications technologies being developed and or proposed by NASA and relevant aviation organizations (in particular, RTCA SC-203). The simulations and related analyses will provide insight into the ability of proposed communications technologies and system architectures to enable safe operation of UAS, meeting UAS in the NAS project goals (including performance requirements, scalability, and interoperability), and ultimately leading to a determination of the ability of NextGen communication systems to accommodate UAS. This presentation, compiled by the NASA GRC Modeling and Simulation team, will provide an update to this ongoing effort at NASA GRC as follow-up to the overview of the planned simulation effort presented at ICNS in 2013. The objective

  5. Airborne Wireless Optical Communication System in Low Altitude Using an Unmanned Aerial Vehicle and LEDs

    NASA Astrophysics Data System (ADS)

    Kong, Meiwei; Tong, Zheng; Yu, Xiangyu; Song, Yuhang; Lin, Aobo; Xu, Jing

    2016-02-01

    In this paper, we demonstrate the feasibility of airborne wireless optical communication system using an unmanned aerial vehicle and LEDs. Monte Carlo simulation method is used to evaluate the performance of the communication channel. Considering OOK modulation, we illustrate how the BER performance is affected by the link distance, the divergence angel and the deflection angel of the light source.

  6. An airborne multispectral imaging system based on two consumer-grade cameras for agricultural remote sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the design and evaluation of an airborne multispectral imaging system based on two identical consumer-grade cameras for agricultural remote sensing. The cameras are equipped with a full-frame complementary metal oxide semiconductor (CMOS) sensor with 5616 × 3744 pixels. One came...

  7. The development of airborne video system for monitoring of river environments

    SciTech Connect

    Yoshikawa, Shigeya; Mizutani, Nobuyuki; Mizukami, Masumi; Koyano, Toshirou

    1996-11-01

    Recently, airborne videography is widely used by many monitoring for environmental resources, such as rivers, forests, ocean, and so on. Although airborne videography has a low resolution than aerial photographs, it can effectively reduce the cost of continuous monitoring of wide area. Furthermore video images can easily be processed with personal computer. This paper introduces an airborne video system for monitoring of Class A river environment. This system consists of two sub-systems. One is the data collection system that is composed of a video camera, a Global Positioning System(GPS) and a personal computer. This sub-system records information of rivers by video images and their corresponding location data. A GPS system is used for calculating location data and navigating the airplane to the destination of monitoring site. Other is a simplified digital video editing system. This system runs on a personal computer with Microsoft Windows 3.1. This system can also be used for management and planning of road environment, marine resources, forest resources and for prevention of disasters. 7 refs., 4 figs.

  8. Thermal management of closed computer modules utilizing high density circuitry. [in Airborne Information Management System

    NASA Technical Reports Server (NTRS)

    Hoadley, A. W.; Porter, A. J.

    1990-01-01

    This paper presents data on a preliminary analysis of the thermal dynamic characteristics of the Airborne Information Management System (AIMS), which is a continuing design project at NASA Dryden. The analysis established the methods which will be applied to the actual AIMS boards as they become available. The paper also describes the AIMS liquid cooling system design and presents a thermodynamic computer model of the AIMS cooling system, together with an experimental validation of this model.

  9. SAFEGUARD: An Assured Safety Net Technology for UAS

    NASA Technical Reports Server (NTRS)

    Dill, Evan T.; Young, Steven D.; Hayhurst, Kelly J.

    2016-01-01

    As demands increase to use unmanned aircraft systems (UAS) for a broad spectrum of commercial applications, regulatory authorities are examining how to safely integrate them without loss of safety or major disruption to existing airspace operations. This work addresses the development of the Safeguard system as an assured safety net technology for UAS. The Safeguard system monitors and enforces conformance to a set of rules defined prior to flight (e.g., geospatial stay-out or stay-in regions, speed limits, altitude limits). Safeguard operates independently of the UAS autopilot and is strategically designed in a way that can be realized by a small set of verifiable functions to simplify compliance with regulatory standards for commercial aircraft. A framework is described that decouples the system from any other devices on the UAS as well as introduces complementary positioning source(s) for applications that require integrity and availability beyond what the Global Positioning System (GPS) can provide. Additionally, the high level logic embedded within the software is presented, as well as the steps being taken toward verification and validation (V&V) of proper functionality. Next, an initial prototype implementation of the described system is disclosed. Lastly, future work including development, testing, and system V&V is summarized.

  10. Pioneering a Biobased UAS

    NASA Technical Reports Server (NTRS)

    Block, Eli; Byemerwa, Jovita; Dispenza, Ross; Doughty, Benjamin; Gillyard, KaNesha; Godbole, Poorwa; Gonzalez-Wright, Jeanette; Hull, Ian; Kannappan, Jotthe; Levine, Alexander; Nelakanti, Raman; Ruffner, Lydia; Shumate, Alaina; Sorayya, Aryo; Ugwu, Kyla; Rothschild, Lynn J.

    2015-01-01

    With the exponential growth of interest in unmanned aerial vehicles (UAVs) and their vast array of applications in both space exploration and terrestrial uses such as the delivery of medicine and monitoring the environment, the 2014 Stanford-Brown-Spelman iGEM team is pioneering the development of a fully biological UAV for scientific and humanitarian missions. The prospect of a biologically-produced UAV presents numerous advantages over the current manufacturing paradigm. First, a foundational architecture built by cells allows for construction or repair in locations where it would be difficult to bring traditional tools of production. Second, a major limitation of current research with UAVs is the size and high power consumption of analytical instruments, which require bulky electrical components and large fuselages to support their weight. By moving these functions into cells with biosensing capabilities - for example, a series of cells engineered to report GFP, green fluorescent protein, when conditions exceed a certain threshold concentration of a compound of interest, enabling their detection post-flight - these problems of scale can be avoided. To this end, we are working to engineer cells to synthesize cellulose acetate as a novel bioplastic, characterize biological methods of waterproofing the material, and program this material's systemic biodegradation. In addition, we aim to use an "amberless" system to prevent horizontal gene transfer from live cells on the material to microorganisms in the flight environment. So far, we have: successfully transformed Gluconacetobacter hansenii, a cellulose-producing bacterium, with a series of promoters to test transformation efficiency before adding the acetylation genes; isolated protein bands present in the wasp nest material; transformed the cellulose-degrading genes into Escherichia coli; and we have confirmed that the amberless construct prevents protein expression in wild-type cells. In addition, as part of our

  11. Comparison of immersed liquid and air cooling of NASA's Airborne Information Management System

    NASA Astrophysics Data System (ADS)

    Hoadley, A. W.; Porter, A. J.

    1992-07-01

    The Airborne Information Management System (AIMS) is currently under development at NASA Dryden Flight Research Facility. The AIMS is designed as a modular system utilizing surface mounted integrated circuits in a high-density configuration. To maintain the temperature of the integrated circuits within manufacturer's specifications, the modules are to be filled with Fluorinert FC-72. Unlike ground based liquid cooled computers, the extreme range of the ambient pressures experienced by the AIMS requires the FC-72 be contained in a closed system. This forces the latent heat absorbed during the boiling to be released during the condensation that must take within the closed module system. Natural convection and/or pumping carries the heat to the outer surface of the AIMS module where the heat transfers to the ambient air. This paper will present an evaluation of the relative effectiveness of immersed liquid cooling and air cooling of the Airborne Information Management System.

  12. Comparison of immersed liquid and air cooling of NASA's Airborne Information Management System

    NASA Technical Reports Server (NTRS)

    Hoadley, A. W.; Porter, A. J.

    1992-01-01

    The Airborne Information Management System (AIMS) is currently under development at NASA Dryden Flight Research Facility. The AIMS is designed as a modular system utilizing surface mounted integrated circuits in a high-density configuration. To maintain the temperature of the integrated circuits within manufacturer's specifications, the modules are to be filled with Fluorinert FC-72. Unlike ground based liquid cooled computers, the extreme range of the ambient pressures experienced by the AIMS requires the FC-72 be contained in a closed system. This forces the latent heat absorbed during the boiling to be released during the condensation that must take within the closed module system. Natural convection and/or pumping carries the heat to the outer surface of the AIMS module where the heat transfers to the ambient air. This paper will present an evaluation of the relative effectiveness of immersed liquid cooling and air cooling of the Airborne Information Management System.

  13. High Resolution Airborne Laser Scanning and Hyperspectral Imaging with a Small Uav Platform

    NASA Astrophysics Data System (ADS)

    Gallay, Michal; Eck, Christoph; Zgraggen, Carlo; Kaňuk, Ján; Dvorný, Eduard

    2016-06-01

    The capabilities of unmanned airborne systems (UAS) have become diverse with the recent development of lightweight remote sensing instruments. In this paper, we demonstrate our custom integration of the state-of-the-art technologies within an unmanned aerial platform capable of high-resolution and high-accuracy laser scanning, hyperspectral imaging, and photographic imaging. The technological solution comprises the latest development of a completely autonomous, unmanned helicopter by Aeroscout, the Scout B1-100 UAV helicopter. The helicopter is powered by a gasoline two-stroke engine and it allows for integrating 18 kg of a customized payload unit. The whole system is modular providing flexibility of payload options, which comprises the main advantage of the UAS. The UAS integrates two kinds of payloads which can be altered. Both payloads integrate a GPS/IMU with a dual GPS antenna configuration provided by OXTS for accurate navigation and position measurements during the data acquisition. The first payload comprises a VUX-1 laser scanner by RIEGL and a Sony A6000 E-Mount photo camera. The second payload for hyperspectral scanning integrates a push-broom imager AISA KESTREL 10 by SPECIM. The UAS was designed for research of various aspects of landscape dynamics (landslides, erosion, flooding, or phenology) in high spectral and spatial resolution.

  14. Use of a new high-speed digital data acquisition system in airborne ice-sounding

    USGS Publications Warehouse

    Wright, David L.; Bradley, Jerry A.; Hodge, Steven M.

    1989-01-01

    A high-speed digital data acquisition and signal averaging system for borehole, surface, and airborne radio-frequency geophysical measurements was designed and built by the US Geological Survey. The system permits signal averaging at rates high enough to achieve significant signal-to-noise enhancement in profiling, even in airborne applications. The first field use of the system took place in Greenland in 1987 for recording data on a 150 by 150-km grid centered on the summit of the Greenland ice sheet. About 6000-line km were flown and recorded using the new system. The data can be used to aid in siting a proposed scientific corehole through the ice sheet.

  15. Airborne Imagery

    NASA Technical Reports Server (NTRS)

    1983-01-01

    ATM (Airborne Thematic Mapper) was developed for NSTL (National Space Technology Companies) by Daedalus Company. It offers expanded capabilities for timely, accurate and cost effective identification of areas with prospecting potential. A related system is TIMS, Thermal Infrared Multispectral Scanner. Originating from Landsat 4, it is also used for agricultural studies, etc.

  16. Geophex Airborne Unmanned Survey System (GAUSS). Topical report, October 1993--March 1995

    SciTech Connect

    1995-03-01

    The objectives of the project are to construct a geophysical sensor system based on a remotely operated model helicopter (ROH) and to evaluate the efficacy of the system for characterization of hazardous environmental sites. Geophex Airborne Unmanned Survey System (GAUSS) is a geophysical survey system that uses a ROH as the survey vehicle. We have selected the ROH because of its advantages over fixed wing and ground based vehicles. Lower air speed and superior maneuverability of the ROH make it better suited for geophysical surveys than a fixed wing model aircraft. The ROH can fly close to the ground, allowing detection of weak or subtle anomalies. Unlike ground based vehicles, the ROH can traverse difficult terrain while providing a stable sensor platform. ROH does not touch the ground during the course of a survey and is capable of functioning over water and surf zones. The ROH has been successfully used in the motion picture industry and by geology companies for payload bearing applications. The only constraint to use of the airborne system is that the ROH must remain visible to the pilot. Obstructed areas within a site can be characterized by relocating the base station to alternate positions. GAUSS consists of a ROH with radio controller, a data acquisition and processing (DAP) system, and lightweight digital sensor systems. The objective of our Phase I research was to develop a DAP and sensors suitable for ROH operation. We have constructed these subsystems and integrated them to produce an automated, hand-held geophysical surveying system, referred to as the ``pre-prototype``. We have performed test surveys with the pre-prototype to determine the functionality of the and DAP and sensor subsystems and their suitability for airborne application. The objective of the Phase II effort will be to modify the existing subsystems and integrate them into an airborne prototype. Efficacy of the prototype for geophysical survey of hazardous sites will then be determined.

  17. Analysis of UAS DAA Surveillance in Fast-Time Simulations without DAA Mitigation

    NASA Technical Reports Server (NTRS)

    Thipphavong, David P.; Santiago, Confesor; Isaacson, David R.; Lee, Seung Man; Refai, Mohamad Said; Snow, James William

    2015-01-01

    Realization of the expected proliferation of Unmanned Aircraft System (UAS) operations in the National Airspace System (NAS) depends on the development and validation of performance standards for UAS Detect and Avoid (DAA) Systems. The RTCA Special Committee 228 is charged with leading the development of draft Minimum Operational Performance Standards (MOPS) for UAS DAA Systems. NASA, as a participating member of RTCA SC-228 is committed to supporting the development and validation of draft requirements for DAA surveillance system performance. A recent study conducted using NASA's ACES (Airspace Concept Evaluation System) simulation capability begins to address questions surrounding the development of draft MOPS for DAA surveillance systems. ACES simulations were conducted to study the performance of sensor systems proposed by the SC-228 DAA Surveillance sub-group. Analysis included but was not limited to: 1) number of intruders (both IFR and VFR) detected by all sensors as a function of UAS flight time, 2) number of intruders (both IFR and VFR) detected by radar alone as a function of UAS flight time, and 3) number of VFR intruders detected by all sensors as a function of UAS flight time. The results will be used by SC-228 to inform decisions about the surveillance standards of UAS DAA systems and future requirements development and validation efforts.

  18. A Framework for Safe Integration of Small UAS Into the NAS

    NASA Technical Reports Server (NTRS)

    Logan, Michael J.; Bland, Geoffrey; Murray, Jennifer

    2011-01-01

    This paper discusses a proposed framework for the safe integration of small unmanned aerial systems (sUAS) into the National Airspace System (NAS). The paper examines the potential uses of sUAS to build an understanding of the location and frequency of potential future flight operations based on the future applications of the sUAS systems. The paper then examines the types of systems that would be required to meet the application-level demand to determine classes of platforms and operations. Finally, a framework is proposed for both airworthiness and operations that attempts to balance safety with utility for these important systems.

  19. UAS in the NAS Flight Test Series 3 Overview

    NASA Technical Reports Server (NTRS)

    Murphy, James R.

    2015-01-01

    The UAS Integration in the NAS Project is conducting a series of flight tests to acheive the following objectives: 1.) Validate results previously collected during project simulations with live data 2.) Evaluate TCAS IISS interoperability 3.) Test fully integrated system in a relevant live test environment 4.) Inform final DAA and C2 MOPS 5.) Reduce risk for Flight Test Series 4.

  20. Modeling and performance assessment in QinetiQ of EO and IR airborne reconnaissance systems

    NASA Astrophysics Data System (ADS)

    Williams, John W.; Potter, Gary E.

    2002-11-01

    QinetiQ are the technical authority responsible for specifying the performance requirements for the procurement of airborne reconnaissance systems, on behalf of the UK MoD. They are also responsible for acceptance of delivered systems, overseeing and verifying the installed system performance as predicted and then assessed by the contractor. Measures of functional capability are central to these activities. The conduct of these activities utilises the broad technical insight and wide range of analysis tools and models available within QinetiQ. This paper focuses on the tools, methods and models that are applicable to systems based on EO and IR sensors. The tools, methods and models are described, and representative output for systems that QinetiQ has been responsible for is presented. The principle capability applicable to EO and IR airborne reconnaissance systems is the STAR (Simulation Tools for Airborne Reconnaissance) suite of models. STAR generates predictions of performance measures such as GRD (Ground Resolved Distance) and GIQE (General Image Quality) NIIRS (National Imagery Interpretation Rating Scales). It also generates images representing sensor output, using the scene generation software CAMEO-SIM and the imaging sensor model EMERALD. The simulated image 'quality' is fully correlated with the predicted non-imaging performance measures. STAR also generates image and table data that is compliant with STANAG 7023, which may be used to test ground station functionality.

  1. Airborne Windshear Detection and Warning Systems. Fifth and Final Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Delnore, Victor E. (Compiler)

    1994-01-01

    The Fifth (and Final) Combined Manufacturers' and Technologists' Airborne Windshear Review Meeting was hosted jointly by the NASA Langley Research Center (LaRC) and the Federal Aviation Administration (FAA) in Hampton, Virginia, on September 28-30, 1993. The purpose of the meeting was to report on the highly successful windshear experiments conducted by government, academic institutions, and industry; to transfer the results to regulators, manufacturers, and users; and to set initiatives for future aeronautics technology research. The formal sessions covered recent developments in windshear flight testing; windshear modeling, flight management, and ground-based systems; airborne windshear detection systems; certification and regulatory issues; development and applications of sensors for wake vortex detection; and synthetic and enhanced vision systems.

  2. Design criteria and comparison between conventional and subaperture SAR processing in airborne systems

    NASA Astrophysics Data System (ADS)

    Prats, Pau; Bara, Marc; Broquetas, Antoni

    2002-02-01

    This paper compares two different approaches for designing airborne SAR systems. The first one is the most common where conventional processing is employed, and therefore wide antenna beams are to be used in order to avoid ambiguities in the final image due to attitude variations. A second approach is proposed to lower the requirements such system imposes based on subaperture processing. The idea is to follow the azimuth variations of the Doppler centroid, without increasing the hardware requirements of the system. As it is shown in this paper, this processing procedure must be complemented with precise radiometric corrections, because the platform may experience small attitude variations, which could increase/decrease the target observation time, inducing a significant azimuth modulation in the final image. This leads to the definition of a new criterion concerning maximum attitude deviations for an airborne platform.

  3. Airborne Windshear Detection and Warning Systems. Fifth and Final Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Delnore, Victor E. (Compiler)

    1994-01-01

    The Fifth Combined Manufacturers' and Technologists' Airborne Windshear Review Meeting was hosted by the NASA Langley Research Center and the Federal Aviation Administration in Hampton, Virginia, on September 28-30, 1993. The purpose was to report on the highly successful windshear experiments conducted by government, academic institutions, and industry; to transfer the results to regulators, manufacturers, and users; and to set initiatives for future aeronautics technology research. The formal sessions covered recent developments in windshear flight testing, windshear modeling, flight management, and ground-based systems, airborne windshear detection systems, certification and regulatory issues, and development and applications of sensors for wake vortices and for synthetic and enhanced vision systems. This report was compiled to record and make available the technology updates and materials from the conference.

  4. Development of an airborne hydrocarbon monitoring system based on FTIR technology

    NASA Astrophysics Data System (ADS)

    Mogan, Paul A.; Mattson, Carl B.; Schwindt, Chris J.

    1998-10-01

    The capability to monitor airborne hydrocarbon compounds is essential in order to protect sensitive optical payloads from performance degradation caused by the deposition of surface films. Commonly used hydrocarbon monitoring instrumentation such as flame ionization detectors yield no information about the source or identity of compounds they detect. The Fourier Transform IR Spectrometer (FTIR) with its inherent ability to discriminate a large number of compounds offers a tremendous advantage over other types of instrumentation. The contamination monitoring laboratory at John F. Kennedy Space Center has developed an airborne hydrocarbon monitoring system based on FTIR technology to support the AXAF payload. This system consist of a portable cart suitable for use in Class 1 Division 2 environments. This paper describes the system in detail.

  5. Correlative Stratospheric Ozone Measurements with the Airborne UV DIAL System during TOTE/VOTE

    NASA Technical Reports Server (NTRS)

    Grant, William B.; Fenn, Marta A.; Browell, Edward V.; McGee, Thomas J.; Singh, Upendra N.; Gross, Michael R.; McDermid, I. Stuart; Froidevaux, Lucien; Wang, Pi-Huang

    1998-01-01

    The airborne UV differential absorption lidar (DIAL) system participated in the Tropical Ozone Transport Experiment/Vortex Ozone Transport Experiment (TOTE/VOTE) in late 1995/early 1996. This mission afforded the opportunity to compare the DIAL system's stratospheric ozone measuring capability with other remote-sensing instruments through correlative measurements over a latitude range from the tropics to the Arctic. These instruments included ground-based DIAL and space-based stratospheric instruments: HALOE; MLS; and SAGE II. The ozone profiles generally agreed within random error estimates for the various instruments in the middle of the profiles in the tropics, but regions of significant systematic differences, especially near or below the tropopause or at the higher altitudes were also found. The comparisons strongly suggest that the airborne UV DIAL system can play a valuable role as a mobile lower-stratospheric ozone validation instrument.

  6. Design and Development of a Scanning Airborne Direct Detection Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott

    2006-01-01

    In the fall of 2005 we began developing an airborne scanning direct detection molecular Doppler lidar. The instrument is being built as part of the Tropospheric Wind Lidar Technology Experiment (TWiLiTE), a three year project selected by the NASA Earth Sun Technology Office under the Instrument Incubator Program. The TWiLiTE project is a collaboration involving scientists and engineers from NASA Goddard Space Flight Center, NOAA ESRL, Utah State University Space Dynamics Lab, Michigan Aerospace Corporation and Sigma Space Corporation. The TWiLiTE instrument will leverage significant research and development investments made by NASA Goddard and it's partners in the past several years in key lidar technologies and sub-systems (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. These sub-systems will be integrated into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57. The WB57 flies at an altitude of 18 km and from this vantage point the nadir viewing Doppler lidar will be able to profile winds through the full troposphere. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a future spaceborne tropospheric wind system. In addition to being a technology testbed for space based tropospheric wind lidar, when completed the TWiLiTE high altitude airborne lidar will be used for studying mesoscale dynamics and storm research (e.g. winter storms, hurricanes) and could be used for calibration and validation of satellite based wind systems such as ESA's Aeolus Atmospheric Dynamics Mission. The TWiLiTE Doppler lidar will have the capability to profile winds in clear air from the aircraft altitude of 18 km to the surface with 250 m vertical resolution and < 2mls

  7. Introduction to an airborne remote sensing system equipped onboard the Chinese marine surveillance plane

    NASA Astrophysics Data System (ADS)

    Gong, Fang; Wang, Difeng; Pan, Delu; Hao, Zengzhou

    2008-10-01

    The airborne remote sensing system onboard the Chinese Marine Surveillance Plane have three scanners including marine airborne multi-spectrum scanner(MAMS), airborne hyper spectral system(AISA+) and optical-electric platform(MOP) currently. MAMS is developed by Shanghai Institute of Technology and Physics CAS with 11 bands from ultraviolet to infrared and mainly used for inversion of oceanic main factors and pollution information, like chlorophyll, sea surface temperature, red tide, etc. The AISA+ made by Finnish Specim company is a push broom system, consist of a high spectrum scanner head, a miniature GPS/INS sensor and data collecting PC. It is a kind of aviation imaging spectrometer and has the ability of ground target imaging and measuring target spectrum characteristic. The MOP mainly supports for object watching, recording and track. It mainly includes 3 equipments: digital CCD with Sony-DXC390, CANON EOS film camera and digital camera Sony F717. This paper mainly introduces these three remote sensing instruments as well as the ground processing information system, involving the system's hardware and software design, related algorithm research, etc.

  8. Flight Testing of an Advanced Airborne Natural Gas Leak Detection System

    SciTech Connect

    Dawn Lenz; Raymond T. Lines; Darryl Murdock; Jeffrey Owen; Steven Stearns; Michael Stoogenke

    2005-10-01

    ITT Industries Space Systems Division (Space Systems) has developed an airborne natural gas leak detection system designed to detect, image, quantify, and precisely locate leaks from natural gas transmission pipelines. This system is called the Airborne Natural Gas Emission Lidar (ANGEL) system. The ANGEL system uses a highly sensitive differential absorption Lidar technology to remotely detect pipeline leaks. The ANGEL System is operated from a fixed wing aircraft and includes automatic scanning, pointing system, and pilot guidance systems. During a pipeline inspection, the ANGEL system aircraft flies at an elevation of 1000 feet above the ground at speeds of between 100 and 150 mph. Under this contract with DOE/NETL, Space Systems was funded to integrate the ANGEL sensor into a test aircraft and conduct a series of flight tests over a variety of test targets including simulated natural gas pipeline leaks. Following early tests in upstate New York in the summer of 2004, the ANGEL system was deployed to Casper, Wyoming to participate in a set of DOE-sponsored field tests at the Rocky Mountain Oilfield Testing Center (RMOTC). At RMOTC the Space Systems team completed integration of the system and flew an operational system for the first time. The ANGEL system flew 2 missions/day for the duration for the 5-day test. Over the course of the week the ANGEL System detected leaks ranging from 100 to 5,000 scfh.

  9. HySpex ODIN-1024: a new high-resolution airborne HSI system

    NASA Astrophysics Data System (ADS)

    Blaaberg, Søren; Løke, Trond; Baarstad, Ivar; Fridman, Andrei; Koirala, Pesal

    2014-06-01

    HySpex ODIN-1024 is a next generation state-of the-art airborne hyperspectral imaging system developed by Norsk Elektro Optikk AS. Near perfect coregistration between VNIR and SWIR is achieved by employing a novel common fore-optics design and a thermally stabilized housing. Its unique design and the use of state-of-the-art MCT and sCMOS sensors provide the combination of high sensitivity and low noise, low spatial and spectral misregistration (smile and keystone) and a very high resolution (1024 pixels in the merged data products). In addition to its supreme data quality, HySpex ODIN-1024 includes real-time data processing functionalities such as real-time georeferencing of acquired images. It also features a built-in onboard calibration system to monitor the stability of the instrument. The paper presents data and results from laboratory tests and characterizations, as well as results from airborne measurements.

  10. Distance Education at UAS: A Case Study

    ERIC Educational Resources Information Center

    Schrum, Lynne; Ohler, Jason

    2005-01-01

    Increased pressure on the University of Alaska Southeast (UAS) to become more involved in distance education compelled UAS to commission a study of the perceptions, problems, and opportunities in the area of distance education as seen by three distinct groups in the university community: students, faculty, and staff (including administrators). The…

  11. Charge-coupled device data processor for an airborne imaging radar system

    NASA Technical Reports Server (NTRS)

    Arens, W. E. (Inventor)

    1977-01-01

    Processing of raw analog echo data from synthetic aperture radar receiver into images on board an airborne radar platform is discussed. Processing is made feasible by utilizing charge-coupled devices (CCD). CCD circuits are utilized to perform input sampling, presumming, range correlation and azimuth correlation in the analog domain. These radar data processing functions are implemented for single-look or multiple-look imaging radar systems.

  12. Estimation of Separation Buffers for Wind-Prediction Error in an Airborne Separation Assistance System

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Hoadley, Sherwood T.; Allen, B. Danette

    2009-01-01

    Wind prediction errors are known to affect the performance of automated air traffic management tools that rely on aircraft trajectory predictions. In particular, automated separation assurance tools, planned as part of the NextGen concept of operations, must be designed to account and compensate for the impact of wind prediction errors and other system uncertainties. In this paper we describe a high fidelity batch simulation study designed to estimate the separation distance required to compensate for the effects of wind-prediction errors throughout increasing traffic density on an airborne separation assistance system. These experimental runs are part of the Safety Performance of Airborne Separation experiment suite that examines the safety implications of prediction errors and system uncertainties on airborne separation assurance systems. In this experiment, wind-prediction errors were varied between zero and forty knots while traffic density was increased several times current traffic levels. In order to accurately measure the full unmitigated impact of wind-prediction errors, no uncertainty buffers were added to the separation minima. The goal of the study was to measure the impact of wind-prediction errors in order to estimate the additional separation buffers necessary to preserve separation and to provide a baseline for future analyses. Buffer estimations from this study will be used and verified in upcoming safety evaluation experiments under similar simulation conditions. Results suggest that the strategic airborne separation functions exercised in this experiment can sustain wind prediction errors up to 40kts at current day air traffic density with no additional separation distance buffer and at eight times the current day with no more than a 60% increase in separation distance buffer.

  13. Delivery of ursolic acid (UA) in polymeric nanoparticles effectively promotes the apoptosis of gastric cancer cells through enhanced inhibition of cyclooxygenase 2 (COX-2).

    PubMed

    Zhang, Hao; Li, Xiaolin; Ding, Jing; Xu, Huae; Dai, Xinzheng; Hou, Zhibo; Zhang, Kai; Sun, Kun; Sun, Weihao

    2013-01-30

    It has been demonstrated that ursolic acid (UA) could effectively induces apoptosis of cancer cells by inhibiting the expression of cyclooxygenase 2 (COX-2), which constitutively expresses in gastric cancer. However, the hydrophobicity of UA increases the difficulty in its potential clinical application, which raises the possibility for its application as a novel model drug in nanoparticle-based delivery system. UA-loaded nanoparticles (UA-NPs) were prepared by a nano-precipitation method using amphilic methoxy poly(ethylene glycol)-polycaprolactone (mPEG-PCL) block copolymers as drug carriers. UA was effectively transported into SGC7901 cells by nanoparticles and localized around the nuclei in the cytoplasms. The in vitro cytotoxicity and apoptosis test indicated that UA-NPs significantly elicited more cell death at almost equivalent dose and corresponding incubation time. Moreover, UA-NPs led to more cell apoptosis through stronger inhibition of COX-2 and activation of caspase 3. The most powerful evidence from this report is that the significant differences between the cytotoxicity of free UA and UA-NPs are closely related to the expression levels of COX-2 and caspase-3, which demonstrates the superiority of UA-NPs over free UA through penetrating cell membrane. Therefore, the study offer an effective way to improve the anticancer efficiency of UA through nano-drug delivery system.

  14. Adaptive Stress Testing of Airborne Collision Avoidance Systems

    NASA Technical Reports Server (NTRS)

    Lee, Ritchie; Kochenderfer, Mykel J.; Mengshoel, Ole J.; Brat, Guillaume P.; Owen, Michael P.

    2015-01-01

    This paper presents a scalable method to efficiently search for the most likely state trajectory leading to an event given only a simulator of a system. Our approach uses a reinforcement learning formulation and solves it using Monte Carlo Tree Search (MCTS). The approach places very few requirements on the underlying system, requiring only that the simulator provide some basic controls, the ability to evaluate certain conditions, and a mechanism to control the stochasticity in the system. Access to the system state is not required, allowing the method to support systems with hidden state. The method is applied to stress test a prototype aircraft collision avoidance system to identify trajectories that are likely to lead to near mid-air collisions. We present results for both single and multi-threat encounters and discuss their relevance. Compared with direct Monte Carlo search, this MCTS method performs significantly better both in finding events and in maximizing their likelihood.

  15. Simulation research on ATP system of airborne laser communication

    NASA Astrophysics Data System (ADS)

    Zhao, Zhongyi; Huang, Hailong

    2015-02-01

    The compound axis tracking control circuits model of the ATP system was established and simulation was run on the tracking control performance of the ATP system. It was found through simulation that with the fixed coarse tracking error, the dynamic lag error in the coarse tracking servo system could be suppressed to 120μrad and with the fixed fine tracking error, the dynamic lag error in the fine tracking servo system could be restrained to 2.73μrad, and the vibration residual could be controlled within 1.5μrad.

  16. Utilization of an Airborne Plant Chlorophyll Imaging System for Detection of Septic System Malfunction

    NASA Technical Reports Server (NTRS)

    Spiering, Bruce A.; Carter, Gregory A.

    2001-01-01

    Malfunctioning, or leaking, sewer systems increase the supply of water and nutrients to surface vegetation. Excess nutrients and harmful bacteria in the effluent pollute ground water and local water bodies and are dangerous to humans and the aquatic ecosystems. An airborne multispectral plant chlorophyll imaging system (PCIS) was used to identify growth patterns in the vegetation covering onsite and public sewer systems. The objective was to evaluate overall performance of the PCIS as well as to determine the best operational configuration for this application. The imaging system was flown in a light aircraft over selected locations Mobile County, Alabama. Calibration panels were used to help characterize instrument performance. Results demonstrated that the PCIS performed well and was capable of detecting septic leakage patterns from altitudes as high as 915 m. From 915 m, 6 of 18 sites were suspected to have sewage leakage. Subsequent ground inspections confirmed leakage on 3 of the 6 sites. From 610 m, 3 of 8 known leakage sites were detected. Tree cover and shadows near residential structures prevented detection of several known malfunctioning systems. Also some leakages known to occur in clear areas were not detected. False detections occurred in areas characterized by surface water drainage problems or recent excavation.

  17. The development of an airborne information management system for flight test

    NASA Technical Reports Server (NTRS)

    Bever, Glenn

    1992-01-01

    An airborne information management system is being developed at the NASA Dryden Flight Research Facility. This system will improve the state of the art in management data acquisition on-board research aircraft. The design centers around highly distributable, high-speed microprocessors that allow data compression, digital filtering, and real-time analysis. This paper describes the areas of applicability, approach to developing the system, potential for trouble areas, and reasons for this development activity. System architecture (including the salient points of what makes it unique), design philosophy, and tradeoff issues are also discussed.

  18. Gross-merchantable timber volume estimation using an airborne lidar system

    NASA Technical Reports Server (NTRS)

    Maclean, G. A.; Krabill, W. B.

    1986-01-01

    A preliminary study to determine the utility of an airborne laser as a tool for use by forest managers to estimate gross-merchantable timber volume was conducted near the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center, Wallops Flight Facility utilizing the NASA Airborne Oceanographic Lidar (AOL) system. Measured timber volume was regressed against the cross-sectional area of an AOL-generated profile of forest at the same location. The AOL profile area was found to be a very significant variable in the estimation of gross-merchantable timber volume. Significant improvements were obtained when the data were stratified by species. The overall R-squared value obtained was 0.921 with the regression significant at the one percent level.

  19. Pilot interaction with automated airborne decision making systems

    NASA Technical Reports Server (NTRS)

    Hammer, John M.

    1990-01-01

    Ways in which computers can aid the decision making of an human operator of an aerospace system are investigated. The approach taken is to aid rather than replace the human operator, because operational experience has shown that humans can enhance the effectiveness of systems. As systems become more automated, the role of the operator has shifted to that of a manager and problem solver. This shift has created the research area of how to aid the human in this role. Published research in four areas is described. A discussion is presented of the DC-8 flight simulator at Georgia Tech.

  20. Concept of Operations for Real-time Airborne Management System

    SciTech Connect

    Barr, Jonathan L.; Taira, Randal Y.; Orr, Heather M.

    2013-03-04

    The purpose of this document is to describe the operating concepts, capabilities, and benefits of RAMS including descriptions of how the system implementations can improve emergency response, damage assessment, task prioritization, and situation awareness. This CONOPS provides general information on operational processes and procedures required to utilize RAMS, and expected performance benefits of the system. The primary audiences for this document are the end users of RAMS (including flight operators and incident commanders) and the RAMS management team. Other audiences include interested offices within the Department of Homeland Security (DHS), and officials from other state and local jurisdictions who want to implement similar systems.

  1. Airborne multisensor pod system (AMPS) data: Multispectral data integration and processing hints

    SciTech Connect

    Leary, T.J.; Lamb, A.

    1996-11-01

    The Department of Energy`s Office of Arms Control and Non-Proliferation (NN-20) has developed a suite of airborne remote sensing systems that simultaneously collect coincident data from a US Navy P-3 aircraft. The primary objective of the Airborne Multisensor Pod System (AMPS) Program is {open_quotes}to collect multisensor data that can be used for data research, both to reduce interpretation problems associated with data overload and to develop information products more complete than can be obtained from any single sensor.{close_quotes} The sensors are housed in wing-mounted pods and include: a Ku-Band Synthetic Aperture Radar; a CASI Hyperspectral Imager; a Daedalus 3600 Airborne Multispectral Scanner; a Wild Heerbrugg RC-30 motion compensated large format camera; various high resolution, light intensified and thermal video cameras; and several experimental sensors (e.g. the Portable Hyperspectral Imager of Low-Light Spectroscopy (PHILLS)). Over the past year or so, the Coastal Marine Resource Assessment (CAMRA) group at the Florida Department of Environmental Protection`s Marine Research Institute (FMRI) has been working with the Department of Energy through the Naval Research Laboratory to develop applications and products from existing data. Considerable effort has been spent identifying image formats integration parameters. 2 refs., 3 figs., 2 tabs.

  2. Low Gravity Guidance System for Airborne Microgravity Research

    NASA Technical Reports Server (NTRS)

    Rieke, W. J.; Emery, E. F.; Boyer, E. O.; Hegedus, C.; ODonoghue, D. P.

    1996-01-01

    Microgravity research techniques have been established to achieve a greater understanding of the role of gravity in the fundamentals of a variety of physical phenomena and material processing. One technique in use at the NASA Lewis Research Center involves flying Keplarian trajectories with a modified Lear Jet and DC-9 aircraft to achieve a highly accurate Microgravity environment by neutralizing accelerations in all three axis of the aircraft. The Low Gravity Guidance System (LGGS) assists the pilot and copilot in flying the trajectories by displaying the aircraft acceleration data in a graphical display format. The Low Gravity Guidance System is a microprocessor based system that acquires and displays the aircraft acceleration information. This information is presented using an electroluminescent display mounted over the pilot's instrument panel. The pilot can select the Microgravity range that is required for a given research event. This paper describes the characteristics, design, calibration and testing of the Low Gravity Guidance System Phase 3, significant lessons from earlier systems and the developmental work on future systems.

  3. Pilot interaction with automated airborne decision making systems

    NASA Technical Reports Server (NTRS)

    Rouse, W. B.; Chu, Y. Y.; Greenstein, J. S.; Walden, R. S.

    1976-01-01

    An investigation was made of interaction between a human pilot and automated on-board decision making systems. Research was initiated on the topic of pilot problem solving in automated and semi-automated flight management systems and attempts were made to develop a model of human decision making in a multi-task situation. A study was made of allocation of responsibility between human and computer, and discussed were various pilot performance parameters with varying degrees of automation. Optimal allocation of responsibility between human and computer was considered and some theoretical results found in the literature were presented. The pilot as a problem solver was discussed. Finally the design of displays, controls, procedures, and computer aids for problem solving tasks in automated and semi-automated systems was considered.

  4. Airborne digital holographic system for cloud particle measurements.

    PubMed

    Fugal, Jacob P; Shaw, Raymond A; Saw, Ewe Wei; Sergeyev, Aleksandr V

    2004-11-10

    An in-line holographic system for in situ detection of atmospheric cloud particles [Holographic Detector for Clouds (HOLODEC)] has been developed and flown on the National Center for Atmospheric Research C-130 research aircraft. Clear holograms are obtained in daylight conditions at typical aircraft speeds of 100 m s(-1). The instrument is fully digital and is interfaced to a control and data-acquisition system in the aircraft via optical fiber. It is operable at temperatures of less than -30 degrees C and at typical cloud humidities. Preliminary data from the experiment show its utility for studies of the three-dimensional spatial distribution of cloud particles and ice crystal shapes.

  5. Application of the Hardman methodology to the Single Channel Ground-Airborne Radio System (SINCGARS)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The HARDMAN methodology was applied to the various configurations of employment for an emerging Army multipurpose communications system. The methodology was used to analyze the manpower, personnel and training (MPT) requirements and associated costs, of the system concepts responsive to the Army's requirement for the Single Channel Ground-Airborne Radio System (SINCGARS). The scope of the application includes the analysis of two conceptual designs Cincinnati Electronics and ITT Aerospace/Optical Division for operating and maintenance support addressed through the general support maintenance echelon.

  6. Flight Tests of the DELICAT Airborne LIDAR System for Remote Clear Air Turbulence Detection

    NASA Astrophysics Data System (ADS)

    Vrancken, Patrick; Wirth, Martin; Ehret, Gerhard; Witschas, Benjamin; Veerman, Henk; Tump, Robert; Barny, Hervé; Rondeau, Philippe; Dolfi-Bouteyre, Agnès; Lombard, Laurent

    2016-06-01

    An important aeronautics application of lidar is the airborne remote detection of Clear Air Turbulence which cannot be performed with onboard radar. We report on a DLR-developed lidar system for the remote detection of such turbulent areas in the flight path of an aircraft. The lidar, consisting of a high-power UV laser transmitter and a direct detection system, was installed on a Dutch research aircraft. Flight tests executed in 2013 demonstrated the performance of the lidar system to detect local subtle variations in the molecular backscatter coefficient indicating the turbulence some 10 to 15 km ahead.

  7. Pilot interaction with automated airborne decision making systems

    NASA Technical Reports Server (NTRS)

    Rouse, W. B.; Hammer, J. M.; Morris, N. M.; Brown, E. N.; Yoon, W. C.

    1983-01-01

    The use of advanced software engineering methods (e.g., from artificial intelligence) to aid aircraft crews in procedure selection and execution is investigated. Human problem solving in dynamic environments as effected by the human's level of knowledge of system operations is examined. Progress on the development of full scale simulation facilities is also discussed.

  8. Emergency Response Equipment and Related Training: Airborne Radiological Computer System (Model II)

    SciTech Connect

    David P. Colton

    2007-02-28

    The materials included in the Airborne Radiological Computer System, Model-II (ARCS-II) were assembled with several considerations in mind. First, the system was designed to measure and record the airborne gamma radiation levels and the corresponding latitude and longitude coordinates, and to provide a first overview look of the extent and severity of an accident's impact. Second, the portable system had to be light enough and durable enough that it could be mounted in an aircraft, ground vehicle, or watercraft. Third, the system must control the collection and storage of the data, as well as provide a real-time display of the data collection results to the operator. The notebook computer and color graphics printer components of the system would only be used for analyzing and plotting the data. In essence, the provided equipment is composed of an acquisition system and an analysis system. The data can be transferred from the acquisition system to the analysis system at the end of the data collection or at some other agreeable time.

  9. ATLAS: an airborne active linescan system for high-resolution topographic mapping

    NASA Astrophysics Data System (ADS)

    Willetts, David V.; Kightley, Peter J.; Mole, S. G.; Pearson, Guy N.; Pearson, P.; Coffey, Adrian S.; Stokes, Tim J.; Tapster, Paul R.; Westwood, M.

    2004-12-01

    High resolution ground mapping is of interest for survey and management of long linear features such as roads, railways and pipelines, and for georeferencing of areas such as flood plains for hydrological purposes. ATLAS (Airborne Topographic Laser System) is an active linescan system operating at the eyesafe wavelength of 1.5μm. Built for airborne survey, it is currently certified for use on a Twin Squirrel helicopter for operation from low levels to heights above 500 feet allowing commercial survey in built up areas. The system operates at a pulse repetition frequency of 56kHz with a line completed in 15ms, giving 36 points/m2 at the surface at the design flight speed. At each point the range to the ground is measured together with the scan angle of the system. This data is combined with a system attitude measurement from an integrated inertial navigation system and with system position derived from differential GPS data aboard the platform. A recording system captures the data with a synchronised time-stamp to enable post-processed reconstruction of a cloud of data points that will give a three-dimensional representation of the terrain, allowing the points to be located with respect to absolute Earth referenced coordinates to a precision of 5cm in three axes. This paper summarises the design, harmonisation, evaluation and performance of the system, and shows examples of survey data.

  10. Development of the Advance Warning Airborne System(AWAS)

    NASA Technical Reports Server (NTRS)

    Adamson, H. Patrick

    1992-01-01

    The thermal characteristics of microbursts are utilized by the AWAS IR and OAT features to provide predictive warning of hazardous microbursts ahead of the aircraft during landing or take off. The AWAS was evaluated satisfactorily in 1990 on a Cessna Citation that was intentionally flown into a number of wind shear events. The events were detected, and both the IR and OAT thermal features were shown to be effective. In 1991, AWAS units were flown on three American Airline MD-80's and three Northwest Airlines DC-9's to study and to decrease the nuisance alert response of the system. The AWAS was also flown on the NASA B737 during the summer of 1991. The results of these flights were inconclusive and disappointing. The results were not as promising as before because NASA conducted research flights which were outside of the normal operating envelope for which the AWAS is designed to operate. In an attempt to compensate for these differences in airspeed and mounting location, the automatic features of the system were sometimes overridden by NASA personnel during the flight. Each of these critical factors is discussed in detail. The effect of rain on the OAT signals is presented as a function of the air speed. Use of a 4 pole 1/20 Hertz filter is demonstrated by both the IR and thermal data. Participation in the NASA 1992 program was discussed. FAA direction in the continuing Certification program requires the addition of a reactive feature to the AWAS predictive system. This combined system will not require flight guidance on newer aircraft. The features of AWAS-IV, with the NASA algorithm included, were presented. Expected completion of the FAA Certification plan was also described.

  11. Examination of Frameworks for Safe Integration of Intelligent Small UAS into the NAS

    NASA Technical Reports Server (NTRS)

    Logan, Michael J.

    2012-01-01

    This paper discusses a proposed framework for the safe integration of small unmanned aerial systems (sUAS) into the National Airspace System (NAS). The paper briefly examines the potential uses of sUAS to build an understanding of the location and frequency of potential future flight operations based on the future applications of the sUAS systems. The paper then examines the types of systems that would be required to meet the application-level demand to determine "classes" of platforms and operations. A framework for categorization of the "intelligence" level of the UAS is postulated for purposes of NAS integration. Finally, constraints on the intelligent systems are postulated to ensure their ease of integration into the NAS.

  12. Airborne Antenna System for Minimum-Cycle-Slip GPS Reception

    NASA Technical Reports Server (NTRS)

    Wright, C. Wayne

    2009-01-01

    A system that includes a Global Positioning System (GPS) antenna and associated apparatus for keeping the antenna aimed upward has been developed for use aboard a remote-sensing-survey airplane. The purpose served by the system is to enable minimum- cycle-slip reception of GPS signals used in precise computation of the trajectory of the airplane, without having to restrict the airplane to maneuvers that increase the flight time needed to perform a survey. Cycle slip signifies loss of continuous track of the phase of a signal. Minimum-cycle-slip reception is desirable because maintaining constant track of the phase of the carrier signal from each available GPS satellite is necessary for surveying to centimeter or subcentimeter precision. Even a loss of signal for as short a time as a nanosecond can cause cycle slip. Cycle slips degrade the quality and precision of survey data acquired during a flight. The two principal causes of cycle slip are weakness of signals and multipath propagation. Heretofore, it has been standard practice to mount a GPS antenna rigidly on top of an airplane, and the radiation pattern of the antenna is typically hemispherical, so that all GPS satellites above the horizon are viewed by the antenna during level flight. When the airplane must be banked for a turn or other maneuver, the reception hemisphere becomes correspondingly tilted; hence, the antenna no longer views satellites that may still be above the Earth horizon but are now below the equatorial plane of the tilted reception hemisphere. Moreover, part of the reception hemisphere (typically, on the inside of a turn) becomes pointed toward ground, with a consequent increase in received noise and, therefore, degradation of GPS measurements. To minimize the likelihood of loss of signal and cycle slip, bank angles of remote-sensing survey airplanes have generally been limited to 10 or less, resulting in skidding or slipping uncoordinated turns. An airplane must be banked in order to make

  13. Portable Airborne Laser System Measures Forest-Canopy Height

    NASA Technical Reports Server (NTRS)

    Nelson, Ross

    2005-01-01

    (PALS) is a combination of laser ranging, video imaging, positioning, and data-processing subsystems designed for measuring the heights of forest canopies along linear transects from tens to thousands of kilometers long. Unlike prior laser ranging systems designed to serve the same purpose, the PALS is not restricted to use aboard a single aircraft of a specific type: the PALS fits into two large suitcases that can be carried to any convenient location, and the PALS can be installed in almost any local aircraft for hire, thereby making it possible to sample remote forests at relatively low cost. The initial cost and the cost of repairing the PALS are also lower because the PALS hardware consists mostly of commercial off-the-shelf (COTS) units that can easily be replaced in the field. The COTS units include a laser ranging transceiver, a charge-coupled-device camera that images the laser-illuminated targets, a differential Global Positioning System (dGPS) receiver capable of operation within the Wide Area Augmentation System, a video titler, a video cassette recorder (VCR), and a laptop computer equipped with two serial ports. The VCR and computer are powered by batteries; the other units are powered at 12 VDC from the 28-VDC aircraft power system via a low-pass filter and a voltage converter. The dGPS receiver feeds location and time data, at an update rate of 0.5 Hz, to the video titler and the computer. The laser ranging transceiver, operating at a sampling rate of 2 kHz, feeds its serial range and amplitude data stream to the computer. The analog video signal from the CCD camera is fed into the video titler wherein the signal is annotated with position and time information. The titler then forwards the annotated signal to the VCR for recording on 8-mm tapes. The dGPS and laser range and amplitude serial data streams are processed by software that displays the laser trace and the dGPS information as they are fed into the computer, subsamples the laser range and

  14. Pilot interaction with automated airborne decision making systems

    NASA Technical Reports Server (NTRS)

    Hammer, John M.; Wan, C. Yoon; Vasandani, Vijay

    1987-01-01

    The current research is focused on detection of human error and protection from its consequences. A program for monitoring pilot error by comparing pilot actions to a script was described. It dealt primarily with routine errors (slips) that occurred during checklist activity. The model to which operator actions were compared was a script. Current research is an extension along these two dimensions. The ORS fault detection aid uses a sophisticated device model rather than a script. The newer initiative, the model-based and constraint-based warning system, uses an even more sophisticated device model and is to prevent all types of error, not just slips or bad decision.

  15. A high gain antenna system for airborne satellite communication applications

    NASA Technical Reports Server (NTRS)

    Maritan, M.; Borgford, M.

    1990-01-01

    A high gain antenna for commercial aviation satellites communication is discussed. Electromagnetic and practical design considerations as well as candidate systems implementation are presented. An evaluation of these implementation schemes is given, resulting in the selection of a simple top mounted aerodynamic phased array antenna with a remotely located beam steering unit. This concept has been developed into a popular product known as the Canadian Marconi Company CMA-2100. A description of the technical details is followed by a summary of results from the first production antennas.

  16. Artificial Immune System Approach for Airborne Vehicle Maneuvering

    NASA Technical Reports Server (NTRS)

    Kaneshige, John T. (Inventor); Krishnakumar, Kalmanje S. (Inventor)

    2014-01-01

    A method and system for control of a first aircraft relative to a second aircraft. A desired location and desired orientation are estimated for the first aircraft, relative to the second aircraft, at a subsequent time, t=t2, subsequent to the present time, t=t1, where the second aircraft continues its present velocity during a subsequent time interval, t1.ltoreq.t.ltoreq.t2, or takes evasive action. Action command sequences are examined, and an optimal sequence is chosen to bring the first aircraft to the desired location and desired orientation relative to the second aircraft at time t=t2. The method applies to control of combat aircraft and/or of aircraft in a congested airspace.

  17. A knowledge-based expert system for scheduling of airborne astronomical observations

    NASA Technical Reports Server (NTRS)

    Nachtsheim, P. R.; Gevarter, W. B.; Stutz, J. C.; Banda, C. P.

    1985-01-01

    The Kuiper Airborne Observatory Scheduler (KAOS) is a knowledge-based expert system developed at NASA Ames Research Center to assist in route planning of a C-141 flying astronomical observatory. This program determines a sequence of flight legs that enables sequential observations of a set of heavenly bodies derived from a list of desirable objects. The possible flight legs are constrained by problems of observability, avoiding flyovers of warning and restricted military zones, and running out of fuel. A significant contribution of the KAOS program is that it couples computational capability with a reasoning system.

  18. Modelling climate change effects on a Dutch coastal groundwater system using airborne electromagnetic measurements

    NASA Astrophysics Data System (ADS)

    Faneca Sànchez, M.; Gunnink, J. L.; van Baaren, E. S.; Oude Essink, G. H. P.; Siemon, B.; Auken, E.; Elderhorst, W.; de Louw, P. G. B.

    2012-12-01

    The forecast of climate change effects on the groundwater system in coastal areas is of key importance for policy makers. The Dutch water system has been deeply studied because of its complex system of low-lying areas, dunes, land won to the sea and dikes, but nowadays large efforts are still being done to find out the best techniques to describe complex fresh-brackish-saline groundwater dynamic systems. In this paper, we describe a methodology consisting of high-resolution airborne electromagnetic (EM) measurements used in a 3-D variable-density transient groundwater model for a coastal area in the Netherlands. We used the airborne EM measurements in combination with borehole-logging data, electrical conductivity cone penetration tests and groundwater samples to create a 3-D fresh-brackish-saline groundwater distribution of the study area. The EM measurements proved to be an improvement compared to older techniques and provided quality input for the model. With the help of the built 3-D variable-density groundwater model, we removed the remaining inaccuracies of the 3-D chloride field and predicted the effects of three climate scenarios on the groundwater and surface water system. Results showed significant changes in the groundwater system, and gave direction for future water policy. Future research should provide more insight in the improvement of data collection for fresh-brackish-saline groundwater systems as it is of high importance to further improve the quality of the model.

  19. Modelling climate change effects on a Dutch coastal groundwater system using airborne Electro Magnetic measurements

    NASA Astrophysics Data System (ADS)

    Faneca Sànchez, M.; Gunnink, J. L.; van Baaren, E. S.; Oude Essink, G. H. P.; Siemon, B.; Auken, E.; Elderhorst, W.; de Louw, P. G. B.

    2012-05-01

    The forecast of climate change effects on the groundwater system in coastal areas is of key importance for policy makers. The Dutch water system has been deeply studied because of its complex system of low-lying areas, dunes, land won to the sea and dikes, but nowadays large efforts are still being done to find out the best techniques to describe complex fresh-brackish-saline groundwater dynamic systems. In this article, we describe a methodology consisting of high-resolution airborne Electro Magnetic (EM) measurements used in a 3-D variable-density transient groundwater model for a coastal area in the Netherlands. We used the Airborne EM measurements in combination with borehole-logging data, Electrical Conductivity Cone Penetration Tests and groundwater samples to create a 3-D fresh-brackish-saline groundwater distribution of the study area. The EM measurements proved to be an improvement compared to older techniques and provided quality input for the model. With the help of the built 3-D variable-density groundwater model, we removed the remaining inaccuracies of the 3-D chloride field and predicted the effects of three climate scenarios on the groundwater and surface water system. Results showed significant changes in the groundwater system, and gave direction for future water policy. Future research should provide more insight in the improvement of data collection for fresh-brackish-saline groundwater systems as it is of high importance to further improve the quality of the model.

  20. Lidar System for Airborne Measurement of Clouds and Aerosols

    NASA Technical Reports Server (NTRS)

    McGill, Matthew; Scott, V. Stanley; Izquierdo, Luis Ramos; Marzouk, Joe

    2008-01-01

    A lidar system for measuring optical properties of clouds and aerosols at three wavelengths is depicted. The laser transmitter is based on a Nd:YVO4 laser crystal pumped by light coupled to the crystal via optical fibers from laser diodes that are located away from the crystal to aid in dissipating the heat generated in the diodes and their drive circuits. The output of the Nd:YVO4 crystal has a wavelength of 1064 nm, and is made to pass through frequency-doubling and frequency-tripling crystals. As a result, the net laser output is a collinear superposition of beams at wavelengths of 1064, 532, and 355 nm. The laser operates at a pulse-repetition rate of 5 kHz, emitting per-pulse energies of 50 microJ at 1064 nm, 25 microJ at 532 nm and 50 microJ at 355 nm. An important feature of this system is an integrating sphere located between the laser output and the laser beam expander lenses. The integrating sphere collects light scattered from the lenses. Three energy-monitor detectors are located at ports inside the integrating sphere. Each of these detectors is equipped with filters such that the laser output energy is measured independently for each wavelength. The laser output energy is measured on each pulse to enable the most accurate calibration possible. The 1064-nm and 532-nm photodetectors are, more specifically, single photon-counting modules (SPCMs). When used at 1064 nm, these detectors have approximately 3% quantum efficiency and low thermal noise (fewer than 200 counts per second). When used at 532 nm, the SPCMs have quantum efficiency of about 60%. The photodetector for the 355-nm channel is a photon-counting photomultiplier tube having a quantum efficiency of about 20%. The use of photon-counting detectors is made feasible by the low laser pulse energy. The main advantage of photon-counting is ease of inversion of data without need for complicated calibration schemes like those necessary for analog detectors. The disadvantage of photon-counting detectors

  1. Internally controlled PCR system for detection of airborne microorganisms.

    PubMed

    Usachev, Evgeny V; Agranovski, Igor E

    2012-05-01

    Recently, we reported the outcomes of feasibility studies of a technological approach allowing rapid detection of a wide range of bioaerosols by combining a personal bioaerosol sampler with a real-time PCR technology. The protocol was found suitable for detection of targeted microorganisms within relatively short time periods. Considering the crucial importance of the PCR procedure quality control, the current paper reports the results of the development of an internally controlled PCR system for utilization by the above technology. The suggested strategy is based on utilization of only two fluorescent dyes, which are used respectively for target and internal amplification control (IAC) DNA amplification. A bacteriophage T4 and recombinant phage fd (M13) were used in this research as target and IAC, respectively. The constructed IAC was added directly to the collection liquid of the personal bioaerosol sampler enabling quality control to be present throughout the entire sampling-analysis procedures. For performance evaluation, serial ten-fold dilutions of T4 phage were aerosolized and sampled over a 10 minutes time period. The results showed that T4 phage could be reliably detected at the concentration of around 200 PFU per litre of air over the 10 minutes sampling period. The developed PCR assay demonstrated high specificity and no cross reaction. It is concluded that the recombinant phage fd is suitable for utilization as an internal control enabling to significantly minimize false negative results for bioaerosol detection procedures. PMID:22565862

  2. Optimization of an air–liquid interface exposure system for assessing toxicity of airborne nanoparticles

    PubMed Central

    Latvala, Siiri; Hedberg, Jonas; Möller, Lennart; Odnevall Wallinder, Inger; Karlsson, Hanna L.

    2016-01-01

    Abstract The use of refined toxicological methods is currently needed for characterizing the risks of airborne nanoparticles (NPs) to human health. To mimic pulmonary exposure, we have developed an air–liquid interface (ALI) exposure system for direct deposition of airborne NPs on to lung cell cultures. Compared to traditional submerged systems, this allows more realistic exposure conditions for characterizing toxicological effects induced by airborne NPs. The purpose of this study was to investigate how the deposition of silver NPs (AgNPs) is affected by different conditions of the ALI system. Additionally, the viability and metabolic activity of A549 cells was studied following AgNP exposure. Particle deposition increased markedly with increasing aerosol flow rate and electrostatic field strength. The highest amount of deposited particles (2.2 μg cm–2) at cell‐free conditions following 2 h exposure was observed for the highest flow rate (390 ml min–1) and the strongest electrostatic field (±2 kV). This was estimated corresponding to deposition efficiency of 94%. Cell viability was not affected after 2 h exposure to clean air in the ALI system. Cells exposed to AgNPs (0.45 and 0.74 μg cm–2) showed significantly (P < 0.05) reduced metabolic activities (64 and 46%, respectively). Our study shows that the ALI exposure system can be used for generating conditions that were more realistic for in vitro exposures, which enables improved mechanistic and toxicological studies of NPs in contact with human lung cells.Copyright © 2016 The Authors Journal of Applied Toxicology Published by John Wiley & Sons Ltd. PMID:26935862

  3. Testing a small UAS for mapping artisanal diamond mining sites in Africa

    USGS Publications Warehouse

    Malpeli, Katherine C.; Chirico, Peter G.

    2015-01-01

    Remote sensing technology is advancing at an unprecedented rate. At the forefront of the new technological developments are unmanned aircraft systems (UAS). The advent of small, lightweight, low-cost, and user-friendly UAS is greatly expanding the potential applications of remote sensing technology and improving the set of tools available to researchers seeking to map and monitor terrain from above. In this article, we explore the applications of a small UAS for mapping informal diamond mining sites in Africa. We found that this technology provides aerial imagery of unparalleled resolution in a data-sparse, difficult to access, and remote terrain.

  4. Safety and Certification Considerations for Expanding the Use of UAS in Precision Agriculture

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.; Maddalon, Jeffrey M.; Neogi, Natasha A.; Vertstynen, Harry A.

    2016-01-01

    The agricultural community is actively engaged in adopting new technologies such as unmanned aircraft systems (UAS) to help assess the condition of crops and develop appropriate treatment plans. In the United States, agricultural use of UAS has largely been limited to small UAS, generally weighing less than 55 lb and operating within the line of sight of a remote pilot. A variety of small UAS are being used to monitor and map crops, while only a few are being used to apply agricultural inputs based on the results of remote sensing. Larger UAS with substantial payload capacity could provide an option for site-specific application of agricultural inputs in a timely fashion, without substantive damage to the crops or soil. A recent study by the National Aeronautics and Space Administration (NASA) investigated certification requirements needed to enable the use of larger UAS to support the precision agriculture industry. This paper provides a brief introduction to aircraft certification relevant to agricultural UAS, an overview of and results from the NASA study, and a discussion of how those results might affect the precision agriculture community. Specific topics of interest include business model considerations for unmanned aerial applicators and a comparison with current means of variable rate application. The intent of the paper is to inform the precision agriculture community of evolving technologies that will enable broader use of unmanned vehicles to reduce costs, reduce environmental impacts, and enhance yield, especially for specialty crops that are grown on small to medium size farms.

  5. Concentration and characterization of airborne particles in Tehran's subway system.

    PubMed

    Kamani, Hosein; Hoseini, Mohammad; Seyedsalehi, Mahdi; Mahdavi, Yousef; Jaafari, Jalil; Safari, Gholam Hosein

    2014-06-01

    Particulate matter is an important air pollutant, especially in closed environments like underground subway stations. In this study, a total of 13 elements were determined from PM10 and PM2.5 samples collected at two subway stations (Imam Khomeini and Sadeghiye) in Tehran's subway system. Sampling was conducted in April to August 2011 to measure PM concentrations in platform and adjacent outdoor air of the stations. In the Imam Khomeini station, the average concentrations of PM10 and PM2.5 were 94.4 ± 26.3 and 52.3 ± 16.5 μg m(-3) in the platform and 81.8 ± 22.2 and 35 ± 17.6 μg m(-3) in the outdoor air, respectively. In the Sadeghiye station, mean concentrations of PM10 and PM2.5 were 87.6 ± 23 and 41.3 ± 20.4 μg m(-3) in the platform and 73.9 ± 17.3 and 30 ± 15 μg m(-3), in the outdoor air, respectively. The relative contribution of elemental components in each particle fraction were accounted for 43% (PM10) and 47.7% (PM2.5) in platform of Imam Khomeini station and 15.9% (PM10) and 18.5% (PM2.5) in the outdoor air of this station. Also, at the Sadeghiye station, each fraction accounted for 31.6% (PM10) and 39.8% (PM2.5) in platform and was 11.7% (PM10) and 14.3% (PM2.5) in the outdoor. At the Imam Khomeini station, Fe was the predominant element to represent 32.4 and 36 % of the total mass of PM10 and PM2.5 in the platform and 11.5 and 13.3% in the outdoor, respectively. At the Sadeghiye station, this element represented 22.7 and 29.8% of total mass of PM10 and PM2.5 in the platform and 8.7 and 10.5% in the outdoor air, respectively. Other major crustal elements were 5.8% (PM10) and 5.3% (PM2.5) in the Imam Khomeini station platform and 2.3 and 2.4% in the outdoor air, respectively. The proportion of other minor elements was significantly lower, actually less than 7% in total samples, and V was the minor concentration in total mass of PM10 and PM2.5 in both platform stations. PMID:24573466

  6. UAS NAS IHITL Test Readiness Review (TRR)

    NASA Technical Reports Server (NTRS)

    Murphy, Jim; Brignola, Michael P.; Rorie, Conrad; Santiago, Confesor; Guminsky, Mike; Cross, Ken

    2014-01-01

    Requesting release of IHITL test readiness review (TRR) charts to ensure UAS-NAS project primary stakeholders, the Federal Aviation Administration through the RTCA special committee -228 and the Office of the Secretary of Defense Sense and Avoid Science and Research Panel, are well informed on the IHITL test plan and expected outcomes as they relate to their needs to safely fly UAS in the NAS.

  7. An Integrated Data Acquisition / User Request/ Processing / Delivery System for Airborne Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Chapman, B.; Chu, A.; Tung, W.

    2003-12-01

    Airborne science data has historically played an important role in the development of the scientific underpinnings for spaceborne missions. When the science community determines the need for new types of spaceborne measurements, airborne campaigns are often crucial in risk mitigation for these future missions. However, full exploitation of the acquired data may be difficult due to its experimental and transitory nature. Externally to the project, most problematic (in particular, for those not involved in requesting the data acquisitions) may be the difficulty in searching for, requesting, and receiving the data, or even knowing the data exist. This can result in a rather small, insular community of users for these data sets. Internally, the difficulty for the project is in maintaining a robust processing and archival system during periods of changing mission priorities and evolving technologies. The NASA/JPL Airborne Synthetic Aperture Radar (AIRSAR) has acquired data for a large and varied community of scientists and engineers for 15 years. AIRSAR is presently supporting current NASA Earth Science Enterprise experiments, such as the Soil Moisture EXperiment (SMEX) and the Cold Land Processes experiment (CLPX), as well as experiments conducted as many as 10 years ago. During that time, it's processing, data ordering, and data delivery system has undergone evolutionary change as the cost and capability of resources has improved. AIRSAR now has a fully integrated data acquisition/user request/processing/delivery system through which most components of the data fulfillment process communicate via shared information within a database. The integration of these functions has reduced errors and increased throughput of processed data to customers.

  8. Concepts of Integration for UAS Operations in the NAS

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Chamberlain, James P.; Munoz, Cesar A.; Hoffler, Keith D.

    2012-01-01

    One of the major challenges facing the integration of Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is the lack of an onboard pilot that can comply with the legal requirement identified in the US Code of Federal Regulations (CFR) that pilots see and avoid other aircraft. UAS will be expected to demonstrate the means to perform the function of see and avoid while preserving the safety level of the airspace and the efficiency of the air traffic system. This paper introduces a Sense and Avoid (SAA) concept for integration of UAS into the NAS that is currently being developed by the National Aeronautics and Space Administration (NASA) and identifies areas that require additional experimental evaluation to further inform various elements of the concept. The concept design rests on interoperability principles that take into account both the Air Traffic Control (ATC) environment as well as existing systems such as the Traffic Alert and Collision Avoidance System (TCAS). Specifically, the concept addresses the determination of well clear values that are large enough to avoid issuance of TCAS corrective Resolution Advisories, undue concern by pilots of proximate aircraft and issuance of controller traffic alerts. The concept also addresses appropriate declaration times for projected losses of well clear conditions and maneuvers to regain well clear separation.

  9. A Performance Assessment of a Tactical Airborne Separation Assistance System using Realistic, Complex Traffic Flows

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Neitzke, Kurt W.; Bussink, Frank J. L.

    2008-01-01

    This paper presents the results from a study that investigates the performance of aspects of an Airborne Separation Assistance System (ASAS) under varying demand levels using realistic traffic patterns. This study only addresses the tactical aspects of an ASAS using aircraft state data (latitude, longitude, altitude, heading and speed) to detect and resolve projected conflicts. The main focus of this paper is to determine the extent to which sole reliance on the proposed tactical ASAS can maintain aircraft separation at demand levels up to three times current traffic. The effect of mixing ASAS equipped aircraft with non-equipped aircraft that do not have the capability to self-separate is also investigated.

  10. Airborne antenna coverage requirements for the TCV B-737 aircraft. [for operation with microwave landing systems

    NASA Technical Reports Server (NTRS)

    Southall, W. A., Jr.; White, W. F.

    1978-01-01

    The airborne antenna line of sight look angle requirement for operation with a Microwave Landing System (MLS) was studied. The required azimuth and elevation line of sight look angles from an antenna located on an aircraft to three ground based antenna sites at the Wallops Flight Center (FPS-16 radar, MLS aximuth, and MLS elevation) as the aircraft follows specific approach paths selected as representative of MLS operations at the Denver, Colorado, terminal area are presented. These required azimuth and elevation look angles may be interpreted as basic design requirements for antenna of the TCV B-737 airplane for MLS operations along these selected approach paths.

  11. An Airborne Scanning LiDAR System for Ocean and Coastal Applications

    NASA Astrophysics Data System (ADS)

    Reineman, B. D.; Lenain, L.; Castel, D.; Melville, W. K.

    2008-12-01

    We have developed an airborne scanning LiDAR (Light Detection And Ranging) system and demonstrated its functionality for terrestrial and oceanographic measurements. Differential GPS (DGPS) and an Inertial Navigation System (INS) are synchronized with the LiDAR, providing end result vertical rms errors of approximately 6~cm. Flying 170~m above the surface, we achieve a point density of ~ 0.7 m-2 and a swath width of 90 to 120~m over ocean and 200~m over land. Georeferencing algorithms were developed in-house and earth-referenced data are available several hours after acquisition. Surveys from the system are compared with ground DGPS surveys and existing airborne surveys of fixed targets. Twelve research flights in a Piper Twin Comanche from August 2007 to July 2008 have provided topography of the Southern California coastline and sea surface wave fields in the nearshore ocean environment. Two of the flights also documented the results of the October 2007 landslide on Mt.~Soledad in La Jolla, California. Eight research flights aboard a Cessna Caravan surveyed the topography, lagoon, reef, and surrounding seas of Lady Elliot Island (LEI) in Australia's Great Barrier Reef in April 2008. We describe applications for the system, including coastal topographic surveys, wave measurements, reef research, and ship wake studies.

  12. Design of an in-line, digital holographic imaging system for airborne measurement of clouds.

    PubMed

    Spuler, Scott M; Fugal, Jacob

    2011-04-01

    We discuss the design and performance of an airborne (underwing) in-line digital holographic imaging system developed for characterizing atmospheric cloud water droplets and ice particles in situ. The airborne environment constrained the design space to the simple optical layout that in-line non-beam-splitting holography affords. The desired measurement required the largest possible sample volume in which the smallest desired particle size (∼5 μm) could still be resolved, and consequently the magnification requirement was driven by the pixel size of the camera and this particle size. The resulting design was a seven-element, double-telecentric, high-precision optical imaging system used to relay and magnify a hologram onto a CCD surface. The system was designed to preserve performance and high resolution over a wide temperature range. Details of the optical design and construction are given. Experimental results demonstrate that the system is capable of recording holograms that can be reconstructed with resolution of better than 6.5 μm within a 15 cm(3) sample volume.

  13. Preliminary results of the LLNL airborne experimental test-bed SAR system

    SciTech Connect

    Miller, M.G.; Mullenhoff, C.J.; Kiefer, R.D.; Brase, J.M.; Wieting, M.G.; Berry, G.L.; Jones, H.E.

    1996-01-16

    The Imaging and Detection Program (IDP) within Laser Programs at Lawrence Livermore National Laboratory (LLNL) in cooperation with the Hughes Aircraft Company has developed a versatile, high performance, airborne experimental test-bed (AETB) capability. The test-bed has been developed for a wide range of research and development experimental applications including radar and radiometry plus, with additional aircraft modifications, optical systems. The airborne test-bed capability has been developed within a Douglas EA-3B Skywarrior jet aircraft provided and flown by Hughes Aircraft Company. The current test-bed payload consists of an X-band radar system, a high-speed data acquisition, and a real-time processing capability. The medium power radar system is configured to operate in a high resolution, synthetic aperture radar (SAR) mode and is highly configurable in terms of waveforrns, PRF, bandwidth, etc. Antennas are mounted on a 2-axis gimbal in the belly radome of the aircraft which provides pointing and stabilization. Aircraft position and antenna attitude are derived from a dedicated navigational system and provided to the real-time SAR image processor for instant image reconstruction and analysis. This paper presents a further description of the test-bed and payload subsystems plus preliminary results of SAR imagery.

  14. Positional Accuracy of Airborne Integrated Global Positioning and Inertial Navigation Systems for Mapping in Glen Canyon, Arizona

    USGS Publications Warehouse

    Sanchez, Richard D.; Hothem, Larry D.

    2002-01-01

    High-resolution airborne and satellite image sensor systems integrated with onboard data collection based on the Global Positioning System (GPS) and inertial navigation systems (INS) may offer a quick and cost-effective way to gather accurate topographic map information without ground control or aerial triangulation. The Applanix Corporation?s Position and Orientation Solutions for Direct Georeferencing of aerial photography was used in this project to examine the positional accuracy of integrated GPS/INS for terrain mapping in Glen Canyon, Arizona. The research application in this study yielded important information on the usefulness and limits of airborne integrated GPS/INS data-capture systems for mapping.

  15. TELAER: a multi-mode/multi-antenna interferometric airborne SAR system

    NASA Astrophysics Data System (ADS)

    Perna, Stefano; Amaral, Tiago; Berardino, Paolo; Esposito, Carmen; Jackson, Giuseppe; Pauciullo, Antonio; Vaz Junior, Eurico; Wimmer, Christian; Lanari, Riccardo

    2014-05-01

    The present contribution is aimed at showing the capabilities of the TELAER airborne Synthetic Aperture Radar (SAR) system recently upgraded to the interferometric mode [1]. TELAER is an Italian airborne X-Band SAR system, mounted onboard a LearJet 35A aircraft. Originally equipped with a single TX/RX antenna, it now operates in single-pass interferometric mode thanks to a system upgrading [1] funded by the Italian National Research Council (CNR), via the Italian Ministry of Education, Universities and Research (MIUR), in the framework of a cooperation between CNR and the Italian Agency for Agriculture Subsidy Payments (AGEA). In the frame of such cooperation, CNR has entrusted the Institute for Electromagnetic Sensing of the Environment (IREA) for managing all the activities, included the final flight tests, related to the system upgrading. According to such an upgrading, two additional receiving X-band antennas have been installed in order to allow, simultaneously, single-pass Across-Track and Along-Track interferometry [1]. More specifically, the three antennas are now installed in such a way to produce three different across-track baselines and two different along-track baselines. Moreover, in the frame of the same system upgrading, it has been mounted onboard the Learjet an accurate embedded Global Navigation Satellite System and Inertial Measurement Unit equipment. This allows precise measurement of the tracks described by the SAR antennas during the flight, in order to accurately implement Motion Compensation (MOCO) algorithms [2] during the image formation (focusing) step. It is worth remarking that the TELAER system upgraded to the interferometric mode is very flexible, since the user can set different operational modes characterized by different geometric resolutions and range swaths. In particular, it is possible to reach up to 0.5 m of resolution with a range swath of 2km; conversely, it is possible to enlarge the range swath up to 10 km at expenses of

  16. Initial evaluation of airborne water vapour measurements by the IAGOS-GHG CRDS system

    NASA Astrophysics Data System (ADS)

    Filges, Annette; Gerbig, Christoph; Smit, Herman G. J.; Krämer, Martina; Spelten, Nicole

    2013-04-01

    Accurate and reliable airborne measurements of water vapour are still a challenge. Presently, no airborne humidity sensor exists that covers the entire range of water vapour content between the surface and the upper troposphere/lower stratosphere (UT/LS) region with sufficient accuracy and time resolution. Nevertheless , these data are a pre-requisite to study the underlying processes in the chemistry and physics of the atmosphere. The DENCHAR project (Development and Evaluation of Novel Compact Hygrometer for Airborne Research) addresses this deficit by developing and characterizing novel or improved compact airborne hygrometers for different airborne applications within EUFAR (European Facility for Airborne Research). As part of the DENCHAR inter-comparison campaign in Hohn (Germany), 23 May - 1 June 2011, a commercial gas analyzer (G2401-m, Picarro Inc.,US), based on cavity ring-down spectroscopy (CRDS), was installed on a Learjet to measure water vapour, CO2, CH4 and CO. The CRDS components are identical to those chosen for integration aboard commercial airliner within IAGOS (In-service Aircraft for a Global Observing System). Thus the campaign allowed for the initial assessment validation of the long-term IAGOS H2O measurements by CRDS against reference instruments with a long performance record (FISH, the Fast In-situ Stratospheric Hygrometer, and CR2 frostpoint hygrometer, both research centre Juelich). The inlet system, a one meter long 1/8" FEP-tube connected to a Rosemount TAT housing (model 102BX, deiced) installed on a window plate of the aircraft, was designed to eliminate sampling of larger aerosols, ice particles, and water droplets, and provides about 90% of ram-pressure. In combination with a lowered sample flow of 0.1 slpm (corresponding to a 4 second response time), this ensured a fully controlled sample pressure in the cavity of 140 torr throughout an aircraft altitude operating range up to 12.5 km without the need of an upstream sampling pump

  17. An airborne FLIR detection and warning system for low altitude wind shear

    NASA Technical Reports Server (NTRS)

    Sinclair, Peter C.; Kuhn, Peter M.

    1991-01-01

    It is shown through some preliminary flight measurement research that a forward looking infrared radiometer (FLIR) system can be used to successfully detect the cool downdraft of downbursts (microbusts/macrobursts) and thunderstorm gust front outflows that are responsible for most of the low altitude wind shear (LAWS) events. The FLIR system provides a much greater safety margin for the pilot than that provided by reactive designs such as inertial air speed systems. Preliminary results indicate that an advanced airborne FLIR system could provide the pilot with remote indication of microburst (MB) hazards along the flight path ahead of the aircraft. Results of a flight test of a prototype FLIR system show that a minimum warning time of one to four minutes (5 to 10 km), depending on aircraft speed, is available to the pilot prior to the microburst encounter.

  18. Airborne Digital Sensor System and GPS-aided inertial technology for direct geopositioning in rough terrain

    USGS Publications Warehouse

    Sanchez, Richard D.

    2004-01-01

    High-resolution airborne digital cameras with onboard data collection based on the Global Positioning System (GPS) and inertial navigation systems (INS) technology may offer a real-time means to gather accurate topographic map information by reducing ground control and eliminating aerial triangulation. Past evaluations of this integrated system over relatively flat terrain have proven successful. The author uses Emerge Digital Sensor System (DSS) combined with Applanix Corporation?s Position and Orientation Solutions for Direct Georeferencing to examine the positional mapping accuracy in rough terrain. The positional accuracy documented in this study did not meet large-scale mapping requirements owing to an apparent system mechanical failure. Nonetheless, the findings yield important information on a new approach for mapping in Antarctica and other remote or inaccessible areas of the world.

  19. Issues on utility management simulation system for miscellaneous airborne electromechanical devices

    NASA Astrophysics Data System (ADS)

    Chen, Juan; Liu, Qiaozhen; Wang, Zhanlin

    2006-11-01

    UMS for miscellaneous airborne electromechanical devices is the part and parcel of VMS. The object of utility management is airborne electromechanical devices which ensure that air engine, avionics and other systems work in order. This paper works over several items about UMS by introducing advanced simulation and its correlative technologies. Firstly, message transmission software of 1553B bus is designed and the bus characteristics are tested. Also, the problem of time synchronization is solved by testing network delay. Secondly, in order to obtain high performance of distributed process ability, heuristic job dispatching algorithm and hydrodynamic load balancing strategy are adopted, which solve the static job dispatch and dynamic job scheduling respectively. The hydrodynamic load balancing strategy is aiming to fulfill the resources usage in the whole system and accomplishes best resources sharing. Thirdly, this paper establishes and realizes the demo environment for visual simulation of the electromechanical subsystems. Adopting tree-mode during the software design makes the system scalable and reconstruction. As multithreading synchronization is resolved, real-time performance of simulation. is ensured during.

  20. An integrated GPS-FID system for airborne gas detection of pipeline right-of-ways

    SciTech Connect

    Gehue, H.L.; Sommer, P.

    1996-12-31

    Pipeline integrity, safety and environmental concerns are of prime importance in the Canadian natural gas industry. Terramatic Technology Inc. (TTI) has developed an integrated GPS/FID gas detection system known as TTI-AirTrac{trademark} for use in airborne gas detection (AGD) along pipeline right-of-ways. The Flame Ionization Detector (FID), which has traditionally been used to monitor air quality for gas plants and refineries, has been integrated with the Global Positioning System (GPS) via a 486 DX2-50 computer and specialized open architecture data acquisition software. The purpose of this technology marriage is to be able to continuously monitor air quality during airborne pipeline inspection. Event tagging from visual surveillance is used to determine an explanation of any delta line deviations (DLD). These deviations are an indication of hydrocarbon gases present in the plume that the aircraft has passed through. The role of the GPS system is to provide mapping information and coordinate data for ground inspections. The ground based inspection using a handheld multi gas detector will confirm whether or not a leak exists.

  1. Miniaturization of high spectral spatial resolution hyperspectral imagers on unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Hill, Samuel L.; Clemens, Peter

    2015-06-01

    Traditional airborne environmental monitoring has frequently deployed hyperspectral imaging as a leading tool for characterizing and analyzing a scene's critical spectrum-based signatures for applications in agriculture genomics and crop health, vegetation and mineral monitoring, and hazardous material detection. As the acceptance of hyperspectral evaluation grows in the airborne community, there has been a dramatic trend in moving the technology from use on midsize aircraft to Unmanned Aerial Systems (UAS). The use of UAS accomplishes a number of goals including the reduction in cost to run multiple seasonal evaluations over smaller but highly valuable land-areas, the ability to use frequent data collections to make rapid decisions on land management, and the improvement of spatial resolution by flying at lower altitudes (<500 ft.). Despite this trend, there are several key parameters affecting the use of traditional hyperspectral instruments in UAS with payloads less than 10 lbs. where size, weight and power (SWAP) are critical to how high and how far a given UAS can fly. Additionally, on many of the light-weight UAS, users are frequently trying to capture data from one or more instruments to augment the hyperspectral data collection, thus reducing the amount of SWAP available to the hyperspectral instrumentation. The following manuscript will provide an analysis on a newly-developed miniaturized hyperspectral imaging platform, the Nano-Hyperspec®, which provides full hyperspectral resolution and traditional hyperspectral capabilities without sacrificing performance to accommodate the decreasing SWAP of smaller and smaller UAS platforms. The analysis will examine the Nano-Hyperspec flown in several UAS airborne environments and the correlation of the systems data with LiDAR and other GIS datasets.

  2. LaserCom in UAS missions: benefits and operational aspects

    NASA Astrophysics Data System (ADS)

    Griethe, Wolfgang; Heine, Frank; Begg, Lester L.; Du, Detao

    2013-05-01

    Free Space Optical Communications (FSOC) is progressing continuously. With the successful in-orbit verification of a Laser Communication Terminal (LCT), the coherent homodyne BPSK scheme advanced to a standard for Free-Space Optical Communication (FSOC) which now prevails more and more. The LCT is located not only on satellites in Low Earth Orbit (LEO), with spacecrafts like ALPHASAT-TDP and the European Data Relay Satellite (EDRS) the LCT will also exist in Geosynchronous Orbit (GEO) in the near future. In other words, the LCT has reached its practical application. With existence of such space assets the time has come for other utilizations beyond that of establishing optical Inter-Satellite Links (ISL). Aeronautical applications, as for instance High Altitude Long Endurance (HALE) or Medium Altitude Long Endurance (MALE) Unmanned Aerial Systems (UAS) have to be addressed. Driving factors and advantages of FSOC in HALE/MALE UAS missions are highlighted. Numerous practice-related issues are described concerning the space segment, the aeronautical segment as well as the ground segment. The advantages for UAS missions are described resulting from the utilization of FSOC exclusively for wideband transmission of sensor data whereas vehicle Command and Control can be maintained as before via RF communication. Moreover, the paper discusses FSOC as enabler for the integration of air and space-based wideband Intelligence, Surveillance and Reconnaissance (ISR) systems into existent military command and control systems.

  3. Assuring Ground-Based Detect and Avoid for UAS Operations

    NASA Technical Reports Server (NTRS)

    Denney, Ewen W.; Pai, Ganeshmadhav Jagadeesh; Berthold, Randall; Fladeland, Matthew; Storms, Bruce; Sumich, Mark

    2014-01-01

    One of the goals of the Marginal Ice Zones Observations and Processes Experiment (MIZOPEX) NASA Earth science mission was to show the operational capabilities of Unmanned Aircraft Systems (UAS) when deployed on challenging missions, in difficult environments. Given the extreme conditions of the Arctic environment where MIZOPEX measurements were required, the mission opted to use a radar to provide a ground-based detect-and-avoid (GBDAA) capability as an alternate means of compliance (AMOC) with the see-and-avoid federal aviation regulation. This paper describes how GBDAA safety assurance was provided by interpreting and applying the guidelines in the national policy for UAS operational approval. In particular, we describe how we formulated the appropriate safety goals, defined the processes and procedures for system safety, identified and assembled the relevant safety verification evidence, and created an operational safety case in compliance with Federal Aviation Administration (FAA) requirements. To the best of our knowledge, the safety case, which was ultimately approved by the FAA, is the first successful example of non-military UAS operations using GBDAA in the U.S. National Airspace System (NAS), and, therefore, the first nonmilitary application of the safety case concept in this context.

  4. Use of airborne and terrestrial lidar to detect ground displacement hazards to water systems

    USGS Publications Warehouse

    Stewart, J.P.; Hu, Jiawen; Kayen, R.E.; Lembo, A.J.; Collins, B.D.; Davis, C.A.; O'Rourke, T. D.

    2009-01-01

    We investigate the use of multiepoch airborne and terrestrial lidar to detect and measure ground displacements of sufficient magnitude to damage buried pipelines and other water system facilities that might result, for example, from earthquake or rainfall-induced landslides. Lidar scans are performed at three sites with coincident measurements by total station surveying. Relative horizontal accuracy is evaluated by measurements of lateral dimensions of well defined objects such as buildings and tanks; we find misfits ranging from approximately 5 to 12 cm, which is consistent with previous work. The bias and dispersion of lidar elevation measurements, relative to total station surveying, is assessed at two sites: (1) a power plant site (PP2) with vegetated steeply sloping terrain; and (2) a relatively flat and unvegetated site before and after trenching operations were performed. At PP2, airborne lidar showed minimal elevation bias and a standard deviation of approximately 70 cm, whereas terrestrial lidar did not produce useful results due to beam divergence issues and inadequate sampling of the study region. At the trench site, airborne lidar showed minimal elevation bias and reduced standard deviation relative to PP2 (6-20 cm), whereas terrestrial lidar was nearly unbiased with very low dispersion (4-6 cm). Pre- and posttrench bias-adjusted normalized residuals showed minimal to negligible correlation, but elevation change was affected by relative bias between epochs. The mean of elevation change bias essentially matches the difference in means of pre- and posttrench elevation bias, whereas elevation change standard deviation is sensitive to the dispersion of individual epoch elevations and their correlation coefficient. The observed lidar bias and standard deviations enable reliable detection of damaging ground displacements for some pipelines types (e.g., welded steel) but not all (e.g., concrete with unwelded, mortared joints). ?? ASCE 2009.

  5. Development and test of video systems for airborne surveillance of oil spills

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Arvesen, J. C.; Lewis, P. L.

    1975-01-01

    Five video systems - potentially useful for airborne surveillance of oil spills - were developed, flight tested, and evaluated. The systems are: (1) conventional black and white TV, (2) conventional TV with false color, (3) differential TV, (4) prototype Lunar Surface TV, and (5) field sequential TV. Wavelength and polarization filtering were utilized in all systems. Greatly enhanced detection of oil spills, relative to that possible with the unaided eye, was achieved. The most practical video system is a conventional TV camera with silicon-diode-array image tube, filtered with a Corning 7-54 filter and a polarizer oriented with its principal axis in the horizontal direction. Best contrast between oil and water was achieved when winds and sea states were low. The minimum detectable oil film thickness was about 0.1 micrometer.

  6. The development of an airborne instrumentation computer system for flight test

    NASA Technical Reports Server (NTRS)

    Bever, G. A.

    1984-01-01

    Instrumentation interfacing frequently requires the linking of intelligent systems together, as well as requiring the link itself to be intelligent. The airborne instrumentation computer system (AICS) was developed to address this requirement. Its small size, approximately 254 by 133 by 140 mm (10 by 51/4 by 51/2 in), standard bus, and modular board configuration give it the ability to solve instrumentation interfacing and computation problems without forcing a redesign of the entire unit. This system has been used on the F-15 aircraft digital electronic engine control (DEEC) and its follow on engine model derivative (EMD) project and in an OV-1C Mohawk aircraft stall speed warning system. The AICS is presently undergoing configuration for use on an F-104 pace aircraft and on the advanced fighter technology integration (AFTI) F-111 aircraft.

  7. sUAS and their application in observing geomorphological processes

    NASA Astrophysics Data System (ADS)

    Gallik, Jozef; Bolešová, Lenka

    2016-07-01

    Methodologies and procedures in processing gained data vary based on possibilities and needs of scientific projects. This paper should help to get a general overview in the choice of small unmanned aircraft systems (sUAS - commonly known as drones) for scientific purposes, namely remote sensing of geomorphologic processes such as soil degradation in high mountainous areas that are hard to access and have unfavourable weather conditions. All high mountain areas in European countries are legislatively protected, and so various permissions and observation of strict procedures are needed in order to not have a negative influence on the environment. Nowadays, several types of UAS exist that could effectively help us in such protection, as well as in full-fledged utilization when answering scientific questions about the alpine lake genesis. We demonstrate it here with selected examples of our photo documentation.

  8. Airborne system for fast measurements of upwelling and downwelling spectral actinic flux densities.

    PubMed

    Jäkel, Evelyn; Wendisch, Manfred; Kniffka, Anke; Trautmann, Thomas

    2005-01-20

    An airborne system for fast measurements of spectral actinic flux densities in the wavelength range 305-700 nm is introduced. The system is called the Actinic Flux Density Meter (AFDM). The AFDM utilizes the diode array technique and measures downwelling and upwelling spectral actinic flux densities separately with a time resolution of less than 1 s. For airborne measurements this means a spatial resolution of approximately 60 m, assuming an average aircraft velocity of 60 m/s. Thus the AFDM resolves fast changes in the actinic radiation field, which are of special importance for conditions of inhomogeneous clouds or surface reflection. Laboratory characterization measurements of the AFDM are presented, and a method to correct the nonideal angular response of the optical inlets is introduced. Furthermore, exemplar field data sampled simultaneously with spectral irradiance measurements are shown. The horizontal variability of the measured spectra of actinic flux density is quantified, and profile measurements for overcast situations are presented. Finally, the effects of clouds on the spectral actinic flux density are discussed.

  9. Airborne test results for smart pushbroom imaging system with optoelectronic image correction

    NASA Astrophysics Data System (ADS)

    Tchernykh, Valerij; Dyblenko, Serguei; Janschek, Klaus; Seifart, Klaus; Harnisch, Bernd

    2004-02-01

    Smart pushbroom imaging system (SMARTSCAN) solves the problem of image correction for satellite pushbroom cameras which are disturbed by satellite attitude instability effects. Satellite cameras with linear sensors are particularly sensitive to attitude errors, which cause considerable image distortions. A novel solution of distortions correction is presented, which is based on the real-time recording of the image motion in the focal plane of the satellite camera. This allows using such smart pushbroom cameras (multi-/hyperspectral) even on moderately stabilised satellites, e.g. small sat's, LEO comsat's. The SMARTSCAN concept uses in-situ measurements of the image motion with additional CCD-sensors in the focal plane and real-time image processing of these measurements by an onboard Joint Transform Optical Correlator. SMARTSCAN has been successfully demonstrated with breadboard models for the Optical Correlator and a Smart Pushbroom Camera at laboratory level (satellite motion simulator on base of a 5 DOF industrial robot) and by an airborne flight demonstration in July 2002. The paper describes briefly the principle of operation of the system and gives a description of the hardware model are provided. Detailed results of the airborne tests and performance analysis are given as well as detailed tests description.

  10. A hardware/software simulation for the video tracking system of the Kuiper Airborne Observatory telescope

    NASA Technical Reports Server (NTRS)

    Boozer, G. A.; Mckibbin, D. D.; Haas, M. R.; Erickson, E. F.

    1984-01-01

    This simulator was created so that C-141 Kuiper Airborne Observatory investigators could test their Airborne Data Acquisition and Management System software on a system which is generally more accessible than the ADAMS on the plane. An investigator can currently test most of his data acquisition program using the data computer simulator in the Cave. (The Cave refers to the ground-based computer facilities for the KAO and the associated support personnel.) The main Cave computer is interfaced to the data computer simulator in order to simulate the data-Exec computer communications. However until now, there has been no way to test the data computer interface to the tracker. The simulator described here simulates both the KAO Exec and tracker computers with software which runs on the same Hewlett-Packard (HP) computer as the investigator's data acquisition program. A simulator control box is hardwired to the computer to provide monitoring of tracker functions, to provide an operator panel similar to the real tracker, and to simulate the 180 deg phase shifting of the chopper squre-wave reference with beam switching. If run in the Cave, one can use their Exec simulator and this tracker simulator.

  11. Observing of entrainment using small UAS

    NASA Astrophysics Data System (ADS)

    Martin, S.; Bange, J.; Beyrich, F.

    2012-04-01

    Entrainment processes between the atmospheric boundary layer and the free atmosphere are important concerning vertical exchange of momentum, energy, water vapor, trace gases and aerosol. The transition zone between the convectively mixed boundary layer and the stably stratified free atmosphere is called the entrainment zone (EZ). The EZ restrains the domain of turbulence by a temperature inversion and acts as a lid to pollutants. Measurement flights of the mini meteorological aerial vehicle (M2AV) of the Technische Universität Braunschweig were performed in spring 2011 to determine the capability of the unmanned aerial system (UAS) to measure the structure of the EZ. The campaign took place at the Meteorological Observatory Lindenberg / Richard-Aßmann-Observatory of the German Meteorological Service, which is located close to Berlin. Besides the M2AV flights, standard observations were performed by a 12 m and 99 m tower, a sodar, ceilometer and radiosondes. A tethered balloon with measurement units at six different levels was operated especially for this campaign. The measurements of these systems were used to determine the inversion layer and to capture its diurnal cycle. The talk will be focused on vertical profiles of the M2AV up to the free atmosphere, detailed analysis of spatial series of w'θ' at different altitudes and on vertical profiles of normalized variances of the vertical wind component and the potential temperature.

  12. Operational Experience with Long Duration Wildfire Mapping: UAS Missions Over the Western United States

    NASA Technical Reports Server (NTRS)

    Hall, Philip; Cobleigh, Brent; Buoni, Greg; Howell, Kathleen

    2008-01-01

    The National Aeronautics and Space Administration, United States Forest Service, and National Interagency Fire Center have developed a partnership to develop and demonstrate technology to improve airborne wildfire imaging and data dissemination. In the summer of 2007, a multi-spectral infrared scanner was integrated into NASA's Ikhana Unmanned Aircraft System (UAS) (a General Atomics Predator-B) and launched on four long duration wildfire mapping demonstration missions covering eight western states. Extensive safety analysis, contingency planning, and mission coordination were key to securing an FAA certificate of authorization (COA) to operate in the national airspace. Infrared images were autonomously geo-rectified, transmitted to the ground station by satellite communications, and networked to fire incident commanders within 15 minutes of acquisition. Close coordination with air traffic control ensured a safe operation, and allowed real-time redirection around inclement weather and other minor changes to the flight plan. All objectives of the mission demonstrations were achieved. In late October, wind-driven wildfires erupted in five southern California counties. State and national emergency operations agencies requested Ikhana to help assess and manage the wildfires. Four additional missions were launched over a 5-day period, with near realtime images delivered to multiple emergency operations centers and fire incident commands managing 10 fires.

  13. UAS Integration in the NAS Project: Integrated Test and Evaluation (IT&E) Flight Test 3. Revision E

    NASA Technical Reports Server (NTRS)

    Marston, Michael

    2015-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration into the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability, Human Systems Integration (HSI), and Communication to support reducing the barriers of UAS access to the NAS. This research is broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Sense and Avoid (SAA) performance standards, command and control performance standards, and human systems integration. The focus of Test Infrastructure is to enable development and validation of airspace integration procedures and performance standards, including the integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project will develop an adaptable, scalable, and schedulable relevant test environment capable of evaluating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project will conduct a series of Human-in-the-Loop and Flight Test activities that integrate key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events will build on the technical achievements, fidelity and complexity of the previous tests and

  14. Dynamic replanning on demand of UAS constellations performing ISR missions

    NASA Astrophysics Data System (ADS)

    Stouch, Daniel W.; Zeidman, Ernest; Callahan, William; McGraw, Kirk

    2011-05-01

    Unmanned aerial systems (UAS) have proven themselves to be indispensable in providing intelligence, surveillance, and reconnaissance (ISR) over the battlefield. Constellations of heterogeneous, multi-purpose UAS are being tasked to provide ISR in an unpredictable environment. This necessitates the dynamic replanning of critical missions as weather conditions change, new observation targets are identified, aircraft are lost or equipment malfunctions, and new airspace restrictions are introduced. We present a method to generate coordinated mission plans for constellations of UAS with multiple flight goals and potentially competing objectives, and update them on demand as the operational situation changes. We use a fast evolutionary algorithm-based, multi-objective optimization technique. The updated flight routes maintain continuity by considering where the ISR assets have already flown and where they still need to go. Both the initial planning and replanning take into account factors such as area of analysis coverage, restricted operating zones, maximum control station range, adverse weather effects, military terrain value, and sensor performance. Our results demonstrate that by constraining the space of potential solutions using an intelligently-formed air maneuver network with a subset of potential airspace corridors and navigational waypoints, we can ensure global optimization for multiple objectives considering the situation both before and after the replanning is initiated. We employ sophisticated visualization techniques using a geographic information system to help the user 'look under the hood" of the algorithms to understand the effectiveness and viability of the generated ISR mission plans and identify potential gaps in coverage.

  15. Analysis of Point Cloud Generation from UAS Images

    NASA Astrophysics Data System (ADS)

    Ostrowski, S.; Jóźków, G.; Toth, C.; Vander Jagt, B.

    2014-11-01

    Unmanned Aerial Systems (UAS) allow for the collection of low altitude aerial images, along with other geospatial information from a variety of companion sensors. The images can then be processed using sophisticated algorithms from the Computer Vision (CV) field, guided by the traditional and established procedures from photogrammetry. Based on highly overlapped images, new software packages which were specifically developed for UAS technology can easily create ground models, such as Point Clouds (PC), Digital Surface Model (DSM), orthoimages, etc. The goal of this study is to compare the performance of three different software packages, focusing on the accuracy of the 3D products they produce. Using a Nikon D800 camera installed on an ocotocopter UAS platform, images were collected during subsequent field tests conducted over the Olentangy River, north from the Ohio State University campus. Two areas around bike bridges on the Olentangy River Trail were selected because of the challenge the packages would have in creating accurate products; matching pixels over the river and dense canopy on the shore presents difficult scenarios to model. Ground Control Points (GCP) were gathered at each site to tie the models to a local coordinate system and help assess the absolute accuracy for each package. In addition, the models were also relatively compared to each other using their PCs.

  16. Airborne far-IR minefield imaging system (AFIRMIS): description and preliminary results

    NASA Astrophysics Data System (ADS)

    Simard, Jean-Robert; Mathieu, Pierre; Larochelle, Vincent; Bonnier, Deni

    1998-09-01

    In minefield detection, two main types of operation can be identified. First, there is the detection of surface-laid minefield. This scenario is encountered largely in tactical operations (troop movement, beach landing) where the speed at which the minefield is deployed or the strategic barrier that they represent exceed the need to bury them. Second, there is the detection of buried minefield which is encountered mainly in peacekeeping missions or clearance operations. To address these two types of minefield detection process, we propose an airborne far-infrared minefield imaging system (AFIRMIS). This passive and active imaging system fuses the information from the emissivity, the reflectivity and the 3-dimensional profile of the target/background scene in order to improve the probability of detection and to reduce the false alarm rate. This paper describes the proposed imaging system and presents early active imaging results of surface-laid mines.

  17. SITHON: An Airborne Fire Detection System Compliant with Operational Tactical Requirements

    PubMed Central

    Kontoes, Charalabos; Keramitsoglou, Iphigenia; Sifakis, Nicolaos; Konstantinidis, Pavlos

    2009-01-01

    In response to the urging need of fire managers for timely information on fire location and extent, the SITHON system was developed. SITHON is a fully digital thermal imaging system, integrating INS/GPS and a digital camera, designed to provide timely positioned and projected thermal images and video data streams rapidly integrated in the GIS operated by Crisis Control Centres. This article presents in detail the hardware and software components of SITHON, and demonstrates the first encouraging results of test flights over the Sithonia Peninsula in Northern Greece. It is envisaged that the SITHON system will be soon operated onboard various airborne platforms including fire brigade airplanes and helicopters as well as on UAV platforms owned and operated by the Greek Air Forces. PMID:22399963

  18. SITHON: An Airborne Fire Detection System Compliant with Operational Tactical Requirements.

    PubMed

    Kontoes, Charalabos; Keramitsoglou, Iphigenia; Sifakis, Nicolaos; Konstantinidis, Pavlos

    2009-01-01

    In response to the urging need of fire managers for timely information on fire location and extent, the SITHON system was developed. SITHON is a fully digital thermal imaging system, integrating INS/GPS and a digital camera, designed to provide timely positioned and projected thermal images and video data streams rapidly integrated in the GIS operated by Crisis Control Centres. This article presents in detail the hardware and software components of SITHON, and demonstrates the first encouraging results of test flights over the Sithonia Peninsula in Northern Greece. It is envisaged that the SITHON system will be soon operated onboard various airborne platforms including fire brigade airplanes and helicopters as well as on UAV platforms owned and operated by the Greek Air Forces.

  19. Geophex Airborne Unmanned Survey System (GAUSS). Topical report, October 1993--September 1996

    SciTech Connect

    1998-12-31

    This document is a Final Technical Report that describes the results of the Geophex Airborne Unmanned Survey System (GAUSS) research project. The objectives were to construct a geophysical data acquisition system that uses a remotely operated unmanned aerial vehicle (UAV) and to evaluate its effectiveness for characterization of hazardous environmental sites. The GAUSS is a data acquisition system that mitigates the potential risk to personnel during geophysical characterization of hazardous or radioactive sites. The fundamental basis of the GAUSS is as follows: (1) an unmanned survey vehicle carries geophysical sensors into a hazardous location, (2) the pilot remains outside the hazardous site and operates the vehicle using radio control, (3) geophysical measurements and their spatial locations are processed by an automated data-acquisition system which displays data on an off-site monitor in real-time, and (4) the pilot uses the display to direct the survey vehicle for complete site coverage. The objective of our Phase I research was to develop a data acquisition and processing (DAP) subsystem and geophysical sensors suitable for UAV deployment. We integrated these two subsystems to produce an automated, hand-held geophysical surveying system. The objective of the Phase II effort was to modify the subsystems and integrate them into an airborne prototype. The completed GAUSS DAP system consists of a UAV platform, a laser tracking and ranging subsystem, a telemetry subsystem, light-weight geophysical sensors, a base-station computer (BC), and custom-written survey control software (SCS). We have utilized off-the-shelf commercial products, where possible, to reduce cost and design time.

  20. Long-Term Tracking of a Specific Vehicle Using Airborne Optical Camera Systems

    NASA Astrophysics Data System (ADS)

    Kurz, F.; Rosenbaum, D.; Runge, H.; Cerra, D.; Mattyus, G.; Reinartz, P.

    2016-06-01

    In this paper we present two low cost, airborne sensor systems capable of long-term vehicle tracking. Based on the properties of the sensors, a method for automatic real-time, long-term tracking of individual vehicles is presented. This combines the detection and tracking of the vehicle in low frame rate image sequences and applies the lagged Cell Transmission Model (CTM) to handle longer tracking outages occurring in complex traffic situations, e.g. tunnels. The CTM model uses the traffic conditions in the proximities of the target vehicle and estimates its motion to predict the position where it reappears. The method is validated on an airborne image sequence acquired from a helicopter. Several reference vehicles are tracked within a range of 500m in a complex urban traffic situation. An artificial tracking outage of 240m is simulated, which is handled by the CTM. For this, all the vehicles in the close proximity are automatically detected and tracked to estimate the basic density-flow relations of the CTM model. Finally, the real and simulated trajectories of the reference vehicles in the outage are compared showing good correspondence also in congested traffic situations.

  1. Dual-aureole and sun spectrometer system for airborne measurements of aerosol optical properties.

    PubMed

    Zieger, Paul; Ruhtz, Thomas; Preusker, Rene; Fischer, Jürgen

    2007-12-10

    We have designed an airborne spectrometer system for the simultaneous measurement of the direct sun irradiance and the aureole radiance in two different solid angles. The high-resolution spectral radiation measurements are used to derive vertical profiles of aerosol optical properties. Combined measurements in two solid angles provide better information about the aerosol type without additional and elaborate measuring geometries. It is even possible to discriminate between absorbing and nonabsorbing aerosol types. Furthermore, they allow to apply additional calibration methods and simplify the detection of contaminated data (e.g., by thin cirrus clouds). For the characterization of the detected aerosol type a new index is introduced that is the slope of the aerosol phase function in the forward scattering region. The instrumentation is a flexible modular setup, which has already been successfully applied in airborne and ground-based field campaigns. We describe the setup as well as the calibration of the instrument. In addition, example vertical profiles of aerosol optical properties--including the aureole measurements--are shown and discussed.

  2. Performance of the NASA Airborne Radar with the Windshear Database for Forward-Looking Systems

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Britt, Charles L.

    1996-01-01

    This document describes the simulation approach used to test the performance of the NASA airborne windshear radar. An explanation of the actual radar hardware and processing algorithms provides an understanding of the parameters used in the simulation program. This report also contains a brief overview of the NASA airborne windshear radar experimental flight test results. A description of the radar simulation program shows the capabilities of the program and the techniques used for certification evaluation. Simulation of the NASA radar is comprised of three steps. First, the choice of the ground clutter data must be made. The ground clutter is the return from objects in or nearby an airport facility. The choice of the ground clutter also dictates the aircraft flight path since ground clutter is gathered while in flight. The second step is the choice of the radar parameters and the running of the simulation program which properly combines the ground clutter data with simulated windshear weather data. The simulated windshear weather data is comprised of a number of Terminal Area Simulation System (TASS) model results. The final step is the comparison of the radar simulation results to the known windshear data base. The final evaluation of the radar simulation is based on the ability to detect hazardous windshear with the aircraft at a safe distance while at the same time not displaying false alerts.

  3. Linking morphology to ecosystem structure using air-borne sensors for monitoring the Earth System

    NASA Astrophysics Data System (ADS)

    Taramelli, A.; Giardino, C.; Valentini, E.; Bresciani, M.; Gasperini, L.

    2010-12-01

    Coastal Landscape, and how they change over time, provide the template on which the emerging role of Earth system science (ESS) closely linked with the development of space-borne sensors can stand in the center of a newly emerging science of the Earth's surface, where strong couplings links human dynamics, biology, biochemistry, geochemistry, geomorphology, and fluid dynamics including climate change. Modern views on the behavior of complex systems like the coastal one, allow the interpretation of phenomenological coastal landscape as a stationary landscape-state that correspond to a dynamic equilibrium, and to a self-organized exogenic order of the edge of the chaos. Therefore is essential for a thoroughly understanding of spatiotemporal variations in coastal dynamics and habitat distribution for the source of nonlinearity and complexity in geomorphic system make gathering data appropriate for use in developing and testing models of biological and physical process interacting across a wide range of scale. In this paper a physics based approach was applied to MIVIS (Multi-spectral IR and Visible Imaging Spectrometer) and LiDAR (Light Detection and Ranging) airborne data, simultaneously acquired on 12 May 2009 in order to integrate geomorphological and ecological observations into a detailed macrophytes map of Lake Trasimeno (Italy). Shallow water vegetation, in fact, plays an essential role in determining how coastal morphology and ecosystems dynamics respond to feedbacks between biological and physical processes. An accurate field campaign was carried out during the airborne survey and a collection of different biophysical parameter has been achieved. The purposes of the field observations were twofold. First, field observations allowed identification of biophysical habitats and properties associated both to radiometric and limnological features. Secondly, field reconnaissance allowed identifying significant parameters involved in optical interpretation of the

  4. Virtualizing Super-Computation On-Board Uas

    NASA Astrophysics Data System (ADS)

    Salami, E.; Soler, J. A.; Cuadrado, R.; Barrado, C.; Pastor, E.

    2015-04-01

    Unmanned aerial systems (UAS, also known as UAV, RPAS or drones) have a great potential to support a wide variety of aerial remote sensing applications. Most UAS work by acquiring data using on-board sensors for later post-processing. Some require the data gathered to be downlinked to the ground in real-time. However, depending on the volume of data and the cost of the communications, this later option is not sustainable in the long term. This paper develops the concept of virtualizing super-computation on-board UAS, as a method to ease the operation by facilitating the downlink of high-level information products instead of raw data. Exploiting recent developments in miniaturized multi-core devices is the way to speed-up on-board computation. This hardware shall satisfy size, power and weight constraints. Several technologies are appearing with promising results for high performance computing on unmanned platforms, such as the 36 cores of the TILE-Gx36 by Tilera (now EZchip) or the 64 cores of the Epiphany-IV by Adapteva. The strategy for virtualizing super-computation on-board includes the benchmarking for hardware selection, the software architecture and the communications aware design. A parallelization strategy is given for the 36-core TILE-Gx36 for a UAS in a fire mission or in similar target-detection applications. The results are obtained for payload image processing algorithms and determine in real-time the data snapshot to gather and transfer to ground according to the needs of the mission, the processing time, and consumed watts.

  5. UAS-NAS Integrated Human in the Loop: Test Environment Report

    NASA Technical Reports Server (NTRS)

    Murphy, Jim; Otto, Neil; Jovic, Srba

    2015-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration in the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability (SSI), Human Systems Integration (HSI), and Communication to support reducing the barriers of UAS access to the NAS. This research was broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Sense and Avoid (SAA) performance standards, command and control performance standards, and human systems integration. The focus of the Test Infrastructure theme was to enable development and validation of airspace integration procedures and performance standards, including the execution of integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project developed an adaptable, scalable, and schedulable relevant test environment incorporating live, virtual, and constructive elements capable of validating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project planned to conduct three integrated events: a Human-in-the-Loop simulation and two Flight Test series that integrated key concepts, technologies and/or procedures in a relevant air traffic environment. Each of

  6. Integrating an RGB - CIR Digital Camera With an Airborne Laser Swath Mapping System

    NASA Astrophysics Data System (ADS)

    Lee, M.; Carter, W.; Shrestha, R.

    2003-12-01

    The National Science Foundation supported Center for Airborne Laser Mapping (NCALM) utilizes the airborne laser swath mapping (ALSM) system jointly owned by the University of Florida (UF) and Florida International University (FIU). The UF/FIU ALSM system is comprised of an Optech Inc. Model 1233 ALTM unit, with supporting GPS receiver and real-time navigation display, mounted in a twin-inline-engine Cessna 337 aircraft. Shortly after taking delivery of the ALSM system, UF researchers, in collaboration with a commercial partner, added a small format digital camera (Kodak 420) to the system, rigidly mounting it to the ALSM sensor head. Software was developed to use the GPS position and orientation parameters from the IMU unit in the ALSM sensor to rectify and mosaic the digital images. The ALSM height and intensity values were combined pixel by pixel with the RGB digital images, to classify surface materials. Based on our experience with the initial camera, and recommendations received at the NCALM workshop, UF researchers decided to upgrade the system to a Redlake MASD Inc. model MS4100 RGB/CIR camera. The MS4100 contains three CCD arrays, which simultaneously capture full spatial resolution images in red and near IR band bands, and a factor of two lower spatial resolution images in the blue and green bands (the blue and green bands share a single CCD array and the color bands are separated with a Bayer filter). The CCD arrays are rectangular with 1920 x 1080 elements, each element being 7.4 x 7.4 micrometers. With a 28 mm focal length lens, and at a flying height of 550 meters, the effective groundel is approximately 15 x 15 cm. The new digital camera should be particularly useful for studies of vegetation, including agricultural and forestry applications, and for computer automated classification of surface materials. Examples of early results using the improved ALSM-digital imaging capabilities will be presented.

  7. Evaluation of DEM generation accuracy from UAS imagery

    NASA Astrophysics Data System (ADS)

    Santise, M.; Fornari, M.; Forlani, G.; Roncella, R.

    2014-06-01

    The growing use of UAS platform for aerial photogrammetry comes with a new family of Computer Vision highly automated processing software expressly built to manage the peculiar characteristics of these blocks of images. It is of interest to photogrammetrist and professionals, therefore, to find out whether the image orientation and DSM generation methods implemented in such software are reliable and the DSMs and orthophotos are accurate. On a more general basis, it is interesting to figure out whether it is still worth applying the standard rules of aerial photogrammetry to the case of drones, achieving the same inner strength and the same accuracies as well. With such goals in mind, a test area has been set up at the University Campus in Parma. A large number of ground points has been measured on natural as well as signalized points, to provide a comprehensive test field, to check the accuracy performance of different UAS systems. In the test area, points both at ground-level and features on the buildings roofs were measured, in order to obtain a distributed support also altimetrically. Control points were set on different types of surfaces (buildings, asphalt, target, fields of grass and bumps); break lines, were also employed. The paper presents the results of a comparison between two different surveys for DEM (Digital Elevation Model) generation, performed at 70 m and 140 m flying height, using a Falcon 8 UAS.

  8. Analysis of UAS DAA Alerting in Fast-Time Simulations without DAA Mitigation

    NASA Technical Reports Server (NTRS)

    Thipphavong, David P.; Santiago, Confesor; Isaacson, Douglas R.; Lee, Seung Man; Park, Chunki; Refai, Mohamad Said; Snow, James

    2015-01-01

    Realization of the expected proliferation of Unmanned Aircraft System (UAS) operations in the National Airspace System (NAS) depends on the development and validation of performance standards for UAS Detect and Avoid (DAA) Systems. The RTCA Special Committee 228 is charged with leading the development of draft Minimum Operational Performance Standards (MOPS) for UAS DAA Systems. NASA, as a participating member of RTCA SC-228 is committed to supporting the development and validation of draft requirements for DAA alerting system performance. A recent study conducted using NASA's ACES (Airspace Concept Evaluation System) simulation capability begins to address questions surrounding the development of draft MOPS for DAA alerting systems. ACES simulations were conducted to study the performance of alerting systems proposed by the SC-228 DAA Alerting sub-group. Analysis included but was not limited to: 1) correct alert (and timeliness), 2) false alert (and severity and duration), 3) missed alert, and 4) probability of an alert type at the time of loss of well clear. The performance of DAA alerting systems when using intent vs. dead-reckoning for UAS ownship trajectories was also compared. The results will be used by SC-228 to inform decisions about the surveillance standards of UAS DAA systems and future requirements development and validation efforts.

  9. Evaluation of a cubicle containment system in preventing gaseous and particulate airborne cross-contamination

    SciTech Connect

    White, W.J.; Hughes, H.C.; Singh, S.B.; Lang, C.M.

    1983-12-01

    The effectiveness of a cubicle containment system in preventing gaseous and particulate cross-contamination in animal facilities was evaluated using several techniques. Using a nitrous oxide dilution technique, no airborne cross-contamination was found between cubicles as long as all cubicle doors were kept closed. If the doors to the cubicle in which the gas was released were partially or completely opened, low concentrations of nitrous oxide could be detected in adjacent cubicles. These concentrations increased when the air exchange rates in the cubicle were decreased. Similar results were obtained when particulate transfer was measured using aerosolized Staphlococcus epidermidis and a slit to agar sampling technique. Air flows and point air velocities within the cubicle and the animal room were also studied. A trial of Sendai virus transmission between cubicles revealed no intercubicle transmission after 3 weeks of exposure. Overall, the cubicle containment system appeared to be an effective means of achieving limited biohazard containment, applicable to many research housing needs.

  10. Evaluation of a cubicle containment system in preventing gaseous and particulate airborne cross-contamination.

    PubMed

    White, W J; Hughes, H C; Singh, S B; Lang, C M

    1983-12-01

    The effectiveness of a cubicle containment system in preventing gaseous and particulate cross-contamination in animal facilities was evaluated using several techniques. Using a nitrous oxide dilution technique, no airborne cross-contamination was found between cubicles as long as all cubicle doors were kept closed. If the doors to the cubicle in which the gas was released were partially or completely opened, low concentrations of nitrous oxide could be detected in adjacent cubicles. These concentrations increased when the air exchange rates in the cubicle were decreased. Similar results were obtained when particulate transfer was measured using aerosolized Staphlococcus epidermidis and a slit to agar sampling technique. Air flows and point air velocities within the cubicle and the animal room were also studied. A trial of Sendai virus transmission between cubicles revealed no intercubicle transmission after 3 weeks of exposure. Overall, the cubicle containment system appeared to be an effective means of achieving limited biohazard containment, applicable to many research housing needs.

  11. Songbird - AN Innovative Uas Combining the Advantages of Fixed Wing and Multi Rotor Uas

    NASA Astrophysics Data System (ADS)

    Thamm, F.-P.; Brieger, N.; Neitzke, K.-P.; Meyer, M.; Jansen, R.; Mönninghof, M.

    2015-08-01

    This paper describes a family of innovative fixed wing UAS with can vertical take off and land - the SONGBIRD family. With nominal payloads starting from 0.5 kg they can take off and land safely like a multi-rotor UAV, removing the need for an airstrip for the critical phases of operation. A specially designed flight controller allows stable flight at every point of the transition phase between VTOL and fixed wing mode. Because of this smooth process with a all time stable flight, very expensive payload like hyperspectral sensors or advanced optical cameras can be used. Due to their design all airplanes of the SONGBIRD family have excellent horizontal flight properties, a maximum speed of over 110 km/h, good gliding properties and long flight times of up to 1 h. Missions were flown in wind speeds up to 18 m/s. At every time of the flight it is possible to interrupt the mission and hover over a point of interest for detail investigations. The complete flight, including take-off and landing can be performed by autopilot. Designed for daily use in professional environments, SONGBIRDs are built out of glass-fibre and carbon composites for a long service life. For safe operations comprehensive security features are implemented, for example redundant flight controllers and sensors, advanced power management system and mature fail safe procedures. The aircraft can be dismantled into small parts for transportation. SONGBIRDS are available for different pay loads, from 500 g to 2 kg. The SONGBIRD family are interesting tools combining the advantages of multi-copter and fixed wing UAS.

  12. Optimized Design of the SGA-WZ Strapdown Airborne Gravimeter Temperature Control System

    PubMed Central

    Cao, Juliang; Wang, Minghao; Cai, Shaokun; Zhang, Kaidong; Cong, Danni; Wu, Meiping

    2015-01-01

    The temperature control system is one of the most important subsystems of the strapdown airborne gravimeter. Because the quartz flexible accelerometer based on springy support technology is the core sensor in the strapdown airborne gravimeter and the magnet steel in the electromagnetic force equilibrium circuits of the quartz flexible accelerometer is greatly affected by temperature, in order to guarantee the temperature control precision and minimize the effect of temperature on the gravimeter, the SGA-WZ temperature control system adopts a three-level control method. Based on the design experience of the SGA-WZ-01, the SGA-WZ-02 temperature control system came out with a further optimized design. In 1st level temperature control, thermoelectric cooler is used to conquer temperature change caused by hot weather. The experiments show that the optimized stability of 1st level temperature control is about 0.1 °C and the max cool down capability is about 10 °C. The temperature field is analyzed in the 2nd and 3rd level temperature control using the finite element analysis software ANSYS. The 2nd and 3rd level temperature control optimization scheme is based on the foundation of heat analysis. The experimental results show that static accuracy of SGA-WZ-02 reaches 0.21 mGal/24 h, with internal accuracy being 0.743 mGal/4.8 km and external accuracy being 0.37 mGal/4.8 km compared with the result of the GT-2A, whose internal precision is superior to 1 mGal/4.8 km and all of them are better than those in SGA-WZ-01. PMID:26633407

  13. Failure detection of liquid cooled electronics in sealed packages. [in airborne information management system

    NASA Technical Reports Server (NTRS)

    Hoadley, A. W.; Porter, A. J.

    1991-01-01

    The theory and experimental verification of a method of detecting fluid-mass loss, expansion-chamber pressure loss, or excessive vapor build-up in NASA's Airborne Information Management System (AIMS) are presented. The primary purpose of this leak-detection method is to detect the fluid-mass loss before the volume of vapor on the liquid side causes a temperature-critical part to be out of the liquid. The method detects the initial leak after the first 2.5 pct of the liquid mass has been lost, and it can be used for detecting subsequent situations including the leaking of air into the liquid chamber and the subsequent vapor build-up.

  14. Airborne Multisensor Pod System, Arms control and nonproliferation technologies: Second quarter 1995

    SciTech Connect

    Alonzo, G M; Sanford, N M

    1995-01-01

    This issue focuses on the Airborne Multisensor Pod System (AMPS) which is a collaboration of many of the DOE national laboratories to provide a scientific environment to research multiple sensors and the new information that can be derived from them. The bulk of the research has been directed at nonproliferation applications, but it has also proven useful in environmental monitoring and assessment, and land/water management. The contents of this issue are: using AMPS technology to detect proliferation and monitor resources; combining multisensor data to monitor facilities and natural resources; planning a AMPS mission; SAR pod produces images day or night, rain or shine; MSI pod combines data from multiple sensors; ESI pod will analyze emissions and effluents; and accessing AMPS information on the Internet.

  15. 3DLASE-M: three-dimensional lidar airborne system emulator, maritime

    NASA Astrophysics Data System (ADS)

    DeWeert, Michael J.

    2014-05-01

    Imaging flash LIDAR (LIght Detection and Ranging) is an effective method for airborne searches of the ocean surface and subsurface volume. The performance of ocean LIDAR depends strongly on the sea surface (e.g., waves, whitecaps, and flotsam), water turbidity, and the characteristics of the objects of interest. Cost-effective design of the LIDAR system and processing algorithms requires a modeling capability that can deal with the physics of light propagation through the air-water interface, into the ocean, and back to the LIDAR receiver. 3DLASE-M is a physics-based LIDAR simulator that yields high-fidelity images for three-dimensional algorithm development and performance predictions.

  16. 3DLASE-M: three-dimensional-LIDAR airborne system emulator -maritime

    NASA Astrophysics Data System (ADS)

    DeWeert, Michael J.

    2014-10-01

    Imaging flash LIDAR (LIght Detection and Ranging) is an effective method for airborne searches of the ocean surface and subsurface volume. The performance of ocean LIDAR depends strongly on the sea surface (e.g., waves, whitecaps, and flotsam), water turbidity, and the characteristics of the objects of interest. Cost-effective design of the LIDAR system and processing algorithms requires a modeling capability that can deal with the physics of light propagation through the air-water interface, into the ocean, and back to the LIDAR receiver. 3DLASE-M is a physics-based LIDAR simulator that yields high-fidelity images for three-dimensional algorithm development and performance predictions.

  17. Airborne gravity gradiometer surveying of petroleum systems under Lake Tanganyika, Tanzania

    NASA Astrophysics Data System (ADS)

    Roberts, Doug; Chowdhury, Priyanka Roy; Lowe, Sharon Jenny; Christensen, Asbjorn Norlund

    2016-02-01

    The Lake Tanganyika South petroleum exploration block covers the southern portion of the Tanzanian side of Lake Tanganyika and is located within the East African Rift System. The rifting process has formed rotated fault blocks which provide numerous play types in the resulting basins. Interpretation of 2D seismic data from 1984 indicated that sufficient sediment thickness is present for hydrocarbon generation. The prospectivity of the lake sediment sequence is enhanced by large oil discoveries further north along the rift system at Lake Albert in Uganda. Airborne gravity gradiometry (AGG) has been used in the Lake Albert region to delineate the structural framework of sedimentary basins. Based on this analogy, in 2010 Beach Energy commissioned CGG to fly a FALCON AGG and high-resolution airborne magnetic survey over the Lake Tanganyika South block to provide data for mapping the basin architecture and estimating the depth to magnetic basement. A total of nearly 28000 line kilometres of data were acquired. The subsequent interpretation incorporated the AGG and magnetic data with available 2D seismic data, elevation model data, bathymetry, Landsat and regional geology information. The integrated data interpretation revealed that the Lake Tanganyika rifting structures occur as half-grabens that were formed through reactivation of Precambrian fault structures. Two major depocentres were identified in the magnetic depth-to-basement map in the north and in the west-central part of the survey area with sediment thicknesses in excess of 4 km and 3 km, respectively. Smaller, shallower depocentres (with less than 3 km of sediment) occur in the south-western region. This information was used to plan a 2100 km 2D marine seismic survey that was recorded in 2012. An interpretation of the results from the seismic survey confirmed a rifting structure similar to that encountered further north at Lake Albert in Uganda. Several targets were identified from the seismic sections for

  18. Airborne Wind Profiling With the Data Acquisition and Processing System for a Pulsed 2-Micron Coherent Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2012-01-01

    A pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia flew on the NASA's DC-8 aircraft during the NASA Genesis and Rapid Intensification Processes (GRIP) during the summer of 2010. The participation was part of the project Doppler Aerosol Wind Lidar (DAWN) Air. Selected results of airborne wind profiling are presented and compared with the dropsonde data for verification purposes. Panoramic presentations of different wind parameters over a nominal observation time span are also presented for selected GRIP data sets. The realtime data acquisition and analysis software that was employed during the GRIP campaign is introduced with its unique features.

  19. Mars Airborne Prospecting Spectrometer

    NASA Astrophysics Data System (ADS)

    Steinkraus, J. M.; Wright, M. W.; Rheingans, B. E.; Steinkraus, D. E.; George, W. P.; Aljabri, A.; Hall, J. L.; Scott, D. C.

    2012-06-01

    One novel approach towards addressing the need for innovative instrumentation and investigation approaches is the integration of a suite of four spectrometer systems to form the Mars Airborne Prospecting Spectrometers (MAPS) for prospecting on Mars.

  20. Minimizing Intra-Campaign Biases in Airborne Laser Altimetry By Thorough Calibration of Lidar System Parameters

    NASA Astrophysics Data System (ADS)

    Sonntag, J. G.; Chibisov, A.; Krabill, K. A.; Linkswiler, M. A.; Swenson, C.; Yungel, J.

    2015-12-01

    Present-day airborne lidar surveys of polar ice, NASA's Operation IceBridge foremost among them, cover large geographical areas. They are often compared with previous surveys over the same flight lines to yield mass balance estimates. Systematic biases in the lidar system, especially those which vary from campaign to campaign, can introduce significant error into these mass balance estimates and must be minimized before the data is released by the instrument team to the larger scientific community. NASA's Airborne Topographic Mapper (ATM) team designed a thorough and novel approach in order to minimize these biases, and here we describe two major aspects of this approach. First, we conduct regular ground vehicle-based surveys of lidar calibration targets, and overfly these targets on a near-daily basis during field campaigns. We discuss our technique for conducting these surveys, in particular the measures we take specifically to minimize systematic height biases in the surveys, since these can in turn bias entire campaigns of lidar data and the mass balance estimates based on them. Second, we calibrate our GPS antennas specifically for each instrument installation in a remote-sensing aircraft. We do this because we recognize that the metallic fuselage of the aircraft can alter the electromagnetic properties of the GPS antenna mounted to it, potentially displacing its phase center by several centimeters and biasing lidar results accordingly. We describe our technique for measuring the phase centers of a GPS antenna installed atop an aircraft, and show results which demonstrate that different installations can indeed alter the phase centers significantly.

  1. Uas for Archaeology - New Perspectives on Aerial Documentation

    NASA Astrophysics Data System (ADS)

    Fallavollita, P.; Balsi, M.; Esposito, S.; Melis, M. G.; Milanese, M.; Zappino, L.

    2013-08-01

    In this work some Unmanned Aerial Systems applications are discussed and applied to archaeological sites survey and 3D model reconstructions. Interesting results are shown for three important and different aged sites on north Sardinia (Italy). An easy and simplified procedure has proposed permitting the adoption of multi-rotor aircrafts for daily archaeological survey during excavation and documentation, involving state of art in UAS design, flight control systems, high definition sensor cameras and innovative photogrammetric software tools. Very high quality 3D models results are shown and discussed and how they have been simplified the archaeologist work and decisions.

  2. Volcano Gas Measurements from UAS - Customization of Sensors and Platforms

    NASA Astrophysics Data System (ADS)

    Werner, C. A.; Dahlgren, R. P.; Kern, C.; Kelly, P. J.; Fladeland, M. M.; Norton, K.; Johnson, M. S.; Sutton, A. J.; Elias, T.

    2015-12-01

    Volcanic eruptions threaten not only the lives and property of local populations, but also aviation worldwide. Volcanic gas release is a key driving force in eruptive activity, and monitoring gas emissions is critical to assessing volcanic hazards, yet most volcanoes are not monitored for volcanic gas emission. Measuring volcanic gas emissions with manned aircraft has been standard practice for many years during eruptive crises, but such measurements are quite costly. As a result, measurements are typically only made every week or two at most during periods of unrest or eruption, whereas eruption dynamics change much more rapidly. Furthermore, very few measurements are made between eruptions to establish baseline emissions. Unmanned aerial system (UAS) measurements of volcanic plumes hold great promise for both improving temporal resolution of measurements during volcanic unrest, and for reducing the exposure of personnel to potentially hazardous conditions. Here we present the results of a new collaborative effort between the US Geological Survey and NASA Ames Research Center to develop a UAS specific for volcano gas monitoring using miniaturized gas sensing systems and a custom airframe. Two miniaturized sensing systems are being built and tested: a microDOAS system to quantify SO2 emission rates, and a miniature MultiGAS system for measuring in-situ concentrations of CO2, SO2, and H2S. The instruments are being built into pods that will be flown on a custom airframe built from surplus Raven RQ-11. The Raven is one of the smallest UAS (a SUAS), and has the potential to support global rapid response when eruptions occur because they require less crew for operations. A test mission is planned for fall 2015 or spring 2016 at the Crows Landing Airfield in central California. Future measurement locations might include Kilauea Volcano in Hawaii, or Pagan Volcano in the Marianas.

  3. Airborne dust and aeroallergen concentration in a horse stable under two different management systems.

    PubMed

    Woods, P S; Robinson, N E; Swanson, M C; Reed, C E; Broadstone, R V; Derksen, F J

    1993-05-01

    Airborne dust concentration (ADC) was measured in 2 different horse management systems using an Andersen cascade impactor in the box-stall, and a personal Marple cascade impactor attached to the halter to measure ADC in the breathing zone. The levels of aeroallergens implicated in chronic obstructive pulmonary disease were measured by radioallergosorbent-inhibition immunoassay. A conventional management system (System C) utilising hay feed and straw bedding, and a recommended environment (System R) utilising wood shaving bedding and a complete pelleted diet were studied. In the stall, total and respirable ADC (geometric mean) were significantly higher in System C (2.55 mg/m3; 0.44 mg/m3, respectively) than in System R (0.70 mg/m3; 0.20 mg/m3, respectively). In System C, the total and respirable ADC in the breathing zone (17.51 mg/m3; 9.28 mg/m3) were much higher than in the stall, but values in both regions were similar in System R (0.52 mg/m3; 0.30 mg/m3). Major aeroallergens were significantly higher in System C than in System R: Micropolyspora faeni (1423 ng/m3 and 705 ng/m3), Aspergillus fumigatus (1823 ng/m3 and 748 ng/m3), and mite allergens (1420 ng/m3 and 761 ng/m3). Measurement of ADC with personal samplers indicates that the very high inhalation challenge in the breathing zone is not reflected in measurements of stall air quality. When compared with System C, System R produced only 3% of the respirable dust burden in the breathing zone and a decreased aeroallergen challenge.

  4. Preparation of the pointing and control system of the SOFIA Airborne Telescope for early science missions

    NASA Astrophysics Data System (ADS)

    Lampater, Ulrich; Herter, Terry; Keas, Paul; Harms, Franziska; Engfer, Christian; Salewsky, Peter; Jakob, Holger; Roeser, Hans-Peter

    2010-07-01

    During observation flights the telescope structure of the Stratospheric Observatory for Infrared Astronomy (SOFIA) is subject to disturbance excitations over a wide frequency band. The sources can be separated into two groups: inertial excitation caused by vibration of the airborne platform, and aerodynamic excitation that acts on the telescope assembly (TA) through an open port cavity. These disturbance sources constitute a major difference of SOFIA to other ground based and space observatories and achieving the required pointing accuracy of 1 arcsecond cumulative rms or better below 70 Hz in this environment is driving the design of the TA pointing and control system. In the current design it consists of two parts, the rigid body attitude control system and a feed forward based compensator of flexible TA deformation. This paper discusses the characterization and control system tuning of the as-built system. It is a process that integrates the study of the structural dynamic behavior of the TA, the resulting image motion in the focal plane, and the design and implementation of active control systems. Ground tests, which are performed under controlled experimental conditions, and in-flight characterization tests, both leading up to the early science performance capabilities of the observatory, are addressed.

  5. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    NASA Technical Reports Server (NTRS)

    Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.; Ponsardin, Patrick; Hueser, Alene W.

    1994-01-01

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  6. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols.

    PubMed

    Higdon, N S; Browell, E V; Ponsardin, P; Grossmann, B E; Butler, C F; Chyba, T H; Mayo, M N; Allen, R J; Heuser, A W; Grant, W B; Ismail, S; Mayor, S D; Carter, A F

    1994-09-20

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H(2)O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and > 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H(2)O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H(2)O absorption-line parameters were perfo med to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H(2)O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H(2)O radiosondes. The H(2)O distributions measured with the DIAL system differed by ≤ 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  7. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols.

    PubMed

    Higdon, N S; Browell, E V; Ponsardin, P; Grossmann, B E; Butler, C F; Chyba, T H; Mayo, M N; Allen, R J; Heuser, A W; Grant, W B; Ismail, S; Mayor, S D; Carter, A F

    1994-09-20

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H(2)O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and > 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H(2)O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H(2)O absorption-line parameters were perfo med to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H(2)O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H(2)O radiosondes. The H(2)O distributions measured with the DIAL system differed by ≤ 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions. PMID:20941181

  8. Capturing and modelling high-complex alluvial topography with UAS-borne laser scanning

    NASA Astrophysics Data System (ADS)

    Mandlburger, Gottfried; Wieser, Martin; Pfennigbauer, Martin

    2015-04-01

    Due to fluvial activity alluvial forests are zones of highest complexity and relief energy. Alluvial forests are dominated by new and pristine channels in consequence of current and historic flood events. Apart from topographic features, the vegetation structure is typically very complex featuring, both, dense under story as well as high trees. Furthermore, deadwood and debris carried from upstream during periods of high discharge within the river channel are deposited in these areas. Therefore, precise modelling of the micro relief of alluvial forests using standard tools like Airborne Laser Scanning (ALS) is hardly feasible. Terrestrial Laser Scanning (TLS), in turn, is very time consuming for capturing larger areas as many scan positions are necessary for obtaining complete coverage due to view occlusions in the forest. In the recent past, the technological development of Unmanned Arial Systems (UAS) has reached a level that light-weight survey-grade laser scanners can be operated from these platforms. For capturing alluvial topography this could bridge the gap between ALS and TLS in terms of providing a very detailed description of the topography and the vegetation structure due to the achievable very high point density of >100 points per m2. In our contribution we demonstrate the feasibility to apply UAS-borne laser scanning for capturing and modelling the complex topography of the study area Neubacher Au, an alluvial forest at the pre-alpine River Pielach (Lower Austria). The area was captured with Riegl's VUX-1 compact time-of-flight laser scanner mounted on a RiCopter (X-8 array octocopter). The scanner features an effective scan rate of 500 kHz and was flown in 50-100 m above ground. At this flying height the laser footprint is 25-50 mm allowing mapping of very small surface details. Furthermore, online waveform processing of the backscattered laser energy enables the retrieval of multiple targets for single laser shots resulting in a dense point cloud of

  9. The detection and measurement of microburst wind shear by an airborne lidar system

    NASA Technical Reports Server (NTRS)

    Robinson, Paul A.; Bowles, Roland L.; Targ, Russell

    1993-01-01

    The NASA Lockheed Missiles and Space Company (LMSC) Coherent Lidar Airborne Shear Sensor (CLASS) employs coherent lidar technology as a basis for a forward-looking predictive wind shear detection system. Line of sight wind velocities measured ahead of the aircraft are combined with aircraft state parameters to relate the measured wind change (or shear) ahead of an aircraft to its performance loss or gain. In this way the system can predict whether a shear detected ahead of the aircraft poses a significant threat to the aircraft and provide an advance warning to the flight crew. Installed aboard NASA's Boeing 737 research aircraft, the CLASS system is flown through convective microburst wind shears in Denver, Co., and Orlando, Fl. Some preliminary flight test results are presented. It is seen that the system was able to detect and measure wind shears ahead of the aircraft in the relatively dry Denver environment, but its performance was degraded in the high humidity and heavy rain in Orlando.

  10. Implementation of Waveform Digitization In A Small Footprint, Airborne Lidar Topographic Mapping System

    NASA Astrophysics Data System (ADS)

    Gutierrez, R.; Crawford, M. M.; Liadsky, J.

    2004-12-01

    Accurate mapping is critical for applications ranging from geodesy, geomorphology, and forestry to urban planning and natural hazards monitoring. While airborne lidar (Light Detection and Ranging) has had a revolutionary impact on three-dimensional imaging of the earth's surface, there is great potential for developing new capability by replacing the laser range and backscatter intensity information recorded by conventional lidar systems with full waveform digitization. The University of Texas at Austin (UT) owns and operates an Optech ALTM 1225, a small footprint lidar system. In response to an initiative from UT, Optech has developed a module which samples the analog waveform of a laser pulse and converts these samples into digital measurements. The waveform digitizer specifications include a 1-nanosecond sampling interval, 440 samples per return laser waveform (approximately 65 meters of vertical extent), and waveform digitization at the 25kHz laser pulse repetition rate. The digitizer also records the initial T0 pulse that starts the timing cycle. The digitizer unit is an independent module supported by a Pentium-4 computer, two hard drives, and a high-speed data recording system. The digitizer is integrated into the ALTM system so that both full waveform and the conventional first and last returns are recorded for each transmitted laser pulse. This unique capability allows for conventional lidar data to be directly compared to the full waveform. We present examples of full waveform lidar mapping over different environments and discuss future applications.

  11. Airborne water vapor DIAL system and measurements of water and aerosol profiles

    NASA Technical Reports Server (NTRS)

    Higdon, Noah S.; Browell, Edward V.

    1991-01-01

    The Lidar Applications Group at NASA Langley Research Center has developed a differential absorption lidar (DIAL) system for the remote measurement of atmospheric water vapor (H2O) and aerosols from an aircraft. The airborne H2O DIAL system is designed for extended flights to perform mesoscale investigations of H2O and aerosol distributions. This DIAL system utilizes a Nd:YAG-laser-pumped dye laser as the off-line transmitter and a narrowband, tunable Alexandrite laser as the on-line transmitter. The dye laser has an oscillator/amplifier configuration which incorporates a grating and prism in the oscillator cavity to narrow the output linewidth to approximately 15 pm. This linewidth can be maintained over the wavelength range of 725 to 730 nm, and it is sufficiently narrow to satisfy the off-line spectral requirements. In the Alexandrite laser, three intracavity tuning elements combine to produce an output linewidth of 1.1 pm. These spectral devices include a five-plate birefringent tuner, a 1-mm thick solid etalon and a 1-cm air-spaced etalon. A wavelength stability of +/- 0.35 pm is achieved by active feedback control of the two Fabry-Perot etalons using a frequency stabilized He-Ne laser as a wavelength reference. The three tuning elements can be synchronously scanned over a 150 pm range with microprocessor-based scanning electronics. Other aspects of the DIAL system are discussed.

  12. Development and Evaluation of an Airborne Separation Assurance System for Autonomous Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Palmer, Michael T.; Eischeid, Todd M.

    2004-01-01

    NASA Langley Research Center is developing an Autonomous Operations Planner (AOP) that functions as an Airborne Separation Assurance System for autonomous flight operations. This development effort supports NASA s Distributed Air-Ground Traffic Management (DAG-TM) operational concept, designed to significantly increase capacity of the national airspace system, while maintaining safety. Autonomous aircraft pilots use the AOP to maintain traffic separation from other autonomous aircraft and managed aircraft flying under today's Instrument Flight Rules, while maintaining traffic flow management constraints assigned by Air Traffic Service Providers. AOP is designed to facilitate eventual implementation through careful modeling of its operational environment, interfaces with other aircraft systems and data links, and conformance with established flight deck conventions and human factors guidelines. AOP uses currently available or anticipated data exchanged over modeled Arinc 429 data buses and an Automatic Dependent Surveillance Broadcast 1090 MHz link. It provides pilots with conflict detection, prevention, and resolution functions and works with the Flight Management System to maintain assigned traffic flow management constraints. The AOP design has been enhanced over the course of several experiments conducted at NASA Langley and is being prepared for an upcoming Joint Air/Ground Simulation with NASA Ames Research Center.

  13. Aviation System Capacity Program Terminal Area Productivity Project: Ground and Airborne Technologies

    NASA Technical Reports Server (NTRS)

    Giulianetti, Demo J.

    2001-01-01

    Ground and airborne technologies were developed in the Terminal Area Productivity (TAP) project for increasing throughput at major airports by safely maintaining good-weather operating capacity during bad weather. Methods were demonstrated for accurately predicting vortices to prevent wake-turbulence encounters and to reduce in-trail separation requirements for aircraft approaching the same runway for landing. Technology was demonstrated that safely enabled independent simultaneous approaches in poor weather conditions to parallel runways spaced less than 3,400 ft apart. Guidance, control, and situation-awareness systems were developed to reduce congestion in airport surface operations resulting from the increased throughput, particularly during night and instrument meteorological conditions (IMC). These systems decreased runway occupancy time by safely and smoothly decelerating the aircraft, increasing taxi speed, and safely steering the aircraft off the runway. Simulations were performed in which optimal trajectories were determined by air traffic control (ATC) and communicated to flight crews by means of Center TRACON Automation System/Flight Management System (CTASFMS) automation to reduce flight delays, increase throughput, and ensure flight safety.

  14. UAVSAR: A New NASA Airborne SAR System for Science and Technology Research

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.; Hensley, Scott; Wheeler, Kevin; Sadowy, Greg; Miller, Tim; Shaffer, Scott; Muellerschoen, Ron; Jones, Cathleen; Zebker, Howard; Madsen, Soren

    2006-01-01

    NASA's Jet Propulsion Laboratory is currently building a reconfigurable, polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track SAR data for differential interferometric measurements. Differentian interferometry can provide key deformation measurements, important for studies of earthquakes, volcanoes and other dynamically changing phenomena. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The expected performance of the flight control system will constrain the flight path to be within a 10 m diameter tube about the desired flight track. The radar will be designed to be operable on a UAV (Unpiloted Aria1 Vehicle) but will initially be demonstrated on a NASA Gulfstream III. The radar will be fully polarimetric, with a range bandwidth of 80 MHz (2 m range resolution), and will support a 16 km range swath. The antenna will be electronically steered along track to assure that the antenna beam can be directed independently, regardless of the wind direction and speed. Other features supported by the antenna include elevation monopulse and pulse-to-pulse re-steering capabilities that will enable some novel modes of operation. The system will nominally operate at 45,000 ft (13800 m). The program began as an Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).

  15. UAS Air Traffic Controller Acceptability Study. 2; Evaluating Detect and Avoid Technology and Communication Delays in Simulation

    NASA Technical Reports Server (NTRS)

    Comstock, James R., Jr.; Ghatas, Rania W.; Consiglio, Maria C.; Chamberlain, James P.; Hoffler, Keith D.

    2015-01-01

    This study evaluated the effects of communications delays and winds on air traffic controller ratings of acceptability of horizontal miss distances (HMDs) for encounters between Unmanned Aircraft Systems (UAS) and manned aircraft in a simulation of the Dallas-Ft. Worth (DFW) airspace. Fourteen encounters per hour were staged in the presence of moderate background traffic. Seven recently retired controllers with experience at DFW served as subjects. Guidance provided to the UAS pilots for maintaining a given HMD was provided by information from Detect and Avoid (DAA) self-separation algorithms (Stratway+) displayed on the Multi-Aircraft Control System. This guidance consisted of amber "bands" on the heading scale of the UAS navigation display indicating headings that would result in a loss of well clear between the UAS and nearby traffic. Winds tested were successfully handled by the DAA algorithms and did not affect the controller acceptability ratings of the HMDs. Voice communications delays for the UAS were also tested and included one-way delay times of 0, 400, 1200, and 1800 msec. For longer communications delays, there were changes in strategy and communications flow that were observed and reported by the controllers. The aim of this work is to provide useful information for guiding future rules and regulations applicable to flying UAS in the NAS. Information from this study will also be of value to the Radio Technical Commission for Aeronautics (RTCA) Special Committee 228 - Minimum Performance Standards for UAS.

  16. Potentials of RF/FSO Communication in UAS Operations

    NASA Astrophysics Data System (ADS)

    Griethe, Wolfgang; Heine, Frank

    2013-08-01

    Free Space Optical Communications (FSOC) has gained particular attention during the past few years and is progressing continuously. With the successful in-orbit verification of a Laser Communication Terminal (LCT), the coherent homodyne BPSK scheme advanced to a standard for Free-Space Optical Communication (FSOC) which now prevails more and more. The LCT is presently operated on satellites in Low Earth Orbit (LEO). In the near future, the LCT will be operated in Geosynchronous Orbit (GEO) onboard the ALPHASAT-TDP and the European Data Relay System (EDRS). In other words, the LCT has reached a point of maturity to realize its practical application. With existence of such space assets the time has come for other utilization beyond that of optical Inter-Satellite Links (ISL). Aeronautical applications, as for instance High Altitude Long Endurance (HALE) or Medium Altitude Long Endurance (MALE) Unmanned Aerial Systems (UAS) have to be addressed. This is caused due to an extremely high demand for bandwidth. Driving factors and advantages of FSOC in HALE/MALE UAS missions are highlighted. Numerous practice-related issues are described concerning the space segment, the aeronautical segment as well as the ground segment. The advantages for UAS missions are described resulting from the utilization of FSOC exclusively for wideband transmission of sensor data while vehicle Command & Control (C2) can be maintained, as before, via RF communication. Moreover, the paper discusses FSOC as an enabler for the integration of air and space-based wideband Intelligence, Surveillance & Reconnaissance (ISR) systems into existent military command and control networks. From the given information it can be concluded that FSOC contributes to the future increase of air-and space power.

  17. Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles

    NASA Astrophysics Data System (ADS)

    Hagino, Hiroyuki; Oyama, Motoaki; Sasaki, Sousuke

    2016-04-01

    To measure driving-distance-based mass emission factors for airborne brake wear particulate matter (PM; i.e., brake wear particles) related to the non-asbestos organic friction of brake assembly materials (pads and lining), and to characterize the components of brake wear particles, a brake wear dynamometer with a constant-volume sampling system was developed. Only a limited number of studies have investigated brake emissions under urban city driving cycles that correspond to the tailpipe emission test (i.e., JC08 or JE05 mode of Japanese tailpipe emission test cycles). The tests were performed using two passenger cars and one middle-class truck. The observed airborne brake wear particle emissions ranged from 0.04 to 1.4 mg/km/vehicle for PM10 (particles up to 10 μm (in size), and from 0.04 to 1.2 mg/km/vehicle for PM2.5. The proportion of brake wear debris emitted as airborne brake wear particles was 2-21% of the mass of wear. Oxygenated carbonaceous components were included in the airborne PM but not in the original friction material, which indicates that changes in carbon composition occurred during the abrasion process. Furthermore, this study identified the key tracers of brake wear particles (e.g., Fe, Cu, Ba, and Sb) at emission levels comparable to traffic-related atmospheric environments.

  18. UAS-Borne Photogrammetry for Surface Topographic Characterization: A Ground-Truth Baseline for Future Change Detection and Refinement of Scaled Remotely-Sensed Datasets

    NASA Astrophysics Data System (ADS)

    Coppersmith, R.; Schultz-Fellenz, E. S.; Sussman, A. J.; Vigil, S.; Dzur, R.; Norskog, K.; Kelley, R.; Miller, L.

    2015-12-01

    While long-term objectives of monitoring and verification regimes include remote characterization and discrimination of surficial geologic and topographic features at sites of interest, ground truth data is required to advance development of remote sensing techniques. Increasingly, it is desirable for these ground-based or ground-proximal characterization methodologies to be as nimble, efficient, non-invasive, and non-destructive as their higher-altitude airborne counterparts while ideally providing superior resolution. For this study, the area of interest is an alluvial site at the Nevada National Security Site intended for use in the Source Physics Experiment's (Snelson et al., 2013) second phase. Ground-truth surface topographic characterization was performed using a DJI Inspire 1 unmanned aerial system (UAS), at very low altitude (< 5-30m AGL). 2D photographs captured by the standard UAS camera payload were imported into Agisoft Photoscan to create three-dimensional point clouds. Within the area of interest, careful installation of surveyed ground control fiducial markers supplied necessary targets for field collection, and information for model georectification. The resulting model includes a Digital Elevation Model derived from 2D imagery. It is anticipated that this flexible and versatile characterization process will provide point cloud data resolution equivalent to a purely ground-based LiDAR scanning deployment (e.g., 1-2cm horizontal and vertical resolution; e.g., Sussman et al., 2012; Schultz-Fellenz et al., 2013). In addition to drastically increasing time efficiency in the field, the UAS method also allows for more complete coverage of the study area when compared to ground-based LiDAR. Comparison and integration of these data with conventionally-acquired airborne LiDAR data from a higher-altitude (~ 450m) platform will aid significantly in the refinement of technologies and detection capabilities of remote optical systems to identify and detect

  19. Alternate particle removal technologies for the Airborne Activity Confinement System at the Savannah River Site

    SciTech Connect

    Brockmann, J.E.; Adkins, C.L.J.; Gelbard, F. )

    1991-09-01

    This report presents a review of the filtration technologies available for the removal of particulate material from a gas stream. It was undertaken to identify alternate filtration technologies that may be employed in the Airborne Activity Confinement System (AACS) at the Savannah River Plant. This report is organized into six sections: (1) a discussion of the aerosol source term and its definition, (2) a short discussion of particle and gaseous contaminant removal mechanisms, (3) a brief overview of particle removal technologies, (4) a discussion of the existing AACS and its potential shortcomings, (5) an enumeration of issues to be addressed in upgrading the AACS, and, (6) a detailed discussion of the identified technologies. The purpose of this report is to identity available options to the existing particle removal system. This system is in continuous operation during routine operation of the reactor. As will be seen, there are a number of options and the selection of any technology or combination of technologies will depend on the design aerosol source term (yet to be appropriately defined) as well as the flow requirements and configuration. This report does not select a specific technology. It focuses on particulate removal and qualitatively on the removal of radio-iodine and mist elimination. Candidate technologies have been selected from industrial and nuclear gas cleaning applications.

  20. UAS Integration into the NAS: Detect and Avoid Display Evaluations in Support of SC-228 MOPS Development

    NASA Technical Reports Server (NTRS)

    Fern, Lisa; Rorie, Conrad; Shively, Jay

    2015-01-01

    This presentation provides an overview of the work the Human Systems Integration (HSI) sub-project has done on detect and avoid (DAA) displays while working on the UAS Integration into the NAS project. Much of the work has been used to support the ongoing development of minimum operational performance standards (MOPS) for UAS by RTCA Special Committee 228. The design and results of three different human-in-the-loop simulations are discussed, with particular emphasis on the role of the UAS pilot in the Self Separation Timeline.

  1. Changes in airborne fungi from the outdoors to indoor air; large HVAC systems in nonproblem buildings in two different climates.

    PubMed

    Kemp, P C; Neumeister-Kemp, H G; Esposito, B; Lysek, G; Murray, F

    2003-01-01

    Little is known about the changes in occurrence and distribution of airborne fungi as they are transported in the airstream from the outdoor air through the heating, ventilation, and air conditioning (HVAC) system to the indoor air. To better understand this, airborne fungi were analyzed in the HVAC systems of two large office buildings in different climate zones. Fungal samples were taken in each of the walk-in chambers of the HVAC systems using a six-stage Andersen Sampler with malt extract agar. Results showed that fungal species changed with different locations in the HVAC systems. The outdoor air intake produced the greatest filtration effect for both the counts and species of outdoor air fungi. The colony forming unit (CFU) counts and species diversity was further reduced in the air directly after the filters. The cooling coils also had a substantial filtration effect. However, in room air the CFU counts were double and the mixture of fungal species was different from the air leaving the HVAC system at the supply air outlet in most locations. Diffusion of outdoor air fungi to the indoors did not explain the changes in the mixture of airborne fungi from the outdoor air to the indoor air, and some of the fungi present in the indoor air did not appear to be transported indoors by the HVAC systems.

  2. Experiments with Uas Imagery for Automatic Modeling of Power Line 3d Geometry

    NASA Astrophysics Data System (ADS)

    Jóźków, G.; Vander Jagt, B.; Toth, C.

    2015-08-01

    The ideal mapping technology for transmission line inspection is the airborne LiDAR executed from helicopter platforms. It allows for full 3D geometry extraction in highly automated manner. Large scale aerial images can be also used for this purpose, however, automation is possible only for finding transmission line positions (2D geometry), and the sag needs to be estimated manually. For longer lines, these techniques are less expensive than ground surveys, yet they are still expensive. UAS technology has the potential to reduce these costs, especially if using inexpensive platforms with consumer grade cameras. This study investigates the potential of using high resolution UAS imagery for automatic modeling of transmission line 3D geometry. The key point of this experiment was to employ dense matching algorithms to appropriately acquired UAS images to have points created also on wires. This allowed to model the 3D geometry of transmission lines similarly to LiDAR acquired point clouds. Results showed that the transmission line modeling is possible with a high internal accuracy for both, horizontal and vertical directions, even when wires were represented by a partial (sparse) point cloud.

  3. Airborne Wind Shear Detection and Warning Systems: First Combined Manufacturers' and Technologists' Conference

    NASA Technical Reports Server (NTRS)

    Spady, Amos A., Jr. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1988-01-01

    The purpose of the meeting was to transfer significant, ongoing results gained during the first year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-looking technology concepts and for technologists to gain an understanding of FAA certification requirements and the problems encountered by the manufacturers during the development of airborne equipment.

  4. Kuiper Airborne Observatory's Telescope Stabilization System: Disturbance Sensitivity Reduction Via Velocity Loop Feedback

    NASA Technical Reports Server (NTRS)

    Lawrence, David P.; Tsui, K. C.; Tucker, John; Mancini, Ronald E. (Technical Monitor)

    1995-01-01

    In July of 1994 the Kuiper Airborne Observatory's (KAO) Telescope Stabilization System (TSS) was upgraded to meet performance goals necessary to view the Shoemaker-Levy 9 comet collision with Jupiter. The KAO is a modified C-141 Aircraft supporting a 36 inch Infrared telescope used to gather and analyze astronomical data. Before the upgrade, the TSS exhibited approximately a 10 arc-second resolution pointing accuracy. The majority of the inaccuracy was attributable to aircraft vibration and wind buffeting entering through the aircraft's telescope door opening; in other words, the TSS was overly sensitive to external disturbances. Because of power limitations and noise requirements, improving the pointing accuracy of the telescope required more sophistication than simply raising the bandwidth as some classical control strategies might suggest. Instead, relationships were developed between the disturbance sensitivity and closed loop transfer functions. These relationships suggested that employing velocity feedback along with an increase in current loop gain would dramatically improve the pointing resolution of the TSS by decreasing the control system's sensitivity to external disturbances. With the implementation of some classical control techniques and the above philosophy, the KAO's TSS's resolution was improved to approximately 2-3 arc-seconds.

  5. Airborne Camera System for Real-Time Applications - Support of a National Civil Protection Exercise

    NASA Astrophysics Data System (ADS)

    Gstaiger, V.; Romer, H.; Rosenbaum, D.; Henkel, F.

    2015-04-01

    In the VABENE++ project of the German Aerospace Center (DLR), powerful tools are being developed to aid public authorities and organizations with security responsibilities as well as traffic authorities when dealing with disasters and large public events. One focus lies on the acquisition of high resolution aerial imagery, its fully automatic processing, analysis and near real-time provision to decision makers in emergency situations. For this purpose a camera system was developed to be operated from a helicopter with light-weight processing units and microwave link for fast data transfer. In order to meet end-users' requirements DLR works close together with the German Federal Office of Civil Protection and Disaster Assistance (BBK) within this project. One task of BBK is to establish, maintain and train the German Medical Task Force (MTF), which gets deployed nationwide in case of large-scale disasters. In October 2014, several units of the MTF were deployed for the first time in the framework of a national civil protection exercise in Brandenburg. The VABENE++ team joined the exercise and provided near real-time aerial imagery, videos and derived traffic information to support the direction of the MTF and to identify needs for further improvements and developments. In this contribution the authors introduce the new airborne camera system together with its near real-time processing components and share experiences gained during the national civil protection exercise.

  6. Real-time atmospheric absorption spectra for in-flight tuning of an airborne dial system

    NASA Technical Reports Server (NTRS)

    Dombrowski, M.; Walden, H.; Schwemmer, G. K.; Milrod, J.; Korb, C. L.

    1986-01-01

    Real-time measurements of atmospheric absorption spectra are displayed and used to precisely calibrate and fix the frequency of an Alexandrite laser to specific oxygen absorption features for airborne Differential Absorption Lidar (DIAL) measurements of atmospheric pressure and temperature. The DIAL system used contains two narrowband tunable Alexandrite lasers: one is electronically scanned to tune to oxygen absorption features for on-line signals while the second is used to obtain off-line (nonabsorbed) atmospheric return signals. The lidar operator may select the number of shots to be averaged, the altitude, and altitude interval over which the signals are averaged using single key stroke commands. The operator also determines exactly which oxygen absorption lines are scanned by comparing the line spacings and relative strengths with known line parameters, thus calibrating the laser wavelength readout. The system was used successfully to measure the atmospheric pressure profile on the first flights of this lidar, November 20, and December 9, 1985, aboard the NASA Wallops Electra aircraft.

  7. Gal4/UAS transgenic tools and their application to zebrafish.

    PubMed

    Halpern, Marnie E; Rhee, Jerry; Goll, Mary G; Akitake, Courtney M; Parsons, Michael; Leach, Steven D

    2008-01-01

    The ability to regulate gene expression in a cell-specific and temporally restricted manner provides a powerful means to test gene function, bypass the action of lethal genes, label subsets of cells for developmental studies, monitor subcellular structures, and target tissues for selective ablation or physiological analyses. The galactose-inducible system of yeast, mediated by the transcriptional activator Gal4 and its consensus UAS binding site, has proven to be a highly successful and versatile system for controlling transcriptional activation in Drosophila. It has also been used effectively, albeit in a more limited manner, in the mouse. While zebrafish has lagged behind other model systems in the widespread application of Gal4 transgenic approaches to modulate gene activity during development, recent technological advances are permitting rapid progress. Here we review Gal4-regulated genetic tools and discuss how they have been used in zebrafish as well as their potential drawbacks. We describe some exciting new directions, in large part afforded by the Tol2 transposition system, that are generating valuable new Gal4/UAS reagents for zebrafish research.

  8. UAS Integration in the NAS Project: Integrated Test and LVC Infrastructure

    NASA Technical Reports Server (NTRS)

    Murphy, Jim; Hoang, Ty

    2015-01-01

    Overview presentation of the Integrated Test and Evaluation sub-project of the Unmanned Aircraft System (UAS) in the National Airspace System (NAS). The emphasis of the presentation is the Live, Virtual, and Constructive (LVC) system (a broadly used name for classifying modeling and simulation) infrastructure and use of external assets and connection.

  9. Scanning infrared remote sensing system for identification, visualization, and quantification of airborne pollutants

    NASA Astrophysics Data System (ADS)

    Harig, Roland; Matz, Gerhard; Rusch, Peter

    2002-02-01

    Remote sensing by Fourier-transform infrared (FTIR) spectrometry allows detection, identification, and quantification of airborne pollutants. In the case of leaks in pipelines or leaks in chemical plants, chemical accidents, terrorism, or war, hazardous compounds are often released into the atmosphere. Various Fourier-transform infrared spectrometers have been developed for the remote detection and identification of hazardous clouds. However, for the localization of a leak and a complete assessment of the situation in the case of the release of a hazardous cloud, information about the position and the size of a cloud is essential. Therefore, an imaging passive remote sensing system comprised of an interferometer (Bruker OPAG 22), a data acquisition, processing, and control system with a digital signal processor (FTIR DSP), an azimuth-elevation-scanning mirror, a video system with a DSP, and a personal computer has been developed. The FTIR DSP system controls the scanning mirror, collects the interferograms, and performs the Fourier transformation. The spectra are transferred to a personal computer and analyzed by a real-time identification algorithm that does not require background spectra for the analysis. The results are visualized by a video image, overlaid by false color images. For each target compound of a spectral library, images of the coefficient of correlation, the signal to noise ratio, the brightness temperature of the background, the difference between the temperature of the ambient air and the brightness temperature of the background, and the noise equivalent column density are produced. The column densities of all directions in which a target compound has been identified may be retrieved by a nonlinear least squares fitting algorithm and an additional false color image is displayed. The system has a high selectivity, low noise equivalent spectral radiance, and it allows identification, visualization, and quantification of pollutant clouds.

  10. Joint influences of aerodynamic flow field and aerodynamic heating of the dome on imaging quality degradation of airborne optical systems.

    PubMed

    Xiao, Haosu; Zuo, Baojun; Tian, Yi; Zhang, Wang; Hao, Chenglong; Liu, Chaofeng; Li, Qi; Li, Fan; Zhang, Li; Fan, Zhigang

    2012-12-20

    We investigated the joint influences exerted by the nonuniform aerodynamic flow field surrounding the optical dome and the aerodynamic heating of the dome on imaging quality degradation of an airborne optical system. The Spalart-Allmaras model provided by FLUENT was used for flow computations. The fourth-order Runge-Kutta algorithm based ray tracing program was used to simulate optical transmission through the aerodynamic flow field and the dome. Four kinds of imaging quality evaluation parameters were presented: wave aberration of the exit pupil, point spread function, encircled energy, and modulation transfer function. The results show that the aero-optical disturbance of the aerodynamic flow field and the aerodynamic heating of the dome significantly affect the imaging quality of an airborne optical system.

  11. Multilateration with the wide-angle airborne laser ranging system: positioning precision and atmospheric effects.

    PubMed

    Bock, O

    1999-05-20

    Numerical simulations based on previously validated models for the wide-angle airborne laser ranging system are used here for assessing the precision in coordinate estimates of ground-based cube-corner retroreflectors (CCR's). It is shown that the precision can be optimized to first order as a function of instrument performance, number of laser shots (LS's), and network size. Laser beam divergence, aircraft altitude, and CCR density are only second-order parameters, provided that the number of echoes per LS is greater than 20. Thus precision in the vertical is approximately 1 mm, with a signal-to-noise ratio of 50 at nadir, a 10-km altitude, a 20 degrees beam divergence, and approximately 5 x 10(3) measurements. Scintillation and fair-weather cumulus clouds usually have negligible influence on the estimates. Laser biases and path delay are compensated for by adjustment of aircraft offsets. The predominant atmospheric effect is with mesoscale nonuniform horizontal temperature gradients, which might lead to biases near 0.5 mm.

  12. SINCGARS (Single-Channel Ground/Airborne Radio System) operator performance decay

    NASA Astrophysics Data System (ADS)

    Palmer, Richard L.; Buckalew, Louis W.

    1988-11-01

    The Single-Channel Ground/Airborne Radio System (SINCGARS) is scheduled to replace the Army's VRC-12 and PRC-77 radios. However, SINCGARS is more complex to operate and requires more training. This study examined the decay of operational skills and knowledge in two groups of recently trained operators who went without exposure to SINCGARS for several weeks. Performance levels were measured with the SINCGARS Learning-Retention Test (SLRT), a simulated hands-on performance test emphasizing skills and operational knowledge retention. The results provided tentative indications that operators may lose about 10 percent of their prior performance levels within the first few weeks. This figure is expected to vary considerably, depending on the type of soldier, the length of the nonexposure period, and other conditions. It was also found that performance level was correlated with soldiers' Armed Services Vocational Aptitude Battery (ASVAB) General Technical (GT) scores. Correlations between GT and SLRT scores obtained at two different times were .43 and .50, respectively. However, no relation was observed between performance decay and GT. Further evaluation of operator performance decay needs to be done to determine the effect of longer periods of nonexposure (e.g., 60 and 90 days).

  13. Analysis of link performance and robustness of homodyne BPSK for airborne backbone laser communication system

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Zhao, Shang-hong; Zhao, Wei-hu; Li, Yong-jun; Liu, Yun; Li, Xuan

    2016-01-01

    The high altitude turbulence is described by the "Clear 1" model in terms of refractive-index structure. The outage and Bit Error Rate (BER) performance of airborne communication links under atmospheric turbulence and aero-optics effects of homodyne binary phase shift keying (BPSK) system is deduced in the high altitude turbulence channel, the relation of probability of fade, mean fade time with flight altitude and transmission distance is analyzed, the Bit Error Rate (BER) vary characteristic along with the mean signal noise rate signal noise rate (SNR) of different modulates is discussed in the gamma-gamma turbulence channel. The results show that atmospheric turbulence and aero-optic effects can greatly reduce the SNR that would occur in the absence of optical turbulence, leading in some cases to unacceptable fade levels or BERs. The average SNR is 26 dB for BPSK to achieve a BER of 10-6. A bit error rate of 5.94×10-10 at 200 km propagation distance was achieved employing a homodyne BPSK based modem.

  14. The application of UAS towards tornado research and forecasting

    NASA Astrophysics Data System (ADS)

    Houston, A. L.; Argrow, B. M.; Frew, E.; Weiss, C.

    2014-12-01

    UAS hold significant potential to advance the understanding of tornadoes and improve tornado warning skill. While the current regulatory environment places limits on the application of UAS towards these ends, demonstrated success targeting tornadic and non-tornadic supercells proves the general feasibility of this work. In this presentation we will summarize the successes using UAS to collect data in the vicinity of supercell thunderstorms and discuss ways that these data, along with additional data collected in future field campaigns, can be used answer basic research questions concerning tornado formation and applied research questions concerning the value of UAS in the tornado warning decision process. The associative relationship between the rear-flank downdraft (RFD) and tornadogenesis has long been recognized. Yet, despite decades of research focused on tornadoes, the causal relationship between the RFD and tornadogenesis remains unresolved. In the presentation, we will describe ways that UAS could be used to test hypotheses posed to explain this causal relationship. We will also present a strategy to quantify the impact of UAS on tornado warning skill. Through controlled forecast experiments conducted using data collected through small field campaigns that leverage prior success targeting supercell thunderstorms with UAS, the value of targeted surveillance of potentially tornadic storms using UAS can be assessed. Significant changes to the existing regulatory environment are likely required for UAS, operated in a targeted surveillance mode, to contribute to improving tornado warning skill, but progress can be made today towards quantifying the impact that UAS could make.

  15. Toolsets for Airborne Data - URS and New Documentation

    Atmospheric Science Data Center

    2015-03-23

    ... airborne field missions, documentation, and EOSDIS User Registration System (URS) authentication. This web application features an intuitive user interface for variable selection across different airborne field studies and ...

  16. Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems.

    PubMed

    Möritz, M; Peters, H; Nipko, B; Rüden, H

    2001-07-01

    The capability of air filters (filterclass: F6, F7) to retain airborne outdoor microorganisms was examined in field experiments in two heating, ventilating and air conditioning (HVAC) systems. At the beginning of the 15-month investigation period, the first filter stages of both HVAC systems were equipped with new unused air filters. The number of airborne bacteria and molds before and behind the filters were determined simultaneously in 14 days-intervals using 6-stage Andersen cascade impactors. Under relatively dry (< 80% R. H.) and warm (> 12 degrees C) outdoor air conditions air filters led to a marked reduction of airborne microorganism concentrations (bacteria by approximately 70% and molds by > 80%). However, during long periods of high relative humidity (> 80% R. H.) a proliferation of bacteria on air filters with subsequent release into the filtered air occurred. These microorganisms were mainly smaller than 1.1 microns therefore being part of the respirable fraction. The results showed furthermore that one possibility to avoid microbial proliferation is to limit the relative humidity in the area of the air filters to 80% R. H. (mean of 3 days), e.g. by using preheaters in front of air filters in HVAC-systems.

  17. Data Acquisition and Processing System for Airborne Wind Profiling with a Pulsed, 2-Micron, Coherent-Detection, Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Beyon, J. Y.; Koch, G. J.; Kavaya, M. J.

    2010-01-01

    A data acquisition and signal processing system is being developed for a 2-micron airborne wind profiling coherent Doppler lidar system. This lidar, called the Doppler Aerosol Wind Lidar (DAWN), is based on a Ho:Tm:LuLiF laser transmitter and 15-cm diameter telescope. It is being packaged for flights onboard the NASA DC-8, with the first flights in the summer of 2010 in support of the NASA Genesis and Rapid Intensification Processes (GRIP) campaign for the study of hurricanes. The data acquisition and processing system is housed in a compact PCI chassis and consists of four components such as a digitizer, a digital signal processing (DSP) module, a video controller, and a serial port controller. The data acquisition and processing software (DAPS) is also being developed to control the system including real-time data analysis and display. The system detects an external 10 Hz trigger pulse and initiates the data acquisition and processing process, and displays selected wind profile parameters such as Doppler shift, power distribution, wind directions and velocities. Doppler shift created by aircraft motion is measured by an inertial navigation/GPS sensor and fed to the signal processing system for real-time removal of aircraft effects from wind measurements. A general overview of the system and the DAPS as well as the coherent Doppler lidar system is presented in this paper.

  18. SWUIS-A: a versatile low-cost UV/VIS/IR imaging system for airborne astronomy and aeronomy research

    NASA Astrophysics Data System (ADS)

    Durda, Daniel D.; Stern, S. Alan; Tomlinson, William; Slater, David C.; Vilas, Faith

    2000-11-01

    We have developed and successfully flight-tested on 14 different airborne missions the hardware and techniques for routinely conducting valuable astronomical and aeronomical observations from high-performance, two-seater military-type aircraft. The SWUIS-A (Southwest Universal Imaging System- Airborne_ system consists of an image-intensified CCD camera with broad band response from the near-UV to the near IR, high-quality foreoptics, a miniaturized video recorder, and aircraft-to-camera power and telemetry interface with associated camera controls, and associated cables, filters, and other minor equipments. SWUIS-A's suite of high-quality foreoptics gives it selectable, variable focal length/variable field-of-view capabilities. The SWUIS-A camera frames at 60Hz video rates, which is a key requirement for both jitter compensation and high time resolution (useful fro occultation, lightning, and auroral studies). Broadband SWUIS-A image coadds can exceed a limiting magnitude of V=10.5 in<1sec with dark sky conditions. A valuable attribute of SWUIS-A airborne observations is the fact that the astronomer flies with the instrument, thereby providing Space Shuttle-like payload specialist capability to close-the-loop in real-time on the research done on each research mission. Key advantages of the small, high-performance aircraft on which we can fly SWUIS-A include significant cost savings over larger, more conventional airborne platforms, worldwide basing obviating the need for expensive, campaign-style movement of specialized large aircraft and their logistics support teams, and ultimately faster reaction times to transient events. Compared to ground-based instruments, airborne research platforms offer superior atmospheric transmission, the mobility to reach remote and often-times otherwise unreachable locations over the Earth, and virtually- guaranteed good weather for observing the sky. Compared to space-based instruments, airborne platforms typically offer substantial

  19. SWUIS-A: A Versatile, Low-Cost UV/VIS/IR Imaging System for Airborne Astronomy and Aeronomy Research

    NASA Technical Reports Server (NTRS)

    Durda, Daniel D.; Stern, S. Alan; Tomlinson, William; Slater, David C.; Vilas, Faith

    2001-01-01

    We have developed and successfully flight-tested on 14 different airborne missions the hardware and techniques for routinely conducting valuable astronomical and aeronomical observations from high-performance, two-seater military-type aircraft. The SWUIS-A (Southwest Universal Imaging System - Airborne) system consists of an image-intensified CCD camera with broad band response from the near-UV to the near IR, high-quality foreoptics, a miniaturized video recorder, an aircraft-to-camera power and telemetry interface with associated camera controls, and associated cables, filters, and other minor equipment. SWUIS-A's suite of high-quality foreoptics gives it selectable, variable focal length/variable field-of-view capabilities. The SWUIS-A camera frames at 60 Hz video rates, which is a key requirement for both jitter compensation and high time resolution (useful for occultation, lightning, and auroral studies). Broadband SWUIS-A image coadds can exceed a limiting magnitude of V = 10.5 in <1 sec with dark sky conditions. A valuable attribute of SWUIS-A airborne observations is the fact that the astronomer flies with the instrument, thereby providing Space Shuttle-like "payload specialist" capability to "close-the-loop" in real-time on the research done on each research mission. Key advantages of the small, high-performance aircraft on which we can fly SWUIS-A include significant cost savings over larger, more conventional airborne platforms, worldwide basing obviating the need for expensive, campaign-style movement of specialized large aircraft and their logistics support teams, and ultimately faster reaction times to transient events. Compared to ground-based instruments, airborne research platforms offer superior atmospheric transmission, the mobility to reach remote and often-times otherwise unreachable locations over the Earth, and virtually-guaranteed good weather for observing the sky. Compared to space-based instruments, airborne platforms typically offer

  20. Embedding Human Expert Cognition Into Autonomous UAS Trajectory Planning.

    PubMed

    Narayan, Pritesh; Meyer, Patrick; Campbell, Duncan

    2013-04-01

    This paper presents a new approach for the inclusion of human expert cognition into autonomous trajectory planning for unmanned aerial systems (UASs) operating in low-altitude environments. During typical UAS operations, multiple objectives may exist; therefore, the use of multicriteria decision aid techniques can potentially allow for convergence to trajectory solutions which better reflect overall mission requirements. In that context, additive multiattribute value theory has been applied to optimize trajectories with respect to multiple objectives. A graphical user interface was developed to allow for knowledge capture from a human decision maker (HDM) through simulated decision scenarios. The expert decision data gathered are converted into value functions and corresponding criteria weightings using utility additive theory. The inclusion of preferences elicited from HDM data within an automated decision system allows for the generation of trajectories which more closely represent the candidate HDM decision preferences. This approach has been demonstrated in this paper through simulation using a fixed-wing UAS operating in low-altitude environments.

  1. Varying Levels of Automation on UAS Operator Responses to Traffic Resolution Advisories in Civil Airspace

    NASA Technical Reports Server (NTRS)

    Kenny, Caitlin; Fern, Lisa

    2012-01-01

    Continuing demand for the use of Unmanned Aircraft Systems (UAS) has put increasing pressure on operations in civil airspace. The need to fly UAS in the National Airspace System (NAS) in order to perform missions vital to national security and defense, emergency management, and science is increasing at a rapid pace. In order to ensure safe operations in the NAS, operators of unmanned aircraft, like those of manned aircraft, may be required to maintain separation assurance and avoid loss of separation with other aircraft while performing their mission tasks. This experiment investigated the effects of varying levels of automation on UAS operator performance and workload while responding to conflict resolution instructions provided by the Tactical Collision Avoidance System II (TCAS II) during a UAS mission in high-density airspace. The purpose of this study was not to investigate the safety of using TCAS II on UAS, but rather to examine the effect of automation on the ability of operators to respond to traffic collision alerts. Six licensed pilots were recruited to act as UAS operators for this study. Operators were instructed to follow a specified mission flight path, while maintaining radio contact with Air Traffic Control and responding to TCAS II resolution advisories. Operators flew four, 45 minute, experimental missions with four different levels of automation: Manual, Knobs, Management by Exception, and Fully Automated. All missions included TCAS II Resolution Advisories (RAs) that required operator attention and rerouting. Operator compliance and reaction time to RAs was measured, and post-run NASA-TLX ratings were collected to measure workload. Results showed significantly higher compliance rates, faster responses to TCAS II alerts, as well as less preemptive operator actions when higher levels of automation are implemented. Physical and Temporal ratings of workload were significantly higher in the Manual condition than in the Management by Exception and

  2. Investigation of Atmospheric Chemistry in the Tropical UTLS with NASA's Global Hawk UAS during ATTREX

    NASA Astrophysics Data System (ADS)

    Stutz, J.; Atlas, E. L.; Cheung, R.; Chipperfield, M.; Colosimo, S. F.; Deutschmann, T.; Daube, B. C.; Gao, R. S.; Elkins, J. W.; Fahey, D. W.; Feng, W.; Hossaini, R.; Navarro, M. A.; Pittman, J. V.; Raecke, R.; Scalone, L.; Spolaor, M.; Tricoli, U.; Thornberry, T. D.; Tsai, J. Y.; Werner, B.; Wofsy, S. C.; Pfeilsticker, K.

    2015-12-01

    Bromine species play an important role in ozone chemistry in the tropical upper troposphere / lower stratosphere (UTLS). The tropical UTLS also serves as a gate to the stratosphere, and the vertical transport of organic and inorganic bromine species is an important source of halogens that impact stratospheric ozone chemistry. An accurate quantification of the sources, sinks, and chemical transformation of bromine species is thus crucial to the understanding of the bromine and ozone budget in the UTLS and the stratosphere. However, the investigation of the composition of the tropical UTLS is challenging, as the altitude of this region of 15 - 20 km requires high-altitude aircraft, or balloons. In recent years a new aircraft has become available to penetrate into this region: NASA's Global Hawk (GH) Unmanned Aircraft System (UAS). The GH has a ceiling altitude of 20 km and a 24h endurance with a full complement of scientific experiments. The GH provides a new and exciting platform that allows unique insights into atmospheric processes in the UTLS. Here we present observations of CH4, BrO, NO2, and ozone made on-board the GH during the 2011, 2013, and 2014 Airborne Tropical TRopopause EXperiment (ATTREX) in the pacific tropical UTLS. We will discuss the details of UV-vis remote sensing measurements of BrO and NO2 by the UCLA/HD limb scanning Differential Optical Absorption Spectroscopy instrument. We also present observations of organic bromine species from the University of Miami's Whole Air Sampler, in-situ ozone measurement by NOAA, and CH4 measurements by the Harvard Picarro instrument and the NOAA UCATS gas chromatograph. Methods to determine vertical trace gas profiles through aircraft maneuvers and by scanning the mini-DOAS telescope in viewing elevation will be discussed. The combination of the observations with calculations using the TOMCAT/SLIMCAT 3-D model allows quantification and interpretation of the bromine and ozone budget in the UTLS.

  3. Observing Supercells with Unmanned Aircraft: Results from the UAS Component of VORTEX-2

    NASA Astrophysics Data System (ADS)

    Houston, A. L.; Argrow, B.; Frew, E.

    2010-12-01

    In the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX-2) autonomous unmanned aircraft were used for the first time to collect in-situ observations in close proximity to supercells. The use of unmanned aircraft to collect data significant to stormscale research has long been recognized. However, collecting these data requires aircraft operation beyond the visual line of sight of the controller which necessitates aircraft autonomy. An autonomous unmanned aircraft requires a significantly more complex command and control system and elicits more scrutiny by airspace regulatory agencies. Therefore, while the potential utility of unmanned aircraft systems (UAS, the unmanned aircraft along with the communications and logistics infrastructure required for their operation) for stormscale research may be obvious, the engineering and regulatory hurdles that must be overcome for their use are significant. Surmounting these engineering and regulatory hurdles was the principal objective of the UAS component of VORTEX-2. Regulatory hurdles prevented UAS operations in the first year of VORTEX-2. However, the Federal Aviation Administration (tasked with regulating all UAS operations) granted the UAS group certificates of authorization (CoA) to fly for all of year-2 over northeast CO, southwest NE, and northwest KS. The majority of the engineering hurdles involved the communication system necessary to 1) command and control the aircraft through its on-board autopilot and 2) direct ground-based vehicles required to remain compliant with FAA regulations. Testing during both year-1 and -2 yielded a robust communication system. Lessons learned from interactions with the FAA along with an overview of the communication system will be presented at the conference. Scientifically, the UAS in VORTEX-2 was tasked with collecting in-situ observations of the temperature and moisture above the surface across the rear flank gust front (RFGF) and within the rear

  4. Wind Tunnel and Hover Performance Test Results for Multicopter UAS Vehicles

    NASA Technical Reports Server (NTRS)

    Russell, Carl R.; Jung, Jaewoo; Willink, Gina; Glasner, Brett

    2016-01-01

    There is currently a lack of published data for the performance of multicopter unmanned aircraft system (UAS) vehicles, such as quadcopters and octocopters, often referred to collectively as drones. With the rapidly increasing popularity of multicopter UAS, there is interest in better characterizing the performance of this type of aircraft. By studying the performance of currently available vehicles, it will be possible to develop models for vehicles at this scale that can accurately predict performance and model trajectories. This paper describes a wind tunnel test that was recently performed in the U.S. Army's 7- by 10-ft Wind Tunnel at NASA Ames Research Center. During this wind tunnel entry, five multicopter UAS vehicles were tested to determine forces and moments as well as electrical power as a function of wind speed, rotor speed, and vehicle attitude. The test is described here in detail, and a selection of the key results from the test is presented.

  5. UAS Air Traffic Controller Acceptability Study-2: Effects of Communications Delays and Winds in Simulation

    NASA Technical Reports Server (NTRS)

    Comstock, James R., Jr.; Ghatas, Rania W.; Consiglio, Maria C.; Chamberlain, James P.; Hoffler, Keith D.

    2016-01-01

    This study evaluated the effects of Communications Delays and Winds on Air Traffic Controller ratings of acceptability of horizontal miss distances (HMDs) for encounters between UAS and manned aircraft in a simulation of the Dallas-Ft. Worth East-side airspace. Fourteen encounters per hour were staged in the presence of moderate background traffic. Seven recently retired controllers with experience at DFW served as subjects. Guidance provided to the UAS pilots for maintaining a given HMD was provided by information from self-separation algorithms displayed on the Multi-Aircraft Simulation System. Winds tested did not affect the acceptability ratings. Communications delays tested included 0, 400, 1200, and 1800 msec. For longer communications delays, there were changes in strategy and communications flow that were observed and reported by the controllers. The aim of this work is to provide useful information for guiding future rules and regulations applicable to flying UAS in the NAS.

  6. HALE UAS Command and Control Communications: Step 1 - Functional Requirements Document. Version 4.0

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The High Altitude Long Endurance (HALE) unmanned aircraft system (UAS) communicates with an off-board pilot-in-command in all flight phases via the C2 data link, making it a critical component for the UA to fly in the NAS safely and routinely. This is a new requirement in current FAA communications planning and monitoring processes. This document provides a set of comprehensive C2 communications functional requirements and performance guidelines to help facilitate the future FAA certification process for civil UAS to operate in the NAS. The objective of the guidelines is to provide the ability to validate the functional requirements and in future be used to develop performance-level requirements.

  7. <5cm Ground Resolution DEMs for the Atacama Fault System (Chile), Acquried With the Modular Airborne Camera System (MACS)

    NASA Astrophysics Data System (ADS)

    Zielke, O.; Victor, P.; Oncken, O.; Bucher, T. U.; Lehmann, F.

    2011-12-01

    A primary step towards assessing time and size of future earthquakes is the identification of earthquake recurrence patterns in the existing seismic record. Geologic and geomorphic data are commonly analyzed for this purpose, reasoned by the lack of sufficiently long historical or instrumental seismic data sets. Until recently, those geomorphic data sets encompassed field observation, local total station surveys, and aerial photography. Over the last decade, LiDAR-based high-resolution topographic data sets became an additional powerful mean, contributing distinctly to a better understanding of earthquake rupture characteristics (e.g., single-event along-fault slip distribution, along-fault slip accumulation pattern) and their relation to fault geometric complexities. Typical shot densities of such data sets (e.g., airborne-LiDAR data along the San Andreas Fault) permit generation of digital elevation models (DEM) with <50 cm ground resolution, sufficient for depiction of meter-scale tectonic landforms. Identification of submeter-scale features is however prohibited by DEM resolution limitation. Here, we present a high-resolution topographic and visual data set from the Atacama fault system near Antofagasta, Chile. Data were acquired with Modular Airborne Camera System (MACS) - developed by the DLR (German Aerospace Center) in Berlin, Germany. The photogrammetrically derived DEM and True Ortho Images with <5cm ground resolution permit identification of very small-scale geomorphic features, thus enabling fault zone and earthquake rupture characterization at unprecedented detail. Compared to typical LiDAR-DEM, ground resolution is increased by an order of magnitude while the spatial extend of these data set is essentially the same. Here, we present examples of the <5cm resolution data set (DEM and visual results) and further explore resolution capabilities and potential with regards to the aforementioned tectono-geomorphic questions.

  8. Airborne Transparencies.

    ERIC Educational Resources Information Center

    Horne, Lois Thommason

    1984-01-01

    Starting from a science project on flight, art students discussed and investigated various means of moving in space. Then they made acetate illustrations which could be used as transparencies. The projection phenomenon made the illustrations look airborne. (CS)

  9. Conceptual design of an airborne laser Doppler velocimeter system for studying wind fields associated with severe local storms

    NASA Technical Reports Server (NTRS)

    Thomson, J. A. L.; Davies, A. R.; Sulzmann, K. G. P.

    1976-01-01

    An airborne laser Doppler velocimeter was evaluated for diagnostics of the wind field associated with an isolated severe thunderstorm. Two scanning configurations were identified, one a long-range (out to 10-20 km) roughly horizontal plane mode intended to allow probing of the velocity field around the storm at the higher altitudes (4-10 km). The other is a shorter range (out to 1-3 km) mode in which a vertical or horizontal plane is scanned for velocity (and possibly turbulence), and is intended for diagnostics of the lower altitude region below the storm and in the out-flow region. It was concluded that aircraft flight velocities are high enough and severe storm lifetimes are long enough that a single airborne Doppler system, operating at a range of less than about 20 km, can view the storm area from two or more different aspects before the storm characteristics change appreciably.

  10. Effect of Vertical Rate Error on Recovery from Loss of Well Clear Between UAS and Non-Cooperative Intruders

    NASA Technical Reports Server (NTRS)

    Cone, Andrew; Thipphavong, David; Lee, Seung Man; Santiago, Confesor

    2016-01-01

    When an Unmanned Aircraft System (UAS) encounters an intruder and is unable to maintain required temporal and spatial separation between the two vehicles, it is referred to as a loss of well-clear. In this state, the UAS must make its best attempt to regain separation while maximizing the minimum separation between itself and the intruder. When encountering a non-cooperative intruder (an aircraft operating under visual flight rules without ADS-B or an active transponder) the UAS must rely on the radar system to provide the intruders location, velocity, and heading information. As many UAS have limited climb and descent performance, vertical position andor vertical rate errors make it difficult to determine whether an intruder will pass above or below them. To account for that, there is a proposal by RTCA Special Committee 228 to prohibit guidance systems from providing vertical guidance to regain well-clear to UAS in an encounter with a non-cooperative intruder unless their radar system has vertical position error below 175 feet (95) and vertical velocity errors below 200 fpm (95). Two sets of fast-time parametric studies was conducted, each with 54000 pairwise encounters between a UAS and non-cooperative intruder to determine the suitability of offering vertical guidance to regain well clear to a UAS in the presence of radar sensor noise. The UAS was not allowed to maneuver until it received well-clear recovery guidance. The maximum severity of the loss of well-clear was logged and used as the primary indicator of the separation achieved by the UAS. One set of 54000 encounters allowed the UAS to maneuver either vertically or horizontally, while the second permitted horizontal maneuvers, only. Comparing the two data sets allowed researchers to see the effect of allowing vertical guidance to a UAS for a particular encounter and vertical rate error. Study results show there is a small reduction in the average severity of a loss of well-clear when vertical maneuvers

  11. High-Rate Data-Capture for an Airborne Lidar System

    NASA Technical Reports Server (NTRS)

    Valett, Susan; Hicks, Edward; Dabney, Philip; Harding, David

    2012-01-01

    A high-rate data system was required to capture the data for an airborne lidar system. A data system was developed that achieved up to 22 million (64-bit) events per second sustained data rate (1408 million bits per second), as well as short bursts (less than 4 s) at higher rates. All hardware used for the system was off the shelf, but carefully selected to achieve these rates. The system was used to capture laser fire, single-photon detection, and GPS data for the Slope Imaging Multi-polarization Photo-counting Lidar (SIMPL). However, the system has applications for other laser altimeter systems (waveform-recording), mass spectroscopy, xray radiometry imaging, high-background- rate ranging lidar, and other similar areas where very high-speed data capture is needed. The data capture software was used for the SIMPL instrument that employs a micropulse, single-photon ranging measurement approach and has 16 data channels. The detected single photons are from two sources those reflected from the target and solar background photons. The instrument is non-gated, so background photons are acquired for a range window of 13 km and can comprise many times the number of target photons. The highest background rate occurs when the atmosphere is clear, the Sun is high, and the target is a highly reflective surface such as snow. Under these conditions, the total data rate for the 16 channels combined is expected to be approximately 22 million events per second. For each photon detection event, the data capture software reads the relative time of receipt, with respect to a one-per-second absolute time pulse from a GPS receiver, from an event timer card with 0.1-ns precision, and records that information to a RAID (Redundant Array of Independent Disks) storage device. The relative time of laser pulse firings must also be read and recorded with the same precision. Each of the four event timer cards handles the throughput from four of the channels. For each detection event, a flag is

  12. Determining Stand Parameters from Uas-Based Point Clouds

    NASA Astrophysics Data System (ADS)

    Yilmaz, V.; Serifoglu, C.; Gungor, O.

    2016-06-01

    In Turkey, forest management plans are produced by terrestrial surveying techniques for 10 or 20 year periods, which can be considered quite long to maintain the sustainability of forests. For a successful forest management plan, it is necessary to collect accurate information about the stand parameters and store them in dynamic and robust databases. The position, number, height and closure of trees are among the most important stand parameters required for a forest management plan. Determining the position of each single tree is challenging in such an area consisting of too many interlocking trees. Hence, in this study, an object-based tree detection methodology has been developed in MATLAB programming language to determine the position of each tree top in a highly closed area. The developed algorithm uses the Canopy Height Model (CHM), which is computed from the Digital Terrain Model (DTM) and Digital Surface Model (DSM) generated by using the point cloud extracted from the images taken from a UAS (Unmanned Aerial System). The heights of trees have been determined by using the CHM. The closure of the trees has been determined with the written MATLAB script. The results show that the developed tree detection methodology detected more than 70% of the trees successfully. It can also be concluded that the stand parameters may be determined by using the UAS-based point clouds depending on the characteristics of the study area. In addition, determination of the stand parameters by using point clouds reduces the time needed to produce forest management plans.

  13. UAS and Distributed Temperature Sensing Reveal Previously Unseen Atmospheric Processes

    NASA Astrophysics Data System (ADS)

    Higgins, C. W.; Liu, Z.; Holmes, H.; Wing, M.; Predosa, R. A.; Blunck, D.

    2015-12-01

    The frontier of atmospheric boundary layer research lies in times and places of complexity. Transitions between atmospheric states, buoyant flows over complex terrain, and times with only weak forcing mechanisms all have rich physical expressions of atmospheric flow that are not fully understood. These motions often span a large range of scales and are nonstationary. Traditional atmospheric measurement approaches are inadequate in these situations as they do not have the data density or the physical extent to capture the full range of motions. An unmanned aerial system (UAS) is used to lift distributed temperature sensing (DTS) technologies to observe the early morning transition from stable to unstably stratified conditions. The UAS/DTS combination yielded observations of temperature and humidity in the lower atmosphere with never-seen-before resolution and extent. The data reveal a complex interplay of motions that occur during the morning transition that ultimately results in the propagation and growth of unstable wave modes. The observations have given new insight into the appropriate scaling variables for the morning transition time.

  14. Environmental assessment of three egg production systems - Part III: Airborne bacteria concentrations and emissions.

    PubMed

    Zhao, Y; Zhao, D; Ma, H; Liu, K; Atilgan, A; Xin, H

    2016-07-01

    Airborne microorganism level is an important indoor air quality indicator, yet it has not been well documented for laying-hen houses in the United States. As a part of the Coalition for Sustainable Egg Supply (CSES) environmental monitoring project, this study comparatively monitored the concentrations and emissions of airborne total and Gram-negative (Gram(-)) bacteria in three types of commercial laying-hen houses, i.e., conventional cage (CC), aviary (AV), and enriched colony (EC) houses, over a period of eight months covering the mid and late stages of the flock cycle. It also delineated the relationship between airborne total bacteria and particulate matter smaller than 10 μm in aerodynamic diameter (PM10). The results showed airborne total bacteria concentrations (log CFU/m(3)) of 4.7 ± 0.3 in CC, 6.0 ± 0.8 in AV, and 4.8 ± 0.3 in EC, all being higher than the level recommended for human environment (3.0 log CFU/m(3)). The much higher concentrations in AV arose from the presence of floor litter and hen activities on it, as evidenced by the higher concentrations in the afternoon (with litter access) than in the morning (without litter access). The overall means and standard deviation of airborne total bacteria emission rates, in log CFU/[h-hen] (or log CFU/[h-AU], AU = animal unit or 500 kg live weight) were 4.8 ± 0.4 (or 7.3 ± 0.4) for CC, 6.1 ± 0.7 (or 8.6 ± 0.7) for AV, and 4.8 ± 0.5 (or 7.3 ± 0.5) for EC. Both concentration and emission rate of airborne total bacteria were positively related to PM10 Gram(-) bacteria were present at low concentrations in all houses; and only 2 samples (6%) in CC, 7 (22%) samples in AV, and 2 (6%) samples in EC out of 32 air samples collected in each house were found positive with Gram(-) bacteria. The concentration of airborne Gram(-) bacteria was estimated to be <2% of the total bacteria. Total bacteria counts in manure on belt (in all houses) and floor litter (only in AV) were similar; however, the manure had

  15. Airborne Wind Shear Detection and Warning Systems. Second Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Spady, Amos A., Jr. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1990-01-01

    The Second Combined Manufacturers' and Technologists' Conference hosted jointly by NASA Langley (LaRC) and the Federal Aviation Administration (FAA) was held in Williamsburg, Virginia, on October 18 to 20, 1988. The purpose of the meeting was to transfer significant, ongoing results gained during the second year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.

  16. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1991-01-01

    The Third Combined Manufacturers' and Technologists' Conference was held in Hampton, Va., on October 16-18, 1990. The purpose of the meeting was to transfer significant on-going results of the NASA/FAA joint Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.

  17. Airborne Wind Shear Detection and Warning Systems: Fourth Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Passman, Robert H. (Compiler)

    1992-01-01

    The purpose of the meeting was to transfer significant ongoing results of the NASA/FAA joint Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements. The present document was compiled to record the essence of the technology updates and discussions which follow each.

  18. The Utility and Validity of Kinematic GPS Positioning for the Geosar Airborne Terrain Mapping Radar System

    NASA Technical Reports Server (NTRS)

    Freedman, Adam; Hensley, Scott; Chapin, Elaine; Kroger, Peter; Hussain, Mushtaq; Allred, Bruce

    1999-01-01

    GeoSAR is an airborne, interferometric Synthetic Aperture Radar (IFSAR) system for terrain mapping, currently under development by a consortium including NASA's Jet Propulsion Laboratory (JPL), Calgis, Inc., a California mapping sciences company, and the California Department of Conservation (CaIDOC), with funding provided by the U.S. Army Corps of Engineers Topographic Engineering Center (TEC) and the U.S. Defense Advanced Research Projects Agency (DARPA). IFSAR data processing requires high-accuracy platform position and attitude knowledge. On 9 GeoSAR, these are provided by one or two Honeywell Embedded GPS Inertial Navigation Units (EGI) and an Ashtech Z12 GPS receiver. The EGIs provide real-time high-accuracy attitude and moderate-accuracy position data, while the Ashtech data, post-processed differentially with data from a nearby ground station using Ashtech PNAV software, provide high-accuracy differential GPS positions. These data are optimally combined using a Kalman filter within the GeoSAR motion measurement software, and the resultant position and orientation information are used to process the dual frequency (X-band and P-band) radar data to generate high-accuracy, high -resolution terrain imagery and digital elevation models (DEMs). GeoSAR requirements specify sub-meter level planimetric and vertical accuracies for the resultant DEMS. To achieve this, platform positioning errors well below one meter are needed. The goal of GeoSAR is to obtain 25 cm or better 3-D positions from the GPS systems on board the aircraft. By imaging a set of known point target corner-cube reflectors, the GeoSAR system can be calibrated. This calibration process yields the true position of the aircraft with an uncertainty of 20- 50 cm. This process thus allows an independent assessment of the accuracy of our GPS-based positioning systems. We will present an overview of the GeoSAR motion measurement system, focusing on the use of GPS and the blending of position data from the

  19. A study to identify and compare airborne systems for in-situ measurements of launch vehicle effluents

    NASA Technical Reports Server (NTRS)

    Thomas, T. J.; Chace, A. S.

    1974-01-01

    An in-situ system for monitoring the concentration of HCl, CO, CO2, and Al2O3 in the cloud of reaction products that form as a result of a launch of solid propellant launch vehicle is studied. A wide array of instrumentation and platforms are reviewed to yield the recommended system. An airborne system suited to monitoring pollution concentrations over urban areas for the purpose of calibrating remote sensors is then selected using a similar methodology to yield the optimal configuration.

  20. Preliminary geoid mapping results by Fugro's improved Micro-g LaCoste turnkey airborne gravity system

    NASA Astrophysics Data System (ADS)

    Zhong, D.; Kingdon, R. W.

    2015-07-01

    In this paper, we introduce the Micro-g LaCoste Turnkey Airborne Gravity System (TAGS) with Fugro's improved gravity processing and geoid modeling software package for regional gravity field mapping and geoid determination. Three test areas with different topographic characteristics under the Gravity for the Redefinition of the AmericanVertical Datum (GRAV-D) project of theUSNOAA National Geodetic Surveys (NGS) were used for case studies and determine the available accuracy of the system. The preliminary results of all these test cases show that the system with Fugro's improved gravity and geoid processing software package is able to achieve a comparable geoid mapping result to traditional terrestrial methods.

  1. A Performance Assessment of an Airborne Separation Assistance System Using Realistic Complex Traffic Flows

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Bussink, Frank J. L.

    2008-01-01

    This paper presents the results from a study that investigates the performance of a tactical Airborne Separation Assistance System (ASAS) in en route airspace, under varying demand levels, with realistic traffic flows. The ASAS concept studied here allows flight crews of equipped aircraft to perform separation from other air traffic autonomously. This study addresses the tactical aspects of an ASAS using aircraft state data (i.e. position and velocity) to detect and resolve projected conflicts. In addition, use of a conflict prevention system helps ASAS-equipped aircraft avoid maneuvers that may cause new conflicts. ASAS-capable aircraft are equipped with satellite-based navigation and Automatic Dependent Surveillance Broadcast (ADS-B) for transmission and receipt of aircraft state data. In addition to tactical conflict detection and resolution (CD&R), a complete, integrated ASAS is likely to incorporate a strategic CD&R component with a longer look-ahead time, using trajectory intent information. A system-wide traffic flow management (TFM) component, located at the FAA command center helps aircraft to avoid regions of excessive traffic density and complexity. A Traffic Alert and Collision Avoidance System (TCAS), as used today is the system of last resort. This integrated approach avoids sole reliance on the use of the tactical CD&R studied here, but the tactical component remains a critical element of the complete ASAS. The focus of this paper is to determine to what extent the proposed tactical component of ASAS alone can maintain aircraft separation at demand levels up to three times that of current traffic. The study also investigates the effect of mixing ASAS-equipped aircraft with unequipped aircraft (i.e. current day) that do not have the capability to self-separate. Position and velocity data for unequipped aircraft needs to be available to ASASequipped. Most likely, for this future concept, state data would be available from instrument flight rules (IFR

  2. Biooptical variability in the Greenland Sea observed with the Multispectral Airborne Radiometer System (MARS)

    NASA Technical Reports Server (NTRS)

    Mueller, James L.; Trees, Charles C.

    1989-01-01

    A site-specific ocean color remote sensing algorithm was developed and used to convert Multispectral Airborne Radiometer System (MARS) spectral radiance measurements to chlorophyll-a concentration profiles along aircraft tracklines in the Greenland Sea. The analysis is described and the results given in graphical or tabular form. Section 2 describes the salient characteristics and history of development of the MARS instrument. Section 3 describes the analyses of MARS flight segments over consolidated sea ice, resulting in a set of altitude dependent ratios used (over water) to estimate radiance reflected by the surface and atmosphere from total radiance measured. Section 4 presents optically weighted pigment concentrations calculated from profile data, and spectral reflectances measured in situ from the top meter of the water column; this data was analyzed to develop an algorithm relating chlorophyll-a concentrations to the ratio of radiance reflectances at 441 and 550 nm (with a selection of coefficients dependent upon whether significant gelvin presence is implied by a low ratio of reflectances at 410 and 550 nm). Section 5 describes the scaling adjustments which were derived to reconcile the MARS upwelled radiance ratios at 410:550 nm and 441:550 nm to in situ reflectance ratios measured simultaneously on the surface. Section 6 graphically presents the locations of MARS data tracklines and positions of the surface monitoring R/V. Section 7 presents stick-plots of MARS tracklines selected to illustrate two-dimensional spatial variability within the box covered by each day's flight. Section 8 presents curves of chlorophyll-a concentration profiles derived from MARS data along survey tracklines. Significant results are summarized in Section 1.

  3. UAS-derived imagery and terrain models for rangeland mapping and monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Images from satellites and piloted aircraft have been used extensively for mapping and monitoring rangelands, which comprise approximately 50% of the world’s land area. Unmanned aircraft systems (UAS) are ideally suited for monitoring these vast and remote areas, and derived data can bridge the gap ...

  4. UAS-based thermal remote sensing for crop water stress detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The remote detection of water stress in a biofuel crop field was investigated using canopy temperature measurements. An experimental trial was set up in the central valley of Maui, Hawaii, comprising different sugarcane varieties and irrigation regimes. An unmanned aerial system (UAS) was equipped w...

  5. Imaging Hidden Water in Three Dimensions Using an Active Airborne Electromagnetic System

    NASA Astrophysics Data System (ADS)

    Wynn, J.

    2001-05-01

    The San Pedro Basin aquifer in southeastern Arizona and northern Mexico is important not only for local agriculture and residential communities, but also because it is the source of the San Pedro River. Declared a Riparian Conservation Area by Congress in 1988, the San Pedro is a critical element of one of four major migratory bird fly-ways over North America. The basin crosses the international frontier, extending into northern Mexico, where about 12,000 acre-ft of water is withdrawn yearly by the Cananea Mine. An additional 11,000 acre-ft is withdrawn by the US Army base at Fort Huachuca and surrounding towns including Sierra Vista. About 6,000 to 8,000 acre-ft of water is also estimated as lost to evapotranspiration, while recharge (mainly from the Huachuca Mountains) ranges from 12,500 to 15,000 acre-ft per year. This apparent net deficit is considered a serious threat by environmental groups to the integrity of the Riparian Conservation Area. Efforts have been underway to develop catchments and to implement water-conservation measures, but these have been hampered by a lack of detailed knowledge of the three-dimensional geometry and extent of the aquifer beneath the entire basin - at least until recently. In an effort to identify subcomponents and interconnectivities within the San Pedro Basin aquifer, the US Army funded several airborne EM surveys, conducted in 1997 and 1999 under the supervision of the US Geological Survey east of Fort Huachuca. These surveys used the Geoterrex GEOTEM system with 20 gated time-domain windows in three perpendicular orientations. The 60+ channel information was inverted using two different methods into conductivity-depth transforms, i.e., conductivity vs. depth along each flight-line. The resulting inversions have been assembled into a three-dimensional map of the aquifer, which in this arid region is quite conductive (the average is 338 micro-S/cm, around 30 ohm-meters). The coverage is about 1,000 square kilometers down to a

  6. The NASA Langley Research Center's Unmanned Aerial System Surrogate Research Aircraft

    NASA Technical Reports Server (NTRS)

    Howell, Charles T., III; Jessup, Artie; Jones, Frank; Joyce, Claude; Sugden, Paul; Verstynen, Harry; Mielnik, John

    2010-01-01

    Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). The NASA Langley Research Center has transformed a Cirrus Design SR22 general aviation (GA) aircraft into a UAS Surrogate research aircraft to serve as a platform for UAS systems research, development, flight testing and evaluation. The aircraft is manned with a Safety Pilot and systems operator that allows for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). The UAS Surrogate can be controlled from a modular, transportable ground station like a true UAS. The UAS Surrogate is able to file and fly in the NAS with normal traffic and is a better platform for real world UAS research and development than existing vehicles flying in restricted ranges or other sterilized airspace. The Cirrus Design SR22 aircraft is a small, singleengine, four-place, composite-construction aircraft that NASA Langley acquired to support NASA flight-research programs like the Small Aircraft Transportation System (SATS) Project. Systems were installed to support flight test research and data gathering. These systems include: separate research power; multi-function flat-panel displays; research computers; research air data and inertial state sensors; video recording; data acquisition; data-link; S-band video and data telemetry; Common Airborne Instrumentation System (CAIS); Automatic Dependent Surveillance-Broadcast (ADS-B); instrumented surfaces and controls; and a systems operator work station. The transformation of the SR22 to a UAS Surrogate was accomplished in phases. The first phase was to modify the existing autopilot to accept external commands from a research computer that was connected by redundant data-link radios to a ground control station. An electro-mechanical auto

  7. Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers.

    PubMed

    Tang, Xiao-Bin; Meng, Jia; Wang, Peng; Cao, Ye; Huang, Xi; Wen, Liang-Sheng; Chen, Da

    2016-04-01

    A small-sized UAV (NH-UAV) airborne system with two gamma spectrometers (LaBr3 detector and HPGe detector) was developed to monitor activity concentration in serious nuclear accidents, such as the Fukushima nuclear accident. The efficiency calibration and determination of minimum detectable activity concentration (MDAC) of the specific system were studied by MC simulations at different flight altitudes, different horizontal distances from the detection position to the source term center and different source term sizes. Both air and ground radiation were considered in the models. The results obtained may provide instructive suggestions for in-situ radioactivity measurements of NH-UAV.

  8. Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers.

    PubMed

    Tang, Xiao-Bin; Meng, Jia; Wang, Peng; Cao, Ye; Huang, Xi; Wen, Liang-Sheng; Chen, Da

    2016-04-01

    A small-sized UAV (NH-UAV) airborne system with two gamma spectrometers (LaBr3 detector and HPGe detector) was developed to monitor activity concentration in serious nuclear accidents, such as the Fukushima nuclear accident. The efficiency calibration and determination of minimum detectable activity concentration (MDAC) of the specific system were studied by MC simulations at different flight altitudes, different horizontal distances from the detection position to the source term center and different source term sizes. Both air and ground radiation were considered in the models. The results obtained may provide instructive suggestions for in-situ radioactivity measurements of NH-UAV. PMID:26773821

  9. Photometer dewar system for NASA C141 airborne telescope (Kuiper Flying Observatory). [design analysis/performance tests

    NASA Technical Reports Server (NTRS)

    Ney, E. P.

    1974-01-01

    The design, calibration, and testing of a photometer to be used in an airborne telescope is described. A description of the cryogenics of the photometer is given, and photographs and blueprints of the photometer are included. The photometer is designed with a focal plane beam switching system so that the airplane telescope can be used in a normal optical mode at the bent Cassegrain focus and with the photometer operating in the pressurized cabin of the airplane. The concept was to produce a system which could be used in almost the same manner as ground based infrared photometers and dewars of the O'Brien Observatory at the University of Minnesota.

  10. NASA Activity Update for the 2013 Unmanned Vehicle Systems International (UVSI) Yearbook

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey E.

    2013-01-01

    This year s report offers a high level perspective on some of the UAS related activities in which NASA is involved, both internal and external to the agency. Internally, NASA issued UAS operational policy on certification of NASA UAS and aircrew. A team of NASA UAS experts and operators analyzed all current procedures and best practices to design the policy. An update to the agencies Aircraft Operations Management Manual incorporated a new chapter to address UAS planning, preflight operations, flight operations, flight crew requirements, airworthiness and flight safety reviews. NASA UAS are classified into three categories based on weight and airspeed. Aircrews, including observers, are classified by how they interface with the UAS, and the policy defines qualifications, training, and currency. The NASA flight readiness approval process identifies risks and mitigations in order to reduce the likelihood and/or consequence of the risk to an acceptable level. The UAS operations process incorporates all aspects of airworthiness, flight standards and range safety exactly the same processes used for NASA manned aircraft operations. NASA has two internal organizations that routinely operate UAS. The Science Mission Directorate utilizes UAS as part of its Airborne Science Program and is the most frequent operator of NASA UAS in both national and international airspace. The Aeronautics Research Mission Directorate conducts UAS flight operations in addition to conducting research important to the UAS community. This past year the Science Mission Directorate supported the Hurricane and Severe Storm Sentimental (HS3) Mission with two NASA Global Hawk platforms. HS3 is a five-year mission specifically targeted to investigate the processes that underlie hurricane formation. During the 2012 portion of this mission the Global Hawk overflew hurricanes Leslie and Nadine in the Atlantic Ocean completing 6 flights and accumulating more than 148 flight hours. Another multi-year mission

  11. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  12. An application of space-time adaptive processing to airborne and spaceborne monostatic and bistatic radar systems

    NASA Astrophysics Data System (ADS)

    Czernik, Richard James

    A challenging problem faced by Ground Moving Target Indicator (GMTI) radars on both airborne and spaceborne platforms is the ability to detect slow moving targets due the presence of non-stationary and heterogeneous ground clutter returns. Space-Time Adaptive Processing techniques process both the spatial signals from an antenna array as well as radar pulses simultaneously to aid in mitigating this clutter which has an inherent Doppler shift due to radar platform motion, as well as spreading across Angle-Doppler space attributable to a variety of factors. Additional problems such as clutter aliasing, widening of the clutter notch, and range dependency add additional complexity when the radar is bistatic in nature, and vary significantly as the bistatic radar geometry changes with respect to the targeted location. The most difficult situation is that of a spaceborne radar system due to its high velocity and altitude with respect to the earth. A spaceborne system does however offer several advantages over an airborne system, such as the ability to cover wide areas and to provide access to areas denied to airborne platforms. This dissertation examines both monostatic and bistatic radar performance based upon a computer simulation developed by the author, and explores the use of both optimal STAP and reduced dimension STAP architectures to mitigate the modeled clutter returns. Factors such as broadband jamming, wind, and earth rotation are considered, along with their impact on the interference covariance matrix, constructed from sample training data. Calculation of the covariance matrix in near real time based upon extracted training data is computer processor intensive and reduced dimension STAP architectures relieve some of the computation burden. The problems resulting from extending both monostatic and bistatic radar systems to space are also simulated and studied.

  13. Establishment of Airborne Nanoparticle Exposure Chamber System to Assess Nano TiO2 Induced Mice Lung Effects

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Hua; Li, Jui-Ping; Huang, Nai-Chun; Yang, Chung-Shi; Chen, Jen-Kun

    2011-12-01

    A great many governments have schemed their top priority to support the research and development of emerging nanotechnology, which lead to increasing products containing nanomaterials. However, platforms and protocols to evaluate the safety of nanomaterials are not yet established. We therefore design and fabricate a nanoparticle exposure chamber system (NECS) and try to standardize protocols to assess potential health risk of inhalable nanoparticles. This platform comprises: (1) nano-aerosol generators to produce homogeneous airborne nanoparticles, (2) double isolated container to prevent from unexpected exposure to humans, (3) gas supply system for housing animals or incubating cultured cells, and (4) system for automatic control and airborne nanoparticle analysis. The NECS providing multiple functions includes: (1) a secure environment to handle nanomaterials, (2) real-time measurement for the size and distribution of airborne nanoparticles, (3) SOP of safety evaluation for nanomaterials, and (4) key technology for the development of inhalable pharmaceuticals. We used NECS to mimic occupational environment for exploring potential adverse effects of TiO2 nanoparticles. The adult male ICR mice were exposed to 25nm, well-characterized TiO2 particles for 1 and 4 weeks. More than 90% of the inhaled TiO2 nanoparticles deposit in lung tissue, which tends to be captured by alveolar macrophages. Pulmonary function test does not show significant physiological changes between one and 4 weeks exposure. For plasma biochemistry analysis, there are no obvious inflammation responses after exposure for one and 4 weeks; however, disruption of alveolar septa and increased thickness of alveolar epithelial cells were observed. According to our results, the NECS together with our protocols show comprehensive integration and ideally fit the standard of OECD guildelines-TG403, TG412, TG413; it can be further customized to fulfill diverse demands of industry, government, and third party

  14. Airborne Wind Shear Detection and Warning Systems. Second Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Spady, Amos A., Jr. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1990-01-01

    The Second Combined Manufacturers' and Technologists' Conference was hosted jointly by NASA Langley (LaRC) and the Federal Aviation Administration (FAA) in Williamsburg, Virginia, on October 18 to 20, 1988. The meeting was co-chaired by Dr. Roland Bowles of LaRC and Herbrt Schlickenmaier of the FAA. The purpose of the meeting was to transfer significant, ongoing results gained during the second year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.

  15. Airborne Wind Shear Detection and Warning Systems. Fourth Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Passman, Robert H. (Compiler)

    1992-01-01

    The Fourth Combined Manufacturers' and Technologists' Conference was hosted jointly by NASA Langley Research Center (LaRC) and the Federal Aviation Administration (FAA) in Williamsburg, Virginia, on April 14-16, 1992. The meeting was co-chaired by Dr. Roland Bowles of LaRC and Bob Passman of the FAA. The purpose of the meeting was to transfer significant ongoing results of the NASA/FAA Joint Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements. The present document has been compiled to record the essence of the technology updates and discussions which follow each.

  16. Airborne rain mapping radar

    NASA Technical Reports Server (NTRS)

    Wilson, W. J.; Parks, G. S.; Li, F. K.; Im, K. E.; Howard, R. J.

    1988-01-01

    An airborne scanning radar system for remote rain mapping is described. The airborne rain mapping radar is composed of two radar frequency channels at 13.8 and 24.1 GHz. The radar is proposed to scan its antenna beam over + or - 20 deg from the antenna boresight; have a swath width of 7 km; a horizontal spatial resolution at nadir of about 500 m; and a range resolution of 120 m. The radar is designed to be applicable for retrieving rainfall rates from 0.1-60 mm/hr at the earth's surface, and for measuring linear polarization signatures and raindrop's fall velocity.

  17. The new UA1 calorimeter trigger processor

    SciTech Connect

    Baird, S.A.; Campbell, D.; Cawthraw, M.; Coughlan, J.; Flynn, P.; Galagadera, S.; Grayer, G.; Halsall, R.; Shah, T.P.; Stephens, R.

    1989-02-01

    The UA1 First Level Trigger Processor (TP) is a fast digital machine with a highly parallel pipelined architecture of fast TTL combinational and programmable logic controlled by programmable microsequencers. The TP uses 100,000 IC's housed in 18 crates each containing 21 fastbus sized modules. It is hardwired with a very high level of interconnection. The energy deposited in the upgraded calorimeter is digitised into 1700 bytes of input data every beam crossing. The Processor selects in 1.5 microseconds events for further processing. The new electron trigger has improved hadron jet rejection, achieved by requiring low energy deposition around the electro-magnetic cluster. A missing transverse energy trigger and a total energy trigger have also been implemented.

  18. JEFX 10 demonstration of Cooperative Hunter Killer UAS and upstream data fusion

    NASA Astrophysics Data System (ADS)

    Funk, Brian K.; Castelli, Jonathan C.; Watkins, Adam S.; McCubbin, Christopher B.; Marshall, Steven J.; Barton, Jeffrey D.; Newman, Andrew J.; Peterson, Cammy K.; DeSena, Jonathan T.; Dutrow, Daniel A.; Rodriguez, Pedro A.

    2011-05-01

    The Johns Hopkins University Applied Physics Laboratory deployed and demonstrated a prototype Cooperative Hunter Killer (CHK) Unmanned Aerial System (UAS) capability and a prototype Upstream Data Fusion (UDF) capability as participants in the Joint Expeditionary Force Experiment 2010 in April 2010. The CHK capability was deployed at the Nevada Test and Training Range to prosecute a convoy protection operational thread. It used mission-level autonomy (MLA) software applied to a networked swarm of three Raven hunter UAS and a Procerus Miracle surrogate killer UAS, all equipped with full motion video (FMV). The MLA software provides the capability for the hunter-killer swarm to autonomously search an area or road network, divide the search area, deconflict flight paths, and maintain line of sight communications with mobile ground stations. It also provides an interface for an operator to designate a threat and initiate automatic engagement of the target by the killer UAS. The UDF prototype was deployed at the Maritime Operations Center at Commander Second Fleet, Naval Station Norfolk to provide intelligence analysts and the ISR commander with a common fused track picture from the available FMV sources. It consisted of a video exploitation component that automatically detected moving objects, a multiple hypothesis tracker that fused all of the detection data to produce a common track picture, and a display and user interface component that visualized the common track picture along with appropriate geospatial information such as maps and terrain as well as target coordinates and the source video.

  19. Comparative study of tracking performance in an airborne tracking radar simulator using global positioning system versus monopulse radar techniques

    NASA Astrophysics Data System (ADS)

    Nguyen, Joseph H.; Holley, William D.; Gagnon, Garry

    1993-10-01

    This paper attempts to address the tracking accuracy between the two systems under test. A monopulse radar model was developed to theoretically calculate the would-be measured angle and angle variances. Essentially, measurements of the target's angle, angle variances, range and range rate from the monopulse radar receiver of an aircraft are assessed against the tracking performance of an airborne simulator which uses the time, space, position information (TSPI) delivered from a global positioning system (GPS) system. The accuracy of measurements from a monopulse radar primarily depends on the signal-to-noise ratio (SNR), distance from target in this case, but information received from the GPS Space Vehicle would be virtually jamfree, and independent of distance. Tracking using GPS data however requires good data link between airborne participants. The simulation fidelity becomes an issue when the target is in close range track. The monopulse random slope error and target glint become significant, while the resolution from GPS data links remains the same.

  20. The Airborne Cloud-Aerosol Transport System. Part I; Overview and Description of the Instrument and Retrival Algorithms

    NASA Technical Reports Server (NTRS)

    Yorks, John E.; Mcgill, Matthew J.; Scott, V. Stanley; Kupchock, Andrew; Wake, Shane; Hlavka, Dennis; Hart, William; Selmer, Patrick

    2014-01-01

    The Airborne Cloud-Aerosol Transport System (ACATS) is a multi-channel Doppler lidar system recently developed at NASA Goddard Space Flight Center (GSFC). A unique aspect of the multi-channel Doppler lidar concept such as ACATS is that it is also, by its very nature, a high spectral resolution lidar (HSRL). Both the particulate and molecular scattered signal can be directly and unambiguously measured, allowing for direct retrievals of particulate extinction. ACATS is therefore capable of simultaneously resolving the backscatterextinction properties and motion of a particle from a high altitude aircraft. ACATS has flown on the NASA ER-2 during test flights over California in June 2012 and science flights during the Wallops Airborne Vegetation Experiment (WAVE) in September 2012. This paper provides an overview of the ACATS method and instrument design, describes the ACATS retrieval algorithms for cloud and aerosol properties, and demonstrates the data products that will be derived from the ACATS data using initial results from the WAVE project. The HSRL retrieval algorithms developed for ACATS have direct application to future spaceborne missions such as the Cloud-Aerosol Transport System (CATS) to be installed on the International Space Station (ISS). Furthermore, the direct extinction and particle wind velocity retrieved from the ACATS data can be used for science applications such 27 as dust or smoke transport and convective outflow in anvil cirrus clouds.

  1. Snow measurement system for airborne snow surveys (GPR system from helicopter) in high mountian areas.

    NASA Astrophysics Data System (ADS)

    Sorteberg, Hilleborg K.

    2010-05-01

    In the hydropower industry, it is important to have precise information about snow deposits at all times, to allow for effective planning and optimal use of the water. In Norway, it is common to measure snow density using a manual method, i.e. the depth and weight of the snow is measured. In recent years, radar measurements have been taken from snowmobiles; however, few energy supply companies use this method operatively - it has mostly been used in connection with research projects. Agder Energi is the first Norwegian power producer in using radar tecnology from helicopter in monitoring mountain snow levels. Measurement accuracy is crucial when obtaining input data for snow reservoir estimates. Radar screening by helicopter makes remote areas more easily accessible and provides larger quantities of data than traditional ground level measurement methods. In order to draw up a snow survey system, it is assumed as a basis that the snow distribution is influenced by vegetation, climate and topography. In order to take these factors into consideration, a snow survey system for fields in high mountain areas has been designed in which the data collection is carried out by following the lines of a grid system. The lines of this grid system is placed in order to effectively capture the distribution of elevation, x-coordinates, y-coordinates, aspect, slope and curvature in the field. Variation in climatic conditions are also captured better when using a grid, and dominant weather patterns will largely be captured in this measurement system.

  2. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  3. Large and small UAS for trace gas measurements in climate change studies

    NASA Astrophysics Data System (ADS)

    Elkins, J. W.; Moore, F. L.; Hintsa, E. J.; D'Amore, P.; Dutton, G. S.; Nance, J. D.; Hall, B. D.; Gao, R. S.

    2014-12-01

    NOAA and CIRES scientists have used Unmanned Aircraft Systems (UAS) for the measurement of trace gases involved in climate change since 2005, including both high altitude-long endurance (HALE UAS: NASA Altair & Global Hawk) and 1-m wingspan, small UAS (sUAS: SkyWisp, Aero). These gases include nitrous oxide (N2O), sulfur hexafluoride (SF6), methane (CH4), ozone (O3), carbon monoxide (CO), hydrogen (H2), and water vapor (H2O). In particular, atmospheric N2O is the third strongest greenhouse gas (326 parts-per-billion, ppb) and is the largest increasing stratospheric ozone depleting gas in terms of future emissions (~4 Tg N2O-N yr-1), primarily from fertilizer use. Atmospheric SF6, another potent greenhouse gas, is present globally at 8.2 parts-per-trillion (ppt) and growing at a rate of 0.25 ppt yr-1, and is used primarily in electrical power distribution. It is an excellent indicator of transport timescales (e.g., mean age) in the troposphere and stratosphere, because of its source distribution (~95% emitted in NH), long atmospheric lifetime (~600-3200 yr), and large relative atmospheric growth rate (~3%). We have developed atmospheric instrumentation for HALE platforms using a two-channel gas chromatograph with an ozone photometer and a water vapor tunable diode laser spectrometer. We are currently investigating a sUAS glider (SkyWisp) for balloon-assisted high altitude flights (30 km) and propeller driven sUAS (Aero) as a test bed for a new autopilot (Pixhawk, 3DRobotics). Our motivation for utilizing this autopilot is a low cost, open source autopilot alternative that can be used to return AirCore samples from high altitude balloons for quick laboratory analysis. The goal is a monitoring program to understand transport changes as a result of climate change during different seasons at many locations from a balloon-borne package (Moore et al., BAMS, pp. 147-155, Jan. 2014). The glider version of our open source autopilot system is also being considered for a

  4. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  5. Formal methods and their role in digital systems validation for airborne systems

    NASA Technical Reports Server (NTRS)

    Rushby, John

    1995-01-01

    This report is based on one prepared as a chapter for the FAA Digital Systems Validation Handbook (a guide to assist FAA certification specialists with advanced technology issues). Its purpose is to explain the use of formal methods in the specification and verification of software and hardware requirements, designs, and implementations; to identify the benefits, weaknesses, and difficulties in applying these methods to digital systems used in critical applications; and to suggest factors for consideration when formal methods are offered in support of certification. The presentation concentrates on the rationale for formal methods and on their contribution to assurance for critical applications within a context such as that provided by DO-178B (the guidelines for software used on board civil aircraft); it is intended as an introduction for those to whom these topics are new.

  6. Sensor System Performance Evaluation and Benefits from the NPOESS Airborne Sounder Testbed-Interferometer (NAST-I)

    NASA Technical Reports Server (NTRS)

    Larar, A.; Zhou, D.; Smith, W.

    2009-01-01

    Advanced satellite sensors are tasked with improving global-scale measurements of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring, and environmental change detection. Validation of the entire measurement system is crucial to achieving this goal and thus maximizing research and operational utility of resultant data. Field campaigns employing satellite under-flights with well-calibrated FTS sensors aboard high-altitude aircraft are an essential part of this validation task. The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed-Interferometer (NAST-I) has been a fundamental contributor in this area by providing coincident high spectral/spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This paper focuses on some of the challenges associated with validating advanced atmospheric sounders and the benefits obtained from employing airborne interferometers such as the NAST-I. Select results from underflights of the Aqua Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) obtained during recent field campaigns will be presented.

  7. Airborne exposure to trihalomethanes from tap water in homes with refrigeration-type and evaporative cooling systems.

    PubMed

    Kerger, Brent D; Suder, David R; Schmidt, Chuck E; Paustenbach, Dennis J

    2005-03-26

    This study evaluates airborne concentrations of common trihalomethane compounds (THM) in selected living spaces of homes supplied with chlorinated tap water containing >85 ppb total THM. Three small homes in an arid urban area were selected, each having three bedrooms, a full bath, and approximately 1000 square feet; two homes had standard (refrigeration-type) central air conditioning and the third had a central evaporative cooling system ("swamp cooler"). A high-end water-use pattern was used at each home in this exposure simulation. THM were concurrently measured on 4 separate test days in tap water and air in the bathroom, living room, the bedroom closest to the bathroom, and outside using Summa canisters. Chloroform (trichloromethane, TCM), bromodichloromethane (BDCM), and dibromochloromethane (DBCM) concentrations were quantified using U.S. EPA Method TO-14. The apparent volatilization fraction consistently followed the order: TCM > BDCM > DBCM. Relatively low airborne THM concentrations (similar to outdoors) were found in the living room and bedroom samples for the home with evaporative cooling, while the refrigeration-cooled homes showed significantly higher THM levels (three- to fourfold). This differential remained after normalizing the air concentrations based on estimated THM throughput or water concentrations. These findings indicate that, despite higher throughput of THM-containing water in homes using evaporative coolers, the higher air exchange rates associated with these systems rapidly clears THM to levels similar to ambient outdoor concentrations.

  8. Airborne retrieval of cirrus cloud optical and microphysical properties using Airborne Remote Earth Sensing System 5.1-5.3 and 3.7-μm channel data

    NASA Astrophysics Data System (ADS)

    Ou, S. C.; Liou, K. N.; Yang, P.; Rolland, P.; Caudill, T. R.; Lisowski, J.; Morrison, B.

    1998-09-01

    We present an airborne retrieval algorithm to infer cirrus cloud temperature, optical depth, and mean effective sizes using the Airborne Remote Earth Sensing System (ARES) hyperspectral spectrometer data for the 5.1-5.3 and 3.7 μm channels. The algorithm, development and the selection of the channels are based on the principle and parameterization of radiative transfer involving cirrus clouds and the associated atmospheric and surface properties. It has been applied to a selected case of the ARES data collected over the western Boston area on September 16, 1995. Validation of the retrieved parameters was carried out using the collocated and coincident ground-based 8.6-mm radar data and ice crystal size distribution measurements obtained from the 2D-P probe on board the high-altitude reconnaissance platform (HARP). We show that the retrieved cirrus cloud temperature, mean effective ice crystal size, and optical depth match closely with those derived from the observations.

  9. UAVSAR - A New Airborne L-Band Radar for Repeat Pass Interferometry

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.; Lou, Yunling

    2009-01-01

    NASA/JPL has developed a new airborne Synthetic Aperture Radar (SAR) which has become available for use by the scientific community in January, 2009. Pod mounted, the UAVSAR was designed to be portable among a variety of aircraft, including unmanned aerial systems (UAS). The instrument operates in the L-Band, has a resolution under 2m from a GPS altitude of 12Km and a swath width of approximately 20Km. UAVSAR currently flies on a modified Gulfstream-III aircraft, operated by NASA s Dryden Flight Research Center at Edwards, California. The G-III platform enables repeat-pass interferometric measurements, by using a modified autopilot and precise kinematic differential GPS to repeatedly fly the aircraft within a specified 10m tube. The antenna is electronically steered along track to assure that the antenna beam can be directed independently, regardless of speed and wind direction. The instrument can be controlled remotely, AS AN OPTION, using the Research Environment for Vehicle Embedded Analysis on Linux (REVEAL). This allows simulation of the telepresence environment necessary for flight on UAS. Potential earth science research and applications include surface deformation, volcano studies, ice sheet dynamics, and vegetation structure.

  10. A study on airborne integrated display system and human information processing

    NASA Technical Reports Server (NTRS)

    Mizumoto, K.; Iwamoto, H.; Shimizu, S.; Kuroda, I.

    1983-01-01

    The cognitive behavior of pilots was examined in an experiment involving mock ups of an eight display electronic attitude direction indicator for an airborne integrated display. Displays were presented in digital, analog digital, and analog format to experienced pilots. Two tests were run, one involving the speed of memorization in a single exposure and the other comprising two five second exposures spaced 30 sec apart. Errors increased with the speed of memorization. Generally, the analog information was assimilated faster than the digital data, with regard to the response speed. Information processing was quantified as 25 bits for the first five second exposure and 15 bits during the second.

  11. Kīlauea June 27th Lava Flow Hazard Mapping and Disaster Response with UAS

    NASA Astrophysics Data System (ADS)

    Turner, N.; Perroy, R. L.; Hon, K. A.; Rasgado, V.

    2015-12-01

    In June of 2014, pāhoehoe lava flows from the Púu ´Ō´ō eruption began threatening communities and infrastructure on eastern Hawaii Island. During the subsequent declared state of emergency by Hawaii Civil Defense and temporary flight restriction by the Federal Aviation Administration (FAA), we used a small fixed-wing Unmanned Aircraft System (UAS) to collect high spatial and temporal resolution imagery over the active flow in support of natural hazard assessment by emergency managers. Integration of our UAS into busy airspace, populated by emergency aircraft and tour helicopters, required close operational coordination with the FAA and local operators. We logged >80 hours of UAS flight operations between October 2014 and March 2015, generating a dense time-series of 4-5 cm resolution imagery and derived topographic datasets using structure from motion. These data were used to monitor flow activity, document pre- and post- lava flow damage, identify hazardous areas for first responders, and model lava flow paths in complex topography ahead of the active flow front. Turnaround times for delivered spatial data products improved from 24-48 hours at the beginning of the study to ~2-4 hours by the end. Data from this project are being incorporated into cloud computing applications to shorten delivery time and extract useful analytics regarding lava flow hazards in near real-time. The lessons learned from this event have advanced UAS integration in disaster operations in U.S. airspace and show the high potential UAS hold for natural hazards assessment and real-time emergency management.

  12. A system to geometrically rectify and map airborne scanner imagery and to estimate ground area. [by computer

    NASA Technical Reports Server (NTRS)

    Spencer, M. M.; Wolf, J. M.; Schall, M. A.

    1974-01-01

    A system of computer programs were developed which performs geometric rectification and line-by-line mapping of airborne multispectral scanner data to ground coordinates and estimates ground area. The system requires aircraft attitude and positional information furnished by ancillary aircraft equipment, as well as ground control points. The geometric correction and mapping procedure locates the scan lines, or the pixels on each line, in terms of map grid coordinates. The area estimation procedure gives ground area for each pixel or for a predesignated parcel specified in map grid coordinates. The results of exercising the system with simulated data showed the uncorrected video and corrected imagery and produced area estimates accurate to better than 99.7%.

  13. A Multispectral Image Creating Method for a New Airborne Four-Camera System with Different Bandpass Filters

    PubMed Central

    Li, Hanlun; Zhang, Aiwu; Hu, Shaoxing

    2015-01-01

    This paper describes an airborne high resolution four-camera multispectral system which mainly consists of four identical monochrome cameras equipped with four interchangeable bandpass filters. For this multispectral system, an automatic multispectral data composing method was proposed. The homography registration model was chosen, and the scale-invariant feature transform (SIFT) and random sample consensus (RANSAC) were used to generate matching points. For the difficult registration problem between visible band images and near-infrared band images in cases lacking manmade objects, we presented an effective method based on the structural characteristics of the system. Experiments show that our method can acquire high quality multispectral images and the band-to-band alignment error of the composed multiple spectral images is less than 2.5 pixels. PMID:26205264

  14. Use of Unmanned Aircraft Systems in Observations of Glaciers, Ice Sheets, Sea Ice and Snow Fields

    NASA Astrophysics Data System (ADS)

    Herzfeld Mayer, M. U.

    2015-12-01

    Unmanned Aircraft Systems (UAS) are being used increasingly in observations of the Earth, especially as such UAS become smaller, lighter and hence less expensive. In this paper, we present examples of observations of snow fields, glaciers and ice sheets and of sea ice in the Arctic that have been collected from UAS. We further examine possibilities for instrument miniaturization, using smaller UAS and smaller sensors for collecting data. The quality and type of data is compared to that of satellite observations, observations from manned aircraft and to measurements made during field experiments on the ground. For example, a small UAS can be sent out to observe a sudden event, such as a natural catastrophe, and provide high-resolution imagery, but a satellite has the advantage of providing the same type of data over much of the Earth's surface and for several years, but the data is generally of lower resolution. Data collected on the ground typically have the best control and quality, but the survey area is usually small. Here we compare micro-topographic measurements made on snow fields the Colorado Rocky Mountains with airborne and satellite data.

  15. Use of a Prototype Airborne Separation Assurance System for Resolving Near-Term Conflicts During Autonomous Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Eischeid, Todd M.; Palmer, Michael T.; Wing, David J.

    2003-01-01

    NASA is currently investigating a new concept of operations for the National Airspace System, designed to improve capacity while maintaining or improving current levels of safety. This concept, known as Distributed Air/Ground Traffic Management (DAGTM), allows appropriately equipped autonomous aircraft to maneuver freely for flight optimization while resolving conflicts with other traffic and staying out of special use airspace and hazardous weather. In order to perform these tasks, pilots use prototype conflict detection, prevention, and resolution tools, collectively known as an Airborne Separation Assurance System (ASAS). While ASAS would normally allow pilots to resolve conflicts before they become hazardous, evaluation of system performance in sudden, near-term conflicts is needed in order to determine concept feasibility. An experiment was conducted in NASA Langley's Air Traffic Operations Lab to evaluate the prototype ASAS for enabling pilots to resolve near-term conflicts and examine possible operational effects associated with the use of lower separation minimums. Sixteen commercial airline pilots flew a total of 32 traffic scenarios that required them to use prototype ASAS tools to resolve close range pop-up conflicts. Required separation standards were set at either 3 or 5 NM lateral spacing, with 1000 ft vertical separation being used for both cases. Reducing the lateral separation from 5 to 3 NM did not appear to increase operational risk, as indicated by the proximity to the intruder aircraft. Pilots performed better when they followed tactical guidance cues provided by ASAS than when they didn't follow the guidance. In an effort to improve compliance rate, ASAS design changes are currently under consideration. Further studies will of evaluate these design changes and consider integration issues between ASAS and existing Airborne Collision Avoidance Systems (ACAS).

  16. Ursolic acid (UA): A metabolite with promising therapeutic potential.

    PubMed

    Kashyap, Dharambir; Tuli, Hardeep Singh; Sharma, Anil K

    2016-02-01

    Plants are known to produce a variety of bioactive metabolites which are being used to cure various life threatening and chronic diseases. The molecular mechanism of action of such bioactive molecules, may open up new avenues for the scientific community to develop or improve novel therapeutic approaches to tackle dreadful diseases such as cancer and cardiovascular and neurodegenerative disorders. Ursolic acid (UA) is one among the categories of such plant-based therapeutic metabolites having multiple intracellular and extracellular targets that play role in apoptosis, metastasis, angiogenesis and inflammatory processes. Moreover, the synthetic derivatives of UA have also been seen to be involved in a range of pharmacological applications, which are associated with prevention of diseases. Evidences suggest that UA could be used as a potential candidate to develop a comprehensive competent strategy towards the treatment and prevention of health disorders. The review article herein describes the possible therapeutic effects of UA along with putative mechanism of action. PMID:26775565

  17. Evolving subglacial water systems in East Antarctica from airborne radar sounding

    NASA Astrophysics Data System (ADS)

    Carter, Sasha Peter

    The cold, lightless, and high pressure aquatic environment at the base of the East Antarctic Ice Sheet is of interest to a wide range of disciplines. Stable subglacial lakes and their connecting channels remain perennially liquid three kilometers below some of the coldest places on Earth. The presence of subglacial water impacts flow of the overlying ice and provides clues to the geologic properties of the bedrock below, and may harbor unique life forms which have evolved out of contact with the atmosphere for millions of years. Periodic release of water from this system may impact ocean circulation at the margins of the ice sheet. This research uses airborne radar sounding, with its unique ability to infer properties within and at the base of the ice sheet over large spatial scales, to locate and characterize this unique environment. Subglacial lakes, the primary storage mechanism for subglacial water, have been located and classified into four categories on the basis of the radar reflection properties from the sub-ice interface: Definite lakes are brighter than their surroundings by at least two decibels (relatively bright), and are both consistently reflective (specular) and have a reflection coefficient greater than -10 decibels (absolutely bright). Dim lakes are relatively bright and specular but not absolutely bright, possibly indicating non-steady dynamics in the overlying ice. Fuzzy lakes are both relatively and absolutely bright, but not specular, and may indicate saturated sediments or high frequency spatially heterogeneous distributions of sediment and liquid water (i.e. a braided steam). Indistinct lakes are absolutely bright and specular but no brighter than their surroundings. Lakes themselves and the different classes of lakes are not arranged randomly throughout Antarctica but are clustered around ice divides, ice stream onsets and prominent bedrock troughs, with each cluster demonstrating a different characteristic lake classification distribution

  18. Using the MicroASAR on the NASA SIERRA UAS in the Characterization of Arctic Sea Ice Experiment

    NASA Technical Reports Server (NTRS)

    Zaugg, Evan; Long, David; Edwards, Matthew; Fladeland, Matthew; Kolyer, Richard; Crocker, Ian; Maslanik, James; Herzfeld, Ute; Wallin, Bruce

    2010-01-01

    The MicroASAR is a flexible, robust SAR system built on the successful legacy of the BYU microSAR. It is a compact LFM-CW SAR system designed for low-power operation on small, manned aircraft or UAS. The NASA SIERRA UAS was designed to test new instruments and support flight experiments. NASA used the MicroASAR on the SIERRA during a science field campaign in 2009 to study sea ice roughness and break-up in the Arctic and high northern latitudes. This mission is known as CASIE-09 (Characterization of Arctic Sea Ice Experiment 2009). This paper describes the MicroASAR and its role flying on the SIERRA UAS platform as part of CASIE-09.

  19. Active airborne infrared laser system for identification of surface rock and minerals

    NASA Technical Reports Server (NTRS)

    Kahle, A. B.; Shumate, M. S.; Nash, D. B.

    1984-01-01

    Emissivity and reflectivity in the thermal infrared spectral region (8-13 microns) may be used to discriminate among rocks and minerals. Although considerable success has been achieved in remote sensing classification of rock types based on emissivity measurements made with NASA's Thermal Infreared Multispectral Scanner (TIMS), classification based on reflectivity offers several advantages: much narrower bandwidths are used, higher signal to noise ratios are possible, and measurements are little affected by surface temperature. As a demonstration, an airborne CO2 laser instrument was flown along the margin of Death Valley, California. Measurements of spectral reflectance collected with this device were compared with emissivity measurements made with the TIMS. Data from either instrument provided the means for recognizing boundaries between geologic units including different rock types and fan surfaces of different ages.

  20. Intelligent Hardware-Enabled Sensor and Software Safety and Health Management for Autonomous UAS

    NASA Technical Reports Server (NTRS)

    Rozier, Kristin Y.; Schumann, Johann; Ippolito, Corey

    2015-01-01

    Unmanned Aerial Systems (UAS) can only be deployed if they can effectively complete their mission and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. We propose to design a real-time, onboard system health management (SHM) capability to continuously monitor essential system components such as sensors, software, and hardware systems for detection and diagnosis of failures and violations of safety or performance rules during the ight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and software signals; (2) signal analysis, preprocessing, and advanced on-the- y temporal and Bayesian probabilistic fault diagnosis; (3) an unobtrusive, lightweight, read-only, low-power hardware realization using Field Programmable Gate Arrays (FPGAs) in order to avoid overburdening limited computing resources or costly re-certi cation of ight software due to instrumentation. No currently available SHM capabilities (or combinations of currently existing SHM capabilities) come anywhere close to satisfying these three criteria yet NASA will require such intelligent, hardwareenabled sensor and software safety and health management for introducing autonomous UAS into the National Airspace System (NAS). We propose a novel approach of creating modular building blocks for combining responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. Our proposed research program includes both developing this novel approach and demonstrating its capabilities using the NASA Swift UAS as a demonstration platform.

  1. Aerosol/Radiation, VNIR/NIR/TIR Imaging, Net Solar and Longwave Radiation, Meteorological Fluxes, Atmospheric Dropsonde, and Ocean Temperature/Salinity Microbuoy Payloads for Earth Observations Using a Manta Unmanned Aerial System (UAS)

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Gao, R. S.; Murphy, D. M.; Telg, H.; Brown, S.; Dhakai, T.; Zappa, C. J.; Stalin, S.

    2014-12-01

    Several new payloads have been developed for use in the Manta UAS. The NOAA/PMEL aerosol payload (Atmos. Meas. Tech., 6, 2115-2120, 2013) has been expanded to include a printed optical particle spectrometer to obtain aerosol size distributions and an upward looking radiometer to measure radiant flux densities through aerosol layers. Lamont-Doherty Earth Observatory (LDEO) has improved its visible and infrared imaging payload to provide precise measurements of ice/snow/ocean surface temperatures accurate to 0.1°C. LDEO has also developed a number of new payloads that include: i) hyperspectral aberration-corrected imaging spectrometers to measure VNIR (400-1000 nm) and NIR (900-1700 nm) spectral radiance of the upper-ocean and sea ice to determine ocean color, ice-age distributions and ice-surface type; ii) up- and downward-looking hemispheric pyrgeometers and pyranometers to measure the net longwave and net shortwave radiation for ice-ocean albedo studies with an onboard visible camera to determine the sea ice fraction and whitecapping; iii) meteorological measurements of turbulent momentum, sensible, and latent fluxes as well as wave height, ice freeboard, and surface roughness with a LIDAR; iv) four dropsonde-microbuoys (DMB) that can be deployed from the Manta. The four DMB measure temperature, pressure, and relative humidity as they descend through the atmosphere. Once they land on the ocean's surface, they deploy a string of sensors that measures temperature and salinity of the upper three meters of the ocean. The ocean sensors telemeter data back to the UAS on subsequent flights. The DMB can also be dropped on an ice flow to measure the rate of the ice movement. Details of these payloads and example data will be reported.

  2. Integration of a synthetic vision system with airborne laser range scanner-based terrain referenced navigation for precision approach guidance

    NASA Astrophysics Data System (ADS)

    Uijt de Haag, Maarten; Campbell, Jacob; van Graas, Frank

    2005-05-01

    Synthetic Vision Systems (SVS) provide pilots with a virtual visual depiction of the external environment. When using SVS for aircraft precision approach guidance systems accurate positioning relative to the runway with a high level of integrity is required. Precision approach guidance systems in use today require ground-based electronic navigation components with at least one installation at each airport, and in many cases multiple installations to service approaches to all qualifying runways. A terrain-referenced approach guidance system is envisioned to provide precision guidance to an aircraft without the use of ground-based electronic navigation components installed at the airport. This autonomy makes it a good candidate for integration with an SVS. At the Ohio University Avionics Engineering Center (AEC), work has been underway in the development of such a terrain referenced navigation system. When used in conjunction with an Inertial Measurement Unit (IMU) and a high accuracy/resolution terrain database, this terrain referenced navigation system can provide navigation and guidance information to the pilot on a SVS or conventional instruments. The terrain referenced navigation system, under development at AEC, operates on similar principles as other terrain navigation systems: a ground sensing sensor (in this case an airborne laser scanner) gathers range measurements to the terrain; this data is then matched in some fashion with an onboard terrain database to find the most likely position solution and used to update an inertial sensor-based navigator. AEC's system design differs from today's common terrain navigators in its use of a high resolution terrain database (~1 meter post spacing) in conjunction with an airborne laser scanner which is capable of providing tens of thousands independent terrain elevation measurements per second with centimeter-level accuracies. When combined with data from an inertial navigator the high resolution terrain database and

  3. UAS Modeling of the Communication Links Study Results

    NASA Technical Reports Server (NTRS)

    Birr, Richard; Murray, Jennifer; Girgis, nancy

    2011-01-01

    There were many links calculated for this and the other scenarios. The rain was analyzed for 99.9% availability with rain rated of none, 20 mm/hr and 90 mm/hr at a height of 5 km out to 25 NM. This was done for each scenario for LOS and for BLOS links for Scenario 5 and 6. Scenario 1 was a LOS-only scenario. Use of two 3 dB Antennas on both ends. The CS2 was unable to maintain a control RF Link during the flight. The largest access gap periods between object top and bottom UA antennae were caused by terrain (ridges and hills). The CS Antenna was changed to High Gain Directional Antenna, all three CS maintained lock on vehicle. There were RF dropouts between the top and bottom UA antennae caused by aircraft obstructions (fuselage, wings, wheel assembles, etc.). Note that for this study antenna locations were placed on top and bottom center of the UA body. Future study should include actual UA antenna locations on the aircraft providing manufactures are willing to provide information. The importance of CS location(s) was demonstrated for primary or backup CS. With a second backup CS placed in a suitable location the UA was able to maintain an overall RF link. The actual location of both backup CSs required the antenna location to be place 150 ft above ground in order to establish a RF link between the UA and CS.

  4. The development of a power spectral density processor for C and L band airborne radar scatterometer sensor systems

    NASA Technical Reports Server (NTRS)

    Harrison, D. A., III; Chladek, J. T.

    1983-01-01

    A real-time signal processor was developed for the NASA/JSC L-and C-band airborne radar scatterometer sensor systems. The purpose of the effort was to reduce ground data processing costs. Conversion of two quadrature channels of data (like and cross polarized) was made to obtain Power Spectral Density (PSD) values. A chirp-z transform (CZT) approach was used to filter the Doppler return signal and improved high frequency and angular resolution was realized. The processors have been tested with record signals and excellent results were obtained. CZT filtering can be readily applied to scatterometers operating at other wavelengths by altering the sample frequency. The design of the hardware and software and the results of the performance tests are described in detail.

  5. Detection of coastal and submarine discharge on the Florida Gulf Coast with an airborne thermal-infrared mapping system

    USGS Publications Warehouse

    Raabe, Ellen; Stonehouse, David; Ebersol, Kristin; Holland, Kathryn; Robbins, Lisa

    2011-01-01

    Along the Gulf Coast of Florida north of Tampa Bay lies a region characterized by an open marsh coast, low topographic gradient, water-bearing limestone, and scattered springs. The Floridan aquifer system is at or near land surface in this region, discharging water at a consistent 70-72°F. The thermal contrast between ambient water and aquifer discharge during winter months can be distinguished using airborne thermal-infrared imagery. An airborne thermal-infrared mapping system was used to collect imagery along 126 miles of the Gulf Coast from Jefferson to Levy County, FL, in March 2009. The imagery depicts a large number of discharge locations and associated warm-water plumes in ponds, creeks, rivers, and nearshore waters. A thermal contrast of 6°F or more was set as a conservative threshold for identifying sites, statistically significant at the 99% confidence interval. Almost 900 such coastal and submarine-discharge locations were detected, averaging seven to nine per mile along this section of coast. This represents approximately one hundred times the number of previously known discharge sites in the same area. Several known coastal springs in Taylor and Levy Counties were positively identified with the imagery and were used to estimate regional discharge equivalent to one 1st-order spring, discharging 100 cubic feet per second or more, for every two miles of coastline. The number of identified discharge sites is a conservative estimate and may represent two-thirds of existing features due to low groundwater levels at time of overflight. The role of aquifer discharge in coastal and estuarine health is indisputable; however, mapping and quantifying discharge in a complex karst environment can be an elusive goal. The results of this effort illustrate the effectiveness of the instrument and underscore the influence of coastal springs along this stretch of the Florida coast.

  6. C2 Link Security for UAS: Technical Literature Study and Preliminary Functional Requirements. Version 0.9 (Working Draft)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This document provides a study of the technical literature related to Command and Control (C2) link security for Unmanned Aircraft Systems (UAS) for operation in the National Airspace System (NAS). Included is a preliminary set of functional requirements for C2 link security.

  7. Architecture for persistent surveillance using mast and UAS-based autonomous sensing with bio-inspired technologies

    NASA Astrophysics Data System (ADS)

    Burman, Jerry

    2014-06-01

    A sophisticated real time architecture for capturing relevant battlefield information of personnel and terrestrial events from a network of mast based imaging and unmanned aerial systems (UAS) with target detection, tracking, classification and visualization is presented. Persistent surveillance of personnel and vehicles is achieved using a unique spatial and temporally invariant motion detection and tracking algorithm for mast based cameras in combination with aerial remote sensing to autonomously monitor unattended ground based sensor networks. UAS autonomous routing is achieved using bio-inspired algorithms that mimic how bacteria locate nutrients in their environment. Results include field test data, performance and lessons learned. The technology also has application to detecting and tracking low observables (manned and UAS), counter MANPADS, airport bird detection and search and rescue operations.

  8. Use of UAS to Support Management in Precision Agriculture: The AggieAir Experience

    NASA Astrophysics Data System (ADS)

    McKee, M.; Torres-Rua, A. F.; ELarab, M.; Hassan Esfahani, L.; Jensen, A.

    2015-12-01

    Remote sensing applications for precision agriculture depend on acquiring actionable information at high spatial resolution and at a temporal frequency appropriate for timely responses. Unmanned aerial systems (UAS) are capable of providing such imagery for use in various applications for precision agriculture (yield estimation, evapotranspiration, etc.). AggieAirTM, a UAS platform and sensory array, was designed and developed at Utah State University to acquire high-resolution imagery (0.15m -0.6 m) in the visual, near infrared, red edge, and thermal infrared spectra. Spectral data obtained from AggieAir are used to develop soil moisture, plant chlorophyll, leaf nitrogen and actual evapotranspiration estimates to support management in precision agriculture. This presentation will focus on experience in using the AggieAir system to provide information products of possible interest in precision agriculture. The discussion will include information about the direction and rate of development of UAS technology and the current and anticipated future state of the regulatory environment for use of these systems in the U.S.

  9. Benefits of Sharing Information from Commercial Airborne Forward-Looking Sensors in the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Schaffner, Philip R.; Harrah, Steven; Neece, Robert T.

    2012-01-01

    The air transportation system of the future will need to support much greater traffic densities than are currently possible, while preserving or improving upon current levels of safety. Concepts are under development to support a Next Generation Air Transportation System (NextGen) that by some estimates will need to support up to three times current capacity by the year 2025. Weather and other atmospheric phenomena, such as wake vortices and volcanic ash, constitute major constraints on airspace system capacity and can present hazards to aircraft if encountered. To support safe operations in the NextGen environment advanced systems for collection and dissemination of aviation weather and environmental information will be required. The envisioned NextGen Network Enabled Weather (NNEW) infrastructure will be a critical component of the aviation weather support services, providing access to a common weather picture for all system users. By taking advantage of Network Enabled Operations (NEO) capabilities, a virtual 4-D Weather Data Cube with aviation weather information from many sources will be developed. One new source of weather observations may be airborne forward-looking sensors, such as the X-band weather radar. Future sensor systems that are the subject of current research include advanced multi-frequency and polarimetric radar, a variety of Lidar technologies, and infrared imaging spectrometers.

  10. Using a fixed-wing UAS to map snow depth distribution: an evaluation at peak accumulation

    NASA Astrophysics Data System (ADS)

    De Michele, Carlo; Avanzi, Francesco; Passoni, Daniele; Barzaghi, Riccardo; Pinto, Livio; Dosso, Paolo; Ghezzi, Antonio; Gianatti, Roberto; Della Vedova, Giacomo

    2016-03-01

    We investigate snow depth distribution at peak accumulation over a small Alpine area ( ˜ 0.3 km2) using photogrammetry-based surveys with a fixed-wing unmanned aerial system (UAS). These devices are growing in popularity as inexpensive alternatives to existing techniques within the field of remote sensing, but the assessment of their performance in Alpine areas to map snow depth distribution is still an open issue. Moreover, several existing attempts to map snow depth using UASs have used multi-rotor systems, since they guarantee higher stability than fixed-wing systems. We designed two field campaigns: during the first survey, performed at the beginning of the accumulation season, the digital elevation model of the ground was obtained. A second survey, at peak accumulation, enabled us to estimate the snow depth distribution as a difference with respect to the previous aerial survey. Moreover, the spatial integration of UAS snow depth measurements enabled us to estimate the snow volume accumulated over the area. On the same day, we collected 12 probe measurements of snow depth at random positions within the case study to perform a preliminary evaluation of UAS-based snow depth. Results reveal that UAS estimations of point snow depth present an average difference with reference to manual measurements equal to -0.073 m and a RMSE equal to 0.14 m. We have also explored how some basic snow depth statistics (e.g., mean, standard deviation, minima and maxima) change with sampling resolution (from 5 cm up to ˜ 100 m): for this case study, snow depth standard deviation (hence coefficient of variation) increases with decreasing cell size, but it stabilizes for resolutions smaller than 1 m. This provides a possible indication of sampling resolution in similar conditions.

  11. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  12. Cognitive context detection in UAS operators using eye-gaze patterns on computer screens

    NASA Astrophysics Data System (ADS)

    Mannaru, Pujitha; Balasingam, Balakumar; Pattipati, Krishna; Sibley, Ciara; Coyne, Joseph

    2016-05-01

    In this paper, we demonstrate the use of eye-gaze metrics of unmanned aerial systems (UAS) operators as effective indices of their cognitive workload. Our analyses are based on an experiment where twenty participants performed pre-scripted UAS missions of three different difficulty levels by interacting with two custom designed graphical user interfaces (GUIs) that are displayed side by side. First, we compute several eye-gaze metrics, traditional eye movement metrics as well as newly proposed ones, and analyze their effectiveness as cognitive classifiers. Most of the eye-gaze metrics are computed by dividing the computer screen into "cells". Then, we perform several analyses in order to select metrics for effective cognitive context classification related to our specific application; the objective of these analyses are to (i) identify appropriate ways to divide the screen into cells; (ii) select appropriate metrics for training and classification of cognitive features; and (iii) identify a suitable classification method.

  13. A UAS-based remote sensing platform for crop water stress detection

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Wang, D.; Ayars, J. E.

    2014-12-01

    The remote detection of water stress in a biofuel crop field was investigated using canopy temperature measurements. An experimental trial was set up in the central valley of Maui, Hawaii, comprising different sugarcane varieties and irrigation regimes. An unmanned aerial system (UAS) was equipped with a FLIR A615 thermal camera to acquire canopy temperature imagery. Images were mosaicked and processed to show spatial temperature difference of entire field. A weather station was installed in a full irrigation plot to collect meteorological parameters. The sensitivity of canopy to air temperature difference and crop water stress index were investigated on detecting cop water stress levels. The results showed that low irrigation level treatment plots resulted in higher canopy temperatures compared to the high irrigation level treatment plots. Canopy temperatures also showed differences in water stress in different sugarcane varieties. The study demonstrated the feasibility of UAS-based thermal method to quantify plant water status of sugar canes used for biofuel crops.

  14. Airborne Fraunhofer line discriminator (FLD) luminescence imaging systems and its application to exploration problems

    USGS Publications Warehouse

    Watson, Robert D.; Theisen, Arnold F.; Hemphill, William R.; Barringer, Anthony R.

    1980-01-01

    Experiments with an imaging airborne Fraunhofer line discriminator (FLD) are being conducted to establish the feasibility of delineating the areal extent of luminescent materials on the earth's surface from aircraft and spacecraft. All luminescence measurements are related to a standard set of conditions with rhodamine wt dye used as a reference standard. The FLD has a minimum detectable rhodamine wt concentration of 0.1 parts per billion (ppb) at a signal-to-noise ratio of 5.0. Luminescence, when expressed in a signal-to-noise ratio (R) is related to equivalent ppb rhodamine wt through the relationship ppb=(0.1R-0.4). Luminescent materials imaged from an aircraft altitude of approximately 2400 m above terrain include fluorite in association with molybdenum, Pinenut Mountains, Nevada (R=62.0); mineralized playas, Claunch, New Mexico (R=960.0); uranium and vanadium-bearing outcrops, Big Indian Valley, Utah (R=105.0); uranophane sandstones, Sandia Mountains, New Mexico (R=60.0); phosphate outcrops, Pine Mountain, California (R=76.0); and marine oil slicks, Santa Barbara Channel, California (R=24.0). Correlation between the amount of fluorite in the rocks and soils of the Pinenut Mountains and luminescence, measured by the FLD, is as high as 0.88 at the 95 percent confidence level.

  15. A real-time monitoring system for airborne particle shape and size analysis

    NASA Astrophysics Data System (ADS)

    Kaye, P. H.; Alexander-Buckley, K.; Hirst, E.; Saunders, S.; Clark, J. M.

    1996-08-01

    This paper describes a new instrument for the study of airborne particles. The instrument performs a rapid analysis of the transient spatial intensity distribution of laser-light scattered by individual aerosol particles drawn from an ambient environment and uses this to characterize the particles in terms of both size and shape parameters. Analyses are carried out at peak particle throughput rates of up to 10,000 particles per second, and semiquantitative data relating to the size and shape (or more correctly asymmetry) spectra of the sampled particles are provided to the user via a graphical display which is refreshed or updated at 5-s intervals. In addition to the real-time display of data, continuous data recording allows subsequent replay of measurements at either normal or high speed. Preliminary experimental results are given for aerosols of both spherical and nonspherical particle types, and these suggest the instrument may find use in environmental monitoring of aerosols or clouds where some real-time semiquantitative assessment of particulate size and shape spectra may be desirable as an aid to characterizing the aerosol and its constituent particulate species.

  16. Man-Machine Interaction Design and Analysis System (MIDAS): Memory Representation and Procedural Implications for Airborne Communication Modalities

    NASA Technical Reports Server (NTRS)

    Corker, Kevin M.; Pisanich, Gregory M.; Lebacqz, Victor (Technical Monitor)

    1996-01-01

    The Man-Machine Interaction Design and Analysis System (MIDAS) has been under development for the past ten years through a joint US Army and NASA cooperative agreement. MIDAS represents multiple human operators and selected perceptual, cognitive, and physical functions of those operators as they interact with simulated systems. MIDAS has been used as an integrated predictive framework for the investigation of human/machine systems, particularly in situations with high demands on the operators. Specific examples include: nuclear power plant crew simulation, military helicopter flight crew response, and police force emergency dispatch. In recent applications to airborne systems development, MIDAS has demonstrated an ability to predict flight crew decision-making and procedural behavior when interacting with automated flight management systems and Air Traffic Control. In this paper we describe two enhancements to MIDAS. The first involves the addition of working memory in the form of an articulatory buffer for verbal communication protocols and a visuo-spatial buffer for communications via digital datalink. The second enhancement is a representation of multiple operators working as a team. This enhanced model was used to predict the performance of human flight crews and their level of compliance with commercial aviation communication procedures. We show how the data produced by MIDAS compares with flight crew performance data from full mission simulations. Finally, we discuss the use of these features to study communications issues connected with aircraft-based separation assurance.

  17. Application of UAS photogrammetry for assessment of flood driven fluvial dynamics of montane stream. Case study - Roklansky creek, Sumava Mts.

    NASA Astrophysics Data System (ADS)

    Langhammer, Jakub; Miřijovský, Jakub; Hartvich, Filip; Kaiglová, Jana

    2014-05-01

    Current progress in hydrology and fluvial geomorphology is largely based on new field survey and analysis techniques, employing advanced technologies for monitoring the dynamics of the runoff process, field surveying and for remote monitoring of changes in riverbeds and of fluvial dynamics. Application of these techniques allows researchers to obtain information on a significantly higher qualitative level than using traditional methods of field survey and measurement, either in terms of spatial accuracy and resolution, frequency of sampling or qualitative characteristics of acquired data. The contribution demonstrates the potential of Unmanned Aerial Systems (UAS) for analysis of fluvial dynamics of montane stream, driven by flood in combination with other survey techniques, namely the ground LiDAR scanning, digital granulometry and automated water level monitoring. The UAS photogrammetry is employed in the study to acquire high precision DTMs, enabling reconstruction of riverbed and quantitative analysis of volumetric changes related to initial flood events. The hexacopter UAS platform has been used to acquire the data for photogrammetric analysis of complex stretch of stream with historically elevated fluvial dynamics. The photogrammetric reconstruction enabled to build accurate DTM of riverbed and floodplain before and after the initial event and to calculate the extent of volumetric changes. The potential of UAS photogrammetry for fluvio morphological study is in combination with other monitoring and survey techniques, enabling complex analysis of fluvial dynamics. The magnitude, duration and hydrological properties of initial flood event were derived from automated high frequency water level monitoring. The digital granulometry enabled to analyze the structure of sedimentary material in floodplain. The terrestrial LiDAR scanning allows construction of very detailed 3D models of selected fluvial forms, enabling deeper insight into the effects of fluvial

  18. Functional Requirements Document for HALE UAS Operations in the NAS: Step 1. Version 3

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The purpose of this Functional Requirements Document (FRD) is to compile the functional requirements needed to achieve the Access 5 Vision of "operating High Altitude, Long Endurance (HALE) Unmanned Aircraft Systems (UAS) routinely, safely, and reliably in the national airspace system (NAS)" for Step 1. These functional requirements could support the development of a minimum set of policies, procedures and standards by the Federal Aviation Administration (FAA) and various standards organizations. It is envisioned that this comprehensive body of work will enable the FAA to establish and approve regulations to govern safe operation of UAS in the NAS on a routine or daily "file and fly" basis. The approach used to derive the functional requirements found within this FRD was to decompose the operational requirements and objectives identified within the Access 5 Concept of Operations (CONOPS) into the functions needed to routinely and safely operate a HALE UAS in the NAS. As a result, four major functional areas evolved to enable routine and safe UAS operations for an on-demand basis in the NAS. These four major functions are: Aviate, Navigate, Communicate, and Avoid Hazards. All of the functional requirements within this document can be directly traceable to one of these four major functions. Some functions, however, are traceable to several, or even all, of these four major functions. These cross-cutting functional requirements support the "Command / Control: function as well as the "Manage Contingencies" function. The requirements associated to these high-level functions and all of their supporting low-level functions are addressed in subsequent sections of this document.

  19. Assessing Spectrum Compatibility for Beyond-Line-of-Sight UAS Control and Non-Payload Communications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Wilson, Jeffrey D.; Bishop, William D.

    2014-01-01

    In order to provide for the safe integration of unmanned aircraft systems (UAS) into the National Airspace System (NAS), the control and non-payload communications (CNPC) link must be highly reliable. A specific requirement is that it must operate using aviation safety radiofrequency spectrum. Two types of links are required - line-of-sight (LOS) using terrestrial-based communications and beyond-line-of-sight (BLOS) using satellite communications. The 2012 World Radiocommunication Conference (WRC-12) provided a suitable allocation for LOS CNPC spectrum in the 5030 to 5091 MHz band which, when combined with a previously existing allocation fulfills the LOS spectrum requirement. The 5030 to 5091 MHz band is also allocated for BLOS CNPC, but since a significant portion of that band is required for LOS CNPC, additional BLOS spectrum is required. More critically, there are no satellites in operation or in development to provide such services in that band. Hence BLOS CNPC cannot be provided in protected aviation spectrum under current conditions. To fill this gap and enable integration of UAS into the NAS, it has been proposed to allow CNPC to operate over certain Fixed Satellite Service (FSS) bands in which many satellites currently provide commercial services. To enable this, changes in international regulation must be enacted. Agenda Item 1.5 of the 2015 WRC examines the possible regulatory changes needed. As part of the examination process, sharing between potential UAS using satellite communications for BLOS CNPC and other services allocated to the FSS bands being considered must be studied. This paper reviews the technical requirements and approach being undertaken for these sharing studies, with emphasis on study of interference from UAS into digital repeater links operating under the Fixed Service allocation. These studies are being conducted by NASA Glenn Research Center.

  20. Assessing Spectrum Compatibility for Beyond-Line-of-Sight UAS Control and Non-Payload Communications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Wilson, Jeffrey D.; Bishop, William D.

    2014-01-01

    In order to provide for the safe integration of unmanned aircraft systems (UAS) into the National Airspace System (NAS), the control and non-payload communications (CNPC) link must be highly reliable. A specific requirement is that it must operate using aviation safety radiofrequency spectrum. Two types of links are required - line-of-sight (LOS) using terrestrial-based communications and beyond-line- of-sight (BLOS) using satellite communications. The 2012 World Radiocommunication Conference (WRC-12) provided a suitable allocation for LOS CNPC spectrum in the 5030-5091 MHz band which, when combined with a previously existing allocation fulfills the LOS spectrum requirement. The 5030- 5091 MHz band is also allocated for BLOS CNPC, but since a significant portion of that band is required for LOS CNPC, additional BLOS spectrum is required. More critically, there are no satellites in operation or in development to provide such services in that band. Hence BLOS CNPC cannot be provided in protected aviation spectrum under current conditions. To fill this gap and enable integration of UAS into the NAS, it has been proposed to allow CNPC to operate over certain Fixed Satellite Service (FSS) bands in which many satellites currently provide commercial services. To enable this, changes in international regulation must be enacted. Agenda Item 1.5 of the 2015 WRC examines the possible regulatory changes needed. As part of the examination process, sharing between potential UAS using satellite communications for BLOS CNPC and other services allocated to the FSS bands being considered must be studied. This paper reviews the technical requirements and approach being undertaken for these sharing studies, with emphasis on study of interference from UAS into digital repeater links operating under the Fixed Service allocation. These studies are being conducted by NASA Glenn Research Center.

  1. Effect of central ventilation and air conditioner system on the concentration and health risk from airborne polycyclic aromatic hydrocarbons.

    PubMed

    Lv, Jinze; Zhu, Lizhong

    2013-03-01

    Central ventilation and air conditioner systems are widely utilized nowadays in public places for air exchange and temperature control, which significantly influences the transfer of pollutants between indoors and outdoors. To study the effect of central ventilation and air conditioner systems on the concentration and health risk from airborne pollutants, a spatial and temporal survey was carried out using polycyclic aromatic hydrocarbons (PAHs) as agent pollutants. During the period when the central ventilation system operated without air conditioning (AC-off period), concentrations of 2-4 ring PAHs in the model supermarket were dominated by outdoor levels, due to the good linearity between indoor air and outdoor air (r(p) > 0.769, p < 0.05), and the slopes (1.2-4.54) indicated that ventilating like the model supermarket increased the potential health risks from low molecular weight PAHs. During the period when the central ventilation and air conditioner systems were working simultaneously (AC-on period), although the total levels of PAHs were increased, the concentrations and percentage of the particulate PAHs indoors declined significantly. The BaP equivalency (BaPeq) concentration indicated that utilization of air conditioning reduced the health risks from PAHs in the model supermarket. PMID:23923426

  2. Final Report DE-EE0005380: Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems

    SciTech Connect

    Ling, Hao; Hamilton, Mark F.; Bhalla, Rajan; Brown, Walter E.; Hay, Todd A.; Whitelonis, Nicholas J.; Yang, Shang-Te; Naqvi, Aale R.

    2013-09-30

    Offshore wind energy is a valuable resource that can provide a significant boost to the US renewable energy portfolio. A current constraint to the development of offshore wind farms is the potential for interference to be caused by large wind farms on existing electronic and acoustical equipment such as radar and sonar systems for surveillance, navigation and communications. The US Department of Energy funded this study as an objective assessment of possible interference to various types of equipment operating in the marine environment where offshore wind farms could be installed. The objective of this project was to conduct a baseline evaluation of electromagnetic and acoustical challenges to sea surface, subsurface and airborne electronic systems presented by offshore wind farms. To accomplish this goal, the following tasks were carried out: (1) survey electronic systems that can potentially be impacted by large offshore wind farms, and identify impact assessment studies and research and development activities both within and outside the US, (2) engage key stakeholders to identify their possible concerns and operating requirements, (3) conduct first-principle modeling on the interactions of electromagnetic signals with, and the radiation of underwater acoustic signals from, offshore wind farms to evaluate the effect of such interactions on electronic systems, and (4) provide impact assessments, recommend mitigation methods, prioritize future research directions, and disseminate project findings. This report provides a detailed description of the methodologies used to carry out the study, key findings of the study, and a list of recommendations derived based the findings.

  3. Helmet-Mounted Display Research Capabilities of the NASA/Army Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL)

    NASA Technical Reports Server (NTRS)

    Jacobsen, R. A.; Bivens, C. C.; Rediess, N. A.; Hindson, W. S.; Aiken, E. W.; Aiken, Edwin W. (Technical Monitor)

    1995-01-01

    The Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) is a UH-60A Black Hawk helicopter that is being modified by the US Army and NASA for flight systems research. The principal systems that are being installed in the aircraft are a Helmet Mounted Display (HMD) and imaging system, and a programmable full authority Research Flight Control System (RFCS). In addition, comprehensive instrumentation of both the rigid body of the helicopter and the rotor system is provided. The paper will describe the capabilities of these systems and their current state of development. A brief description of initial research applications is included. The wide (40 X 60 degree) field-of-view HMD system has been provided by Kaiser Electronics. It can be configured as a monochromatic system for use in bright daylight conditions, a two color system for darker ambients, or a full color system for use in night viewing conditions. Color imagery is achieved using field sequential video and a mechanical color wheel. In addition to the color symbology, high resolution computer-gene rated imagery from an onboard Silicon Graphics Reality Engine Onyx processor is available for research in virtual reality applications. This synthetic imagery can also be merged with real world video from a variety of imaging systems that can be installed easily on the front of the helicopter. These sensors include infrared or tv cameras, or potentially small millimeter wave radars. The Research Flight Control System is being developed for the aircraft by a team of contractors led by Boeing Helicopters. It consists of a full authority high bandwidth fly-by-wire actuators that drive the main rotor swashplate actuators and the tail rotor actuator in parallel. This arrangement allows the basic mechanical flight control system of the Black Hawk to be retained so that the safety pilot can monitor the operation of the system through the action of his own controls. The evaluation pilot will signal the fly

  4. Enhancement Strategies for Frame-To Uas Stereo Visual Odometry

    NASA Astrophysics Data System (ADS)

    Kersten, J.; Rodehorst, V.

    2016-06-01

    Autonomous navigation of indoor unmanned aircraft systems (UAS) requires accurate pose estimations usually obtained from indirect measurements. Navigation based on inertial measurement units (IMU) is known to be affected by high drift rates. The incorporation of cameras provides complementary information due to the different underlying measurement principle. The scale ambiguity problem for monocular cameras is avoided when a light-weight stereo camera setup is used. However, also frame-to-frame stereo visual odometry (VO) approaches are known to accumulate pose estimation errors over time. Several valuable real-time capable techniques for outlier detection and drift reduction in frame-to-frame VO, for example robust relative orientation estimation using random sample consensus (RANSAC) and bundle adjustment, are available. This study addresses the problem of choosing appropriate VO components. We propose a frame-to-frame stereo VO method based on carefully selected components and parameters. This method is evaluated regarding the impact and value of different outlier detection and drift-reduction strategies, for example keyframe selection and sparse bundle adjustment (SBA), using reference benchmark data as well as own real stereo data. The experimental results demonstrate that our VO method is able to estimate quite accurate trajectories. Feature bucketing and keyframe selection are simple but effective strategies which further improve the VO results. Furthermore, introducing the stereo baseline constraint in pose graph optimization (PGO) leads to significant improvements.

  5. Digital Elevation Model from Non-Metric Camera in Uas Compared with LIDAR Technology

    NASA Astrophysics Data System (ADS)

    Dayamit, O. M.; Pedro, M. F.; Ernesto, R. R.; Fernando, B. L.

    2015-08-01

    Digital Elevation Model (DEM) data as a representation of surface topography is highly demanded for use in spatial analysis and modelling. Aimed to that issue many methods of acquisition data and process it are developed, from traditional surveying until modern technology like LIDAR. On the other hands, in a past four year the development of Unamend Aerial System (UAS) aimed to Geomatic bring us the possibility to acquire data about surface by non-metric digital camera on board in a short time with good quality for some analysis. Data collectors have attracted tremendous attention on UAS due to possibility of the determination of volume changes over time, monitoring of the breakwaters, hydrological modelling including flood simulation, drainage networks, among others whose support in DEM for proper analysis. The DEM quality is considered as a combination of DEM accuracy and DEM suitability so; this paper is aimed to analyse the quality of the DEM from non-metric digital camera on UAS compared with a DEM from LIDAR corresponding to same geographic space covering 4 km2 in Artemisa province, Cuba. This area is in a frame of urban planning whose need to know the topographic characteristics in order to analyse hydrology behaviour and decide the best place for make roads, building and so on. Base on LIDAR technology is still more accurate method, it offer us a pattern for test DEM from non-metric digital camera on UAS, whose are much more flexible and bring a solution for many applications whose needs DEM of detail.

  6. Global Test Range: Toward Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.; Freudinger, Larry; DelFrate John H.

    2008-01-01

    This viewgraph presentation reviews the planned global sensor network that will monitor the Earth's climate, and resources using airborne sensor systems. The vision is an intelligent, affordable Earth Observation System. Global Test Range is a lab developing trustworthy services for airborne instruments - a specialized Internet Service Provider. There is discussion of several current and planned missions.

  7. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    PHARUS (phased array universal SAR) is an airborne SAR concept which is being developed in the Netherlands. The PHARUS system differs from other airborne SARs by the use of a phased array antenna, which provides both for the flexibility in the design as well as for a compact, light-weight instrument that can be carried on small aircraft. The concept allows for the construction of airborne SAR systems on a common generic basis but tailored to specific user needs and can be seen as a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna. The whole approach is aimed at providing an economic and yet technically sophisticated solution to remote sensing or surveying needs of a specific user. The solid state phased array antenna consists of a collection of radiating patches; the design flexibility for a large part resides in the freedom to choose the number of patches, and thereby the essential radar performance parameters such as resolution and swath width. Another consequence of the use of the phased array antenna is the system's compactness and the possibility to rigidly mount it on a small aircraft. The use of small aircraft of course considerably improves the cost/benefit ratio of the use of airborne SAR. Flight altitude of the system is flexible between about 7,000 and 40,000 feet, giving much operational freedom within the meteo and airspace control limits. In the PHARUS concept the airborne segment is complemented by a ground segment, which consists of a SAR processor, possibly extended by a matching image processing package. (A quick look image is available in real-time on board the aircraft.) The SAR processor is UNIX based and runs on easily available hardware (SUN station). Although the additional image processing software is available, the SAR processing software is nevertheless designed to be able to interface with commercially available image processing software, as well as being able

  8. UAS Related Activities at NASA's Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey E.

    2009-01-01

    NASA s Dryden Flight Research Center is completing its refurbishment and initial flights of one the pre-production Global Hawk aircraft it received from the U.S. Air Force. NASA Dryden has an agreement with the Global Hawk s manufacturer, Northrop Grumman, to partner in the refurbishment and flight operations of the vehicles. The National Oceanic and Atmospheric Administration (NOAA) has also partnered on the project and is assisting NASA with project management and pilot responsibilities for the aircraft. NASA and NOAA will be using the Global Hawks to conduct earth science research. The earth science community is increasing utilizing UAS of all sizes and capabilities to collect important data on a variety of issues including important global climate change issues. To pursue the data collection needs of the science community there is a growing demand for international collaboration with respect to operating UAS in global airspace. Operations of NASA s Ikhana aircraft continued this past year. The Ikhana is a modified Predator B UAS. A UAS dedicated to research at NASA Dryden is the X-48B blended wing body research aircraft. Flight tests with the 500- pound, remotely piloted test vehicle are now in a block 4 phase involving parameter identification and maneuvers to research the limits of the engine in stall situations. NASA s participation in the blended wing body research effort is focused on fundamental, advanced flight dynamics and structural design concepts within the Subsonic Fixed Wing project, part of the Fundamental Aeronautics program managed through NASA s Aeronautics Research Mission Directorate. Potential benefits of the aircraft include increased volume for carrying capacity, efficient aerodynamics for reduced fuel burn and possibly significant reductions in noise due to propulsion integration options. NASA Dryden continues to support the UAS industry by facilitating access to three specially designated test areas on Edwards Air Force Base for the

  9. Ikhana: A NASA UAS Supporting Long Duration Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent R.

    2007-01-01

    The NASA Ikhana unmanned aerial vehicle (UAV) is a General Atomics Aeronautical Systems Inc. (San Diego, California) MQ-9 Predator-B modified to support the conduct of Earth science missions for the NASA Science Mission Directorate and, through partnerships, other government agencies and universities. It can carry over 2000 lb of experiment payloads in the avionics bay and external pods and is capable of mission durations in excess of 24 hours at altitudes above 40,000 ft. The aircraft is remotely piloted from a mobile ground control station (GCS) that is designed to be deployable by air, land, or sea. On-board support capabilities include an instrumentation system and an Airborne Research Test System (ARTS). The Ikhana project will complete GCS development, science support systems integration, external pod integration and flight clearance, and operations crew training in early 2007. A large-area remote sensing mission is currently scheduled for Summer 2007.

  10. Air Traffic Controller Performance and Acceptability of Multiple UAS in a Simulated NAS Environment

    NASA Technical Reports Server (NTRS)

    Vu, Kim-Phuong L.; Strybel, Thomas; Chiappe, Dan; Morales, Greg; Battiste, Vernol; Shively, Robert Jay

    2014-01-01

    Previously, we showed that air traffic controllers (ATCos) rated UAS pilot verbal response latencies as acceptable when a 1.5 s delay was added to the UAS pilot responses, but a 5 s delay was rated as mostly unacceptable. In the present study we determined whether a 1.5 s added delay in the UAS pilots' verbal communications would affect ATCos interactions with UAS and other conventional aircraft when the number and speed of the UAS were manipulated. Eight radar-certified ATCos participated in this simulation. The ATCos managed a medium altitude sector containing arrival aircraft, en route aircraft, and one to four UAS. The UAS were conducting a surveillance mission and flew at either a "slow" or "fast" speed. We measured both UAS and conventional pilots' verbal communication latencies, and obtained ATCos' acceptability ratings for these latencies. Although the UAS pilot response latencies were longer than those of conventional pilots, the ATCos rated UAS pilot verbal communication latencies to be as acceptable as those of conventional pilots. Because the overall traffic load within the sector was held constant, ATCos only performed slightly worse when multiple UAS were in their sector compared to when only one UAS was in the sector. Implications of these findings for UAS integration in the NAS are discussed.

  11. Improvement of energy efficiency via spectrum optimization of excitation sequence for multichannel simultaneously triggered airborne sonar system

    NASA Astrophysics Data System (ADS)

    Meng, Qing-Hao; Yao, Zhen-Jing; Peng, Han-Yang

    2009-12-01

    Both the energy efficiency and correlation characteristics are important in airborne sonar systems to realize multichannel ultrasonic transducers working together. High energy efficiency can increase echo energy and measurement range, and sharp autocorrelation and flat cross correlation can help eliminate cross-talk among multichannel transducers. This paper addresses energy efficiency optimization under the premise that cross-talk between different sonar transducers can be avoided. The nondominated sorting genetic algorithm-II is applied to optimize both the spectrum and correlation characteristics of the excitation sequence. The central idea of the spectrum optimization is to distribute most of the energy of the excitation sequence within the frequency band of the sonar transducer; thus, less energy is filtered out by the transducers. Real experiments show that a sonar system consisting of eight-channel Polaroid 600 series electrostatic transducers excited with 2 ms optimized pulse-position-modulation sequences can work together without cross-talk and can measure distances up to 650 cm with maximal 1% relative error.

  12. Improvement of energy efficiency via spectrum optimization of excitation sequence for multichannel simultaneously triggered airborne sonar system.

    PubMed

    Meng, Qing-Hao; Yao, Zhen-Jing; Peng, Han-Yang

    2009-12-01

    Both the energy efficiency and correlation characteristics are important in airborne sonar systems to realize multichannel ultrasonic transducers working together. High energy efficiency can increase echo energy and measurement range, and sharp autocorrelation and flat cross correlation can help eliminate cross-talk among multichannel transducers. This paper addresses energy efficiency optimization under the premise that cross-talk between different sonar transducers can be avoided. The nondominated sorting genetic algorithm-II is applied to optimize both the spectrum and correlation characteristics of the excitation sequence. The central idea of the spectrum optimization is to distribute most of the energy of the excitation sequence within the frequency band of the sonar transducer; thus, less energy is filtered out by the transducers. Real experiments show that a sonar system consisting of eight-channel Polaroid 600 series electrostatic transducers excited with 2 ms optimized pulse-position-modulation sequences can work together without cross-talk and can measure distances up to 650 cm with maximal 1% relative error.

  13. Use of Airborne Multi-Spectral Imagery in Pest Management Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scientists and researchers have been developing, integrating, and evaluating multiple strategies and technologies into a systems approach for management of field crop insect pests. Remote sensing along with Global Positioning Systems, Geographic Information Systems, and variable rate technology are...

  14. GLORI (GLObal navigation satellite system Reflectometry Instrument): A New Airborne GNSS-R receiver for land surface applications

    NASA Astrophysics Data System (ADS)

    Motte, Erwan; Zribi, Mehrez; Fanise, Pascal

    2015-04-01

    GLORI (GLObal navigation satellite system Reflectometry Instrument) is a new receiver dedicated to the airborne measurement of surface parameters such as soil moisture and biomass above ground and sea state (wave height and direction) above oceans. The instrument is based on the PARIS concept [Martin-Neira, 1993] using both the direct and surface-reflected L-band signals from the GPS constellation as a multistatic radar source. The receiver is based on one up-looking and one down-looking dual polarization hemispherical active antennas feeding a low-cost 4-channel SDR direct down-conversion receiver tuned to the GPS L1 frequency. The raw measurements are sampled at 16.368MHz and stored as 2-bit, IQ binary files. In post-processing, GPS acquisition and tracking are performed on the direct up-looking signal while the down-looking signal is processed blindly using tracking parameters from the direct signal. The obtained direct and reflected code-correlation waveforms are the basic observables for geophysical parameters inversion. The instrument was designed to be installed aboard the ATR42 experimental aircraft from the French SAFIRE fleet as a permanent payload. The long term goal of the project is to provide real-time continuous surface information for every flight performed. The aircraft records attitude information through its Inertial Measurement Unit and a commercial GPS receiver records additional information such as estimated doppler and code phase, receiver location, satellites azimuth and elevation. A series of test flights were performed over both the Toulouse and Gulf of Lion (Mediterranean Sea) regions during the period 17-21 Nov 2014 together with the KuROS radar [Hauser et al., 2014]. Using processing methods from the literature [Egido et al., 2014], preliminary results demonstrate the instrument sensitivity to both ground and ocean surface parameters estimation. A dedicated scientific flight campaign is planned at the end of second quarter 2015 with

  15. An intuitive graphical user interface for small UAS

    NASA Astrophysics Data System (ADS)

    Stroumtsos, Nicholas; Gilbreath, Gary; Przybylski, Scott

    2013-05-01

    Thousands of small UAVs are in active use by the US military and are generally operated by trained but not necessarily skilled personnel. The user interfaces for these devices often seem to be more engineering-focused than usability-focused, which can lead to operator frustration, poor mission effectiveness, reduced situational awareness, and sometimes loss of the vehicle. In addition, coordinated control of both air and ground vehicles is a frequently desired objective, usually with the intent of increasing situational awareness for the ground vehicle. The Space and Naval Warfare Systems Center Pacific (SSCPAC) is working under a Naval Innovative Science and Engineering project to address these topics. The UAS currently targeted are the Raven/Puma/Wasp family of air vehicles as they are small, all share the same communications protocol, and are in wide-spread use. The stock ground control station (GCS) consists of a hand control unit, radio, interconnect hub, and laptop. The system has been simplified to an X-box controller, radio and a laptop, resulting in a smaller hardware footprint, but most importantly the number of personnel required to operate the system has been reduced from two to one. The stock displays, including video with text overlay on one and FalconView on the other, are replaced with a single, graphics-based, integrated user interface, providing the user with much improved situational awareness. The SSCPAC government-developed GCS (the Multi-robot Operator Control Unit) already has the ability to control ground robots and this is leveraged to realize simultaneous multi-vehicle operations including autonomous UAV over-watch for enhanced UGV situational awareness.

  16. Concept and design of a UAS-based platform for measurements of RF signal-in-space

    NASA Astrophysics Data System (ADS)

    Schrader, Thorsten; Bredemeyer, Jochen; Mihalachi, Marius; Rohde, Jan; Kleine-Ostmann, Thomas

    2016-09-01

    Field strength or signal-in-space (SIS) measurements have been performed by using manned helicopters, aircrafts or from ground level using extendable masts. With the availability of unmanned aerial systems (UAS) such as multicopters a new versatile platform for SIS measurements is deployable. Larger types show up to eight individually driven electric motors and controllers (therefore called octocopter). They provide the ability to fly along predefined traces, to hover at waypoints and to initiate other actions when those have been reached. They provide self-levelling and stabilisation and moreover, they may gear at a point of interest regardless of their actual position, e.g. during their flight around a tower. Their payload mainly depends on the platform size and allows integration of complex measurement equipment. Upgrading their navigation capabilities including state-of-the-art global navigation satellite system (GNSS) and ground station transmitter (real-time kinematic - RTK) enables precise localisation of the UAS. For operation in electromagnetic harsh environments a shielding can be considered and integrated into the concept. This paper describes concept and design of an octocopter and its instrumentation, along with applications in recent projects, in which we measure and validate terrestrial navigation systems applied in air traffic and the weather forecast services. Among those are instrumentation landing systems (ILS), VHF omnidirectional radio ranges (VOR), airport traffic and weather radars as well as military surveillance radars, and UHF wind profilers. Especially to investigate the possible interaction of VORs and radars with single wind turbines (WT) or wind power plants has become a major request of economy, military and politics. Here, UAS can be deployed to deliver measurement data investigating this interaction. Once developed and setup to a certain extent, UAS are easy and cost-efficient to operate. Nonetheless, due to their compact size, UAS

  17. Summary of flight tests of an airborne lighting locator system and comparison with ground-based measurements of precipitation and turbulence

    NASA Technical Reports Server (NTRS)

    Fisher, B. D.; Crabill, N. L.

    1981-01-01

    Data from an airborne lightning locator system and data relating to storm intensity obtained by ground-based Doppler radars and the S-band research radar are presented. When comparing lightning locations from the airborne lightning locator system with ground-based Doppler radar measurements of reflectivity and spectrum width, the lightning locations tended to be further from the aircraft position than the Doppler radar contours, but at the same relative bearing from the aircraft as the Doppler contours. The results also show that convective storms generate little or no lightning for a significant part of their life cycle, but can produce at least moderate turbulence. Therefore, it is concluded that a lack of lightning activity cannot be accepted as an inference of a corresponding lack of other hazards to the flight of aircraft through convective storms.

  18. Comparison of three distinct surgical clothing systems for protection from air-borne bacteria: A prospective observational study

    PubMed Central

    2012-01-01

    Background To prevent surgical site infection it is desirable to keep bacterial counts low in the operating room air during orthopaedic surgery, especially prosthetic surgery. As the air-borne bacteria are mainly derived from the skin flora of the personnel present in the operating room a reduction could be achieved by using a clothing system for staff made from a material fulfilling the requirements in the standard EN 13795. The aim of this study was to compare the protective capacity between three clothing systems made of different materials – one mixed cotton/polyester and two polyesters - which all had passed the tests according to EN 13795. Methods Measuring of CFU/m3 air was performed during 21 orthopaedic procedures performed in four operating rooms with turbulent, mixing ventilation with air flows of 755 – 1,050 L/s. All staff in the operating room wore clothes made from the same material during each surgical procedure. Results The source strength (mean value of CFU emitted from one person per second) calculated for the three garments were 4.1, 2.4 and 0.6 respectively. In an operating room with an air flow of 755 L/s both clothing systems made of polyester reduced the amount of CFU/m3 significantly compared to the clothing system made from mixed material. In an operating room with air intake of 1,050 L/s a significant reduction was only achieved with the polyester that had the lowest source strength. Conclusions Polyester has a better protective capacity than cotton/polyester. There is need for more discriminating tests of the protective efficacy of textile materials intended to use for operating garment. PMID:23068884

  19. MAPSAR Image Simulation Based on L-band Polarimetric Data from the SAR-R99B Airborne Sensor (SIVAM System)

    PubMed Central

    Mura, José Claudio; Paradella, Waldir Renato; Dutra, Luciano Vieira; dos Santos, João Roberto; Rudorff, Bernardo Friedrich Theodor; de Miranda, Fernando Pellon; da Silva, Mario Marcos Quintino; da Silva, Wagner Fernando

    2009-01-01

    This paper describes the methodology applied to generate simulated multipolarized L-band SAR images of the MAPSAR (Multi-Application Purpose SAR) satellite from the airborne SAR R99B sensor (SIVAM System). MAPSAR is a feasibility study conducted by INPE (National Institute for Space Research) and DLR (German Aerospace Center) targeting a satellite L-band SAR innovative mission for assessment, management and monitoring of natural resources. Examples of simulated products and their applications are briefly discussed. PMID:22389590

  20. A survey of airborne radar systems for deployment on a High Altitude Powered Platform (HAPP)

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Leung, K. C.

    1979-01-01

    A survey was conducted to find out the system characteristics of commercially available and unclassified military radars suitable for deployment on a stationary platform. A total of ten domestic and eight foreign manufacturers of the radar systems were identified. Questionnaires were sent to manufacturers requesting information concerning the system characteristics: frequency, power used, weight, volume, power radiated, antenna pattern, resolution, display capabilities, pulse repetition frequency, and sensitivity. A literature search was also made to gather the system characteristics information. Results of the survey are documented and comparisons are made among available radar systems.

  1. Use of passive UAS imaging to measure biophysical parameters in a southern Rocky Mountain subalpine forest

    NASA Astrophysics Data System (ADS)

    Caldwell, M. K.; Sloan, J.; Mladinich, C. S.; Wessman, C. A.

    2013-12-01

    Unmanned Aerial Systems (UAS) can provide detailed, fine spatial resolution imagery for ecological uses not otherwise obtainable through standard methods. The use of UAS imagery for ecology is a rapidly -evolving field, where the study of forest landscape ecology can be augmented using UAS imagery to scale and validate biophysical data from field measurements to spaceborne observations. High resolution imagery provided by UAS (30 cm2 pixels) offers detailed canopy cover and forest structure data in a time efficient and inexpensive manner. Using a GoPro Hero2 (2 mm focal length) camera mounted in the nose cone of a Raven unmanned system, we collected aerial and thermal data monthly during the summer 2013, over two subalpine forests in the Southern Rocky Mountains in Colorado. These forests are dominated by lodgepole pine (Pinus ponderosae) and have experienced insect-driven (primarily mountain pine beetle; MPB, Dendroctonus ponderosae) mortality. Objectives of this study include observations of forest health variables such as canopy water content (CWC) from thermal imagery and leaf area index (LAI), biomass and forest productivity from the Normalized Difference Vegetation Index (NDVI) from UAS imagery. Observations were, validated with ground measurements. Images were processed using a combination of AgiSoft Photoscan professional software and ENVI remote imaging software. We utilized the software Leaf Area Index Calculator (LAIC) developed by Córcoles et al. (2013) for calculating LAI from digital images and modified to conform to leaf area of needle-leaf trees as in Chen and Cihlar (1996) . LAIC uses a K-means cluster analysis to decipher the RGB levels for each pixel and distinguish between green aboveground vegetation and other materials, and project leaf area per unit of ground surface area (i.e. half total needle surface area per unit area). Preliminary LAIC UAS data shows summer average LAI was 3.8 in the most dense forest stands and 2.95 in less dense

  2. Airborne Visible Laser Optical Communications Program (AVLOC)

    NASA Technical Reports Server (NTRS)

    Ward, J. H.

    1975-01-01

    The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.

  3. Analysis of airborne antenna systems using geometrical theory of diffraction and moment method computer codes

    NASA Technical Reports Server (NTRS)

    Hartenstein, Richard G., Jr.

    1985-01-01

    Computer codes have been developed to analyze antennas on aircraft and in the presence of scatterers. The purpose of this study is to use these codes to develop accurate computer models of various aircraft and antenna systems. The antenna systems analyzed are a P-3B L-Band antenna, an A-7E UHF relay pod antenna, and traffic advisory antenna system installed on a Bell Long Ranger helicopter. Computer results are compared to measured ones with good agreement. These codes can be used in the design stage of an antenna system to determine the optimum antenna location and save valuable time and costly flight hours.

  4. Airborne laser topographic mapping results

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Collins, J. G.; Link, L. E.; Swift, R. N.; Butler, M. L.

    1984-01-01

    The results of terrain mapping experiments utilizing the National Aeronautics and Space Administration (NASA) Airborne Oceanographic Lidar (AOL) over forested areas are presented. The flight tests were conducted as part of a joint NASA/U.S. Army Corps of Engineers (CE) investigation aimed at evaluating the potential of an airborne laser ranging system to provide cross-sectional topographic data on flood plains that are difficult and expensive to survey using conventional techniques. The data described in this paper were obtained in the Wolf River Basin located near Memphis, TN. Results from surveys conducted under winter 'leaves off' and summer 'leaves on' conditions, aspects of day and night operation, and data obtained from decidous and coniferous tree types are compared. Data processing techniques are reviewed. Conclusions relative to accuracy and present limitations of the AOL, and airborne lidar systems in general, to terrain mapping over forested areas are discussed.

  5. DETECTION AND IDENTIFICATION OF TOXIC AIR POLLUTANTS USING FIELD PORTABLE AND AIRBORNE REMOTE IMAGING SYSTEMS

    EPA Science Inventory

    Remote sensing technologies are a class of instrument and sensor systems that include laser imageries, imaging spectrometers, and visible to thermal infrared cameras. These systems have been successfully used for gas phase chemical compound identification in a variety of field e...

  6. Multispectral Imaging Systems for Airborne Remote Sensing to Support Agricultural Production Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing has shown promise as a tool for managing agricultural application and production. Earth-observing satellite systems have an advantage for large-scale analysis at regional levels but are limited in spatial resolution. High-resolution satellite systems have been available in recent year...

  7. Definition and trade-off study of reconfigurable airborne digital computer system organizations

    NASA Technical Reports Server (NTRS)

    Conn, R. B.

    1974-01-01

    A highly-reliable, fault-tolerant reconfigurable computer system for aircraft applications was developed. The development and application reliability and fault-tolerance assessment techniques are described. Particular emphasis is placed on the needs of an all-digital, fly-by-wire control system appropriate for a passenger-carrying airplane.

  8. Intelligent information system: for automation of airborne early warning crew decision processes

    NASA Astrophysics Data System (ADS)

    Chin, Hubert H.

    1991-03-01

    This paper describes an automation of AEW crew decision processed implemented in an intelligent information system for an advanced AEW aircraft platform. The system utilizes the existing AEW aircraft database and knowledge base such that the database can provide sufficient data to solve the sizable AEW problems. A database management system is recommended for managing the large amount of data. In order to expand a conventional expert system so that is has the capacity to solve the sizable problems, a cooperative model is required to coordinate with five expert systems in the cooperative decision process. The proposed model partitions the traditional knowledge base into a set of disjoint portions which cover the needs of and are shared by the expert systems. Internal communications take place on common shared portions. A cooperative algorithm is required for updating synchronization and concurrent control. The purpose of this paper is to present a cooperative model for enhancing standard rule-based expert systems to make cooperative decision and to superimpose the global knowledge base and database in a more natural fashion. The tools being used for developing the prototype are the ADA programming language and the ORACLE relational database management system.

  9. A GUI visualization system for airborne lidar image data to reconstruct 3D city model

    NASA Astrophysics Data System (ADS)

    Kawata, Yoshiyuki; Koizumi, Kohei

    2015-10-01

    A visualization toolbox system with graphical user interfaces (GUIs) was developed for the analysis of LiDAR point cloud data, as a compound object oriented widget application in IDL (Interractive Data Language). The main features in our system include file input and output abilities, data conversion capability from ascii formatted LiDAR point cloud data to LiDAR image data whose pixel value corresponds the altitude measured by LiDAR, visualization of 2D/3D images in various processing steps and automatic reconstruction ability of 3D city model. The performance and advantages of our graphical user interface (GUI) visualization system for LiDAR data are demonstrated.

  10. Airborne RF Measurement System (ARMS) and Analysis of Representative Flight RF Environment

    NASA Technical Reports Server (NTRS)

    Koppen, Sandra V.; Ely, Jay J.; Smith, Laura J.; Jones, Richard A.; Fleck, Vincent J.; Salud, Maria Theresa; Mielnik, John J.

    2007-01-01

    Environmental radio frequency (RF) data over a broad band of frequencies (30 MHz to 1000 MHz) were obtained to evaluate the electromagnetic environment in airspace around several airports. An RF signal measurement system was designed utilizing a spectrum analyzer connected to the NASA Lancair Columbia 300 aircraft's VHF/UHF navigation antenna. This paper presents an overview of the RF measurement system and provides analysis of sample RF signal measurement data. This aircraft installation package and measurement system can be quickly returned to service if needed by future projects requiring measurement of an RF signal environment or exploration of suspected interference situations.

  11. Extended ocular hazard distances associated with intrabeam aided viewing of the Sandia remote sensing system, airborne aura laser (Big Sky Variant).

    SciTech Connect

    Augustoni, Arnold L.

    2004-08-01

    A laser hazard analysis to determine the Extended Ocular Hazard Distances associated with a possible intrabeam aided viewing of the Sandia Remote Sensing System (SRSS) airborne AURA laser (Big Sky Laser Technology) was performed based on the 2000 version of the American National Standard Institute's (ANSI) Standard Z136.1, for the Safe Use of Lasers and the 2000 version of the ANSI Standard Z136.6, for the Safe Use of Lasers Outdoors. The AURA lidar system is installed in the instrument pod of a Proteus airframe and is used to perform laser interaction experiments and tests at various national test sites. The targets are located at various distances (ranges) from the airborne platform. Nominal Ocular Hazard Distance (NOHD) and maximum ''eye-safe'' dwell times for various operational altitudes associated with unaided intrabeam exposure of ground personnel were determined and presented in a previous SAND report. Although the target areas are controlled and the use of viewing aids are prohibited there is the possibility of the unauthorized use of viewing aids such as binoculars. This aided viewing hazard analysis is supplemental to the previous SAND report for the laser hazard analysis of the airborne AURA.

  12. Mission Adaptive Uas Capabilities for Earth Science and Resource Assessment

    NASA Astrophysics Data System (ADS)

    Dunagan, S.; Fladeland, M.; Ippolito, C.; Knudson, M.; Young, Z.

    2015-04-01

    Unmanned aircraft systems (UAS) are important assets for accessing high risk airspace and incorporate technologies for sensor coordination, onboard processing, tele-communication, unconventional flight control, and ground based monitoring and optimization. These capabilities permit adaptive mission management in the face of complex requirements and chaotic external influences. NASA Ames Research Center has led a number of Earth science remote sensing missions directed at the assessment of natural resources and here we describe two resource mapping problems having mission characteristics requiring a mission adaptive capability extensible to other resource assessment challenges. One example involves the requirement for careful control over solar angle geometry for passive reflectance measurements. This constraint exists when collecting imaging spectroscopy data over vegetation for time series analysis or for the coastal ocean where solar angle combines with sea state to produce surface glint that can obscure the signal. Furthermore, the primary flight control imperative to minimize tracking error should compromise with the requirement to minimize aircraft motion artifacts in the spatial measurement distribution. A second example involves mapping of natural resources in the Earth's crust using precision magnetometry. In this case the vehicle flight path must be oriented to optimize magnetic flux gradients over a spatial domain having continually emerging features, while optimizing the efficiency of the spatial mapping task. These requirements were highlighted in recent Earth Science missions including the OCEANIA mission directed at improving the capability for spectral and radiometric reflectance measurements in the coastal ocean, and the Surprise Valley Mission directed at mapping sub-surface mineral composition and faults, using high-sensitivity magnetometry. This paper reports the development of specific aircraft control approaches to incorporate the unusual and

  13. Study of software application of airborne laser doppler system for severe storms measurement

    NASA Technical Reports Server (NTRS)

    Alley, P. L.

    1979-01-01

    Significant considerations are described for performing a Severe Storms Measurement program in real time. Particular emphasis is placed on the sizing and timing requirements for a minicomputer-based system. Analyses of several factors which could impact the effectiveness of the system are presented. The analyses encompass the problems of data acquisition, data storage, data registration, correlation, and flow field computation, and error induced by aircraft motion, moment estimation, and pulse integration.

  14. Airborne RF Measurement System and Analysis of Representative Flight RF Environment

    NASA Technical Reports Server (NTRS)

    Koppen, Sandra V.; Ely, Jay J.; Smith, Laura J.; Jones, Richard A.; Fleck, Vincent J.; Salud, Maria Theresa; Mielnik, John

    2007-01-01

    Environmental radio frequency (RF) data over a broad band of frequencies were needed to evaluate the airspace around several airports. An RF signal measurement system was designed using a spectrum analyzer connected to an aircraft VHF/UHF navigation antenna installed on a small aircraft. This paper presents an overview of the RF measurement system and provides analysis of a sample of RF signal measurement data over a frequency range of 30 MHz to 1000 MHz.

  15. Canopy induced aberration correction in airborne electro-optical imaging systems

    NASA Astrophysics Data System (ADS)

    Harder, James A.; Sprague, Michaelene W.

    2011-11-01

    An increasing number of electro-optical systems are being used by pilots in tactical aircraft. This means that the afore mentioned systems must operate through the aircrafts canopy, unfortunately the canopy functions as a less than ideal lens element in the electro-optical sensor optical path. The canopy serves first and foremost as an aircraft structural component, considerations like minimizing the drag co-efficient and the ability to survive bird strikes take precedence over achieving optimal optical characteristics. This paper describes how the authors characterized the optical characteristics of an aircraft canopy. Families of modulation transfer functions were generated, for various viewing geometries through the canopy and for various electro-optical system entrance pupil diameters. These functions provided us with the means to significantly reduce the effect of the canopy "lens" on the performance of a representative electro-optical system, using an Astigmatic Corrector Lens. A comparison of the electro-optical system performance with and without correction is also presented.

  16. Design of a Multi-mode Flight Deck Decision Support System for Airborne Conflict Management

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Krishnamurthy, Karthik

    2004-01-01

    NASA Langley has developed a multi-mode decision support system for pilots operating in a Distributed Air-Ground Traffic Management (DAG-TM) environment. An Autonomous Operations Planner (AOP) assists pilots in performing separation assurance functions, including conflict detection, prevention, and resolution. Ongoing AOP design has been based on a comprehensive human factors analysis and evaluation results from previous human-in-the-loop experiments with airline pilot test subjects. AOP considers complex flight mode interactions and provides flight guidance to pilots consistent with the current aircraft control state. Pilots communicate goals to AOP by setting system preferences and actively probing potential trajectories for conflicts. To minimize training requirements and improve operational use, AOP design leverages existing alerting philosophies, displays, and crew interfaces common on commercial aircraft. Future work will consider trajectory prediction uncertainties, integration with the TCAS collision avoidance system, and will incorporate enhancements based on an upcoming air-ground coordination experiment.

  17. Automatic Calibration of an Airborne Imaging System to an Inertial Navigation Unit

    NASA Technical Reports Server (NTRS)

    Ansar, Adnan I.; Clouse, Daniel S.; McHenry, Michael C.; Zarzhitsky, Dimitri V.; Pagdett, Curtis W.

    2013-01-01

    This software automatically calibrates a camera or an imaging array to an inertial navigation system (INS) that is rigidly mounted to the array or imager. In effect, it recovers the coordinate frame transformation between the reference frame of the imager and the reference frame of the INS. This innovation can automatically derive the camera-to-INS alignment using image data only. The assumption is that the camera fixates on an area while the aircraft flies on orbit. The system then, fully automatically, solves for the camera orientation in the INS frame. No manual intervention or ground tie point data is required.

  18. Issues in Airborne Systems for Closely-Spaced Parallel Runway Operations

    NASA Technical Reports Server (NTRS)

    Pritchett, A.; Carpenter, B.; Asari, K.; Kuchar, J.; Hansman, R. J.

    1995-01-01

    Efforts to increase airport capacity include studies of aircraft systems that would enable simultaneous approaches to closely spaced parallel runways in Instrument Meteorological Conditions (IMC). The time-critical nature of a parallel approach results in key design issues for current and future collision avoidance systems. These issues are being studied in two ways. First, a part-task flight simulator study has examined the procedural and display issues inherent in such a time-critical task. Second, a prototype collision avoidance logic capable of generating this maneuver guidance has been designed using a recently developed methodology.

  19. A Cryogenic, Insulating Suspension System for the High Resolution Airborne Wideband Camera (HAWC)and Submillemeter And Far Infrared Experiment (SAFIRE) Adiabatic Demagnetization Refrigerators (ADRs)

    NASA Technical Reports Server (NTRS)

    Voellmer, George M.; Jackson, Michael L.; Shirron, Peter J.; Tuttle, James G.

    2002-01-01

    The High Resolution Airborne Wideband Camera (HAWC) and the Submillimeter And Far Infrared Experiment (SAFIRE) will use identical Adiabatic Demagnetization Refrigerators (ADR) to cool their detectors to 200mK and 100mK, respectively. In order to minimize thermal loads on the salt pill, a Kevlar suspension system is used to hold it in place. An innovative, kinematic suspension system is presented. The suspension system is unique in that it consists of two parts that can be assembled and tensioned offline, and later bolted onto the salt pill.

  20. Calibration and demonstration of a condensation nuclei counting system for airborne measurements of aircraft exhausted particles

    NASA Astrophysics Data System (ADS)

    Cofer, Wesley R.; Anderson, Bruce E.; Winstead, Edward L.; Bagwell, Donald R.

    A system of multiple continuous-flow condensation nuclei counters (CNC) was assembled, calibrated, and demonstrated on a NASA T-39 Sabreliner jet aircraft. The mission was to penetrate the exhaust plumes and/or contrails of other subsonic jet aircraft and determine the concentrations of submicrometer diameter aerosol particles. Mission criteria required rapid response measurements ( ˜ 1 s) at aircraft cruise altitudes (9-12 km). The CNC sampling system was optimized to operate at 160 Torr. Aerosol samples were acquired through an externally mounted probe. Installed downstream of the probe was a critical flow orifice that provided sample to the CNC system. The orifice not only controlled volumetric flow rate, but also dampened probe pressure/flow oscillations encountered in the turbulent aircraft-wake vortex environment. Laboratory calibrations with NaCl particles under representative conditions are reported that indicate small amounts of particle loss and a maximum measurement efficiency of ˜ 75% for particles with diameters ranging from ⩾ 0.01- ⩽ 0.18 μm Data from exhaust/contrail samplings of a NASA B757 and DC-8 at cruise altitude are discussed. Data include exhaust/contrail measurements made during periods in which the B757 port jet engine burned low-sulfur fuel while the starboard engine simultaneously burned specially prepared high-sulfur fuel. The data discussed highlight the CNC systems performance, and introduce new observations pertinent to the behavior of sulfur in aircraft exhaust aerosol chemistry.