Science.gov

Sample records for airborne time-domain electromagnetic

  1. PC-based artificial neural network inversion for airborne time-domain electromagnetic data

    NASA Astrophysics Data System (ADS)

    Zhu, Kai-Guang; Ma, Ming-Yao; Che, Hong-Wei; Yang, Er-Wei; Ji, Yan-Ju; Yu, Sheng-Bao; Lin, Jun

    2012-03-01

    Traditionally, airborne time-domain electromagnetic (ATEM) data are inverted to derive the earth model by iteration. However, the data are often highly correlated among channels and consequently cause ill-posed and over-determined problems in the inversion. The correlation complicates the mapping relation between the ATEM data and the earth parameters and thus increases the inversion complexity. To obviate this, we adopt principal component analysis to transform ATEM data into orthogonal principal components (PCs) to reduce the correlations and the data dimensionality and simultaneously suppress the unrelated noise. In this paper, we use an artificial neural network (ANN) to approach the PCs mapping relation with the earth model parameters, avoiding the calculation of Jacobian derivatives. The PC-based ANN algorithm is applied to synthetic data for layered models compared with data-based ANN for airborne time-domain electromagnetic inversion. The results demonstrate the PC-based ANN advantages of simpler network structure, less training steps, and better inversion results over data-based ANN, especially for contaminated data. Furthermore, the PC-based ANN algorithm effectiveness is examined by the inversion of the pseudo 2D model and comparison with data-based ANN and Zhody's methods. The results indicate that PC-based ANN inversion can achieve a better agreement with the true model and also proved that PC-based ANN is feasible to invert large ATEM datasets.

  2. Incorporating ancillary data into the inversion of airborne time-domain electromagnetic data for hydrogeological applications

    NASA Astrophysics Data System (ADS)

    Sapia, Vincenzo; Oldenborger, Greg A.; Viezzoli, Andrea; Marchetti, Marco

    2014-05-01

    Helicopter time-domain electromagnetic (HTEM) surveys often suffer from significant inaccuracies in the early-time or near-surface data—a problem that can lead to errors in the inverse model or limited near-surface resolution in the event that early time gates are removed. We present an example illustrating the use of seismic data to constrain the model recovered from an HTEM survey over the Spiritwood buried valley aquifer in Manitoba, Canada. The incorporation of seismic reflection surfaces results in improved near-surface resistivity in addition to a more continuous bedrock interface with a sharper contact. The seismic constraints reduce uncertainty in the resistivity values of the overlying layers, although no a priori information is added directly to those layers. Subsequently, we use electrical resistivity tomography (ERT) and borehole data to verify the constrained HTEM models. Treating the ERT and borehole logs as reference information, we perform an iterative time-shift calibration of the HTEM soundings to achieve regional-scale consistency between the recovered HTEM models and the reference information. Given the relatively small time-shifts employed, this calibration procedure most significantly affects the early-time data and brings the first useable time gate to a time earlier than the nominal first gate after ramp off. Although time shifts are small, changes in the model are observed from the near-surface to depths of 100 m. Calibration is combined with seismic constraints to achieve a model with the greatest level of consistency between data sets and, thus, the greatest degree of confidence. For the Spiritwood buried valley, calibrated and constrained models reveal more structure in the valley-fill sediments and increased continuity of the bedrock contact.

  3. Geological environment of karst within chalk using airborne time domain electromagnetic data cross-interpreted with boreholes

    NASA Astrophysics Data System (ADS)

    Reninger, P.-A.; Martelet, G.; Lasseur, E.; Beccaletto, L.; Deparis, J.; Perrin, J.; Chen, Y.

    2014-07-01

    The ability of airborne Time Domain ElectroMagnetic (TDEM) to image plurikilometric chalk heterogeneities and its implications for the development of a karstic system is addressed in this study. A heliborne TDEM survey was conducted around Courtenay (France) over the Paris Basin Upper Cretaceous chalk. This aquifer is known as a highly weathered and karstified horizon both strongly modify chalk petrophysical properties. Numerous boreholes and one recently reprocessed seismic line were used in order to strengthen TDEM interpretations. We performed cross statistics between boreholes and the resistivity model. This allowed defining empirical resistivity ranges corresponding to the main geological formations within the area. We were therefore able to map large scale heterogeneities in the chalk over the study area. First, the TDEM method highlighted probable weathering corridors in the chalk, related to the tectonic activity, consistent with faults previously interpreted in the seismics at deeper levels. Second, it was possible to image a large scale undulating geometry in the chalk with a SW-NE orientation, this direction is consistent throughout the Paris Basin, and well defined on the cliffs of Normandy (Channel coast, north of France). This geometry has revealed two separate chalk deposits C1 and C2 in Courtenay area: C1 is more resistive than C2. The resistivity model has then been compared to piezometric measurements acquired as part of previous hydrological studies. The karstic drainage appears to be developed within C1 chalk deposit and most of the piezometric domes seem to be associated to intermediate resistivity zones in C1, interpreted as weathered. According to the results obtained from this study, we were able to suggest a geological framework for the development of Courtenay karstic system.

  4. Time domain electromagnetic metal detectors

    SciTech Connect

    Hoekstra, P.

    1996-04-01

    This presentation focuses on illustrating by case histories the range of applications and limitations of time domain electromagnetic (TDEM) systems for buried metal detection. Advantages claimed for TDEM metal detectors are: independent of instrument response (Geonics EM61) to surrounding soil and rock type; simple anomaly shape; mitigation of interference by ambient electromagnetic noise; and responsive to both ferrous and non-ferrous metallic targets. The data in all case histories to be presented were acquired with the Geonics EM61 TDEM system. Case histories are a test bed site on Molokai, Hawaii; Fort Monroe, Virginia; and USDOE, Rocky Flats Plant. The present limitations of this technology are: discrimination capabilities in terms of type of ordnance, and depth of burial is limited, and ability of resolving targets with small metallic ambient needs to be improved.

  5. Picosecond time-domain electromagnetic scattering from conducting cylinders

    NASA Astrophysics Data System (ADS)

    Robertson, W. M.; Kopcsay, G. V.; Arjavalingam, G.

    1991-12-01

    The microwave scattering properties of conducting cylinders are characterized by measuring their response to picosecond-duration electromagnetic pulses. The ultrafast electromagnetic transients are generated and detected with optoelectronically pulsed antennas. The time-domain response gives physical insight into the scattering process. In addition, Fourier analysis is used to obtain the frequency dependence of the scattered amplitude and phase from 15 to 140 GHz.

  6. Time-Domain Computation Of Electromagnetic Fields In MMICs

    NASA Technical Reports Server (NTRS)

    Lansing, Faiza S.; Rascoe, Daniel L.

    1995-01-01

    Maxwell's equations solved on three-dimensional, conformed orthogonal grids by finite-difference techniques. Method of computing frequency-dependent electrical parameters of monolithic microwave integrated circuit (MMIC) involves time-domain computation of propagation of electromagnetic field in response to excitation by single pulse at input terminal, followed by computation of Fourier transforms to obtain frequency-domain response from time-domain response. Parameters computed include electric and magnetic fields, voltages, currents, impedances, scattering parameters, and effective dielectric constants. Powerful and efficient means for analyzing performance of even complicated MMIC.

  7. Numerical results for near surface time domain electromagnetic exploration: a full waveform approach

    NASA Astrophysics Data System (ADS)

    Sun, H.; Li, K.; Li, X., Sr.; Liu, Y., Sr.; Wen, J., Sr.

    2015-12-01

    Time domain or Transient electromagnetic (TEM) survey including types with airborne, semi-airborne and ground play important roles in applicants such as geological surveys, ground water/aquifer assess [Meju et al., 2000; Cox et al., 2010], metal ore exploration [Yang and Oldenburg, 2012], prediction of water bearing structures in tunnels [Xue et al., 2007; Sun et al., 2012], UXO exploration [Pasion et al., 2007; Gasperikova et al., 2009] etc. The common practice is introducing a current into a transmitting (Tx) loop and acquire the induced electromagnetic field after the current is cut off [Zhdanov and Keller, 1994]. The current waveforms are different depending on instruments. Rectangle is the most widely used excitation current source especially in ground TEM. Triangle and half sine are commonly used in airborne and semi-airborne TEM investigation. In most instruments, only the off time responses are acquired and used in later analysis and data inversion. Very few airborne instruments acquire the on time and off time responses together. Although these systems acquire the on time data, they usually do not use them in the interpretation.This abstract shows a novel full waveform time domain electromagnetic method and our recent modeling results. The benefits comes from our new algorithm in modeling full waveform time domain electromagnetic problems. We introduced the current density into the Maxwell's equation as the transmitting source. This approach allows arbitrary waveforms, such as triangle, half-sine, trapezoidal waves or scatter record from equipment, being used in modeling. Here, we simulate the establishing and induced diffusion process of the electromagnetic field in the earth. The traditional time domain electromagnetic with pure secondary fields can also be extracted from our modeling results. The real time responses excited by a loop source can be calculated using the algorithm. We analyze the full time gates responses of homogeneous half space and two

  8. Diffusion Rate Tomography for Time Domain Electromagnetic Induction Methods

    NASA Astrophysics Data System (ADS)

    Kazlauskas, E. M.; Weiss, C. J.

    2010-12-01

    Although it is now routine to invert near-surface electromagnetic induction data in terms of ground conductivity, geoelectromagnetic inversion remains an open research problem because of its intrinsic non-uniqueness and the need to balance computational efficiency with recovering models bearing some resemblance to real geologic structure. The most popular approach for fitting electromagnetic data is analogous to seismic full-waveform inversion. Whether the data are in the time- or frequency-domain, a model is sought which recovers either the amplitude and phase, or the transient response of some measured waveform. However, imperfect knowledge of the source waveform has the potential to erroneously introduce unwarranted geologic structure in the final recovered earth model. Hence, we explore here an alternative approach that mitigates these effects in highly attenuated electromagnetic data. Rather than inverting for the full waveform response, Diffusion Rate Tomography (DiRT) is based on inverting for the arrival time of some key, diagnostic feature in the measured data. This procedure eliminates any error introduced by incomplete knowledge of the source amplitude due to miscalibration, instrument drift, or battery drainage. Time-domain electromagnetic sounding experiments conducted with a horizontal loop transmitter and offset receiver coil provide a useful test of the concept. As induced eddy currents from the transmitter diffuse beneath the receiver, a polarity change occurs in the vertical component of the observed magnetic field. This polarity change (or zero crossing) is our invertible diagnostic, and given a range of offsets between the transmitter and receiver antennae, the zero-crossing moveout curve constitutes the data we invert. Examples of DiRT for a range of geologic settings will be presented and compared against results from smooth, full-waveform inversion. Interestingly, although DiRT works on fewer data than the full-waveform inversion, there is

  9. Interpretation of time domain electromagnetic soundings near geological contacts

    SciTech Connect

    Wilt, M.J.

    1991-12-01

    Lateral changes in geology pose a serious problem in data interpretation for any surface geophysical method. Although many geophysical techniques are designed to probe vertically, the source signal invariably spreads laterally, so any lateral variations in geology will affect the measurements and interpretation. This problem is particularly acute for controlled source electromagnetic soundings because only a few techniques are available to interpret the data if lateral effects are present. In this thesis we examine the effects of geological contacts for the time domain electromagnetic sounding method (TDEM). Using two simple two-dimensional models, the truncated thin-sheet and the quarter-space, we examine the system response for several commonly used TDEM sounding configurations. For each system we determine the sensitivity to the contact, establish how to the contact anomaly may be distinguished from other anomalies and, when feasible, develop methods for interpreting the contact geometry and for stripping the contact anomaly from the observed data. Since no numerical models were available when this work was started, data were collected using scale models with a system designed at the University of California at Berkeley. The models were assembled within a table-top modeling tank from sheets or blocks of metal using air or mercury as a host medium. Data were collected with a computer-controlled acquisition system.

  10. Time domain electromagnetic sensing techniques for underground pipe diagnostics

    NASA Astrophysics Data System (ADS)

    Chen, Chow-Son

    2013-04-01

    Based upon frequency domain integral equation thin sheet theory, comparative numerical modeling using three-component time domain electromagnetic (TEM) receiver was under taken. A forward modeling approach was used to compute the voltage response of half-space containing one or more conductive bodies excited by a bi-polar square wave form. Although this method utilizes conductor scattering, it is particularly useful as a practical use for the non-destructive electromagnetic monitoring of the transport infrastructure consequences from natural disasters. Unlike single component data, results from the three-component data are unambiguous as to the location and orientation of conductors. Measurements with the addition of horizontal- component data for secondary magnetic fields lead a better indication of target location, and target size determination, orientation, and characteristics, especially for the targets in the horizontal plan. I analyze three-axis TEM data from a known well site and detect transient volt anomalies, which are consistent with our theoretical modeling and which can be correlated with well locations in the conductor host. From this and other surveys, it is apparent that there is a lot of useful information in the horizontal components of near-surface TEM surveys. Whilst the vertical component contains stronger anomaly data and provide the best indication on a given target's location, the horizontal component data, can be used to determine size, orientation, and characteristics of targets, especially for targets extending horizon tally (i.e., power lines, sewer pipes, etc.). As a result, the three-component TEM survey is an essential element for high-resolution EM engineering survey.

  11. 3D time-domain airborne EM modeling for an arbitrarily anisotropic earth

    NASA Astrophysics Data System (ADS)

    Yin, Changchun; Qi, Yanfu; Liu, Yunhe

    2016-08-01

    Time-domain airborne EM data is currently interpreted based on an isotropic model. Sometimes, it can be problematic when working in the region with distinct dipping stratifications. In this paper, we simulate the 3D time-domain airborne EM responses over an arbitrarily anisotropic earth with topography by edge-based finite-element method. Tetrahedral meshes are used to describe the abnormal bodies with complicated shapes. We further adopt the Backward Euler scheme to discretize the time-domain diffusion equation for electric field, obtaining an unconditionally stable linear equations system. We verify the accuracy of our 3D algorithm by comparing with 1D solutions for an anisotropic half-space. Then, we switch attentions to effects of anisotropic media on the strengths and the diffusion patterns of time-domain airborne EM responses. For numerical experiments, we adopt three typical anisotropic models: 1) an anisotropic anomalous body embedded in an isotropic half-space; 2) an isotropic anomalous body embedded in an anisotropic half-space; 3) an anisotropic half-space with topography. The modeling results show that the electric anisotropy of the subsurface media has big effects on both the strengths and the distribution patterns of time-domain airborne EM responses; this effect needs to be taken into account when interpreting ATEM data in areas with distinct anisotropy.

  12. Solution of electromagnetic scattering problems using time domain techniques

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.

    1989-01-01

    New methods are developed to calculate the electromagnetic diffraction or scattering characteristics of objects of arbitrary material and shape. The methods extend the efforts of previous researchers in the use of finite-difference and pulse response techniques. Examples are given of the scattering from infinite conducting and nonconducting cylinders, open channel, sphere, cone, cone sphere, coated disk, open boxes, and open and closed finite cylinders with axially incident waves.

  13. Frequency and time domain three-dimensional inversion of electromagnetic data for a grounded-wire source

    NASA Astrophysics Data System (ADS)

    Sasaki, Yutaka; Yi, Myeong-Jong; Choi, Jihyang; Son, Jeong-Sul

    2015-01-01

    We present frequency- and time-domain three-dimensional (3-D) inversion approaches that can be applied to transient electromagnetic (TEM) data from a grounded-wire source using a PC. In the direct time-domain approach, the forward solution and sensitivity were obtained in the frequency domain using a finite-difference technique, and the frequency response was then Fourier-transformed using a digital filter technique. In the frequency-domain approach, TEM data were Fourier-transformed using a smooth-spectrum inversion method, and the recovered frequency response was then inverted. The synthetic examples show that for the time derivative of magnetic field, frequency-domain inversion of TEM data performs almost as well as time-domain inversion, with a significant reduction in computational time. In our synthetic studies, we also compared the resolution capabilities of the ground and airborne TEM and controlled-source audio-frequency magnetotelluric (CSAMT) data resulting from a common grounded wire. An airborne TEM survey at 200-m elevation achieved a resolution for buried conductors almost comparable to that of the ground TEM method. It is also shown that the inversion of CSAMT data was able to detect a 3-D resistivity structure better than the TEM inversion, suggesting an advantage of electric-field measurements over magnetic-field-only measurements.

  14. Even Shallower Exploration with Airborne Electromagnetics

    NASA Astrophysics Data System (ADS)

    Auken, E.; Christiansen, A. V.; Kirkegaard, C.; Nyboe, N. S.; Sørensen, K.

    2015-12-01

    Airborne electromagnetics (EM) is in many ways undergoing the same type rapid technological development as seen in the telecommunication industry. These developments are driven by a steadily increasing demand for exploration of minerals, groundwater and geotechnical targets. The latter two areas demand shallow and accurate resolution of the near surface geology in terms of both resistivity and spatial delineation of the sedimentary layers. Airborne EM systems measure the grounds electromagnetic response when subject to either a continuous discrete sinusoidal transmitter signal (frequency domain) or by measuring the decay of currents induced in the ground by rapid transmission of transient pulses (time domain). In the last decade almost all new developments of both instrument hardware and data processing techniques has focused around time domain systems. Here we present a concept for measuring the time domain response even before the transient transmitter current has been turned off. Our approach relies on a combination of new instrument hardware and novel modeling algorithms. The newly developed hardware allows for measuring the instruments complete transfer function which is convolved with the synthetic earth response in the inversion algorithm. The effect is that earth response data measured while the transmitter current is turned off can be included in the inversion, significantly increasing the amount of available information. We demonstrate the technique using both synthetic and field data. The synthetic examples provide insight on the physics during the turn off process and the field examples document the robustness of the method. Geological near surface structures can now be resolved to a degree that is unprecedented to the best of our knowledge, making airborne EM even more attractive and cost-effective for exploration of water and minerals that are crucial for the function of our societies.

  15. Xyz Airborne Time Domain Em: P-Them Test in Reid Mahaffy

    NASA Astrophysics Data System (ADS)

    Vetrov, A.

    2012-12-01

    The vertical axis transmitter loop and receiver coil combination is widely used in Airborne Time-Domain EM systems. In such configurations the largest portion of the transmitter magnetic moment, which is distributed in a vertical direction, is transmitted to the subsurface, and the strongest vertical response from underground conductors is acquired with a vertical axis (Z) receiver coil. However, the horizontal axis (X and Y) components carry valuable information about target body geometry and their borders/edges. Most Airborne Time Domain systems currently in use are configured such that the X component is aligned with the flight direction. At typical survey speeds (60 to 80 kph) towed bird systems may expect to be subject to vibration that results in movement of horizontal and vertical receiver's axis from its desired nominal position. The mechanical design of the P-THEM transmitter and receiver is based on Bernard Kremer's (THEM Geophysics) developments finished and improved by Pico Envirotec Inc. The P-THEM system consists of a loop-transmitter assembly, powered by a motor generator and a 3-axis (XYZ) coil receiver attached at the midpoint of a tow cable between transmitter and a helicopter. The suspension system of the receiver coils assembly allows the Z-coil to remain horizontal at all the time during the flight. Pico Envirotec has developed methodology to recalculate the data from three axis of the receiver that allows mechanical vibration influence to be eliminated from the acquired data. The recalculated X-component gives very useful information for interpretation of the observation results. The P-THEM system has been test flown over the Reid Mahaffy geological test site located in Northern Ontario in Canada. The test site, created by the Ontario Geological Survey, contains the main conductor formed with three sub-vertical sliced conductive bodies. Three lines (L30, L40 and L50) over the test site have been flown in North and South direction with the P

  16. Geologic Noise in Near--Surface Time--Domain Electromagnetic Induction Data

    NASA Astrophysics Data System (ADS)

    Weiss, C. J.; Everett, M. E.

    2001-12-01

    Controlled--source electromagnetic induction is a geophysical technique commonly used to aid in the identification of both anthropogenic and naturally occuring features, such as unexploded ordnance or high--permeability fluid pathways, in Earth's shallow subsurface. However, electromagnetic responses are oftentimes difficult to interpret owing to the complex, multiscale heterogeneous nature of the underlying electrical conductivity structure. We show evidence here which indicates that electromagnetic responses are indeed fractal signals, reflecting a very rough distribution of electrical conductivity in the underlying Earth. Time--domain electromagnetic data collected across a section of colluvial fill in the Rio Grande Rift valley near Albuquerque, New Mexico, show that the fractal properties of the surface electromagnetic responses depend on the complexity of the causative geological structure. Similar experiments in the frequency domain suggest that the small--scale fluctuations in the electromagnetic response due to geological noise are inherently reproducible, and are not caused by random instrumental or atmospheric effects as often assumed. New approaches to modeling electromagnetic responses are required in order to take full advantage of the rich information content of near--surface electromagnetic data. This work was supported in part by the United States Department of Energy under Contract DE--AC04--94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy.

  17. An electromagnetic finite difference time domain analog treatment of small signal acoustic interactions

    NASA Astrophysics Data System (ADS)

    Kunz, K.; Steich, D.; Lewis, K.; Landrum, C.; Barth, M.

    1994-03-01

    Hyperbolic partial differential equations encompass an extremely important set of physical phenomena including electromagnetics and acoustics. Small amplitude acoustic interactions behave much the same as electromagnetic interactions for longitudinal acoustic waves because of the similar nature of the governing hyperbolic equations. Differences appear when transverse acoustic waves are considered; nonetheless, the strong analogy between the acoustic and electromagnetic phenomena prompted the development of a Finite Difference Time Domain (FDTD) acoustic analog to the existing electromagnetic FDTD technique. The advantages of an acoustic FDTD (AFDTD) code are as follows: (1) boundary condition-free treatment of the acoustic scatterer--only the intrinsic properties of the scatterer's material are needed, no shell treatment or other set of special equations describing the macroscopic behavior of a sheet of material or a junction, etc. are required; this allows completely general geometries and materials in the model. (2) Advanced outer radiation boundary condition analogs--in the electromagnetics arena, highly absorbing outer radiation boundary conditions were developed that can be applied with little modification to the acoustics arena with equal success. (3) A suite of preexisting capabilities related to electromagnetic modeling--this includes automated model generation and interaction visualization as its most important components and is best exemplified by the capabilities of the LLNL generated TSAR electromagnetic FDTD code.

  18. Airborne electromagnetic hydrocarbon mapping in Mozambique

    NASA Astrophysics Data System (ADS)

    Pfaffhuber, Andreas A.; Monstad, Ståle; Rudd, Jonathan

    2009-09-01

    The Inhaminga hydrocarbon exploration licence in central Mozambique sets the location for a multi-method airborne geophysical survey. The size of the Inhaminga block, spanning some 16500km2 from Beira to the Zambezi, limited available data and a tight exploration schedule made an airborne survey attractive for the exploration portfolio. The aim of the survey was to map hydrocarbon seepage zones based on the evidence that seepage may create resistivity, radiometric and sometimes magnetic anomalies. The survey involved a helicopter-borne time domain electromagnetic induction system (AEM) and a fixed wing magnetic gradiometer and radiometer. Our data analysis highlights an anomaly extending some tens of kilometres through the survey area along the eastern margin of the Urema Graben. The area is imaged by AEM as a shallow resistive unit below a strong surface conductor and shows high Uranium and low Potassium concentrations (normalised to mean Thorium ratios). A seismic dimming zone on a 2D seismic line crossing the area coincides with the resistivity and radiometric anomaly. The geological exploration model expects seepage to be linked to the graben fault systems and an active seep has been sampled close to the anomaly. We thus interpret this anomaly to be associated with a gas seepage zone. Further geological ground work and seismic investigations are planned to assess this lead. Airborne data has further improved the general understanding of the regional geology allowing spatial mapping of faults and other features from 2D seismic lines crossing the survey area.

  19. Inclusion of lumped elements in finite difference time domain electromagnetic calculations

    SciTech Connect

    Thomas, V.A.; Jones, M.E.; Mason, R.J.

    1994-12-31

    A general approach for including lumped circuit elements in a finite difference, time domain (FD-TD) solution of Maxwell`s equations is presented. The methodology allows the direct access to SPICE to model the lumped circuits, while the full 3-Dimensional solution to Maxwell`s equations provides the electromagnetic field evolution. This type of approach could be used to mode a pulsed power machine by using a SPICE model for the driver and using an electromagnetic PIC code for the plasma/electromagnetics calculation. The evolution of the driver can be made self consistent with the behavior of the plasma load. Other applications are also possible, including modeling of nonlinear microwave circuits (as long as the non-linearities may be expressed in terms of a lumped element) and self-consistent calculation of very high speed computer interconnections and digital circuits.

  20. Time-domain simulation and waveform reconstruction for shielding effectiveness of materials against electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-feng; Chen, Xiang; Wei, Ming

    2013-03-01

    Shielding effectiveness (SE) of materials of current testing standards is often carried out by using continuous-wave measurement and amplitude-frequency characteristics curve is used to characterize the results. However, with in-depth study of high-power electromagnetic pulse (EMP) interference, it was discovered that only by frequency-domain SE of materials cannot be completely characterized by shielding performance of time-domain pulsed-field. And there is no uniform testing methods and standards of SE of materials against EMP. In this paper, the method of minimum phase transfer function is used to reconstruct shielded time-domain waveform based on the analysis of the waveform reconstruction method. Pulse of plane waves through an infinite planar material is simulated by using CST simulation software. The reconstructed waveform and simulation waveform is compared. The results show that the waveform reconstruction method based on the minimum phase can be well estimated EMP waveform through the infinite planar materials.

  1. The electromagnetic modeling of thin apertures using the finite-difference time-domain technique

    NASA Technical Reports Server (NTRS)

    Demarest, Kenneth R.

    1987-01-01

    A technique which computes transient electromagnetic responses of narrow apertures in complex conducting scatterers was implemented as an extension of previously developed Finite-Difference Time-Domain (FDTD) computer codes. Although these apertures are narrow with respect to the wavelengths contained within the power spectrum of excitation, this technique does not require significantly more computer resources to attain the increased resolution at the apertures. In the report, an analytical technique which utilizes Babinet's principle to model the apertures is developed, and an FDTD computer code which utilizes this technique is described.

  2. Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures.

    PubMed

    Zhao, Yan; Argyropoulos, Christos; Hao, Yang

    2008-04-28

    This paper proposes a radial dependent dispersive finite-difference time-domain method for the modeling of electromagnetic cloaking structures. The permittivity and permeability of the cloak are mapped to the Drude dispersion model and taken into account in dispersive FDTD simulations. Numerical simulations demonstrate that under ideal conditions, objects placed inside the cloak are 'invisible' to external electromagnetic fields. However for the simplified cloak based on linear transformations, the back scattering has a similar level to the case of a PEC cylinder without any cloak, rendering the object still being 'visible'. It is also demonstrated numerically that the simplified cloak based on high-order transformations can indeed improve the cloaking performance. PMID:18545374

  3. Application of the symplectic finite-difference time-domain scheme to electromagnetic simulation

    SciTech Connect

    Sha, Wei . E-mail: ws108@ahu.edu.cn; Huang, Zhixiang; Wu, Xianliang; Chen, Mingsheng

    2007-07-01

    An explicit fourth-order finite-difference time-domain (FDTD) scheme using the symplectic integrator is applied to electromagnetic simulation. A feasible numerical implementation of the symplectic FDTD (SFDTD) scheme is specified. In particular, new strategies for the air-dielectric interface treatment and the near-to-far-field (NFF) transformation are presented. By using the SFDTD scheme, both the radiation and the scattering of three-dimensional objects are computed. Furthermore, the energy-conserving characteristic hold for the SFDTD scheme is verified under long-term simulation. Numerical results suggest that the SFDTD scheme is more efficient than the traditional FDTD method and other high-order methods, and can save computational resources.

  4. IP effects on electromagnetic data of deep-sea hydrothermal deposits in time domain

    NASA Astrophysics Data System (ADS)

    KIM, H. J.; Jang, H.; Ha, W.

    2015-12-01

    A transient electromagnetic (TEM) system using a small loop source is advantageous to the development of compact, autonomous instruments which are well suited to submersible-based surveys. Since electrical conductivity of subseafloor materials can be frequency dependent, these induced polarization (IP) effects may affect the reliability of TEM data interpretation. In this study, we investigate IP effects on TEM responses of deep-sea hydrothermal mineral deposits with a thin sediment cover. Time-domain target signals are larger and appear earlier in horizontal magnetic fields than in vertical ones. IP effects cause transient magnetic fields to enhance initially, to decay rapidly and then to reverse the polarity. The DC conductivity and IP chargeability in Cole-Cole parameters influence the time of sign reversal and the enhancement of the target response, simultaneously. The reversal time is almost invariant with the time constant while the target signal is almost invariant with the frequency exponent.

  5. A Moving Window Technique in Parallel Finite Element Time Domain Electromagnetic Simulation

    SciTech Connect

    Lee, Lie-Quan; Candel, Arno; Ng, Cho; Ko, Kwok; ,

    2010-06-07

    A moving window technique for the finite element time domain (FETD) method is developed to simulate the propagation of electromagnetic waves induced by the transit of a charged particle beam inside large and long structures. The window moving along with the beam in the computational domain adopts high-order finite-element basis functions through p refinement and/or a high-resolution mesh through h refinement so that a sufficient accuracy is attained with substantially reduced computational costs. Algorithms to transfer discretized fields from one mesh to another, which are the key to implementing a moving window in a finite-element unstructured mesh, are presented. Numerical experiments are carried out using the moving window technique to compute short-range wakefields in long accelerator structures. The results are compared with those obtained from the normal FETD method and the advantages of using the moving window technique are discussed.

  6. Full waveform time domain solutions for source and induced magnetotelluric and controlled-source electromagnetic fields using quasi-equivalent time domain decomposition and GPU parallelization

    NASA Astrophysics Data System (ADS)

    Imamura, N.; Schultz, A.

    2015-12-01

    Recently, a full waveform time domain solution has been developed for the magnetotelluric (MT) and controlled-source electromagnetic (CSEM) methods. The ultimate goal of this approach is to obtain a computationally tractable direct waveform joint inversion for source fields and earth conductivity structure in three and four dimensions. This is desirable on several grounds, including the improved spatial resolving power expected from use of a multitude of source illuminations of non-zero wavenumber, the ability to operate in areas of high levels of source signal spatial complexity and non-stationarity, etc. This goal would not be obtainable if one were to adopt the finite difference time-domain (FDTD) approach for the forward problem. This is particularly true for the case of MT surveys, since an enormous number of degrees of freedom are required to represent the observed MT waveforms across the large frequency bandwidth. It means that for FDTD simulation, the smallest time steps should be finer than that required to represent the highest frequency, while the number of time steps should also cover the lowest frequency. This leads to a linear system that is computationally burdensome to solve. We have implemented our code that addresses this situation through the use of a fictitious wave domain method and GPUs to speed up the computation time. We also substantially reduce the size of the linear systems by applying concepts from successive cascade decimation, through quasi-equivalent time domain decomposition. By combining these refinements, we have made good progress toward implementing the core of a full waveform joint source field/earth conductivity inverse modeling method. From results, we found the use of previous generation of CPU/GPU speeds computations by an order of magnitude over a parallel CPU only approach. In part, this arises from the use of the quasi-equivalent time domain decomposition, which shrinks the size of the linear system dramatically.

  7. A Novel High Order Time Domain Vector Finite Element Method for the Simulation of Electromagnetic Devices

    SciTech Connect

    Rieben, R N

    2004-07-20

    The goal of this dissertation is twofold. The first part concerns the development of a numerical method for solving Maxwell's equations on unstructured hexahedral grids that employs both high order spatial and high order temporal discretizations. The second part involves the use of this method as a computational tool to perform high fidelity simulations of various electromagnetic devices such as optical transmission lines and photonic crystal structures to yield a level of accuracy that has previously been computationally cost prohibitive. This work is based on the initial research of Daniel White who developed a provably stable, charge and energy conserving method for solving Maxwell's equations in the time domain that is second order accurate in both space and time. The research presented here has involved the generalization of this procedure to higher order methods. High order methods are capable of yielding far more accurate numerical results for certain problems when compared to corresponding h-refined first order methods , and often times at a significant reduction in total computational cost. The first half of this dissertation presents the method as well as the necessary mathematics required for its derivation. The second half addresses the implementation of the method in a parallel computational environment, its validation using benchmark problems, and finally its use in large scale numerical simulations of electromagnetic transmission devices.

  8. On recovering distributed IP information from inductive source time domain electromagnetic data

    NASA Astrophysics Data System (ADS)

    Kang, Seogi; Oldenburg, Douglas W.

    2016-07-01

    We develop a procedure to invert time domain induced polarization (IP) data for inductive sources. Our approach is based upon the inversion methodology in conventional electrical IP (EIP), which uses a sensitivity function that is independent of time. However, significant modifications are required for inductive source IP (ISIP) because electric fields in the ground do not achieve a steady state. The time-history for these fields needs to be evaluated and then used to define approximate IP currents. The resultant data, either a magnetic field or its derivative, are evaluated through the Biot-Savart law. This forms the desired linear relationship between data and pseudo-chargeability. Our inversion procedure has three steps: 1) Obtain a 3D background conductivity model. We advocate, where possible, that this be obtained by inverting early-time data that do not suffer significantly from IP effects. 2) Decouple IP responses embedded in the observations by forward modelling the TEM data due to a background conductivity and subtracting these from the observations. 3) Use the linearized sensitivity function to invert data at each time channel and recover pseudo-chargeability. Post-interpretation of the recovered pseudo-chargeabilities at multiple times allows recovery of intrinsic Cole-Cole parameters such as time constant and chargeability. The procedure is applicable to all inductive source survey geometries but we focus upon airborne time domain EM (ATEM) data with a coincident-loop configuration because of the distinctive negative IP signal that is observed over a chargeable body. Several assumptions are adopted to generate our linearized modelling but we systematically test the capability and accuracy of the linearization for ISIP responses arising from different conductivity structures. On test examples we show: (a) our decoupling procedure enhances the ability to extract information about existence and location of chargeable targets directly from the data maps; (b

  9. Unconditionally stable split-step finite difference time domain formulations for double-dispersive electromagnetic materials

    NASA Astrophysics Data System (ADS)

    Ramadan, Omar

    2014-12-01

    Systematic split-step finite difference time domain (SS-FDTD) formulations, based on the general Lie-Trotter-Suzuki product formula, are presented for solving the time-dependent Maxwell equations in double-dispersive electromagnetic materials. The proposed formulations provide a unified tool for constructing a family of unconditionally stable algorithms such as the first order split-step FDTD (SS1-FDTD), the second order split-step FDTD (SS2-FDTD), and the second order alternating direction implicit FDTD (ADI-FDTD) schemes. The theoretical stability of the formulations is included and it has been demonstrated that the formulations are unconditionally stable by construction. Furthermore, the dispersion relation of the formulations is derived and it has been found that the proposed formulations are best suited for those applications where a high space resolution is needed. Two-dimensional (2-D) and 3-D numerical examples are included and it has been observed that the SS1-FDTD scheme is computationally more efficient than the ADI-FDTD counterpart, while maintaining approximately the same numerical accuracy. Moreover, the SS2-FDTD scheme allows using larger time step than the SS1-FDTD or ADI-FDTD and therefore necessitates less CPU time, while giving approximately the same numerical accuracy.

  10. Noise reduction of time domain electromagnetic data: Application of a combined wavelet denoising method

    NASA Astrophysics Data System (ADS)

    Ji, Yanju; Li, Dongsheng; Yuan, Guiyang; Lin, Jun; Du, Shangyu; Xie, Lijun; Wang, Yuan

    2016-06-01

    A denoising method based on wavelet analysis is presented for the removal of noise (background noise and random spike) from time domain electromagnetic (TEM) data. This method includes two signal processing technologies: wavelet threshold method and stationary wavelet transform. First, wavelet threshold method is used for the removal of background noise from TEM data. Then, the data are divided into a series of details and approximations by using stationary wavelet transform. The random spike in details is identified by zero reference data and adaptive energy detector. Next, the corresponding details are processed to suppress the random spike. The denoised TEM data are reconstructed via inverse stationary wavelet transform using the processed details at each level and the approximations at the highest level. The proposed method has been verified using a synthetic TEM data, the signal-to-noise ratio of synthetic TEM data is increased from 10.97 dB to 24.37 dB at last. This method is also applied to the noise suppression of the field data which were collected at Hengsha island, China. The section image results shown that the noise is suppressed effectively and the resolution of the deep anomaly is obviously improved.

  11. Time-domain electromagnetic tests in the Wadi Bidah District, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Flanigan, Vincent J.; Sadek, Hamdy; Smith, Bruce; Tippens, C.L.

    1983-01-01

    A time-domain electromagnetic (TDEM) method was tested in two areas of mineralization in Precambrian rocks in the Wadi Bidah district, Kingdom of Saudi Arabia. Transient-decay voltages in profile mode were measured across the Sha'ab at Tare and Rabathan prospects by use of three transmitterreceiver loop configurations. At the Sha'ab at Tare prospect all of the loop configurations indicated the mineralized zone. Analysis of the coincident loop data at Sha'ab at Tare reveals that gossanous and altered rock of i0 ohm-m resistivity extends to a depth of 35 m, where there is an unweathered, dry mineralized zone of about 1 ohm-m resistivity. The model further suggests that the rocks at a depth of 55 m and below the water table are even less resistive (0. 1 ohm-m). The TDEM method successfully discriminated conductors within from those below the weathered zone at the Rabathan prospect. Conductors below the weathered zone are identified by a lack of transient response in the early part of the transient decay curve, followed by an increasing response in the middle to late parts of the transient decay curve. Results of these limited tests suggest the potential value of integrating TDEM with other geophysical tools in the Kingdom. Recommendations are made to expand these tests into a more comprehensive program that will evaluate the TDEM potential in various geologic environments that are host to mineral deposits of diverse origin.

  12. Feasibility of a time-domain electromagnetic survey for mapping deep-sea hydrothermal deposits

    NASA Astrophysics Data System (ADS)

    Jang, H.; KIM, H. J.

    2014-12-01

    Marine controlled-source electromagnetic (CSEM) surveying has already become a popular tool for hydrocarbon exploration. Possible targets of the marine CSEM survey, other than hydrocarbon, may be marine hydrothermal mineral deposits. In transient EM (TEM) measurements, secondary fields which contain information on hydrothermal deposits in the seafloor can be measured in the absence of strong primary fields. The TEM system is useful to the development of compact, autonomous instruments which are well suited to submersible-based surveys. In this paper, we investigate the possibility of applying an in-loop TEM system to the detection of marine hydrothermal deposits through a one-dimensional modeling and inversion study. The feasibility study showed that TEM responses are very sensitive to a highly conductive layer. Time-domain target responses are larger and appear earlier in horizontal magnetic fields than in vertical ones. An inverse problem is formulated with the Gauss-Newton method and solved with the damped and smoothness-constrained least-squares approach. The test example for a marine hydrothermal TEM survey demonstrated that the depth extent, conductivity and thickness of the highly conductive layer are well resolved.

  13. Evaluation of a thin-slot formalism for finite-difference time-domain electromagnetics codes

    SciTech Connect

    Turner, C.D.; Bacon, L.D.

    1987-03-01

    A thin-slot formalism for use with finite-difference time-domain (FDTD) electromagnetics codes has been evaluated in both two and three dimensions. This formalism allows narrow slots to be modeled in the wall of a scatterer without reducing the space grid size to the gap width. In two dimensions, the evaluation involves the calculation of the total fields near two infinitesimally thin coplanar strips separated by a gap. A method-of-moments (MoM) solution of the same problem is used as a benchmark for comparison. Results in two dimensions show that up to 10% error can be expected in total electric and magnetic fields both near (lambda/40) and far (1 lambda) from the slot. In three dimensions, the evaluation is similar. The finite-length slot is placed in a finite plate and an MoM surface patch solution is used for the benchmark. These results, although less extensive than those in two dimensions, show that slightly larger errors can be expected. Considering the approximations made near the slot in incorporating the formalism, the results are very promising. Possibilities also exist for applying this formalism to walls of arbitrary thickness and to other types of slots, such as overlapping joints. 11 refs., 25 figs., 6 tabs.

  14. Model based approach to UXO imaging using the time domain electromagnetic method

    SciTech Connect

    Lavely, E.M.

    1999-04-01

    Time domain electromagnetic (TDEM) sensors have emerged as a field-worthy technology for UXO detection in a variety of geological and environmental settings. This success has been achieved with commercial equipment that was not optimized for UXO detection and discrimination. The TDEM response displays a rich spatial and temporal behavior which is not currently utilized. Therefore, in this paper the author describes a research program for enhancing the effectiveness of the TDEM method for UXO detection and imaging. Fundamental research is required in at least three major areas: (a) model based imaging capability i.e. the forward and inverse problem, (b) detector modeling and instrument design, and (c) target recognition and discrimination algorithms. These research problems are coupled and demand a unified treatment. For example: (1) the inverse solution depends on solution of the forward problem and knowledge of the instrument response; (2) instrument design with improved diagnostic power requires forward and inverse modeling capability; and (3) improved target recognition algorithms (such as neural nets) must be trained with data collected from the new instrument and with synthetic data computed using the forward model. Further, the design of the appropriate input and output layers of the net will be informed by the results of the forward and inverse modeling. A more fully developed model of the TDEM response would enable the joint inversion of data collected from multiple sensors (e.g., TDEM sensors and magnetometers). Finally, the author suggests that a complementary approach to joint inversions is the statistical recombination of data using principal component analysis. The decomposition into principal components is useful since the first principal component contains those features that are most strongly correlated from image to image.

  15. A time-domain electromagnetic sounder for detection and characterization of groundwater on Mars

    NASA Astrophysics Data System (ADS)

    Grimm, Robert E.; Berdanier, Barry; Warden, Robert; Harrer, James; Demara, Raymond; Pfeiffer, James; Blohm, Richard

    2009-09-01

    A prototype time-domain electromagnetic (TDEM) sounder was developed to technical readiness level (TRL) 5 to detect and characterize deep groundwater on Mars. The TDEM method induces eddy currents in the subsurface by abrupt extinction of a steady current in a large, flat-lying loop antenna, and the subsurface response is measured using the same loop or a separate receiver. TDEM has been widely used in terrestrial groundwater exploration and is ideally suited to sense the high electrical conductivity associated with saline groundwater expected on Mars. The inductive regime of TDEM is distinct from ground-penetrating radar: the latter has higher resolution but smaller depth of investigation. Our Mars-prototype TDEM was tested in the laboratory and at a local field site before the principal test was performed on Maui, Hawaii. This location was chosen because of its analogy to Mars in electrical properties: dry, resistive basalt over saline pore water. Results compared favorably to soundings made with a commercial TDEM, clearly detecting the seawater interface at depths of 250 m. We subsequently developed a ballistic deployment system for the loop antenna suitable for robotic missions. Compressed gas launches two projectiles; each consists of two spools on a guide stick. Payout on one spool is back towards the launcher and on the other toward its twin on the other projectile. In this way a triangular loop antenna is formed. The full system was tested twice, successfully achieving a distance of ˜70 m in both. A system capable of deploying a 200 m loop antenna on Mars would have mass <6 kg (including 0.3 kg electronics) and within one sol could detect groundwater at depths up to 5 km. TDEM can probe to depths not possible for radar and answer the question: does groundwater - and a likely subsurface habitable zone - exist on Mars?

  16. Use of the finite-difference time-domain method in electromagnetic dosimetry

    SciTech Connect

    Sullivan, D.M.

    1987-01-01

    Although there are acceptable methods for calculating whole body electromagnetic absorption, no completely acceptable method for calculating the local specific absorption rate (SAR) at points within the body has been developed. Frequency domain methods, such as the method of moments (MoM) have achieved some success; however, the MoM requires computer storage on the order of (3N)/sup 2/, and computation time on the order of (3N)/sup 3/ where N is the number of cells. The finite-difference time-domain (FDTD) method has been employed extensively in calculating the scattering from metallic objects, and recently is seeing some use in calculating the interaction of EM fields with complex, lossy dielectric bodies. Since the FDTD method has storage and time requirements proportional to N, it presents an attractive alternative to calculating SAR distribution in large bodies. This dissertation describes the FDTD method and evaluates it by comparing its results with analytic solutions in 2 and 3 dimensions. The results obtained demonstrate that the FDTD method is capable of calculating internal SAR distribution with acceptable accuracy. The construction of a data base to provide detailed, inhomogeneous man models for use with the FDTD method is described. Using this construction method, a model of 40,000 1.31 cm. cells is developed for use at 350 MHz, and another model consisting of 5000 2.62 cm. cells is developed for use at 100 MHz. To add more realism to the problem, a ground plane is added to the FDTD software. The needed changes to the software are described, along with a test which confirms its accuracy. Using the CRAY II supercomputer, SAR distributions in human models are calculated using incident frequencies of 100 MHz and 350 MHz for three different cases: (1) A homogeneous man model in free space, (2) an inhomogeneous man model in free space, and (3) an inhomogeneous man model standing on a ground plane.

  17. Faulting and groundwater in a desert environment: constraining hydrogeology using time-domain electromagnetic data

    USGS Publications Warehouse

    Bedrosian, Paul A.; Burgess, Matthew K.; Nishikawa, Tracy

    2013-01-01

    Within the south-western Mojave Desert, the Joshua Basin Water District is considering applying imported water into infiltration ponds in the Joshua Tree groundwater sub-basin in an attempt to artificially recharge the underlying aquifer. Scarce subsurface hydrogeological data are available near the proposed recharge site; therefore, time-domain electromagnetic (TDEM) data were collected and analysed to characterize the subsurface. TDEM soundings were acquired to estimate the depth to water on either side of the Pinto Mountain Fault, a major east-west trending strike-slip fault that transects the proposed recharge site. While TDEM is a standard technique for groundwater investigations, special care must be taken when acquiring and interpreting TDEM data in a twodimensional (2D) faulted environment. A subset of the TDEM data consistent with a layered-earth interpretation was identified through a combination of three-dimensional (3D) forward modelling and diffusion time-distance estimates. Inverse modelling indicates an offset in water table elevation of nearly 40 m across the fault. These findings imply that the fault acts as a low-permeability barrier to groundwater flow in the vicinity of the proposed recharge site. Existing production wells on the south side of the fault, together with a thick unsaturated zone and permeable near-surface deposits, suggest the southern half of the study area is suitable for artificial recharge. These results illustrate the effectiveness of targeted TDEM in support of hydrological studies in a heavily faulted desert environment where data are scarce and the cost of obtaining these data by conventional drilling techniques is prohibitive.

  18. Influence of the Helicopter Time Domain Electromagnetic System Off-Time Response by the Transmitter Assembly

    NASA Astrophysics Data System (ADS)

    Vetrov, A.; Mejzr, I.

    2010-12-01

    While developing a new Helicopter Time Domain Electromagnetic system (P-THEM), Pico Envirotec Inc (PEI) has studied the effect of the transmitter assembly on the acquired data. The P-THEM system consists of a loop-transmitter assembly, powered by a motor generator, 3-axis coil receiver attached at the midpoint of a tow cable and an additional Z-axis (dB/dt) receiver installed on the rear section of the transmitter loop. The system is towed by a helicopter on a 230 foot long tow cable. The transmitter loop is designed to produce a peak magnetic moment of approximately 250,000 NIA with a base frequency of 30 Hz (adjustable to 25Hz) and a quarter length duty cycle (4 ms on-time). The secondary field acquired with a dB/dt receiver coil consists of a ground response and a system response: SF=Rg+Rsys, where SF - the secondary field, Rg - ground response, Rsys - system response. The system itself, especially the transmitter assembly, being a conductor in an induced magnetic field, creates a magnetic anomaly. The influence of the transmitter assembly anomaly on the received signal depends on the position of the receiver coil against the transmitter, the intensity of on-time pulse and transmitter electro-magnetic properties. At the same time, the ground response acquired with a receiver coil depends on the length and the moment of transmitter pulse, as well as the position and distance of the receiver coil from the ground. This can be for vertical field (Z) receiver coil described as RXz(t)=e(t)pz(t)Rgz(t)+d(t)k(t)j(t)TXz(t), where RXz(t) - receiver response, e(t) - elevation of the receiver over the ground, pz(t) - horizontal projection of the receiver coil, Rgz(t) - vertical component of ground response, d(t) - distance (elevation) between the receiver coil and the transmitter loop, k(t) - the position of the receiver in the transmitter field, j(t) - the transmitter assembly electromagnetic properties, TXz(t) -transmitter field (Primary field on-time, and transmitter

  19. Mapping permafrost with airborne electromagnetics

    NASA Astrophysics Data System (ADS)

    Minsley, B. J.; Ball, L. B.; Bloss, B. R.; Kass, A.; Pastick, N.; Smith, B. D.; Voss, C. I.; Walsh, D. O.; Walvoord, M. A.; Wylie, B. K.

    2014-12-01

    Permafrost is a key characteristic of cold region landscapes, yet detailed assessments of how the subsurface distribution of permafrost impacts the environment, hydrologic systems, and infrastructure are lacking. Data acquired from several airborne electromagnetic (AEM) surveys in Alaska provide significant new insight into the spatial extent of permafrost over larger areas (hundreds to thousands of square kilometers) than can be mapped using ground-based geophysical methods or through drilling. We compare several AEM datasets from different areas of interior Alaska, and explore the capacity of these data to infer geologic structure, permafrost extent, and related hydrologic processes. We also assess the impact of fires on permafrost by comparing data from different burn years within similar geological environments. Ultimately, interpretations rely on understanding the relationship between electrical resistivity measured by AEM surveys and the physical properties of interest such as geology, permafrost, and unfrozen water content in the subsurface. These relationships are often ambiguous and non-unique, so additional information is useful for reducing uncertainty. Shallow (upper ~1m) permafrost and soil characteristics identified from remotely sensed imagery and field observations help to constrain and aerially extend near-surface AEM interpretations, where correlations between the AEM and remote sensing data are identified using empirical multivariate analyses. Surface nuclear magnetic resonance (sNMR) measurements quantify the contribution of unfrozen water at depth to the AEM-derived electrical resistivity models at several locations within one survey area. AEM surveys fill a critical data gap in the subsurface characterization of permafrost environments and will be valuable in future mapping and monitoring programs in cold regions.

  20. Experiment design for time domain surface-to-borehole electromagnetic applications

    NASA Astrophysics Data System (ADS)

    Kriegshauser, Berthold Franz

    Surface-to-borehole electromagnetic (EM) measurements have been used extensively for many applications. Successful application of these techniques requires an extensive presurvey design--the design of the field experiment. Such experiment design should use the most powerful interpretation concepts and software available. The purpose of this dissertation is to illustrate the application of the latest concepts and software on surface-to-borehole experiment design, with particular attention to hydrocarbon applications. The dissertation begins by discussing petrophysical models relating conductivity to primary formation parameters and synthetic noise models for time-domain data. With a reliable noise model and petrophysical information the resolution of the surface-to-borehole technique is illustrated on three typical hydrocarbon applications. The three examples include a three-dimensional (3-D) oil lens at depth, an anisotropic reservoir, and a lateral oil-water contact (OWC) for shallow heavy sands. The 3-D oil lens model study suggests using receivers close to the boundary to resolve the lateral extent of the target, whereas receivers in the center of the body better resolve the resistivity of the reservoir. The second example demonstrates how a joint interpretation of both horizontal magnetic field components can yield superior resolution of the anisotropic conductivity structure compared to an interpretation of individual components. The third case illustrates that the resolution of an OWC is best when the contact is maximally illuminated by the transmitter, and the best receiver locations are at the same depth or deeper than the contact. The vertical magnetic field component offers superior resolution of the OWC location compared to that offered by the horizontal magnetic field component parallel to strike. The physical basis of the resolution for the oil-water contact is illustrated using visualization of the propagating fields. One method of enhancing

  1. Time-domain electromagnetic soundings collected in Dawson County, Nebraska, 2007-09

    USGS Publications Warehouse

    Payne, Jason D.; Teeple, Andrew P.

    2011-01-01

    Between April 2007 and November 2009, the U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District, collected time-domain electro-magnetic (TDEM) soundings at 14 locations in Dawson County, Nebraska. The TDEM soundings provide information pertaining to the hydrogeology at each of 23 sites at the 14 locations; 30 TDEM surface geophysical soundings were collected at the 14 locations to develop smooth and layered-earth resistivity models of the subsurface at each site. The soundings yield estimates of subsurface electrical resistivity; variations in subsurface electrical resistivity can be correlated with hydrogeologic and stratigraphic units. Results from each sounding were used to calculate resistivity to depths of approximately 90-130 meters (depending on loop size) below the land surface. Geonics Protem 47 and 57 systems, as well as the Alpha Geoscience TerraTEM, were used to collect the TDEM soundings (voltage data from which resistivity is calculated). For each sounding, voltage data were averaged and evaluated statistically before inversion (inverse modeling). Inverse modeling is the process of creating an estimate of the true distribution of subsurface resistivity from the mea-sured apparent resistivity obtained from TDEM soundings. Smooth and layered-earth models were generated for each sounding. A smooth model is a vertical delineation of calculated apparent resistivity that represents a non-unique estimate of the true resistivity. Ridge regression (Interpex Limited, 1996) was used by the inversion software in a series of iterations to create a smooth model consisting of 24-30 layers for each sounding site. Layered-earth models were then generated based on results of smooth modeling. The layered-earth models are simplified (generally 1 to 6 layers) to represent geologic units with depth. Throughout the area, the layered-earth models range from 2 to 4 layers, depending on observed inflections in the raw data and smooth model

  2. Investigation on broadband propagation characteristic of terahertz electromagnetic wave in anisotropic magnetized plasma in frequency and time domain

    SciTech Connect

    Tian, Yuan; Han, Yiping; Ai, Xia; Liu, Xiuxiang

    2014-12-15

    In this paper, we investigate the propagation of terahertz (THz) electromagnetic wave in an anisotropic magnetized plasma by JE convolution-finite difference time domain method. The anisotropic characteristic of the plasma, which leads to right-hand circularly polarized (RCP) and right-hand circularly polarized (LCP) waves, has been taken into account. The interaction between electromagnetic waves and magnetized plasma is illustrated by reflection and transmission coefficients for both RCP and LCP THz waves. The effects of both the magnetized plasma thickness and the external magnetized field are analyzed and numerical results demonstrate that the two factors could influence the THz wave greatly. It is worthy to note that besides the reflection and transmission coefficients in the frequency domain, the waveform of the electric field in the time domain varying with thicknesses and external magnetic fields for different polarized direction has been studied.

  3. Comparing bulk electrical conductivities spatial series obtained by Time Domain Reflectometry and Electromagnetic Induction sensors

    NASA Astrophysics Data System (ADS)

    Saeed, Ali; Ajeel, Ali; dragonetti, giovanna; Comegna, Alessandro; Lamaddalena, Nicola; Coppola, Antonio

    2016-04-01

    The ability to determine and monitor the effects of salts on soils and plants, are of great importance to agriculture. To control its harmful effects, soil salinity needs to be monitored in space and time. This requires knowledge of its magnitude, temporal dynamics, and spatial variability. Conventional ground survey procedures by direct soil sampling are time consuming, costly and destructive. Alternatively, soil salinity can be evaluated by measuring the bulk electrical conductivity (σb) directly in the field. Time domain reflectometry (TDR) sensors allow simultaneous measurements of water content, θ, and σb. They may be calibrated for estimating the electrical conductivity of the soil solution (σw). However, they have a relatively small observation window and thus they are thought to only provide local-scale measurements. The spatial range of the sensors is limited to tens of centimeters and extension of the information to a large area can be problematic. Also, information on the vertical distribution of the σb soil profile may only be obtained by installing sensors at different depths. In this sense, the TDR may be considered as an invasive technique. Compared to the TDR, other geophysical methods based for example on Electromagnetic Induction (EMI) techniques are non-invasive methods and represent a viable alternative to traditional techniques for soil characterization. The problem is that all these techniques give depth-weighted apparent electrical conductivity (σa) measurements, depending on the specific depth distribution of the σb, as well as on the depth response function of the sensor used. In order to deduce the actual distribution of the bulk electrical conductivity, σb, in the soil profile, one needs to invert the signal coming from EMI. Because of their relatively lower observation window, TDR sensors provide quasi-point values and do not adequately integrate the spatial variability of the chemical concentration distribution in the soil

  4. Comparing bulk electrical conductivities spatial series obtained by Time Domain Reflectometry and Electromagnetic Induction sensors

    NASA Astrophysics Data System (ADS)

    Saeed, Ali; Ajeel, Ali; dragonetti, giovanna; Comegna, Alessandro; Lamaddalena, Nicola; Coppola, Antonio

    2016-04-01

    The ability to determine and monitor the effects of salts on soils and plants, are of great importance to agriculture. To control its harmful effects, soil salinity needs to be monitored in space and time. This requires knowledge of its magnitude, temporal dynamics, and spatial variability. Conventional ground survey procedures by direct soil sampling are time consuming, costly and destructive. Alternatively, soil salinity can be evaluated by measuring the bulk electrical conductivity (σb) directly in the field. Time domain reflectometry (TDR) sensors allow simultaneous measurements of water content, θ, and σb. They may be calibrated for estimating the electrical conductivity of the soil solution (σw). However, they have a relatively small observation window and thus they are thought to only provide local-scale measurements. The spatial range of the sensors is limited to tens of centimeters and extension of the information to a large area can be problematic. Also, information on the vertical distribution of the σb soil profile may only be obtained by installing sensors at different depths. In this sense, the TDR may be considered as an invasive technique. Compared to the TDR, other geophysical methods based for example on Electromagnetic Induction (EMI) techniques are non-invasive methods and represent a viable alternative to traditional techniques for soil characterization. The problem is that all these techniques give depth-weighted apparent electrical conductivity (σa) measurements, depending on the specific depth distribution of the σb, as well as on the depth response function of the sensor used. In order to deduce the actual distribution of the bulk electrical conductivity, σb, in the soil profile, one needs to invert the signal coming from EMI. Because of their relatively lower observation window, TDR sensors provide quasi-point values and do not adequately integrate the spatial variability of the chemical concentration distribution in the soil

  5. Time domain adjoint sensitivity analysis of electromagnetic problems with nonlinear media.

    PubMed

    Bakr, Mohamed H; Ahmed, Osman S; El Sherif, Mohamed H; Nomura, Tsuyoshi

    2014-05-01

    In this paper, we propose a theory for wideband adjoint sensitivity analysis of problems with nonlinear media. We show that the sensitivities of the desired response with respect to all shape and material parameters are obtained through one extra adjoint simulation. Unlike linear problems, the system matrices of this adjoint simulation are time varying. Their values are determined during the original simulation. The proposed theory exploits the time-domain transmission line modeling (TLM) and provides an efficient AVM approach for sensitivity analysis of general time domain objective functions. The theory has been illustrated through a number of examples. PMID:24921783

  6. Finite Difference Time Domain Electromagnetic Scattering from Frequency-Dependent Lossy Materials

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Beggs, John H.

    1991-01-01

    During this effort the tasks specified in the Statement of Work have been successfully completed. The extension of Finite Difference Time Domain (FDTD) to more complicated materials has been made. A three-dimensional FDTD code capable of modeling interactions with both dispersive dielectric and magnetic materials has been written, validated, and documented. This code is efficient and is capable of modeling interesting targets using a modest computer work station platform. However, in addition to the tasks in the Statement of Work, a significant number of other FDTD extensions and calculations have been made. RCS results for two different plate geometries have been reported. The FDTD method has been extended to computing far zone time domain results in two dimensions. Finally, the capability to model nonlinear materials has been incorporated into FDTD and validated. The FDTD computer codes developed have been supplied, along with documentation, and preprints describing the other FDTD advances have been included with this report as attachments.

  7. The use of time-domain integral equations in electromagnetism problems

    NASA Astrophysics Data System (ADS)

    Berthon, A.; Vallet, E.

    1984-10-01

    The application of time-domain integral equations to the analysis of the scattering and propagation of EM fields is surveyed. Explicit iterative time-stepping procedures are developed for such problems as simple-conductor obstacles, one-dimensional obstacles, orifices, small obstacles, and media of finite conductivity (interface fields, reflection factors, and shielding problems). Numerical results for problems involving the interaction of a dipole field with various cylindrical obstacles are presented in graphs and diagrams.

  8. Adaptive mesh refinement for time-domain electromagnetics using vector finite elements :a feasibility study.

    SciTech Connect

    Turner, C. David; Kotulski, Joseph Daniel; Pasik, Michael Francis

    2005-12-01

    This report investigates the feasibility of applying Adaptive Mesh Refinement (AMR) techniques to a vector finite element formulation for the wave equation in three dimensions. Possible error estimators are considered first. Next, approaches for refining tetrahedral elements are reviewed. AMR capabilities within the Nevada framework are then evaluated. We summarize our conclusions on the feasibility of AMR for time-domain vector finite elements and identify a path forward.

  9. Exploration of an alluvial aquifer in Oman by time-domain electromagnetic sounding

    NASA Astrophysics Data System (ADS)

    Young, M. E.; de Bruijn, R. G. M.; Al-Ismaily, A. Salim

    One-third of the population of Oman depends upon groundwater extracted from the alluvium of the Batinah Plain, on the coast of the Gulf of Oman. Deep geophysical exploration techniques were used to determine the depth and nature of the alluvium and the boundaries of the aquifer. The base and structural controls of the alluvial basin at its contact with Tertiary marine sediments and Cretaceous ophiolite were mapped with seismic reflection data, recorded originally for oil exploration. The base of the alluvium dips northward from the foothills of the Northern Oman Mountains, reaching a maximum depth of 2000m at the coast. The varying facies of the alluvium are grossly characterised by different, overlapping ranges of electrical resistivity, depending largely on the clay content and degree of cementation. Resistivities near the coast are reduced by saline intrusion. These variations of resistivity were mapped with time-domain electromagnetic sounding along 400km of profile, to distinguish among the three zones of the alluvial aquifer. The wedge of saline intrusion was also delineated, up to 10km from the coast. The thickness of the saturated gravel aquifer ranges from 20-160m in an area greater than 600km2. Résumé Un tiers de la population d'Oman est alimenté par de l'eau souterraine pompée dans les alluvions de la plaine de Batinah, sur la côte du golfe d'Oman. Des techniques d'exploration géophysique profonde ont été mises en oeuvre pour déterminer la profondeur et la nature des alluvions et les limites de l'aquifère. La base et les contrôles structuraux du bassin alluvial au contact des sédiments marins tertiaires et des ophiolites crétacées ont été cartographiés à partir des données de sismique réflexion obtenues à l'origine pour la recherche pétrolière. La base des alluvions plonge vers le nord à partir du piémont du massif septentrional d'Oman, pour atteindre une profondeur maximale de 2000m sur la côte. Les divers faciès alluviaux

  10. Coupled simulation of an electromagnetic heating process using the finite difference time domain method.

    PubMed

    Chen, Hao; Tang, Juming; Liu, Fang

    2007-01-01

    Due to the complexity of interactions between microwaves and food products, a reliable and efficient simulation model can be a very useful tool to guide the design of microwave heating systems and processes. This research developed a model to simulate coupled phenomena of electromagnetic heating and conventional heat transfer by combining commercial electromagnetic software with a customer built heat transfer model. Simulation results were presented and compared with experimental results for hot water and microwave heating in a single mode microwave system at 915 MHz. Good agreement was achieved, showing that this model was able to provide insight into industrial electromagnetic heating processes. PMID:18351003

  11. Finite difference time domain electromagnetic scattering from frequency-dependent lossy materials

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Beggs, John H.

    1991-01-01

    Four different FDTD computer codes and companion Radar Cross Section (RCS) conversion codes on magnetic media are submitted. A single three dimensional dispersive FDTD code for both dispersive dielectric and magnetic materials was developed, along with a user's manual. The extension of FDTD to more complicated materials was made. The code is efficient and is capable of modeling interesting radar targets using a modest computer workstation platform. RCS results for two different plate geometries are reported. The FDTD method was also extended to computing far zone time domain results in two dimensions. Also the capability to model nonlinear materials was incorporated into FDTD and validated.

  12. Time-domain electromagnetic energy in a frequency-dispersive left-handed medium

    SciTech Connect

    Cui Tiejun; Kong Jinau

    2004-11-15

    From Maxwell's equations and the Poynting theorem, the time-domain electric and magnetic energy densities are generally defined in the frequency-dispersive media based on the conservation of energy. As a consequence, a general definition of electric and magnetic energy is proposed. Comparing with existing formulations of electric and magnetic energy in frequency-dispersive media, the new definition is more reasonable and is valid in any case. Using the new definition and staring from the equation of motion, we have shown rigorously that the total energy density and the individual electric and magnetic energy densities are always positive in a realistic artificial left-handed medium (LHM) [R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001)], which obeys actually the Lorentz medium model, although such a LHM has negative permittivity and negative permeability simultaneously in a certain frequency range. We have also shown that the conservation of energy is not violated in LHM. The earlier conclusions can be easily extended to the Drude medium model and the cold plasma medium model. Through an exact analysis of a one-dimensional transient current source radiating in LHM, numerical results are given to demonstrate that the work done by source, the power flowing outwards a surface, and the electric and magnetic energy stored in a volume are all positive in the time domain.

  13. Electromagnetic Wave Propagation in Body Area Networks Using the Finite-Difference-Time-Domain Method

    PubMed Central

    Bringuier, Jonathan N.; Mittra, Raj

    2012-01-01

    A rigorous full-wave solution, via the Finite-Difference-Time-Domain (FDTD) method, is performed in an attempt to obtain realistic communication channel models for on-body wireless transmission in Body-Area-Networks (BANs), which are local data networks using the human body as a propagation medium. The problem of modeling the coupling between body mounted antennas is often not amenable to attack by hybrid techniques owing to the complex nature of the human body. For instance, the time-domain Green's function approach becomes more involved when the antennas are not conformal. Furthermore, the human body is irregular in shape and has dispersion properties that are unique. One consequence of this is that we must resort to modeling the antenna network mounted on the body in its entirety, and the number of degrees of freedom (DoFs) can be on the order of billions. Even so, this type of problem can still be modeled by employing a parallel version of the FDTD algorithm running on a cluster. Lastly, we note that the results of rigorous simulation of BANs can serve as benchmarks for comparison with the abundance of measurement data. PMID:23012575

  14. Use of airborne electromagnetic methods for resource mapping

    NASA Astrophysics Data System (ADS)

    Palacky, G. J.

    1993-11-01

    Airborne electromagnetic (AEM) methods complement spaceborne remote sensing techniques. AEM surveys carried out from low flying aircraft are capable of detecting geological structures not visible on the surface. The flight height of AEM systems above the ground ranges from 30 to 120 m. Most systems generate primary EM fields by using a loop transmitter; conducting coils are used as antenna to measure the secondary magnetic field caused by conductive inhomogeneities in the ground. The frequency used in AEM surveys (100 Hz to 50 kHz) allows ground penetration in excess of 100 m. At present, two types of AEM systems are widely used: helicopter, frequency-domain, and fixed-wing, towed-bird, time-domain. The most common survey products are apparent conductivity maps. AEM methods are extensively used in prospecting for base and precious metal deposits, kimberlites, uranium, and also in geological mapping, groundwater exploration and environmental investigations.

  15. The finite-difference time-domain (FD-TD) method for electromagnetic scattering and interaction problems

    NASA Technical Reports Server (NTRS)

    Taflove, A.; Umashankar, K. R.

    1987-01-01

    The formulation and recent applications of the finite-difference time-domain (FD-TD) method for the numerical modeling of electromagnetic scattering and interaction problems are considered. It is shown that improvements in FD-TD modeling concepts and software implementation often make it a preferable choice for structures which cannot be easily treated by conventional integral equations and asymptotic approaches. Recent FD-TD modeling validations in research areas including coupling to wires and wire bundles in free space and cavities, scattering from surfaces in relativistic motion, inverse scattering, and radiation condition theory, are reviewed. Finally, the advantages and disadvantages of FD-TD, and guidelines concerning when FD-TD should and should not be used in high-frequency electromagnetic modeling problems, are summarized.

  16. Efficient Modeling of PIN Diode Switches Employing Time-Domain Electromagnetic-Physics-Based Simulators

    SciTech Connect

    Hussein, Y.A.; Spencer, J.E.; El-Ghazaly, S.M.; Goodnick, S.M.; /Arizona State U.

    2005-09-20

    This paper presents an efficient full-wave time-domain simulator for accurate modeling of PIN diode switches. An equivalent circuit of the PIN diode is extracted under different bias conditions using a drift-diffusion physical model. Net recombination is modeled using a Shockley-Read-Hall process, while generation is assumed to be dominated by impact ionization. The device physics is coupled to Maxwell's equations using extended-FDTD formulism. A complete set of results is presented for the on and off states of the PIN switch. The results are validated through comparison with independent measurements, where good agreement is observed. Using this modeling approach, it is demonstrated that one can efficiently optimize PIN switches for better performance.

  17. rbstmultiprince.f; Equivalent Dipole Polarizability Inversion of Time Domain Electromagnetic Induction Data

    SciTech Connect

    Smith, J. Torquil

    2006-10-01

    This software, rbstmultiprince.f, computes polarizations and positions from electromagnetic data and is used in conjunction with technology to detect UXO. This software was funded by the ESTCP program of the DoD. This code makes use of third party code from the 1970s and 1980s that appears to have entered the public domain and is available for free download via the website netlib.org. The code was first developed by the author while he was employed at UCB and funded by the SERDP of the U.S. Army.

  18. rbstmultiprince.f; Equivalent Dipole Polarizability Inversion of Time Domain Electromagnetic Induction Data

    2006-10-01

    This software, rbstmultiprince.f, computes polarizations and positions from electromagnetic data and is used in conjunction with technology to detect UXO. This software was funded by the ESTCP program of the DoD. This code makes use of third party code from the 1970s and 1980s that appears to have entered the public domain and is available for free download via the website netlib.org. The code was first developed by the author while he was employed atmore » UCB and funded by the SERDP of the U.S. Army.« less

  19. Novel frequency domain techniques and advances in Finite Difference Time domain (FDTD) method for efficient solution of multiscale electromagnetic problems

    NASA Astrophysics Data System (ADS)

    Panayappan, Kadappan

    With the advent of sub-micron technologies and increasing awareness of Electromagnetic Interference and Compatibility (EMI/EMC) issues, designers are often interested in full- wave solutions of complete systems, taking to account a variety of environments in which the system operates. However, attempts to do this substantially increase the complexities involved in computing full-wave solutions, especially when the problems involve multi- scale geometries with very fine features. For such problems, even the well-established numerical methods, such as the time domain technique FDTD and the frequency domain methods FEM and MoM, are often challenged to the limits of their capabilities. In an attempt to address such challenges, three novel techniques have been introduced in this work, namely Dipole Moment (DM) Approach, Recursive Update in Frequency Domain (RUFD) and New Finite Difference Time Domain ( vFDTD). Furthermore, the efficacy of the above techniques has been illustrated, via several examples, and the results obtained by proposed techniques have been compared with other existing numerical methods for the purpose of validation. The DM method is a new physics-based approach for formulating MoM problems, which is based on the use of dipole moments (DMs), as opposed to the conventional Green's functions. The absence of the Green's functions, as well as those of the vector and scalar potentials, helps to eliminate two of the key sources of difficulties in the conventional MoM formulation, namely the singularity and low-frequency problems. Specifically, we show that there are no singularities that we need to be concerned with in the DM formulation; hence, this obviates the need for special techniques for integrating these singularities. Yet another salutary feature of the DM approach is its ability to handle thin and lossy structures, or whether they are metallic, dielectric-type, or even combinations thereof. We have found that the DM formulation can handle these

  20. Unidirectional transparent signal injection in finite-difference time-domain electromagnetic codes -application to reflectometry simulations

    SciTech Connect

    Silva, F. da; Hacquin, S.

    2005-03-01

    We present a novel numerical signal injection technique allowing unidirectional injection of a wave in a wave-guiding structure, applicable to 2D finite-difference time-domain electromagnetic codes, both Maxwell and wave-equation. It is particularly suited to continuous wave radar-like simulations. The scheme gives an unidirectional injection of a signal while being transparent to waves propagating in the opposite direction (directional coupling). The reflected or backscattered waves (returned) are separated from the probing waves allowing direct access to the information on amplitude and phase of the returned wave. It also facilitates the signal processing used to extract the phase derivative (or group delay) when simulating radar systems. Although general, the technique is particularly suited to swept frequency sources (frequency modulated) in the context of reflectometry, a fusion plasma diagnostic. The UTS applications presented here are restricted to fusion plasma reflectometry simulations for different physical situations. This method can, nevertheless, also be used in other dispersive media such as dielectrics, being useful, for example, in the simulation of plasma filled waveguides or directional couplers.

  1. Application of time-domain electromagnetic method in mapping saltwater intrusion of a coastal alluvial aquifer, North Oman

    NASA Astrophysics Data System (ADS)

    El-Kaliouby, Hesham; Abdalla, Osman

    2015-04-01

    One-third of the population of Oman depends on the groundwater extracted from the alluvium deposits located along the coast of the Gulf of Oman. However, groundwater depletion and seawater intrusion constitute major challenges along the coastal water accumulations in Oman. The objective of this study is to locate the extent of seawater intrusion and to map the shallow alluvial aquifer in the region, where water accumulates from the rain or the flooding at AlKhod dam. In order to assess the effect of groundwater infiltration, which recharges the aquifer and fights the seawater invasion, a quantitative approach for the groundwater quality and distribution is required to provide reasonable knowledge on the spatial distribution of the aquifers, their thickness and the type of sediments. When groundwater wells and their subsurface geologic and electrical logs are not available or not deep enough, surface geophysical surveys can be considered due to their low cost and short acquisition time. The application of time-domain electromagnetic (TDEM) method in Al-Khod area, Oman has proven to be a successful tool in mapping the fresh/saline water interface and for locating the depth of fresh water aquifer. The depths and inland extents of the saline zone were mapped along three N-S TDEM profiles. The depths to the freshwater table and saline interface calculated from TDEM closely match the available well data.

  2. The inclusion of wall loss in electromagnetic finite-difference time-domain thin-slot algorithms

    SciTech Connect

    Riley, D.J.; Turner, C.D.

    1990-09-01

    Sub-gridding techniques enable finite-difference time-domain (FDTD) electromagnetic codes to model apertures that are much narrower than the spatial resolution of the FDTD mesh. Previous thin-slot methods have assumed that the slot walls are perfectly conducting. As the slot depth-to-width ratio becomes large, interior wall losses for realistic materials can significantly affect the coupling through the slot, and therefore these loss effects should not be neglected. This paper presents two methods for incorporating loss for walls with good, but not perfect conductivity, into the FDTD calculations. The first method modifies an FDTD equation internal to the slot to include a surface-impedance contribution. This method is appropriate for the usual FDTD thin-slot formalisms. The second method includes the losses into a half-space'' integral equation that can be used by the recently introduced Hybrid Thin-Slot Algorithm. Results based on the two methods are compared for a variety of slot parameters and wall conductivities.

  3. Mapping saline groundwater beneath the Sea Galilee and its vicinity using time domain electromagnetic (TDEM) geophysical technique

    USGS Publications Warehouse

    Goldman, M.; Gvirtzman, H.; Hurwitz, S.

    2004-01-01

    An extensive time domain electromagnetic (TDEM) survey covering the Sea of Galilee with a dense grid of points has been recently carried out. A total of 269 offshore and 33 supplementary onshore TDEM soundings were performed along six N-S and ten W-E profiles and at selected points both offshore and onshore along the whole coastal line. The interpreted resistivities were calibrated with the direct salinity measurements in the Haon-2 borehole and relatively deep (5 m) cores taken from the lake bottom. It was found that resistivities below 1 ohm-m are solely indicative of groundwater salinity exceeding 10,000 mg Cl/l. Such low resistivities (high salinities) were detected at depths greater than 15 m below almost the entire bottom of the lake. At some parts of the lake, particularly in the south, the saline water was detected at shallower depths, sometimes at a few meters below the bottom. Relatively high resistivity (fresh groundwater) was found along the margins of the lake down to roughly 100 m, the maximum exploration depth of the system. The detected sharp lateral contrasts at the lake margin between high and low resistivities coincide with the faults separating the carbonate and clastic units, respectively. The geometry of the fresh/saline groundwater interface below the central part of the lake is very similar to the shape of the lake bottom, probably due to the diffusive salt transport from the bottom sediments to the lake water. The above geophysical observations suggest differentsalt transport mechanisms from the sediments to the central part of the lake (diffusion) and from regional aquifers to the margins of the lake (advection). ?? 2004 Science From Israel/LPPLtd.

  4. A comparison of time domain electromagnetic and surface nuclear magnetic resonance sounding for subsurface water on Mars

    NASA Astrophysics Data System (ADS)

    Grimm, Robert E.

    2003-04-01

    The time domain electromagnetic (TDEM) method has enjoyed wide success in terrestrial groundwater exploration, and the contrast in electrical conductivity between dry overburden and groundwater containing even a small amount of dissolved solids on Mars will yield a robust response. However, moist clays or even ores (e.g., massive hematite) will also be electrically conductive and could be mistaken for aquifers on Mars if proper geologic context is lacking. Surface nuclear magnetic resonance (SNMR) is the only noninvasive geophysical method that responds nearly uniquely to water. As the measured EMF is proportional to the proton-precession frequency, which in turn is proportional to the planet's static magnetic field, SNMR signals are comparatively weak. Using small systems of several kilograms and several watts, the exploration depth of SNMR is one to two orders of magnitude smaller than TDEM: the latter can detect water to depths up to a few kilometers, whereas the former is limited to depths of a few tens of meters. There is no improvement in SNMR signal-to-noise with increasing static field where penetration is controlled by aquifer salinity (skin depth). As reasonable integration times cannot substantially increase the exploration depth, much larger transmitter current or loop mass (either requiring system masses of tens to hundreds of kilograms) are the only way to implement SNMR for exploration to depths of at least hundreds of meters. In spite of some ambiguity in target identification, TDEM is recommended for the first generation of in situ active-source EM measurements for groundwater on Mars.

  5. Airborne Electromagnetic Mapping of Subsurface Permafrost

    NASA Astrophysics Data System (ADS)

    Abraham, J. D.; Minsley, B. J.; Cannia, J. C.; Smith, B. D.; Walvoord, M. A.; Voss, C. I.; Jorgenson, T. T.; Wylie, B. K.; Anderson, L.

    2011-12-01

    Concerns over the impacts of climate change have recently energized research on the potential impacts thawing permafrost may have on groundwater flow, infrastructure, forest health, ecosystems, energy production, CO2 release, and contaminant transport. There is typically little knowledge about subsurface permafrost distributions, such as thickness and where groundwater-surface-water connections may occur through taliks. In June of 2010, the U.S. Geological Survey undertook an airborne electromagnetic (AEM) survey in the area of Fort Yukon, Alaska in order to map the 3-D distribution of permafrost and provide information for the development of groundwater models within the Yukon River Basin. Prior to the development of these models, information on areas of groundwater-surface water interaction was extremely limited. Lithology determined from a borehole drilled in Fort Yukon in 1994 agrees well with the resistivity depth sections inferred from the airborne survey. In addition to lithology, there a thermal imprint appears on the subsurface resistivity values. In the upper 20-50 m, the sections show continuous areas of high electrical resistivity, consistent with alluvial gravel deposits that are likely frozen. At depth, unfrozen gravel deposits have intermediate-to-high resistivity; frozen silts have intermediate resistivity; and unfrozen silts have low resistivity. Under the Yukon River and lakes where the subsurface is not frozen, zones of moderate resistivity intermix with areas of low resistivity. The areas of loess hills on the margins of the Yukon Flats have very-high electrical resistivity, indicating higher ice content, and are associated with the some of the greatest thickness of permafrost in the survey area. This work provides the first look into the 3-D distribution of permafrost in the areas around Fort Yukon and is a demonstration of the application of AEM to permafrost mapping. The AEM survey provides unprecedented 3-D images of subsurface electrical

  6. Airborne electromagnetic imaging of discontinuous permafrost

    USGS Publications Warehouse

    Minsley, B.J.; Abraham, J.D.; Smith, B.D.; Cannia, J.C.; Voss, C.I.; Jorgenson, M.T.; Walvoord, M.A.; Wylie, B.K.; Anderson, L.; Ball, L.B.; Deszcz-Pan, M.; Wellman, T.P.; Ager, T.A.

    2012-01-01

    The evolution of permafrost in cold regions is inextricably connected to hydrogeologic processes, climate, and ecosystems. Permafrost thawing has been linked to changes in wetland and lake areas, alteration of the groundwater contribution to streamflow, carbon release, and increased fire frequency. But detailed knowledge about the dynamic state of permafrost in relation to surface and groundwater systems remains an enigma. Here, we present the results of a pioneering ???1,800 line-kilometer airborne electromagnetic survey that shows sediments deposited over the past ???4 million years and the configuration of permafrost to depths of ???100 meters in the Yukon Flats area near Fort Yukon, Alaska. The Yukon Flats is near the boundary between continuous permafrost to the north and discontinuous permafrost to the south, making it an important location for examining permafrost dynamics. Our results not only provide a detailed snapshot of the present-day configuration of permafrost, but they also expose previously unseen details about potential surface-groundwater connections and the thermal legacy of surface water features that has been recorded in the permafrost over the past ???1,000 years. This work will be a critical baseline for future permafrost studies aimed at exploring the connections between hydrogeologic, climatic, and ecological processes, and has significant implications for the stewardship of Arctic environments. ?? 2012 by the American Geophysical Union.

  7. Comparing Time Domain Electromagnetics (TEM) and Early-Time TEM for Mapping Highly Conductive Groundwater in Mars Analog Environments

    NASA Astrophysics Data System (ADS)

    Jernsletten, J. A.

    2005-05-01

    Introduction: The purpose of this study is to evaluate the use of (diffusive) Time Domain Electromagnetics (TEM) for sounding of subsurface water in conductive Mars analog environments. To provide a baseline for such studies, I show data from two field studies: 1) Diffusive sounding data (TEM) from Pima County, Arizona; and 2) Shallower sounding data using the Fast-Turnoff TEM method from Peña de Hierro in the Rio Tinto region of Spain. The latter is data from work conducted under the auspices of the Mars Analog Research and Technology Experiment (MARTE). Pima County TEM Survey: A TEM survey was carried out in Pima County, Arizona, in January 2003. Data was collected using 100 m Tx loops and a ferrite-cored magnetic coil Rx antenna, and processed using commercial software. The survey used a 16 Hz sounding frequency, which is sensitive to slightly salty groundwater. Prominent features in the data from Arizona are the ~500 m depth of investigation and the ~120 m depth to the water table, confirmed by data from four USGS test wells surrounding the field area. Note also the conductive (~20-40 ω m) clay-rich soil above the water table. Rio Tinto Fast-Turnoff TEM Survey: During May and June of 2003, a Fast-Turnoff (early time) TEM survey was carried out at the Peña de Hierro field area of the MARTE project, near the town of Nerva, Spain. Data was collected using 20 m and 40 m Tx loop antennae and 10 m loop Rx antennae, with a 32 Hz sounding frequency. Data from Line 4 (of 16) from this survey, collected using 40 m Tx loops, show ~200 m depth of investigation and a conductive high at ~90 m depth below Station 20 (second station of 10 along this line). This is the water table, matching the 431 m MSL elevation of the nearby pit lake. The center of the "pileup" below Station 60 is spatially coincident with the vertical fault plane located here. Data from Line 15 and Line 14 of the Rio Tinto survey, collected using 20 m Tx loops, achieve ~50 m depth of investigation and

  8. Time-Domain Electromagnetic Soundings to Characterize Water Quality Within a Freshwater/Saline-Water Transition Zone, Estancia Valley, New Mexico, July 2005 - A Reconnaissance Study

    USGS Publications Warehouse

    Shah, Sachin D.; Kress, Wade H.; Land, Lewis A.

    2007-01-01

    During July 2005, the U.S. Geological Survey, in cooperation with the New Mexico Bureau of Geology and Mineral Resources, conducted a reconnaissance study in the Estancia Valley in central New Mexico to characterize water quality using time-domain electromagnetic (TDEM) surface-geophysical soundings. TDEM sounding is one of a number of surface geophysical methods that provide a relatively quick and inexpensive means to characterize subsurface geologic and hydrogeologic properties. TDEM surface geophysical methods can be used to detect variations in the electrical resistivity of the subsurface, which in turn can be related to variations in the physical and chemical properties of soil, rock, and pore fluids.

  9. Time-domain imaging

    NASA Technical Reports Server (NTRS)

    Tolliver, C. L.

    1989-01-01

    The quest for the highest resolution microwave imaging and principle of time-domain imaging has been the primary motivation for recent developments in time-domain techniques. With the present technology, fast time varying signals can now be measured and recorded both in magnitude and in-phase. It has also enhanced our ability to extract relevant details concerning the scattering object. In the past, the interface of object geometry or shape for scattered signals has received substantial attention in radar technology. Various scattering theories were proposed to develop analytical solutions to this problem. Furthermore, the random inversion, frequency swept holography, and the synthetic radar imaging, have two things in common: (1) the physical optic far-field approximation, and (2) the utilization of channels as an extra physical dimension, were also advanced. Despite the inherent vectorial nature of electromagnetic waves, these scalar treatments have brought forth some promising results in practice with notable examples in subsurface and structure sounding. The development of time-domain techniques are studied through the theoretical aspects as well as experimental verification. The use of time-domain imaging for space robotic vision applications has been suggested.

  10. FEMAX finite-element package for computing three-dimensional time-domain electromagnetic fields in inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Mur, G.

    An efficient and accurate finite-element package is described for computing transient as well as time-harmonic three-dimensional electromagnetic fields in inhomogeneous media. For the expansion of the field in an inhomogeneous configuration, edge elements are used along the interfaces between media with different medium properties to allow for the continuity conditions of the field across these interfaces, nodal elements are used in the remaining homogeneous subdomains. In the domain of computation the package decides locally what type of element has to be used for obtaining the user-specified accuracy of modeling the field. In this way optimum results are obtained both in regard to computational efficiency and in regard to desired accuracy. The electromagnetic compatibility relations are implemented for avoiding spurious solutions.

  11. Exploring Liquid Water Beneath Glaciers and Permafrost in Antarctica Through Airborne Electromagnetic Surveys

    NASA Astrophysics Data System (ADS)

    Auken, E.; Tulaczyk, S. M.; Foley, N.; Dugan, H.; Schamper, C.; Peter, D.; Virginia, R. A.; Sørensen, K.

    2015-12-01

    Here, we demonstrate how high powered airborne electromagnetic resistivity is efficiently used to map 3D domains of unfrozen water below glaciers and permafrost in the cold regions of the Earth. Exploration in these parts of the world has typically been conducted using radar methods, either ground-based or from an airborne platform. Radar is an excellent method if the penetrated material has a low electrical conductivity, but in materials with higher conductivity, such as sediments with liquid water, the energy is attenuated . Such cases are efficiently explored with electromagnetic methods, which attenuate less quickly in conductive media and can therefore 'see through' conductors and return valuable information about their electrical properties. In 2011, we used a helicopter-borne, time-domain electromagnetic sensor to map resistivity in the subsurface across the McMurdo Dry Valleys (MDV). The MDV are a polar desert in coastal Antarctica where glaciers, permafrost, ice-covered lakes, and ephemeral summer streams coexist. In polar environments, this airborne electromagnetic system excels at finding subsurface liquid water, as water which remains liquid under cold conditions must be sufficiently saline, and therefore electrically conductive. In Taylor Valley, in the MDV, our data show extensive subsurface low resistivity layers beneath higher resistivity layers, which we interpret as cryoconcentrated hypersaline brines lying beneath glaciers and frozen permafrost. These brines appear to be contiguous with surface lakes, subglacial regions, and the Ross Sea, which could indicate a regional hydrogeologic system wherein solutes may be transported between surface reservoirs by ionic diffusion and subsurface flow. The system as of 2011 had a maximum exploration depth of about 300 m. However, newer and more powerful airborne systems can explore to a depth of 500 - 600 m and new ground based instruments will get to 1000 m. This is sufficient to penetrate to the base of

  12. Incorporation of modified dynamic inverse Jiles-Atherton model in finite volume time domain for nonlinear electromagnetic field computation

    NASA Astrophysics Data System (ADS)

    Hamimid, M.; Mimoune, S. M.; Feliachi, M.

    2013-01-01

    In this paper, a time stepping finite volume method (FVM) associated with the modified inverse Jiles-Atherton model for the nonlinear electromagnetic field computation is presented. To describe the dynamic behavior in the conducting media, the effective field is modified by adding two counter-fields associated respectively to the eddy current and excess losses. The hysteresis loss can be estimated by the integration over the obtained hysteresis loop at each frequency. To examine the validity of the proposed dynamic model coupled with FVM, the computed total losses and hysteresis loops are compared to experiments.

  13. Constraining lightning channel growth dynamics by comparison of time domain electromagnetic simulations to Huntsville Alabama Marx Meter Array observations

    NASA Astrophysics Data System (ADS)

    Carlson, B. E.; Bitzer, P. M.; Burchfield, J.

    2015-12-01

    Major unknowns in lightning research include the mechanism and dynamics of lightning channel extension. Such processes are most simple during the initial growth of the channel, when the channel is relatively short and has not yet branched extensively throughout the cloud. During this initial growth phase, impulsive electromagnetic emissions (preliminary breakdown pulses) can be well-described as produced by current pulses generated as the channel extends, but the overall growth rate, channel geometry, and degree of branching are not known. We approach such issues by examining electric field change measurements made with the Huntsville Alabama Marx Meter Array (HAMMA) during the first few milliseconds of growth of a lightning discharge. We compare HAMMA observations of electromagnetic emissions and overall field change to models of lightning channel growth and development and attempt to constrain channel growth rate, degree of branching, channel physical properties, and uniformity of thunderstorm electric field. Preliminary comparisons suggest that the lightning channel branches relatively early in the discharge, though more complete and detailed analysis will be presented.

  14. Extracting very early time airborne electromagnetic data

    NASA Astrophysics Data System (ADS)

    Macnae, J. C.

    2013-12-01

    Many helicopter EM systems stream data during both the on- and off-time, and in theory should be able to extract responses at either zero delay (simultaneous with the transmitter changes) and/or at discrete delays determined by the sample rate. In practice, this has not been the case. Historically, VTEM data, have only been ';usable' at delays longer than say 70 to 100 us. Systems such as mini-Skytem (Schamper & Auken, EAGE 2012) have been able to make quantitative measurements at very early delays through reducing transmitter power (and necessarily signal/noise levels). Recent developments now permit extraction of quantitative data from high power streamed VTEM data at delays as short as 5 us. Such quantitative very early time data is the key to extracting near-surface conductivities. Macnae & Baron-Hay (ASEG, 2008) improved early time data through subtraction of a constant 'parasitic' response caused by capacitive current leakage in the transmitter loop wiring. This permitted useful data to be extracted from about 20 or 25 us. More recently, further improvements have been made using high altitude data as a reference, and time-domain deconvolution as discussed by Stolz & Macnae (Geophysics 1998). The procedure successfully 1) subtracts the coupling-dependent primary and 2) then corrects the observed secondary for bandwidth limitations and the parasitic effects. The parasitic correction uses both static and bucking dependent components derived from the residual on-time response of the transmitter. Complications in the process derive from problems in exactly measuring primary fields: with very low noise levels in the VTEM system, extensive conductors may be detected to distances (depths) of up to 3 km. It is uncommon for helicopters to collect data at this height, and as a result it is necessary to predict the primary from measurements at lower altitude. Such a prediction can be obtained from repeat measurements at different heights over a 'relatively uniform' area

  15. Airborne electromagnetic data and processing within Leach Lake Basin, Fort Irwin, California: Chapter G in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California

    USGS Publications Warehouse

    Bedrosian, Paul A.; Ball, Lyndsay B.; Bloss, Benjamin R.

    2014-01-01

    From December 2010 to January 2011, the U.S. Geological Survey conducted airborne electromagnetic and magnetic surveys of Leach Lake Basin within the National Training Center, Fort Irwin, California. These data were collected to characterize the subsurface and provide information needed to understand and manage groundwater resources within Fort Irwin. A resistivity stratigraphy was developed using ground-based time-domain electromagnetic soundings together with laboratory resistivity measurements on hand samples and borehole geophysical logs from nearby basins. This report releases data associated with the airborne surveys, as well as resistivity cross-sections and depth slices derived from inversion of the airborne electromagnetic data. The resulting resistivity models confirm and add to the geologic framework, constrain the hydrostratigraphy and the depth to basement, and reveal the distribution of faults and folds within the basin.

  16. Contribution of a combined TDEM (Time-Domain electromagnetism) and geoelectrical survey to the investigation of the coastal aquifer of Puerto Morelos, Quintana Roo, Mexico

    NASA Astrophysics Data System (ADS)

    Rebolledo-Vieyra, M.; Ravelo-Cervantes, J. I.; Lecossec, A.

    2007-12-01

    This study reports initial results of combined Time Domain Electromagnetic (TDEM) and vertical electrical sounding (VES), geophysical characterization of the Quintana Roo coastal aquifer, with the aim of establishing effective protocols for subsequent surveys in the area, through the association of TDEM and VES. The high resistivity of the carbonate terrain, combined with the very low resistivity range of fresh-water and sea-water, are ideal to use both tools in combination. The results show that both methods used in a combination may provide a useful tool for hydrogeologial studies. In this survey we were able to identifiy a fracture 100 m x 40 m, that was correlated to fresh-water discharges in to the Puerto Morelos Reef lagoon.

  17. Systematic wave-equation finite difference time domain formulations for modeling electromagnetic wave-propagation in general linear and nonlinear dispersive materials

    NASA Astrophysics Data System (ADS)

    Ramadan, Omar

    2015-09-01

    In this paper, systematic wave-equation finite difference time domain (WE-FDTD) formulations are presented for modeling electromagnetic wave-propagation in linear and nonlinear dispersive materials. In the proposed formulations, the complex conjugate pole residue (CCPR) pairs model is adopted in deriving a unified dispersive WE-FDTD algorithm that allows modeling different dispersive materials, such as Debye, Drude and Lorentz, in the same manner with the minimal additional auxiliary variables. Moreover, the proposed formulations are incorporated with the wave-equation perfectly matched layer (WE-PML) to construct a material independent mesh truncating technique that can be used for modeling general frequency-dependent open region problems. Several numerical examples involving linear and nonlinear dispersive materials are included to show the validity of the proposed formulations.

  18. Finite-difference time-domain analysis of electromagnetic wave propagation in corrugated waveguide: Effect of miter bend/polarizer miter bend

    NASA Astrophysics Data System (ADS)

    Fujita, Yoshihisa; Ikuno, Soichiro; Kubo, Shin; Nakamura, Hiroaki

    2016-01-01

    The effect of the polarizer miter bend (PMB) reflector on polarization is numerically investigated by using the finite-difference time-domain (FDTD) method. The Drude model is implemented to take into account the fact that the waveguide wall is prepared from a dispersive medium. In electron cyclotron resonance heating (ECRH), the corrugated waveguide and miter bend are adopted for transmitting millimeter electromagnetic waves. In addition, PMB is employed to improve the plasma heating efficiency. The results of computations show that modes other than the input mode are also generated owing to the reflection at the miter bend mirror/PMB reflector. Moreover, it is found that elliptical polarization is observed after the linear polarization passes through PMB.

  19. Scattering of a plane electromagnetic wave by a generalized Luneburg sphere-Part 2: Wave scattering and time-domain scattering

    NASA Astrophysics Data System (ADS)

    Laven, Philip; Lock, James A.; Adam, John A.

    2015-09-01

    We calculated scattering of an electromagnetic plane wave by a radially inhomogeneous particle and a radially inhomogeneous bubble when the square of the refractive index profile is parabolic as a function of radius. Such a particle or bubble is called a generalized Luneburg lens. A wide variety of scattering phenomena can occur, depending on the value of the two adjustable parameters of the parabola. These phenomena, including transmission rainbows, the weak caustic for near-critical-angle scattering by a bubble, surface orbiting, the interior orbiting paths of morphology-dependent resonances, and the separation of diffraction are studied here using wave theory and time domain scattering. These phenomena are also compared with their appearance or absence for scattering by a homogeneous sphere.

  20. Bedrock mapping of buried valley networks using seismic reflection and airborne electromagnetic data

    NASA Astrophysics Data System (ADS)

    Oldenborger, G. A.; Logan, C. E.; Hinton, M. J.; Pugin, A. J.-M.; Sapia, V.; Sharpe, D. R.; Russell, H. A. J.

    2016-05-01

    In glaciated terrain, buried valleys often host aquifers that are significant groundwater resources. However, given the range of scales, spatial complexity and depth of burial, buried valleys often remain undetected or insufficiently mapped. Accurate and thorough mapping of bedrock topography is a crucial step in detecting and delineating buried valleys and understanding formative valley processes. We develop a bedrock mapping procedure supported by the combination of seismic reflection data and helicopter time-domain electromagnetic data with water well records for the Spiritwood buried valley aquifer system in Manitoba, Canada. The limited spatial density of water well bedrock observations precludes complete depiction of the buried valley bedrock topography and renders the water well records alone inadequate for accurate hydrogeological model building. Instead, we leverage the complementary strengths of seismic reflection and airborne electromagnetic data for accurate local detection of the sediment-bedrock interface and for spatially extensive coverage, respectively. Seismic reflection data are used to define buried valley morphology in cross-section beneath survey lines distributed over a regional area. A 3D model of electrical conductivity is derived from inversion of the airborne electromagnetic data and used to extrapolate buried valley morphology over the entire survey area. A spatially variable assignment of the electrical conductivity at the bedrock surface is applied to different features of the buried valley morphology identified in the seismic cross-sections. Electrical conductivity is then used to guide construction of buried valley shapes between seismic sections. The 3D locus of points defining each morphological valley feature is constructed using a path optimization routine that utilizes deviation from the assigned electrical conductivities as the cost function. Our resulting map represents a bedrock surface of unprecedented detail with more

  1. INTERPRETATION OF AIRBORNE ELECTROMAGNETIC AND MAGNETIC DATA IN THE 600 AREA

    SciTech Connect

    CUMMINS GD

    2010-11-11

    As part of the 200-PO-1 Phase I geophysical surveys, Fugro Airborne Surveys was contracted to collect airborne electromagnetic (EM) and magnetic surveys of the Hanford Site 600 Area. Two helicopter survey systems were used with the HeliGEOTEM{reg_sign} time domain portion flown between June 19th and June 20th, 2008, and the RESOLVE{reg_sign} frequency domain portion was flown from June 29th to July 1st, 2008. Magnetic data were acquired contemporaneously with the electromagnetic surveys using a total-field cesium vapor magnetometer. Approximately 925 line kilometers (km) were flown using the HeliGEOTEM{reg_sign} II system and 412 line kilometers were flown using the RESOLVE{reg_sign} system. The HeliGEOTEM system has an effective penetration of roughly 250 meters into the ground and the RESOLVE system has an effective penetration of roughly 60 meters. Acquisition parameters and preliminary results are provided in SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site. Airborne data are interpreted in this report in an attempt to identify areas of likely preferential groundwater flow within the aquifer system based on the presence of paleochannels or fault zones. The premise for the interpretation is that coarser-grained intervals have filled in scour channels created by episodic catastrophic flood events during the late Pleistocene. The interpretation strategy used the magnetic field anomaly data and existing bedrock maps to identify likely fault or lineament zones. Combined analysis of the magnetic, 60-Hz noise monitor, and flight-altitude (radar) data were used to identify zones where EM response is more likely due to cultural interference and or bedrock structures. Cross-sectional and map view presentations of the EM data were used to identify more electrically resistive zones that likely correlate with coarser-grained intervals. The resulting interpretation identifies one major northwest-southeast trending

  2. Use of a time-domain electromagnetic method with geochemical tracers to explore the salinity anomalies in a small coastal aquifer in north-eastern Tunisia

    NASA Astrophysics Data System (ADS)

    Chekirbane, Anis; Tsujimura, Maki; Kawachi, Atsushi; Lachaal, Fethi; Isoda, Hiroko; Tarhouni, Jamila

    2014-09-01

    The study area is a small coastal plain in north-eastern Tunisia. It is drained by an ephemeral stream network and is subject to several pollutant discharges such as oilfield brine coming from a neighboring oil company and wastewater from Somâa city, located in the upstream of the plain. Furthermore, a hydraulic head near the coastal part of the aquifer is below sea level, suggesting that seawater intrusion may occur. A time-domain electromagnetic (TDEM) survey, based on 28 soundings, was conducted in Wadi Al Ayn and Daroufa plains to delineate the saline groundwater. Based on longitudinal and transversal resistivity two-dimensional pseudosections calibrated with boring data, the extent of saline water was identified. Geochemical tracers were combined with the resistivity dataset to differentiate the origin of groundwater salinization. In the upstream part of the plain, the infiltration of oilfield brine through the sandy bed of Wadi Al Ayn seems to have a considerable effect on groundwater salinization. However, in the coastal part of the aquifer, groundwater salinization is due to seawater intrusion and the saltwater is reaching an inland extent around 1.3 km from the shoreline. The contribution ratios of saline water bodies derived from the inverted chloride data vary for the oilfield brine from 1 to 13 % and for the seawater from 2 to 21 %.

  3. Use of a time-domain electromagnetic method with geochemical tracers to explore the salinity anomalies in a small coastal aquifer in north-eastern Tunisia

    NASA Astrophysics Data System (ADS)

    Chekirbane, Anis; Tsujimura, Maki; Kawachi, Atsushi; Lachaal, Fethi; Isoda, Hiroko; Tarhouni, Jamila

    2014-12-01

    The study area is a small coastal plain in north-eastern Tunisia. It is drained by an ephemeral stream network and is subject to several pollutant discharges such as oilfield brine coming from a neighboring oil company and wastewater from Somâa city, located in the upstream of the plain. Furthermore, a hydraulic head near the coastal part of the aquifer is below sea level, suggesting that seawater intrusion may occur. A time-domain electromagnetic (TDEM) survey, based on 28 soundings, was conducted in Wadi Al Ayn and Daroufa plains to delineate the saline groundwater. Based on longitudinal and transversal resistivity two-dimensional pseudosections calibrated with boring data, the extent of saline water was identified. Geochemical tracers were combined with the resistivity dataset to differentiate the origin of groundwater salinization. In the upstream part of the plain, the infiltration of oilfield brine through the sandy bed of Wadi Al Ayn seems to have a considerable effect on groundwater salinization. However, in the coastal part of the aquifer, groundwater salinization is due to seawater intrusion and the saltwater is reaching an inland extent around 1.3 km from the shoreline. The contribution ratios of saline water bodies derived from the inverted chloride data vary for the oilfield brine from 1 to 13 % and for the seawater from 2 to 21 %.

  4. Inversion of Airborne Electromagnetic Survey Data, Styx River Area, Alaska

    NASA Astrophysics Data System (ADS)

    Kass, A.; Minsley, B. J.; Smith, B. D.; Burns, L.; Emond, A.

    2014-12-01

    A joint effort by the US Geological Survey (USGS) and the Alaska Division of Geological & Geophysical Surveys (DGGS) aims to add value to public domain airborne electromagnetic (AEM) data, collected in Alaska, through the application of newly developed advanced inversion methods to produce resistivity depth sections along flight lines. Derivative products are new geophysical data maps, interpretative profiles and displays. An important task of the new processing is to facilitate calibration or leveling between adjacent surveys flown with different systems in different years. The new approach will facilitate integration of the geophysical data in the interpretation and construction of geologic framework, resource evaluations and to geotechnical studies. Four helicopter airborne electromagnetic (AEM) surveys have been flown in the Styx River area by the DGGS; Styx River, Middle Styx, East Styx, and Farewell. The Styx River flown in 2008 and Middle Styx in flown 2013, cover an area of 2300 square kilometers. These data consist of frequency-domain DIGHEM V surveys which have been numerically processed and interpreted to yield a three-dimensional model of electrical resistivity. We describe the numerical interpretation methodology (inversion) in detail, from quality assessment to interpretation. We show two methods of inversion used in these datasets, deterministic and stochastic, and describe how we use these results to define calibration parameters and assess the quality of the datasets. We also describe the difficulties and procedures for combining datasets acquired at different times.

  5. Determination of near-surface, crustal and lithospheric structures in the Canadian Precambrian Shield using time-domain electromagnetic and magnetotelluric methods

    NASA Astrophysics Data System (ADS)

    Wu, Xianghong

    Two electromagnetic methods were used to analyse the geoelectric structure of the subsurface of regions of the Precambrian Shield in Canada: the magnetotelluric (MT) and time-domain electromagnetic (TEM) methods. Magnetotelluric soundings were made at 60 sites in the southwestern Northwest Territories, Canada, along the LITHOPROBE SNORCLE Transect Corridor 1 and 1A, in the summer of 1996. The sites are located in southwestern Northwest Territories, Canada, between latitudes 60°--65°N and longitudes 110°--125°W, and cross the Archean Slave Province, the Proterozoic Buffalo Head, Great Bear Magmatic Arc, Hottah, Fort Simpson and Nahanni terranes, and the Great Slave Lake Shear Zone. Phanerozoic sedimentary rocks overlie the Proterozoic terranes. The main object of this project is to map the fracture zones and fresh/saline water interface in Precambrian granitic rocks using the surface TEM method. The TEM surveys were completed at Sites B, D, URL and A. A GEONICS PROTEM47 system with a 100 m transmitter loop was used. The data were collected for receiver offsets ranging from 0--280 m on four sides of transmitter loop. Analysis of the TEM and borehole log data indicates a basic three-layer structure: a thin conductive surface layer, a thick resistive second layer with an embedded conductive layer at some stations, and a conductive bottom layer. The results of this study show the TEM method can be used to investigate the fracture zones and groundwater salinity distribution in the Precambrian granitic rocks and contribute to site investigations for nuclear waste deposit. The TEM study in the Lac du Bonnet Batholith was successful in demonstrating the potential of the TEM methods in mapping groundwater salinity in granitic batholith. The PROTEM47 instrument, in combination with a 100 m transmitter loop, provides a suitable TEM system for mapping the resistivity structure of the Lac du Bonnet batholith down to a depth of 300--400 m. For deeper penetration and more

  6. Development of 3D electromagnetic modeling tools for airborne vehicles

    NASA Technical Reports Server (NTRS)

    Volakis, John L.

    1992-01-01

    The main goal of this report is to advance the development of methodologies for scattering by airborne composite vehicles. Although the primary focus continues to be the development of a general purpose computer code for analyzing the entire structure as a single unit, a number of other tasks are also being pursued in parallel with this effort. One of these tasks discussed within is on new finite element formulations and mesh termination schemes. The goal here is to decrease computation time while retaining accuracy and geometric adaptability.The second task focuses on the application of wavelets to electromagnetics. Wavelet transformations are shown to be able to reduce a full matrix to a band matrix, thereby reducing the solutions memory requirements. Included within this document are two separate papers on finite element formulations and wavelets.

  7. Shallow subsurface imaging of the Piano di Pezza active normal fault (central Italy) by high-resolution refraction and electrical resistivity tomography coupled with time domain electromagnetic data

    NASA Astrophysics Data System (ADS)

    Villani, Fabio; Tulliani, Valerio; Fierro, Elisa; Sapia, Vincenzo; Civico, Riccardo

    2015-04-01

    The Piano di Pezza fault is the north-westernmost segment of the >20 km long Ovindoli-Pezza active normal fault-system (central Italy). Although existing paleoseismic data document high vertical Holocene slip rates (~1 mm/yr) and a remarkable seismogenic potential of this fault, its subsurface setting and Pleistocene cumulative displacement are still poorly known. We investigated for the first time by means of high-resolution seismic and electrical resistivity tomography coupled with time domain electromagnetic (TDEM) measurements the shallow subsurface of a key section of the Piano di Pezza fault. Our surveys cross a ~5 m-high fault scarp that was generated by repeated surface-rupturing earthquakes displacing some Late Holocene alluvial fans. We provide 2-D Vp and resistivity images which clearly show significant details of the fault structure and the geometry of the shallow basin infill material down to 50 m depth. We can estimate the dip (~50°) and the Holocene vertical displacement of the master fault (~10 m). We also recognize in the hangingwall some low-velocity/low-resistivity regions that we relate to packages of colluvial wedges derived from scarp degradation, which may represent the record of several paleo-earthquakes older than the Late Holocene events previously recognized by paleoseismic trenching. Conversely, due to the limited investigation depth of seismic and electrical tomography, the estimation of the cumulative amount of Pleistocene throw is hampered. Therefore, to increase the depth of investigation, we performed 7 TDEM measurements along the electrical profile using a 50 m loop size both in central and offset configuration. The recovered 1-D resistivity models show a good match with 2-D resistivity images in the near surface. Moreover, TDEM inversion results indicate that in the hangingwall, ~200 m away from the surface fault trace, the carbonate pre-Quaternary basement may be found at ~90-100 m depth. The combined approach of electrical and

  8. Mapping hydrogeophysical structures with time--domain electromagnetic methods: Resolving small-scale details with large loops and three--component measurements

    NASA Astrophysics Data System (ADS)

    Weiss, C. J.; Li, Y.; Nabighian, M.

    2004-12-01

    One of the outstanding problems in managing water resources in geologically complex aquifers is to develop improved techniques for mapping compartmentalization due to faulting. And although the role of faults in aquifer dynamics can vary considerably, knowledge of their location is key to understanding aquifer recharge and developing a sensible model for predicting aquifer response due to anthropogenic loads. We have explored the application of time--domain electromagnetic methods for mapping shallow aquifer faults on the western flanks of the Estancia Basin, central New Mexico. The field site is underlain by massive Pennsylvanian limestones (Madera Group) subsequently faulted by Laramide tectonics of the Ancestral Rockies and Neogene extension of the Rio Grande Rift. Two experimental configurations were deployed: a large 50 × 40 m transmitter loop with receiver stations located on a 5 m grid over the loop's interior; and an azimuthal survey consisting of a smaller fixed transmitter with receiver stations at ˜2 m intervals along a 30 m radius circle centered on the transmitter. Three--component transients of magnetic field due to a fast linear ramp--off in the transmitter were recorded at each station. As a rapid reconnaisance tool, the azimuthal experiment is well--suited for identification of subsurface fault planes since symmetry constraints require a vanishing azimuthal ̂ φ component of magnetic field when the electrical strike, or fault plane, lies in the ̂ φ direction. However, each of the experimental configurations revealed that the site's electrical structure is far more three--dimensional than previously believed and is not dominated by the response of a previously identified fault plane. Instead, we have observed spatially coherent transient signals which may indicate compartmentalization over length scales as small as a few tens of meters. Sections of this work were performed at Sandia National Laboratories. Sandia is a multi--program laboratory

  9. Use of Finite-Difference Time-Domain Method with AN Anatomically Based Model of a Human for Exposures to Far-Near Fields and Electromagnetic Pulse

    NASA Astrophysics Data System (ADS)

    Chen, Jinyuan

    The three-dimensional finite-difference time-domain (FDTD) method has been used to calculate local, layer-averaged and whole-body averaged specific absorption rates (SARs) and internal radio-frequency (RF) currents in an anatomically -based model of a human for plane-wave (far-field) exposures from 20 to 100 MHz and for spatially variable electromagnetic fields of a parallel-plate applicator representative of RF dielectric heaters used in industry (near-field). The calculated results are in agreement with the experimental data of Hill and others. While the existence of large foot currents has been known previously, substantial RF currents (600-800 mA) induced over much of the body are obtained for E-polarized fields suggested in the 1982 ANSI RF safety guideline. The FDTD method has also been used for simulating Annular Phased Array (APA) of dipole antennas for hyperthermia of deep-seated tumors. Anatomically-based models based on two different regions of the human body (14,417 and 13,133 cells) were used to calculated the SAR distributions with a resolution of 1.31 cm. Annular-phased arrays of eight dipole antennas couple to the human body through either a homogeneous or a tapered water bolus with air assumed outside the ring of dipoles. The objective of the calculations was to focus the energy to a couple of assumed tumor sites in the liver or the prostate. The geometrical optics approximation and principle of focused arrays were used to estimate the phases for individual dipoles to focus the electromagnetic energy into the tumor and its surrounding. Considerably focused power distributions with SARs on the order of 100 W/Kg for input powers of 400-700 W have been obtained for assumed tumor sites in the liver and the prostate using tapered boluses and optimized magnitudes and phases of power to the various dipoles. Lastly the FDTD technique is used to calculate the internal fields and the induced current densities in anatomically based models of a human using 5

  10. Three-dimensional inversion of frequency domain airborne electromagnetic data

    NASA Astrophysics Data System (ADS)

    Cox, Leif Harrington

    Airborne electromagnetic (AEM) surveys provide vast amounts of data over remote areas that may not be ground accessible. Typical surveys may contain hundreds of thousands of data points sampled every few meters. Quantitative interpretation of this large amount of data is computationally very time consuming and challenging. This dissertation presents two methods, based on the integral equation (IE), to invert AEM data in three dimensions. One inversion method is based on the localized quasi-linear (LQL) approximate inversion, which I have modified so the inverse and forward operators only include a small area of the inversion domain. This is possible for airborne data interpretation because the footprint, or region that affects the response of each measurement, is relatively small relative to the typical survey area. This modification to the approximate LQL inversion enables interpretation of full airborne surveys using tens of thousands of data points and hundreds of thousands of cells. The method is tested on both synthetic and field data, each showing accurate results. The second interpretation method is a rigorous inversion, which uses the full accuracy of the IE method. It is based on the iterative solution of the domain and field equations, while keeping the inverse operator linear to speed the inversion process. The domain equation is solved using a preconditioned form of the complex generalized minimum residual solver to guarantee convergence. This inversion includes the footprint method developed for the LQL inversion. It has also been tested on both synthetic and field data, demonstrating excellent results with respect to both the speed and accuracy of the method. With present computing power, the rigorous method is intended to interpret subsets of AEM surveys. The LQL inversion can be applied to entire survey areas, but the accuracy is limited by the approximate nature of the inversion. These two methods pair nicely, with the LQL method used to identify

  11. Performance metrics for state-of-the-art airborne magnetic and electromagnetic systems for mapping and detection of unexploded ordnance

    NASA Astrophysics Data System (ADS)

    Doll, William E.; Bell, David T.; Gamey, T. Jeffrey; Beard, Les P.; Sheehan, Jacob R.; Norton, Jeannemarie

    2010-04-01

    Over the past decade, notable progress has been made in the performance of airborne geophysical systems for mapping and detection of unexploded ordnance in terrestrial and shallow marine environments. For magnetometer systems, the most significant improvements include development of denser magnetometer arrays and vertical gradiometer configurations. In prototype analyses and recent Environmental Security Technology Certification Program (ESTCP) assessments using new production systems the greatest sensitivity has been achieved with a vertical gradiometer configuration, despite model-based survey design results which suggest that dense total-field arrays would be superior. As effective as magnetometer systems have proven to be at many sites, they are inadequate at sites where basalts and other ferrous geologic formations or soils produce anomalies that approach or exceed those of target ordnance items. Additionally, magnetometer systems are ineffective where detection of non-ferrous ordnance items is of primary concern. Recent completion of the Battelle TEM-8 airborne time-domain electromagnetic system represents the culmination of nearly nine years of assessment and development of airborne electromagnetic systems for UXO mapping and detection. A recent ESTCP demonstration of this system in New Mexico showed that it was able to detect 99% of blind-seeded ordnance items, 81mm and larger, and that it could be used to map in detail a bombing target on a basalt flow where previous airborne magnetometer surveys had failed. The probability of detection for the TEM-8 in the blind-seeded study area was better than that reported for a dense-array total-field magnetometer demonstration of the same blind-seeded site, and the TEM-8 system successfully detected these items with less than half as many anomaly picks as the dense-array total-field magnetometer system.

  12. Characterization of shallow ocean sediments using the airborne electromagnetic method

    NASA Technical Reports Server (NTRS)

    Won, I. J.; Smits, K.

    1986-01-01

    Experimental airborne electromagnetic (AEM) survey data collected in Cape Cod Bay are used to derive continuous profiles of water depth, electrical depth, water conductivity, and bottom sediment conductivity. Through a few well-known empirical relationships, the conductivities are used, in turn, to derive density, porosity, sound speed, and acoustic reflectivity of the ocean bottom. A commercially available Dighem III AEM system was used for the survey without any significant modification. The helicopter-borne system operated at 385 and 7200 Hz; both were in a horizontal coplanar configuration. The interpreted profiles show good agreement with available ground truth data. Where no such data are available, the results appear to be very reasonable. Compared with the shipborne electrode array method, the AEM method can determine the necessary parameters at a much higher speed with a better lateral resolution over a wide range of water depths from 0 to perhaps 100 m. The bottom sediment conductivity that can be measured by the AEM method is closely related to physical properties of sediments, such as porosity, density, sound speed, and, indirectly, sediment types that might carry broad implications for various offshore activities.

  13. Hydrogeophysics at the watershed-scale using airborne electromagnetics

    NASA Astrophysics Data System (ADS)

    Minsley, B. J.; Abraham, J. D.; Bedrosian, P. A.; Cannia, J. C.; Smith, B. D.

    2011-12-01

    Airborne electromagnetic (AEM) surveys provide densely sampled data over large areas (typically several hundred sq. km) that cannot be covered effectively using ground-based methods. AEM data are inverted to infer the distribution of electrical resistivity structures from shallow depths to several hundred meters. These models convey unparalleled details that are used to make inferences about hydrogeologic properties and processes at the watershed-scale. This information is being used in groundwater models that inform water management decisions, to better understand geologic frameworks, and to improve climate change models. We present the results of frequency-domain AEM surveys acquired by the US Geological Survey that have been used for building hydrogeologic frameworks in Nebraska, and understanding permafrost distributions in Alaska. An important aspect of interpreting the AEM data in a hydrogeologic context involves quantifying uncertainty and understanding the constraints on subsurface properties provided by the measured geophysical data. To achieve this, we present a trans-dimensional Bayesian Markov chain Monte Carlo (MCMC) algorithm that samples the distribution of models consistent with the measured data. Assessing the distribution of plausible models, rather than a single 'best-fit' model, provides valuable details about parameter uncertainty and non-uniqueness that leads to a more robust interpretation. In addition, we show how the MCMC algorithm can be used to evaluate the noise level in the measured data as well as errors in the elevation of the AEM system, both of which influence the space of acceptable models.

  14. Evaluation of airborne thermal, magnetic, and electromagnetic characterization technologies

    SciTech Connect

    Josten, N.E.

    1992-03-01

    The identification of Buried Structures (IBS) or Aerial Surveillance Project was initiated by the US Department of Energy (DOE) Office of Technology Development to demonstrate airborne methods for locating and identifying buried waste and ordnance at the Idaho National Engineering Laboratory (INEL). Two technologies were demonstrated: (a) a thermal infrared imaging system built by Martin Marietta Missile Systems and (b) a magnetic and electromagnetic (EM) geophysical surveying system operated by EBASCO Environmental. The thermal system detects small differences in ground temperature caused by uneven heating and cooling of the ground by the sun. Waste materials on the ground can be detected when the temperature of the waste is different than the background temperature. The geophysical system uses conventional magnetic and EM sensors. These sensors detect disturbances caused by magnetic or conductive waste and naturally occurring magnetic or conductive features of subsurface soils and rock. Both systems are deployed by helicopter. Data were collected at four INEL sites. Tests at the Naval Ordnance Disposal Area (NODA) were made to evaluate capabilities for detecting ordnance on the ground surface. Tests at the Cold Simulated Waste Demonstration Pit were made to evaluate capabilities for detecting buried waste at a controlled site, where the location and depth of buried materials are known. Tests at the Subsurface Disposal Area and Stationary Low-Power Reactor-1 burial area were made to evaluate capabilities for characterizing hazardous waste at sites that are typical of DOE buried waste sites nationwide.

  15. An interpretation of the 1997 airborne electromagnetic (AEM) survey, Fort Huachuca vicinity, Cochise County, Arizona

    USGS Publications Warehouse

    Bultman, Mark W.; Gettings, Mark E.; Wynn, Jeff

    1999-01-01

    In March of 1997, an airborne electromagnetic (AEM) survey of the Fort Huachuca Military Reservation and immediate surrounds was conducted. This survey was sponsored by the U.S. Army and contracted through the Geologic Division of the U.S. Geological Survey (USGS). Data were gathered by Geoterrex-Dighem Ltd. of Ottawa, Canada. The survey aircraft is surrounded by a coil through which a large current pulse is passed. This pulse induces currents in the Earth which are recorded by a set of three mutually perpendicular coils towed in a "bird" about 100 m behind and below the aircraft. The bird also records the Earth's magnetic field. The system samples the Earth response to the electromagnetic pulse about every 16 m along the aircraft flight path. For this survey, the bulk of the flightpaths were spaced about 400 m apart and oriented in a northeast-southwest direction extending from bedrock over the Huachuca Mountains to bedrock over the Tombstone Hills. A preliminary report on the unprocessed data collected in the field was delivered to the U.S. Army by USGS in July 1997 (USGS Open-File Report 97–457). The final data were delivered in March, 1998 by the contractor to USGS and thence to the U.S. Army. The present report represents the final interpretive report from USGS. The objectives of the survey were to: 1) define the structure of the San Pedro basin in the Sierra Vista-Fort Huachuca-Huachuca City area, including the depth and shape of the basin, and to delineate large faults that may be active within the basin fill and therefore important in the hydrologic regime; 2) define near surface and subsurface areas that contain a large volume fraction of silt and clay in the basin fill and which both reduce the volume of available storage for water and reduce the permeability of the aquifer; and 3) to evaluate the use of the time domain electromagnetic method in the southwest desert setting as a means of mapping depth to water.

  16. Efficient Probabilistic Inversion of Airborne Electromagnetic Data Under Spatial Constraints

    NASA Astrophysics Data System (ADS)

    Hauser, J. R.; Gunning, J.; Annetts, D.

    2014-12-01

    Airborne electromagnetic (AEM) surveys are frequently used to delineate geological interfaces in the subsurface, such as the base of regolith or boundaries of an aquifer. However, inversion of AEM data is inherently non-unique, and estimating the robustness of models is often as important as finding a valid model. An example of this is groundwater modelling, where geological model uncertainty is one of the main sources of risk. In a Bayesian framework, Markov chain Monte Carlo (McMC) algorithms have been successful in mapping uncertainty in 1D model space corresponding to each AEM fiducial. But full McMC sampling for laterally-correlated models is computationally expensive, and independent 1D samplers are often the only feasible alternative. In these laterally independent 1D models, abrupt transverse changes in model parameters can occur, making it difficult to derive spatially coherent interfaces. By comparison, classically regularized deterministic inversions can take spatial correlation between 1D models into account, but provide little useful information about model uncertainty. Here we introduce a Bayesian parametric bootstrap approach to invert for layer properties, interfaces and related uncertainties, using a 1D kernel but incorporating lateral correlation. These methods treat Bayesian prior information on model uncertainty and its spatial correlation as implied observations, then apply the classical parametric bootstrap. Numerical examples demonstrate that our Bayesianized bootstrap will explore model space adequately for non-pathological situations, while requiring many fewer forward problem solves than a comparable McMC algorithm. Recovered uncertainties for synthetic data and field data exhibit the expected patterns; for example, we observe the well-known increase in uncertainty in interface depths with increasing depth to the interface. We believe the Bayesian parametric bootstrap offers an attractive and satisfactory compromise between efficiency and

  17. Resolution analyses for selecting an appropriate airborne electromagnetic (AEM) system

    NASA Astrophysics Data System (ADS)

    Christensen, Niels B. 13Lawrie, Ken C.

    2012-07-01

    The choice of an appropriate airborne electromagnetic system for a given task should be based on a comparative analysis of candidate systems, consisting of both theoretical considerations and field studies including test lines. It has become common practice to quantify the system resolution for a series of models relevant to the survey area by comparing the sum over the data of squares of noise-normalised derivatives. We compare this analysis method with a resolution analysis based on the posterior covariance matrix of an inversion formulation. Both of the above analyses depend critically on the noise models of the systems being compared. A reasonable estimate of data noise and other sources of error is therefore of primary importance. However, data processing and noise reduction procedures, as well as other system parameters important for the modelling, are commonly proprietary, and generally it is not possible to verify whether noise figures have been arrived at by reasonable means. Consequently, it is difficult - sometimes impossible - to know if a comparative analysis has a sound basis. Nevertheless, in the real world choices have to be made, a comparative system analysis is necessary and has to be approached in a pragmatic way involving a range of different aspects. In this paper, we concentrate on the resolution analysis perspective and demonstrate that the inversion analysis must be preferred over the derivative analysis because it takes parameter coupling into account, and, furthermore, that the derivative analysis generally overestimates the resolution capability. Finally we show that impulse response data are to be preferred over step response data for near-surface resolution.

  18. Airborne electromagnetic surveys in support of groundwater models in western Nebraska

    NASA Astrophysics Data System (ADS)

    Abraham, J. D.; Viezzoli, A.; Cannia, J. C.; Smith, B. D.; Brown, W.; Peterson, S. M.

    2010-12-01

    The USGS, SkyTEM, Aarhus Geophysics, North Platte, South Platte and Twin Platte Natural Resource Districts have collaborated to collect airborne time domain geophysical surveys over selected of areas of western Nebraska. The objective of the surveys was to map the aquifers and bedrock topography of the area to help improve the understanding of groundwater-surface water relations to be used in water management decisions. The base of aquifer in many of these areas is in excess of 100 meters deep and little detailed information of the configuration of the bedrock exits. Many of the aquifers exist as alluvial fills in paleochannels upon complex bedrock topography. Controlling factors for groundwater flow are the variations of the hydraulic properties of the fill and the boundary geometry of the paleochannels. Results from groundwater modeling efforts prior to the addition of the airborne data revealed the hydrogeologic framework was sufficient for the regional scale models, but when these models were reduced to 40 acres cell size, the lack of detail adversely affected model results. The SkyTEM system is a helicopter-borne time-domain electromagnetic system capable of detecting small changes in resistivity from the near-surface down to depths of up to 300 m and is well-suited for aquifer mapping. An innovative design of the receiver coils and transmitter pattern eliminates the self response that is characteristic of airborne systems and spatial measurement sensors mounted on a rigid frame enable rigorous quantitative interpretation of the EM data. The ability to quickly collect and deliver high quality, high resolution geophysical data contributes significantly to modeling efforts and further understanding of subsurface hydrological systems. The raw AEM data have to be edited to exclude data that have been affected by coupling with man made infrastructures. For resistivity data to be related to lithologic information to refine groundwater model inputs, and to make the

  19. 3D inversion of SPECTREM and ZTEM airborne electromagnetic data from the Pebble Cu-Au-Mo porphyry deposit, Alaska

    NASA Astrophysics Data System (ADS)

    Pare, Pascal; Gribenko, Alexander V.; Cox, Leif H.; Čuma, Martin; Wilson, Glenn A.; Zhdanov, Michael S.; Legault, Jean; Smit, Jaco; Polome, Louis

    2012-04-01

    Geological, geochemical, and geophysical surveys have been conducted in the area of the Pebble Cu-Au-Mo porphyry deposit in south-west Alaska since 1985. This case study compares three-dimensional (3D) inversion results from Anglo American's proprietary SPECTREM 2000 fixed-wing time-domain airborne electromagnetic (AEM) and Geotech's ZTEM airborne audio-frequency magnetics (AFMAG) systems flown over the Pebble deposit. Within the commonality of their physics, 3D inversions of both SPECTREM and ZTEM recover conductivity models consistent with each other and the known geology. Both 3D inversions recover conductors coincident with alteration associated with both Pebble East and Pebble West. The high grade CuEqn 0.6% ore shell is not consistently following the high conductive trend, suggesting that the SPECTREM and ZTEM responses correspond in part to the sulphide distribution, but not directly with the ore mineralization. As in any exploration project, interpretation of both surveys has yielded an improved understanding of the geology, alteration and mineralization of the Pebble system and this will serve well for on-going exploration activities. There are distinct practical advantages to the use of both SPECTREM and ZTEM, so we draw no recommendation for either system. We can conclude however, that 3D inversion of both AEM and ZTEM surveys is now a practical consideration and that it has added value to exploration at Pebble.

  20. Detection of Perfectly-Conducting Targets with Airborne Electromagnetic Systems

    NASA Astrophysics Data System (ADS)

    Smiarowski, Adam

    A significant problem with exploring for electrically conductive mineral deposits with airborne electromagnetic (AEM) methods is that many of the most valuable sulphide deposits are too conductive to be detected with conventional systems. High-grade sulphide deposits with bulk electrical conductivities on the order of 100,000 S/m can appear as "perfect conductors" to most EM systems because the decay of secondary fields (the "time constant" of the deposit) generated in the target by the system transmitter takes much longer than the short measuring time of EM systems. Their EM response is essentially undetectable with off-time measurements. One solution is to make measurements during the transmitter on-time when the secondary field of the target produced by magnetic flux exclusion is large. The difficulty is that the secondary field must be measured in the presence of a primary field which is orders of magnitude larger. The goal of this thesis is to advance the methodology of making AEM measurements during transmitter on-time by analysing experimental data from three different AEM systems. The first system analysed is a very large separation, two helicopter system where geometry is measured using GPS sensors. In order to calculate the primary field at the receiver with sufficient accuracy, the very large (nominally 400 m) separation requires geometry to be known to better than 1 m. Using the measured geometry to estimate and remove the primary field, I show that a very conductive target can be detected at depths of 200m using the total secondary field. I then used fluxgate magnetometers to correct for receiver rotation which allowed the component of the secondary field to be determined. The second system I examined was a large separation fixed-wing AEM system. Using a towed receiver bird with a smaller (≈ 135m) separation, the geometry must be known much more accurately. In the absence of direct measurement of this geometry, I used a least-squares prediction

  1. On the value of including x-component data in 1D modeling of electromagnetic data from helicopterborne time domain systems in horizontally layered environments

    NASA Astrophysics Data System (ADS)

    Kirkegaard, Casper; Foged, Nikolaj; Auken, Esben; Christiansen, Anders Vest; Sørensen, Kurt

    2012-09-01

    Helicopter borne time domain EM systems historically measure only the Z-component of the secondary field, whereas fixed wing systems often measure all field components. For the latter systems the X-component is often used to map discrete conductors, whereas it finds little use in the mapping of layered settings. Measuring the horizontal X-component with an offset loop helicopter system probes the earth with a complementary sensitivity function that is very different from that of the Z-component, and could potentially be used for improving resolution of layered structures in one dimensional modeling. This area is largely unexplored in terms of quantitative results in the literature, since measuring and inverting X-component data from a helicopter system is not straightforward: The signal strength is low, the noise level is high, the signal is very sensitive to the instrument pitch and the sensitivity function also has a complex lateral behavior. The basis of our study is a state of the art inversion scheme, using a local 1D forward model description, in combination with experiences gathered from extending the SkyTEM system to measure the X component. By means of a 1D sensitivity analysis we motivate that in principle resolution of layered structures can be improved by including an X-component signal in a 1D inversion, given the prerequisite that a low-pass filter of suitably low cut-off frequency can be employed. In presenting our practical experiences with modifying the SkyTEM system we discuss why this prerequisite unfortunately can be very difficult to fulfill in practice. Having discussed instrumental limitations we show what can be obtained in practice using actual field data. Here, we demonstrate how the issue of high sensitivity towards instrument pitch can be overcome by including the pitch angle as an inversion parameter and how joint inversion of the Z- and X-components produces virtually the same model result as for the Z-component alone. We conclude that

  2. Grounded electrical-source airborne transient electromagnetics (GREATEM) survey of Aso Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Ito, Hisatoshi; Kaieda, Hideshi; Mogi, Toru; Jomori, Akira; Yuuki, Youichi

    2014-05-01

    Grounded electrical-source airborne transient electromagnetics (GREATEM), a type of semi-airborne electromagnetics, was used to examine Aso Volcano in south-west Japan, to verify its applicability to surveying deep subsurface resistivity structures. Comparison of the GREATEM resistivity values with those of ground-based transient electromagnetics (TEM) data, repeated GREATEM survey results at the same and different flight heights, and lithologic descriptions indicated that GREATEM can successfully identify underground structures as deep as ~800 m in rugged mountainous areas. An active volcanic region (Naka-Dake crater) was mapped as a low-resistivity zone from the surface to a depth of 100 m. This low-resistivity zone extended to the west-north-west, implying future volcanic activity in this area. Therefore, the GREATEM method is useful for surveying deep structures in large, inaccessible areas, such as volcanic provinces, in a quick, cost-effective way.

  3. Numerical investigation of coal seam gas detection using airborne electromagnetics

    NASA Astrophysics Data System (ADS)

    Abdulla, Mohamed

    The use of airborne electromagnetic (AEM) techniques has been mostly utilized in the mining industry. The various AEM systems enable fast data acquisition to detect zones of interest in exploration and in some cases are used to delineate targets on a production scale. For coal seam gas (CSG) reservoirs, reservoir thickness and the resistivity contrast present a new challenge to the present AEM systems in terms of detectability. Our research question began with the idea of using AEM methods in the detection of thin reservoirs. CSG reservoirs resemble thin reservoirs that have been and are currently being produced. In this thesis we present the results of a feasibility analysis of AEM study on coal seam reservoirs using synthetic models. The aim of the study is to contribute and bridge the gap of the scientific literature on AEM systems in settings such as CSG exploration. In the models we have chosen to simulate both in 1-D and 3-D, the CSG target resistivity was varied from a resistive to a conductive target (4 ohm.m, 150 ohm.m, and 667 ohm.m) to compare the different responses while the target thickness was fixed to resemble a stack of coal seams at that interval. Due to the differences in 1-D and 3-D modelling, we also examine the differences resulting from each modelling set up. The results of the 1-D forward modeling served as a first order understanding of the detection depths by AEM for CSG reservoirs. Three CSG reservoir horizontally layered earth model scenarios were examined, half-space, conductive/resistive and resistive/conductive. The response behavior for each of the three scenarios differs with the differing target resistivities. The 1-D modeling in both the halfspace and conductive/resistive models shows detection at depths beyond 300 m for three cases of target resistivity outlined above. After the 300-m depth, the response falls below the assumed noise floor level of 5% response difference. However, when a resistive layer overlies a conductive host

  4. Time-Domain Filtering of Metasurfaces

    NASA Astrophysics Data System (ADS)

    Wakatsuchi, Hiroki

    2015-11-01

    In general electromagnetic response of each material to a continuous wave does not vary in time domain if the frequency component remains the same. Recently, it turned out that integrating several circuit elements including schottky diodes with periodically metallised surfaces, or the so-called metasurfaces, leads to selectively absorbing specific types of waveforms or pulse widths even at the same frequency. These waveform-selective metasurfaces effectively showed different absorbing performances for different widths of pulsed sine waves by gradually varying their electromagnetic responses in time domain. Here we study time-filtering effects of such circuit-based metasurfaces illuminated by continuous sine waves. Moreover, we introduce extra circuit elements to these structures to enhance the time-domain control capability. These time-varying properties are expected to give us another degree of freedom to control electromagnetic waves and thus contribute to developing new kinds of electromagnetic applications and technologies, e.g. time-windowing wireless communications and waveform conversion.

  5. Time-Domain Filtering of Metasurfaces.

    PubMed

    Wakatsuchi, Hiroki

    2015-01-01

    In general electromagnetic response of each material to a continuous wave does not vary in time domain if the frequency component remains the same. Recently, it turned out that integrating several circuit elements including schottky diodes with periodically metallised surfaces, or the so-called metasurfaces, leads to selectively absorbing specific types of waveforms or pulse widths even at the same frequency. These waveform-selective metasurfaces effectively showed different absorbing performances for different widths of pulsed sine waves by gradually varying their electromagnetic responses in time domain. Here we study time-filtering effects of such circuit-based metasurfaces illuminated by continuous sine waves. Moreover, we introduce extra circuit elements to these structures to enhance the time-domain control capability. These time-varying properties are expected to give us another degree of freedom to control electromagnetic waves and thus contribute to developing new kinds of electromagnetic applications and technologies, e.g. time-windowing wireless communications and waveform conversion. PMID:26564027

  6. Time-Domain Filtering of Metasurfaces

    PubMed Central

    Wakatsuchi, Hiroki

    2015-01-01

    In general electromagnetic response of each material to a continuous wave does not vary in time domain if the frequency component remains the same. Recently, it turned out that integrating several circuit elements including schottky diodes with periodically metallised surfaces, or the so-called metasurfaces, leads to selectively absorbing specific types of waveforms or pulse widths even at the same frequency. These waveform-selective metasurfaces effectively showed different absorbing performances for different widths of pulsed sine waves by gradually varying their electromagnetic responses in time domain. Here we study time-filtering effects of such circuit-based metasurfaces illuminated by continuous sine waves. Moreover, we introduce extra circuit elements to these structures to enhance the time-domain control capability. These time-varying properties are expected to give us another degree of freedom to control electromagnetic waves and thus contribute to developing new kinds of electromagnetic applications and technologies, e.g. time-windowing wireless communications and waveform conversion. PMID:26564027

  7. Airborne electromagnetic modelling options and their consequences in target definition

    NASA Astrophysics Data System (ADS)

    Ley-Cooper, Alan Yusen; Viezzoli, Andrea; Guillemoteau, Julien; Vignoli, Giulio; Macnae, James; Cox, Leif; Munday, Tim

    2015-10-01

    Given the range of geological conditions under which airborne EM surveys are conducted, there is an expectation that the 2D and 3D methods used to extract models that are geologically meaningful would be favoured over 1D inversion and transforms. We do after all deal with an Earth that constantly undergoes, faulting, intrusions, and erosive processes that yield a subsurface morphology, which is, for most parts, dissimilar to a horizontal layered earth. We analyse data from a survey collected in the Musgrave province, South Australia. It is of particular interest since it has been used for mineral prospecting and for a regional hydro-geological assessment. The survey comprises abrupt lateral variations, more-subtle lateral continuous sedimentary sequences and filled palaeovalleys. As consequence, we deal with several geophysical targets of contrasting conductivities, varying geometries and at different depths. We invert the observations by using several algorithms characterised by the different dimensionality of the forward operator. Inversion of airborne EM data is known to be an ill-posed problem. We can generate a variety of models that numerically adequately fit the measured data, which makes the solution non-unique. The application of different deterministic inversion codes or transforms to the same dataset can give dissimilar results, as shown in this paper. This ambiguity suggests the choice of processes and algorithms used to interpret AEM data cannot be resolved as a matter of personal choice and preference. The degree to which models generated by a 1D algorithm replicate/or not measured data, can be an indicator of the data's dimensionality, which perse does not imply that data that can be fitted with a 1D model cannot be multidimensional. On the other hand, it is crucial that codes that can generate 2D and 3D models do reproduce the measured data in order for them to be considered as a plausible solution. In the absence of ancillary information, it could

  8. An interpretation of the 1997 airborne electromagnetic (AEM) survey, Fort Huachuca vicinity, Cochise County, Arizona

    USGS Publications Warehouse

    Bultman, M.W.; Gettings, M.E.; Wynn, Jeff

    1999-01-01

    Executive Summary -- In March of 1997, an airborne electromagnetic (AEM) survey of the Fort Huachuca Military Reservation and immediate surrounds (location map, http://geopubs.wr.usgs.gov/open-file/of99-007-b/index.jpg) was conducted. This survey was sponsored by the U.S. Army and contracted through the Geologic Division of the U.S. Geological Survey (USGS). Data were gathered by Geoterrex-Dighem Ltd. of Ottawa, Canada. The survey aircraft is surrounded by a coil through which a large current pulse is passed. This pulse induces currents in the Earth which are recorded by a set of three mutually perpendicular coils towed in a 'bird' about 100 m behind and below the aircraft. The bird also records the Earth's magnetic field. The system samples the Earth response to the electromagnetic pulse about every 16 m along the aircraft flight path. For this survey, the bulk of the flightpaths were spaced about 400 m apart and oriented in a northeast-southwest direction extending from bedrock over the Huachuca Mountains to bedrock over the Tombstone Hills. A preliminary report on the unprocessed data collected in the field was delivered to the U.S. Army by USGS in July 1997 (USGS Open-File Report 97?457). The final data were delivered in March, 1998 by the contractor to USGS and thence to the U.S. Army. The present report represents the final interpretive report from USGS. The objectives of the survey were to: 1) define the structure of the San Pedro basin in the Sierra Vista-Fort Huachuca-Huachuca City area, including the depth and shape of the basin, and to delineate large faults that may be active within the basin fill and therefore important in the hydrologic regime; 2) define near surface and subsurface areas that contain a large volume fraction of silt and clay in the basin fill and which both reduce the volume of available storage for water and reduce the permeability of the aquifer; and 3) to evaluate the use of the time domain electromagnetic method in the southwest

  9. Simulation of airborne electromagnetic measurements in three dimensional environments

    SciTech Connect

    Alumbaugh, D.L.; Newman, G.A.

    1994-12-31

    A 3-D frequency domain EM modeling code has been implemented for helicopter electromagnetic (HEM) simulations. A vector Helmholtz formulation for the electric fields is employed to avoid problems associated with the first order Maxwell`s equations numerically decoupling in the air. Additional stability is introduced by formulating the problem in terms of the scattered electric fields which replaces an impressed dipole source with an equivalent source that possesses a much smoother spatial dependence and is easier to model. In older to compute this equivalent source, a primary field arising from dipole sources in a whole space must be calculated where ever the conductivity is different than that of the background. The Helmholtz equation is approximated using finite differences on a staggered grid. After finite differencing, a complex-symmetric matrix system of equations is assembled and preconditioned using Jacobi scaling before it is solved using the quasi-minimum residual (QMR) method. In order to both speed up the solution and allow for larger, more realistic models to be simulated, the scheme has been modified to run on massively parallel architectures. The solution has been compared against other I-D and 3-D numerical models and is found to produce results in good agreement. The versatility of the scheme is demonstrated by simulating a survey over a salt water intrusion zone in the Florida Everglades.

  10. Development of 3D electromagnetic modeling tools for airborne vehicles

    NASA Technical Reports Server (NTRS)

    Volakis, John L.

    1992-01-01

    The main goal of this project is to develop methodologies for scattering by airborne composite vehicles. Although our primary focus continues to be the development of a general purpose code for analyzing the entire structure as a single unit, a number of other tasks are also pursued in parallel with this effort. These tasks are important in testing the overall approach and in developing suitable models for materials coatings, junctions and, more generally, in assessing the effectiveness of the various parts comprising the final code. Here, we briefly discuss our progress on the five different tasks which were pursued during this period. Our progress on each of these tasks is described in the detailed reports (listed at the end of this report) and the memoranda included. The first task described below is, of course, the core of this project and deals with the development of the overall code. Undoubtedly, it is the outcome of the research which was funded by NASA-Ames and the Navy over the past three years. During this year we developed the first finite element code for scattering by structures of arbitrary shape and composition. The code employs a new absorbing boundary condition which allows termination of the finite element mesh only 0.3 lambda from the outer surface of the target. This leads to a remarkable reduction of the mesh size and is a unique feature of the code. Other unique features of this code include capabilities to model resistive sheets, impedance sheets and anisotropic materials. This last capability is the latest feature of the code and is still under development. The code has been extensively validated for a number of composite geometries and some examples are given. The validation of the code is still in progress for anisotropic and larger non-metallic geometries and cavities. The developed finite element code is based on a Galerkin's formulation and employs edge-based tetrahedral elements for discretizing the dielectric sections and the region

  11. Gravitational Waves and Time Domain Astronomy

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Nissanke, Samaya; Williams, Roy

    2012-01-01

    The gravitational wave window onto the universe will open in roughly five years, when Advanced LIGO and Virgo achieve the first detections of high frequency gravitational waves, most likely coming from compact binary mergers. Electromagnetic follow-up of these triggers, using radio, optical, and high energy telescopes, promises exciting opportunities in multi-messenger time domain astronomy. In the decade, space-based observations of low frequency gravitational waves from massive black hole mergers, and their electromagnetic counterparts, will open up further vistas for discovery. This two-part workshop featured brief presentations and stimulating discussions on the challenges and opportunities presented by gravitational wave astronomy. Highlights from the workshop, with the emphasis on strategies for electromagnetic follow-up, are presented in this report.

  12. Inference of lithologic distributions in an alluvial aquifer using airborne transient electromagnetic surveys

    USGS Publications Warehouse

    Dickinson, Jesse E.; Pool, D.R.; Groom, R.W.; Davis, L.J.

    2010-01-01

    An airborne transient electromagnetic (TEM) survey was completed in the Upper San Pedro Basin in southeastern Arizona to map resistivity distributions within the alluvial aquifer. This investigation evaluated the utility of 1D vertical resistivity models of the TEM data to infer lithologic distributions in an alluvial aquifer. Comparisons of the resistivity values and layers in the 1D resistivity models of airborne TEM data to 1D resistivity models of ground TEM data, borehole resistivity logs, and lithologic descriptions in drill logs indicated that the airborne TEM identified thick conductive fine-grained sediments that result in semiconfined groundwater conditions. One-dimensional models of ground-based TEM surveys and subsurface lithology at three sites were used to determine starting models and constraints to invert airborne TEM data using a constrained Marquardt-styleunderparameterized method. A maximum structural resolution of six layers underlain by a half-space was determined from the resistivity structure of the 1D models of the ground TEM data. The 1D resistivity models of the airborne TEM data compared well with the control data to depths of approximately 100 m in areas of thick conductive silt and clay and to depths of 200 m in areas of resistive sand and gravel. Comparison of a 3D interpolation of the 1D resistivity models to drill logs indicated resistive (mean of 65 ohm-m ) coarse-grained sediments along basin margins and conductive (mean of 8 ohm-m ) fine-grained sediments at the basin center. Extents of hydrologically significant thick silt and clay were well mapped by the 1D resistivity models of airborne TEM data. Areas of uncertain lithology remain below conductive fine-grained sediments where the 1D resistivity structure is not resolved: in areas where multiple lithologies have similar resistivity values and in areas of high salinity.

  13. Airborne electromagnetic detection of shallow seafloor topographic features, including resolution of multiple sub-parallel seafloor ridges

    NASA Astrophysics Data System (ADS)

    Vrbancich, Julian; Boyd, Graham

    2014-05-01

    The HoistEM helicopter time-domain electromagnetic (TEM) system was flown over waters in Backstairs Passage, South Australia, in 2003 to test the bathymetric accuracy and hence the ability to resolve seafloor structure in shallow and deeper waters (extending to ~40 m depth) that contain interesting seafloor topography. The topography that forms a rock peak (South Page) in the form of a mini-seamount that barely rises above the water surface was accurately delineated along its ridge from the start of its base (where the seafloor is relatively flat) in ~30 m water depth to its peak at the water surface, after an empirical correction was applied to the data to account for imperfect system calibration, consistent with earlier studies using the same HoistEM system. A much smaller submerged feature (Threshold Bank) of ~9 m peak height located in waters of 35 to 40 m depth was also accurately delineated. These observations when checked against known water depths in these two regions showed that the airborne TEM system, following empirical data correction, was effectively operating correctly. The third and most important component of the survey was flown over the Yatala Shoals region that includes a series of sub-parallel seafloor ridges (resembling large sandwaves rising up to ~20 m from the seafloor) that branch out and gradually decrease in height as the ridges spread out across the seafloor. These sub-parallel ridges provide an interesting topography because the interpreted water depths obtained from 1D inversion of TEM data highlight the limitations of the EM footprint size in resolving both the separation between the ridges (which vary up to ~300 m) and the height of individual ridges (which vary up to ~20 m), and possibly also the limitations of assuming a 1D model in areas where the topography is quasi-2D/3D.

  14. Airborne electromagnetic and magnetic survey data of the Paradox and San Luis Valleys, Colorado

    USGS Publications Warehouse

    Ball, Lyndsay B.; Bloss, Benjamin R.; Bedrosian, Paul A.; Grauch, V.J.S.; Smith, Bruce D.

    2015-01-01

    In October 2011, the U.S. Geological Survey (USGS) contracted airborne magnetic and electromagnetic surveys of the Paradox and San Luis Valleys in southern Colorado, United States. These airborne geophysical surveys provide high-resolution and spatially comprehensive datasets characterizing the resistivity structure of the shallow subsurface of each survey region, accompanied by magnetic-field information over matching areas. These data were collected to provide insight into the distribution of groundwater brine in the Paradox Valley, the extent of clay aquitards in the San Luis Valley, and to improve our understanding of the geologic framework for both regions. This report describes these contracted surveys and releases digital data supplied under contract to the USGS.

  15. Contribution of the source velocity to the scattering of electromagnetic fields caused by airborne magnetic dipoles

    NASA Astrophysics Data System (ADS)

    Emanoel Starteri Sampaio, Edson

    2014-08-01

    The velocity of controlled airborne sources of electromagnetic geophysical surveys plays an additional role in the scattering of the fields by the earth. Therefore, it is necessary to investigate its contribution in the space and time variation of secondary electromagnetic fields. The model of a vertical magnetic dipole moving at a constant speed along a horizontal line in the air and above a homogeneous conductive half-space constitutes a first approach to stress the kinematic aspect and determine the difference between the fields due to an airborne and a static source. The magnetic moment of the source is equal to 104 A m2, its height is 120 m, and the horizontal and vertical separations between it and the receiver are, respectively, equal to 100 and 50 m: these values of the model are typical of towed-bird airborne TDEM surveys. We employed four values for the common velocities of source and receiver (0, 60, 80, and 100 m s-1), four values of the conductivity of the half-space (0.5, 0.1, 0.05, and 0.01 S m-1), and two causal source currents (box with periods of 80 and 10 ms and periodic with frequency values of 12.5 and 100 Hz). The results demonstrate that the relative velocity between source and medium yields a measurable variation compared to the static condition. Therefore, it must be taken into consideration by compensating the discrepancy in measured data employing the respective theoretical result. The results also show that it is necessary to adjust the concepts of time and frequency domain for electromagnetic measurements with traveling sources.

  16. Stochastic finite-difference time-domain

    NASA Astrophysics Data System (ADS)

    Smith, Steven Michael

    2011-12-01

    This dissertation presents the derivation of an approximate method to determine the mean and the variance of electro-magnetic fields in the body using the Finite-Difference Time-Domain (FDTD) method. Unlike Monte Carlo analysis, which requires repeated FDTD simulations, this method directly computes the variance of the fields at every point in space at every sample of time in the simulation. This Stochastic FDTD simulation (S-FDTD) has at its root a new wave called the Variance wave, which is computed in the time domain along with the mean properties of the model space in the FDTD simulation. The Variance wave depends on the electro-magnetic fields, the reflections and transmission though the different dielectrics, and the variances of the electrical properties of the surrounding materials. Like the electro-magnetic fields, the Variance wave begins at zero (there is no variance before the source is turned on) and is computed in the time domain until all fields reach steady state. This process is performed in a fraction of the time of a Monte Carlo simulation and yields the first two statistical parameters (mean and variance). The mean of the field is computed using the traditional FDTD equations. Variance is computed by approximating the correlation coefficients between the constituitive properties and the use of the S-FDTD equations. The impetus for this work was the simulation time it takes to perform 3D Specific Absorption Rate (SAR) FDTD analysis of the human head model for cell phone power absorption in the human head due to the proximity of a cell phone being used. In many instances, Monte Carlo analysis is not performed due to the lengthy simulation times required. With the development of S-FDTD, these statistical analyses could be performed providing valuable statistical information with this information being provided in a small fraction of the time it would take to perform a Monte Carlo analysis.

  17. Time-domain robotic vision application

    NASA Technical Reports Server (NTRS)

    Tolliver, C. L.

    1987-01-01

    The quest for the highest resolution microwaves imaging and the principle of time-domain imaging is the primary motivation for recent developments in time-domain techniques. With the present technology fast time varying signals can now be measured and recorded both in magnitude and in phase. It has also enhanced the ability to extract relevant details concerning the scattering object. In the past, the inference of object geometry or shape from scattered signals has received substantial attention in radar technology. Various inverse scattering theories were proposed to develop analytical solutions to this problem. Furthermore, the random inversion, frequenty swept holography, and the synthetic radar imaging, all of which have two things in common: the physical optic far-field approximation and the utilization of the channels as an extra physical dimension, were also advanced significantly. Despite the inherent vectorial nature of electromagnetic waves, these scalar treatments have brought forth some promising results in practice with notable examples in subsurface and structure sounding. The use of time-domain imaging for space robotic vision applications was proposed. A multisensor approach to vision was shown to have several advantages over the video-only approach.

  18. 2.5D forward modeling and inversion of frequency-domain airborne electromagnetic data

    NASA Astrophysics Data System (ADS)

    Li, Wen-Ben; Zeng, Zhao-Fa; Li, Jing; Chen, Xiong; Wang, Kun; Xia, Zhao

    2016-03-01

    Frequency-domain airborne electromagnetics is a proven geophysical exploration method. Presently, the interpretation is mainly based on resistivity—depth imaging and one-dimensional layered inversion; nevertheless, it is difficult to obtain satisfactory results for two- or three-dimensional complex earth structures using 1D methods. 3D forward modeling and inversion can be used but are hampered by computational limitations because of the large number of data. Thus, we developed a 2.5D frequency-domain airborne electromagnetic forward modeling and inversion algorithm. To eliminate the source singularities in the numerical simulations, we split the fields into primary and secondary fields. The primary fields are calculated using homogeneous or layered models with analytical solutions, and the secondary (scattered) fields are solved by the finite-element method. The linear system of equations is solved by using the large-scale sparse matrix parallel direct solver, which greatly improves the computational efficiency. The inversion algorithm was based on damping least-squares and singular value decomposition and combined the pseudo forward modeling and reciprocity principle to compute the Jacobian matrix. Synthetic and field data were used to test the effectiveness of the proposed method.

  19. Shallow subsurface imaging of the Piano di Pezza active normal fault (central Italy) by high-resolution refraction and electrical resistivity tomography coupled with time-domain electromagnetic data

    NASA Astrophysics Data System (ADS)

    Villani, Fabio; Tulliani, Valerio; Sapia, Vincenzo; Fierro, Elisa; Civico, Riccardo; Pantosti, Daniela

    2015-12-01

    The Piano di Pezza fault is the central section of the 35 km long L'Aquila-Celano active normal fault-system in the central Apennines of Italy. Although palaeoseismic data document high Holocene vertical slip rates (˜1 mm yr-1) and a remarkable seismogenic potential of this fault, its subsurface setting and Pleistocene cumulative displacement are still poorly known. We investigated for the first time the shallow subsurface of a key section of the main Piano di Pezza fault splay by means of high-resolution seismic and electrical resistivity tomography coupled with time-domain electromagnetic soundings (TDEM). Our surveys cross a ˜5-m-high fault scarp that was generated by repeated surface-rupturing earthquakes displacing Holocene alluvial fans. We provide 2-D Vp and resistivity images, which show significant details of the fault structure and the geometry of the shallow basin infill material down to 50 m depth. Our data indicate that the upper fault termination has a sub-vertical attitude, in agreement with palaeoseismological trench evidence, whereas it dips ˜50° to the southwest in the deeper part. We recognize some low-velocity/low-resistivity regions in the fault hangingwall that we relate to packages of colluvial wedges derived from scarp degradation, which may represent the record of some Holocene palaeo-earthquakes. We estimate a ˜13-15 m throw of this fault splay since the end of the Last Glacial Maximum (˜18 ka), leading to a 0.7-0.8 mm yr-1 throw rate that is quite in accordance with previous palaeoseismic estimation of Holocene vertical slip rates. The 1-D resistivity models from TDEM soundings collected along the trace of the electrical profile significantly match with 2-D resistivity images. Moreover, they indicate that in the fault hangingwall, ˜200 m away from the surface fault trace, the pre-Quaternary carbonate basement is at ˜90-100 m depth. We therefore provide a minimal ˜150-160 m estimate of the cumulative throw of the Piano di Pezza

  20. An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based and borehole electromagnetic and electric data

    NASA Astrophysics Data System (ADS)

    Auken, Esben; Christiansen, Anders Vest; Kirkegaard, Casper; Fiandaca, Gianluca; Schamper, Cyril; Behroozmand, Ahmad Ali; Binley, Andrew; Nielsen, Emil; Effersø, Flemming; Christensen, Niels Bøie; Sørensen, Kurt; Foged, Nikolaj; Vignoli, Giulio

    2015-07-01

    We present an overview of a mature, robust and general algorithm providing a single framework for the inversion of most electromagnetic and electrical data types and instrument geometries. The implementation mainly uses a 1D earth formulation for electromagnetics and magnetic resonance sounding (MRS) responses, while the geoelectric responses are both 1D and 2D and the sheet's response models a 3D conductive sheet in a conductive host with an overburden of varying thickness and resistivity. In all cases, the focus is placed on delivering full system forward modelling across all supported types of data. Our implementation is modular, meaning that the bulk of the algorithm is independent of data type, making it easy to add support for new types. Having implemented forward response routines and file I/O for a given data type provides access to a robust and general inversion engine. This engine includes support for mixed data types, arbitrary model parameter constraints, integration of prior information and calculation of both model parameter sensitivity analysis and depth of investigation. We present a review of our implementation and methodology and show four different examples illustrating the versatility of the algorithm. The first example is a laterally constrained joint inversion (LCI) of surface time domain induced polarisation (TDIP) data and borehole TDIP data. The second example shows a spatially constrained inversion (SCI) of airborne transient electromagnetic (AEM) data. The third example is an inversion and sensitivity analysis of MRS data, where the electrical structure is constrained with AEM data. The fourth example is an inversion of AEM data, where the model is described by a 3D sheet in a layered conductive host.

  1. System time-domain simulation

    NASA Technical Reports Server (NTRS)

    Dawson, C. T.; Eggleston, T. W.; Goris, A. C.; Fashano, M.; Paynter, D.; Tranter, W. H.

    1980-01-01

    Complex systems are simulated by engineers without extensive computer experience. Analyst uses free-form engineering-oriented language to input "black box" description. System Time Domain (SYSTID) Simulation Program generates appropriate algorithms and proceeds with simulation. Program is easily linked to postprocessing routines. SYSTID program is written in FORTRAN IV for batch execution and has been implemented on UNIVAC 1110 under control of EXEC 8, Level 31.

  2. Further investigations of underground resistivity structures in coastal areas using grounded-source airborne electromagnetics

    NASA Astrophysics Data System (ADS)

    Ito, Hisatoshi; Mogi, Toru; Jomori, Akira; Yuuki, Youichi; Kiho, Kenzo; Kaieda, Hideshi; Suzuki, Koichi; Tsukuda, Kazuhiro; Allah, Sabry Abd

    2011-08-01

    Understanding geological and hydrogeological characteristics in coastal areas is an issue of paramount importance considering its socio-economic relevance, whereas, to date, limited information has been acquired due to the lack of suitable survey methods. We have conducted an airborne electromagnetic survey in an alluvial coastal plain, Kujukuri, in southeast Japan, to examine the effectiveness of elucidating the subsurface electric-resistivity structure both on land and offshore. Our approach was to use a grounded electrical dipole source and a helicopter-towed magnetic field receiver. Repeated surveys both at high and low tides revealed that a reliable resistivity structure is available to a depth of 300-350 m in coastal areas where shallow (˜5 m deep) water prevails.

  3. Surface water-groundwater exchange in transitional coastal environments by airborne electromagnetics: The Venice Lagoon example

    NASA Astrophysics Data System (ADS)

    Viezzoli, A.; Tosi, L.; Teatini, P.; Silvestri, S.

    2010-01-01

    A comprehensive investigation of the mixing between salt/fresh surficial water and groundwater in transitional environments is an issue of paramount importance considering the ecological, cultural, and socio-economic relevance of coastal zones. Acquiring information, which can improve the process understanding, is often logistically challenging, and generally expensive and slow in these areas. Here we investigate the capability of airborne electromagnetics (AEM) at the margin of the Venice Lagoon, Italy. The quasi-3D interpretation of the AEM outcome by the spatially constrained inversion (SCI) methodology allows us to accurately distinguish several hydrogeological features down to a depth of about 200 m. For example, the extent of the saltwater intrusion in coastal aquifers and the transition between the upper salt saturated and the underlying fresher sediments below the lagoon bottom are detected. The research highlights the AEM capability to improve the hydrogeological characterization of subsurface processes in worldwide lagoons, wetlands, deltas.

  4. A 0.4 to 10 GHz airborne electromagnetic environment survey of USA urban areas

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Hill, J. S.

    1976-01-01

    An airborne electromagnetic-environment survey of some U.S. metropolitan areas measured terrestrial emissions within the broad frequency spectrum from 0.4 to 10 GHz. A Cessna 402 commercial aircraft was fitted with both nadir-viewing and horizon-viewing antennas and instrumentation, including a spectrum analyzer, a 35 mm continuous film camera, and a magnetic tape recorder. Most of the flights were made at a nominal altitude of 10,000 feet, and Washington, D. C., Baltimore, Philadelphia, New York, and Chicago were surveyed. The 450 to 470 MHz land-mobile UHF band is especially crowded, and the 400 to 406 MHz space bands are less active. This paper discusses test measurements obtained up to 10 GHz. Sample spectrum analyzer photograhs were selected from a total of 5,750 frames representing 38 hours of data.

  5. 0.4- to 10-GHz airborne electromagnetic-environment survey of United States urban areas

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Hill, J. S.

    1976-01-01

    An airborne electromagnetic-environment survey of some U.S. metropolitan areas measured terrestrial emissions within the broad-frequency spectrum from 0.4 to 10 GHz. A Cessna 402 commercial aircraft was fitted with both nadir-viewing and horizon-viewing antennas and instrumentation, including a spectrum analyzer, a 35-mm continuous-film camera, and a magnetic-tape recorder. Most of the flights were made at a nominal altitude of 10,000 ft, and Washington, Baltimore, Philadelphia, New York, and Chicago were surveyed. The 450- to 470-MHz land-mobile UHF band is especially crowded, and the 400- to 406-MHz space bands are less active. Test measurements obtained up to 10 GHz are discussed. Sample spectrum-analyzer photographs were selected from a total of 5750 frames representing 38 hours of data.

  6. Flexible time domain averaging technique

    NASA Astrophysics Data System (ADS)

    Zhao, Ming; Lin, Jing; Lei, Yaguo; Wang, Xiufeng

    2013-09-01

    Time domain averaging(TDA) is essentially a comb filter, it cannot extract the specified harmonics which may be caused by some faults, such as gear eccentric. Meanwhile, TDA always suffers from period cutting error(PCE) to different extent. Several improved TDA methods have been proposed, however they cannot completely eliminate the waveform reconstruction error caused by PCE. In order to overcome the shortcomings of conventional methods, a flexible time domain averaging(FTDA) technique is established, which adapts to the analyzed signal through adjusting each harmonic of the comb filter. In this technique, the explicit form of FTDA is first constructed by frequency domain sampling. Subsequently, chirp Z-transform(CZT) is employed in the algorithm of FTDA, which can improve the calculating efficiency significantly. Since the signal is reconstructed in the continuous time domain, there is no PCE in the FTDA. To validate the effectiveness of FTDA in the signal de-noising, interpolation and harmonic reconstruction, a simulated multi-components periodic signal that corrupted by noise is processed by FTDA. The simulation results show that the FTDA is capable of recovering the periodic components from the background noise effectively. Moreover, it can improve the signal-to-noise ratio by 7.9 dB compared with conventional ones. Experiments are also carried out on gearbox test rigs with chipped tooth and eccentricity gear, respectively. It is shown that the FTDA can identify the direction and severity of the eccentricity gear, and further enhances the amplitudes of impulses by 35%. The proposed technique not only solves the problem of PCE, but also provides a useful tool for the fault symptom extraction of rotating machinery.

  7. Application of Time Domain Reflectometers in Urban Settings

    EPA Science Inventory

    Time domain reflectometers (TDRs) are sensors that measure the volumetric water content of soils and porous media. The sensors consist of stainless steel rods connected to a circuit board in an epoxy housing. An electromagnetic pulse is propagated along the rods. The time, or per...

  8. Directly coupled vs conventional time domain reflectometry in soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Time domain reflectometry (TDR), a technique for estimation of soil water, measures the travel time of an electromagnetic pulse on electrodes embedded in the soil, but has limited application in commercial agriculture due to costs, labor, and sensing depth. Conventional TDR systems have employed ana...

  9. Application of Spatial Continuous Wavelet Transforms to Identify Noise in Regional Airborne Electromagnetic Data

    NASA Astrophysics Data System (ADS)

    Nenna, V.; Pidlisecky, A.

    2012-12-01

    As mapping of groundwater resources with airborne electromagnetics expands into more urban areas, it is increasingly important to identify sources of cultural noise in acquired data sets. A number of methods have been proposed to reduce the impact of cultural coupling on acquired data. While intense local calibration to increase the signal to noise ratio has been used, most often in practice, the transients associated with these noise sources are manually identified and filtered out during data processing. This can be a challenging task, particularly as datasets grow large (e.g. up to terabytes of data). In response to this, we propose a method for identifying noise in airborne electromagnetic data based on a spatial application of the continuous wavelet transform (CWT). We apply a continuous wavelet transform to three airborne electromagnetic surveys collected in the Edmonton-Calgary Corridor as part of a groundwater inventory sponsored by the Alberta Geological Survey and Environment Alberta. The three surveys consist of 210 flightlines covering approximately 18 000 linear kilometers with roughly 13 m sounding spacing. B-field and dB/dt data from a three-component 20-channel GeoTEM multicoil system, were recorded at 5 on-time and 15 off-time channels with a total measurement time of 16.664 ms per sounding. The nominal height of vertical axis transmitter was 120 m; the current pulse was 670 A, and the pulse-width was 4.045 ms. Wavelet transforms are localized in time and frequency, similar to a windowed Fourier transform, and are used to identify dominant frequencies within a signal as a function of time or space. While there are a number of options for wavelet functions, we convolve a Morlet wavelet with the data signal at 120 distance scales on a logarithmic scale from 0.1 to 30 km. We calculate the CWT along each flightline for all off-time channels. We then calculate the wavelet power normalized by the data variance, and bin results into 4 bins of spatial

  10. Spread spectrum time domain reflectometry

    NASA Astrophysics Data System (ADS)

    Smith, Paul Samuel

    For many years, wiring has been treated as a system that could be installed and expected to work for the life of the aircraft. As aircraft age far beyond their original expected life span, this attitude is rapidly changing. Wiring problems have recently been identified as the cause of several tragic mishaps and hundreds of thousands of lost mission hours. Intermittent wiring faults have been and continue to be difficult to resolve. Test methods that pinpoint faults on the ground can miss intermittent failures. New test methods involving spread spectrum signals are investigated that could be used in flight to locate intermittent failures, including open circuits, short circuits, and arcs. Spread spectrum time domain reflectometry (SSTDR) and sequence time domain reflectometry (STDR) are analyzed in light of the signals commonly present on aircraft wiring. Pseudo noise codes used for the generation of STDR and SSTDR signals are analyzed for application in a STDR/SSTDR test system in the presence of noise. The effects of Mil-Std 1553 and white noise on the STDR and SSTDR signals are discussed analytically, through simulations, and with the use of test hardware. A test system using STDR and SSTDR is designed, built, and used to collect STDR and SSTDR test data. The data collected with the STDR/SSTDR test hardware is analyzed and compared to the theoretical results. Experimental data for open and short circuits collected using SSTDR and a curve fitting algorithm shows a maximum range estimation error of +/-0.2 ft for 75O coaxial cable up to 100ft, and +/-0.6ft for a sample 32.5ft non-controlled impedance aircraft cable. Mil-Std 1553 is specified to operate reliably with a signal-to-noise ratio of 17.5dB, and the SSTDR test system was able to locate an open circuit on a cable also carrying simulated Mil-Std 1553 data where the SSTDR signal was 50dB below the Mil-Std 1553 signal. STDR and SSTDR are shown to be effective in detecting and locating dry and wet arcs on wires.

  11. Interaction between two adjacent grounded sources in frequency domain semi-airborne electromagnetic survey

    NASA Astrophysics Data System (ADS)

    Zhou, Haigen; Lin, Jun; Liu, Changsheng; Kang, Lili; Li, Gang; Zeng, Xinsen

    2016-03-01

    Multi-source and multi-frequency emission method can make full use of the valuable and short flight time in frequency domain semi-airborne electromagnetic (FSAEM) exploration, which has potential to investigate the deep earth structure in complex terrain region. Because several sources are adjacent in multi-source emission method, the interaction of different sources should be considered carefully. An equivalent circuit model of dual-source is established in this paper to assess the interaction between two individual sources, where the parameters are given with the typical values based on the practical instrument system and its application. By simulating the output current of two sources in different cases, the influence from the adjacent source is observed clearly. The current waveforms show that the mutual resistance causes the fluctuation and drift in another source and that the mutual inductance causes transient peaks. A field test with dual-source was conducted to certify the existence of interaction between adjacent sources. The simulation of output current also shows that current errors at low frequency are mainly caused by the mutual resistance while those at high frequency are mainly due to the mutual inductance. Increasing the distance between neighboring sources is a proposed measure to reduce the emission signal errors with designed ones. The feasible distance is discussed in the end. This study gives a useful guidance to lay multi sources to meet the requirement of measurement accuracy in FSAEM survey.

  12. Performance evaluation of groundwater model hydrostratigraphy from airborne electromagnetic data and lithological borehole logs

    NASA Astrophysics Data System (ADS)

    Marker, P. A.; Foged, N.; He, X.; Christiansen, A. V.; Refsgaard, J. C.; Auken, E.; Bauer-Gottwein, P.

    2015-09-01

    Large-scale hydrological models are important decision support tools in water resources management. The largest source of uncertainty in such models is the hydrostratigraphic model. Geometry and configuration of hydrogeological units are often poorly determined from hydrogeological data alone. Due to sparse sampling in space, lithological borehole logs may overlook structures that are important for groundwater flow at larger scales. Good spatial coverage along with high spatial resolution makes airborne electromagnetic (AEM) data valuable for the structural input to large-scale groundwater models. We present a novel method to automatically integrate large AEM data sets and lithological information into large-scale hydrological models. Clay-fraction maps are produced by translating geophysical resistivity into clay-fraction values using lithological borehole information. Voxel models of electrical resistivity and clay fraction are classified into hydrostratigraphic zones using k-means clustering. Hydraulic conductivity values of the zones are estimated by hydrological calibration using hydraulic head and stream discharge observations. The method is applied to a Danish case study. Benchmarking hydrological performance by comparison of performance statistics from comparable hydrological models, the cluster model performed competitively. Calibrations of 11 hydrostratigraphic cluster models with 1-11 hydraulic conductivity zones showed improved hydrological performance with an increasing number of clusters. Beyond the 5-cluster model hydrological performance did not improve. Due to reproducibility and possibility of method standardization and automation, we believe that hydrostratigraphic model generation with the proposed method has important prospects for groundwater models used in water resources management.

  13. Airborne electromagnetic mapping of the base of aquifer in areas of western Nebraska

    USGS Publications Warehouse

    Abraham, Jared D.; Cannia, James C.; Bedrosian, Paul A.; Johnson, Michaela R.; Ball, Lyndsay B.; Sibray, Steven S.

    2012-01-01

    Airborne geophysical surveys of selected areas of the North and South Platte River valleys of Nebraska, including Lodgepole Creek valley, collected data to map aquifers and bedrock topography and thus improve the understanding of groundwater - surface-water relationships to be used in water-management decisions. Frequency-domain helicopter electromagnetic surveys, using a unique survey flight-line design, collected resistivity data that can be related to lithologic information for refinement of groundwater model inputs. To make the geophysical data useful to multidimensional groundwater models, numerical inversion converted measured data into a depth-dependent subsurface resistivity model. The inverted resistivity model, along with sensitivity analyses and test-hole information, is used to identify hydrogeologic features such as bedrock highs and paleochannels, to improve estimates of groundwater storage. The two- and three-dimensional interpretations provide the groundwater modeler with a high-resolution hydrogeologic framework and a quantitative estimate of framework uncertainty. The new hydrogeologic frameworks improve understanding of the flow-path orientation by refining the location of paleochannels and associated base of aquifer highs. These interpretations provide resource managers high-resolution hydrogeologic frameworks and quantitative estimates of framework uncertainty. The improved base of aquifer configuration represents the hydrogeology at a level of detail not achievable with previously available data.

  14. Interaction between two adjacent grounded sources in frequency domain semi-airborne electromagnetic survey.

    PubMed

    Zhou, Haigen; Lin, Jun; Liu, Changsheng; Kang, Lili; Li, Gang; Zeng, Xinsen

    2016-03-01

    Multi-source and multi-frequency emission method can make full use of the valuable and short flight time in frequency domain semi-airborne electromagnetic (FSAEM) exploration, which has potential to investigate the deep earth structure in complex terrain region. Because several sources are adjacent in multi-source emission method, the interaction of different sources should be considered carefully. An equivalent circuit model of dual-source is established in this paper to assess the interaction between two individual sources, where the parameters are given with the typical values based on the practical instrument system and its application. By simulating the output current of two sources in different cases, the influence from the adjacent source is observed clearly. The current waveforms show that the mutual resistance causes the fluctuation and drift in another source and that the mutual inductance causes transient peaks. A field test with dual-source was conducted to certify the existence of interaction between adjacent sources. The simulation of output current also shows that current errors at low frequency are mainly caused by the mutual resistance while those at high frequency are mainly due to the mutual inductance. Increasing the distance between neighboring sources is a proposed measure to reduce the emission signal errors with designed ones. The feasible distance is discussed in the end. This study gives a useful guidance to lay multi sources to meet the requirement of measurement accuracy in FSAEM survey. PMID:27036795

  15. 3D inversion of airborne electromagnetic data using a moving footprint

    NASA Astrophysics Data System (ADS)

    Cox, Leif H.; Wilson, Glenn A.; Zhdanov, Michael S.

    2010-12-01

    It is often argued that 3D inversion of entire airborne electromagnetic (AEM) surveys is impractical, and that 1D methods provide the only viable option for quantitative interpretation. However, real geological formations are 3D by nature and 3D inversion is required to produce accurate images of the subsurface. To that end, we show that it is practical to invert entire AEM surveys to 3D conductivity models with hundreds of thousands if not millions of elements. The key to solving a 3D AEM inversion problem is the application of a moving footprint approach. We have exploited the fact that the area of the footprint of an AEM system is significantly smaller than the area of an AEM survey, and developed a robust 3D inversion method that uses a moving footprint. Our implementation is based on the 3D integral equation method for computing data and sensitivities, and uses the re-weighted regularised conjugate gradient method for minimising the objective functional. We demonstrate our methodology with the 3D inversion of AEM data acquired for salinity mapping over the Bookpurnong Irrigation District in South Australia. We have inverted 146 line km of RESOLVE data for a 3D conductivity model with ~310000 elements in 45min using just five processors of a multi-processor workstation.

  16. Combining airborne electromagnetic and geotechnical data for automated depth to bedrock tracking

    NASA Astrophysics Data System (ADS)

    Christensen, Craig William; Pfaffhuber, Andreas Aspmo; Anschütz, Helgard; Smaavik, Tone Fallan

    2015-08-01

    Airborne electromagnetic (AEM) survey data was used to supplement geotechnical investigations for a highway construction project in Norway. Heterogeneous geology throughout the survey and consequent variable bedrock threshold resistivity hindered efforts to directly track depth to bedrock, motivating us to develop an automated algorithm to extract depth to bedrock by combining both boreholes and AEM data. We developed two variations of this algorithm: one using simple Gaussian or inverse distance weighting interpolators, and another using ordinary kriging and combined probability distribution functions of input parameters. Evaluation shows that for preliminary surveys, significant savings in boreholes required can be made without sacrificing bedrock model accuracy. In the case study presented, we estimate data collection savings of 1000 to 10,000 NOK/km (c. 160 to 1600 USD/km) would have been possible for early phases of the investigation. However, issues with anthropogenic noise, low signal, and uncertainties in the inversion model likely reduced the comparative advantage that including AEM provided. AEM cannot supersede direct sampling where the model accuracy required exceed the resolution possible with the geophysical measurements. Nevertheless, with the algorithm we can identify high probability zones for shallow bedrock, identify steep or anomalous bedrock topography, and estimate the spatial variability of depth at earlier phases of investigation. Thus, we assert that our method is still useful where detailed mapping is the goal because it allows for more efficient planning of secondary phases of drilling.

  17. Mapping Groundwater in an Alpine Drainage with Airborne Electromagnetic Methods and Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Hein, A.; Armstrong, R. S.; Holbrook, W. S.; Parsekian, A.

    2015-12-01

    The rivers that supply water to most of the West rise in the Rocky Mountains. As drought increases across the country, understanding the hydrology of these alpine regions becomes important to assuring water supplies in the future. Near surface geophysics can help in this effort. In this study, resistivity data from an airborne electromagnetic survey in the Snowy Range was analyzed to map groundwater distribution. The EM survey covered an area of approximately 60 km2 to a depth of around 150 m. Nuclear magnetic resonance (NMR) point soundings provided ground truthing by testing whether water was present, at what depth, and how much. The survey area contained vertically dipping metasedimentary rocks, covered in places by unconsolidated glacial and fluvial deposits. The resistivity data showed horizontal variation in water content much more clearly than vertical changes, which were best detected by NMR. To allow for comparisons across different lithologies and depths, resistivity measurements were first log transformed to produce a more normal distribution, then classed by depth and formation and assigned standardized scores using the mean and standard deviation for those classes. To determine the typical appearance of wet areas, points in the near surface were classed as wet or dry based on proximity to surface water. Logistic regression was used to determine the probability that points with a given standardized score were wet. Where a relationship existed between proximity to surface water and conductivity, this information was translated into a map of groundwater distribution at greater depths. NMR soundings provided quantitative measurements of water content, which were used as known points within these horizontal maps to determine the actual water levels being detected.

  18. Estimation of Resolution of Shallow Layers by Frequency Domain Airborne Electromagnetic Measurements

    NASA Astrophysics Data System (ADS)

    Smith, B. D.; Minsley, B. J.; Kass, M. A.; Abraham, J. D.; Sams, J. I.; Veloski, G. A.; Esfahani, A.; Hodges, G.

    2012-12-01

    Helicopter frequency domain electromagnetic (HFDEM) that were conducted in two very different geoelectrical settings, permafrost and conductive alluvium, have been used to examine and quantify some aspects of the resolution of shallow layers (less than 5 meters). The surveys have used the Resolve system with six frequencies ranging from 400 Hz to 140 kHz. Though most discussion of the resolution of earth resistivity for airborne EM systems has concentrated on estimating the maximum depth of mapping or the resolution of deep layers, there are important applications for mapping shallow layers and it is useful to understand the capabilities and limitations of the HFDEM system in different environments. In permafrost terrains, mapping of the shallow active layer is important in understanding its distribution relative to surface processes such as thermal history, fires and carbon storage as well as in monitoring applications. Here the shallow active layer is a conductor relative to the very resistive permafrost. Mapping shallow layers in alluvial environments has been the focus of a study of subsurface drip irrigation in the Powder River of Wyoming. Here the focus of the HFDEM study has been in mapping the distribution of conductive clays and naturally occurring saline waters. Mapping of shallow layers in alluvial environments is important in agricultural applications to map recharge, soil salinity, and thickness of alluvium. Parameters for layered models (layer resistivity and thickness) have been estimated by inversion methods and the resolution of parameters has been evaluated using stochastic methods and an evaluation of linear estimates of resolution and uncertainty. Statistical estimates of resolution of parameters are compared with estimates from ground surveys.

  19. A wavelet-based baseline drift correction method for grounded electrical source airborne transient electromagnetic signals

    NASA Astrophysics Data System (ADS)

    Wang, Yuan 1Ji, Yanju 2Li, Suyi 13Lin, Jun 12Zhou, Fengdao 1Yang, Guihong

    2013-09-01

    A grounded electrical source airborne transient electromagnetic (GREATEM) system on an airship enjoys high depth of prospecting and spatial resolution, as well as outstanding detection efficiency and easy flight control. However, the movement and swing of the front-fixed receiving coil can cause severe baseline drift, leading to inferior resistivity image formation. Consequently, the reduction of baseline drift of GREATEM is of vital importance to inversion explanation. To correct the baseline drift, a traditional interpolation method estimates the baseline `envelope' using the linear interpolation between the calculated start and end points of all cycles, and obtains the corrected signal by subtracting the envelope from the original signal. However, the effectiveness and efficiency of the removal is found to be low. Considering the characteristics of the baseline drift in GREATEM data, this study proposes a wavelet-based method based on multi-resolution analysis. The optimal wavelet basis and decomposition levels are determined through the iterative comparison of trial and error. This application uses the sym8 wavelet with 10 decomposition levels, and obtains the approximation at level-10 as the baseline drift, then gets the corrected signal by removing the estimated baseline drift from the original signal. To examine the performance of our proposed method, we establish a dipping sheet model and calculate the theoretical response. Through simulations, we compare the signal-to-noise ratio, signal distortion, and processing speed of the wavelet-based method and those of the interpolation method. Simulation results show that the wavelet-based method outperforms the interpolation method. We also use field data to evaluate the methods, compare the depth section images of apparent resistivity using the original signal, the interpolation-corrected signal and the wavelet-corrected signal, respectively. The results confirm that our proposed wavelet-based method is an

  20. Finite difference time domain calculations of antenna mutual coupling

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    The Finite Difference Time Domain (FDTD) technique was applied to a wide variety of electromagnetic analysis problems, including shielding and scattering. However, the method has not been exclusively applied to antennas. Here, calculations of self and mutual admittances between wire antennas are made using FDTD and compared with results obtained during the method of moments. The agreement is quite good, indicating the possibilities for FDTD application to antenna impedance and coupling.

  1. Finite difference time domain calculations of antenna mutual coupling

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    The Finite Difference Time Domain (FDTD) technique has been applied to a wide variety of electromagnetic analysis problems, including shielding and scattering. However, the method has not been extensively applied to antennas. In this short paper calculations of self and mutual admittances between wire antennas are made using FDTD and compared with results obtained using the Method of Moments. The agreement is quite good, indicating the possibilities for FDTD application to antenna impedance and coupling.

  2. Airborne electromagnetic and magnetic geophysical survey data of the Yukon Flats and Fort Wainwright areas, central Alaska, June 2010

    USGS Publications Warehouse

    Ball, Lyndsay B.; Smith, Bruce D.; Minsley, Burke J.; Abraham, Jared D.; Voss, Clifford I.; Astley, Beth N.; Deszcz-Pan, Maria; Cannia, James C.

    2011-01-01

    In June 2010, the U.S. Geological Survey conducted airborne electromagnetic and magnetic surveys of the Yukon Flats and Fort Wainwright study areas in central Alaska. These data were collected to estimate the three-dimensional distribution of permafrost at the time of the survey. These data were also collected to evaluate the effectiveness of these geophysical methods at mapping permafrost geometry and to better define the physical properties of the subsurface in discontinuous permafrost areas. This report releases digital data associated with these surveys. Inverted resistivity depth sections are also provided in this data release, and data processing and inversion methods are discussed.

  3. Using remote sensing and ancillary data to extend airborne electromagnetic resistivity surveys for regional permafrost interpretation

    NASA Astrophysics Data System (ADS)

    Pastick, N.; Wylie, B. K.; Minsley, B. J.; Jorgenson, T. T.; Ji, L.; Walvoord, M. A.; Smith, B. D.; Abraham, J. D.; Rose, J.

    2011-12-01

    Permafrost has a significant impact on high latitude ecosystems and is spatially heterogeneous. However, only generalized maps of permafrost extent are available. Due to its impacts on subsurface hydrology, lake water levels, vegetation communities, and surface soil deformations, understanding the spatial extents and depth of permafrost are critical. Electrical resistivity increases dramatically as a soil freezes and can be used as a proxy for permafrost presence particularly if the underlying soils and geologic characteristics are understood. An airborne electromagnetic survey (AEM) was conducted over a portion of the Yukon Flats ecoregion in central Alaska with measurements taken in both reconnaissance lines and contiguous block area coverage. The AEM was flown in June 2010 and subsurface resistivity models were derived by inverting the AEM data. Landsat TM at-sensor reflectance, thermal, and spectral index data from late August to early September 2008, Digital Elevation Models (DEM) and derivatives, and other ancillary data were used in a regression tree model to predict near surface electrical resistivity at the 0-1m and the 0-2.6m depth intervals. AEM locations from homogenous landsat 90 m by 90 m windows were randomly separated into a training set for model development (n = 8,848) and an impendent test data set (n = 988) for model accuracy assessment. Model development and independent test accuracies for 0-1 m electric resistivity had training and test R2 values of 0.90 and 0.87, respectively, and for the 0-2.6m electric resistivity training and test R2 values were also 0.90 and 0.87, respectively, which indicated accurate prediction models. Important variables for stratifying the various piecewise regressions were elevation and averaged 2000-2008 ecosystem performance anomalies. Important independent variables used in the multiple regression equations were the Normalized Difference Infrared Index (NDII), NDII7 (NDII using band 7), soil moisture mapped from

  4. Practical Quantification of Uncertainties in the Inversion of Airborne Electromagnetic Data Under Spatial Constraints

    NASA Astrophysics Data System (ADS)

    Hauser, Juerg; Gunning, James; Annetts, David

    2016-04-01

    Airborne electromagnetic (AEM) data are often inverted with the aim of delineating near-surface geological interfaces, such as the boundaries of an aquifer or the base of regolith. Not all approaches to the inversion of AEM data are equally amenable to the recovery of such spatially coherent interfaces. If the AEM data are inverted for a 1D model on a station-by-station basis, or if a smooth resistivity distribution has been derived, qualitative interpretation of these inversion results is often required to obtain a spatially coherent interface. Regularised deterministic inversions can take spatial correlation between 1D models into account, and be used to directly invert for a spatially coherent interface if a blocky model is sought from the data. However, inversion of AEM data is non-unique, and therefore estimating the uncertainty of an inversion result is as important as finding a single best-fitting model. Markov chain Monte Carlo (McMC) algorithms have been successful in exploring the 1D uncertainty space that arises in station-independent models. In a set of laterally independent 1D models, abrupt transverse changes in model parameters can occur, making it difficult to derive a spatially coherent interface. Full McMC sampling for laterally correlated models is computationally expensive, and independent 1D samplers are often the only feasible alternative if one wishes to explore the joint model space. Here we introduce a Bayesian parametric bootstrap approach to invert for spatially coherent layer properties, interfaces and related uncertainties. The Bayesian parametric bootstrap treats prior information on the model and its spatial correlation as implied observations, and then applies the classical parametric bootstrap. Numerical examples demonstrate that our Bayesian parametric bootstrap will explore model space adequately for non-pathological situations, while requiring many fewer forward problem solves than a comparable McMC algorithm. Recovered

  5. 3-D inversion of airborne electromagnetic data parallelized and accelerated by local mesh and adaptive soundings

    NASA Astrophysics Data System (ADS)

    Yang, Dikun; Oldenburg, Douglas W.; Haber, Eldad

    2014-03-01

    Airborne electromagnetic (AEM) methods are highly efficient tools for assessing the Earth's conductivity structures in a large area at low cost. However, the configuration of AEM measurements, which typically have widely distributed transmitter-receiver pairs, makes the rigorous modelling and interpretation extremely time-consuming in 3-D. Excessive overcomputing can occur when working on a large mesh covering the entire survey area and inverting all soundings in the data set. We propose two improvements. The first is to use a locally optimized mesh for each AEM sounding for the forward modelling and calculation of sensitivity. This dedicated local mesh is small with fine cells near the sounding location and coarse cells far away in accordance with EM diffusion and the geometric decay of the signals. Once the forward problem is solved on the local meshes, the sensitivity for the inversion on the global mesh is available through quick interpolation. Using local meshes for AEM forward modelling avoids unnecessary computing on fine cells on a global mesh that are far away from the sounding location. Since local meshes are highly independent, the forward modelling can be efficiently parallelized over an array of processors. The second improvement is random and dynamic down-sampling of the soundings. Each inversion iteration only uses a random subset of the soundings, and the subset is reselected for every iteration. The number of soundings in the random subset, determined by an adaptive algorithm, is tied to the degree of model regularization. This minimizes the overcomputing caused by working with redundant soundings. Our methods are compared against conventional methods and tested with a synthetic example. We also invert a field data set that was previously considered to be too large to be practically inverted in 3-D. These examples show that our methodology can dramatically reduce the processing time of 3-D inversion to a practical level without losing resolution

  6. Time domain reflectometry for SLC BPM system

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.

    1985-03-01

    A maintenance manual for troubleshooting installed SLC Position Monitor stripline assemblies and the associated cabling, using time Domain Reflectometry is presented. Once a technician becomes familiar with this manual's procedures, the Table of Contents can serve as a checklist.

  7. A time domain technique for mechanism extraction

    NASA Technical Reports Server (NTRS)

    Dominek, Allen K.; Peters, Leon, Jr.; Burnside, Walter D.

    1987-01-01

    The properties of scattered fields from a structure can be better evaluated from the characteristics of the individual scatterers. Decomposition techniques can be classified either as a matrix or an integral formulation. With either formulation, aspect pattern of frequency information of a scattering center can be obtained. Emphasis is placed on an integral (time domain) isolation extraction technique to obtain the frequency characteristics of scattering mechanisms. This technique has its origins in the time domain interpretation of scattered fields.

  8. Optical characteristics of pesticides measured by terahertz time domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Kyu; Kim, Giyoung; Son, Joo-Hiuk

    2015-07-01

    In this study, we measured the optical characteristics of pesticides by terahertz time-domain spectroscopy. Pesticide samples were prepared as pellets that were mixed with polyethylene powder and placed in the center of the path of a terahertz electromagnetic (EM) wave in the spectroscopy system. The absorbance of each sample showed obvious differences in absorption peaks. From this result, we showed that these pesticide products had resonance modes in the terahertz range, and this method can be used to make a sensor that is able to measure low concentrations of pesticides in farm produce.

  9. A time domain, weighted residual formulation of Maxwell's equations

    NASA Technical Reports Server (NTRS)

    Young, Jeffrey L.; Brueckner, Frank P.

    1993-01-01

    A finite element model is developed and used to simulate two-dimensional electromagnetic wave propagation and scattering. The spatial discretization of the time-domain electrodynamic equations is accomplished by a Galerkin approach. The semi-discrete equations are solved explicitly using a second-order Runge-Kutta scheme. Both the electric and magnetic fields are discretized using a single grid, with the divergence-free conditions satisfied through a correction approach. Examples depicting the scattering of plane waves in 2D geometries are given to demonstrate the validity of the methodology.

  10. A preliminary evaluation of the airborne electromagnetic bathymetry system for characterization of coastal sediments and marsh soils

    NASA Technical Reports Server (NTRS)

    Pelletier, R. E.; Wu, S. T.

    1989-01-01

    Airborne electromagnetic (AEM) data acquired over a coastal region of North Carolina as part of a prototype testing program is analyzed with emphasis on multiple transects crossing a variety of geomorphic/landscape types as a means of conducting a preliminary evaluation of the sensor's ability to determine water depth and characterize a number of water and sediment physical properties such as water conductivity, sediment conductivity, sediment porosity, and sediment density. The study site is described, along with the flight line mission plan and data acquisition and processing. Good agreement between AEM-measured bathymetry and ground truth is reported, and it is concluded that in the marine environment, this system can traverse areas more rapidly than ships with acoustic systems and can collect data from shallow or inaccessible regions.

  11. Terahertz-bandwidth pulses for coherent time-domain spectroscopy

    SciTech Connect

    Whitaker, J.F.; Gao, F.; Liu, Y.

    1994-12-31

    Ultrashort pulses of electromagnetic radiation propagating through free space are used to perform coherent time-domain spectroscopy by probing the complex index of refraction of various materials, in particular thin films of high-critical-temperature superconductors and the microwave substrates the support them. The terahertz beam system utilizes Hertz ion-dipole-like antennas consisting of a dc-biased photoconductive gap in a coplanar stripline as a transmitter, and an identical receiver with a photoconductive gap biased by the THz radiation. The transmitter is driven to produce the short radiation bursts by a 100-fs optical pulse from a Ti:sapphire self-mode-locked laser, while the receiver is synchronously gated by laser pulses split from the original beam. By performing measurements in the time domain and transforming data to the frequency domain, both the real and imaginary parts of the index of refraction of dielectrics and the conductivity of superconductors are determined over the entire range from {approximately}200 GHz to several terahertz. This technique allows the direct broadband determination of these quantities in the millimeter-wave and submillimeter-wave regimes from the measurement of only a few time-domain waveforms and without the need for Kramers-Kroenig analysis or complicated processing.

  12. A multilevel Cartesian non-uniform grid time domain algorithm

    SciTech Connect

    Meng Jun; Boag, Amir; Lomakin, Vitaliy; Michielssen, Eric

    2010-11-01

    A multilevel Cartesian non-uniform grid time domain algorithm (CNGTDA) is introduced to rapidly compute transient wave fields radiated by time dependent three-dimensional source constellations. CNGTDA leverages the observation that transient wave fields generated by temporally bandlimited and spatially confined source constellations can be recovered via interpolation from appropriately delay- and amplitude-compensated field samples. This property is used in conjunction with a multilevel scheme, in which the computational domain is hierarchically decomposed into subdomains with sparse non-uniform grids used to obtain the fields. For both surface and volumetric source distributions, the computational cost of CNGTDA to compute the transient field at N{sub s} observation locations from N{sub s} collocated sources for N{sub t} discrete time instances scales as O(N{sub t}N{sub s}logN{sub s}) and O(N{sub t}N{sub s}log{sup 2}N{sub s}) in the low- and high-frequency regimes, respectively. Coupled with marching-on-in-time (MOT) time domain integral equations, CNGTDA can facilitate efficient analysis of large scale time domain electromagnetic and acoustic problems.

  13. Time domain reflectometry in time variant plasmas

    NASA Technical Reports Server (NTRS)

    Scherner, Michael J.

    1992-01-01

    The effects of time-dependent electron density fluctuations on a synthesized time domain reflectometry response of a one-dimensional cold plasma sheath are considered. Numerical solutions of the Helmholtz wave equation, which describes the electric field of a normally incident plane wave in a specified static electron density profile, are used. A study of the effects of Doppler shifts resulting from moving density fluctuations in the electron density profile of the sheath is included. Varying electron density levels corrupt time domain and distance measurements. Reducing or modulating the electron density levels of a given electron density profile affects the time domain response of a plasma and results in motion of the turning point, and the effective motion has a significant effect on measuring electron density locations.

  14. Time-domain Raman analytical forward solvers.

    PubMed

    Martelli, Fabrizio; Binzoni, Tiziano; Sekar, Sanathana Konugolu Venkata; Farina, Andrea; Cavalieri, Stefano; Pifferi, Antonio

    2016-09-01

    A set of time-domain analytical forward solvers for Raman signals detected from homogeneous diffusive media is presented. The time-domain solvers have been developed for two geometries: the parallelepiped and the finite cylinder. The potential presence of a background fluorescence emission, contaminating the Raman signal, has also been taken into account. All the solvers have been obtained as solutions of the time dependent diffusion equation. The validation of the solvers has been performed by means of comparisons with the results of "gold standard" Monte Carlo simulations. These forward solvers provide an accurate tool to explore the information content encoded in the time-resolved Raman measurements. PMID:27607645

  15. Casimir forces in the time domain: Theory

    SciTech Connect

    Rodriguez, Alejandro W.; McCauley, Alexander P.; Joannopoulos, John D.; Johnson, Steven G.

    2009-07-15

    We present a method to compute Casimir forces in arbitrary geometries and for arbitrary materials based on the finite-difference time-domain (FDTD) scheme. The method involves the time evolution of electric and magnetic fields in response to a set of current sources, in a modified medium with frequency-independent conductivity. The advantage of this approach is that it allows one to exploit existing FDTD software, without modification, to compute Casimir forces. In this paper, we focus on the derivation, implementation choices, and essential properties of the time-domain algorithm, both considered analytically and illustrated in the simplest parallel-plate geometry.

  16. Calculation of nonzero-temperature Casimir forces in the time domain

    SciTech Connect

    Pan, Kai; Reid, M. T. Homer; McCauley, Alexander P.; Rodriguez, Alejandro W.; White, Jacob K.; Johnson, Steven G.

    2011-04-15

    We show how to compute Casimir forces at nonzero temperatures with time-domain electromagnetic simulations, for example, using a finite-difference time-domain (FDTD) method. Compared to our previous zero-temperature time-domain method, only a small modification is required, but we explain that some care is required to properly capture the zero-frequency contribution. We validate the method against analytical and numerical frequency-domain calculations, and show a surprising high-temperature disappearance of a nonmonotonic behavior previously demonstrated in a pistonlike geometry.

  17. Time-Domain Simulation of RF Couplers

    SciTech Connect

    Smithe, David; Carlsson, Johan; Austin, Travis

    2009-11-26

    We have developed a finite-difference time-domain (FDTD) fluid-like approach to integrated plasma-and-coupler simulation [1], and show how it can be used to model LH and ICRF couplers in the MST and larger tokamaks.[2] This approach permits very accurate 3-D representation of coupler geometry, and easily includes non-axi-symmetry in vessel wall, magnetic equilibrium, and plasma density. The plasma is integrated with the FDTD Maxwell solver in an implicit solve that steps over electron time-scales, and permits tenuous plasma in the coupler itself, without any need to distinguish or interface between different regions of vacuum and/or plasma. The FDTD algorithm is also generalized to incorporate a time-domain sheath potential [3] on metal structures within the simulation, to look for situations where the sheath potential might generate local sputtering opportunities. Benchmarking of the time-domain sheath algorithm has been reported in the references. Finally, the time-domain software [4] permits the use of particles, either as field diagnostic (test particles) or to self-consistently compute plasma current from the applied RF power.

  18. Airborne electromagnetics (EM) as a three-dimensional aquifer-mapping tool

    USGS Publications Warehouse

    Wynn, Jeff; Pool, Don; Bultman, Mark; Gettings, Mark; Lemieux, Jean

    2000-01-01

    The San Pedro River in southeastern Arizona hosts a major migratory bird flyway, and was declared a Riparian Conservation Area by Congress in 1988. Recharge of the adjacent Upper San Pedro Valley aquifer was thought to come primarily from the Huachuca Mountains, but the U. S. Army Garrison of Fort Huachuca and neighboring city of Sierra Vista have been tapping this aquifer for many decades, giving rise to claims that they jointly threatened the integrity of the Riparian Conservation Area. For this reason, the U. S. Army funded two airborne geophysical surveys over the Upper San Pedro Valley (see figure 1), and these have provided us valuable information on the aquifer and the complex basement structure underlying the modern San Pedro Valley. Euler deconvolution performed on the airborne magnetic data has provided a depth-to-basement map that is substantially more complex than a map obtained earlier from gravity data, as would be expected from the higher-resolution magnetic data. However, we found the output of the Euler deconvolution to have "geologic noise" in certain areas, interpreted to be post-Basin-and-Range Tertiary volcanic flows in the sedimentary column above the basement but below the ground surface.

  19. SANDAC V computer electromagnetic interface characteristics: Problems and solutions. [Sandia Airborne Computer (SANDAC)

    SciTech Connect

    Russell, G.A.

    1991-06-01

    Electromagnetic Interference (EMI) problems have resulted in the redesign of the SANDAC V computer case and shielding of its connecting cables. In this report are detailed discussions on the use of computer models and of the tests performed to solve the EMI problems. Included is documentation on the specific changes made to the SANDAC V computer case and the shielding done on the connecting cables. Also documented are the current EMI capabilities relative to MIL Std. 461.

  20. LHC RF System Time-Domain Simulation

    SciTech Connect

    Mastorides, T.; Rivetta, C.; /SLAC

    2010-09-14

    Non-linear time-domain simulations have been developed for the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC). These simulations capture the dynamic behavior of the RF station-beam interaction and are structured to reproduce the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They are also a valuable tool for the study of diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Results from these studies and related measurements from PEP-II and LHC have been presented in multiple places. This report presents an example of the time-domain simulation implementation for the LHC.

  1. Time Domain Modelling of a Reciprocating Engine

    NASA Astrophysics Data System (ADS)

    Li, H.; Stone, B. J.

    1999-01-01

    This paper describes the application of a time domain systems approach to the modelling of a reciprocating engine. The engine model includes the varying inertia effects resulting from the motion of the piston and con-rod. The cylinder pressure measured under operating conditions is used to force the model and the resulting motion compared with the measured response. The results obtained indicate that the model is very good.

  2. A de-noising algorithm based on wavelet threshold-exponential adaptive window width-fitting for ground electrical source airborne transient electromagnetic signal

    NASA Astrophysics Data System (ADS)

    Ji, Yanju; Li, Dongsheng; Yu, Mingmei; Wang, Yuan; Wu, Qiong; Lin, Jun

    2016-05-01

    The ground electrical source airborne transient electromagnetic system (GREATEM) on an unmanned aircraft enjoys considerable prospecting depth, lateral resolution and detection efficiency, etc. In recent years it has become an important technical means of rapid resources exploration. However, GREATEM data are extremely vulnerable to stationary white noise and non-stationary electromagnetic noise (sferics noise, aircraft engine noise and other human electromagnetic noises). These noises will cause degradation of the imaging quality for data interpretation. Based on the characteristics of the GREATEM data and major noises, we propose a de-noising algorithm utilizing wavelet threshold method and exponential adaptive window width-fitting. Firstly, the white noise is filtered in the measured data using the wavelet threshold method. Then, the data are segmented using data window whose step length is even logarithmic intervals. The data polluted by electromagnetic noise are identified within each window based on the discriminating principle of energy detection, and the attenuation characteristics of the data slope are extracted. Eventually, an exponential fitting algorithm is adopted to fit the attenuation curve of each window, and the data polluted by non-stationary electromagnetic noise are replaced with their fitting results. Thus the non-stationary electromagnetic noise can be effectively removed. The proposed algorithm is verified by the synthetic and real GREATEM signals. The results show that in GREATEM signal, stationary white noise and non-stationary electromagnetic noise can be effectively filtered using the wavelet threshold-exponential adaptive window width-fitting algorithm, which enhances the imaging quality.

  3. Holographic imaging based on time-domain data of natural-fiber-containing materials

    DOEpatents

    Bunch, Kyle J.; McMakin, Douglas L.

    2012-09-04

    Methods and apparatuses for imaging material properties in natural-fiber-containing materials can utilize time-domain data. In particular, images can be constructed that provide quantified measures of localized moisture content. For example, one or more antennas and at least one transceiver can be configured to collect time-domain data from radiation interacting with the natural-fiber-containing materials. The antennas and the transceivers are configured to transmit and receive electromagnetic radiation at one or more frequencies, which are between 50 MHz and 1 THz, according to a time-domain impulse function. A computing device is configured to transform the time-domain data to frequency-domain data, to apply a synthetic imaging algorithm for constructing a three-dimensional image of the natural-fiber-containing materials, and to provide a quantified measure of localized moisture content based on a pre-determined correlation of moisture content to frequency-domain data.

  4. Time-domain incident-field extrapolation technique based on the singularity-expansion method

    SciTech Connect

    Klaasen, J.J.

    1991-05-01

    In this report, a method presented to extrapolate measurements from Nuclear Electromagnetic Pulse (NEMP) assessments directly in the time domain. This method is based on a time-domain extrapolation function which is obtained from the Singularity Expansion Method representation of the measured incident field of the NEMP simulator. Once the time-domain extrapolation function is determined, the responses recorded during an assessment can be extrapolated simply by convolving them with the time domain extrapolation function. It is found that to obtain useful extrapolated responses, the incident field measurements needs to be made minimum phase; otherwise unbounded results can be obtained. Results obtained with this technique are presented, using data from actual assessments.

  5. Time-domain spectroscopy in the mid-infrared

    PubMed Central

    Lanin, A. A.; Voronin, A. A.; Fedotov, A. B.; Zheltikov, A. M.

    2014-01-01

    When coupled to characteristic, fingerprint vibrational and rotational motions of molecules, an electromagnetic field with an appropriate frequency and waveform offers a highly sensitive, highly informative probe, enabling chemically specific studies on a broad class of systems in physics, chemistry, biology, geosciences, and medicine. The frequencies of these signature molecular modes, however, lie in a region where accurate spectroscopic measurements are extremely difficult because of the lack of efficient detectors and spectrometers. Here, we show that, with a combination of advanced ultrafast technologies and nonlinear-optical waveform characterization, time-domain techniques can be advantageously extended to the metrology of fundamental molecular motions in the mid-infrared. In our scheme, the spectral modulation of ultrashort mid-infrared pulses, induced by rovibrational motions of molecules, gives rise to interfering coherent dark waveforms in the time domain. These high-visibility interference patterns can be read out by cross-correlation frequency-resolved gating of the field in the visible generated through ultrabroadband four-wave mixing in a gas phase. PMID:25327294

  6. Time-domain spectroscopy in the mid-infrared.

    PubMed

    Lanin, A A; Voronin, A A; Fedotov, A B; Zheltikov, A M

    2014-01-01

    When coupled to characteristic, fingerprint vibrational and rotational motions of molecules, an electromagnetic field with an appropriate frequency and waveform offers a highly sensitive, highly informative probe, enabling chemically specific studies on a broad class of systems in physics, chemistry, biology, geosciences, and medicine. The frequencies of these signature molecular modes, however, lie in a region where accurate spectroscopic measurements are extremely difficult because of the lack of efficient detectors and spectrometers. Here, we show that, with a combination of advanced ultrafast technologies and nonlinear-optical waveform characterization, time-domain techniques can be advantageously extended to the metrology of fundamental molecular motions in the mid-infrared. In our scheme, the spectral modulation of ultrashort mid-infrared pulses, induced by rovibrational motions of molecules, gives rise to interfering coherent dark waveforms in the time domain. These high-visibility interference patterns can be read out by cross-correlation frequency-resolved gating of the field in the visible generated through ultrabroadband four-wave mixing in a gas phase. PMID:25327294

  7. Finite difference time domain analysis of chirped dielectric gratings

    NASA Technical Reports Server (NTRS)

    Hochmuth, Diane H.; Johnson, Eric G.

    1993-01-01

    The finite difference time domain (FDTD) method for solving Maxwell's time-dependent curl equations is accurate, computationally efficient, and straight-forward to implement. Since both time and space derivatives are employed, the propagation of an electromagnetic wave can be treated as an initial-value problem. Second-order central-difference approximations are applied to the space and time derivatives of the electric and magnetic fields providing a discretization of the fields in a volume of space, for a period of time. The solution to this system of equations is stepped through time, thus, simulating the propagation of the incident wave. If the simulation is continued until a steady-state is reached, an appropriate far-field transformation can be applied to the time-domain scattered fields to obtain reflected and transmitted powers. From this information diffraction efficiencies can also be determined. In analyzing the chirped structure, a mesh is applied only to the area immediately around the grating. The size of the mesh is then proportional to the electric size of the grating. Doing this, however, imposes an artificial boundary around the area of interest. An absorbing boundary condition must be applied along the artificial boundary so that the outgoing waves are absorbed as if the boundary were absent. Many such boundary conditions have been developed that give near-perfect absorption. In this analysis, the Mur absorbing boundary conditions are employed. Several grating structures were analyzed using the FDTD method.

  8. Metrology for terahertz time-domain spectrometers

    NASA Astrophysics Data System (ADS)

    Molloy, John F.; Naftaly, Mira

    2015-12-01

    In recent years the terahertz time-domain spectrometer (THz TDS) [1] has emerged as a key measurement device for spectroscopic investigations in the frequency range of 0.1-5 THz. To date, almost every type of material has been studied using THz TDS, including semiconductors, ceramics, polymers, metal films, liquid crystals, glasses, pharmaceuticals, DNA molecules, proteins, gases, composites, foams, oils, and many others. Measurements with a TDS are made in the time domain; conversion from the time domain data to a frequency spectrum is achieved by applying the Fourier Transform, calculated numerically using the Fast Fourier Transform (FFT) algorithm. As in many other types of spectrometer, THz TDS requires that the sample data be referenced to similarly acquired data with no sample present. Unlike frequency-domain spectrometers which detect light intensity and measure absorption spectra, a TDS records both amplitude and phase information, and therefore yields both the absorption coefficient and the refractive index of the sample material. The analysis of the data from THz TDS relies on the assumptions that: a) the frequency scale is accurate; b) the measurement of THz field amplitude is linear; and c) that the presence of the sample does not affect the performance characteristics of the instrument. The frequency scale of a THz TDS is derived from the displacement of the delay line; via FFT, positioning errors may give rise to frequency errors that are difficult to quantify. The measurement of the field amplitude in a THz TDS is required to be linear with a dynamic range of the order of 10 000. And attention must be given to the sample positioning and handling in order to avoid sample-related errors.

  9. Time-domain multiple-quantum NMR

    SciTech Connect

    Weitekamp, D.P.

    1982-11-01

    The development of time-domain multiple-quantum nuclear magnetic resonance is reviewed through mid 1982 and some prospects for future development are indicated. Particular attention is given to the problem of obtaining resolved, interpretable, many-quantum spectra for anisotropic magnetically isolated systems of coupled spins. New results are presented on a number of topics including the optimization of multiple-quantum-line intensities, analysis of noise in two-dimensional spectroscopy, and the use of order-selective excitation for cross polarization between nuclear-spin species.

  10. Solitons for optical time-domain reflectometry

    NASA Astrophysics Data System (ADS)

    Levanon, Amikam; Friberg, Stephen R.; Fujii, Yoichi

    1996-06-01

    We describe the propagation of solitons in an optical time-domain reflectometry geometry. Intense nonsolitons usually broaden nonlinearly as they propagate out to a scatterer and broaden linearly as they return to their origin. In contrast, solitons propagate with a fixed pulse width or narrow on their way out to the scatterer. Returning, they broaden or narrow depending on their chirp at the scattering point. For a fixed return-pulse timing resolution we find 2.6 times or more energy can be launched when solitons are used than for normal dispersion pulses.

  11. Architectures for Time-domain Astronomy

    NASA Astrophysics Data System (ADS)

    Seaman, R.; Allan, A.; Pierfederici, F.; Williams, R.

    2009-09-01

    Wonder at the changing sky predates recorded history. Empirical studies of time-varying celestial phenomena date back to Galileo and Tycho. Telegrams conveying news of transient and recurrent events have been key astronomical infrastructure since the nineteenth century. Recent micro-lensing, supernova and gamma-ray burst studies have lead to a succession of exciting discoveries, but massive new time-domain surveys will soon overwhelm our nineteenth century transient response technologies. Meeting this challenge demands new autonomous architectures for astronomy. These Architectures should reach from proposing new research, through experimental design and the scheduling of telescope operations, to the archiving and pipeline-processing of data to discover new transients, to the publishing of these events, through automated follow-up via robotic and ToO assets, and to the display and analysis of observational results. All will lead to adaptive adjustment of time-domain investigations. The IVOA VOEvent protocol provides an engine for purpose-built astronomical architectures.

  12. Inversion of SPECTREM airborne electromagnetic data for groundwater assessment in outback Australia

    NASA Astrophysics Data System (ADS)

    Ley-Cooper, A. Y.; Munday, T. J.

    2012-12-01

    Inversion methods based on 1D forward model responses accurately honour flat laying layered environments and they have a valuable role in extracting hydrogeological information from a range of AEM systems. The conversion of a non-linear EM response to accurate estimates of ground conductivity is essential for groundwater assessment and aquifer characterisation. It is critical to ensure the forward response accurately models the system transfer function used in the inversion. The weathered conductive nature of the Australian overburden, presents a challenge for all EM induction techniques. Target geometry can be modelled for each system, but field conditions add complexity. We examine effects arising from applying a 1D inversion on SPECTREM2000 AEM data in areas with 3D anisotropy, and consider its suitability for regional surveys in outback Australia. The accurate recovery of conductivity models from AEM systems normally considered as targeting tools, has become particularly important where their conjunctive use for mineral exploration and groundwater assessment is now being canvassed. SPECTREM is a fixed wing, time domain EM system that employs a bipolar full cycle square current waveform operating with a variable base frequency from 25Hz upwards. Its rms transmitter dipole moment is 400 000 A.m2 , and flies at a nominal height of 90m above the ground with the 'bird' towed approximately 131m behind and 40m below the aircraft. Both X and Z component data are recorded and then processed to produce a step response at each fiducial. Through a consideration of approaches to primary field removal, data normalisation, and an understanding of transmitter(TX) - receiver(RX) geometry we have a procedure to model and invert data from this system. Relative separations of TX and RX are not monitored in flight, requiring they be estimated afterwards. The challenge, with this system having a transmitter always active, is to separate the measured total field into the transmitted

  13. The hunt for sliding planes in a phyllitic rock slide in Western Norway using airborne electromagnetic mapping

    NASA Astrophysics Data System (ADS)

    Aspmo Pfaffhuber, Andreas; Grimstad, Eystein; Domaas, Ulrik; Auken, Esben; Halkjær, Max

    2010-05-01

    The inner Aurland fjord and the adjacent Flåm valley (Western Norway) are subject to a potential rock slide comprised of creeping rock- and debris masses. From repeated GPS measurements we understand that rock and debris movements are constrained by precipitation and snow melt. Based on this assumption the local municipality and regional hydroelectricity company are evaluating the option to drain the unstable area with a more than 10 km long drainage tunnel to a nearby hydropower reservoir. We conducted an airborne electromagnetic (AEM) mapping survey to find indications for the sliding planes and to assess the tunnel corridor for potential tunneling hazard areas. Unstable rock areas some 1.000 meters above seawater have been mapped as massive phyllite intercepted by numerous tension cracks opening up to several meters. Field observations also point out that significant amounts of surface water in streams on the mountain plateau disappear in some of these cracks and surface again several hundred meters down the slope. Potentially sliding planes provide the water pathways and the changes in water pressure can cause instability. As the phyllite will weather to fine grained clay the water saturated sliding planes should be an ideal target for AEM as they are very conductive (1-10 Ohm*m) in comparison to the resistive undisturbed phyllite or nearby gneiss (> 1.000 Ohm*m). From our first AEM data interpretation we find widespread areas with high conductivity, which are most likely caused by either water saturated, fine grained sliding planes or fault zones at the phyllite / gneiss interface. At this point, financing for drilling is pending to transform the geophysical maps to a firm geological model. Based on the AEM results, we are formulating a joint research program involving detailed hydrological investigations, monitoring of formation water pressure, movements, meteorology, more detailed structural mapping and geophysical ground follow up of the airborne data. We

  14. Papyrus imaging with terahertz time domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Labaune, J.; Jackson, J. B.; Pagès-Camagna, S.; Duling, I. N.; Menu, M.; Mourou, G. A.

    2010-09-01

    Terahertz time domain spectroscopic imaging (THz-TDSI) is a non-ionizing, non-contact and non-destructive measurement technique that has been recently utilized to study cultural heritage artifacts. We will present this technique and the results of non-contact measurements of papyrus texts, including images of hidden papyri. Inks for modern papyrus specimens were prepared using the historical binder, Arabic gum, and two common pigments used to write ancient texts, carbon black and red ochre. The samples were scanned in reflection at normal incidence with a pulse with a spectral range between 0.1 and 1.5 THz. Temporal analysis of the signals provides the depths of the layers, and their frequency spectra give information about the inks.

  15. Time domain cyclostationarity signal-processing tools

    NASA Astrophysics Data System (ADS)

    Léonard, François

    2015-10-01

    This paper proposes four different time-domain tools to estimate first-order time cyclostationary signals without the need of a keyphasor signal. Applied to gearbox signals, these tacho-less methods appear intuitively simple, offer user-friendly graphic interfaces to visualize a pattern and allow the retrieval and removal of the selected cyclostationarity components in order to process higher-order spectra. Two of these tools can deal with time-varying operating conditions since they use an adaptive resampled signal driven by the vibration signal itself for order tracking. Three coherency indicators are proposed, one for every sample of the time pattern, one for each impact (tooth shock) observed in the gear mesh pattern, and one for the whole pattern. These indicators are used to detect a cyclostationarity and analyze the pattern repeatability. A gear mesh graph is also proposed to illustrate the cyclostationarity in 3D.

  16. Numerical methods for time-domain and frequency-domain analysis: applications in engineering

    NASA Astrophysics Data System (ADS)

    Tamas, R. D.

    2015-11-01

    Numerical methods are widely used for modeling different physical phenomena in engineering, especially when an analytic approach is not possible. Time-domain or frequency- domain type variations are generally investigated, depending on the nature of the process under consideration. Some methods originate from mechanics, although most of their applications belong to other fields, such as electromagnetism. Conversely, other methods were firstly developed for electromagnetism, but their field of application was extended to other fields. This paper presents some results that we have obtained by using a general purpose method for solving linear equations, i.e., the method of moments (MoM), and a time-domain method derived for electromagnetism, i.e., the Transmission Line Matrix method (TLM).

  17. Finite-Difference Time-Domain solution of Maxwell's equations for the dispersive ionosphere

    NASA Astrophysics Data System (ADS)

    Nickisch, L. J.; Franke, P. M.

    1992-10-01

    The Finite-Difference Time-Domain (FDTD) technique is a conceptually simple, yet powerful, method for obtaining numerical solutions to electromagnetic propagation problems. However, the application of FDTD methods to problems in ionospheric radiowave propagation is complicated by the dispersive nature of the ionospheric plasma. In the time domain, the electric displacement is the convolution of the dielectric tensor with the electric field, and thus requires information from the entire signal history. This difficulty can be avoided by returning to the dynamical equations from which the dielectric tensor is derived. By integrating these differential equations simultaneously with the Maxwell equations, temporal dispersion is fully incorporated.

  18. A Fourier collocation time domain method for numerically solving Maxwell's equations

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1991-01-01

    A new method for solving Maxwell's equations in the time domain for arbitrary values of permittivity, conductivity, and permeability is presented. Spatial derivatives are found by a Fourier transform method and time integration is performed using a second order, semi-implicit procedure. Electric and magnetic fields are collocated on the same grid points, rather than on interleaved points, as in the Finite Difference Time Domain (FDTD) method. Numerical results are presented for the propagation of a 2-D Transverse Electromagnetic (TEM) mode out of a parallel plate waveguide and into a dielectric and conducting medium.

  19. Time domain scattering and radar cross section calculations for a thin, coated perfectly conducting plate

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Beggs, John H.

    1991-01-01

    Radar cross section (RCS) calculations for flat, perfectly conducting plates are readily available through the use of conventional frequency domain techniques such as the Method of Moments (MOM). However, if the plate is covered with a dielectric material that is relatively thick in comparison with the wavelength in the material, these frequency domain techniques become increasingly difficult to apply. We present the application of the Finite Difference Time Domain (FDTD) Technique to the problem of electromagnetic scattering and RCS calculations from a thin, perfectly conducting plate that is coated with a thick layer of lossless dielectric material. Both time domain and RCS calculations are presented and disclosed.

  20. Time domain scattering and radar cross section calculations for a thin, coated perfectly conducting plate

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Beggs, John H.

    1991-01-01

    Radar cross section (RCS) calculations for flat, perfectly conducting plates are readily available through the use of conventional frequency domain techniques such as the Method of Moments (MOM). However, if the plate is covered with a dielectric material that is relatively thick in comparison with the wavelength in the material, these frequency domain techniques become increasingly difficult to apply. The application is presented of the Finite Difference Time Domain (FDTD) technique to the problem of electromagnetic scattering and RCS calculations from a thin, perfectly conducting plate that is coated with a thick layer of lossless dielectric material. Both time domain and RCS calculations are presented and discussed.

  1. Applications of pattern classification to time-domain signals

    NASA Astrophysics Data System (ADS)

    Bertoncini, Crystal Ann

    Many different kinds of physics are used in sensors that produce time-domain signals, such as ultrasonics, acoustics, seismology, and electromagnetics. The waveforms generated by these sensors are used to measure events or detect flaws in applications ranging from industrial to medical and defense-related domains. Interpreting the signals is challenging because of the complicated physics of the interaction of the fields with the materials and structures under study. Often the method of interpreting the signal varies by the application, but automatic detection of events in signals is always useful in order to attain results quickly with less human error. One method of automatic interpretation of data is pattern classification, which is a statistical method that assigns predicted labels to raw data associated with known categories. In this work, we use pattern classification techniques to aid automatic detection of events in signals using features extracted by a particular application of the wavelet transform, the Dynamic Wavelet Fingerprint (DWFP), as well as features selected through physical interpretation of the individual applications. The wavelet feature extraction method is general for any time-domain signal, and the classification results can be improved by features drawn for the particular domain. The success of this technique is demonstrated through four applications: the development of an ultrasonographic periodontal probe, the identification of flaw type in Lamb wave tomographic scans of an aluminum pipe, prediction of roof falls in a limestone mine, and automatic identification of individual Radio Frequency Identification (RFID) tags regardless of its programmed code. The method has been shown to achieve high accuracy, sometimes as high as 98%.

  2. Casimir forces in the time domain: Applications

    SciTech Connect

    McCauley, Alexander P.; Rodriguez, Alejandro W.; Joannopoulos, John D.; Johnson, Steven G.

    2010-01-15

    Our previous article [Phys. Rev. A 80, 012115 (2009)] introduced a method to compute Casimir forces in arbitrary geometries and for arbitrary materials that was based on a finite-difference time-domain (FDTD) scheme. In this article, we focus on the efficient implementation of our method for geometries of practical interest and extend our previous proof-of-concept algorithm in one dimension to problems in two and three dimensions, introducing a number of new optimizations. We consider Casimir pistonlike problems with nonmonotonic and monotonic force dependence on sidewall separation, both for previously solved geometries to validate our method and also for new geometries involving magnetic sidewalls and/or cylindrical pistons. We include realistic dielectric materials to calculate the force between suspended silicon waveguides or on a suspended membrane with periodic grooves, also demonstrating the application of perfectly matched layer (PML) absorbing boundaries and/or periodic boundaries. In addition, we apply this method to a realizable three-dimensional system in which a silica sphere is stably suspended in a fluid above an indented metallic substrate. More generally, the method allows off-the-shelf FDTD software, already supporting a wide variety of materials (including dielectric, magnetic, and even anisotropic materials) and boundary conditions, to be exploited for the Casimir problem.

  3. How Swift is redefining time domain astronomy

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Cannizzo, J. K.

    2015-09-01

    NASA's Swift satellite has completed ten years of amazing discoveries in time domain astronomy. Its primary mission is to chase gamma-ray bursts (GRBs), but due to its scheduling flexibility it has subsequently become a prime discovery machine for new types of behavior. The list of major discoveries in GRBs and other transients includes the long-lived X-ray afterglows and flares from GRBs, the first accurate localization of short GRBs, the discovery of GRBs at high redshift (z > 8), supernova shock break-out from SN Ib, a jetted tidal disruption event, an ultra-long class of GRBs, high energy emission from flare stars, novae and supernovae with unusual characteristics, magnetars with glitches in their spin periods, and a short GRB with evidence of an accompanying kilonova. Swift has developed a dynamic synergism with ground based observatories. In a few years gravitational wave observatories will come on-line and provide exciting new transient sources for Swift to study.

  4. Reengineering observatory operations for the time domain

    NASA Astrophysics Data System (ADS)

    Seaman, Robert L.; Vestrand, W. T.; Hessman, Frederic V.

    2014-07-01

    Observatories are complex scientific and technical institutions serving diverse users and purposes. Their telescopes, instruments, software, and human resources engage in interwoven workflows over a broad range of timescales. These workflows have been tuned to be responsive to concepts of observatory operations that were applicable when various assets were commissioned, years or decades in the past. The astronomical community is entering an era of rapid change increasingly characterized by large time domain surveys, robotic telescopes and automated infrastructures, and - most significantly - of operating modes and scientific consortia that span our individual facilities, joining them into complex network entities. Observatories must adapt and numerous initiatives are in progress that focus on redesigning individual components out of the astronomical toolkit. New instrumentation is both more capable and more complex than ever, and even simple instruments may have powerful observation scripting capabilities. Remote and queue observing modes are now widespread. Data archives are becoming ubiquitous. Virtual observatory standards and protocols and astroinformatics data-mining techniques layered on these are areas of active development. Indeed, new large-aperture ground-based telescopes may be as expensive as space missions and have similarly formal project management processes and large data management requirements. This piecewise approach is not enough. Whatever challenges of funding or politics facing the national and international astronomical communities it will be more efficient - scientifically as well as in the usual figures of merit of cost, schedule, performance, and risks - to explicitly address the systems engineering of the astronomical community as a whole.

  5. Operation Sun Beam, Shots Little Feller II and Small Boy. Project Officer's report - Project 7. 16. Airborne E-field radiation measurements of electromagnetic-pulse phenomena

    SciTech Connect

    Butler, K.L.

    1985-09-01

    Airborne measurements of the absolute vertical electric field (E-field) of the radiated electromagnetic pulse were attempted for Shots Little Feller II and Small Boy. Instrumentation included calibrated vertical whip antennas, wideband magnetic tape recorders, and photographs of oscilloscope traces. One instrumented aircraft participated in Little Feller II (C-131F); two aircraft participated in Small Boy (a C-131F and an A-3A). No detectable signals were recorded for either event. It is concluded that the vertical E-field intensities encountered were below the calibrated levels of the instrumentation or the method of instrumentation and calibration was inadequate for nonrepetitive pulse signals.

  6. A Persistent Feature of Multiple Scattering of Waves in the Time-Domain: A Tutorial

    NASA Technical Reports Server (NTRS)

    Lock, James A.; Mishchenko, Michael I.

    2015-01-01

    The equations for frequency-domain multiple scattering are derived for a scalar or electromagnetic plane wave incident on a collection of particles at known positions, and in the time-domain for a plane wave pulse incident on the same collection of particles. The calculation is carried out for five different combinations of wave types and particle types of increasing geometrical complexity. The results are used to illustrate and discuss a number of physical and mathematical characteristics of multiple scattering in the frequency- and time-domains. We argue that frequency-domain multiple scattering is a purely mathematical construct since there is no temporal sequencing information in the frequency-domain equations and since the multi-particle path information can be dispelled by writing the equations in another mathematical form. However, multiple scattering becomes a definite physical phenomenon in the time-domain when the collection of particles is illuminated by an appropriately short localized pulse.

  7. Miniature terahertz time-domain spectrometry

    NASA Astrophysics Data System (ADS)

    Schulkin, Brian

    This thesis focuses on the design, development and evaluation of novel concepts which enable the miniaturization of terahertz (THz) time-domain spectrometry. Portable THz spectrometry is applied to research and industrial domains for immediate, short and long term applications in nondestructive evaluation, homeland security, and biomedicine respectively. Due to the previous limitation of THz devices for public uses, in particular, the lack of access to a THz spectrometer, applications of THz science and technology have only recently expanded beyond the laboratory. There is an urgent need for compact, even handheld THz time-domain spectrometry (THz-TDS) platforms which can carry out proven-to-be-useful applications developed and tested in laboratory conditions. There are three major challenges restricting THz-TDS to laboratories. Atmospheric absorption severely limits the propagation distance of the THz beam and confines systems to low-moisture environments. The sample's surface roughness, grain size and geometry severely limit the bandwidth of the measurement. Physical size and weight of THz systems are generally limited by large laser sources and optomechanics. The sensitivity and selectivity of THz-TDS systems are the two most significant parameters used to describe the quality of the system. Sensitivity is directly related to the Signal-to-Noise Ratio (SNR) and dynamic range, which may be improved by either lowering the noise floor or increasing the THz signal. On the other hand, selectivity is far more complex as it is related to the sensitivity, sample preparation, baseline correction, and selection method. Sensitivity is gauged using industrial statistical methods, such as Gauge Repeatability and Reproducibility (GR&R), and can transform a not-so-useful SNR value to an extremely useful measure of the minimum detectable amount of a certain material. It is shown that the GR&R value is inversely proportional to the square root of the number of averaged waveforms

  8. Time-domain measurement of broadband coherent Cherenkov radiation

    SciTech Connect

    Miocinovic, P.; Gorham, P. W.; Guillian, E.; Milincic, R.; Field, R. C.; Walz, D.; Saltzberg, D.; Williams, D.

    2006-08-15

    We report on further analysis of coherent microwave Cherenkov impulses emitted via the Askaryan mechanism from high-energy electromagnetic showers produced at the Stanford Linear Accelerator Center (SLAC). In this report, the time-domain based analysis of the measurements made with a broadband (nominally 1-18 GHz) log periodic dipole array antenna is described. The theory of a transmit-receive antenna system based on time-dependent effective height operator is summarized and applied to fully characterize the measurement antenna system and to reconstruct the electric field induced via the Askaryan process. The observed radiation intensity and phase as functions of frequency were found to agree with expectations from 0.75-11.5 GHz within experimental errors on the normalized electric field magnitude and the relative phase; {sigma}{sub RvertcalbarEverticalbar}=0.039 {mu}V/MHz/TeV and {sigma}{sub {phi}}=17 deg. This is the first time this agreement has been observed over such a broad bandwidth, and the first measurement of the relative phase variation of an Askaryan pulse. The importance of validation of the Askaryan mechanism is significant since it is viewed as the most promising way to detect cosmogenic neutrino fluxes at E{sub {nu}}(greater-or-similar sign)10{sup 15} eV.

  9. THz time-domain spectroscopy for tokamak plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Causa, F.; Zerbini, M.; Johnston, M.; Buratti, P.; Doria, A.; Gabellieri, L.; Gallerano, G. P.; Giovenale, E.; Pacella, D.; Romano, A.; Tuccillo, A. A.; Tudisco, O.

    2014-08-01

    The technology is now becoming mature for diagnostics using large portions of the electromagnetic spectrum simultaneously, in the form of THz pulses. THz radiation-based techniques have become feasible for a variety of applications, e.g., spectroscopy, imaging for security, medicine and pharmaceutical industry. In particular, time-domain spectroscopy (TDS) is now being used also for plasma diagnostics in various fields of application. This technique is promising also for plasmas for fusion applications, where plasma characteristics are non-uniform and/or evolve during the discharge This is because THz pulses produced with femtosecond mode-locked lasers conveniently span the spectrum above and below the plasma frequency and, thus, can be used as very sensitive and versatile probes of widely varying plasma parameters. The short pulse duration permits time resolving plasma characteristics while the large frequency span permits a large dynamic range. The focus of this work is to present preliminary experimental and simulation results demonstrating that THz TDS can be realistically adapted as a versatile tokamak plasma diagnostic technique.

  10. THz time-domain spectroscopy for tokamak plasma diagnostics

    SciTech Connect

    Causa, F.; Zerbini, M.; Buratti, P.; Gabellieri, L.; Pacella, D.; Romano, A.; Tuccillo, A. A.; Tudisco, O.; Johnston, M.; Doria, A.; Gallerano, G. P.; Giovenale, E.

    2014-08-21

    The technology is now becoming mature for diagnostics using large portions of the electromagnetic spectrum simultaneously, in the form of THz pulses. THz radiation-based techniques have become feasible for a variety of applications, e.g., spectroscopy, imaging for security, medicine and pharmaceutical industry. In particular, time-domain spectroscopy (TDS) is now being used also for plasma diagnostics in various fields of application. This technique is promising also for plasmas for fusion applications, where plasma characteristics are non-uniform and/or evolve during the discharge This is because THz pulses produced with femtosecond mode-locked lasers conveniently span the spectrum above and below the plasma frequency and, thus, can be used as very sensitive and versatile probes of widely varying plasma parameters. The short pulse duration permits time resolving plasma characteristics while the large frequency span permits a large dynamic range. The focus of this work is to present preliminary experimental and simulation results demonstrating that THz TDS can be realistically adapted as a versatile tokamak plasma diagnostic technique.

  11. Time-Domain Measurement of Broadband Coherent Cherenkov Radiation

    SciTech Connect

    Miocinovic, P.; Field, R.C.; Gorham, P.W.; Guillian, E.; Milincic, R.; Saltzberg, D.; Walz, D.; Williams, D.; /UCLA

    2006-03-13

    We report on further analysis of coherent microwave Cherenkov impulses emitted via the Askaryan mechanism from high-energy electromagnetic showers produced at the Stanford Linear Accelerator Center (SLAC). In this report, the time-domain based analysis of the measurements made with a broadband (nominally 1-18 GHz) log periodic dipole antenna (LPDA) is described. The theory of a transmit-receive antenna system based on time-dependent effective height operator is summarized and applied to fully characterize the measurement antenna system and to reconstruct the electric field induced via the Askaryan process. The observed radiation intensity and phase as functions of frequency were found to agree with expectations from 0.75-11.5 GHz within experimental errors on the normalized electric field magnitude and the relative phase; {sigma}{sub R|E|} = 0.039 {micro}V/MHz/TeV and {sigma}{sub {phi}} = 17{sup o}. This is the first time this agreement has been observed over such a broad bandwidth, and the first measurement of the relative phase variation of an Askaryan pulse. The importance of validation of the Askaryan mechanism is significant since it is viewed as the most promising way to detect cosmogenic neutrino fluxes at E{sub v} {ge} 10{sup 15} eV.

  12. Understanding Return Stroke Data with Time Domain Fractal Lightning Modeling

    NASA Astrophysics Data System (ADS)

    Liang, C.; Carlson, B. E.; Lehtinen, N. G.; Inan, U. S.

    2012-12-01

    Time domain fractal lightning (TDFL) modeling is an evolving technique for the study of lightning in the context of comprehensive existing experimental data. It incorporates the complex geometry of the lightning channel, keeps track of the time evolution of charge and current distribution along the lightning channel, and with both combined, simulates realistic electromagnetic radiation signals from lightning flashes. Recent development enhances the technique by bringing in various elements from the plasma physics aspect of lightning physics. For example, simple models are included to take account of effects due to corona sheath, channel heating and cooling, channel conductivity dependence on temperature etc. With future development, an even more sophisticated treatment of these elements is expected. With these features at hand, we present studies of return stroke related experimental data using TDFL. A wide variety of experimental data exists for the return stroke, including ground-base-current measurements, electric and magnetic field record, channel luminosity and estimations of various channel properties. We study these various aspects of lightning data under the single framework provided by TDFL. Emphasis is on exploring and explaining connections between the different types of data, e.g. dependence of the return stroke speed and electric field on channel properties, relation between ground-base-current peak current and charge transfer. Various other aspects such as effect of tortuous channel geometry, branches, and corona sheath are also explored.

  13. A Simple and Efficient Computational Approach to Chafed Cable Time-Domain Reflectometry Signature Prediction

    NASA Technical Reports Server (NTRS)

    Kowalski, Marc Edward

    2009-01-01

    A method for the prediction of time-domain signatures of chafed coaxial cables is presented. The method is quasi-static in nature, and is thus efficient enough to be included in inference and inversion routines. Unlike previous models proposed, no restriction on the geometry or size of the chafe is required in the present approach. The model is validated and its speed is illustrated via comparison to simulations from a commercial, three-dimensional electromagnetic simulator.

  14. Three-dimensional resistivity characterization of a coastal area: Application of Grounded Electrical-Source Airborne Transient Electromagnetic (GREATEM) survey data from Kujukuri Beach, Japan

    NASA Astrophysics Data System (ADS)

    Abd Allah, Sabry; Mogi, Toru; Ito, Hisatoshi; Jomori, Akira; Yuuki, Youichi; Fomenko, Elena; Kiho, Kenzo; Kaieda, Hideshi; Suzuki, Koichi; Tsukuda, Kazuhiro

    2013-12-01

    An airborne electromagnetic (AEM) survey using the Grounded Electrical-Source Airborne Transient Electromagnetic (GREATEM) system was conducted over the Kujukuri coastal plain in southeast Japan to assess the system's ability to accurately describe the geological structure beneath shallow seawater. To obtain high-quality data with an optimized signal-to-noise ratio, a series of data processing techniques were used to obtain the final transient response curves from the field survey data. These steps included movement correction, coordinate transformation, the removal of local noise, data stacking, and signal portion extraction. We performed numerical forward modeling to generate a three-dimensional (3D) resistivity structure model from the GREATEM data. This model was developed from an initial one-dimensional (1D) resistivity structure that was also inverted from the GREATEM field survey data. We modified a 3D electromagnetic forward-modeling scheme based on a finite-difference staggered-grid method and used it to calculate the response of the 3D resistivity model along each survey line. We verified the model by examining the fit of the magnetic-transient responses between field data and the 3D forward-model computed data, the latter of which were convolved with the measured system responses of the corresponding data set. The inverted 3D resistivity structures showed that the GREATEM system has the capability to map resistivity structures as far as 800 m offshore and as deep as 300-350 m underground in coastal areas of relatively shallow seawater depth (5-10 m).

  15. Time-of-flight measurement techniques for airborne ultrasonic ranging.

    PubMed

    Jackson, Joseph C; Summan, Rahul; Dobie, Gordon I; Whiteley, Simon M; Pierce, S G; Hayward, Gordon

    2013-02-01

    Airborne ultrasonic ranging is used in a variety of different engineering applications for which other positional metrology techniques cannot be used, for example in closed-cell locations, when optical line of sight is limited, and when multipath effects preclude electromagnetic-based wireless systems. Although subject to fundamental physical limitations, e.g., because of the temperature dependence of acoustic velocity in air, these acoustic techniques often provide a cost-effective solution for applications in mobile robotics, structural inspection, and biomedical imaging. In this article, the different techniques and limitations of a range of airborne ultrasonic ranging approaches are reviewed, with an emphasis on the accuracy and repeatability of the measurements. Simple time-domain approaches are compared with their frequency-domain equivalents, and the use of hybrid models and biologically inspired approaches are discussed. PMID:23357908

  16. Recovering Complex Conductivity from Frequency and Time Domain Geophysical Surveys

    NASA Astrophysics Data System (ADS)

    KANG, S.; Marchant, D.; Oldenburg, D.

    2013-12-01

    The electrical conductivity of earth materials can be frequency dependent. The bulk conductivity decreases with decreasing frequency because of the build-up of electric charges that occur under the application of an electric field. Effectively, the rock is electrically polarized. Finding the polarization response (often referred to as IP, Induced Polarization) can lead to economic benefits, as in the case of discovering sulphide minerals, but there is applicability in environmental problems, groundwater flow, and site characterization. We have the ability to model Maxwell's equations in 3D for complex conductivity in either the time or frequency domain. The challenge therefore is to invert the EM (electromagnetic) data to recover a four-dimensional conductivity (σ (ω, x, y, z)) using limited EM data generally acquired on, or above, the surface of the earth. At late times (or low frequencies) the static Maxwell's equation are valid and, if a background conductivity is known, then chargeability can be extracted. Unfortunately the static assumption is often violated and EM induction processes contaminate the sought signal. For example, signals in the time domain have three parts: a static on-time, an early-time inductive portion, and a late-time IP signal. Information about conductivity using the appropriate Maxwell's equations is available from each of these segments. The potential contamination of the IP from EM induction (often referred to as EM coupling) and the potential contamination of the EM signal from the IP data (IP coupling) can cause deleterious effects and must be addressed. The goal of this talk is to address such issues and outline a practical procedure for extracting IP information from existing time and frequency domain surveys.

  17. Time domain spectral method and its application on antenna array and PCB trace with periodic roughness

    NASA Astrophysics Data System (ADS)

    Wang, Minshen

    The primary interest of the electromagnetic behavior of a periodic structure is in its near field and far field. However, it is still numerically difficult to analyze either one in the time domain. The primary goal of this dissertation is to develop corresponding time domain technique to analyze two topics. The first one is to evaluate the far field of a realistic, large antenna array using an efficient method. The second one is to evaluate the propagation characteristic of a commercially available printed circuit board (PCB) with intentional roughness. Both of which are hot topics in the antenna and signal integrity (SI) society respectively; however, none of them have ever been solved in the time domain. To efficiently evaluate the far field pattern of a realistically large antenna array, the spectral domain method and the reciprocity theorem are implemented in the finite difference time domain (FDTD) technique to avoid the simulation of the near field. By taking advantage of the periodic boundary condition (PBC), the proposed method demonstrates its capability to speed up far field evaluation from hours to minutes. Good agreement of the results is provided for various cases: circular antenna array, arbitrary feeding array, and highly directional leaky wave antenna, etc. Periodic structure modeling with finite sized feedings is developed by the array scanning method (ASM) implemented in the FDTD technique. The minimally coupled electric and magnetic co-mingled antenna array is evaluated by the method. Moreover, a commercially available PCB with very small roughness is modeled by the ASM-FDTD and the propagation characteristic is evaluated. Both are evaluated by time domain method for the first time. Efficiency in terms of memory and computing time is shown for this method and parallelization in the future is proposed.

  18. An inverse acoustic waveguide problem in the time domain

    NASA Astrophysics Data System (ADS)

    Monk, Peter; Selgas, Virginia

    2016-05-01

    We consider the problem of locating an obstacle in a waveguide from time domain measurements of causal waves. More precisely, we assume that we are given the scattered field due to point sources placed on a surface located inside the waveguide away from the obstacle, where the scattered field is measured on the same surface. From this multi-static scattering data we wish to determine the position and shape of an obstacle in the waveguide. To deal with this inverse problem, we adapt and analyze the time domain linear sampling method. This involves proving new time domain estimates for the forward problem, as well as analyzing several time domain operators arising in the inversion scheme. We also implement the inversion algorithm and provide numerical results in two-dimensions using synthetic data.

  19. Time domain referencing in intensity modulation fiber optic sensing systems

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory

    1986-01-01

    Intensity modulation sensors are classified by the way in which the reference and signal channels are separated: in space, wavelength, or time domains. To implement the time-domain referencing, different types of fiber-optic loops have been used. A pulse of short duration sent into the loop results in a series of pulses of different amplitudes. The information about the measured parameter is retrieved from the relative amplitudes of pulses in the same train.

  20. TeraHertz Time Domain Spectroscopy of Astrophysical Analog Materials

    NASA Astrophysics Data System (ADS)

    Blake, Geoffrey

    The section of the electromagnetic spectrum extending roughly from wavelengths of 3 millimeters to 30 microns is commonly known as the far-infrared or TeraHertz (THz) region. It contains the great majority of the photons emitted by the universe, and THz observations of molecules and dust are able penetrate deeply into molecular clouds, thus revealing the full history of star and planet formation. Accordingly, the successful deployments of the Herschel and SOFIA observatories, and the emerging capabilities of ALMA, are both revolutionizing our understanding of THz astrophysics and placing stringent demands on the generation of accurate laboratory data on the relevant gas phase and solid state materials detected. With APRA support, we have constructed a combined high bandwidth and high spectral resolution femtosecond THz Time Domain Spectroscopy (THz TDS) system and an FT-IR spectrometer, and coupled these instruments to a high vacuum chamber and cryostat and to gas phase cells including a molecular beam system. We have investigated solid materials from room temperature to 10 K, and can examine both refractory matter such as silicates and molecular ices. For the latter, we have demonstrated that the THz bands observed are uniquely sensitive to both the molecular structure of the ice and its thermal history, and thus that THz observations can provide novel insight into the dominant condensable materials in dense, cold regions. In the gas phase we can record doppler-limited data over at least a decade in bandwidth. While quite capable, the high vacuum cryostat can only study thick samples, especially ices, due to the fairly rapid adsorption of gases onto surfaces at low temperature under such conditions. It is therefore not possible to examine highly layered/structured samples or reactive species. We therefore propose here to upgrade the chamber/cryostat to ultrahigh vacuum, and implement additional sample preparation and characterization tools. With such modifications

  1. ASIC-enabled High Resolution Optical Time Domain Reflectometer

    NASA Astrophysics Data System (ADS)

    Skendzic, Sandra

    Fiber optics has become the preferred technology in communication systems because of what it has to offer: high data transmission rates, immunity to electromagnetic interference, and lightweight, flexible cables. An optical time domain reflectometer (OTDR) provides a convenient method of locating and diagnosing faults (e.g. break in a fiber) along a fiber that can obstruct crucial optical pathways. Both the ability to resolve the precise location of the fault and distinguish between two discrete, closely spaced faults are figures of merit. This thesis presents an implementation of a high resolution OTDR through the use of a compact and programmable ASIC (application specific integrated circuit). The integration of many essential OTDR functions on a single chip is advantageous over existing commercial instruments because it enables small, lightweight packaging, and offers low power and cost efficiency. Furthermore, its compactness presents the option of placing multiple ASICs in parallel, which can conceivably ease the characterization of densely populated fiber optic networks. The OTDR ASIC consists of a tunable clock, pattern generator, precise timer, electrical receiver, and signal sampling circuit. During OTDR operation, the chip generates narrow electrical pulse, which can then be converted to optical format when coupled with an external laser diode driver. The ASIC also works with an external photodetector to measure the timing and amplitude of optical reflections in a fiber. It has a 1 cm sampling resolution, which allows for a 2 cm spatial resolution. While this OTDR ASIC has been previously demonstrated for multimode fiber fault diagnostics, this thesis focuses on extending its functionality to single mode fiber. To validate this novel approach to OTDR, this thesis is divided into five chapters: (1) introduction, (2) implementation, (3), performance of ASIC-based OTDR, (4) exploration in optical pre-amplification with a semiconductor optical amplifier, and

  2. Time Domain Version of the Uniform Geometrical Theory of Diffraction

    NASA Astrophysics Data System (ADS)

    Rousseau, Paul R.

    1995-01-01

    A time domain (TD) version of the uniform geometrical theory of diffraction which is referred to as the TD-UTD is developed to analyze the transient electromagnetic scattering from perfectly conducting objects that are large in terms of pulse width. In particular, the scattering from a perfectly conducting arbitrary curved wedge and an arbitrary smooth convex surface are treated in detail. Note that the canonical geometries of a circular cylinder and a sphere are special cases of the arbitrary smooth convex surface. These TD -UTD solutions are obtained in the form of relatively simple analytical expressions valid for early to intermediate times. The geometries treated here can be used to build up a transient solution to more complex radiating objects via space-time localization, in exactly the same way as is done by invoking spatial localization properties in the frequency domain UTD. The TD-UTD provides the response due to an excitation of a general astigmatic impulsive wavefront with any polarization. This generalized impulse response may then be convolved with other excitation time pulses, to find even more general solutions due to other excitation pulses. Since the TD-UTD uses the same rays as the frequency domain UTD, it provides a simple picture for transient radiation or scattering and is therefore just as physically appealing as the frequency domain UTD. The formulation of an analytic time transform (ATT), which produces an analytic time signal given a frequency response function, is given here. This ATT is used because it provides a very efficient method of inverting the asymptotic high frequency UTD representations to obtain the corresponding TD-UTD expressions even when there are special UTD transition functions which may not be well behaved at the low frequencies; also, using the ATT avoids the difficulties associated with the inversion of UTD ray fields that traverse line or smooth caustics. Another useful aspect of the ATT is the ability to perform an

  3. 3D Vectorial Time Domain Computational Integrated Photonics

    SciTech Connect

    Kallman, J S; Bond, T C; Koning, J M; Stowell, M L

    2007-02-16

    The design of integrated photonic structures poses considerable challenges. 3D-Time-Domain design tools are fundamental in enabling technologies such as all-optical logic, photonic bandgap sensors, THz imaging, and fast radiation diagnostics. Such technologies are essential to LLNL and WFO sponsors for a broad range of applications: encryption for communications and surveillance sensors (NSA, NAI and IDIV/PAT); high density optical interconnects for high-performance computing (ASCI); high-bandwidth instrumentation for NIF diagnostics; micro-sensor development for weapon miniaturization within the Stockpile Stewardship and DNT programs; and applications within HSO for CBNP detection devices. While there exist a number of photonics simulation tools on the market, they primarily model devices of interest to the communications industry. We saw the need to extend our previous software to match the Laboratory's unique emerging needs. These include modeling novel material effects (such as those of radiation induced carrier concentrations on refractive index) and device configurations (RadTracker bulk optics with radiation induced details, Optical Logic edge emitting lasers with lateral optical inputs). In addition we foresaw significant advantages to expanding our own internal simulation codes: parallel supercomputing could be incorporated from the start, and the simulation source code would be accessible for modification and extension. This work addressed Engineering's Simulation Technology Focus Area, specifically photonics. Problems addressed from the Engineering roadmap of the time included modeling the Auston switch (an important THz source/receiver), modeling Vertical Cavity Surface Emitting Lasers (VCSELs, which had been envisioned as part of fast radiation sensors), and multi-scale modeling of optical systems (for a variety of applications). We proposed to develop novel techniques to numerically solve the 3D multi-scale propagation problem for both the microchip

  4. Accurate computation of the radiation from simple antennas using the finite-difference time-domain method

    NASA Astrophysics Data System (ADS)

    Maloney, James G.; Smith, Glenn S.; Scott, Waymond R., Jr.

    1990-07-01

    Two antennas are considered, a cylindrical monopole and a conical monopole. Both are driven through an image plane from a coaxial transmission line. Each of these antennas corresponds to a well-posed theoretical electromagnetic boundary value problem and a realizable experimental model. These antennas are analyzed by a straightforward application of the time-domain finite-difference method. The computed results for these antennas are shown to be in excellent agreement with accurate experimental measurements for both the time domain and the frequency domain. The graphical displays presented for the transient near-zone and far-zone radiation from these antennas provide physical insight into the radiation process.

  5. Distributed Fiber Optical Sensing of Oxygen with Optical Time Domain Reflectometry

    PubMed Central

    Eich, Susanne; Schmälzlin, Elmar; Löhmannsröben, Hans-Gerd

    2013-01-01

    In many biological and environmental applications spatially resolved sensing of molecular oxygen is desirable. A powerful tool for distributed measurements is optical time domain reflectometry (OTDR) which is often used in the field of telecommunications. We combine this technique with a novel optical oxygen sensor dye, triangular-[4] phenylene (TP), immobilized in a polymer matrix. The TP luminescence decay time is 86 ns. The short decay time of the sensor dye is suitable to achieve a spatial resolution of some meters. In this paper we present the development and characterization of a reflectometer in the UV range of the electromagnetic spectrum as well as optical oxygen sensing with different fiber arrangements. PMID:23727953

  6. Finite Volume Time Domain modelling of microwave breakdown and plasma formation in a metallic aperture

    NASA Astrophysics Data System (ADS)

    Hamiaz, Adnane; Klein, Rudy; Ferrieres, Xavier; Pascal, Olivier; Boeuf, Jean-Pierre; Poirier, Jean-Rene

    2012-08-01

    The modelling of plasma formation during microwave breakdown is a difficult task because of the strong non-linear coupling between Maxwell's equations and plasma equations, and of the large plasma density gradients that form during breakdown. An original Finite Volume Time Domain (FVTD) method has been developed to solve Maxwell's equations coupled with a simplified fluid plasma model and is described in this paper. This method is illustrated with the study of the shielding of a metallic aperture by the plasma generated by an incident high power electromagnetic wave. Typical results obtained with the FVTD method for this shielding problem are shown.

  7. Final report on passive and active low-frequency electromagnetic spectroscopy for airborne detection of underground facilities

    SciTech Connect

    SanFilipo, Bill

    2000-04-01

    The objective of this program is to perform research to advance the science in the application of both passive and active electromagnetic measurement techniques for the detection and spatial delineation of underground facilities. Passive techniques exploit the electromagnetic fields generated by electrical apparatus within the structure, including generators, motors, power distribution circuitry, as well as communications hardware and similar electronics equipment. Frequencies monitored are generally in the audio range (60-20,000 Hz), anticipating strong sources associated with normal AC power (i.e., 50 or 60 Hz and associated harmonics), and low frequency power from broad-band sources such as switching circuits. Measurements are made using receiver induction coils wired to electronics that digitize and record the voltage induced by the time varying magnetic fields. Active techniques employ electromagnetic field transmitters in the form of AC current carrying loops also in the audio frequency range, and receiving coils that measure the resultant time varying magnetic fields. These fields are perturbed from those expected in free space by any conductive material in the vicinity of the coils, including the ground, so that the total measured field is comprised of the primary free-space component and the secondary scattered component. The latter can be further delineated into an average background field (uniform conductive half-space earth) and anomalous field associated with heterogeneous zones in the earth, including both highly conductive objects such as metallic structures as well as highly resistive structures such as empty voids corresponding to rooms or tunnels. Work performed during Phase I included the development of the prototype GEM-2H instrumentation, collection of data at several test sites in the passive mode and a single site in the active mode, development of processing and interpretation software. The technical objectives of Phase II were to: (1

  8. Finite difference time domain modeling of steady state scattering from jet engines with moving turbine blades

    NASA Technical Reports Server (NTRS)

    Ryan, Deirdre A.; Langdon, H. Scott; Beggs, John H.; Steich, David J.; Luebbers, Raymond J.; Kunz, Karl S.

    1992-01-01

    The approach chosen to model steady state scattering from jet engines with moving turbine blades is based upon the Finite Difference Time Domain (FDTD) method. The FDTD method is a numerical electromagnetic program based upon the direct solution in the time domain of Maxwell's time dependent curl equations throughout a volume. One of the strengths of this method is the ability to model objects with complicated shape and/or material composition. General time domain functions may be used as source excitations. For example, a plane wave excitation may be specified as a pulse containing many frequencies and at any incidence angle to the scatterer. A best fit to the scatterer is accomplished using cubical cells in the standard cartesian implementation of the FDTD method. The material composition of the scatterer is determined by specifying its electrical properties at each cell on the scatterer. Thus, the FDTD method is a suitable choice for problems with complex geometries evaluated at multiple frequencies. It is assumed that the reader is familiar with the FDTD method.

  9. Time-Domain Filtering for Spatial Large-Eddy Simulation

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1997-01-01

    An approach to large-eddy simulation (LES) is developed whose subgrid-scale model incorporates filtering in the time domain, in contrast to conventional approaches, which exploit spatial filtering. The method is demonstrated in the simulation of a heated, compressible, axisymmetric jet, and results are compared with those obtained from fully resolved direct numerical simulation. The present approach was, in fact, motivated by the jet-flow problem and the desire to manipulate the flow by localized (point) sources for the purposes of noise suppression. Time-domain filtering appears to be more consistent with the modeling of point sources; moreover, time-domain filtering may resolve some fundamental inconsistencies associated with conventional space-filtered LES approaches.

  10. Time-Domain Impedance Boundary Conditions for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Auriault, Laurent

    1996-01-01

    It is an accepted practice in aeroacoustics to characterize the properties of an acoustically treated surface by a quantity known as impedance. Impedance is a complex quantity. As such, it is designed primarily for frequency-domain analysis. Time-domain boundary conditions that are the equivalent of the frequency-domain impedance boundary condition are proposed. Both single frequency and model broadband time-domain impedance boundary conditions are provided. It is shown that the proposed boundary conditions, together with the linearized Euler equations, form well-posed initial boundary value problems. Unlike ill-posed problems, they are free from spurious instabilities that would render time-marching computational solutions impossible.

  11. Eulerian Time-Domain Filtering for Spatial LES

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1997-01-01

    Eulerian time-domain filtering seems to be appropriate for LES (large eddy simulation) of flows whose large coherent structures convect approximately at a common characteristic velocity; e.g., mixing layers, jets, and wakes. For these flows, we develop an approach to LES based on an explicit second-order digital Butterworth filter, which is applied in,the time domain in an Eulerian context. The approach is validated through a priori and a posteriori analyses of the simulated flow of a heated, subsonic, axisymmetric jet.

  12. New frontiers in time-domain diffuse optics, a review.

    PubMed

    Pifferi, Antonio; Contini, Davide; Mora, Alberto Dalla; Farina, Andrea; Spinelli, Lorenzo; Torricelli, Alessandro

    2016-09-01

    The recent developments in time-domain diffuse optics that rely on physical concepts (e.g., time-gating and null distance) and advanced photonic components (e.g., vertical cavity source-emitting laser as light sources, single photon avalanche diode, and silicon photomultipliers as detectors, fast-gating circuits, and time-to-digital converters for acquisition) are focused. This study shows how these tools could lead on one hand to compact and wearable time-domain devices for point-of-care diagnostics down to the consumer level and on the other hand to powerful systems with exceptional depth penetration and sensitivity. PMID:27311627

  13. Time Domain Measurement of Moving Object Speed Using Acceleration Sensor

    NASA Astrophysics Data System (ADS)

    Koyama, Kazunori; Noro, Mitsuo; Hirata, Akimasa; Fujiwara, Osamu

    In this study, we proposed a time-domain measurement method of moving object speed with a commercially available acceleration sensor. The sensor of this kind is normally used to measure the acceleration of a stationary vibration object, while it is not applicable to the measurement of a transient moving object due to the frequency response of the sensor itself. An impulsive sensor response was derived from the free-drop movement of a metallic sphere. The deconvolution allows the sensor to measure the acceleration in the time domain, which was validated through the measurement of the speed of a hand-held metal piece approaching a target.

  14. Frequency and time domain modeling of high speed amplifier

    NASA Astrophysics Data System (ADS)

    Opalska, Katarzyna

    2015-09-01

    The paper presents the lumped model of high speed amplifier useful for frequency and time domain (also large signal) simulation. Model is constructed on the basis of two-domain device measurements, namely small signal frequency parameters and time response to the input step of varying amplitude. Rational approximation of frequency domain data leads to small signal model composed of RLC subcircuits and controlled sources. Next, the model is complimented with the nonlinearities identified from time-domain measurements, including those taken for large input signals. Final amplifier model implemented in SPICE simulator is shown to correctly render the behavior of the device over the wide variety of operating conditions.

  15. Extending airborne electromagnetic surveys for regional active layer and permafrost mapping with remote sensing and ancillary data, Yukon Flats ecoregion, central Alaska

    USGS Publications Warehouse

    Pastick, Neal J.; Jorgenson, M. Torre; Wylie, Bruce K.; Minsley, Burke J.; Ji, Lei; Walvoord, Michelle A.; Smith, Bruce D.; Abraham, Jared D.; Rose, Joshua R.

    2013-01-01

    Machine-learning regression tree models were used to extrapolate airborne electromagnetic resistivity data collected along flight lines in the Yukon Flats Ecoregion, central Alaska, for regional mapping of permafrost. This method of extrapolation (r = 0.86) used subsurface resistivity, Landsat Thematic Mapper (TM) at-sensor reflectance, thermal, TM-derived spectral indices, digital elevation models and other relevant spatial data to estimate near-surface (0–2.6-m depth) resistivity at 30-m resolution. A piecewise regression model (r = 0.82) and a presence/absence decision tree classification (accuracy of 87%) were used to estimate active-layer thickness (ALT) (< 101 cm) and the probability of near-surface (up to 123-cm depth) permafrost occurrence from field data, modelled near-surface (0–2.6 m) resistivity, and other relevant remote sensing and map data. At site scale, the predicted ALTs were similar to those previously observed for different vegetation types. At the landscape scale, the predicted ALTs tended to be thinner on higher-elevation loess deposits than on low-lying alluvial and sand sheet deposits of the Yukon Flats. The ALT and permafrost maps provide a baseline for future permafrost monitoring, serve as inputs for modelling hydrological and carbon cycles at local to regional scales, and offer insight into the ALT response to fire and thaw processes.

  16. Time domain reflectometry for SLC BPM system. Revision

    SciTech Connect

    Thompson, D.R.

    1985-03-01

    This document is intended for use as a maintenance manual for troubleshooting installed SLC Beam Position Monitor stripline assemblies and the associated cabling, using Time Domain Reflectometry. Once a technician becomes familiar with this manual's procedures, the Table of Contents can serve as a checklist.

  17. Application of Time Domain Reflectometers in Urban Settings

    EPA Science Inventory

    This is a poster for the Million Trees NYC research symposium in New York City, NY, March 5-6, 2010. The poster gives a summary of how time domain reflectometers can be installed in urban fill soil, engineered bioretention media, and recycled concrete aggregate to document the ...

  18. Application of Time Domain Reflectometers to Urban Settings

    EPA Science Inventory

    Time domain reflectometers (TDRs) are in-situ monitoring probes that produce a temperature-compensated signal proportional to soil moisture content of the surrounding material when calibrated to a particular media. Typically used in agricultural settings, TDRs may also be applied...

  19. Data Management, Infrastructure and Archiving for Time-Domain Astronomy

    NASA Astrophysics Data System (ADS)

    Schade, David

    2012-04-01

    The workshop on Data Management issues for Time-Domain Astronomy was conceived as a forward-looking discussion of the primary issues that need to be addressed for science in the time domain. The very broad diversity of the science areas presented in the main Symposium made it clear that most of the general issues for astronomy data management-for example, large data volumes, the need for timely processing and network performance-would be pertinent in the time domain. In addition, there might be other tight time constraints on data processing when the output was required to trigger rapid follow-up observations, while science based on very long time-baselines might require careful consideration of long-term data preservation and availability issues. But broadly speaking, data management challenges in the time domain are not at variance to any significant degree with those for astronomy or data-intensive research in general. The workshop framed and debated a number of questions: What is the biggest challenge faced by future projects? How do grid and cloud computing figure in data management plans? Is the Virtual Observatory important to future projects? How are the issues of data life cycle being addressed?

  20. Quality control of leather by terahertz time-domain spectroscopy.

    PubMed

    Hernandez-Serrano, A I; Corzo-Garcia, S C; Garcia-Sanchez, E; Alfaro, M; Castro-Camus, E

    2014-11-20

    We use terahertz time-domain spectroscopy, combined with effective-medium theory, to measure the moisture content and thickness of leather simultaneously. These results demonstrate that this method could become a standard quality control test for the industrial tanning process. PMID:25607861

  1. Advanced propeller noise prediction in the time domain

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Dunn, M. H.; Spence, P. L.

    1992-01-01

    The time domain code ASSPIN gives acousticians a powerful technique of advanced propeller noise prediction. Except for nonlinear effects, the code uses exact solutions of the Ffowcs Williams-Hawkings equation with exact blade geometry and kinematics. By including nonaxial inflow, periodic loading noise, and adaptive time steps to accelerate computer execution, the development of this code becomes complete.

  2. A Partial Cylindrical Thermo-Time Domain Reflectometry Sensor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermo-time domain reflectometry (T-TDR) sensors are multi-functional devices that can be used to measure soil thermal properties and water content. These sensors can also be used to obtain indirect estimates of bulk density, air-filled porosity and percent saturation. However, the small size of the...

  3. Time domain measurement of frequency stability: A tutorial introduction

    NASA Technical Reports Server (NTRS)

    Vanier, J.; Tetu, M.

    1978-01-01

    The theoretical basis behind the definition of frequency stability in the time domain is outlined. Various types of variances were examined. Their differences and interrelation are pointed out. Systems that are generally used in the measurement of these variances are described.

  4. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  5. Multi-Faceted Geophysical Analysis of a Mountain Watershed in the Snowy Range, WY: from Airborne Electromagnetics to NMR

    NASA Astrophysics Data System (ADS)

    Armstrong, R. S.; Holbrook, W. S.; Flinchum, B. A.; Provart, M.; Carr, B. J.; Auken, E.; Pedersen, J. B.

    2014-12-01

    Surface/groundwater interactions are an important, but poorly understood, facet of mountain hydrology. We utilize ground electrical resistivity data as a key tool for mapping groundwater pathways and aquifers. However, surface resistivity profiling is limited in both spatial extent and depth, especially in mountainous headwater environments because of inaccessibility and terrain. Because this important groundwater recharge environment is poorly understood, WyCEHG has focused efforts to increase knowledge about the dynamics and location of groundwater recharge. Currently, traditional hydrologic measurements estimate that only 10% of annual snowmelt enters the groundwater system while the rest is immediately available to surface flow. The Wyoming Center for Environmental Hydrology and Geophysics (WyCEHG) collected a 40 sq. km survey of helicopter transient electromagnetic (HTEM) and aeromagnetic data during the fall of 2013 as the first step in a "top down" geophysical characterization of a mountainous headwater catchment in the Snowy Range, Wyoming. Furthermore, mountain springs in the Snowy Range suggests that the "groundwatershed" acts as both a sink and source to surface watersheds. HTEM data show horizontal electrical conductors at depth, which are currently interpreted as fluid-filled subsurface fractures. Because these fractures eventually connect to the surface, they could be geophysical evidence of connectivity between the watershed and "groundwatershed." However, current HTEM inversion techniques assume a layered homogenous subsurface model, which directly contradicts two characteristics of the Snowy Range: the subvertical bedding of the Cheyenne Belt and heterogeneous distribution of surface water. Ground electrical resistivity surveys and surface nuclear magnetic resonance (NMR) measurements collected during the summer of 2014 target these anomalies to determine their validity and further understand the complicated dynamic of surface and groundwater flow.

  6. Evaluation of airborne geophysical surveys for large-scale mapping of contaminated mine pools: draft final report

    SciTech Connect

    Hammack, R. W.

    2006-12-28

    subtle mine pool anomalies. However, post-survey modeling suggested that thicker, more conductive mine pools might be detected at a more suitable location. The current study sought to identify the best time domain electromagnetic sensor for detecting mine pools and to test it in an area where the mine pools are thicker and more conductive that those in southwestern Virginia. After a careful comparison of all airborne time domain electromagnetic sensors (including both helicopter and fixed-wing systems), the SkyTEM system from Denmark was determined to be the best technology for this application. Whereas most airborne time domain electromagnetic systems were developed to find large, deep, highly conductive mineral deposits, the SkyTEM system is designed for groundwater exploration studies, an application similar to mine pool detection.

  7. Improved time-domain accuracy standards for model gravitational waveforms

    SciTech Connect

    Lindblom, Lee; Baker, John G.

    2010-10-15

    Model gravitational waveforms must be accurate enough to be useful for detection of signals and measurement of their parameters, so appropriate accuracy standards are needed. Yet these standards should not be unnecessarily restrictive, making them impractical for the numerical and analytical modelers to meet. The work of Lindblom, Owen, and Brown [Phys. Rev. D 78, 124020 (2008)] is extended by deriving new waveform accuracy standards which are significantly less restrictive while still ensuring the quality needed for gravitational-wave data analysis. These new standards are formulated as bounds on certain norms of the time-domain waveform errors, which makes it possible to enforce them in situations where frequency-domain errors may be difficult or impossible to estimate reliably. These standards are less restrictive by about a factor of 20 than the previously published time-domain standards for detection, and up to a factor of 60 for measurement. These new standards should therefore be much easier to use effectively.

  8. Time Domain Partitioning of Electricity Production Cost Simulations

    SciTech Connect

    Barrows, C.; Hummon, M.; Jones, W.; Hale, E.

    2014-01-01

    Production cost models are often used for planning by simulating power system operations over long time horizons. The simulation of a day-ahead energy market can take several weeks to compute. Tractability improvements are often made through model simplifications, such as: reductions in transmission modeling detail, relaxation of commitment variable integrality, reductions in cost modeling detail, etc. One common simplification is to partition the simulation horizon so that weekly or monthly horizons can be simulated in parallel. However, horizon partitions are often executed with overlap periods of arbitrary and sometimes zero length. We calculate the time domain persistence of historical unit commitment decisions to inform time domain partitioning of production cost models. The results are implemented using PLEXOS production cost modeling software in an HPC environment to improve the computation time of simulations while maintaining solution integrity.

  9. THz time domain spectroscopy of biomolecular conformational modes.

    PubMed

    Markelz, Andrea; Whitmire, Scott; Hillebrecht, Jay; Birge, Robert

    2002-11-01

    We discuss the use of terahertz time domain spectroscopy for studies of conformational flexibility and conformational change in biomolecules. Protein structural dynamics are vital to biological function with protein flexibility affecting enzymatic reaction rates and sensory transduction cycling times. Conformational mode dynamics occur on the picosecond timescale and with the collective vibrational modes associated with these large scale structural motions in the 1-100 cm(-1) range. We have performed THz time domain spectroscopy (TTDS) of several biomolecular systems to explore the sensitivity of TTDS to distinguish different molecular species, different mutations within a single species and different conformations of a given biomolecule. We compare the measured absorbances to normal mode calculations and find that the TTDS absorbance reflects the density of normal modes determined by molecular mechanics calculations, and is sensitive to both conformation and mutation. These early studies demonstrate some of the advantages and limitations of using TTDS for the study of biomolecules. PMID:12452570

  10. Technical and Observational Challenges for Future Time-Domain Surveys

    NASA Astrophysics Data System (ADS)

    Bloom, Joshua S.

    2012-04-01

    By the end of the last decade, robotic telescopes were established as effective alternatives to the traditional role of astronomer in planning, conducting and reducing time-domain observations. By the end of this decade, machines will play a much more central role in the discovery and classification of time-domain events observed by such robots. While this abstraction of humans away from the real-time loop (and the nightly slog of the nominal scientific process) is inevitable, just how we will get there as a community is uncertain. I discuss the importance of machine learning in astronomy today, and project where we might consider heading in the future. I will also touch on the role of people and organisations in shaping and maximising the scientific returns of the coming data deluge.

  11. Broadband Trailing Edge Noise Predictions in the Time Domain. Revised

    NASA Technical Reports Server (NTRS)

    Casper, Jay; Farassat, Fereidoun

    2003-01-01

    A recently developed analytic result in acoustics, "Formulation 1B," is used to compute broadband trailing edge noise from an unsteady surface pressure distribution on a thin airfoil in the time domain. This formulation is a new solution of the Ffowcs Willliams-Hawkings equation with the loading source term, and has been shown in previous research to provide time domain predictions of broadband noise that are in excellent agreement with experimental results. Furthermore, this formulation lends itself readily to rotating reference frames and statistical analysis of broadband trailing edge noise. Formulation 1B is used to calculate the far field noise radiated from the trailing edge of a NACA 0012 airfoil in low Mach number flows, by using both analytical and experimental data on the airfoil surface. The acoustic predictions are compared with analytical results and experimental measurements that are available in the literature. Good agreement between predictions and measurements is obtained.

  12. Using the VO to Study the Time Domain

    NASA Astrophysics Data System (ADS)

    Seaman, Rob; Williams, Roy; Graham, Matthew; Murphy, Tara

    2012-04-01

    Just as the astronomical ``Time Domain'' is a catch-phrase for a diverse group of different science objectives involving time-varying phenomena in all astrophysical régimes from the solar system to cosmological scales, so the ``Virtual Observatory'' is a complex set of community-wide activities from archives to astroinformatics. This workshop touched on some aspects of adapting and developing those semantic and network technologies in order to address transient and time-domain research challenges. It discussed the VOEvent format for representing alerts and reports on celestial transient events, the SkyAlert and ATELstream facilities for distributing these alerts, and the IVOA time-series protocol and time-series tools provided by the VAO. Those tools and infrastructure are available today to address the real-world needs of astronomers.

  13. THz time-domain spectroscopy imaging for mail inspection

    NASA Astrophysics Data System (ADS)

    Zhang, Liquan; Wang, Zhongdong; Ma, Yanmei; Hao, Erjuan

    2011-08-01

    Acquiring messages from the mail but not destroying the envelope is a big challenge in the war of intelligence. If one can read the message of the mail when the envelope is closed, he will benefit from the message asymmetry and be on a good wicket in the competition. In this paper, we presented a transmitted imaging system using THz time-domain spectroscopy technology. We applied the system to image the mail inside an envelope by step-scanning imaging technology. The experimental results show that the THz spectroscopy can image the mail in an envelope. The words in the paper can be identified easily from the background. We also present the THz image of a metal blade in the envelope, in which we can see the metal blade clearly. The results show that it is feasible of THz Time-Domain Spectroscopy Imaging for mail inspection applications.

  14. Broadband trailing edge noise predictions in the time domain

    NASA Astrophysics Data System (ADS)

    Casper, J.; Farassat, F.

    2004-03-01

    A recently developed analytic result in acoustics, "Formulation 1B," is used to compute broadband trailing edge noise from an unsteady surface pressure distribution on a thin airfoil in the time domain. This formulation is a new solution of the Ffowcs Williams-Hawkings equation with the loading source term, and has been shown in previous research to provide time domain predictions of broadband noise that are in excellent agreement with experimental results. Furthermore, this formulation lends itself readily to rotating reference frames and statistical analysis of broadband trailing edge noise. In the present work, Formulation 1B is used to calculate the farfield noise radiated from the trailing edge of a NACA 0012 airfoil in a low Mach number flow, using both analytical and experimental data on the airfoil surface. The acoustic predictions are compared with analytical results and experimental measurements that are available in the literature. Good agreement between predictions and measurements is obtained.

  15. Finite difference time domain grid generation from AMC helicopter models

    NASA Technical Reports Server (NTRS)

    Cravey, Robin L.

    1992-01-01

    A simple technique is presented which forms a cubic grid model of a helicopter from an Aircraft Modeling Code (AMC) input file. The AMC input file defines the helicopter fuselage as a series of polygonal cross sections. The cubic grid model is used as an input to a Finite Difference Time Domain (FDTD) code to obtain predictions of antenna performance on a generic helicopter model. The predictions compare reasonably well with measured data.

  16. Photonic-crystal time-domain simulations using Wannier functions.

    PubMed

    Blum, Christian; Wolff, Christian; Busch, Kurt

    2011-01-15

    We present a Wannier-function-based time-domain method for photonic-crystal integrated optical circuits. In contrast to other approaches, this method allows one to trade CPU time against memory consumption and therefore is particularly well suited for the treatment of large-scale systems. As an illustration, we apply the method to the design of a photonic-crystal-based sensor, which utilizes a dual Mach-Zehnder-Fano interferometer. PMID:21263535

  17. Terahertz time-domain spectroscopy of gases, liquids, and solids.

    PubMed

    Theuer, Michael; Harsha, Srikantaiah Sree; Molter, Daniel; Torosyan, Garik; Beigang, René

    2011-10-24

    The techniques and methods employed in the spectroscopic characterization of gases, liquids, and solids in the terahertz frequency range are reviewed. Terahertz time-domain spectroscopy is applied to address a broadband frequency range between 100 GHz and 5 THz with a sub-10 GHz frequency resolution. The unique spectral absorption features measured can be efficiently used in material identification and sensing. Possibilities and limitations of fundamental and industrial applications are discussed. PMID:21735510

  18. Historical Time-Domain: Data Archives, Processing, and Distribution

    NASA Astrophysics Data System (ADS)

    Grindlay, Jonathan E.; Griffin, R. Elizabeth

    2012-04-01

    The workshop on Historical Time-Domain Astronomy (TDA) was attended by a near-capacity gathering of ~30 people. From information provided in turn by those present, an up-to-date overview was created of available plate archives, progress in their digitization, the extent of actual processing of those data, and plans for data distribution. Several recommendations were made for prioritising the processing and distribution of historical TDA data.

  19. Regularization strategy for the layered inversion of airborne transient electromagnetic data: application to in-loop data acquired over the basin of Franceville (Gabon)

    NASA Astrophysics Data System (ADS)

    Guillemoteau, Julien; Sailhac, Pascal; Béhaegel, Mickaël

    2011-11-01

    Airborne transient electromagnetic (TEM) is a cost-effective method to image the distribution of electrical conductivity in the ground. We consider layered earth inversion to interpret large data sets of hundreds of kilometre. Different strategies can be used to solve this inverse problem. This consists in managing the a priori information to avoid the mathematical instability and provide the most plausible model of conductivity in depth. In order to obtain fast and realistic inversion program, we tested three kinds of regularization: two are based on standard Tikhonov procedure which consist in minimizing not only the data misfit function but a balanced optimization function with additional terms constraining the lateral and the vertical smoothness of the conductivity; another kind of regularization is based on reducing the condition number of the kernel by changing the layout of layers before minimizing the data misfit function. Finally, in order to get a more realistic distribution of conductivity, notably by removing negative conductivity values, we suggest an additional recursive filter based upon the inversion of the logarithm of the conductivity. All these methods are tested on synthetic and real data sets. Synthetic data have been calculated by 2.5D modelling; they are used to demonstrate that these methods provide equivalent quality in terms of data misfit and accuracy of the resulting image; the limit essentially comes on special targets with sharp 2D geometries. The real data case is from Helicopter-borne TEM data acquired in the basin of Franceville (Gabon) where borehole conductivity loggings are used to show the good accuracy of the inverted models in most areas, and some biased depths in areas where strong lateral changes may occur.

  20. Anderson localization and Mott insulator phase in the time domain

    PubMed Central

    Sacha, Krzysztof

    2015-01-01

    Particles in space periodic potentials constitute standard models for investigation of crystalline phenomena in solid state physics. Time periodicity of periodically driven systems is a close analogue of space periodicity of solid state crystals. There is an intriguing question if solid state phenomena can be observed in the time domain. Here we show that wave-packets localized on resonant classical trajectories of periodically driven systems are ideal elements to realize Anderson localization or Mott insulator phase in the time domain. Uniform superpositions of the wave-packets form stationary states of a periodically driven particle. However, an additional perturbation that fluctuates in time results in disorder in time and Anderson localization effects emerge. Switching to many-particle systems we observe that depending on how strong particle interactions are, stationary states can be Bose-Einstein condensates or single Fock states where definite numbers of particles occupy the periodically evolving wave-packets. Our study shows that non-trivial crystal-like phenomena can be observed in the time domain. PMID:26074169

  1. High frequency resolution terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Sangala, Bagvanth Reddy

    2013-12-01

    A new method for the high frequency resolution terahertz time-domain spectroscopy is developed based on the characteristic matrix method. This method is useful for studying planar samples or stack of planar samples. The terahertz radiation was generated by optical rectification in a ZnTe crystal and detected by another ZnTe crystal via electro-optic sampling method. In this new characteristic matrix based method, the spectra of the sample and reference waveforms will be modeled by using characteristic matrices. We applied this new method to measure the optical constants of air. The terahertz transmission through the layered systems air-Teflon-air-Quartz-air and Nitrogen gas-Teflon-Nitrogen gas-Quartz-Nitrogen gas was modeled by the characteristic matrix method. A transmission coefficient is derived from these models which was optimized to fit the experimental transmission coefficient to extract the optical constants of air. The optimization of an error function involving the experimental complex transmission coefficient and the theoretical transmission coefficient was performed using patternsearch algorithm of MATLAB. Since this method takes account of the echo waveforms due to reflections in the layered samples, this method allows analysis of longer time-domain waveforms giving rise to very high frequency resolution in the frequency-domain. We have presented the high frequency resolution terahertz time-domain spectroscopy of air and compared the results with the literature values. We have also fitted the complex susceptibility of air to the Lorentzian and Gaussian functions to extract the linewidths.

  2. A post-processing algorithm for time domain pitch trackers

    NASA Astrophysics Data System (ADS)

    Specker, P.

    1983-01-01

    This paper describes a powerful post-processing algorithm for time-domain pitch trackers. On two successive passes, the post-processing algorithm eliminates errors produced during a first pass by a time-domain pitch tracker. During the second pass, incorrect pitch values are detected as outliers by computing the distribution of values over a sliding 80 msec window. During the third pass (based on artificial intelligence techniques), remaining pitch pulses are used as anchor points to reconstruct the pitch train from the original waveform. The algorithm produced a decrease in the error rate from 21% obtained with the original time domain pitch tracker to 2% for isolated words and sentences produced in an office environment by 3 male and 3 female talkers. In a noisy computer room errors decreased from 52% to 2.9% for the same stimuli produced by 2 male talkers. The algorithm is efficient, accurate, and resistant to noise. The fundamental frequency micro-structure is tracked sufficiently well to be used in extracting phonetic features in a feature-based recognition system.

  3. Anderson localization and Mott insulator phase in the time domain.

    PubMed

    Sacha, Krzysztof

    2015-01-01

    Particles in space periodic potentials constitute standard models for investigation of crystalline phenomena in solid state physics. Time periodicity of periodically driven systems is a close analogue of space periodicity of solid state crystals. There is an intriguing question if solid state phenomena can be observed in the time domain. Here we show that wave-packets localized on resonant classical trajectories of periodically driven systems are ideal elements to realize Anderson localization or Mott insulator phase in the time domain. Uniform superpositions of the wave-packets form stationary states of a periodically driven particle. However, an additional perturbation that fluctuates in time results in disorder in time and Anderson localization effects emerge. Switching to many-particle systems we observe that depending on how strong particle interactions are, stationary states can be Bose-Einstein condensates or single Fock states where definite numbers of particles occupy the periodically evolving wave-packets. Our study shows that non-trivial crystal-like phenomena can be observed in the time domain. PMID:26074169

  4. Investigation of coastal areas in Northern Germany using airborne geophysical surveys

    NASA Astrophysics Data System (ADS)

    Miensopust, Marion; Siemon, Bernhard; Wiederhold, Helga; Steuer, Annika; Ibs-von Seht, Malte; Voß, Wolfgang; Meyer, Uwe

    2014-05-01

    Since 2000, the German Federal Institute for Geosciences and Natural Resources (BGR) carried out several airborne geophysical surveys in Northern Germany to investigate the coastal areas of the North Sea and some of the North and East Frisian Islands. Several of those surveys were conducted in cooperation with the Leibniz Institute for Applied Geophysics (LIAG). Two helicopter-borne geophysical systems were used, namely the BGR system, which collects simultaneously frequency-domain electromagnetic, magnetic and radiometric data, and the SkyTEM system, a time-domain electromagnetic system developed by the University of Aarhus. Airborne geophysical surveys enable to investigate huge areas almost completely with high lateral resolution in a relatively short time at economic cost. In general, the results can support geological and hydrogeological mapping. Of particular importance are the airborne electromagnetic results, as the surveyed parameter - the electrical conductivity - depends on both lithology and groundwater status. Therefore, they can reveal buried valleys and the distribution of sandy and clayey sediments as well as salinization zones and fresh-water occurrences. The often simultaneously recorded magnetic and radiometric data support the electromagnetic results. Lateral changes of Quaternary and Tertiary sediments (shallow source - several tens of metres) as well as evidences of the North German Basin (deep source - several kilometres) are revealed by the magnetic results. The radiometric data indicate the various mineral compositions of the soil sediments. This BGR/LIAG project aims to build up a geophysics data base (http://geophysics-database.de/) which contains all airborne geophysical data sets. However, the more significant effort is to create a reference data set as basis for monitoring climate or man-made induced changes of the salt-water/fresh-water interface at the German North Sea coast. The significance of problems for groundwater extraction

  5. Time Domain Propagation of Quantum and Classical Systems using a Wavelet Basis Set Method

    NASA Astrophysics Data System (ADS)

    Lombardini, Richard; Nowara, Ewa; Johnson, Bruce

    2015-03-01

    The use of an orthogonal wavelet basis set (Optimized Maximum-N Generalized Coiflets) to effectively model physical systems in the time domain, in particular the electromagnetic (EM) pulse and quantum mechanical (QM) wavefunction, is examined in this work. Although past research has demonstrated the benefits of wavelet basis sets to handle computationally expensive problems due to their multiresolution properties, the overlapping supports of neighboring wavelet basis functions poses problems when dealing with boundary conditions, especially with material interfaces in the EM case. Specifically, this talk addresses this issue using the idea of derivative matching creating fictitious grid points (T.A. Driscoll and B. Fornberg), but replaces the latter element with fictitious wavelet projections in conjunction with wavelet reconstruction filters. Two-dimensional (2D) systems are analyzed, EM pulse incident on silver cylinders and the QM electron wave packet circling the proton in a hydrogen atom system (reduced to 2D), and the new wavelet method is compared to the popular finite-difference time-domain technique.

  6. Finite difference time domain calculation of transients in antennas with nonlinear loads

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Beggs, John H.; Kunz, Karl S.; Chamberlin, Kent

    1991-01-01

    Determining transient electromagnetic fields in antennas with nonlinear loads is a challenging problem. Typical methods used involve calculating frequency domain parameters at a large number of different frequencies, then applying Fourier transform methods plus nonlinear equation solution techniques. If the antenna is simple enough so that the open circuit time domain voltage can be determined independently of the effects of the nonlinear load on the antennas current, time stepping methods can be applied in a straightforward way. Here, transient fields for antennas with more general geometries are calculated directly using Finite Difference Time Domain (FDTD) methods. In each FDTD cell which contains a nonlinear load, a nonlinear equation is solved at each time step. As a test case, the transient current in a long dipole antenna with a nonlinear load excited by a pulsed plane wave is computed using this approach. The results agree well with both calculated and measured results previously published. The approach given here extends the applicability of the FDTD method to problems involving scattering from targets, including nonlinear loads and materials, and to coupling between antennas containing nonlinear loads. It may also be extended to propagation through nonlinear materials.

  7. Non-linear Conjugate Gradient Time-Domain Controlled Inversion Source

    SciTech Connect

    Newman, Gregory A.; Commer, Michael

    2006-11-16

    Software that simulates and inverts time-domain electromagnetic field data for subsurface electrical properties (electrical conductivity) of geological media. The software treats data produced by a step-wise source signal from either galvanic (grounded wires) or inductive (magnetic loops) sources. The inversion process is carried inductive (magnetic loops) sources. The inversion process is carried out using a non-linear conjugate gradient optimization scheme, which minimizes the misfit between field data and model data using a least squares criteria. The software is an upgrade from the code TEM3D ver. 2.0. The upgrade includes the following components: (1) Improved (faster)memory access during gradient computation. (2) Data parellelization scheme: Multiple transmitters (sources) can be distributed accross several banks of processors (daa-planes). Similarly, the receivers of each source are also distributed accross the corresponding data-plane. (3) Improved data-IO.

  8. Transient analysis of printed lines using finite-difference time-domain method

    SciTech Connect

    Ahmed, Shahid

    2012-03-29

    Comprehensive studies of ultra-wideband pulses and electromagnetic coupling on printed coupled lines have been performed using full-wave 3D finite-difference time-domain analysis. Effects of unequal phase velocities of coupled modes, coupling between line traces, and the frequency dispersion on the waveform fidelity and crosstalk have been investigated in detail. To discriminate the contributions of different mechanisms into pulse evolution, single and coupled microstrip lines without (ϵr = 1) and with (ϵr > 1) dielectric substrates have been examined. To consistently compare the performance of the coupled lines with substrates of different permittivities and transients of different characteristic times, a generic metric similar to the electrical wavelength has been introduced. The features of pulse propagation on coupled lines with layered and pedestal substrates and on the irregular traces have been explored. Finally, physical interpretations of the simulation results are discussed in the paper.

  9. Time-domain ultrasonic measurement of the thickness of a sub-half-wavelength elastic layer

    NASA Astrophysics Data System (ADS)

    Zhu, Changyi; Kinra, Vikram K.

    1992-07-01

    A technique is reported for the ultrasonic nondestructive measurement of the thickness of extremely thin (sub-wavelength) adhesive layers in adhesively bonded joints without the use of Fourier transforms. The entire ultrasonic NDE is carried out in the time domain and can be used by a trained technician without a college education. Aluminum plates ranging in thickness from 0.089 to 12.675 mm were tested using a 1-MHz transducer. The error was found to be one percent for h/lambda (specimen thickness/wavelength) down to 0.010. In dimensional terms, plates with a thickness of 100 microns can be measured with an accuracy of + or - 1 micron. This technique can also be used in conjunction with the electromagnetic-acoustic transducer technology in which only low-frequency transducers are presently available.

  10. THz time-domain spectroscopy on plant oils and animal fats

    NASA Astrophysics Data System (ADS)

    Hu, Ying; Guo, Lantao; Wang, Xiaohong; Zhang, Xi Cheng

    2005-01-01

    Terahertz (THz) radiation, generated by ultra short laser pulses, occupies a broad band on electromagnetic spectrum chart. This radiation band belongs to far-infrared. It is a new research field of studying THz radiation interacting with materials especially with biomaterials. The paper shows experimental results of five plant oil samples from different kind of plants and two kinds of animal fat samples by using THz-TDS (THz time-domain spectroscopy) technology. The refraction indices and the absorption coefficients of these samples are measured in the range from 0.2 to 2.0 THz. The results show that different oils have different refraction indices. For oil samples, refraction indices decrease slowly while their coefficients of absorption increase with the increases of THz frequency. For the animal fat samples, the refraction indices show almost no change while the absorption coefficients increase with the increasing THz frequency. The absorption coefficients increase with the increasing temperature.

  11. [Application of terahertz time domain spectroscopy to explosive and illegal drug].

    PubMed

    Liu, Gui-Feng; Zhao, Hong-Wei; Ge, Min; Wang, Wen-Feng

    2008-05-01

    Terahertz waves (THz, T-ray) lie between far-infrared and microwave in electromagnetic spectrum with frequency from 0.1 to 10 THz. Many explosives and illicit drugs show characteristic spectral features in the terahertz. Compared with conventional methods of detecting a variety of threats, such as weapons, explosives and illegal drugs, THz radiation is low frequency and non-ionizing, and does not give rise to safety concerns. Moreover, THz can penetrate many barrier materials, such as clothing and common packaging materials. THz technique has a great potential and advantage in antiterrorism and security inspection of explosives and illegal drugs due to the ability of high-sensitivity, nondestructive and stand-off inspection of many substances. The present paper summarizes the latest progress in the application of terahertz time domain spectroscopy (THz-TDS) to explosives and illegal drugs. Studies on RDX are discussed in details and many factors affecting experiments are also introduced. PMID:18720779

  12. Non-linear Conjugate Gradient Time-Domain Controlled Inversion Source

    2006-11-16

    Software that simulates and inverts time-domain electromagnetic field data for subsurface electrical properties (electrical conductivity) of geological media. The software treats data produced by a step-wise source signal from either galvanic (grounded wires) or inductive (magnetic loops) sources. The inversion process is carried inductive (magnetic loops) sources. The inversion process is carried out using a non-linear conjugate gradient optimization scheme, which minimizes the misfit between field data and model data using a least squares criteria.more » The software is an upgrade from the code TEM3D ver. 2.0. The upgrade includes the following components: (1) Improved (faster)memory access during gradient computation. (2) Data parellelization scheme: Multiple transmitters (sources) can be distributed accross several banks of processors (daa-planes). Similarly, the receivers of each source are also distributed accross the corresponding data-plane. (3) Improved data-IO.« less

  13. Modeling laser-induced periodic surface structures: Finite-difference time-domain feedback simulations

    SciTech Connect

    Skolski, J. Z. P. Vincenc Obona, J.; Römer, G. R. B. E.; Huis in 't Veld, A. J.

    2014-03-14

    A model predicting the formation of laser-induced periodic surface structures (LIPSSs) is presented. That is, the finite-difference time domain method is used to study the interaction of electromagnetic fields with rough surfaces. In this approach, the rough surface is modified by “ablation after each laser pulse,” according to the absorbed energy profile, in order to account for inter-pulse feedback mechanisms. LIPSSs with a periodicity significantly smaller than the laser wavelength are found to “grow” either parallel or orthogonal to the laser polarization. The change in orientation and periodicity follow from the model. LIPSSs with a periodicity larger than the wavelength of the laser radiation and complex superimposed LIPSS patterns are also predicted by the model.

  14. Time-domain simulation of nonlinear radiofrequency phenomena

    SciTech Connect

    Jenkins, Thomas G.; Austin, Travis M.; Smithe, David N.; Loverich, John; Hakim, Ammar H.

    2013-01-15

    Nonlinear effects associated with the physics of radiofrequency wave propagation through a plasma are investigated numerically in the time domain, using both fluid and particle-in-cell (PIC) methods. We find favorable comparisons between parametric decay instability scenarios observed on the Alcator C-MOD experiment [J. C. Rost, M. Porkolab, and R. L. Boivin, Phys. Plasmas 9, 1262 (2002)] and PIC models. The capability of fluid models to capture important nonlinear effects characteristic of wave-plasma interaction (frequency doubling, cyclotron resonant absorption) is also demonstrated.

  15. Far-infrared terahertz time-domain spectroscopy of flames.

    PubMed

    Cheville, R A; Grischkowsky, D

    1995-08-01

    We present what is to our knowledge the first comprehensive far-infrared absorption measurement of flames. These measurements, covering the region of 7-88 wave numbers (0.2-2.65 THz) are only now made possible by the technique of terahertz time-domain spectroscopy. We observe a large number of absorption lines-including those of water, CH, and NH(3)-in a stationary, premixed, propane-air flame. The absorption strength permits the determination of species concentration along the beam path. The f lame temperature is determined by comparison of the relative strengths of the water vapor lines. PMID:19862111

  16. Astrophysics in the Era of Massive Time-Domain Surveys

    NASA Astrophysics Data System (ADS)

    Djorgovski, G.

    Synoptic sky surveys are now the largest data producers in astronomy, entering the Petascale regime, opening the time domain for a systematic exploration. A great variety of interesting phenomena, spanning essentially all subfields of astronomy, can only be studied in the time domain, and these new surveys are producing large statistical samples of the known types of objects and events for further studies (e.g., SNe, AGN, variable stars of many kinds), and have already uncovered previously unknown subtypes of these (e.g., rare or peculiar types of SNe). These surveys are generating a new science, and paving the way for even larger surveys to come, e.g., the LSST; our ability to fully exploit such forthcoming facilities depends critically on the science, methodology, and experience that are being accumulated now. Among the outstanding challenges, the foremost is our ability to conduct an effective follow-up of the interesting events discovered by the surveys in any wavelength regime. The follow-up resources, especially spectroscopy, are already and, for the predictable future, will be severely limited, thus requiring an intelligent down-selection of the most astrophysically interesting events to follow. The first step in that process is an automated, real-time, iterative classification of events, that incorporates heterogeneous data from the surveys themselves, archival and contextual information (spatial, temporal, and multiwavelength), and the incoming follow-up observations. The second step is an optimal automated event prioritization and allocation of the available follow-up resources that also change in time. Both of these challenges are highly non-trivial, and require a strong cyber-infrastructure based on the Virtual Observatory data grid, and the various astroinformatics efforts. Time domain astronomy is inherently an astronomy of telescope-computational systems, and will increasingly depend on novel machine learning and artificial intelligence tools

  17. A multi-variance analysis in the time domain

    NASA Technical Reports Server (NTRS)

    Walter, Todd

    1993-01-01

    Recently a new technique for characterizing the noise processes affecting oscillators was introduced. This technique minimizes the difference between the estimates of several different variances and their values as predicted by the standard power law model of noise. The method outlined makes two significant advancements: it uses exclusively time domain variances so that deterministic parameters such as linear frequency drift may be estimated, and it correctly fits the estimates using the chi-square distribution. These changes permit a more accurate fitting at long time intervals where there is the least information. This technique was applied to both simulated and real data with excellent results.

  18. Finite difference time domain modeling of spiral antennas

    NASA Technical Reports Server (NTRS)

    Penney, Christopher W.; Beggs, John H.; Luebbers, Raymond J.

    1992-01-01

    The objectives outlined in the original proposal for this project were to create a well-documented computer analysis model based on the finite-difference, time-domain (FDTD) method that would be capable of computing antenna impedance, far-zone radiation patterns, and radar cross-section (RCS). The ability to model a variety of penetrable materials in addition to conductors is also desired. The spiral antennas under study by this project meet these requirements since they are constructed of slots cut into conducting surfaces which are backed by dielectric materials.

  19. Detection of iron corrosion by terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Wu, Di-bo; Zhan, Hong-lei; Sun, Qing; Zhao, Kun

    2015-11-01

    The iron tablets, which were exposed in salt spray with different periods, were investigated in the 0.2~2.0 THz using reflection-type terahertz time-domain spectroscopy (THz-TDS) in vacuum environment at room temperature. The sample signals are attenuated in comparison to the reference signals with increasing the corrosion time. The THz spectroscopy peak EP and reflectivity (R) of samples strongly depended on corrosion time t with EP ∝ t-1 and R ∝ t-1. The THz characteristics of iron sheets in salt spray indicate that reflection THz-TDS will contribute to the development of non-destructive testing of corrosion in pipelines.

  20. Time domain analysis of scattering by a water droplet.

    PubMed

    Laven, Philip

    2011-10-01

    Rainbows, coronas and glories are caused by the scattering of sunlight from water droplets in the atmosphere. Although these optical phenomena are seen fairly frequently, even scientifically minded people sometimes struggle to provide explanations for their formation. This paper offers explanations of these phenomena based on numerical computations of the scattering of a 5 fs pulse of red light by a spherical droplet of water. The results reveal the intricate details of the various scattering mechanisms, some of which are essentially undetectable except in the time domain. PMID:22016243

  1. LIMSAT: An Ultra-violet Time Domain Explorer

    NASA Astrophysics Data System (ADS)

    Phinney, E. S.; Kulkarni, S. R.; Gal-Yam, A.; Ofek, E.; Waxman, E.; Scargle, J.; Worden, S.; Murthy, J.

    2013-01-01

    LIMSAT is a proposed joint US-Israel mini satellite aimed at systematic time domain studies of the UV Universe. The satellite consists of eight 12cm telescopes with a total instantaneous field of view of about 1100 square degrees in the spectral band 200-240nm. A sun-synchronous orbit allows continuous viewing of the anti-sun equatorial region. In one year LIMSAT would have covered an equatorial band (about 2.5% of the sky), providing about one month of continuous photometry of all objects in this field, with all data downlinked within 10 minutes of acquisition. While the primary objective of LIMSAT is the detection of shock breakout, secondary objectives include searches for tidal disruption of stars passing perilously close to nuclear black holes, systematic study of variability of AGN, cataclysmic variables, activity studies of young stars and late type stars, unique studies of extra-solar planets and eclipsing binaries. LIMSAT working along with ground-based synoptic surveys will usher in a new era of time domain studies.

  2. Time-domain diffuse optics: towards next generation devices

    NASA Astrophysics Data System (ADS)

    Contini, Davide; Dalla Mora, Alberto; Arridge, Simon; Martelli, Fabrizio; Tosi, Alberto; Boso, Gianluca; Farina, Andrea; Durduran, Turgut; Martinenghi, Edoardo; Torricelli, Alessandro; Pifferi, Antonio

    2015-07-01

    Diffuse optics is a powerful tool for clinical applications ranging from oncology to neurology, but also for molecular imaging, and quality assessment of food, wood and pharmaceuticals. We show that ideally time-domain diffuse optics can give higher contrast and a higher penetration depth with respect to standard technology. In order to completely exploit the advantages of a time-domain system a distribution of sources and detectors with fast gating capabilities covering all the sample surface is needed. Here, we present the building block to build up such system. This basic component is made of a miniaturised source-detector pair embedded into the probe based on pulsed Vertical-Cavity Surface-Emitting Lasers (VCSEL) as sources and Single-Photon Avalanche Diodes (SPAD) or Silicon Photomultipliers (SiPM) as detectors. The possibility to miniaturized and dramatically increase the number of source detectors pairs open the way to an advancement of diffuse optics in terms of improvement of performances and exploration of new applications. Furthermore, availability of compact devices with reduction in size and cost can boost the application of this technique.

  3. A Time Domain Fluorescence Tomography System for Small Animal Imaging

    PubMed Central

    Raymond, Scott B.; Dunn, Andrew K.; Bacskai, Brian J.; Boas, David A.

    2010-01-01

    We describe the application of a time domain diffuse fluorescence tomography system for whole body small animal imaging. The key features of the system are the use of point excitation in free space using ultrashort laser pulses and noncontact detection using a gated, intensified charge-coupled device (CCD) camera. Mouse shaped epoxy phantoms, with embedded fluorescent inclusions, were used to verify the performance of a recently developed asymptotic lifetime-based tomography algorithm. The asymptotic algorithm is based on a multiexponential analysis of the decay portion of the data. The multiexponential model is shown to enable the use of a global analysis approach for a robust recovery of the lifetime components present within the imaging medium. The surface boundaries of the imaging volume were acquired using a photogrammetric camera integrated with the imaging system, and implemented in a Monte-Carlo model of photon propagation in tissue. The tomography results show that the asymptotic approach is able to separate axially located fluorescent inclusions centered at depths of 4 and 10 mm from the surface of the mouse phantom. The fluorescent inclusions had distinct lifetimes of 0.5 and 0.95 ns. The inclusions were nearly overlapping along the measurement axis and shown to be not resolvable using continuous wave (CW) methods. These results suggest the practical feasibility and advantages of a time domain approach for whole body small animal fluorescence molecular imaging, particularly with the use of lifetime as a contrast mechanism. PMID:18672432

  4. Time-domain analysis of scrotal thermoregulatory impairment in varicocele

    PubMed Central

    Ismail, Enas; Orlando, Giuseppe; Pompa, Paolo; Gabrielli, Daniela; Di Donato, Luigino; Cardone, Daniela; Merla, Arcangelo

    2014-01-01

    Varicocele is a common male disease defined as the pathological dilatation of the pampiniform plexus and scrotal veins with venous blood reflux. Varicocele usually impairs the scrotal thermoregulation via a hemodynamic alteration, thus inducing an increase in cutaneous temperature. The investigation of altered scrotal thermoregulation by means of thermal infrared imaging has been proved to be useful in the study of the functional thermal impairment. In this study, we use the Control System Theory to analyze the time-domain dynamics of the scrotal thermoregulation in response to a mild cold challenge. Four standard time-domain dynamic parameters of a prototype second order control system (Delay Time, Rise Time, closed poles locations, steady state error) and the static basal temperatures were directly estimated from thermal recovery curves. Thermal infrared imaging data from 31 healthy controls (HCS) and 95 varicocele patients were processed. True-positive predictions, by comparison with standard echo color Doppler findings, higher than 87% were achieved into the proper classification of the disease stage. The proposed approach could help to understand at which specific level the presence of the disease impacts the scrotal thermoregulation, which is also involved into normal spermatogenesis process. PMID:25278903

  5. Time-domain fitting of battery electrochemical impedance models

    NASA Astrophysics Data System (ADS)

    Alavi, S. M. M.; Birkl, C. R.; Howey, D. A.

    2015-08-01

    Electrochemical impedance spectroscopy (EIS) is an effective technique for diagnosing the behaviour of electrochemical devices such as batteries and fuel cells, usually by fitting data to an equivalent circuit model (ECM). The common approach in the laboratory is to measure the impedance spectrum of a cell in the frequency domain using a single sine sweep signal, then fit the ECM parameters in the frequency domain. This paper focuses instead on estimation of the ECM parameters directly from time-domain data. This may be advantageous for parameter estimation in practical applications such as automotive systems including battery-powered vehicles, where the data may be heavily corrupted by noise. The proposed methodology is based on the simplified refined instrumental variable for continuous-time fractional systems method ('srivcf'), provided by the Crone toolbox [1,2], combined with gradient-based optimisation to estimate the order of the fractional term in the ECM. The approach was tested first on synthetic data and then on real data measured from a 26650 lithium-ion iron phosphate cell with low-cost equipment. The resulting Nyquist plots from the time-domain fitted models match the impedance spectrum closely (much more accurately than when a Randles model is assumed), and the fitted parameters as separately determined through a laboratory potentiostat with frequency domain fitting match to within 13%.

  6. Frequency and Time Domain Modeling of Acoustic Liner Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Bliss, Donald B.

    1982-01-01

    As part of a research program directed at the acoustics of advanced subsonic propulsion systems undertaken at NASA Langley, Duke University was funded to develop a boundary condition model for bulk-reacting nacelle liners. The overall objective of the Langley program was to understand and predict noise from advanced subsonic transport engines and to develop related noise control technology. The overall technical areas included: fan and propeller source noise, acoustics of ducts and duct liners, interior noise, subjective acoustics, and systems noise prediction. The Duke effort was directed toward duct liner acoustics for the development of analytical methods to characterize liner behavior in both frequency domain and time domain. A review of duct acoustics and liner technology can be found in Reference [1]. At that time, NASA Langley was investigating the propulsion concept of an advanced ducted fan, with a large diameter housed inside a relatively short duct. Fan diameters in excess of ten feet were proposed. The lengths of both the inlet and exhaust portions of the duct were to be short, probably less than half the fan diameter. The nacelle itself would be relatively thin-walled for reasons of aerodynamic efficiency. The blade-passage frequency was expected to be less than I kHz, and very likely in the 200 to 300 Hz range. Because of the design constraints of a short duct, a thin nacelle, and long acoustic wavelengths, the application of effective liner technology would be especially challenging. One of the needs of the NASA Langley program was the capability to accurately and efficiently predict the behavior of the acoustic liner. The traditional point impedance method was not an adequate model for proposed liner designs. The method was too restrictive to represent bulk reacting liners and to allow for the characterization of many possible innovative liner concepts. In the research effort at Duke, an alternative method, initially developed to handle bulk

  7. Theory of mirrored time domain sampling for NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ghosh, Arindam; Wu, Yibing; He, Yunfen; Szyperski, Thomas

    2011-12-01

    A generalized theory is presented for novel mirrored hypercomplex time domain sampling (MHS) of NMR spectra. It is the salient new feature of MHS that two interferograms are acquired with different directionality of time evolution, that is, one is sampled forward from time t = 0 to the maximal evolution time tmax, while the second is sampled backward from t = 0 to - tmax. The sampling can be accomplished in a (semi) constant time or non constant-time manner. Subsequently, the two interferograms are linearly combined to yield a complex time domain signal. The manifold of MHS schemes considered here is defined by arbitrary settings of sampling phases ('primary phase shifts') and amplitudes of the two interferograms. It is shown that, for any two given primary phase shifts, the addition theorems of trigonometric functions yield the unique linear combination required to form the complex signal. In the framework of clean absorption mode (CAM) acquisition of NMR spectra being devoid of residual dispersive signal components, 'secondary phase shifts' represent time domain phase errors which are to be eliminated. In contrast, such secondary phase shifts may be introduced by experimental design in order to encode additional NMR parameters, a new class of NMR experiments proposed here. For generalization, it is further considered that secondary phase shifts may depend on primary phase shifts and/or sampling directionality. In order to compare with MHS theory, a correspondingly generalized theory is derived for widely used hypercomplex ('States') sampling (HS). With generalized theory it is shown, first, that previously introduced 'canonical' schemes, characterized by primary phases being multiples of π/4, afford maximal intensity of the desired absorptive signals in the absence of secondary phase shifts, and second, how primary phases can be adjusted to maximize the signal intensity provided that the secondary phase shifts are known. Third, it is demonstrated that theory

  8. Theory of mirrored time domain sampling for NMR spectroscopy.

    PubMed

    Ghosh, Arindam; Wu, Yibing; He, Yunfen; Szyperski, Thomas

    2011-12-01

    A generalized theory is presented for novel mirrored hypercomplex time domain sampling (MHS) of NMR spectra. It is the salient new feature of MHS that two interferograms are acquired with different directionality of time evolution, that is, one is sampled forward from time t=0 to the maximal evolution time tmax, while the second is sampled backward from t=0 to -tmax. The sampling can be accomplished in a (semi) constant time or non constant-time manner. Subsequently, the two interferograms are linearly combined to yield a complex time domain signal. The manifold of MHS schemes considered here is defined by arbitrary settings of sampling phases ('primary phase shifts') and amplitudes of the two interferograms. It is shown that, for any two given primary phase shifts, the addition theorems of trigonometric functions yield the unique linear combination required to form the complex signal. In the framework of clean absorption mode (CAM) acquisition of NMR spectra being devoid of residual dispersive signal components, 'secondary phase shifts' represent time domain phase errors which are to be eliminated. In contrast, such secondary phase shifts may be introduced by experimental design in order to encode additional NMR parameters, a new class of NMR experiments proposed here. For generalization, it is further considered that secondary phase shifts may depend on primary phase shifts and/or sampling directionality. In order to compare with MHS theory, a correspondingly generalized theory is derived for widely used hypercomplex ('States') sampling (HS). With generalized theory it is shown, first, that previously introduced 'canonical' schemes, characterized by primary phases being multiples of π/4, afford maximal intensity of the desired absorptive signals in the absence of secondary phase shifts, and second, how primary phases can be adjusted to maximize the signal intensity provided that the secondary phase shifts are known. Third, it is demonstrated that theory enables

  9. Detecting Rare Events in the Time-Domain

    SciTech Connect

    Rest, A; Garg, A

    2008-10-31

    One of the biggest challenges in current and future time-domain surveys is to extract the objects of interest from the immense data stream. There are two aspects to achieving this goal: detecting variable sources and classifying them. Difference imaging provides an elegant technique for identifying new transients or changes in source brightness. Much progress has been made in recent years toward refining the process. We discuss a selection of pitfalls that can afflict an automated difference imagine pipeline and describe some solutions. After identifying true astrophysical variables, we are faced with the challenge of classifying them. For rare events, such as supernovae and microlensing, this challenge is magnified because we must balance having selection criteria that select for the largest number of objects of interest against a high contamination rate. We discuss considerations and techniques for developing classification schemes.

  10. Monitoring oil-water mixture separation by time domain reflectometry

    NASA Astrophysics Data System (ADS)

    Bruvik, E. M.; Hjertaker, B. T.; Folgerø, K.; Meyer, S. K.

    2012-12-01

    Effective separation of water and oil is an essential part of petroleum production. Time domain reflectometry (TDR) can be used to profile the separation of hydrocarbon oil-water mixtures. In such two-component systems, metal electrodes will become oil-coated due to their affinity to oil. This coating layer will impact water content measurements. By combining the TDR signals from two probes in a novel configuration, the thickness of the oil layer on the electrodes can be estimated and its effect on the TDR measurements corrected for. The probes consist of two rods of different diameter and spacing to a common ground/guard electrode. The measurement principle is demonstrated using a light fuel oil and a thicker organic oil. The results indicate that oil and water levels can be monitored during separation if the metal electrode oil-coating effect is accounted for.

  11. Characterization of Wheat Varieties Using Terahertz Time-Domain Spectroscopy

    PubMed Central

    Ge, Hongyi; Jiang, Yuying; Lian, Feiyu; Zhang, Yuan; Xia, Shanhong

    2015-01-01

    Terahertz (THz) spectroscopy and multivariate data analysis were explored to discriminate eight wheat varieties. The absorption spectra were measured using THz time-domain spectroscopy from 0.2 to 2.0 THz. Using partial least squares (PLS), a regression model for discriminating wheat varieties was developed. The coefficient of correlation in cross validation (R) and root-mean-square error of cross validation (RMSECV) were 0.985 and 1.162, respectively. In addition, interval PLS was applied to optimize the models by selecting the most appropriate regions in the spectra, improving the prediction accuracy (R = 0.992 and RMSECV = 0.967). Results demonstrate that THz spectroscopy combined with multivariate analysis can provide rapid, nondestructive discrimination of wheat varieties. PMID:26024421

  12. Characteristic-based time domain method for antenna analysis

    NASA Astrophysics Data System (ADS)

    Jiao, Dan; Jin, Jian-Ming; Shang, J. S.

    2001-01-01

    The characteristic-based time domain method, developed in the computational fluid dynamics community for solving the Euler equations, is applied to the antenna radiation problem. Based on the principle of the characteristic-based algorithm, a governing equation in the cylindrical coordinate system is formulated directly to facilitate the analysis of body-of-revolution antennas and also to achieve the exact Riemann problem. A finite difference scheme with second-order accuracy in both time and space is constructed from the eigenvalue and eigenvector analysis of the derived governing equation. Rigorous boundary conditions for all the field components are formulated to improve the accuracy of the characteristic-based finite difference scheme. Numerical results demonstrate the validity and accuracy of the proposed technique.

  13. Time domain simulations of preliminary breakdown pulses in natural lightning

    NASA Astrophysics Data System (ADS)

    Carlson, B. E.; Liang, C.; Bitzer, P.; Christian, H.

    2015-06-01

    Lightning discharge is a complicated process with relevant physical scales spanning many orders of magnitude. In an effort to understand the electrodynamics of lightning and connect physical properties of the channel to observed behavior, we construct a simulation of charge and current flow on a narrow conducting channel embedded in three-dimensional space with the time domain electric field integral equation, the method of moments, and the thin-wire approximation. The method includes approximate treatment of resistance evolution due to lightning channel heating and the corona sheath of charge surrounding the lightning channel. Focusing our attention on preliminary breakdown in natural lightning by simulating stepwise channel extension with a simplified geometry, our simulation reproduces the broad features observed in data collected with the Huntsville Alabama Marx Meter Array. Some deviations in pulse shape details are evident, suggesting future work focusing on the detailed properties of the stepping mechanism.

  14. Temporal phase conjugation based on time-domain holography.

    PubMed

    Fernández-Ruiz, María R; Azaña, José

    2015-01-01

    A novel, simple method for wavelength-preserving temporal phase conjugation (TPC) of complex optical waveforms is proposed and experimentally validated. The method is based on the concept of time-domain holography; it requires direct photo-detection of the original waveform mixed with a CW light beam (temporal hologram recording), followed by intensity-only modulation of a second CW light source with the photo-detected interference-like pattern. The conjugated signal is directly obtained from the modulated light through an optical bandpass filtering process, without requiring any further processing on the detected interferogram. The proposed scheme is successfully demonstrated by conjugating a train of arbitrarily chirped Gaussian-like pulses and a 3 Gbps 16-QAM data stream. PMID:25531626

  15. Technologies For A Superconducting Sampling Oscilloscope/Time Domain Reflectometer

    NASA Astrophysics Data System (ADS)

    Whiteley, S. R.; Hanson, E. R.; Hohenwarter, G. K. G.; Kuo, F.; Faris, S. M.

    1988-09-01

    HYPRES, Inc. has introduced to the commercial marketplace a Sampling Oscilloscope/Time Domain Reflectometer (TDR) based on Josephson junction technology. The unit offers measurement performance commensurate with the inherent high speed of the Josephson elements, e.g., bandwidths in excess of 70 GHz and rise times on the order of 5 ps. A Josephson {rigger recognizer and delay circuit allows triggering of the sampling oscilloscope from the signal itself, with full view of the trigger point. Input modules offering different sensitivities or TDR capability are quickly interchangeable, and operating temperature is achieved in less than one minute. The technical details of the cooling technique and the chip circuitry will be described in this paper .

  16. Time Domain Simulations of Arm Locking in LISA

    NASA Technical Reports Server (NTRS)

    Thorpe, J. I.; Maghami, P.; Livas, Jeff

    2011-01-01

    Arm locking is a technique that has been proposed for reducing laser frequency fluctuations in the Laser Interferometer Space Antenna (LISA). a gravitational-wave observatory sensitive' in the milliHertz frequency band. Arm locking takes advantage of the geometric stability of the triangular constellation of three spacecraft that comprise LISA to provide a frequency reference with a stability in the LISA measurement band that exceeds that available from a standard reference such as an optical cavity or molecular absorption line. We have implemented a time-domain simulation of arm locking including the expected limiting noise sources (shot noise, clock noise. spacecraft jitter noise. and residual laser frequency noise). The effect of imperfect a priori knowledge of the LISA heterodyne frequencies and associated "pulling" of an arm locked laser is included. We find that our implementation meets requirements both on the noise and dynamic range of the laser frequency.

  17. Spots and Flares: Stellar Activity in the Time Domain Era

    NASA Astrophysics Data System (ADS)

    Davenport, James R. A.

    Time domain photometric surveys for large numbers of stars have ushered in a new era of statistical studies of astrophysics. This new parameter space allows us to observe how stars behave and change on a human timescale, and facilitates ensemble studies to understand how stars change over cosmic timescales. With current and planned time domain stellar surveys, we will be able to put the Sun in a Galactic context, and discover how typical or unique our parent star truly is. The goal of this thesis is to develop techniques for detecting and analyzing the most prominent forms of magnetic activity from low-mass stars in modern time domain surveys: starspots and flares. Magnetic field strength is a fundamental property that decays over a star's life. As a result, flux modulations from both flares and starspots become smaller amplitude and more infrequent in light curves. Methods for detecting these forms of magnetic activity will be extensible to future time domain surveys, and helpful in characterizing the properties of stars as they age. Flares can be detected in sparsely sampled wide field surveys by searching for bright single-point outliers in light curves. Using both red optical and near infrared data from ground-based surveys over many years, I have constrained the rate of flares in multiple wavelengths for an ensemble of M dwarfs. Studying flares in these existing ground-based datasets will enable predictions for future survey yields. Space-based photometry enables continuous and precise monitoring of stars for many years, which is crucial for obtaining a complete census of flares from a single star. Using 11 months of 1-minute photometry for the M dwarf GJ 1243, I have amassed over 6100 flare events, the largest sample of white light flares for any low-mass star. I have also created the first high fidelity empirical white light flare template, which shows three distinct phases in typical flare light curves. With this template, I demonstrate that complex multi

  18. Time domain analysis of the weighted distributed order rheological model

    NASA Astrophysics Data System (ADS)

    Cao, Lili; Pu, Hai; Li, Yan; Li, Ming

    2016-05-01

    This paper presents the fundamental solution and relevant properties of the weighted distributed order rheological model in the time domain. Based on the construction of distributed order damper and the idea of distributed order element networks, this paper studies the weighted distributed order operator of the rheological model, a generalization of distributed order linear rheological model. The inverse Laplace transform on weighted distributed order operators of rheological model has been obtained by cutting the complex plane and computing the complex path integral along the Hankel path, which leads to the asymptotic property and boundary discussions. The relaxation response to weighted distributed order rheological model is analyzed, and it is closely related to many physical phenomena. A number of novel characteristics of weighted distributed order rheological model, such as power-law decay and intermediate phenomenon, have been discovered as well. And meanwhile several illustrated examples play important role in validating these results.

  19. Detection of explosives using THz time domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Châteauneuf, Marc; Dubois, Jacques; Allard, Jean-François; Houde, Daniel; Morris, Denis

    2007-06-01

    Improvised Explosive Devices (IEDs) are a major threat to Canadian and allies troups involved in peacekeeping and minor conflict operations and despite their relative low technology they represent a major challenge in terms of detection and countermeasures. In order to provide tools to detect these threats, Defence Research & Development Canada - Valcartier initiated a research project to the feasibility of using terahertz (THz) radiations to detect and identify the presence of commonly used explosives and concealed weapons in a standoff method. This paper presents the initial results of the first year of the project and the future directions. A compact THz time domain spectroscopy was developed to build a THz signature table of commonly used explosives.

  20. Time-domain control of ultrahigh-frequency nanomechanical systems.

    PubMed

    Liu, N; Giesen, F; Belov, M; Losby, J; Moroz, J; Fraser, A E; McKinnon, G; Clement, T J; Sauer, V; Hiebert, W K; Freeman, M R

    2008-12-01

    Nanoelectromechanical systems could have applications in fields as diverse as ultrasensitive mass detection and mechanical computation, and can also be used to explore fundamental phenomena such as quantized heat conductance and quantum-limited displacement. Most nanomechanical studies to date have been performed in the frequency domain. However, applications in computation and information storage will require transient excitation and high-speed time-domain operation of nanomechanical systems. Here we show a time-resolved optical approach to the transduction of ultrahigh-frequency nanoelectromechanical systems, and demonstrate that coherent control of nanomechanical oscillation is possible through appropriate pulse programming. A series of cantilevers with resonant frequencies ranging from less than 10 MHz to over 1 GHz are characterized using the same pulse parameters. PMID:19057589

  1. Time domain BEM for sound radiation of tires

    NASA Astrophysics Data System (ADS)

    Banz, Lothar; Gimperlein, Heiko; Nezhi, Zouhair; Stephan, Ernst P.

    2016-07-01

    This work investigates a time domain boundary element method for the acoustic wave equation in an exterior domain in the half-space mathbb {R}^3_+. The Neumann problem is formulated as a boundary integral equation of the second kind, and the convergence and stability of conforming Galerkin approximations is studied in the complex geometry of a car or truck tire above a street. After a validation experiment, numerical results are presented in time or frequency domain for realistic benchmarks in traffic noise: the sound emission of vibrating tires, noise amplification in the horn-like geometry between the tire and the road, as well as the Doppler effect of a moving tire. The results are compared with calculations in frequency domain.

  2. GPU acceleration of time-domain fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Wu, Gang; Nowotny, Thomas; Chen, Yu; Li, David Day-Uei

    2016-01-01

    Fluorescence lifetime imaging microscopy (FLIM) plays a significant role in biological sciences, chemistry, and medical research. We propose a graphic processing unit (GPU) based FLIM analysis tool suitable for high-speed, flexible time-domain FLIM applications. With a large number of parallel processors, GPUs can significantly speed up lifetime calculations compared to CPU-OpenMP (parallel computing with multiple CPU cores) based analysis. We demonstrate how to implement and optimize FLIM algorithms on GPUs for both iterative and noniterative FLIM analysis algorithms. The implemented algorithms have been tested on both synthesized and experimental FLIM data. The results show that at the same precision, the GPU analysis can be up to 24-fold faster than its CPU-OpenMP counterpart. This means that even for high-precision but time-consuming iterative FLIM algorithms, GPUs enable fast or even real-time analysis.

  3. In vitro osteosarcoma biosensing using THz time domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferguson, Bradley S.; Liu, Haibo; Hay, Shelley; Findlay, David; Zhang, Xi-Cheng; Abbott, Derek

    2004-03-01

    Terahertz time domain spectroscopy (THz-TDS) has a wide range of applications from semiconductor diagnostics to biosensing. Recent attention has focused on bio-applications and several groups have noted the ability of THz-TDS to differentiate basal cell carcinoma tissue from healthy dermal tissue ex vivo. The contrast mechanism is unclear but has been attributed to increased interstitial water in cancerous tissue. In this work we investigate the THz response of human osteosarcoma cells and normal human bone cells grown in culture to isolate the cells' responses from other effects. A classification algorithms based on a frequency selection by genetic algorithm is used to attempt to differentiate between the cell types based on the THz spectra. Encouraging preliminary results have been obtained.

  4. Denoising time-domain induced polarisation data using wavelet techniques

    NASA Astrophysics Data System (ADS)

    Deo, Ravin N.; Cull, James P.

    2016-05-01

    Time-domain induced polarisation (TDIP) methods are routinely used for near-surface evaluations in quasi-urban environments harbouring networks of buried civil infrastructure. A conventional technique for improving signal to noise ratio in such environments is by using analogue or digital low-pass filtering followed by stacking and rectification. However, this induces large distortions in the processed data. In this study, we have conducted the first application of wavelet based denoising techniques for processing raw TDIP data. Our investigation included laboratory and field measurements to better understand the advantages and limitations of this technique. It was found that distortions arising from conventional filtering can be significantly avoided with the use of wavelet based denoising techniques. With recent advances in full-waveform acquisition and analysis, incorporation of wavelet denoising techniques can further enhance surveying capabilities. In this work, we present the rationale for utilising wavelet denoising methods and discuss some important implications, which can positively influence TDIP methods.

  5. Time-domain response of the ARIANNA detector

    NASA Astrophysics Data System (ADS)

    Barwick, S. W.; Berg, E. C.; Besson, D. Z.; Duffin, T.; Hanson, J. C.; Klein, S. R.; Kleinfelder, S. A.; Piasecki, M.; Ratzlaff, K.; Reed, C.; Roumi, M.; Stezelberger, T.; Tatar, J.; Walker, J.; Young, R.; Zou, L.

    2015-03-01

    The Antarctic Ross Ice Shelf Antenna Neutrino Array (ARIANNA) is a high-energy neutrino detector designed to record the Askaryan electric field signature of cosmogenic neutrino interactions in ice. To understand the inherent radio-frequency (RF) neutrino signature, the time-domain response of the ARIANNA RF receiver must be measured. ARIANNA uses Create CLP5130-2N log-periodic dipole arrays (LPDAs). The associated effective height operator converts incident electric fields to voltage waveforms at the LDPA terminals. The effective height versus time and incident angle was measured, along with the associated response of the ARIANNA RF amplifier. The results are verified by correlating to field measurements in air and ice, using oscilloscopes. Finally, theoretical models for the Askaryan electric field are combined with the detector response to predict the neutrino signature.

  6. Time domain simulation and sound synthesis for the snare drum.

    PubMed

    Bilbao, Stefan

    2012-01-01

    The snare drum is a complex system, relying on the interaction of multiple components: the drumheads, or membranes, a set of snares, the surrounding acoustic field and an internal cavity. Because these components are multidimensional, and due to a strong distributed non-linearity (the snare interaction), many techniques used frequently in physical modeling synthesis applications, such as digital waveguides and modal methods are difficult to apply. In this article, finite difference time domain techniques are applied to a full 3D system, and various features of interest, such as the coupling between membranes, and the interaction between the membranes and the snares, are examined in detail. Also discussed are various numerical features, such as spurious splitting of degenerate modes and bandwidth limitation, and estimates of computational complexity are provided. Sound examples are presented. PMID:22280714

  7. Opening the 100-Year Window for Time-Domain Astronomy

    NASA Astrophysics Data System (ADS)

    Grindlay, Jonathan; Tang, Sumin; Los, Edward; Servillat, Mathieu

    2012-04-01

    The large-scale surveys such as PTF, CRTS and Pan-STARRS-1 that have emerged within the past 5 years or so employ digital databases and modern analysis tools to accentuate research into Time Domain Astronomy (TDA). Preparations are underway for LSST which, in another 6 years, will usher in the second decade of modern TDA. By that time the Digital Access to a Sky Century @ Harvard (DASCH) project will have made available to the community the full sky Historical TDA database and digitized images for a century (1890-1990) of coverage. We describe the current DASCH development and some initial results, and outline plans for the ``production scanning'' phase and data distribution which is to begin in 2012. That will open a 100-year window into temporal astrophysics, revealing rare transients and (especially) astrophysical phenomena that vary on time-scales of a decade. It will also provide context and archival comparisons for the deeper modern surveys.

  8. Spots and Flares: Stellar Activity in the Time Domain Era

    NASA Astrophysics Data System (ADS)

    Davenport, James

    2015-08-01

    Time domain photometric surveys for large numbers of stars have ushered in a new era of statistical studies of astrophysics. This new parameter space allows us to observe how stars behave and change on a human timescale, and facilitates ensemble studies to understand how stars change over cosmic timescales. With current and planned time domain stellar surveys, we will be able to put the Sun in a Galactic context, and discover how typical or unique our parent star truly is. The goal of this thesis is to develop techniques for detecting and analyzing the most prominent forms of magnetic activity from low-mass stars in modern time domain surveys: starspots and flares. Magnetic field strength is a fundamental property that decays over a star's life. As a result, flux modulations from both flares and starspots become smaller amplitude and more infrequent in light curves. Methods for detecting these forms of magnetic activity will be extensible to future time domain surveys, and helpful in characterizing the properties of stars as they age. Flares can be detected in sparsely sampled wide field surveys by searching for bright single-point outliers in light curves. Using both red optical and near infrared data from ground-based surveys over many years, I have constrained the rate of flares in multiple wavelengths for an ensemble of M dwarfs. Studying flares in these existing ground-based datasets will enable predictions for future survey yields. Space-based photometry enables continuous and precise monitoring of stars for many years, which is crucial for obtaining a complete census of flares from a single star. Using 11 months of 1-minute photometry for the M dwarf GJ 1243, I have amassed over 6100 flare events, the largest sample of white light flares for any low-mass star. I have also created the first high fidelity empirical white light flare template, which shows three distinct phases in typical flare light curves. With this template, I demonstrate that complex multi

  9. Time domain BEM for sound radiation of tires

    NASA Astrophysics Data System (ADS)

    Banz, Lothar; Gimperlein, Heiko; Nezhi, Zouhair; Stephan, Ernst P.

    2016-03-01

    This work investigates a time domain boundary element method for the acoustic wave equation in an exterior domain in the half-space R^3_+ . The Neumann problem is formulated as a boundary integral equation of the second kind, and the convergence and stability of conforming Galerkin approximations is studied in the complex geometry of a car or truck tire above a street. After a validation experiment, numerical results are presented in time or frequency domain for realistic benchmarks in traffic noise: the sound emission of vibrating tires, noise amplification in the horn-like geometry between the tire and the road, as well as the Doppler effect of a moving tire. The results are compared with calculations in frequency domain.

  10. Antenna Modeling and Reconstruction Accuracy of Time Domain-Based Image Reconstruction in Microwave Tomography

    PubMed Central

    Padhi, Shantanu K.; Howard, John

    2013-01-01

    Nonlinear microwave imaging heavily relies on an accurate numerical electromagnetic model of the antenna system. The model is used to simulate scattering data that is compared to its measured counterpart in order to reconstruct the image. In this paper an antenna system immersed in water is used to image different canonical objects in order to investigate the implication of modeling errors on the final reconstruction using a time domain-based iterative inverse reconstruction algorithm and three-dimensional FDTD modeling. With the test objects immersed in a background of air and tap water, respectively, we have studied the impact of antenna modeling errors, errors in the modeling of the background media, and made a comparison with a two-dimensional version of the algorithm. In conclusion even small modeling errors in the antennas can significantly alter the reconstructed image. Since the image reconstruction procedure is highly nonlinear general conclusions are very difficult to make. In our case it means that with the antenna system immersed in water and using our present FDTD-based electromagnetic model the imaging results are improved if refraining from modeling the water-wall-air interface and instead just use a homogeneous background of water in the model. PMID:23606825

  11. Two methods for transmission line simulation model creation based on time domain measurements

    NASA Astrophysics Data System (ADS)

    Rinas, D.; Frei, S.

    2011-07-01

    The emission from transmission lines plays an important role in the electromagnetic compatibility of automotive electronic systems. In a frequency range below 200 MHz radiation from cables is often the dominant emission factor. In higher frequency ranges radiation from PCBs and their housing becomes more relevant. Main sources for this emission are the conducting traces. The established field measurement methods according CISPR 25 for evaluation of emissions suffer from the need to use large anechoic chambers. Furthermore measurement data can not be used for simulation model creation in order to compute the overall fields radiated from a car. In this paper a method to determine the far-fields and a simulation model of radiating transmission lines, esp. cable bundles and conducting traces on planar structures, is proposed. The method measures the electromagnetic near-field above the test object. Measurements are done in time domain in order to get phase information and to reduce measurement time. On the basis of near-field data equivalent source identification can be done. Considering correlations between sources along each conductive structure in model creation process, the model accuracy increases and computational costs can be reduced.

  12. Accuracy issues in the finite difference time domain simulation of photomask scattering

    NASA Astrophysics Data System (ADS)

    Pistor, Thomas V.

    2001-09-01

    As the use of electromagnetic simulation in lithography increases, accuracy issues are uncovered and must be addressed. A proper understanding of these issues can allow the lithographer to avoid pitfalls in electromagnetic simulation and to know what can and can not be accurately simulated. This paper addresses the important accuracy issues related to the simulation of photomask scattering using the Finite Difference Time Domain (FDTD) method. Errors related to discretization and periodic boundary conditions are discussed. Discretization-related issues arise when derivatives are replaced by finite differences and when integrals are replaced by summations. These approximations can lead to mask features that do not have exact dimensions. The effects of discretization error on phase wells and thin films are shown. The reflectivity of certain thin film layers is seen to be very sensitive to the layer thickness. Simulation experiments and theory are used to determine how fine a discretization is necessary and various discretization schemes that help minimize error are presented. Boundary-condition-related errors arise from the use of periodic boundary conditions when simulating isolated mask features. The effects of periodic boundary conditions are assessed through the use of simulation experiments. All errors are associated with an ever-present trade-off between accuracy and computational resources. However, choosing the cell size wisely can, in many cases, minimize error without significantly increasing computation resource requirements.

  13. D Multicomponent Time Domain Elastic Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Silva, R. U.; De Basabe, J. D.; Gallardo, L. A.

    2015-12-01

    The search of hydrocarbon reservoirs between the finest stratigraphic and structural traps relies on the detailed surveying and interpretation of multicomponent seismic waves. This need makes Full Waveform Inversion (FWI) one of the most active topics in seismic exploration research and there are a limited number of FWI algorithms that undertake the elastic approach required to model these multicomponent data. We developed an iterative Gauss-Newton 2D time-domain elastic FWI scheme that reproduces the vertical and horizontal particle velocity as measured by common seismic surveys and obtains simultaneously the distribution of three elastic parameters of our subsurface model (density ρ and the Lame parameters λ and μ). The elastic wave is propagated in a heterogeneous elastic media using a time domain 2D velocity-stress staggered grid finite difference method. Our code observes the necessary stability conditions and includes absorbing boundary conditions and basic multi-thread parallelization. The same forward modeling code is also used to calculate the Frechet's derivatives with respect to the three parameters of our model following the sensitivity equation approach and perturbation theory. We regularized our FWI algorithm applying two different criteria: (1) First order Tikhonov regularization (maximum smoothness) and (2) Minimum Gradient Support (MGS) that adopts an approximate zero-norm of the several property gradients. We applied our algorithm to various test models and demonstrated that their structural information resemble closely those of the original three synthetic model parameters (λ, µ and ρ). Finally, we compared the role of both regularization criteria in terms of data fit, model stability and structural resemblance.

  14. A Time Domain Along-Track SAR Interferometry Method

    NASA Astrophysics Data System (ADS)

    Cao, N.; Lee, H.; Jung, H. C.

    2015-12-01

    Differential interferometric synthetic aperture radar (DInSAR) has already been proven to be a useful technique for measuring ground displacement at millimeter level. One major drawback of traditional DInSAR technique is that only 1-D deformation in slant range direction can be detected. In order to obtain along-track displacement using a single InSAR pair, two major attempts have been made. The first one is based on cross-correlation between two SAR amplitude images. The second attempt is based on split-beam processing to generate two SAR images from forward- and backward-looking beams. Comparing with the former method, this multiple-aperture SAR interferometry (MAI) can achieve much better measurement accuracy. The major drawback of the MAI method is degraded signal to noise ratio (SNR) and along-track resolution since total along-track integration time decreases in the split-beam procedure. In order to improve the SNR and along-track resolution as well as to extract the terrain displacement in the along-track direction, a time domain along-track SAR interferometry method is proposed in this study. Using traditional time domain backprojection method, the phase component corresponding to slant range direction offset can be estimated and removed from the range compressed SAR signal. Then a phase estimation procedure is implemented to obtain the phase component in the along-track direction. Using ALOS PALSAR data over Kilauea Volcano area in Hawai'i, our experimental results demonstrate the improved performance of the proposed method in extracting 2-D terrain deformation map from one pair of SAR images.

  15. Higher-Order Mixed Finite Element Methods for Time Domain Electromagnetics

    SciTech Connect

    White, D; Stowell, M; Koning, J; Rieben, R; Fisher, A; Champagne, N; Madsen, N

    2004-02-06

    This is the final report for LDRD 01-ERD-005. The Principal Investigator was Niel Madsen of the Defense Sciences Engineering Division (DSED). Collaborators included Daniel White, Joe Koning and Nathan Champagne of DSED, Mark Stowell of Center for Applications Development and Software Engineering (CADSE), and Ph.D. students Rob Rieben and Aaron Fisher at the UC Davis Department of Applied Science. It should be noted that the students were partially supported by the LLNL Student-Employee Graduate Research Fellow program. We begin with an Introduction which provides background and motivation for this research effort. Section II contains high-level description of our Approach, and Section III summarizes our key research Accomplishments. A description of the Software deliverables is provided in Section IV, and Section V includes simulation Validation and Results. It should be noted we do not get into the mathematical details in this report, rather these can be found in our publications which are listed in Section III.

  16. Time Domain Structures: Generation Mechanisms and Their Role for Electron Acceleration in the Earth's Outer Radiation Belt

    NASA Astrophysics Data System (ADS)

    Mozer, F.; Artemyev, A.; Agapitov, O. V.; Drake, J. F.; Krasnoselskikh, V.; Lejosne, S.; Mournas, D.; Vasko, I.

    2015-12-01

    Time Domain Structures (TDS) is the generic name for short duration (~msec) electric field pulses that occur in streams and that have significant components parallel to the background magnetic field. Examples of TDS are electrostatic or electromagnetic double layers, electron holes, and non-linear whistlers. They are found in copious quantities in the Earth's outer radiation belt and on auroral zone magnetic field lines, in the tail, the plasma sheet, the plasma sheet boundary layer, at shocks, at magnetic field reconnection sites, in the solar wind and at Saturn. Mechanisms for the generation of TDS and their role in accelerating radiation belt electrons will be described.

  17. Cryogenic Integrated Offset Compensation for Time Domain SQUID Multiplexing

    NASA Astrophysics Data System (ADS)

    Prêle, D.; Voisin, F.; Martino, J.; Bréelle, E.; Bordier, G.; Piat, M.

    2012-06-01

    Superconducting QUantum Interference Device (SQUID) multiplexing is a common technique in the use of large arrays of Transition Edge Sensors (TES). A Time Domain Multiplexer (TDM) combines input TES signals into one output signal using several SQUIDs. Different TES, SQUID and amplifier characteristics induce unavoidable different offsets on the multiplexed signal. Additionally, given the periodicity of the SQUID characteristic, the Flux Locked Loop (FLL) operating point is only defined modulo Φ 0. This can lead to a large output offset. In multiplexed mode, the difference between offsets associated with different pixels can induce a parasitic signal which is often larger than that of the TES. These offset signals drastically constrain the readout dynamic range and thus the maximum gain allowed. They also limit the signal-to-noise ratio, the FLL stability and the multiplexing frequency. Offsets in SQUID readout are discussed and offset compensation for TDM is presented. The dynamic calibration and compensation on a simplified 4:1 TDM are demonstrated in simulation. Dynamic offset compensation is being implemented on a cryogenic SiGe integrated circuit operated at 4 K for 128:1 TDM.

  18. Landfill cover performance monitoring using time domain reflectometry

    SciTech Connect

    Neher, E.R.; Cotten, G.B.; McElroy, D.

    1998-03-01

    Time domain reflectometry (TDR) systems were installed to monitor soil moisture in two newly constructed landfill covers at the Idaho National Engineering and Environmental Laboratory. Each TDR system includes four vertical arrays with each array consisting of four TDR probes located at depths of 15, 30, 45, and 60 cm. The deepest probes at 60 cm were installed beneath a compacted soil layer to analyze infiltration through the compacted layer. Based on the TDR data, infiltration through the two covers between March and October, 1997 ranged from less than measurable to 1.5 cm. However, due to a prohibition on penetrating the buried waste and resulting limits on probe placement depths, deeper percolation was not evaluated. Some of the advantages found in the application of TDR for infiltration monitoring at this site are the relative low cost and rugged nature of the equipment. Also, of particular importance, the ability to collect frequent moisture measurements allows the capture and evaluation of soil moisture changes resulting from episodic precipitation events. Disadvantages include the inability to install the probes into the waste, difficulties in interpretation of infiltration during freeze/thaw periods, and some excessive noise in the data.

  19. A 128 Multiplexing Factor Time-Domain SQUID Multiplexer

    NASA Astrophysics Data System (ADS)

    Prêle, D.; Voisin, F.; Piat, M.; Decourcelle, T.; Perbost, C.; Chapron, C.; Rambaud, D.; Maestre, S.; Marty, W.; Montier, L.

    2016-01-01

    A cryogenic 128:1 Time-Domain Multiplexer (TDM) has been developed for the readout of kilo-pixel Transition Edge Sensor (TES) arrays dedicated to the Q&U Bolometric Interferometer for Cosmology (QUBIC) instrument which aims to measure the B-mode polarization of the Cosmic Microwave Background. Superconducting QUantum Interference Devices (SQUIDs) are usually used to read out TESs. Moreover, SQUIDs are used to build TDM by biasing sequentially the SQUIDs connected together—one for each TES. In addition to this common technique which allows a typical 32 multiplexing factor, a cryogenic integrated circuit provides a 4:1 second multiplexing stage. This cryogenic integrated circuit is one of the original part of our TDM achieving an unprecedented 128 multiplexing factor. We present these two dimension TDM stages: topology of the SQUID multiplexer, operation of the cryogenic integrated circuit, and integration of the full system to read out a TES array dedicated to the QUBIC instrument. Flux-locked loop operation in multiplexed mode is also discussed.

  20. Time domain simulations of preliminary breakdown pulses in natural lightning

    PubMed Central

    Carlson, B E; Liang, C; Bitzer, P; Christian, H

    2015-01-01

    Lightning discharge is a complicated process with relevant physical scales spanning many orders of magnitude. In an effort to understand the electrodynamics of lightning and connect physical properties of the channel to observed behavior, we construct a simulation of charge and current flow on a narrow conducting channel embedded in three-dimensional space with the time domain electric field integral equation, the method of moments, and the thin-wire approximation. The method includes approximate treatment of resistance evolution due to lightning channel heating and the corona sheath of charge surrounding the lightning channel. Focusing our attention on preliminary breakdown in natural lightning by simulating stepwise channel extension with a simplified geometry, our simulation reproduces the broad features observed in data collected with the Huntsville Alabama Marx Meter Array. Some deviations in pulse shape details are evident, suggesting future work focusing on the detailed properties of the stepping mechanism. Key Points Preliminary breakdown pulses can be reproduced by simulated channel extension Channel heating and corona sheath formation are crucial to proper pulse shape Extension processes and channel orientation significantly affect observations PMID:26664815

  1. Time domain reflectometry as a rock mass monitoring technique

    SciTech Connect

    Francke, J.L.; Terrill, L.J.; Allen, W.W.

    1996-06-01

    This paper describes the practices and methods used in a study of Time Domain Reflectometry (TDR) as an inexpensive deformation monitoring tool in underground excavations at the Waste Isolation Pilot Plant (WIPP). The WIPP is being developed near Carlsbad, New Mexico, for the disposal of transuranic nuclear wastes in bedded salt 655 m (2150 ft) below the surface. Data collected from WIPP geomechanical monitoring are used to characterize conditions, confirm design assumptions, and understand and predict the performance of the deep salt excavation. The geomechanical monitoring techniques ranging from inspection of observation boreholes to advanced radar surveys. In 1989 TDR was introduced as a monitoring tool with the installation of 12.7 mm (0.5 in) diameter TDR cables in the underground excavations. In 1993, a new TDR system was installed in a separate location. Based on experience with the previous installation, enhancements were implemented into the new TDR system that: (1) extended the period of performance by increasing cable diameter to 22. 2 mm (0.875 in), (2) increased accuracy in locating areas of deformation by aligning cables with nearby observation boreholes, and (3) improved data acquisition and analyses using a standard laptop computer, eliminating the chart recorder previously used. In summary, the results of a correlation between the TDR signatures to nearby observation boreholes and geomechanical instrumentation will be presented.

  2. Optical identification based on time domain optical coherence tomography.

    PubMed

    Gandhi, Vishal; Semenov, Dmitry; Honkanen, Seppo; Hauta-Kasari, Markku

    2015-09-01

    We present a novel method for optical identification, i.e., authenticating valuable documents such as a passport, credit cards, and bank notes, using optical coherence tomography (OCT). An OCT system can capture three-dimensional (3D) images and visualize the internal structure of an object. In our work, as an object, we consider a multilayered optical identification tag composed of a limited number of thin layers (10-100 μm thick). The thickness, width, and location of the layers in the tag encode a unique identification information. Reading of the tag is done using a time domain OCT (TD-OCT) system. Typically, a TD-OCT system requires continuous mechanical scanning in one or more directions to get a 3D volume image of an object. The continuous scanning implies a complicated optical setup, which makes an OCT system fragile and expensive. We propose to avoid the conventional scanning by (1) not requiring 3D imaging, and (2) utilizing the motion of the optical tag itself. The motion is introduced to the tag reader, for example, by a user, which replaces the need for conventional scanning. The absence of a conventional scanning mechanism makes the proposed OCT method very simple and suited for identification purposes; however, it also puts some constraints to the construction of the optical tag, which we discuss in this paper in detail. PMID:26368871

  3. Terahertz time-domain spectroscopy of organic semiconductors

    NASA Astrophysics Data System (ADS)

    Hailu, Daniel M.; Aziz, Hany; Safavi-Naeini, Safieddin; Saeedkia, Daryoosh

    2013-03-01

    In this paper, we conduct transmission and reflection mode terahertz time-domain spectroscopy (THz-TDS) measurements of organic semiconductors such as ALQ3 and TBADN. THz-TDS is effective for determining the purity of the organic semiconductors based on the refractive index and spectral signatures in THz range. In order to prepare the sample for a custom built sample holder, the powder samples are pressed into pellets of 13 mm diameter and a thickness of 2 mm using a hydraulic press. The organic semiconductor, for example ALQ3 sample, is prepared as a 70% ALQ3 and 30% polyethylene (PE) concentration pellet by mixing ALQ3 and PE. The ALQ3 pellet is measured in a chamber purged with dry nitrogen to avoid the effect of water vapor absorptions in ambient air. The absorption coefficient and index of refraction are measured from the spectra of the reference THz pulse and the THz pulse after transmission through the sample. The THz spectrum is obtained by applying a fast Fourier transform to the THz waveform. Further studies were conducted by reducing the concentration of the organic semiconductor from 70% to 10% ALQ3. We also obtained the spectral signature and absorption coefficient for 50% TBADN 50% PE pellet. The spectral signatures of ALQ3 were found to be at 0.868 THz, 1.271 THz and 1.52 THz, while spectral signature of TBADN was found to be at 1.033 THz.

  4. Demonstration of Time Domain Multiplexed Readout for Magnetically Coupled Calorimeters

    NASA Technical Reports Server (NTRS)

    Porst, J.-P.; Adams, J. S.; Balvin, M.; Bandler, S.; Beyer, J.; Busch, S. E.; Drung, D.; Seidel, G. M.; Smith, S. J.; Stevenson, T. R.

    2012-01-01

    Magnetically coupled calorimeters (MCC) have extremely high potential for x-ray applications due to the inherent high energy resolution capability and being non-dissipative. Although very high energy-resolution has been demonstrated, until now there has been no demonstration of multiplexed read-out. We report on the first realization of a time domain multiplexed (TDM) read-out. While this has many similarities with TDM of transition-edge-sensors (TES), for MGGs the energy resolution is limited by the SQUID read-out noise and requires the well established scheme to be altered in order to minimize degradation due to noise aliasing effects. In cur approach, each pixel is read out by a single first stage SQUID (SQ1) that is operated in open loop. The outputs of the SQ1 s are low-pass filtered with an array of low cross-talk inductors, then fed into a single-stage SQUID TD multiplexer. The multiplexer is addressed from room temperature and read out through a single amplifier channel. We present results achieved with a new detector platform. Noise performance is presented and compared to expectations. We have demonstrated multiplexed X-ray spectroscopy at 5.9keV with delta_FWHM=10eV. In an optimized setup, we show it is possible to multiplex 32 detectors without significantly degrading the Intrinsic detector resolution.

  5. Time domain attenuation estimation method from ultrasonic backscattered signals

    PubMed Central

    Ghoshal, Goutam; Oelze, Michael L.

    2012-01-01

    Ultrasonic attenuation is important not only as a parameter for characterizing tissue but also for compensating other parameters that are used to classify tissues. Several techniques have been explored for estimating ultrasonic attenuation from backscattered signals. In the present study, a technique is developed to estimate the local ultrasonic attenuation coefficient by analyzing the time domain backscattered signal. The proposed method incorporates an objective function that combines the diffraction pattern of the source/receiver with the attenuation slope in an integral equation. The technique was assessed through simulations and validated through experiments with a tissue mimicking phantom and fresh rabbit liver samples. The attenuation values estimated using the proposed technique were compared with the attenuation estimated using insertion loss measurements. For a data block size of 15 pulse lengths axially and 15 beamwidths laterally, the mean attenuation estimates from the tissue mimicking phantoms were within 10% of the estimates using insertion loss measurements. With a data block size of 20 pulse lengths axially and 20 beamwidths laterally, the error in the attenuation values estimated from the liver samples were within 10% of the attenuation values estimated from the insertion loss measurements. PMID:22779499

  6. Frequency versus time domain immunity testing of Smart Grid components

    NASA Astrophysics Data System (ADS)

    Gronwald, F.

    2014-11-01

    Smart Grid components often are subject to considerable conducted current disturbances in the frequency range 2-150 kHz and, as a consequence, it is necessary to provide reliable immunity test methods. The relevant basic standard IEC 61000-4-19 that is currently under discussion focusses on frequency domain test methods. It is remarked in this contribution that in the context of frequency domain testing the chosen frequency spacing is related to the resonance response of the system under test which, in turn, is characterized in terms of resonance frequencies and quality factors. These notions apply well to physical system but it is pointed out by the example of an actual smart meter immunity test that smart grid components may exhibit susceptibilities that do not necessarily follow a resonance pattern and, additionally, can be narrowband. As a consequence it is suggested to supplement the present frequency domain test methods by time domain tests which utilize damped sinusoidal excitations with corresponding spectra that properly cover the frequency range 2-150 kHz, as exemplified by the military standard MIL-STD-461.

  7. Towards next generation time-domain diffuse optics devices

    NASA Astrophysics Data System (ADS)

    Dalla Mora, Alberto; Contini, Davide; Arridge, Simon R.; Martelli, Fabrizio; Tosi, Alberto; Boso, Gianluca; Farina, Andrea; Durduran, Turgut; Martinenghi, Edoardo; Torricelli, Alessandro; Pifferi, Antonio

    2015-03-01

    Diffuse Optics is growing in terms of applications ranging from e.g. oximetry, to mammography, molecular imaging, quality assessment of food and pharmaceuticals, wood optics, physics of random media. Time-domain (TD) approaches, although appealing in terms of quantitation and depth sensibility, are presently limited to large fiber-based systems, with limited number of source-detector pairs. We present a miniaturized TD source-detector probe embedding integrated laser sources and single-photon detectors. Some electronics are still external (e.g. power supply, pulse generators, timing electronics), yet full integration on-board using already proven technologies is feasible. The novel devices were successfully validated on heterogeneous phantoms showing performances comparable to large state-of-the-art TD rack-based systems. With an investigation based on simulations we provide numerical evidence that the possibility to stack many TD compact source-detector pairs in a dense, null source-detector distance arrangement could yield on the brain cortex about 1 decade higher contrast as compared to a continuous wave (CW) approach. Further, a 3-fold increase in the maximum depth (down to 6 cm) is estimated, opening accessibility to new organs such as the lung or the heart. Finally, these new technologies show the way towards compact and wearable TD probes with orders of magnitude reduction in size and cost, for a widespread use of TD devices in real life.

  8. The Future of the Time Domain with LSST

    NASA Astrophysics Data System (ADS)

    Walkowicz, Lucianne M.

    2012-04-01

    abstract-type="normal">SummaryIn the coming decade LSST's combination of all-sky coverage, consistent long-term monitoring and flexible criteria for event identification will revolutionize studies of a wide variety of astrophysical phenomena. Time-domain science with LSST encompasses objects both familiar and exotic, from classical variables within our Galaxy to explosive cosmological events. Increased sample sizes of known-but-rare observational phenomena will quantify their distributions for the first time, thus challenging existing theories. Perhaps most excitingly, LSST will provide the opportunity to sample previously untouched regions of parameter space. LSST will generate `alerts' within 60 seconds of detecting a new transient, permitting the community to follow up unusual events in greater detail. However, follow-up will remain a challenge as the volume of transients will easily saturate available spectroscopic resources. Characterization of events and access to appropriate ancillary data (e.g. from prior observations, either in the optical or in other passbands) will be of the utmost importance in prioritizing follow-up observations. The incredible scientific opportunities and unique challenges afforded by LSST demand organization, forethought and creativity from the astronomical community. To learn more about the telescope specifics and survey design, as well as obtaining a overview of the variety of the scientific investigations that LSST will enable, readers are encouraged to look at the LSST Science Book: http://www.lsst.org/lsst/scibook. Organizational details of the LSST science collaborations and management may be found at http://www.lsstcorp.org.

  9. A New Time Domain Formulation for Broadband Noise Predictions

    NASA Technical Reports Server (NTRS)

    Casper, J.; Farassat, F.

    2002-01-01

    A new analytic result in acoustics called "Formulation 1B," proposed by Farassat, is used to compute the loading noise from an unsteady surface pressure distribution on a thin airfoil in the time domain. This formulation is a new solution of the Ffowcs Williams-Hawkings equation with the loading source term. The formulation contains a far field surface integral that depends on the time derivative and the surface gradient of the pressure on the airfoil, as well as a contour integral on the boundary of the airfoil surface. As a first test case, the new formulation is used to compute the noise radiated from a flat plate, moving through a sinusoidal gust of constant frequency. The unsteady surface pressure for this test case is analytically specified from a result based on linear airfoil theory. This test case is used to examine the velocity scaling properties of Formulation 1B and to demonstrate its equivalence to Formulation 1A of Farassat. The new acoustic formulation, again with an analytic surface pressure, is then used to predict broadband noise radiated from an airfoil immersed in homogeneous, isotropic turbulence. The results are compared with experimental data previously reported by Paterson and Amiet. Good agreement between predictions and measurements is obtained. Finally, an alternative form of Formulation 1B is described for statistical analysis of broadband noise.

  10. High-speed time domain terahertz security imaging

    NASA Astrophysics Data System (ADS)

    Zimdars, David; White, Jeffrey; Williamson, Steven; Stuk, G.

    2005-05-01

    Terahertz imaging has the potential to reveal concealed explosives; metallic and non-metallic weapons (such as ceramic, plastic or composite guns and knives); flammables; biological agents; chemical weapons and other threats hidden in packages or on personnel. Time domain terahertz imaging can be employed in reflection mode to image with sub millimeter resolution. Previously, single pixel acquisition times for THz waveforms was typically 20 Hz with time records of approx 80 picoseconds, which typically restricted imaging time to hours for areas on the order of 1 square foot, limiting the field practicality of the equipment. We describe and demonstrate advanced imagers with 100 Hz --> 320 picosecond, and 4000 Hz -- 20 picosecond waveform records. These systems have been demonstrated to image >600 pixels/second from a single channel. Such a system, combined with a 32 channel linear THz array, could image a 1 square foot area with 1 mm resolution in <5 seconds, performing a shoe explosives detection image in a short period of time.

  11. Time domain functional NIRS imaging for human brain mapping.

    PubMed

    Torricelli, Alessandro; Contini, Davide; Pifferi, Antonio; Caffini, Matteo; Re, Rebecca; Zucchelli, Lucia; Spinelli, Lorenzo

    2014-01-15

    This review is aimed at presenting the state-of-the-art of time domain (TD) functional near-infrared spectroscopy (fNIRS). We first introduce the physical principles, the basics of modeling and data analysis. Basic instrumentation components (light sources, detection techniques, and delivery and collection systems) of a TD fNIRS system are described. A survey of past, existing and next generation TD fNIRS systems used for research and clinical studies is presented. Performance assessment of TD fNIRS systems and standardization issues are also discussed. Main strengths and weakness of TD fNIRS are highlighted, also in comparison with continuous wave (CW) fNIRS. Issues like quantification of the hemodynamic response, penetration depth, depth selectivity, spatial resolution and contrast-to-noise ratio are critically examined, with the help of experimental results performed on phantoms or in vivo. Finally we give an account on the technological developments that would pave the way for a broader use of TD fNIRS in the neuroimaging community. PMID:23747285

  12. A Time Domain Waveform for Testing General Relativity

    NASA Astrophysics Data System (ADS)

    Huwyler, Cédric; Porter, Edward K.; Jetzer, Philippe

    2015-05-01

    Gravitational-wave parameter estimation is only as good as the theory the waveform generation models are based upon. It is therefore crucial to test General Relativity (GR) once data becomes available. Many previous works, such as studies connected with the ppE framework by Yunes and Pretorius, rely on the stationary phase approximation (SPA) to model deviations from GR in the frequency domain. As Fast Fourier Transform algorithms have become considerably faster and in order to circumvent possible problems with the SPA, we test GR with corrected time domain waveforms instead of SPA waveforms. Since a considerable amount of work has been done already in the field using SPA waveforms, we establish a connection between leading-order-corrected waveforms in time and frequency domain, concentrating on phase-only corrected terms. In a Markov Chain Monte Carlo study, whose results are preliminary and will only be available later, we will assess the ability of the eLISA detector to measure deviations from GR for signals coming from supermassive black hole inspirals using these corrected waveforms.

  13. A 128 Multiplexing Factor Time-Domain SQUID Multiplexer

    NASA Astrophysics Data System (ADS)

    Prêle, D.; Voisin, F.; Piat, M.; Decourcelle, T.; Perbost, C.; Chapron, C.; Rambaud, D.; Maestre, S.; Marty, W.; Montier, L.

    2016-07-01

    A cryogenic 128:1 Time-Domain Multiplexer (TDM) has been developed for the readout of kilo-pixel Transition Edge Sensor (TES) arrays dedicated to the Q&U Bolometric Interferometer for Cosmology (QUBIC) instrument which aims to measure the B-mode polarization of the Cosmic Microwave Background. Superconducting QUantum Interference Devices (SQUIDs) are usually used to read out TESs. Moreover, SQUIDs are used to build TDM by biasing sequentially the SQUIDs connected together—one for each TES. In addition to this common technique which allows a typical 32 multiplexing factor, a cryogenic integrated circuit provides a 4:1 second multiplexing stage. This cryogenic integrated circuit is one of the original part of our TDM achieving an unprecedented 128 multiplexing factor. We present these two dimension TDM stages: topology of the SQUID multiplexer, operation of the cryogenic integrated circuit, and integration of the full system to read out a TES array dedicated to the QUBIC instrument. Flux-locked loop operation in multiplexed mode is also discussed.

  14. A New Time Domain Formulation for Broadband Noise Predictions

    NASA Technical Reports Server (NTRS)

    Casper, Jay H.; Farassat, Fereidoun

    2002-01-01

    A new analytic result in acoustics called "Formulation 1B," proposed by Farassat, is used to compute the loading noise from an unsteady surface pressure distribution on a thin airfoil in the time domain. This formulation is a new solution of the Ffowcs Williams-Hawkings equation with the loading source term. The formulation contains a far field surface integral that depends on the time derivative and the surface gradient of the pressure on the airfoil, as well as a contour integral on the boundary of the airfoil surface. As a first test case, the new formulation is used to compute the noise radiated from a flat plate, moving through a sinusoidal gust of constant frequency. The unsteady surface pressure for this test case is analytically specied from a result based on linear airfoil theory. This test case is used to examine the velocity scaling properties of Formulation 1B and to demonstrate its equivalence to Formulation 1A of Farassat. The new acoustic formulation, again with an analytic surface pressure, is then used to predict broadband noise radiated from an airfoil immersed in homogeneous, isotropic turbulence. The results are compared with experimental data previously reported by Paterson and Amiet. Good agreement between predictions and measurements is obtained. Finally, an alternative form of Formulation 1B is described for statistical analysis of broadband noise.

  15. Time domain simulations of arm locking in LISA

    SciTech Connect

    Thorpe, J. I.; Livas, J.; Maghami, P.

    2011-06-15

    Arm locking is a proposed laser frequency stabilization technique for the Laser Interferometer Space Antenna (LISA), a gravitational-wave observatory sensitive in the milliHertz frequency band. Arm locking takes advantage of the geometric stability of the triangular constellation of three spacecraft that compose LISA to provide a frequency reference with a stability in the LISA measurement band that exceeds that available from a standard reference such as an optical cavity or molecular absorption line. We have implemented a time-domain simulation of a Kalman-filter-based arm-locking system that includes the expected limiting noise sources as well as the effects of imperfect a priori knowledge of the constellation geometry on which the design is based. We use the simulation to study aspects of the system performance that are difficult to capture in a steady-state frequency-domain analysis such as frequency pulling of the master laser due to errors in estimates of heterodyne frequency. We find that our implementation meets requirements on both the noise and dynamic range of the laser frequency with acceptable tolerances and that the design is sufficiently insensitive to errors in the estimated constellation geometry that the required performance can be maintained for the longest continuous measurement intervals expected for the LISA mission.

  16. Design and implementation of an efficient finite-difference, time-domain computer code for large problems

    SciTech Connect

    White, W.T. III; Taflove, A.; Stringer, J.C.; Kluge, R.F.

    1986-12-01

    As computers get larger and faster, demands upon electromagnetics codes increase. Ever larger volumes of space must be represented with increasingly more accuracy and detail. This requires continually more efficient EM codes. To meet present and future needs in DOE and DOD, we are developing FDTD3D, a three-dimensional finite-difference, time-domain EM solver. When complete, the code will efficiently solve problems with tens of millions of unknowns. It already operates faster than any other 3D, time-domain EM code, and we are using it to model linear coupling to a generic missile section. At Lawrence Livermore National Laboratory (LLNL), we anticipate the ultimate need for such a code if we are to model EM threats to objects such as airplanes or missiles. This article describes the design and implementation of FDTD3D. The first section, ''Design of FDTD3D,'' contains a brief summary of other 3D time-domain EM codes at LLNL followed by a description of the efficiency of FDTD3D. The second section, ''Implementation of FDTD3D,'' discusses recent work and future plans.

  17. Spurious fields in time domain computations of scattering problems

    NASA Technical Reports Server (NTRS)

    Kangro, Urve; Nicolaides, Roy

    1995-01-01

    In this paper two-dimensional electromagnetic scattering problems with a time-periodic incident field are considered. The scatterer is a perfect conductor, and an artificial boundary condition is used. The large time behavior of solutions, depending on (divergence-free) initial conditions, is characterized. It turns out that in addition to the expected time-periodic solution the limiting solution may also contain a spurious stationary field. The source of the stationary field is explained and equations describing it are obtained. Several avoidance strategies are discussed, and numerical comparisons of these techniques are given.

  18. Exploration of the Time Domain With Palomar-Quest Survey

    NASA Astrophysics Data System (ADS)

    Djorgovski, Stanislav G.; Mahabal, A.; Drake, A.; Donalek, C.; Glikman, E.; Graham, M.; Williams, R.; Morton, T.; Bauer, A.; Baltay, C.; Rabinowitz, D.; Scalzo, R.; Nugent, P.; Palomar-Quest Survey Team

    2009-01-01

    Palomar-Quest (PQ) digital synoptic sky survey, conducted at the Samuel Oschin 48-inch telescope at Palomar Observatory, using the Yale Quest-2, 161-Megapixel, 112-CCD camera, is now complete. The survey covered > 15,000 deg2 multiple times (up to several tens of pointings), spanning a range of time baselines from minutes to years. The data were taken in a drift scan mode, in Johnson UBRI or Gunn griz filters. They are now supplemented by an even larger data set taken in the traditional point-and-stare mode, with a broad red bandpass, much of it taken by the JPL NEAT team, and processed at LBNL Nearby Supernova Factory. This joint data set offers unprecedented opportunities for exploration of time domain in astronomy. All transient sources detected in the course of real-time processing of the drift scan survey have been published immediately, using the VOEventNet system. In addtion to a very productive supernova search conducted in collaboration with the LBNL Nearby Supernova Factory, we have conducted several studies: (1) a real-time detection of transients and strong variables; (2) a systematic study of QSO variability; (3) studies of blazar variability, and blazar discovery using variability alone; (4) the astrophysical nature of the most variable sources on the high-latitude sky. Follow-up spectroscopy was obtained at the Palomar 200-inch Hale telescope for a number of sources. We will report preliminary results from some of these studies. Experience gained in the course of this survey should be useful for future synoptic sky surveys.

  19. Terahertz time-domain reflectometry of multilayered systems

    NASA Astrophysics Data System (ADS)

    Jackson, J. Bianca

    Presented in this work are applications of terahertz pulse ranging, spectroscopy and imaging to the nondestructive evaluation of three disparate multilayer systems for the detection and measurement of hidden layers, as well as the extraction of system information that will aid in its maintenance, repair or replacement. Thermal protection systems for turbine engine components were investigated. Thermal barrier coatings (TBC) and thermally-grown oxide (TGO) thicknesses were determined with 10 micron resolution using time-of-flight and refractive index calculations. Two alternative methods of monitoring TGO growth using reflection amplitudes and spectral shifts were proposed for the prediction of TBC failure. Laser-machined defects as narrow as 50 microns were resolved in one- and two-dimensional images. The light and dark rings of trees, which reflect the changes in tree growth density over the course of a year, are measurable using pulsed terahertz beams. Tree-rings of bare and painted wood specimen were laterally and axially tomographically imaged in order to facilitate the dendrochronological cross-dating of artifacts. Comparisons were made between photographs and terahertz images to demonstrate the reliability of the technique. Historically, numerous unique artworks have been lost through the act of being covered over time. Samples of paintings, drawings and mosaics were imaged beneath layers of paint and plaster using pulsed-terahertz techniques to demonstrate the efficacy of the technique for art history and restoration. Sketch materials and pigments were measured, between 0.05 and 1.0 THz, to help identify colors in spectroscopic images. Other computational and processing methods were used to optimize the distinction between color domains. Additional time-domain terahertz applications for the examination of artwork and other artifacts were proposed.

  20. Integral ceramic superstructure evaluation using time domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sinescu, Cosmin; Bradu, Adrian; Topala, Florin I.; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.

    2014-02-01

    Optical Coherence Tomography (OCT) is a non-invasive low coherence interferometry technique that includes several technologies (and the corresponding devices and components), such as illumination and detection, interferometry, scanning, adaptive optics, microscopy and endoscopy. From its large area of applications, we consider in this paper a critical aspect in dentistry - to be investigated with a Time Domain (TD) OCT system. The clinical situation of an edentulous mandible is considered; it can be solved by inserting 2 to 6 implants. On these implants a mesostructure will be manufactured and on it a superstructure is needed. This superstructure can be integral ceramic; in this case materials defects could be trapped inside the ceramic layers and those defects could lead to fractures of the entire superstructure. In this paper we demonstrate that a TD-OCT imaging system has the potential to properly evaluate the presence of the defects inside the ceramic layers and those defects can be fixed before inserting the prosthesis inside the oral cavity. Three integral ceramic superstructures were developed by using a CAD/CAM technology. After the milling, the ceramic layers were applied on the core. All the three samples were evaluated by a TD-OCT system working at 1300 nm. For two of the superstructures evaluated, no defects were found in the most stressed areas. The third superstructure presented four ceramic defects in the mentioned areas. Because of those defects the superstructure may fracture. The integral ceramic prosthesis was send back to the dental laboratory to fix the problems related to the material defects found. Thus, TD-OCT proved to be a valuable method for diagnosing the ceramic defects inside the integral ceramic superstructures in order to prevent fractures at this level.

  1. Opportunities and challenges for time domain astronomy with LSST

    NASA Astrophysics Data System (ADS)

    Ivezic, Zeljko

    2014-01-01

    The Large Synoptic Survey Telescope (LSST) will enable faint optical time-domain astronomy by carrying out an imaging survey covering the sky that is visible from Cerro Pachon in Northern Chile. Of the order thousand 9.6 sq. deg. images (3.2 Gigapix) will be obtained per night using pairs of 15-second back-to-back exposures, with typical 5-sigma depth for point sources of 24.5 (AB). With close to 1000 observations of a 18,000 sq. deg. region in ugrizy bands over a 10-year period, these data will enable a deep stack across half the sky reaching five magnitudes deeper than the SDSS survey ( 27.5, 5 sigma, point source), and with twice as good seeing (0.7 arcsec median seeing in the r band). The measured and archived properties of newly discovered and known astrometric and photometric transients will be publicly reported within 60 sec after closing the shutter. Automated classification of the expected several million alerts per night, and selection of transient events requiring immediate follow-up, is an outstanding problem for the community. These data will represent a treasure trove for follow-up programs using other ground and space-based telescopes, such as fast-response fast-cadence photometric observations and spectroscopy, as well as for facilities operating at non-optical wavelengths and for gravitational wave programs. I will describe the relevant data products to be delivered by LSST and will summarize challenges that will need to be addressed by the community at large.

  2. Spectroscopic Binaries: Towards the 100-Year Time Domain

    NASA Astrophysics Data System (ADS)

    Griffin, R. F.

    2012-04-01

    Good measurements of visual binary stars (position angle and angular separation) have been made for nearly 200 years. Radial-velocity observers have exhibited less patience; when the orbital periods of late-type stars in the catalogue published in 1978 are sorted into bins half a logarithmic unit wide, the modal bin is the one with periods between 3 and 10 days. The same treatment of the writer's orbits shows the modal bin to be the one between 1000 and 3000 days. Of course the spectroscopists cannot quickly catch up the 200 years that the visual observers have been going, but many spectroscopic orbits with periods of decades, and a few of the order of a century, have been published. Technical developments have also been made in `visual' orbit determination, and orbits with periods of only a few days have been determined for certain `visual' binaries. In principle, therefore, the time domains of visual and spectroscopic binaries now largely overlap. Overlap is essential, as it is only by combining both techniques that orbits can be determined in three dimensions, as is necessary for the important objective of determining stellar masses accurately. Nevertheless the actual overlap-objects with accurate measurements by both techniques-remains disappointingly small. There have, however, been unforeseen benefits from the observation of spectroscopic binaries that have unconventionally long orbital periods, not a few of which have proved to be interesting and significant objects in their own right. It has also been shown that binary membership is more common than was once thought (orbits have even been determined for some of the IAU standard radial-velocity stars!); a recent study of the radial velocities of K giants that had been monitored for 45 years found a binary incidence of 30%, whereas a figure of 13.7% was given as recently as 2005 for a similar group.

  3. Time-Domain Studies as a Probe of Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Miller, Adam Andrew

    This dissertation focuses on the use of time-domain techniques to discover and characterize these rare astrophysical gems, while also addressing some gaps in our understanding of the earliest and latest stages of stellar evolution. The observational studies presented herein can be grouped into three parts: (i) the study of stellar death (supernovae); (ii) the study of stellar birth; and (iii) the use of modern machine-learning algorithms to discover and classify variable sources. I present observations of supernova (SN) 2006gy, the most luminous SN ever at the time of discovery, and the even-more luminous SN 2008es. Together, these two supernovae (SNe) demonstrate that core-collapse SNe can be significantly more luminous than thermonuclear type Ia SNe, and that there are multiple channels for producing these brilliant core-collapse explosions. For SN 2006gy I show that the progenitor star experienced violent, eruptive mass loss on multiple occasions during the centuries prior to explosion, a scenario that was completely unexpected within the cannon of massive-star evolution theory. I also present observations of SN 2008iy, one of the most unusual SNe ever discovered. Typical SNe take ≲3 weeks to reach peak luminosity; SN 2008iy exhibited a slow and steady rise for ˜400 days before reaching maximum brightness. The best explanation for such behavior is that the progenitor of SN 2008iy experienced an episodic phase of mass loss ˜100 yr prior to explosion. The three SNe detailed in this dissertation have altered our understanding of massive-star mass loss, namely, these SNe provide distinct evidence that post-main sequence mass loss, for at least some massive stars, occurs in sporatic fits, rather than being steady. They also demonstrate that core collapse is not restricted to the red supergiant and Wolf-Rayet stages of stellar evolution as theory predicted. Instead, some massive stars explode while in a luminous blue variable-like state. I also present

  4. Development of a low noise induction magnetic sensor using magnetic flux negative feedback in the time domain.

    PubMed

    Wang, X G; Shang, X L; Lin, J

    2016-05-01

    Time-domain electromagnetic system can implement great depth detection. As for the electromagnetic system, the receiver utilized an air coil sensor, and the matching mode of the sensor employed the resistance matching method. By using the resistance matching method, the vibration of the coil in the time domain can be effectively controlled. However, the noise of the sensor, especially the noise at the resonance frequency, will be increased as well. In this paper, a novel design of a low noise induction coil sensor is proposed, and the experimental data and noise characteristics are provided. The sensor is designed based on the principle that the amplified voltage will be converted to current under the influence of the feedback resistance of the coil. The feedback loop around the induction coil exerts a magnetic field and sends the negative feedback signal to the sensor. The paper analyses the influence of the closed magnetic feedback loop on both the bandwidth and the noise of the sensor. The signal-to-noise ratio is improved dramatically. PMID:27250444

  5. Time-Domain Terahertz Computed Axial Tomography NDE System

    NASA Technical Reports Server (NTRS)

    Zimdars, David

    2012-01-01

    NASA has identified the need for advanced non-destructive evaluation (NDE) methods to characterize aging and durability in aircraft materials to improve the safety of the nation's airline fleet. 3D THz tomography can play a major role in detection and characterization of flaws and degradation in aircraft materials, including Kevlar-based composites and Kevlar and Zylon fabric covers for soft-shell fan containment where aging and durability issues are critical. A prototype computed tomography (CT) time-domain (TD) THz imaging system has been used to generate 3D images of several test objects including a TUFI tile (a thermal protection system tile used on the Space Shuttle and possibly the Orion or similar capsules). This TUFI tile had simulated impact damage that was located and the depth of damage determined. The CT motion control gan try was designed and constructed, and then integrated with a T-Ray 4000 control unit and motion controller to create a complete CT TD-THz imaging system prototype. A data collection software script was developed that takes multiple z-axis slices in sequence and saves the data for batch processing. The data collection software was integrated with the ability to batch process the slice data with the CT TD-THz image reconstruction software. The time required to take a single CT slice was decreased from six minutes to approximately one minute by replacing the 320 ps, 100-Hz waveform acquisition system with an 80 ps, 1,000-Hz waveform acquisition system. The TD-THZ computed tomography system was built from pre-existing commercial off-the-shelf subsystems. A CT motion control gantry was constructed from COTS components that can handle larger samples. The motion control gantry allows inspection of sample sizes of up to approximately one cubic foot (.0.03 cubic meters). The system reduced to practice a CT-TDTHz system incorporating a COTS 80- ps/l-kHz waveform scanner. The incorporation of this scanner in the system allows acquisition of 3D

  6. GE simplified boiling water reactor stability analysis in time domain

    NASA Astrophysics Data System (ADS)

    Lu, Shanlai

    1997-12-01

    General Electric Simplified Boiling Water Reactor (SBWR) was designed as a next generation light water reactor. It uses natural circulation to remove the heat from the reactor core. Because of this unique in-vessel circulation feature, SBWR is expected to exhibit different stability behaviors. The main emphasis of this thesis is to study the SBWR stability behavior in the time domain. The best-estimate BWR accident/transient analysis computer code, TRAC-BF1, is employed to analyze the SBWR stability behavior. A detailed TRAC-BF1 SBWR model has been developed, which has the capability to model the in-vessel natural circulation and the reactor core kinetics. The model is used to simulate three slow depressurization processes. The simulation results show that the reactor is stable under low pressure and nominal downcomer water level conditions. However, when the downcomer water level is raised to about 19.2 m above the bottom of the reactor vessel, an unstable power oscillation is observed. The identified power oscillation is further analyzed using TRAC-BF1 1-D kinetics and the new TRAC-BF1 3-D kinetics code developed in this thesis. The effects of different time step sizes and vessel model nodalizations are examined. It is found that the power oscillation is in-phase and has a frequency of 0.3 HZ. In order to further explore the physical instabilty initiation mechanisms, a simplified dynamic model consisting of six simple differential equations is developed. The simplified model is able to predict the dominant physical phenomenon identified by the TRAC-BF1 analysis. The results indicate that the system instability is possibly caused by the steam separator hydro-static head oscillation under the high water level condition. In order to explore the higher order spacial effect of power oscillation, a 3-D reactor core kinetics code is coupled with the TRAC-BF1 computer code in the PVM parallel processing environment. A new coupling scheme and a multiple time step marching

  7. 3D transient electromagnetic simulation using a modified correspondence principle for wave and diffusion fields

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Ji, Y.; Egbert, G. D.

    2015-12-01

    The fictitious time domain method (FTD), based on the correspondence principle for wave and diffusion fields, has been developed and used over the past few years primarily for marine electromagnetic (EM) modeling. Here we present results of our efforts to apply the FTD approach to land and airborne TEM problems which can reduce the computer time several orders of magnitude and preserve high accuracy. In contrast to the marine case, where sources are in the conductive sea water, we must model the EM fields in the air; to allow for topography air layers must be explicitly included in the computational domain. Furthermore, because sources for most TEM applications generally must be modeled as finite loops, it is useful to solve directly for the impulse response appropriate to the problem geometry, instead of the point-source Green functions typically used for marine problems. Our approach can be summarized as follows: (1) The EM diffusion equation is transformed to a fictitious wave equation. (2) The FTD wave equation is solved with an explicit finite difference time-stepping scheme, with CPML (Convolutional PML) boundary conditions for the whole computational domain including the air and earth , with FTD domain source corresponding to the actual transmitter geometry. Resistivity of the air layers is kept as low as possible, to compromise between efficiency (longer fictitious time step) and accuracy. We have generally found a host/air resistivity contrast of 10-3 is sufficient. (3)A "Modified" Fourier Transform (MFT) allow us recover system's impulse response from the fictitious time domain to the diffusion (frequency) domain. (4) The result is multiplied by the Fourier transformation (FT) of the real source current avoiding time consuming convolutions in the time domain. (5) The inverse FT is employed to get the final full waveform and full time response of the system in the time domain. In general, this method can be used to efficiently solve most time-domain EM

  8. Terahertz time-domain spectroscopy as a new tool for the characterization of dust forming plasmas

    NASA Astrophysics Data System (ADS)

    Ebbinghaus, S.; Schröck, K.; Schauer, J. C.; Bründermann, E.; Heyden, M.; Schwaab, G.; Böke, M.; Winter, J.; Tani, M.; Havenith, M.

    2006-02-01

    We report the application of terahertz time-domain spectroscopy as a new tool for plasma diagnostics. The short broadband THz pulses were radiated from a low temperature grown GaAs emitter by free charge carriers which were generated by focusing a 20 femtosecond TiSa-laser pulse onto the emitter. For sensitive signal recording a coherent detection scheme was applied. This allowed the measurement of the amplitude and sign of the electromagnetic field of the THz pulse after passing the plasma chamber. Fourier transformation allowed us to obtain the full spectrum in the frequency domain. We compared the transmitted THz intensities of a pure argon (Ar) and an acetylene (C2H2)/argon plasma. The presence of the ethynyl-radical (CCH) and cyclopropenylidene (c-C3H2) in the (C2H2)/argon plasma could be confirmed by the observations of rotational transitions in the region from 8 to 16 cm-1 corresponding to 0.3-0.5 THz.

  9. Comparison of Time Domain Reflectometry Performance Factors for Several Dielectric Geometries: Theory and Experiments

    NASA Astrophysics Data System (ADS)

    Maheshwarla, S. V.; Venkatasubramanian, R.; Boehm, Robert F.

    1995-08-01

    We propose three nontraditional dielectric geometries and present an experimental and theoretical analysis and comparison of time domain reflectometry (TDR) performances for them. The traditional geometry (the probes inserted in material of essentially infinite extent) is compared to three nontraditional geometries where the probes are affixed outside of a core sample, inside of a bore, or flat on the surface of a semi-infinite solid. Our derivation relates the velocity of electromagnetic wave propagation to the complex permittivities and permeabilities of the media and the geometry for the three nontraditional configurations. Experimental results for air, styrofoam, dry sand, wet sand of varying water content, nylon, dry wood, and ferromagnetic steel are obtained for the three proposed configurations and are in fair agreement with the literature within the experimental uncertainties. Through experiments and theoretical analysis, the TDR performance is found to be the same within the experimental uncertainties for the three nontraditional geometries. The proposed geometries yield slightly lower sensitivities compared to the traditional geometry. Advantages and disadvantages of the geometries compared to the traditional geometry are also discussed.

  10. Evaluation of measurement sensitivity and design improvement for time domain reflectometry penetrometers

    NASA Astrophysics Data System (ADS)

    Zhan, Tony Liang-tong; Mu, Qing-yi; Chen, Yun-min; Ke, Han

    2015-04-01

    The time domain reflectometry (TDR) penetrometer, which can measure both the apparent dielectric permittivity and the bulk electrical conductivity of soils, is an important tool for the site investigation of contaminated land. This paper presents a theoretical method for evaluating the measurement sensitivity and an improved design of the TDR penetrometer. The sensitivity evaluation method is based on a spatial weighting analysis of the electromagnetic field using a seepage analysis software. This method is used to quantify the measurement sensitivity for the three types of TDR penetrometers reported in literature as well as guide the design improvement of the TDR penetrometer. The improved design includes the use of semicircle-shaped conductors and the optimization of the conductor diameter. The measurement sensitivity to the targeted medium for the improved TDR penetrometer is evaluated to be greater than those of the three types of TDR penetrometers reported in literature. The performance of the improved TDR penetrometer was demonstrated by conducting an experimental calibration of the probe and penetration tests in a chamber containing a silty soil column. The experimental results demonstrate that the measurements from the improved TDR penetrometer are able to capture the variation in the water content profiles as well as the leachate contaminated soil.

  11. Finite-difference time-domain analysis for the dynamics and diffraction of exciton-polaritons.

    PubMed

    Chen, Minfeng; Chang, Yia-Chung; Hsieh, Wen-Feng

    2015-10-01

    We adopted a finite-difference time-domain (FDTD) scheme to simulate the dynamics and diffraction of exciton-polaritons, governed by the coupling of polarization waves with electromagnetic waves. The polarization wave, an approximate solution to the Schrödinger's equation at low frequencies, essentially captures the exciton behavior. Numerical stability of the scheme is analyzed and simple examples are provided to prove its validity. The system considered is both temporally and spatially dispersive, for which the FDTD analysis has attracted less attention in the literature. Here, we demonstrate that the FDTD scheme could be useful for studying the optical response of the exciton-polariton and its dynamics. The diffraction of a polariton wave from a polaritonic grating is also considered, and many sharp resonances are found, which manifest the interference effect of polariton waves. This illustrates that the measurement of transmittance or reflectance near polariton resonance can reveal subwavelength features in semiconductors, which are sensitive to polariton scattering. PMID:26479940

  12. Phase-sensitive optical time domain reflectometer for distributed fence-perimeter intrusion detection

    NASA Astrophysics Data System (ADS)

    Yu, Xuhui; Zhou, Deliang; Lu, Bin; Liu, Sufang; Pan, Ming

    2015-10-01

    In this paper, we demonstrate a distributed fence-perimeter intrusion detection system using a phase-sensitive optical time domain reflectometer (Φ-OTDR) with several advantages, such as high spatial resolution, large detection range, single-end measurement and immunity from electromagnetic interference. By the effort of generating a high-extinction-ratio optical pulse, optimizing the incident optical power and utilizing a differential algorithm, a home-made Φ-OTDR system, as a distributed vibration sensor, is implemented with a spatial resolution of 10 meter. Nowadays, a fence-perimeter intrusion detection system is desired for the security monitor. We set up a fence perimeter using a fiber cable containing only one fiber and a field experiment is carried out based on our Φ-OTDR system. Various vibration events are recorded and analyzed, including wind blowing, personal climbing and knocking. The experiment results reveal unique vibration characteristics of different events in the frequency domain and confirm the effectiveness of the homemade Φ-OTDR system in the application of the distributed fence-perimeter intrusion detection.

  13. [The error analysis and experimental verification of laser radar spectrum detection and terahertz time domain spectroscopy].

    PubMed

    Liu, Wen-Tao; Li, Jing-Wen; Sun, Zhi-Hui

    2010-03-01

    Terahertz waves (THz, T-ray) lie between far-infrared and microwave in electromagnetic spectrum with frequency from 0.1 to 10 THz. Many chemical agent explosives show characteristic spectral features in the terahertz. Compared with conventional methods of detecting a variety of threats, such as weapons and chemical agent, THz radiation is low frequency and non-ionizing, and does not give rise to safety concerns. The present paper summarizes the latest progress in the application of terahertz time domain spectroscopy (THz-TDS) to chemical agent explosives. A kind of device on laser radar detecting and real time spectrum measuring was designed which measures the laser spectrum on the bases of Fourier optics and optical signal processing. Wedge interferometer was used as the beam splitter to wipe off the background light and detect the laser and measure the spectrum. The result indicates that 10 ns laser radar pulse can be detected and many factors affecting experiments are also introduced. The combination of laser radar spectrum detecting, THz-TDS, modern pattern recognition and signal processing technology is the developing trend of remote detection for chemical agent explosives. PMID:20496663

  14. Quantitative analyses of tartaric acid based on terahertz time domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Cao, Binghua; Fan, Mengbao

    2010-10-01

    Terahertz wave is the electromagnetic spectrum situated between microwave and infrared wave. Quantitative analysis based on terahertz spectroscopy is very important for the application of terahertz techniques. But how to realize it is still under study. L-tartaric acid is widely used as acidulant in beverage, and other food, such as soft drinks, wine, candy, bread and some colloidal sweetmeats. In this paper, terahertz time-domain spectroscopy is applied to quantify the tartaric acid. Two methods are employed to process the terahertz spectra of different samples with different content of tartaric acid. The first one is linear regression combining correlation analysis. The second is partial least square (PLS), in which the absorption spectra in the 0.8-1.4THz region are used to quantify the tartaric acid. To compare the performance of these two principles, the relative error of the two methods is analyzed. For this experiment, the first method does better than the second one. But the first method is suitable for the quantitative analysis of materials which has obvious terahertz absorption peaks, while for material which has no obvious terahertz absorption peaks, the second one is more appropriate.

  15. ANTARES: Hunting the "rarest of the rare" in the time-domain

    NASA Astrophysics Data System (ADS)

    Narayan, Gautham; Snodgrass, Richard; Keceioglu, John; Saha, Abhijit; Matheson, Thomas; Seaman, Rob; Jenness, Tim; Day Toeniskotter, Jackson; Yang, Shuo; Wang, Zhe; Dempsey, Jen

    2015-08-01

    Current and future wide-field surveys provide us with petabytes of images, and an unparalleled window into the time-domain. Identifying, filtering, characterizing, and following up even known classes of variable and transient sources in this data stream pose an unprecedented challenge. However, the most interesting objects are those that we have never seen before. I’ll discuss our work on the Arizona-NOAO Temporal Analysis and Response to Events System. ANTARES is a joint project of the U.S. National Optical Astronomy Observatory, and the Department of Computer Science at the University of Arizona, and we are using our experience with synoptic surveys and big data to tackle the general problem of characterizing the entire transient and variable sky. Our prototype is focused on identifying the “rarest of the the rare” events in real-time, from "multi-messenger" data streams. In order to coordinate detailed follow-up studies with facilities spanning the entire electromagnetic spectrum, we must accurately characterize known objects with sparse data to separate the wheat from the chaff. I’ll detail some of the new algorithms being developed for the project, the more complex architecture we need to accomplish this more ambitious goal, and present some of our preliminary results using existing data sets.

  16. Finite-difference time-domain modelling of through-the-Earth radio signal propagation

    NASA Astrophysics Data System (ADS)

    Ralchenko, M.; Svilans, M.; Samson, C.; Roper, M.

    2015-12-01

    This research seeks to extend the knowledge of how a very low frequency (VLF) through-the-Earth (TTE) radio signal behaves as it propagates underground, by calculating and visualizing the strength of the electric and magnetic fields for an arbitrary geology through numeric modelling. To achieve this objective, a new software tool has been developed using the finite-difference time-domain method. This technique is particularly well suited to visualizing the distribution of electromagnetic fields in an arbitrary geology. The frequency range of TTE radio (400-9000 Hz) and geometrical scales involved (1 m resolution for domains a few hundred metres in size) involves processing a grid composed of millions of cells for thousands of time steps, which is computationally expensive. Graphics processing unit acceleration was used to reduce execution time from days and weeks, to minutes and hours. Results from the new modelling tool were compared to three cases for which an analytic solution is known. Two more case studies were done featuring complex geologic environments relevant to TTE communications that cannot be solved analytically. There was good agreement between numeric and analytic results. Deviations were likely caused by numeric artifacts from the model boundaries; however, in a TTE application in field conditions, the uncertainty in the conductivity of the various geologic formations will greatly outweigh these small numeric errors.

  17. Wideband THz Time Domain Spectroscopy based on Optical Rectification and Electro-Optic Sampling

    PubMed Central

    Tomasino, A.; Parisi, A.; Stivala, S.; Livreri, P.; Cino, A. C.; Busacca, A. C.; Peccianti, M.; Morandotti, R.

    2013-01-01

    We present an analytical model describing the full electromagnetic propagation in a THz time-domain spectroscopy (THz-TDS) system, from the THz pulses via Optical Rectification to the detection via Electro Optic-Sampling. While several investigations deal singularly with the many elements that constitute a THz-TDS, in our work we pay particular attention to the modelling of the time-frequency behaviour of all the stages which compose the experimental set-up. Therefore, our model considers the following main aspects: (i) pump beam focusing into the generation crystal; (ii) phase-matching inside both the generation and detection crystals; (iii) chromatic dispersion and absorption inside the crystals; (iv) Fabry-Perot effect; (v) diffraction outside, i.e. along the propagation, (vi) focalization and overlapping between THz and probe beams, (vii) electro-optic sampling. In order to validate our model, we report on the comparison between the simulations and the experimental data obtained from the same set-up, showing their good agreement. PMID:24173583

  18. Simulation of optical devices using parallel finite-difference time-domain method

    NASA Astrophysics Data System (ADS)

    Li, Kang; Kong, Fanmin; Mei, Liangmo; Liu, Xin

    2005-11-01

    This paper presents a new parallel finite-difference time-domain (FDTD) numerical method in a low-cost network environment to stimulate optical waveguide characteristics. The PC motherboard based cluster is used, as it is relatively low-cost, reliable and has high computing performance. Four clusters are networked by fast Ethernet technology. Due to the simplicity nature of FDTD algorithm, a native Ethernet packet communication mechanism is used to reduce the overhead of the communication between the adjacent clusters. To validate the method, a microcavity ring resonator based on semiconductor waveguides is chosen as an instance of FDTD parallel computation. Speed-up rate under different division density is calculated. From the result we can conclude that when the decomposing size reaches a certain point, a good parallel computing speed up will be maintained. This simulation shows that through the overlapping of computation and communication method and controlling the decomposing size, the overhead of the communication of the shared data will be conquered. The result indicates that the implementation can achieve significant speed up for the FDTD algorithm. This will enable us to tackle the larger real electromagnetic problem by the low-cost PC clusters.

  19. SAR image simulation in the time domain for moving ocean surfaces.

    PubMed

    Yoshida, Takero; Rheem, Chang-Kyu

    2013-01-01

    This paper presents a fundamental simulation method to generate synthetic aperture radar (SAR) images for moving ocean surfaces. We have designed the simulation based on motion induced modulations and Bragg scattering, which are important features of ocean SAR images. The time domain simulation is able to obtain time series of microwave backscattering modulated by the orbital motions of ocean waves. Physical optics approximation is applied to calculate microwave backscattering. The computational grids are smaller than transmit microwave to demonstrate accurate interaction between electromagnetic waves and ocean surface waves. In this paper, as foundations for SAR image simulation of moving ocean surfaces, the simulation is carried out for some targets and ocean waves. The SAR images of stationary and moving targets are simulated to confirm SAR signal processing and motion induced modulation. Furthermore, the azimuth signals from the regular wave traveling to the azimuth direction also show the azimuthal shifts due to the orbital motions. In addition, incident angle dependence is simulated for irregular wind waves to compare with Bragg scattering theory. The simulation results are in good agreement with the theory. These results show that the simulation is applicable for generating numerical SAR images of moving ocean surfaces. PMID:23549367

  20. Cable Damage Detection System and Algorithms Using Time Domain Reflectometry

    SciTech Connect

    Clark, G A; Robbins, C L; Wade, K A; Souza, P R

    2009-03-24

    This report describes the hardware system and the set of algorithms we have developed for detecting damage in cables for the Advanced Development and Process Technologies (ADAPT) Program. This program is part of the W80 Life Extension Program (LEP). The system could be generalized for application to other systems in the future. Critical cables can undergo various types of damage (e.g. short circuits, open circuits, punctures, compression) that manifest as changes in the dielectric/impedance properties of the cables. For our specific problem, only one end of the cable is accessible, and no exemplars of actual damage are available. This work addresses the detection of dielectric/impedance anomalies in transient time domain reflectometry (TDR) measurements on the cables. The approach is to interrogate the cable using time domain reflectometry (TDR) techniques, in which a known pulse is inserted into the cable, and reflections from the cable are measured. The key operating principle is that any important cable damage will manifest itself as an electrical impedance discontinuity that can be measured in the TDR response signal. Machine learning classification algorithms are effectively eliminated from consideration, because only a small number of cables is available for testing; so a sufficient sample size is not attainable. Nonetheless, a key requirement is to achieve very high probability of detection and very low probability of false alarm. The approach is to compare TDR signals from possibly damaged cables to signals or an empirical model derived from reference cables that are known to be undamaged. This requires that the TDR signals are reasonably repeatable from test to test on the same cable, and from cable to cable. Empirical studies show that the repeatability issue is the 'long pole in the tent' for damage detection, because it is has been difficult to achieve reasonable repeatability. This one factor dominated the project. The two-step model-based approach is

  1. Monitoring moisture storage in trees using time domain reflectometry

    NASA Astrophysics Data System (ADS)

    Constantz, Jim; Murphy, Fred

    1990-11-01

    Laboratory and field tests were performed to examine the feasibility of using time domain reflectometry (TDR) to monitor changes in the moisture storage of the woody parts of trees. To serve as wave guides for the TDR signal, pairs of stainless steel rods (13 cm long, 0.32 cm in diameter, and 2.5 cm separation) were driven into parallel pilot holes drilled into the woody parts of trees, and a cable testing oscilloscope was used to determine the apparent dielectric constant. A laboratory calibration test was performed on two sapwood samples, so that the relation between the volumetric water content and the apparent dielectric constant of the sapwood could be determined over a range of water contents. The resulting calibration curve for these sapwood samples was significantly different than the general calibration curve used for soils, showing a smaller change in the apparent dielectric constant for a given change in the volumetric water content than is typical for soils. The calibration curve was used to estimate the average volumetric water content to a depth of 13 cm in living trees. One field experiment was conducted on an English walnut tree ( Juglans regia) with a diameter of 40 cm, growing in a flood-irrigated orchard on a Hanford sandy loam near Modesto, California (U.S.A.). Rods were driven into the tree at about 50 cm above the soil surface and monitored hourly for the month of August, 1988. The moisture content determined by TDR showed a gradual decrease from 0.44 to 0.42 cm 3 cm -3 over a two week period prior to flood irrigation, followed by a rapid rise to 0.47 cm 3 cm -3 over a four day period after irrigation, then again a gradual decline approaching the next irrigation. A second field experiment was made on ten evergreen and deciduous trees with diameters ranging from 30 to 120 cm, growing in the foothills of the Coast Range of central California. Rods were driven into each tree at 50 to 100 cm above the soil surface and monitored on a biweekly to

  2. Airborne geophysical surveys conducted in western Nebraska, 2010: contractor reports and data

    USGS Publications Warehouse

    U.S.Geological Survey Crustal Geophysical and Geochemical Science Center

    2014-01-01

    This report contains three contractor reports and data files for an airborne electromagnetic survey flown from June 28 to July 7, 2010. The first report; “SkyTEM Survey: Nebraska, USA, Data” describes data aquisition and processing from a time-domain electromagnetic and magnetic survey performed by SkyTEM Canada, Inc. (the North American SkyTEM subsidiary), in western Nebraska, USA. Digital data for this report are given in Appendix 1. The airborne geophysical data from the SkyTEM survey subsequently were processed and inverted by Aarhus Geophysics ApS, Aarhus, Denmark, to produce resistivity depth sections along each flight line. The result of that processing is described in two reports presented in Appendix 2, “Processing and inversion of SkyTEM data from USGS Area UTM–13” and “Processing and inversion of SkyTEM data from USGS Area UTM–14.” Funding for these surveys was provided by the North Platte Natural Resources District, the South Platte Natural Resources District, and the Twin Platte Natural Resources District, in Scottsbluff, Sidney, and North Platte, Nebraska, respectively. Any additional information concerning the geophysical data may be obtained from the U.S. Geological Survey Crustal Geophysics and Geochemistry Science Center, Denver Colorado.

  3. Quantitative modeling of ICRF antennas with integrated time domain RF sheath and plasma physics

    NASA Astrophysics Data System (ADS)

    Smithe, David N.; D'Ippolito, Daniel A.; Myra, James R.

    2014-02-01

    Significant efforts have been made to quantitatively benchmark the sheath sub-grid model used in our time-domain simulations of plasma-immersed antenna near fields, which includes highly detailed three-dimensional geometry, the presence of the slow wave, and the non-linear evolution of the sheath potential. We present both our quantitative benchmarking strategy, and results for the ITER antenna configuration, including detailed maps of electric field, and sheath potential along the entire antenna structure. Our method is based upon a time-domain linear plasma model [1], using the finite-difference electromagnetic Vorpal/Vsim software [2]. This model has been augmented with a non-linear rf-sheath sub-grid model [3], which provides a self-consistent boundary condition for plasma current where it exists in proximity to metallic surfaces. Very early, this algorithm was designed and demonstrated to work on very complicated three-dimensional geometry, derived from CAD or other complex description of actual hardware, including ITER antennas. Initial work with the simulation model has also provided a confirmation of the existence of propagating slow waves [4] in the low density edge region, which can significantly impact the strength of the rf-sheath potential, which is thought to contribute to impurity generation. Our sheath algorithm is based upon per-point lumped-circuit parameters for which we have estimates and general understanding, but which allow for some tuning and fitting. We are now engaged in a careful benchmarking of the algorithm against known analytic models and existing computational techniques [5] to insure that the predictions of rf-sheath voltage are quantitatively consistent and believable, especially where slow waves share in the field with the fast wave. Currently in progress, an addition to the plasma force response accounting for the sheath potential, should enable the modeling of sheath plasma waves, a predicted additional root to the dispersion

  4. Quantitative modeling of ICRF antennas with integrated time domain RF sheath and plasma physics

    SciTech Connect

    Smithe, David N.; D'Ippolito, Daniel A.; Myra, James R.

    2014-02-12

    Significant efforts have been made to quantitatively benchmark the sheath sub-grid model used in our time-domain simulations of plasma-immersed antenna near fields, which includes highly detailed three-dimensional geometry, the presence of the slow wave, and the non-linear evolution of the sheath potential. We present both our quantitative benchmarking strategy, and results for the ITER antenna configuration, including detailed maps of electric field, and sheath potential along the entire antenna structure. Our method is based upon a time-domain linear plasma model, using the finite-difference electromagnetic Vorpal/Vsim software. This model has been augmented with a non-linear rf-sheath sub-grid model, which provides a self-consistent boundary condition for plasma current where it exists in proximity to metallic surfaces. Very early, this algorithm was designed and demonstrated to work on very complicated three-dimensional geometry, derived from CAD or other complex description of actual hardware, including ITER antennas. Initial work with the simulation model has also provided a confirmation of the existence of propagating slow waves in the low density edge region, which can significantly impact the strength of the rf-sheath potential, which is thought to contribute to impurity generation. Our sheath algorithm is based upon per-point lumped-circuit parameters for which we have estimates and general understanding, but which allow for some tuning and fitting. We are now engaged in a careful benchmarking of the algorithm against known analytic models and existing computational techniques to insure that the predictions of rf-sheath voltage are quantitatively consistent and believable, especially where slow waves share in the field with the fast wave. Currently in progress, an addition to the plasma force response accounting for the sheath potential, should enable the modeling of sheath plasma waves, a predicted additional root to the dispersion, existing at the

  5. On the Analysis Methods for the Time Domain and Frequency Domain Response of a Buried Objects*

    NASA Astrophysics Data System (ADS)

    Poljak, Dragan; Šesnić, Silvestar; Cvetković, Mario

    2014-05-01

    There has been a continuous interest in the analysis of ground-penetrating radar systems and related applications in civil engineering [1]. Consequently, a deeper insight of scattering phenomena occurring in a lossy half-space, as well as the development of sophisticated numerical methods based on Finite Difference Time Domain (FDTD) method, Finite Element Method (FEM), Boundary Element Method (BEM), Method of Moments (MoM) and various hybrid methods, is required, e.g. [2], [3]. The present paper deals with certain techniques for time and frequency domain analysis, respectively, of buried conducting and dielectric objects. Time domain analysis is related to the assessment of a transient response of a horizontal straight thin wire buried in a lossy half-space using a rigorous antenna theory (AT) approach. The AT approach is based on the space-time integral equation of the Pocklington type (time domain electric field integral equation for thin wires). The influence of the earth-air interface is taken into account via the simplified reflection coefficient arising from the Modified Image Theory (MIT). The obtained results for the transient current induced along the electrode due to the transmitted plane wave excitation are compared to the numerical results calculated via an approximate transmission line (TL) approach and the AT approach based on the space-frequency variant of the Pocklington integro-differential approach, respectively. It is worth noting that the space-frequency Pocklington equation is numerically solved via the Galerkin-Bubnov variant of the Indirect Boundary Element Method (GB-IBEM) and the corresponding transient response is obtained by the aid of inverse fast Fourier transform (IFFT). The results calculated by means of different approaches agree satisfactorily. Frequency domain analysis is related to the assessment of frequency domain response of dielectric sphere using the full wave model based on the set of coupled electric field integral

  6. Ground penetrating radar data analyzed in frequency and time domain for engineering issues

    NASA Astrophysics Data System (ADS)

    Capozzoli, Luigi; Giampaolo, Valeria; Votta, Mario; Rizzo, Enzo

    2014-05-01

    spectrum that allows a supplementary help to complete the information extracted in time-domain (dos Santos et al., 2014). The signal processing technique is based on a Fast Fourier Transform (FFT) that allows analyzing in frequency domain variations due to presence of anomalous bodies of different materials in the concrete and in the sand. Furthermore the data obtained in situ are compared with data extracted by theoretical simulation of e-m signal propagation built in Reflex-w software. There is a good agreement between simulated data and real data both in frequency domain both in time domain. So we have verified that frequency analysis can be adopted such as a useful tools to increase and complete information achieved in traditional way. Bibliography James S. Mellett (1995). Ground penetrating radar applications in engineering, environmental Management, and geology. Journal of Applied Geophysics. V. 33, Issues 1-3, January 1995, Pages 157-166 Proto, M.; Bavusi, M.; Bernini, R.; Bigagli, L.; Bost, M.; Bourquin, F.; Cottineau, L.-M.; Cuomo, V.; Vecchia, P.D.; Dolce, M.; Dumoulin, J.; Eppelbaum, L.; Fornaro, G.; Gustafsson, M.; Hugenschimdt, J.; Kaspersen, P.; Kim, H.; Lapenna, V.; Leggio, M.; Loperte, A.; Mazzetti, P.; Moroni, C.; Nativi, S.; Nordebo, S.; Pacini, F.; Palombo, A.; Pascucci, S.; Perrone, A.; Pignatti, S.; Ponzo, F.C.; Rizzo, E.; Soldovieri, F.; Taillade, F. Transport Infrastructure Surveillance and Monitoring by Electromagnetic Sensing: The ISTIMES Project. Sensors 2010, 10, 10620-10639 Vinicius Rafael N. dos Santos, Waleed Al-Nuaimy, Jorge Luís Porsani, Nina S. Tomita Hirata, Hamzah S. Alzubi (2014). Spectral analysis of ground penetrating radar signals in concrete, metallic and plastic targets. Journal of Applied Geophysics, V.100, January 2014, Pages 32-43

  7. Application of Novel High Order Time Domain Vector Finite Element Method to Photonic Band-Gap Waveguides

    SciTech Connect

    Rieben, R; White, D; Rodrigue, G

    2004-01-13

    In this paper we motivate the use of a novel high order time domain vector finite element method that is of arbitrary order accuracy in space and up to 5th order accurate in time; and in particular, we apply it to the case of photonic band-gap (PBG) structures. Such structures have been extensively studied in the literature with several practical applications; in particular, for the low loss transmission of electromagnetic energy around sharp 90 degree bends [1]. Typically, such structures are simulated via a numerical solution of Maxwell's equations either in the frequency domain or directly in the time domain over a computational grid. The majority of numerical simulations performed for such structures make use of the widely popular finite difference time domain (FDTD) method [2], where the time dependent electric and magnetic fields are discretized over a ''dual'' grid to second order accuracy in space and time. However, such methods do not generalize to unstructured, non-orthogonal grids or to higher order spatial discretization schemes. To simulate more complicated structures with curved boundaries, such as the structure of [3], a cell based finite element method with curvilinear elements is preferred over standard stair-stepped Cartesian meshes; and to more efficiently reduce the effects of numerical dispersion, a higher order method is highly desirable. In this paper, the high order basis functions of [5] are used in conjunction with the high order energy conserving symplectic time integration algorithms of [6] resulting in a high order, fully mimetic, mixed vector finite element method.

  8. The detection of amoxicillin medicines by terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Meng, Kun; Li, Zeren; Liu, Qiao

    2011-11-01

    Terahertz time-domain spectroscopy (THz-TDS) is a new spectroscopic technique, which improve a good complement for other spectroscopic techniques and has broad application prospects in the biomedical field. In this paper, a terahertz time-domain spectroscopy system is set up. Using this system, the amoxicillin drugs are detected, and the spectrum are analyzed.

  9. The detection of amoxicillin medicines by terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Meng, Kun; Li, Zeren; Liu, Qiao

    2012-03-01

    Terahertz time-domain spectroscopy (THz-TDS) is a new spectroscopic technique, which improve a good complement for other spectroscopic techniques and has broad application prospects in the biomedical field. In this paper, a terahertz time-domain spectroscopy system is set up. Using this system, the amoxicillin drugs are detected, and the spectrum are analyzed.

  10. THE PSTD ALGORITHM: A TIME-DOMAIN METHOD REQUIRING ONLY TWO CELLS PER WAVELENGTH. (R825225)

    EPA Science Inventory

    A pseudospectral time-domain (PSTD) method is developed for solutions of Maxwell's equations. It uses the fast Fourier transform (FFT), instead of finite differences on conventional finite-difference-time-domain (FDTD) methods, to represent spatial derivatives. Because the Fourie...

  11. Return Stroke Current and Optical Wave Speed Study with Time Domain Fractal Lightning Modelling

    NASA Astrophysics Data System (ADS)

    Liang, C.; Lehtinen, N. G.; Carlson, B. E.; Cohen, M.; Inan, U.

    2013-12-01

    Time domain fractal lightning modeling is capable of handling both the complex geometry of the lighting channel and the dynamic evolution of the charge and current distribution along the channel. Recent enhancement improves the model by including more accurate treatment of the thermodynamics of the lighting channel during the return stroke. Specifically, the model uses realistic high temperature air plasma properties and self-consistently solves Maxwell's equations coupled with equations of air plasma thermodynamics. Moreover, the model takes a two fluid view of the plasma in the core of the lightning channel and allows temperature separation between the electron gas and the gas formed by the other heavier particles. This is achieved by taking into account of the finite rate of kinetic energy transfer between the two gases. With these features at hand, we present numerical simulations of the current and the optical wave propagations along the lightning channel during the return stroke. This study is of particular interest because a broad range of applications including lightning geolocation, aviation safety, and lightning-ionospheric coupling are based on the predicted electromagnetic pulse of the return stroke, which are derived with assumptions on the return stroke current wave speed. A wide range of optical recordings of the return stroke is available, based on which the optical wave speed along the return stroke channel is consistently measured to be in the range of 1/3 - 2/3 of the speed of light. Direct measurement of the current wave speed is not available and it is commonly assumed to be the same as the optical wave speed. However, our model predicts a significantly higher current wave speed than the optical wave speed, as well as a finite time delay between the two waves. We also present comparisons between the observed and model predicted optical wave rise time, peak optical power decay rate with altitude, peak temperature and pressure, as well as the

  12. Computational Electronics and Electromagnetics

    SciTech Connect

    DeFord, J.F.

    1993-03-01

    The Computational Electronics and Electromagnetics thrust area is a focal point for computer modeling activities in electronics and electromagnetics in the Electronics Engineering Department of Lawrence Livermore National Laboratory (LLNL). Traditionally, they have focused their efforts in technical areas of importance to existing and developing LLNL programs, and this continues to form the basis for much of their research. A relatively new and increasingly important emphasis for the thrust area is the formation of partnerships with industry and the application of their simulation technology and expertise to the solution of problems faced by industry. The activities of the thrust area fall into three broad categories: (1) the development of theoretical and computational models of electronic and electromagnetic phenomena, (2) the development of useful and robust software tools based on these models, and (3) the application of these tools to programmatic and industrial problems. In FY-92, they worked on projects in all of the areas outlined above. The object of their work on numerical electromagnetic algorithms continues to be the improvement of time-domain algorithms for electromagnetic simulation on unstructured conforming grids. The thrust area is also investigating various technologies for conforming-grid mesh generation to simplify the application of their advanced field solvers to design problems involving complicated geometries. They are developing a major code suite based on the three-dimensional (3-D), conforming-grid, time-domain code DSI3D. They continue to maintain and distribute the 3-D, finite-difference time-domain (FDTD) code TSAR, which is installed at several dozen university, government, and industry sites.

  13. A two-dimensional time domain near zone to far zone transformation

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Ryan, Deirdre; Beggs, John H.; Kunz, Karl S.

    1991-01-01

    A time domain transformation useful for extrapolating three dimensional near zone finite difference time domain (FDTD) results to the far zone was presented. Here, the corresponding two dimensional transform is outlined. While the three dimensional transformation produced a physically observable far zone time domain field, this is not convenient to do directly in two dimensions, since a convolution would be required. However, a representative two dimensional far zone time domain result can be obtained directly. This result can then be transformed to the frequency domain using a Fast Fourier Transform, corrected with a simple multiplicative factor, and used, for example, to calculate the complex wideband scattering width of a target. If an actual time domain far zone result is required, it can be obtained by inverse Fourier transform of the final frequency domain result.

  14. A two-dimensional time domain near zone to far zone transformation

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Ryan, Deirdre; Beggs, John H.; Kunz, Karl S.

    1991-01-01

    In a previous paper, a time domain transformation useful for extrapolating 3-D near zone finite difference time domain (FDTD) results to the far zone was presented. In this paper, the corresponding 2-D transform is outlined. While the 3-D transformation produced a physically observable far zone time domain field, this is not convenient to do directly in 2-D, since a convolution would be required. However, a representative 2-D far zone time domain result can be obtained directly. This result can then be transformed to the frequency domain using a Fast Fourier Transform, corrected with a simple multiplicative factor, and used, for example, to calculate the complex wideband scattering width of a target. If an actual time domain far zone result is required it can be obtained by inverse Fourier transform of the final frequency domain result.

  15. Monitoring stream stage, channel profile, and aqueous conductivity with time domain reflectometry (TDR).

    SciTech Connect

    Brainard, James Robert; Tidwell, Vincent Carroll; Coplen, Amy K.; Ruby, Douglas Scott; Coombs, Jason R.; Wright, Jerome L.; Roberts, Jesse Daniel

    2004-11-01

    Time domain reflectometry (TDR) operates by propagating a radar frequency electromagnetic pulse down a transmission line while monitoring the reflected signal. As the electromagnetic pulse propagates along the transmission line, it is subject to impedance by the dielectric properties of the media along the transmission line (e.g., air, water, sediment), reflection at dielectric discontinuities (e.g., air-water or water-sediment interface), and attenuation by electrically conductive materials (e.g., salts, clays). Taken together, these characteristics provide a basis for integrated stream monitoring; specifically, concurrent measurement of stream stage, channel profile and aqueous conductivity. Here, we make novel application of TDR within the context of stream monitoring. Efforts toward this goal followed three critical phases. First, a means of extracting the desired stream parameters from measured TDR traces was required. Analysis was complicated by the fact that interface location and aqueous conductivity vary concurrently and multiple interfaces may be present at any time. For this reason a physically based multisection model employing the S11 scatter function and Cole-Cole parameters for dielectric dispersion and loss was developed to analyze acquired TDR traces. Second, we explored the capability of this multisection modeling approach for interpreting TDR data acquired from complex environments, such as encountered in stream monitoring. A series of laboratory tank experiments were performed in which the depth of water, depth of sediment, and conductivity were varied systematically. Comparisons between modeled and independently measured data indicate that TDR measurements can be made with an accuracy of {+-}3.4x10{sup -3} m for sensing the location of an air/water or water/sediment interface and {+-}7.4% of actual for the aqueous conductivity. Third, monitoring stations were sited on the Rio Grande and Paria rivers to evaluate performance of the TDR system

  16. Finite-difference algorithms for the time-domain Maxwell's equations - A numerical approach to RCS analysis

    NASA Technical Reports Server (NTRS)

    Vinh, Hoang; Dwyer, Harry A.; Van Dam, C. P.

    1992-01-01

    The applications of two CFD-based finite-difference methods to computational electromagnetics are investigated. In the first method, the time-domain Maxwell's equations are solved using the explicit Lax-Wendroff scheme and in the second method, the second-order wave equations satisfying the Maxwell's equations are solved using the implicit Crank-Nicolson scheme. The governing equations are transformed to a generalized curvilinear coordinate system and solved on a body-conforming mesh using the scattered-field formulation. The induced surface current and the bistatic radar cross section are computed and the results are validated for several two-dimensional test cases involving perfectly-conducting scatterers submerged in transverse-magnetic plane waves.

  17. Using Airborne and Ground Electromagnetic Surveys and DC Resistivity Surveys to Delineate a Plume of Conductive Water at an In-Channel Coalbed Methane Produced Water Impoundment Near the Powder River, Wyoming

    NASA Astrophysics Data System (ADS)

    Lipinski, B. A.; Harbert, W.; Hammack, R.; Sams, J.; Veloski, G.; Smith, B. D.

    2004-12-01

    Development of coal bed methane (CBM) in the Powder River Basin of Wyoming and Montana has significantly increased since 1997. Production of CBM involves withdrawing groundwater from the coal bed to lower the hydrostatic pressure thereby allowing methane to desorb from the coal. The water co-produced with CBM is managed by storing it in impoundments until it can infiltrate to the groundwater, be used for beneficial purposes, or be discharged to surface streams. Skewed Reservoir was constructed as a research site to evaluate disposal of CBM water through infiltration ponds constructed by damming ephemeral streams. Geochemical data collected from monitoring wells placed downgradient of the reservoir detected a plume of water with total dissolved solids concentrations an order of magnitude higher than the CBM water stored in the impoundment. Infiltrating CBM water is suspected to have dissolved salts that were present in the unconsolidated materials beneath the reservoir. A geophysical investigation of the Skewed Reservoir area was conducted in July of 2004 to map the horizontal and vertical extent of the plume and to possibly identify the source of solutes to the infiltrating water. The Department of Energy's National Energy Technology Laboratory contracted Fugro Airborne Surveys to fly their RESOLVE frequency domain airborne electromagnetic (AEM) system with 50-m line spacing at the site. A ground investigation was completed at the same time as the airborne survey. Five 2-D dipole-dipole resistivity surveys and one 3-D pole-dipole survey were conducted using the AGI SuperSting R8/IP multi-channel resistivity imaging system. Additionally, ground conductivity measurements were recorded along each resistivity line using a Geophex GEM-2 multi-frequency ground conductivity meter. All geoelectrical measurements were inverted to obtain the subsurface conductivity distribution. Inversions were constrained using results of downhole borehole induction logs. Results were

  18. Electromagnetic modeling in accelerator designs

    SciTech Connect

    Cooper, R.K.; Chan, K.C.D.

    1990-01-01

    Through the years, electromagnetic modeling using computers has proved to be a cost-effective tool for accelerator designs. Traditionally, electromagnetic modeling of accelerators has been limited to resonator and magnet designs in two dimensions. In recent years with the availability of powerful computers, electromagnetic modeling of accelerators has advanced significantly. Through the above conferences, it is apparent that breakthroughs have been made during the last decade in two important areas: three-dimensional modeling and time-domain simulation. Success in both these areas have been made possible by the increasing size and speed of computers. In this paper, the advances in these two areas will be described.

  19. On the Influence of Delay Line Uncertainty in THz Time-Domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jahn, D.; Lippert, S.; Bisi, M.; Oberto, L.; Balzer, J. C.; Koch, M.

    2016-06-01

    Terahertz time-domain spectroscopy (THz TDS) is a well-known tool for material analysis in the terahertz frequency band. One crucial system component in every time-domain spectrometer is the delay line which is necessary to accomplish the sampling of the electric field over time. Despite the fact that most of the uncertainty sources in TDS have been discussed, the delay line uncertainty has not been considered in detail. We model the impact of delay line uncertainty on the acquired THz TDS data. Interferometric measurements of the delay line precision and THz time-domain data are used to validate the theoretical model.

  20. Artworks characterization at THz frequencies: preliminary results via the Fiber-Coupled Terahertz Time Domain System

    NASA Astrophysics Data System (ADS)

    Catapano, Ilaria; Soldovieri, Francesco

    2015-04-01

    In the research field of art and archaeology, scientific observation and analysis are hugely demanded to gather as more information as possible on the materials and techniques used to create artworks as well as in previous restoration actions. In this frame, diagnostic tools exploiting electromagnetic waves deserve massive interest tanks to their ability to provide non-invasive and possibly contactless characterization of the investigated objects. Among the electromagnetic diagnostic technologies, those working at frequencies belonging to the 0.1-10 THz range are currently deserving an increased attention since THz waves are capable of penetrating into optically opaque materials (up to the preparation layers), without direct contact and by involving sufficiently low energy to be considered as perfectly non-invasive in practice [1,2]. Moreover, being THz non-ionizing radiations, a moderate exposure to them implies minor long term risks to the molecular stability of the historical artifact and humans. Finally, recent developments of THz technology have allowed the commercialization of compact, flexible and portable systems. One of them is the Fiber-Coupled Terahertz Time Domain System (FICO) developed by Z-Omega, acquired by the Institute of Electromagnetic Sensing of the Environment (IREA) in 2013. This system works in the range from 60GHz to 3THz with a waveform acquisition speed up to 500Hz, it is equipped with fiber optic coupled transmitting and receiving probes and, few months ago, has been potentiated by means of an automatic positioning system enabling to scan a 150mm x 150mm area. In the frame of the IREA research activities regarding cultural heritage, the FICO system is currently adopted to perform both spectroscopy and imaging, which are the two kind of analysis wherein THz technology can be profitably explored [3]. In particular, THz spectroscopy is used to distinguish different artists materials by exploiting their peculiar fingerprint in the absorption

  1. Phase Transition in strongly-correlated VO2: Time-domainAssignment of Cause and Effect

    SciTech Connect

    Cavalleri, A.; Dekorsy, Th.; Chong, H.H.; Kieffer, J.C.; Schoenlein, R.W.

    2004-07-22

    We establish time-domain hierarchy between structural andelectronic effects in the strongly correlated system VO2. Theinsulator-to-metal transition is driven directly by structural changerather than by electron-electron correlations.

  2. Techniques to Determine Maintenace Frequency of Permeable Pavement Systems with Time Domain Reflectometers (TDRs

    EPA Science Inventory

    As the surface clogs in permeable pavement systems, they lose effectiveness and require maintenance. There is limited direct guidance for determining when maintenance is needed to prevent surface runoff bypass. Research is being conducted using multiple time domain reflectomete...

  3. Assessment of Clogging Dynamics in Permeable Pavement Systems with Time Domain Reflectometers

    EPA Science Inventory

    Infiltration is a primary functional mechanism in green infrastructure stormwater controls. This study used time domain reflectometers (TDRs) to measure spatial infiltration and assess clogging dynamics of permeable pavement systems in Edison, NJ, and Louisville, KY. In 2009, t...

  4. Analysis of electron capture process in charge pumping sequence using time domain measurements

    SciTech Connect

    Hori, Masahiro Watanabe, Tokinobu; Ono, Yukinori; Tsuchiya, Toshiaki

    2014-12-29

    A method for analyzing the electron capture process in the charge pumping (CP) sequence is proposed and demonstrated. The method monitors the electron current in the CP sequence in time domain. This time-domain measurements enable us to directly access the process of the electron capture to the interface defects, which are obscured in the conventional CP method. Using the time-domain measurements, the rise time dependence of the capture process is systematically investigated. We formulate the capture process based on the rate equation and derive an analytic form of the current due to the electron capture to the defects. Based on the formula, the experimental data are analyzed and the capture cross section is obtained. In addition, the time-domain data unveil that the electron capture process completes before the electron channel opens, or below the threshold voltage in a low frequency range of the pulse.

  5. A reevaluation of time domain reflectomery propagation time determination in soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Time domain reflectometry (TDR) is an established method for the determination of apparent dielectric permittivity and water content in soils. Using current waveform interpretation procedures, signal attenuation and variation in dielectric media properties along the transmission line can significant...

  6. A two dimensional finite difference time domain analysis of the quiet zone fields of an anechoic chamber

    NASA Technical Reports Server (NTRS)

    Ryan, Deirdre A.; Luebbers, Raymond J.; Nguyen, Truong X.; Kunz, Karl S.; Steich, David J.

    1992-01-01

    Prediction of anechoic chamber performance is a difficult problem. Electromagnetic anechoic chambers exist for a wide range of frequencies but are typically very large when measured in wavelengths. Three dimensional finite difference time domain (FDTD) modeling of anechoic chambers is possible with current computers but at frequencies lower than most chamber design frequencies. However, two dimensional FDTD (2D-FTD) modeling enables much greater detail at higher frequencies and offers significant insight into compact anechoic chamber design and performance. A major subsystem of an anechoic chamber for which computational electromagnetic analyses exist is the reflector. First, an analysis of the quiet zone fields of a low frequency anechoic chamber produced by a uniform source and a reflector in two dimensions using the FDTD method is presented. The 2D-FDTD results are compared with results from a three dimensional corrected physical optics calculation and show good agreement. Next, a directional source is substituted for the uniform radiator. Finally, a two dimensional anechoic chamber geometry, including absorbing materials, is considered, and the 2D-FDTD results for these geometries appear reasonable.

  7. Windowing of THz time-domain spectroscopy signals: A study based on lactose

    NASA Astrophysics Data System (ADS)

    Vázquez-Cabo, José; Chamorro-Posada, Pedro; Fraile-Peláez, Francisco Javier; Rubiños-López, Óscar; López-Santos, José María; Martín-Ramos, Pablo

    2016-05-01

    Time-domain spectroscopy has established itself as a reference method for determining material parameters in the terahertz spectral range. This procedure requires the processing of the measured time-domain signals in order to estimate the spectral data. In this work, we present a thorough study of the properties of the signal windowing, a step previous to the parameter extraction algorithm, that permits to improve the accuracy of the results. Lactose has been used as sample material in the study.

  8. Design procedure for satisfying time domain bounds for nonminimum-phase systems. [feedback control systems

    NASA Technical Reports Server (NTRS)

    Ostheimer, W. D.

    1972-01-01

    Design techniques are presented applicable to nonminimum-phase systems. They are designed to handle plants with one right-half-plane zero which may vary, and any other variation of the plant parameters within known limits. The specifications that must be designed are given as a set of step response bounds in the time domain. A completed design will yield responses that stay within the time domain bounds at all times and utilize the entire region of allowed variation.

  9. In vitro and in vivo validation of time domain velocity and flow measurement technique.

    PubMed

    Maulik, D; Kadado, T; Downing, G; Phillips, C

    1995-12-01

    This study was undertaken to validate the time domain processing method for measuring (1) the peak velocity in comparison to pulsed-wave spectral Doppler findings in an in vitro system; (2) the volumetric flow in comparison to the actual flow measured by a graduated cylinder in an in vitro circulation; and (3) the volumetric flow in comparison to a transit time flowmeter in a permanently instrumented neonatal lamb model. A prototype implementation of time domain processing in a commercial ultrasound device was used. For velocimetry, both time domain processing and Doppler methods showed low variance, low intrarater variability (0.03 and 0.09%, respectively), high reliability coefficients (97% and 96%, respectively), and a significant correlation (r = 0.96; P < 0.001). For in vitro flow quantification, time domain processing and graduated cylinder methods showed low variance, low intrarater variability (0.09 and 0.01%, respectively), high reliability coefficients (99.60% and 99.96%, respectively), and a significant correlation (r = 0.98, P < 0.001). For in vivo flow quantification, time domain processing and transit time flowmeter showed a significant correlation (r = 0.96; P < 0.001). Within the limits of the in vitro and in vivo experimental conditions, this study proves the validity of the time domain processing sonographic technique for measuring peak flow velocity and volumetric flow. PMID:8583530

  10. Revisiting the time domain induced polarization technique, from linearization to inversion

    NASA Astrophysics Data System (ADS)

    Kang, S.; Oldenburg, D.

    2015-12-01

    The induced polarization (IP) technique has been successful in mineral exploration, particularly for finding disseminated sulphide or porphyry deposits, but also in helping solve geotechnical and environmental problems. Electrical induced polarization (EIP) surveys use grounded electrodes and take measurements of the electric field while the current is both "on" and "off". Currently, 2D and 3D inversions of EIP data are generally carried out by first finding a background conductivity from the asymptotic "on-time" measurements. The DC resistivity problem is then linearized about that conductivity to obtain a linear relationship between the off-time data and the "pseudo-chargeability". The distribution of pseudo-chargeability in the earth is then interpreted within the context of the initial geoscience problem pursued. Despite its success, the current EIP implementation does have challenges. A fundamental assumption, that there is no electromagnetic induction (EM) effect, breaks down when the background is conductive. This is especially problematic in regions having conductive overburden. EM induction complicates, and sometimes overwhelms, the IP signal. To ameliorate this effect, we estimate the inductive signal, subtract it from the "off-time" data and invert the resultant IP data using the linearized formulation. We carefully examine the conditions under which this works. We also investigate the potential alterations to the linearized sensitivity function that are needed to allow a linearized inversion to be carried out. Inversions of EIP data recover a "chargeability" but this is not a uniquely defined quantity. There are multiple definitions of this property because there are a diverse number of ways in which an IP datum is defined. In time domain IP surveys, the data might be mV/V or a time-integrated voltage with units of ms. In reality however, data from an EIP survey have many time channels and each one can be inverted separately to produce a chargeability

  11. Comparison of frequency-domain and time-domain rotorcraft vibration control methods

    NASA Technical Reports Server (NTRS)

    Gupta, N. K.

    1984-01-01

    Active control of rotor-induced vibration in rotorcraft has received significant attention recently. Two classes of techniques have been proposed. The more developed approach works with harmonic analysis of measured time histories and is called the frequency-domain approach. The more recent approach computes the control input directly using the measured time history data and is called the time-domain approach. The report summarizes the results of a theoretical investigation to compare the two approaches. Five specific areas were addressed: (1) techniques to derive models needed for control design (system identification methods), (2) robustness with respect to errors, (3) transient response, (4) susceptibility to noise, and (5) implementation difficulties. The system identification methods are more difficult for the time-domain models. The time-domain approach is more robust (e.g., has higher gain and phase margins) than the frequency-domain approach. It might thus be possible to avoid doing real-time system identification in the time-domain approach by storing models at a number of flight conditions. The most significant error source is the variation in open-loop vibrations caused by pilot inputs, maneuvers or gusts. The implementation requirements are similar except that the time-domain approach can be much simpler to implement if real-time system identification were not necessary.

  12. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  13. Numerical stability analysis of the pseudo-spectral analytical time-domain PIC algorithm

    SciTech Connect

    Godfrey, Brendan B.; Vay, Jean-Luc; Haber, Irving

    2014-02-01

    The pseudo-spectral analytical time-domain (PSATD) particle-in-cell (PIC) algorithm solves the vacuum Maxwell's equations exactly, has no Courant time-step limit (as conventionally defined), and offers substantial flexibility in plasma and particle beam simulations. It is, however, not free of the usual numerical instabilities, including the numerical Cherenkov instability, when applied to relativistic beam simulations. This paper derives and solves the numerical dispersion relation for the PSATD algorithm and compares the results with corresponding behavior of the more conventional pseudo-spectral time-domain (PSTD) and finite difference time-domain (FDTD) algorithms. In general, PSATD offers superior stability properties over a reasonable range of time steps. More importantly, one version of the PSATD algorithm, when combined with digital filtering, is almost completely free of the numerical Cherenkov instability for time steps (scaled to the speed of light) comparable to or smaller than the axial cell size.

  14. Time domain computational modeling of viscothermal acoustic propagation in catalytic converter substrates with porous walls

    NASA Astrophysics Data System (ADS)

    Dickey, N. S.; Selamet, A.; Miazgowicz, K. D.; Tallio, K. V.; Parks, S. J.

    2005-08-01

    Models for viscothermal effects in catalytic converter substrates are developed for time domain computational methods. The models are suitable for use in one-dimensional approaches for the prediction of exhaust system performance (engine tuning characteristics) and radiated sound levels. Starting with the ``low reduced frequency'' equations for viscothermal acoustic propagation in capillary tubes, time domain submodels are developed for the frequency-dependent wall friction, frequency-dependent wall heat transfer, and porous wall effects exhibited by catalytic converter substrates. Results from a time domain computational approach employing these submodels are compared to available analytical solutions for the low reduced frequency equations. The computational results are shown to agree well with the analytical solutions for capillary geometries representative of automotive catalytic converter substrates.

  15. Two-dimensional time-domain volume integral equations for scattering of inhomogeneous objects

    NASA Astrophysics Data System (ADS)

    Wang, Jianguo; Fan, Ruyu

    2003-08-01

    This paper proposes a time-domain volume integral equation based method for analyzing the transient scattering from a two-dimensional inhomogeneous cylinder by invoking the volume equivalence principle for both the transverse magnetic and electric cases. The cylinder is discretized into triangular cells, and the electric flux is chosen as the unknown. For the transverse magnetic case, the electric flux is defined on the surfaces of the triangles. For the transverse electric case, because of the electric charges induced inside and on the surface of the cylinder, the electric flux is defined on the edges of the triangles, and expanded in space in terms of two-dimensional surface roof-top basis functions. The time-domain volume integral equation is solved by using a marching-on-in-time scheme. Numerical results obtained using this method are in excellent agreement with the data obtained using the finite-difference time-domain method.

  16. Robust time-domain identification of mass stiffness, and damping matrices

    NASA Technical Reports Server (NTRS)

    Roemer, Michael J.; Mook, D. Joseph

    1990-01-01

    Accurate estimates of the mass, stiffness, and damping characteristics of a structure is necessary for determining the control laws best suited for active control methodologies. There are several modal identification techniques available for determining the frequencies, damping ratios, and mode shapes of a structure. However, modal identification methods in both the frequency and time domains have difficulties for certain circumstances. Frequency domain techniques which utilize the steady-state response from various harmonic inputs often encounter difficulties when the frequencies are closely distributed, the structure exhibits a high degree of damping, or the steady-state condition is hard to establish. Time domain techniques have produced successful results, but lack robustness with respect to measurement noise. In this paper, two identification techniques and an estimation method are combined to form a time-domain technique to accurately identify the mass, stiffness, and damping matrices from noisy measurements.

  17. Spectral phase encoding of ultra-short optical pulse in time domain for OCDMA application.

    PubMed

    Wang, Xu; Wada, Naoya

    2007-06-11

    We propose a novel reconfigurable time domain spectral phase encoding (SPE) scheme for coherent optical code-division-multiple-access application. In the proposed scheme, the ultra-short optical pulse is stretched by dispersive device and the SPE is done in time domain using high speed phase modulator. The time domain SPE scheme is robust to wavelength drift of the light source and is very flexible and compatible with the fiber optical system. Proof-of-principle experiments of encoding with 16-chip, 20 GHz/chip binary-phase-shift-keying codes and 1.25 Gbps data transmission have been successfully demonstrated together with an arrayed-wave-guide decoder. PMID:19547055

  18. Time-domain calculation of spectral centroid from backscattered ultrasound signals.

    PubMed

    Kim, Hyungsuk; Heo, Seo Weon

    2012-06-01

    Spectral centroid estimation from backscattered ultrasound RF signals is the preliminary step for quantitative ultrasound analysis in many medical applications. The traditional approach of estimating the spectral centroid in the frequency domain takes a long time because discrete Fourier transform (DFT) processing for each RF segment is required. To avoid this, we propose time-domain methods to estimate the spectral centroid in this paper. First, we derive the continuous-time-domain equations for the spectral centroid estimation using Parseval's theorem and Hilbert transform theory. Then, we extend the method to the discrete-time domain to ease the implementation while maintaining the same accuracy as the calculation in the frequency domain. From the result, we observe that it is not practical to apply the discrete-time equations directly, because a high sampling rate is needed to approximate the time derivative in the discrete-time domain. Therefore, we also derive the feasible version of the discrete-time equations using a circular autocorrelation function, which has no constraints on the sampling rate for real RF signals acquired from pulse-echo ultrasound systems. Simulation results using numerical phantoms show that the time-domain calculation is approximately 4.4 times faster on average than the frequency-domain method when the software's built-in functions were used. The average estimation error compared with that of the frequency-domain method using DFT is less than 0.2% for the entire propagation depths. The proposed time-domain approach to estimate the spectral centroid can be easily implemented in real-time ultrasound systems. PMID:22711414

  19. Airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-06-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  20. Crystallization of amorphous lactose at high humidity studied by terahertz time domain spectroscopy

    NASA Astrophysics Data System (ADS)

    McIntosh, Alexander I.; Yang, Bin; Goldup, Stephen M.; Watkinson, Michael; Donnan, Robert S.

    2013-02-01

    We report the first use of terahertz time-domain spectroscopy (THz-TDS) to study the hydration and crystallization of an amorphous molecular solid at high humidity. Lactose in its amorphous and monohydrate forms exhibits different terahertz spectra due to the lack of long range order in the amorphous material. This difference allowed the transformation of amorphous lactose to its monohydrate form at high humidity to be studied in real time. Spectral fitting of frequency-domain data allowed kinetic data to be obtained and the crystallization was found to obey Avrami kinetics. Bulk changes during the crystallization could also be observed in the time-domain.

  1. A simple three-channel dc SQUID system using time domain multiplexing

    NASA Astrophysics Data System (ADS)

    Mück, M.; Korn, M.; Mugford, C. G. A.; Kycia, J. B.

    2004-08-01

    Conventional multichannel superconducting quantum interference device (SQUID) systems require a SQUID read-out circuit for each channel, as well as many wires connecting each individual SQUID and feedback coil to the room temperature electronics. We present a simple time domain multiplexed read-out scheme which requires only a single SQUID read-out circuit that is successively switched between all the SQUIDs. By connecting all the SQUIDs and all the feedback coils in series, this time domain multiplexed system requires many fewer wires between the SQUIDs and the room temperature read-out circuit than other multichannel systems.

  2. High-performance TDM demultiplexing of coherent Nyquist pulses using time-domain orthogonality.

    PubMed

    Harako, Koudai; Otuya, David Odeke; Kasai, Keisuke; Hirooka, Toshihiko; Nakazawa, Masataka

    2014-12-01

    We propose a simple and high-performance scheme for demultiplexing coherent Nyquist TDM signals by photo-mixing on a photo-detector with Nyquist LO pulses. This scheme takes advantage of the time-domain orthogonality of Nyquist pulses, which enables high-SNR demultiplexing and homodyne detection simultaneously in spite of a strong overlap with adjacent pulses in the time domain. The feasibility of this scheme is demonstrated through a demultiplexing experiment employing 80 Gbaud, 64 QAM Nyquist pulse OTDM signals. This scheme exhibits excellent demultiplexing performance with a much simpler configuration than a conventional ultrafast all-optical sampling scheme. PMID:25606880

  3. Optimal detection bandwidth for phase-sensitive optical time-domain reflectometry

    NASA Astrophysics Data System (ADS)

    Lu, Xin; Soto, Marcelo A.; Thévenaz, Luc

    2016-05-01

    The spectrum of the temporal traces obtained from a phase-sensitive optical time-domain reflectometer is theoretically and experimentally analysed, demonstrating its dependence on the incident optical pulse shape. Numerical simulations and theoretical results are validated experimentally, showing a good matching for rectangular optical pulses. The influence of the photodetector bandwidth on the temporal trace quality is also investigated by simulation and experiment. Results show that the photodetector bandwidth needs to be ~ 40 % wider than the pulse spectrum to acquire time-domain traces of the Rayleigh backscattered light with direct detection.

  4. Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors

    NASA Astrophysics Data System (ADS)

    Schuck, C.; Pernice, W. H. P.; Ma, X.; Tang, H. X.

    2013-05-01

    We demonstrate optical time domain reflectometry over 200 km of optical fiber using low-noise NbTiN superconducting single-photon detectors integrated with Si3N4 waveguides. Our small detector footprint enables high timing resolution of 50 ps and a dark count rate of 3 Hz with unshielded fibers, allowing for identification of defects along the fiber over a dynamic range of 37.4 dB. Photons scattered and reflected back from the fiber under test can be detected in free-running mode without showing dead zones or other impairments often encountered in semiconductor photon-counting optical time domain reflectometers.

  5. A comparison of time domain boundary conditions for acoustic waves in wave guides

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Propst, G.; Silcox, R. J.

    1991-01-01

    Researchers consider several types of boundary conditions in the context of time domain models for acoustic waves. Experiments with four different duct terminations (hard wall, free radiation, foam, and wedge) were carried out in a wave duct from which reflection coefficients over a wide frequency range were measured. These reflection coefficients were used to estimate parameters in the time domain boundary conditions. A comparison of the relative merits of the models in describing the data is presented. Boundary conditions which yield a good fit of the model to the experimental data were found for all duct terminations except the wedge.

  6. Mixed frequency/time domain optical analogues of heteronuclear multidimensional NMR.

    PubMed

    Pakoulev, Andrei V; Rickard, Mark A; Meyer, Kent A; Kornau, Kathryn; Mathew, Nathan A; Thompson, David E; Wright, John C

    2006-03-16

    Ultrafast spectroscopy is dominated by time domain methods such as pump-probe and, more recently, 2D-IR spectroscopies. In this paper, we demonstrate that a mixed frequency/time domain ultrafast four wave mixing (FWM) approach not only provides similar capabilities, but it also provides optical analogues of multiple- and zero-quantum heteronuclear nuclear magnetic resonance (NMR). The method requires phase coherence between the excitation pulses only over the dephasing time of the coherences. It uses twelve coherence pathways that include four with populations, four with zero-quantum coherences, and four with double-quantum coherences. Each pathway provides different capabilities. The population pathways correspond to those of two-dimensional (2D) time domain spectroscopies, while the double- and zero-quantum coherence pathways access the coherent dynamics of coupled quantum states. The three spectral and two temporal dimensions enable the isolation and characterization of the spectral correlations between different vibrational and/or electronic states, coherence and population relaxation rates, and coupling strengths. Quantum-level interference between the direct and free-induction decay components gives a spectral resolution that exceeds that of the excitation pulses. Appropriate parameter choices allow isolation of individual coherence pathways. The mixed frequency/time domain approach allows one to access any set of quantum states with coherent multidimensional spectroscopy. PMID:16526612

  7. Performance evaluation using SYSTID time domain simulation. [computer-aid design and analysis for communication systems

    NASA Technical Reports Server (NTRS)

    Tranter, W. H.; Ziemer, R. E.; Fashano, M. J.

    1975-01-01

    This paper reviews the SYSTID technique for performance evaluation of communication systems using time-domain computer simulation. An example program illustrates the language. The inclusion of both Gaussian and impulse noise models make accurate simulation possible in a wide variety of environments. A very flexible postprocessor makes possible accurate and efficient performance evaluation.

  8. On the Assessment of Acoustic Scattering and Shielding by Time Domain Boundary Integral Equation Solutions

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.; Pizzo, Michelle E.; Nark, Douglas M.

    2016-01-01

    Based on the time domain boundary integral equation formulation of the linear convective wave equation, a computational tool dubbed Time Domain Fast Acoustic Scattering Toolkit (TD-FAST) has recently been under development. The time domain approach has a distinct advantage that the solutions at all frequencies are obtained in a single computation. In this paper, the formulation of the integral equation, as well as its stabilization by the Burton-Miller type reformulation, is extended to cases of a constant mean flow in an arbitrary direction. In addition, a "Source Surface" is also introduced in the formulation that can be employed to encapsulate regions of noise sources and to facilitate coupling with CFD simulations. This is particularly useful for applications where the noise sources are not easily described by analytical source terms. Numerical examples are presented to assess the accuracy of the formulation, including a computation of noise shielding by a thin barrier motivated by recent Historical Baseline F31A31 open rotor noise shielding experiments. Furthermore, spatial resolution requirements of the time domain boundary element method are also assessed using point per wavelength metrics. It is found that, using only constant basis functions and high-order quadrature for surface integration, relative errors of less than 2% may be obtained when the surface spatial resolution is 5 points-per-wavelength (PPW) or 25 points-per-wavelength squared (PPW2).

  9. Time Domain Terahertz Non-Destructive Evaluation of Aeroturbine Blade Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    White, Jeffrey; Fichter, G.; Chernovsky, A.; Whitaker, John F.; Das, D.; Pollock, Tresa M.; Zimdars, David

    2009-03-01

    Time domain terahertz (TD-THz) non destructive evaluation (NDE) imaging is used to two-dimensionally map the thickness of yttria stabilized zirconia (YSZ) thermal barrier coatings (TBC) on aircraft engine turbine blades. Indications of thermal degradation can be seen. The method is non-contact, rapid, and requires no special preparation of the blade.

  10. A PC based time domain reflectometer for space station cable fault isolation

    NASA Technical Reports Server (NTRS)

    Pham, Michael; McClean, Marty; Hossain, Sabbir; Vo, Peter; Kouns, Ken

    1994-01-01

    Significant problems are faced by astronauts on orbit in the Space Station when trying to locate electrical faults in multi-segment avionics and communication cables. These problems necessitate the development of an automated portable device that will detect and locate cable faults using the pulse-echo technique known as Time Domain Reflectometry. A breadboard time domain reflectometer (TDR) circuit board was designed and developed at the NASA-JSC. The TDR board works in conjunction with a GRiD lap-top computer to automate the fault detection and isolation process. A software program was written to automatically display the nature and location of any possible faults. The breadboard system can isolate open circuit and short circuit faults within two feet in a typical space station cable configuration. Follow-on efforts planned for 1994 will produce a compact, portable prototype Space Station TDR capable of automated switching in multi-conductor cables for high fidelity evaluation. This device has many possible commercial applications, including commercial and military aircraft avionics, cable TV, telephone, communication, information and computer network systems. This paper describes the principle of time domain reflectometry and the methodology for on-orbit avionics utility distribution system repair, utilizing the newly developed device called the Space Station Time Domain Reflectometer (SSTDR).

  11. EVALUATION OF A TIME DOMAIN REFLECTOMETRY SLED FOR MAPPING SOIL WATER CONTENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A rapid method for mapping soil water content would be valuable for agricultural and scientific applications such as precision irrigation. A sled type measurement device with a time domain reflectometer and global positioning system was evaluated for measuring soil water content following tillage. T...

  12. Time domain reflectometry waveform analysis with second order bounded mean oscillation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tangent-line methods and adaptive waveform interpretation with Gaussian filtering (AWIGF) have been proposed for determining reflection positions of time domain reflectometry (TDR) waveforms. However, the accuracy of those methods is limited for short probe TDR sensors. Second order bounded mean osc...

  13. All-fiber terahertz time-domain spectrometer operating at 1.5 microm telecom wavelengths.

    PubMed

    Sartorius, B; Roehle, H; Künzel, H; Böttcher, J; Schlak, M; Stanze, D; Venghaus, H; Schell, M

    2008-06-23

    The worldwide first all-fiber THz time-domain spectrometer for operation at 1.5 microm is presented. Applications up to 3 THz are demonstrated. Key devices are photoconductive antennas based on novel LT InGaAs/InAlAs multi-layer structures. PMID:18575523

  14. Impulsive sound source localization using peak and RMS estimation of the time-domain beamformer output

    NASA Astrophysics Data System (ADS)

    Seo, Dae-Hoon; Choi, Jung-Woo; Kim, Yang-Hann

    2014-12-01

    This paper presents a beamforming technique for locating impulsive sound source. The conventional frequency-domain beamformer is advantageous for localizing noise sources for a certain frequency band of concern, but the existence of many frequency components in the wide-band spectrum of impulsive noise makes the beamforming image less clear. In contrast to a frequency-domain beamformer, it has been reported that a time-domain beamformer can be better suited for transient signals. Although both frequency- and time-domain beamformers produce the same result for the beamforming power, which is defined as the RMS value of its output, we can use alternative directional estimators such as the peak value to enhance the performance of a time-domain beamformer. In this study, the performance of two different directional estimators, the peak and RMS output values, are investigated and compared with the incoherent measurement noise embedded in multiple microphone signals. The impulsive noise source is modeled as a triangular pulse, and the beamwidth and side lobe level of the time-domain beamformer are formulated as functions of the pulse duration, the microphone spacing, and the number of microphones. The proposed formula is verified via experiments in an anechoic chamber using a uniformly spaced linear array, and the results show that the peak estimation of beamformer output determines the location with better spatial resolution and a lower side lobe level than RMS estimation.

  15. DIRECT DETERMINATION OF THE LIPID CONTENT IN STARCH-LIPID COMPOSITES BY TIME-DOMAIN NMR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch-lipid composites, prepared by excess steam jet-cooking aqueous mixtures of starch and lipid, are used in various applications for which their performance can depend upon accurate quantitation of lipid contained within these composites. A rapid and non-destructive method based on time-domain ...

  16. Applications of time-domain spectroscopy to electron-phonon coupling dynamics at surfaces.

    PubMed

    Matsumoto, Yoshiyasu

    2014-10-01

    Photochemistry is one of the most important branches in chemistry to promote and control chemical reactions. In particular, there has been growing interest in photoinduced processes at solid surfaces and interfaces with liquids such as water for developing efficient solar energy conversion. For example, photoinduced charge transfer between adsorbates and semiconductor substrates at the surfaces of metal oxides induced by photogenerated holes and electrons is a core process in photovoltaics and photocatalysis. In these photoinduced processes, electron-phonon coupling plays a central role. This paper describes how time-domain spectroscopy is applied to elucidate electron-phonon coupling dynamics at metal and semiconductor surfaces. Because nuclear dynamics induced by electronic excitation through electron-phonon coupling take place in the femtosecond time domain, the pump-and-probe method with ultrashort pulses used in time-domain spectroscopy is a natural choice for elucidating the electron-phonon coupling at metal and semiconductor surfaces. Starting with a phenomenological theory of coherent phonons generated by impulsive electronic excitation, this paper describes a couple of illustrative examples of the applications of linear and nonlinear time-domain spectroscopy to a simple adsorption system, alkali metal on Cu(111), and more complex photocatalyst systems. PMID:25139240

  17. A polarization-sensitive 4-contact detector for terahertz time-domain spectroscopy.

    PubMed

    Bulgarevich, Dmitry S; Watanabe, Makoto; Shiwa, Mitsuharu; Niehues, Gudrun; Nishizawa, Seizi; Tani, Masahiko

    2014-05-01

    A light polarization angle-sensitive photoconductive detector for terahertz time-domain spectroscopy is computer-modeled, microfabricated, and tested. The experimental results show good agreement with the linear angular response for an ideal detector. The detector's frequency, angular, and crosstalk responses are discussed in the context of theoretical and experimental considerations. PMID:24921735

  18. Final Report for Time Domain Boundary Element and Hybrid Finite Element Simulation for Maxwell's Equations

    SciTech Connect

    Pingenot, J; Jandhyala, V

    2007-03-01

    This report summarizes the work performed for Lawrence Livermore National Laboratory (LLNL) at the University of Washington between September 2004 and May 2006. This project studied fast solvers and stability for time domain integral equations (TDIE), especially as applied to radiating boundary for a massively parallel FEM solver.

  19. Finite-Difference Time-Domain (FDTD) design of gold nanoparticle chains with specific surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Tira, Cristian; Tira, Daniela; Simon, Timea; Astilean, Simion

    2014-08-01

    We employ Finite-Difference Time-Domain (FDTD) simulations to analyze the electromagnetic far- and near-field response of gold nanoparticles (NPs) organized in chain-like structures as function of the number of particles and inter-particle distance in structures. As a result an empirical formula to predict the position of collective localized surface plasmon resonance (LSPR) as function of number of particles in the chain is devised. On the other hand the experimental LSPR spectrum recorded from a colloidal solution exhibiting a certain degree of aggregation has been effectively reconstructed by linear combination of individual LSPR contribution as calculated for NP ensembles of different size (monomers, dimers, trimers, etc.). Notably, we find that the maximum of electric field intensity (E2) in between adjacent NPs increases from dimeric to trimeric and tetrameric ensembles, followed by a steady state decrease as the number of NPs per chain further increases. The central gap in a long chain of NPs accommodate the highest field enhancement (‘hot-spots'). Our findings are relevant for designing effective substrates for Surface-Enhanced Raman Scattering (SERS) and plasmonic waveguides.

  20. An efficient locally one-dimensional finite-difference time-domain method based on the conformal scheme

    NASA Astrophysics Data System (ADS)

    Wei, Xiao-Kun; Shao, Wei; Shi, Sheng-Bing; Zhang, Yong; Wang, Bing-Zhong

    2015-07-01

    An efficient conformal locally one-dimensional finite-difference time-domain (LOD-CFDTD) method is presented for solving two-dimensional (2D) electromagnetic (EM) scattering problems. The formulation for the 2D transverse-electric (TE) case is presented and its stability property and numerical dispersion relationship are theoretically investigated. It is shown that the introduction of irregular grids will not damage the numerical stability. Instead of the staircasing approximation, the conformal scheme is only employed to model the curve boundaries, whereas the standard Yee grids are used for the remaining regions. As the irregular grids account for a very small percentage of the total space grids, the conformal scheme has little effect on the numerical dispersion. Moreover, the proposed method, which requires fewer arithmetic operations than the alternating-direction-implicit (ADI) CFDTD method, leads to a further reduction of the CPU time. With the total-field/scattered-field (TF/SF) boundary and the perfectly matched layer (PML), the radar cross section (RCS) of two 2D structures is calculated. The numerical examples verify the accuracy and efficiency of the proposed method. Project supported by the National Natural Science Foundation of China (Grant Nos. 61331007 and 61471105).

  1. Time-domain response of a metal detector to a target buried in soil with frequency-dependent magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Das, Y.

    2006-05-01

    The work reported in this paper is a part of on-going studies to clarify how and to what extent soil electromagnetic properties affect the performance of induction metal detectors widely used in humanitarian demining. This paper studies the specific case of the time-domain response of a small metallic sphere buried in a non-conducting soil half-space with frequency-dependent complex magnetic susceptibility. The sphere is chosen as a simple prototype for the small metal parts in low-metal landmines, while soil with dispersive magnetic susceptibility is a good model for some soils that are known to adversely affect the performance of metal detectors. The included analysis and computations extend previous work which has been done mostly in the frequency domain. Approximate theoretical expressions for weakly magnetic soils are found to fit the experimental data very well, which allowed the estimation of soil model parameters, albeit in an ad hoc manner. Soil signal is found to exceed target signal (due to an aluminum sphere of radius 0.0127 m) in many cases, even for the weakly magnetic Cambodian laterite used in the experiments. How deep a buried target is detected depends on many other factors in addition to the relative strength of soil and target signals. A general statement cannot thus be made regarding detectability of a target in soil based on the presented results. However, computational results complemented with experimental data extend the understanding of the effect that soil has on metal detectors.

  2. Locally non-uniform finite-difference time domain with application to stealth, crosstalk, and narrow apertures

    NASA Astrophysics Data System (ADS)

    Riley, D. J.

    1993-04-01

    A technique to integrate a dense, locally non-uniform mesh into finite-difference time-domain (FDTD) codes is presented. The method is designed for the full-wave analysis of multi-material layers that are physically thin, but perhaps electrically thick. Such layers are often used for the purpose of suppressing electromagnetic reflections from conducting surfaces. Throughout the non-uniform local mesh, average values for the conductivity and permittivity are used, where as variations in permeability are accommodated by splitting H-field line integrals and enforcing continuity of the normal B field. A unique interpolation scheme provides accuracy and late-time stability for mesh discontinuities as large as 1000 to 1. Application is made to resistive sheets, the absorbing Salisbury screen, crosstalk on printed circuit boards, and apertures that are narrow both in width and depth with regard to a uniform cell. Where appropriate, comparisons are made with the MoM code CARLOS and transmission-line theory. The hybrid mesh formulation has been highly optimized for both vector and parallel-processing on Cray Y-MP architectures.

  3. Locally non-uniform finite-difference time domain with application to stealth, crosstalk, and narrow apertures

    SciTech Connect

    Riley, D.J.

    1993-04-01

    A technique to integrate a dense, locally non-uniform mesh into finite-difference time-domain (FDTD) codes is presented. The method is designed for the full-wave analysis of multi-material layers that are physically thin, but perhaps electrically thick. Such layers are often used for the purpose of suppressing electromagnetic reflections from conducting surfaces. Throughout the non-uniform local mesh, average values for the conductivity and permittivity are used, where as variations in permeability are accommodated by splitting H-field line integrals and enforcing continuity of the normal B field. A unique interpolation scheme provides accuracy and late-time stability for mesh discontinuities as large as 1000 to 1. Application is made to resistive sheets, the absorbing Salisbury screen, crosstalk on printed circuit boards, and apertures that are narrow both in width and depth with regard to a uniform cell. Where appropriate, comparisons are made with the MoM code CARLOS and transmission-line theory. The hybrid mesh formulation has been highly optimized for both vector and parallel-processing on Cray YMP architectures.

  4. Study of High Robust Three Dimensional Finite Difference Time Domain (FDTD) Modeling of Ground Penetrating Radar for a Heterogeneous Environment

    NASA Astrophysics Data System (ADS)

    Eyuboglu, S.; Daniels, J. J.; Lee, R.; Yeh, J. T.

    2006-12-01

    Ground Penetrating Radar (GPR) is a non-invasive tool commonly used to characterize the physical properties of the subsurface. The translation of the physical measurements of geologic and hydrogeologic conditions is the culmination of many geophysical investigations. When numerical modeling is applied parallel to GPR data, it allows understanding of the effects of complex electromagnetic phenomena by defining and solving problems, as well as predicting the performance of radar in a complex heterogeneous environment. Finite difference time domain (FDTD) has been widely used for numerical modeling of GPR, but most of the previous algorithms are limited in their ability to model the electrical conductivity and permittivity. In this research, a highly efficient robust algorithm was developed to enhance the effectiveness of the FDTD forward modeling in surroundings characterized by an arbitrary distribution of all electrical properties in three dimensional space. In the first part of this research, two different FDTD codes which include different absorbing boundary conditions, Enquist and Majda absorbing boundary condition (ABC) and perfectly matched layer (PML), were used and compared. In the second part, the modeling algorithm was developed for a heterogeneous half-space medium to facilitate statistical modeling of complex distributions of electrical properties in the subsurface. The results produced by the simulation compared with real GPR results reveal high accuracy using the robust algorithm to optimize three dimensional FDTD forward modeling of GPR responses in heterogeneous surroundings.

  5. Time-domain imaging with quench-based fluorescent contrast agents

    NASA Astrophysics Data System (ADS)

    Akers, Walter J.; Solomon, Metasebya; Sudlow, Gail P.; Berezin, Mikhail; Achilefu, Samuel

    2012-03-01

    Quench-based probes utilize unique characteristics of fluorescence resonance energy transfer (FRET) to enhance contrast upon de-quenching. This mechanism has been used in a variety of molecular probes for imaging of cancer related enzyme activity such as matrix metalloproteinases, cathepsins and caspases. While non-fluorescent upon administration, fluorescence can be restored by separation of donor and acceptor, resulting in higher intensity in the presence of activator. Along with decreased quantum yield, FRET also results in altered fluorescence lifetime. Time-domain imaging can further enhance contrast and information yield from quench-based probes. We present in vivo time-domain imaging for detecting activation of quench-based probes. Quench-based probes utilize unique characteristics of fluorescence resonance energy transfer (FRET) to enhance contrast upon de-quenching. This mechanism has been used in a variety of molecular probes for imaging of cancer related enzyme activity such as matrix metalloproteinases, cathepsins and caspases. While non-fluorescent upon administration, fluorescence can be restored by separation of donor and acceptor, resulting in higher intensity in the presence of activator. Along with decreased quantum yield, FRET also results in altered fluorescence lifetime. Time-domain imaging can further enhance contrast and information yield from quench-based probes. We present in vivo time-domain imaging for detecting activation of quench-based probes. Time-domain diffuse optical imaging was performed to assess the FRET and quenching in living mice with orthotopic breast cancer. Tumor contrast enhancement was accompanied by increased fluorescence lifetime after administration of quenched probes selective for matrix metalloproteinases while no significant change was observed for non-quenched probes for integrin receptors. These results demonstrate the utility of timedomain imaging for detection of cancer-related enzyme activity in vivo.

  6. [Identification of Official Rhubarb Samples by Using PLS and Terahertz Time-Domain Spectroscopy].

    PubMed

    Wang, Jing-rong; Zhang, Zhuo-yong; Zhang, Zhen-wei; Xiang, Yu-hong

    2016-02-01

    The development of terahertz technology is attracting broad intention in recent years. The quality identification is important for the quality control of Chinese medicine production. In the present work, terahertz time-domain spectroscopy (THz-TDS) combined with partial least squares (PLS) were used for the identification model building and studied based on 41 official and unofficial rhubarb samples. First, the THz-TDS spectra of rhubarb samples were collected and were preprocessed by using chemometrics methods rather than transformed to absorption spectra. The identification models were then established based on the processed terahertz time domain spectra. The spectral preprocessing methods include Savitzky-Golay (S-G) first derivative, detrending, standard normal transformation (SNV), autoscaling, and mean centering. The identification accuracy of 90% was accomplished by using proper pretreatment methods, which was higher than the classified accuracy of 80% without any preprocessing for the time domain spectra. The component number of the PLS model was evaluated by leave-one-out cross-validation (LOOCV). The minimum values of the root-mean squared error of cross-validation (RMSECV) and root-mean squared error of prediction (RMSEP) were 0.076 6 and 0.169 0 by using mean centering method, respectively. The results of this work showed that the combination of terahertz time domain spectroscopy technology with chemometrics methods, as well as PLS can be applied for the recognition of genuine and counterfeit Chinese herbal medicines, as well as official and unofficial rhubarbs. The advantage of using terahertz time domain spectra directly with no transformation into absorption spectra is: (1) the thickness of samples could not be considered in the model establishment, and (2) the spectral processing was simplified. The proposed method based on the combination of THz-TDS and chemometrics proved to be rapid, simple, non-pollution and solvent free, suitable to be

  7. Airborne EM for geothermal and hydrogeological mapping

    NASA Astrophysics Data System (ADS)

    Menghini, A.; Manzella, A.; Viezzoli, A.; Montanari, D.; Maggi, S.

    2012-12-01

    Within the "VIGOR" project, aimed at assessing the geothermal potential of four regions in southern Italy, Airborne EM data have been acquired, modeled and interpreted. The system deployed was SkyTEM, a time-domain helicopter electromagnetic system designed for hydrogeophysical, environmental and mineral investigations. The AEM data provide, after data acquisition, analysis, processing, and modeling, a distribution volume of electrical resistivity, spanning an investigation depth from ground surface of few hundred meters, depending on resistivity condition. Resistivity is an important physical parameter for geothermal investigation, since it proved to be very effective in mapping anomalies due to hydrothermal fluid circulation, which usually has high salt content and produces clayey alteration minerals. Since the project required, among other issues, to define geothermal resources at shallow level, it was decided to perform a test with an airborne electromagnetic geophysical survey, to verify the advantages offered by the system in covering large areas in a short time. The geophysical survey was carried out in Sicily, Italy, in late 2011, over two test sites named "Termini" and "Western Sicily". The two areas were chosen on different basis. "Termini" area is covered by extensive geological surveys, and was going to be investigated also by means of electrical tomography in its northern part. Since geological condition of Sicily, even at shallow depth, is very complex, this area provided a good place for defining the resistivity values of the main geological units outcropping in the region. "Termini" survey has been also an occasion to define relations between resistivity distribution, lithological units and thermal conductivity. The "Western Sicily" area cover the main thermal manifestations of western Sicily, and the research target was to establish whether they are characterized by common hydrogeological or tectonic features that could be mapped by resistivity

  8. Airborne space laser communication system and experiments

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Ming; Zhang, Li-zhong; Meng, Li-Xin

    2015-11-01

    Airborne space laser communication is characterized by its high speed, anti-electromagnetic interference, security, easy to assign. It has broad application in the areas of integrated space-ground communication networking, military communication, anti-electromagnetic communication. This paper introduce the component and APT system of the airborne laser communication system design by Changchun university of science and technology base on characteristic of airborne laser communication and Y12 plan, especially introduce the high communication speed and long distance communication experiment of the system that among two Y12 plans. In the experiment got the aim that the max communication distance 144Km, error 10-6 2.5Gbps - 10-7 1.5Gbps capture probability 97%, average capture time 20s. The experiment proving the adaptability of the APT and the high speed long distance communication.

  9. Remote sensing of soil moisture using airborne hyperspectral data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Institute for Technology Development (ITD) has developed an airborne hyperspectral sensor system that collects electromagnetic reflectance data of the terrain. The system consists of sensors for three different sections of the electromagnetic spectrum; the Ultra-Violet (UV), Visible/Near Infrare...

  10. TESTING GROUND BASED GEOPHYSICAL TECHNIQUES TO REFINE ELECTROMAGNETIC SURVEYS NORTH OF THE 300 AREA HANFORD WASHINGTON

    SciTech Connect

    PETERSEN SW

    2010-12-02

    Airborne electromagnetic (AEM) surveys were flown during fiscal year (FY) 2008 within the 600 Area in an attempt to characterize the underlying subsurface and to aid in the closure and remediation design study goals for the 200-PO-1 Groundwater Operable Unit (OU). The rationale for using the AEM surveys was that airborne surveys can cover large areas rapidly at relatively low costs with minimal cultural impact, and observed geo-electrical anomalies could be correlated with important subsurface geologic and hydrogeologic features. Initial interpretation of the AEM surveys indicated a tenuous correlation with the underlying geology, from which several anomalous zones likely associated with channels/erosional features incised into the Ringold units were identified near the River Corridor. Preliminary modeling resulted in a slightly improved correlation but revealed that more information was required to constrain the modeling (SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site). Both time-and frequency domain AEM surveys were collected with the densest coverage occurring adjacent to the Columbia River Corridor. Time domain surveys targeted deeper subsurface features (e.g., top-of-basalt) and were acquired using the HeliGEOTEM{reg_sign} system along north-south flight lines with a nominal 400 m (1,312 ft) spacing. The frequency domain RESOLVE system acquired electromagnetic (EM) data along tighter spaced (100 m [328 ft] and 200 m [656 ft]) north-south profiles in the eastern fifth of the 200-PO-1 Groundwater OU (immediately adjacent to the River Corridor). The overall goal of this study is to provide further quantification of the AEM survey results, using ground based geophysical methods, and to link results to the underlying geology and/or hydrogeology. Specific goals of this project are as follows: (1) Test ground based geophysical techniques for the efficacy in delineating underlying geology; (2) Use ground

  11. Exploiting continuous scanning laser Doppler vibrometry (CSLDV) in time domain correlation methods for noise source identification

    NASA Astrophysics Data System (ADS)

    Chiariotti, Paolo; Martarelli, Milena; Revel, Gian Marco

    2014-07-01

    This paper proposes the use of continuous scanning laser Doppler vibrometry (CSLDV) in time domain correlation techniques that aim at characterizing the structure-borne contributions of the noise emission of a mechanical system. The time domain correlation technique presented in this paper is based on the use of FIR (finite impulse response) filters obtained from the vibro-acoustic transfer matrix when vibration data are collected by laser Doppler vibrometry (LDV) exploited in continuous scan mode (CSLDV). The advantages, especially in terms of source decorrelation capabilities, related to the use of CSLDV for such purpose, with respect to standard discrete scan (SLDV), are discussed throughout the paper. To validate this approach, vibro-acoustic measurements were performed on a planetary gear motor for home appliances. The analysis of results is also supported by a simulation.

  12. Low-temperature time-domain terahertz spectroscopy of terbium gallium garnet crystals

    NASA Astrophysics Data System (ADS)

    Mikhaylovskiy, R. V.; Hendry, E.; Ogrin, F. Y.; Kruglyak, V. V.

    2013-03-01

    We report an experimental observation of high frequency magnetic excitations in terbium gallium garnet crystals using terahertz time-domain spectroscopy. We show that precessional modes of terbium magnetic sublattices can be excited by a magnetic field of a terahertz broadband pulse. We study and discuss the dependence of the observed resonances upon the temperature and the strength and orientation of the bias magnetic field. The behavior of the observed magnetic modes is in agreement with the theory of paramagnetic resonance in the multisublattice system. We also show that the illumination of the crystal with intense optical pulses destroys the magnetic ordering. Our results demonstrate that the time-domain terahertz spectroscopy can be a powerful tool by which to study high frequency properties of dielectric magnetic materials, with perceived extensions to studies in femtomagnetism and magnonics.

  13. Celebrating Soft Matter's 10th Anniversary: Approaches to program the time domain of self-assemblies.

    PubMed

    Heinen, Laura; Walther, Andreas

    2015-10-28

    Self-regulating reconfigurable soft matter systems are of great interest for creating adaptive and active material properties. Such complex functionalities emerge from non-linear and interactive behavior in space and time as demonstrated by a plethora of dynamic, self-organizing biological structures (e.g., the cytoskeleton). In man-made self-assemblies, patterning of the spatial domain has advanced to creating hierarchical structures via precise molecular programming. However, orchestration of the time domain of self-assemblies is still in its infancy and lacks universal design principles. In this Emerging Area article we outline major strategies for programming the time domain of self-assemblies following the concepts of regulatory reaction networks, energy dissipation and kinetic control. Such concepts operate outside thermodynamic equilibrium and pave the way for temporally patterned, dynamic, and autonomously acting functional materials. PMID:26314799

  14. Nonlinear behavior in the time domain in argon atmospheric dielectric-barrier discharges

    SciTech Connect

    Shi Hong; Wang Yanhui; Wang Dezhen

    2008-12-15

    A vast majority of nonlinear behavior in atmospheric pressure discharges has so far been studied in the space domain, and their time-domain characters are often believed to exact the periodicity of the externally applied voltage. In this paper, based on one-dimensional fluid mode, we study complex nonlinear behavior in the time domain in argon atmospheric dielectric-barrier discharges at very broad frequency range from kilohertz to megahertz. Under certain conditions, the discharge not only can be driven to chaos from time-periodic state through period-doubling bifurcation, but also can return stable periodic motion from chaotic state through an inverse period-doubling bifurcation sequence. Upon changing the parameter the discharge undergoes alternatively chaotic and periodic behavior. Some periodic windows embedded in chaos, as well as the secondary bifurcation occurring in the periodic windows can also be observed. The corresponding discharge characteristics are investigated.

  15. Measurement of solar cell ac parameters using the time domain technique

    NASA Astrophysics Data System (ADS)

    Deshmukh, M. P.; Kumar, R. Anil; Nagaraju, J.

    2004-08-01

    The instrumentation to measure solar cell ac parameters [cell capacitance (CP) and cell resistance (RP)] using the time domain technique is developed. The cell capacitance (CP) and series resistance (r) are calculated using open circuit voltage decay (OCVD) technique. It is calibrated with the help of an electrical network with passive components similar to ac equivalent circuit of a solar cell consisting of precision resistors and capacitors. The maximum error observed in the measurement of resistor and capacitor value is ±3.5%. The cell resistance (RP) is calculated from I-V characteristics of solar cell. The data obtained in time domain technique is compared with the impedance spectroscopy technique data measured on same solar cell and it is found that the deviation in cell capacitance and resistance are within ±8%.

  16. Applied Time Domain Stability Margin Assessment for Nonlinear Time-Varying Systems

    NASA Technical Reports Server (NTRS)

    Kiefer, J. M.; Johnson, M. D.; Wall, J. H.; Dominguez, A.

    2016-01-01

    The baseline stability margins for NASA's Space Launch System (SLS) launch vehicle were generated via the classical approach of linearizing the system equations of motion and determining the gain and phase margins from the resulting frequency domain model. To improve the fidelity of the classical methods, the linear frequency domain approach can be extended by replacing static, memoryless nonlinearities with describing functions. This technique, however, does not address the time varying nature of the dynamics of a launch vehicle in flight. An alternative technique for the evaluation of the stability of the nonlinear launch vehicle dynamics along its trajectory is to incrementally adjust the gain and/or time delay in the time domain simulation until the system exhibits unstable behavior. This technique has the added benefit of providing a direct comparison between the time domain and frequency domain tools in support of simulation validation. This technique was implemented by using the Stability Aerospace Vehicle Analysis Tool (SAVANT) computer simulation to evaluate the stability of the SLS system with the Adaptive Augmenting Control (AAC) active and inactive along its ascent trajectory. The gains for which the vehicle maintains apparent time-domain stability defines the gain margins, and the time delay similarly defines the phase margin. This method of extracting the control stability margins from the time-domain simulation is relatively straightforward and the resultant margins can be compared to the linearized system results. The sections herein describe the techniques employed to extract the time-domain margins, compare the results between these nonlinear and the linear methods, and provide explanations for observed discrepancies. The SLS ascent trajectory was simulated with SAVANT and the classical linear stability margins were evaluated at one second intervals. The linear analysis was performed with the AAC algorithm disabled to attain baseline stability

  17. [Identification and classification of textiles based on terahertz time domain spectroscopy].

    PubMed

    Cao, Bing-hua; Fan, Meng-bao; Jing, Sheng-yu

    2010-07-01

    A method to discriminate textiles was proposed based on terahertz time-domain spectroscopy (THz-TDS) and clustering analysis, and some typical cotton textiles were investigated to prove its feasibility. Their time domain waveforms were measured using THz-TDS system and then their absorption spectra were obtained. Principal component analysis (PCA) was applied to extract features of the data, and then Mahalanobis distance discriminant method was employed to classify these materials. The results show that this method can classify these five textiles accurately. It indicates that the method to classify textiles is feasible which combines PCA and Mahalanobis distance discriminant method based on their THz absorption spectra. The proposed method has a potential for identifying textiles of similar composition. PMID:20827962

  18. Non-destructive inspections of illicit drugs in envelope using terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Ning; Shen, Jingling; Lu, Meihong; Jia, Yan; Sun, Jinhai; Liang, Laishun; Shi, Yanning; Xu, Xiaoyu; Zhang, Cunlin

    2006-09-01

    The absorption spectra of two illicit drugs, methylenedioxyamphetarnine (MDA) and methamphetamine (MA), within and without two conventional envelopes are studied using terahertz time-domain spectroscopy technique. The characteristic absorption spectra of MDA and MA are obtained in the range of 0.2 THz to 2.5 THz. MDA has an obvious absorption peak at 1.41 THz while MA has obvious absorption peaks at 1.23 THz, 1.67 THz, 1.84 THz and 2.43 THz. We find that the absorption peaks of MDA and MA within the envelopes are almost the same as those without the envelopes respectively although the two envelopes have some different absorption in THz waveband. This result indicates that the type of illicit drugs in envelopes can be determined by identifying their characteristic absorption peaks, and THz time-domain spectroscopy is one of the most powerful candidates for illicit drugs inspection.

  19. Finite-difference time-domain simulation of thermal noise in open cavities

    SciTech Connect

    Andreasen, Jonathan; Cao Hui; Taflove, Allen; Kumar, Prem |; Cao Changqi

    2008-02-15

    A numerical model based on the finite-difference time-domain (FDTD) method is developed to simulate thermal noise in open cavities owing to output coupling. The absorbing boundary of the FDTD grid is treated as a blackbody, whose thermal radiation penetrates the cavity in the grid. The calculated amount of thermal noise in a one-dimensional dielectric cavity recovers the standard result of the quantum Langevin equation in the Markovian regime. Our FDTD simulation also demonstrates that in the non-Markovian regime the buildup of the intracavity noise field depends on the ratio of the cavity photon lifetime to the coherence time of thermal radiation. The advantage of our numerical method is that the thermal noise is introduced in the time domain without prior knowledge of cavity modes.

  20. Characterization of thin polymer films using terahertz time-domain interferometry

    SciTech Connect

    Krishnamurthy, S.; Reiten, M. T.; Harmon, S. A.; Cheville, R. A.

    2001-08-06

    An interferometer for broadband single-cycle THz pulses is developed based on the Michelson configuration. Total internal reflection of THz pulses in high-resistivity silicon prisms provides a nearly 180{sup o} phase shift of one arm relative to the other to achieve destructive interference. We show that due to automatic compensation for laser fluctuations by the interferometer, it is possible to measure the index and absorption of thin-film samples with more accuracy than is achievable with standard THz time-domain spectroscopy. We demonstrate characterization of the complex index of refraction of 2 {mu}m thick Mylar (polyester) films. By measuring the signal amplitude directly in the time domain, the interferometer can be used for rapid measurements of film thickness with a resolution of better than 1 {mu}m. {copyright} 2001 American Institute of Physics.

  1. Feasibility investigation of general time-domain unsteady aerodynamics of rotors

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    1990-01-01

    The feasibility of a general theory for the time-domain unsteady aerodynamics of helicopter rotors is investigated. The wake theory gives a linearized relation between the downwash and the wing bound circulation, in terms of the impulse response obtained directly in the time domain. This approach makes it possible to treat general wake configurations, including discrete wake vorticity with rolled-up and distorted geometry. The investigation establishes the approach for model order reduction; determines when a constrained identification method is needed; verifies the formulation of the theory for rolled-up, distorted trim wake geometry; and verifies the formulation of the theory for wake geometry perturbations. The basic soundness of the approach is demonstrated by the results presented. A research program to complete the development of the method is outlined. The result of this activity will be an approach for analyzing the aeroelastic stability and response of helicopter rotors, while retaining the important influence of the complicated rotor wake configuration.

  2. Time-domain representation of frequency-dependent foundation impedance functions

    USGS Publications Warehouse

    Safak, E.

    2006-01-01

    Foundation impedance functions provide a simple means to account for soil-structure interaction (SSI) when studying seismic response of structures. Impedance functions represent the dynamic stiffness of the soil media surrounding the foundation. The fact that impedance functions are frequency dependent makes it difficult to incorporate SSI in standard time-history analysis software. This paper introduces a simple method to convert frequency-dependent impedance functions into time-domain filters. The method is based on the least-squares approximation of impedance functions by ratios of two complex polynomials. Such ratios are equivalent, in the time-domain, to discrete-time recursive filters, which are simple finite-difference equations giving the relationship between foundation forces and displacements. These filters can easily be incorporated into standard time-history analysis programs. Three examples are presented to show the applications of the method.

  3. A review of time-domain and frequency-domain component mode synthesis method

    NASA Technical Reports Server (NTRS)

    Craig, R. R., Jr.

    1985-01-01

    Hurty (1965) has conducted a dynamic analysis of structural systems using component modes. The component mode synthesis (CMS) procedure considered by him represents a form of substructure coupling analysis which is often utilized in structural dynamics. Time-domain CMS methods employing real modes are discussed, taking into account real component modes, normal modes, redundant constraint modes, rigid-body modes, attachment modes, inertia-relief modes, statically-complete interface mode sets, dynamic component mode supersets, component modal models, the coupling of components, and the classification of methods. Attention is also given to the experimental determination of component mode synthesis parameters, time-domain CMS methods for damped systems, and frequency-domain CMS methods for damped systems.

  4. Gigahertz time-domain spectroscopy and imaging for non-destructive materials research and evaluation

    NASA Astrophysics Data System (ADS)

    Bulgarevich, Dmitry S.; Shiwa, Mitsuharu; Furuya, Takashi; Tani, Masahiko

    2016-06-01

    By using optical sampling with repetition frequency modulation of pump/probe laser pulses on photoconductive emitter/detector antennas, the high-speed time/frequency domain gigahertz imaging is reported due to the absence of opto-mechanical delay line in this optical scheme. The clear contrast for a 3-cm wide metal plate, which was placed behind a 5-cm thick concrete block, was observed with a 1 × 1 mm image pixilation. On average, it took only ~0.75 s per pixel/waveform acquisition/assignment with a 675 ps time-domain window. This could become a valuable non-destructive evaluation technique in gigahertz spectral range with all benefits of time-domain spectroscopy.

  5. Gigahertz time-domain spectroscopy and imaging for non-destructive materials research and evaluation.

    PubMed

    Bulgarevich, Dmitry S; Shiwa, Mitsuharu; Furuya, Takashi; Tani, Masahiko

    2016-01-01

    By using optical sampling with repetition frequency modulation of pump/probe laser pulses on photoconductive emitter/detector antennas, the high-speed time/frequency domain gigahertz imaging is reported due to the absence of opto-mechanical delay line in this optical scheme. The clear contrast for a 3-cm wide metal plate, which was placed behind a 5-cm thick concrete block, was observed with a 1 × 1 mm image pixilation. On average, it took only ~0.75 s per pixel/waveform acquisition/assignment with a 675 ps time-domain window. This could become a valuable non-destructive evaluation technique in gigahertz spectral range with all benefits of time-domain spectroscopy. PMID:27302877

  6. Digital coherent detection research on Brillouin optical time domain reflectometry with simplex pulse codes

    NASA Astrophysics Data System (ADS)

    Hao, Yun-Qi; Ye, Qing; Pan, Zheng-Qing; Cai, Hai-Wen; Qu, Rong-Hui

    2014-11-01

    The digital coherent detection technique has been investigated without any frequency-scanning device in the Brillouin optical time domain reflectometry (BOTDR), where the simplex pulse codes are applied in the sensing system. The time domain signal of every code sequence is collected by the data acquisition card (DAQ). A shift-averaging technique is applied in the frequency domain for the reason that the local oscillator (LO) in the coherent detection is fix-frequency deviated from the primary source. With the 31-bit simplex code, the signal-to-noise ratio (SNR) has 3.5-dB enhancement with the same single pulse traces, accordant with the theoretical analysis. The frequency fluctuation for simplex codes is 14.01 MHz less than that for a single pulse as to 4-m spatial resolution. The results are believed to be beneficial for the BOTDR performance improvement.

  7. Direct observation of electron emission and recombination processes by time domain measurements of charge pumping current

    SciTech Connect

    Hori, Masahiro Watanabe, Tokinobu; Ono, Yukinori; Tsuchiya, Toshiaki

    2015-01-26

    To analyze the charge pumping (CP) sequence in detail, the source/drain electron current and the substrate hole current under the CP mode of transistors are simultaneously monitored in the time domain. Peaks are observed in both the electron and hole currents, which are, respectively, attributed to the electron emission from the interface defects and to the recombination with holes. The peak caused by the electron emission is found to consist of two components, strongly suggesting that the present time-domain measurement can enable us to resolve different kinds of interface defects. Investigating the correlation between the number of emitted and recombined electrons reveals that only one of the two components contributes to the CP current for the gate-pulse fall time from 6.25 × 10{sup −4} to 1.25 × 10{sup −2} s.

  8. Gigahertz time-domain spectroscopy and imaging for non-destructive materials research and evaluation

    PubMed Central

    Bulgarevich, Dmitry S.; Shiwa, Mitsuharu; Furuya, Takashi; Tani, Masahiko

    2016-01-01

    By using optical sampling with repetition frequency modulation of pump/probe laser pulses on photoconductive emitter/detector antennas, the high-speed time/frequency domain gigahertz imaging is reported due to the absence of opto-mechanical delay line in this optical scheme. The clear contrast for a 3-cm wide metal plate, which was placed behind a 5-cm thick concrete block, was observed with a 1 × 1 mm image pixilation. On average, it took only ~0.75 s per pixel/waveform acquisition/assignment with a 675 ps time-domain window. This could become a valuable non-destructive evaluation technique in gigahertz spectral range with all benefits of time-domain spectroscopy. PMID:27302877

  9. Green function method for the time domain simulation of pulse propagation.

    PubMed

    Huang, Jing; Yao, Jianquan; Xu, Degang; Li, Runhua

    2014-06-01

    Based on the Green function method, the nonlinear Schrödinger equation is directly solved in the time domain (without Fourier transform). Because the dispersion and nonlinear effects are calculated simultaneously, it does not bring any spurious effect such as the split-step method in which the step size has to be carefully controlled by an error estimation. By this time domain solution, the pulse fission is analyzed, and we obtain the relationship between the minimum T₀ (the half-width at 1/e-intensity point of a pulse) and dispersion coefficients (β₂, β₃, and β₄). Thus the concrete dispersion values, which have an impact on ultrashort pulses (the quantity units is femtosecond or attosecond), are listed. It has been demonstrated that pulse fission occurs in the normal and anomalous dispersion regimes, even though fourth-order dispersion and the fifth-order nonlinear effects are not taken into account. PMID:24922431

  10. Modeling XV-15 tilt-rotor aircraft dynamics by frequency and time-domain identification techniques

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Kaletka, Juergen

    1987-01-01

    Models of the open-loop hover dynamics of the XV-15 Tilt-Rotor Aircraft are extracted from flight data using two approaches: frequency domain and time-domain identification. Both approaches are reviewed and the identification results are presented and compared in detail. The extracted models are compared favorably, with the differences associated mostly with the inherent weighing of each technique. Step responses are used to show that the predictive capability of the models from both techniques is excellent. Based on the results of this study, the relative strengths and weaknesses of the frequency and time-domain techniques are summarized and a proposal for a coordinated parameter identification approach is presented.

  11. A Study on Channel Estimation Methods for Time-Domain Spreading MC-CDMA Systems

    NASA Astrophysics Data System (ADS)

    Nagate, Atsushi; Fujii, Teruya

    As a candidate for the transmission technology of next generation mobile communication systems, time-domain spreading MC-CDMA systems have begun to attract much attention. In these systems, data and pilot symbols are spread in the time domain and code-multiplexed. To combat fading issues, we need to conduct channel estimation by using the code-multiplexed pilot symbols. Especially in next generation systems, frequency bands higher than those of current systems, which raise the maximum Doppler frequency, are expected to be used, so that a more powerful channel estimation method is expected. Considering this, we propose a channel estimation method for highly accurate channel estimation; it is a combination of a two-dimensional channel estimation method and an impulse response-based channel estimation method. We evaluate the proposed method by computer simulations.

  12. Analysis of wave packet motion in frequency and time domain: oxazine 1.

    PubMed

    Braun, Markus; Sobotta, Constanze; Dürr, Regina; Pulvermacher, Horst; Malkmus, Stephan

    2006-08-17

    Wave packet motion in the laser dye oxazine 1 in methanol is investigated by spectrally resolved transient absorption spectroscopy. The spectral range of 600-690 nm was accessible by amplified broadband probe pulses covering the overlap region of ground-state bleach and stimulated emission signal. The influence of vibrational wave packets on the optical signal is analyzed in the frequency domain and the time domain. For the analysis in the frequency domain an algorithm is presented that accounts for interference effects of neighbored vibrational modes. By this method amplitude, phase and decay time of vibrational modes are retrieved as a function of probe wavelength and distortions due to neighbored modes are reduced. The analysis of the data in the time domain yields complementary information on the intensity, central wavelength, and spectral width of the optical bleach spectrum due to wave packet motion. PMID:16898679

  13. Time domain averaging and correlation-based improved spectrum sensing method for cognitive radio

    NASA Astrophysics Data System (ADS)

    Li, Shenghong; Bi, Guoan

    2014-12-01

    Based on the combination of time domain averaging and correlation, we propose an effective time domain averaging and correlation-based spectrum sensing (TDA-C-SS) method used in very low signal-to-noise ratio (SNR) environments. With the assumption that the received signals from the primary users are deterministic, the proposed TDA-C-SS method processes the received samples by a time averaging operation to improve the SNR. Correlation operation is then performed with a correlation matrix to determine the existence of the primary signal in the received samples. The TDA-C-SS method does not need any prior information on the received samples and the associated noise power to achieve improved sensing performance. Simulation results are presented to show the effectiveness of the proposed TDA-C-SS method.

  14. Three-dimensional finite difference time domain modeling of the Earth-ionosphere cavity resonances

    NASA Astrophysics Data System (ADS)

    Yang, Heng; Pasko, Victor P.

    2005-02-01

    Comparison of results from a three-dimensional (3-D) finite difference time domain (FDTD) model of Schumann resonances (SR) with a set of classical eigenfrequency and quality factor solutions for laterally uniform spherically symmetric Earth-ionosphere cavity and recent SR observations during solar proton events (SPEs) and X-ray bursts demonstrate the potential and applicability of the FDTD technique for studies of realistic SR problems.

  15. Time-domain theory of gyrotron traveling wave amplifiers operating at grazing incidence

    NASA Astrophysics Data System (ADS)

    Ginzburg, N. S.; Sergeev, A. S.; Zotova, I. V.; Zheleznov, I. V.

    2015-01-01

    Time-domain theory of the gyrotron traveling wave tube (gyro-TWT) operating at grazing incidence has been developed. The theory is based on a description of wave propagation by a parabolic equation. The results of the simulations are compared with experimental results of the observation of subnanosecond pulse amplification in a gyro-TWT consisting of three gain sections separated by severs. The theory developed can also be used successfully for a description of amplification of monochromatic signals.

  16. A Three-Channel DC SQUID System Using Time-Domain Multiplexing

    NASA Astrophysics Data System (ADS)

    Korn, Matthias; Mueck, Michael; Mugford, Chas; Kycia, Jan

    2004-03-01

    Conventional multichannel SQUID systems require SQUID readout electronics for each channel, as well as many wires connecting the individual SQUIDs and feedback coils to the room temperature electronics. We have studied a time domain multiplexed readout scheme which requires only a single SQUID readout which is successively switched between all SQUIDs. By connecting all SQUIDs and all feedback coils in series, the system requires only a few wires between SQUIDs and room temperature readout.

  17. Time-domain theory of gyrotron traveling wave amplifiers operating at grazing incidence

    SciTech Connect

    Ginzburg, N. S.; Sergeev, A. S.; Zotova, I. V.; Zheleznov, I. V.

    2015-01-15

    Time-domain theory of the gyrotron traveling wave tube (gyro-TWT) operating at grazing incidence has been developed. The theory is based on a description of wave propagation by a parabolic equation. The results of the simulations are compared with experimental results of the observation of subnanosecond pulse amplification in a gyro-TWT consisting of three gain sections separated by severs. The theory developed can also be used successfully for a description of amplification of monochromatic signals.

  18. Time domain analysis of a gyrotron traveling wave amplifier with misaligned electron beam

    SciTech Connect

    Wang, Qiushi Peng, Shuyuan; Luo, Jirun

    2014-08-15

    This article develops a time-domain theory to study the beam-wave interaction in gyrotron traveling wave amplifier (gyro-TWA) with a misaligned electron beam. The effects of beam misalignment on the TE{sub 01} mode gyro-TWA operating at the fundamental are discussed. Numerical results show that the effect of misalignment is less obvious when the input power is larger, and the influences of misalignment on the stable gain and the stable time are basically opposite.

  19. Photothermal radiometric time-domain inspection of solid specimen by moving line heat source

    NASA Astrophysics Data System (ADS)

    Hoshimiya, T.; Suzuki, M.; Takatsu, T.; Doi, N.; Endoh, H.

    2010-03-01

    The time-domain response of the temperature of solid specimen surface illuminated by a linearly-focused laser beam scanning over a solid specimen surface was theoretically formulated. The waveform is composed of surface diffusion and reflection components, both of which are represented by incomplete Gamma functions. Experimental results show photothermal radiometric signal increase caused by the reflection of heat flow at the internal defect boundary and agreed with calculated data qualitatively.

  20. Finite-difference, time-domain analysis of a folded acoustic transmission line.

    PubMed

    Jackson, Charles M

    2005-03-01

    Recently designed, modern versions of renais sance woodwind instruments such as the recorder and serpent use square cross sections and a folded acoustic transmission line. Conventional microwave techniques would expect that this bend would cause unwanted reflections and impedance discontinuities. This paper analyses the folded acoustic transmission line using finite-difference, time-domain techniques and shows that the discontinuity can be compensated with by the use of a manufacturable method. PMID:15857045

  1. Wideband finite difference time domain implementation of surface impedance boundary conditions for good conductors

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.; Yee, Kane S.

    1991-01-01

    Surface impedance boundary conditions are employed to reduce the solution volume during the analysis of scattering from lossy dielectric objects. In a finite difference solution, they also can be utilized to avoid using small cells, made necessary by shorter wavelengths in conducting media, throughout the solution volume. A 1-D implementation for a surface impedance boundary condition for good conductors in the Finite Difference Time Domain (FDTD) technique.

  2. Nonlinear response - A time domain approach. [with applications to acoustic fatigue, spacecraft and composite materials

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.

    1986-01-01

    The present paper reviews the basic concepts of nonlinear response of panels to surface flow and acoustic pressures, simulation of random processes, time domain solutions and the Monte Carlo Method. Applications of this procedure to the orbit-on-demand space vehicles, acoustic fatigue and composite materials are discussed. Numerical examples are included for a variety of nonlinear problems to illustrate the applicability of this method.

  3. Design and evaluation of a THz time domain imaging system using standard optical design software.

    PubMed

    Brückner, Claudia; Pradarutti, Boris; Müller, Ralf; Riehemann, Stefan; Notni, Gunther; Tünnermann, Andreas

    2008-09-20

    A terahertz (THz) time domain imaging system is analyzed and optimized with standard optical design software (ZEMAX). Special requirements to the illumination optics and imaging optics are presented. In the optimized system, off-axis parabolic mirrors and lenses are combined. The system has a numerical aperture of 0.4 and is diffraction limited for field points up to 4 mm and wavelengths down to 750 microm. ZEONEX is used as the lens material. Higher aspherical coefficients are used for correction of spherical aberration and reduction of lens thickness. The lenses were manufactured by ultraprecision machining. For optimization of the system, ray tracing and wave-optical methods were combined. We show how the ZEMAX Gaussian beam analysis tool can be used to evaluate illumination optics. The resolution of the THz system was tested with a wire and a slit target, line gratings of different period, and a Siemens star. The behavior of the temporal line spread function can be modeled with the polychromatic coherent line spread function feature in ZEMAX. The spectral and temporal resolutions of the line gratings are compared with the respective modulation transfer function of ZEMAX. For maximum resolution, the system has to be diffraction limited down to the smallest wavelength of the spectrum of the THz pulse. Then, the resolution on time domain analysis of the pulse maximum can be estimated with the spectral resolution of the center of gravity wavelength. The system resolution near the optical axis on time domain analysis of the pulse maximum is 1 line pair/mm with an intensity contrast of 0.22. The Siemens star is used for estimation of the resolution of the whole system. An eight channel electro-optic sampling system was used for detection. The resolution on time domain analysis of the pulse maximum of all eight channels could be determined with the Siemens star to be 0.7 line pairs/mm. PMID:18806862

  4. Carbon nanostructures properties by terahertz time-domain spectroscopy analysis for nanoengineering applications

    NASA Astrophysics Data System (ADS)

    Dadrasnia, Ehsan; Lamela, Horacio

    2012-06-01

    The electrical conductivity properties of carbon nanotubes (CNTs) can be applied in the nanoelectronic devices to use in the nanoengineering applications. This paper investigates the low and high frequency-dependent electrical conductivity response of the single and multi walled carbon nanotubes (SWNTs and MWNTs) thin-films by analyzing the contactless THz time-domain spectroscopy (THz-TDS) technique and the extrapolation method.

  5. Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol.

    PubMed

    Wabnitz, Heidrun; Taubert, Dieter Richard; Mazurenka, Mikhail; Steinkellner, Oliver; Jelzow, Alexander; Macdonald, Rainer; Milej, Daniel; Sawosz, Piotr; Kacprzak, Michał; Liebert, Adam; Cooper, Robert; Hebden, Jeremy; Pifferi, Antonio; Farina, Andrea; Bargigia, Ilaria; Contini, Davide; Caffini, Matteo; Zucchelli, Lucia; Spinelli, Lorenzo; Cubeddu, Rinaldo; Torricelli, Alessandro

    2014-08-01

    Performance assessment of instruments devised for clinical applications is of key importance for validation and quality assurance. Two new protocols were developed and applied to facilitate the design and optimization of instruments for time-domain optical brain imaging within the European project nEUROPt. Here, we present the "Basic Instrumental Performance" protocol for direct measurement of relevant characteristics. Two tests are discussed in detail. First, the responsivity of the detection system is a measure of the overall efficiency to detect light emerging from tissue. For the related test, dedicated solid slab phantoms were developed and quantitatively spectrally characterized to provide sources of known radiance with nearly Lambertian angular characteristics. The responsivity of four time-domain optical brain imagers was found to be of the order of 0.1 m² sr. The relevance of the responsivity measure is demonstrated by simulations of diffuse reflectance as a function of source-detector separation and optical properties. Second, the temporal instrument response function (IRF) is a critically important factor in determining the performance of time-domain systems. Measurements of the IRF for various instruments were combined with simulations to illustrate the impact of the width and shape of the IRF on contrast for a deep absorption change mimicking brain activation. PMID:25121479

  6. Optimal sensor placement for time-domain identification using a wavelet-based genetic algorithm

    NASA Astrophysics Data System (ADS)

    Mahdavi, Seyed Hossein; Razak, Hashim Abdul

    2016-06-01

    This paper presents a wavelet-based genetic algorithm strategy for optimal sensor placement (OSP) effective for time-domain structural identification. Initially, the GA-based fitness evaluation is significantly improved by using adaptive wavelet functions. Later, a multi-species decimal GA coding system is modified to be suitable for an efficient search around the local optima. In this regard, a local operation of mutation is introduced in addition with regeneration and reintroduction operators. It is concluded that different characteristics of applied force influence the features of structural responses, and therefore the accuracy of time-domain structural identification is directly affected. Thus, the reliable OSP strategy prior to the time-domain identification will be achieved by those methods dealing with minimizing the distance of simulated responses for the entire system and condensed system considering the force effects. The numerical and experimental verification on the effectiveness of the proposed strategy demonstrates the considerably high computational performance of the proposed OSP strategy, in terms of computational cost and the accuracy of identification. It is deduced that the robustness of the proposed OSP algorithm lies in the precise and fast fitness evaluation at larger sampling rates which result in the optimum evaluation of the GA-based exploration and exploitation phases towards the global optimum solution.

  7. Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics.

    PubMed

    D'Angelo, Francesco; Mics, Zoltán; Bonn, Mischa; Turchinovich, Dmitry

    2014-05-19

    Terahertz-range dielectric properties of the common polymers low-density polyethylene (LDPE), cyclic olefin/ethylene copolymer (TOPAS®), polyamide-6 (PA6), and polytetrafluoroethylene (PTFE or Teflon®) are characterized in the ultra-broadband frequency window 2-15 THz, using a THz time-domain spectrometer employing air-photonics for the generation and detection of single-cycle sub-50 fs THz transients. The time domain measurements provide direct access to both the absorption and refractive index spectra. The polymers LDPE and TOPAS® demonstrate negligible absorption and spectrally-flat refractive index across the entire spectroscopy window, revealing the high potential of these polymers for applications in THz photonics such as ultra-broadband polymer-based dielectric mirrors, waveguides, and fibers. Resonant high-frequency polar vibrational modes are observed and assigned in polymers PA6 and PTFE, and their dielectric functions in the complete frequency window 2-15 THz are theoretically reproduced. Our results demonstrate the potential of ultra-broadband air-photonics-based THz time domain spectroscopy as a valuable analytic tool for materials science. PMID:24921365

  8. Time-Domain Measurements of Real-Space Magnetization Trajectories in Spin Torque Oscillators

    NASA Astrophysics Data System (ADS)

    Rowlands, Graham E.; Zhu, Jian; Katine, Jordan A.; Langer, Juergen; Khalili Amiri, Pedram; Wang, Kang L.; Krivorotov, Ilya N.

    2012-02-01

    We make time-domain measurements of the microwave signal emitted by spin torque nano-oscillators (STNOs) based on magnetic tunnel junctions with Fe-rich free layers. The perpendicular magnetic anisotropy of the free layer nearly cancels its easy-plane shape anisotropy, allowing the magnetization to undergo large amplitude precession. The microwave power emitted by such STNOs reaches values approaching 0.4 μW. We employ a high-gain low-noise amplifier to further amplify the emitted signal, thereby bringing it to a level (˜ 0.5 V rms) far exceeding the noise floor (5mV rms) of a 12 GHz, 40 Gs/s storage oscilloscope used for time-domain measurements. Relying on the assumption that extrema of the measured voltage versus time trace correspond to the magnetization crossing the sample plane, we use these time-domain traces to reconstruct the statistical distributions of the azimuthal angles at which the magnetization vector of the free layer crosses the plane of the sample. We measure the evolution of these crossing angle distributions as a function of current density and compare to theoretical predictions.

  9. Time-domain model for TLP surge response in extreme sea states

    SciTech Connect

    Finnigan, T.D.; Botelho, D.L.R.; Petrauskas, C.

    1984-05-01

    A time-domain model is presented and evaluated for the prediction of the surge response of a tension leg platform (TLP) in regular and random waves, in the presence of a current. The wave force equation in the model is a modification of the Morison equation. Wave diffraction effects are incorporated in an approximate manner. The time-domain model is evaluated on the basis of experimental tests that were performed on a 1:60 scale model of a TLP. The tests were specially designed to investigate the effect of combined waves and current on surge response. The tests were conducted in regular, random and grouped waves. Current was simulated by towing the model. Two different forms of linear wave theory based on stretching and extrapolating wave particle kinematics from Airy wave theory up to the free surface are investigated. The maximum surge response is predicted well by the time-domain model provided the extrapolation of Airy wave theory is used.

  10. Simulation of planar integrated photonics devices with the LLNL time- domain finite-difference code suite

    SciTech Connect

    McLeod, R.; Hawkins, R.J.; Kallman, J.S.

    1991-04-01

    Interest has recently grown in applying microwave modeling techniques to optical circuit modeling. One of the simplest, yet most powerful, microwave simulation techniques is the finite-difference time-domain algorithm (FDTD). In this technique, the differential form of the time-domain Maxwell's equations are discretized and all derivatives are approximated as differences. Minor algebraic manipulations on the resulting equations produces a set of update equations that produce fields at a given time step from fields at the previous time step. The FDTD algorithm, then, is quite simple. Source fields are launched into the discrete grid by some means. The FDTD equations advance these fields in time. At the boundaries of the grid, special update equations called radiation conditions are applied that approximate a continuing, infinite space. Because virtually no assumptions are made in the development of the FDTD method, the algorithm is able to represent a wide-range of physical effects. Waves can propagate in any direction, multiple reflections within structures can cause resonances, multiple modes of various polarizations can be launched, each of which may generate within the device an infinite spectrum of bound and radiation modes. The ability to model these types of general physical effects is what makes the FDTD method interesting to the field of optics. In this paper, we discuss the application of the finite-difference time-domain technique to integrated optics. Animations will be shown of the simulations of a TE coupler, TM grating, and a TE integrated detector. 3 refs., 1 fig.

  11. Evaluation of the time-domain approach for crosstalk-free communication in photonic switches

    NASA Astrophysics Data System (ADS)

    Wang, Jia H.; Qiao, Chunming

    1995-12-01

    First-order crosstalk in Multistage Interconnection Network (MINs) can be avoided by ensuring only one input of each switch is active at a given time, in other words, no two connections can use the same switch simultaneously. A space domain approach dilates an N- by-N network into one that is essentially equivalent to a 2N-by-2N network. The time domain approach proposed extends the `dilation' concept from space to time to avoid crosstalk by establishing the connections sharing the same switch in different time slots. This paper studies the tradeoffs of these two approaches in two different MINs, namely, Banyan and Benes, under both individual and stage switch control. Theoretical analysis showed that in a Banyan with stage control, the set of N-by-N permutations whose connections can be established crosstalk free in two time slots using the time domain approach is more than the set of permutations that can be realized in one time slot using the space domain approach. In addition, simulation results showed that given the same set of one-to-one or one-to-many connections, the number of time slots needed by the time-domain approach is less than twice of that needed by the space-domain approach.

  12. Time-Domain Simulation of Along-Track Interferometric SAR for Moving Ocean Surfaces.

    PubMed

    Yoshida, Takero; Rheem, Chang-Kyu

    2015-01-01

    A time-domain simulation of along-track interferometric synthetic aperture radar (AT-InSAR) has been developed to support ocean observations. The simulation is in the time domain and based on Bragg scattering to be applicable for moving ocean surfaces. The time-domain simulation is suitable for examining velocities of moving objects. The simulation obtains the time series of microwave backscattering as raw signals for movements of ocean surfaces. In terms of realizing Bragg scattering, the computational grid elements for generating the numerical ocean surface are set to be smaller than the wavelength of the Bragg resonant wave. In this paper, the simulation was conducted for a Bragg resonant wave and irregular waves with currents. As a result, the phases of the received signals from two antennas differ due to the movement of the numerical ocean surfaces. The phase differences shifted by currents were in good agreement with the theoretical values. Therefore, the adaptability of the simulation to observe velocities of ocean surfaces with AT-InSAR was confirmed. PMID:26067197

  13. Rheological Models in the Time-Domain Modeling of Seismic Motion

    NASA Astrophysics Data System (ADS)

    Moczo, P.; Kristek, J.

    2004-12-01

    The time-domain stress-strain relation in a viscoelastic medium has a form of the convolutory integral which is numerically intractable. This was the reason for the oversimplified models of attenuation in the time-domain seismic wave propagation and earthquake motion modeling. In their pioneering work, Day and Minster (1984) showed the way how to convert the integral into numerically tractable differential form in the case of a general viscoelastic modulus. In response to the work by Day and Minster, Emmerich and Korn (1987) suggested using the rheology of their generalized Maxwell body (GMB) while Carcione et al. (1988) suggested using the generalized Zener body (GZB). The viscoelastic moduli of both rheological models have a form of the rational function and thus the differential form of the stress-strain relation is rather easy to obtain. After the papers by Emmerich and Korn and Carcione et al. numerical modelers decided either for the GMB or GZB rheology and developed 'non-communicating' algorithms. In the many following papers the authors using the GMB never commented the GZB rheology and the corresponding algorithms, and the authors using the GZB never related their methods to the GMB rheology and algorithms. We analyze and compare both rheologies and the corresponding incorporations of the realistic attenuation into the time-domain computations. We then focus on the most recent staggered-grid finite-difference modeling, mainly on accounting for the material heterogeneity in the viscoelastic media, and the computational efficiency of the finite-difference algorithms.

  14. Time domain investigation of transceiver functions using a known reference target.

    PubMed

    Feuillade, C; Meredith, R W; Chotiros, N P; Clay, C S

    2002-12-01

    During August 1998, a bottom scattering tank experiment was performed at the Applied Research Laboratory, University of Texas to measure wideband acoustic reverberation from multiple objects (e.g., cobbles and pebbles) placed on a sediment simulation of the sea floor. In preparation for processing and analyzing the experimental data, time domain scattering measurements made with stainless steel and glass balls suspended in the water column were used to calibrate the sonar transceiver system by deconvolving the theoretical impulse response for steel and glass spheres, obtained via the Faran elastic sphere scattering model, from the scattered time signals. It is the analysis of these calibration measurements which forms the subject of this paper. Results show the critical importance of accurate input-output system calibrations for time domain sound scattering research, and successfully demonstrate a time domain method for accurately calibrating the complete sonar transceiver function, i.e., both the amplitude and time dependence, using a known reference target. The work has implications for boundary and volume scattering applications. PMID:12508990

  15. Time Domains of the Hypoxic Ventilatory Response and Their Molecular Basis

    PubMed Central

    Pamenter, Matthew E.; Powell, Frank L.

    2016-01-01

    Ventilatory responses to hypoxia vary widely depending on the pattern and length of hypoxic exposure. Acute, prolonged, or intermittent hypoxic episodes can increase or decrease breathing for seconds to years, both during the hypoxic stimulus, and also after its removal. These myriad effects are the result of a complicated web of molecular interactions that underlie plasticity in the respiratory control reflex circuits and ultimately control the physiology of breathing in hypoxia. Since the time domains of the physiological hypoxic ventilatory response (HVR) were identified, considerable research effort has gone toward elucidating the underlying molecular mechanisms that mediate these varied responses. This research has begun to describe complicated and plastic interactions in the relay circuits between the peripheral chemoreceptors and the ventilatory control circuits within the central nervous system. Intriguingly, many of these molecular pathways seem to share key components between the different time domains, suggesting that varied physiological HVRs are the result of specific modifications to overlapping pathways. This review highlights what has been discovered regarding the cell and molecular level control of the time domains of the HVR, and highlights key areas where further research is required. Understanding the molecular control of ventilation in hypoxia has important implications for basic physiology and is emerging as an important component of several clinical fields. PMID:27347896

  16. Time-domain damping models in structural acoustics using digital filtering

    NASA Astrophysics Data System (ADS)

    Parret-Fréaud, Augustin; Cotté, Benjamin; Chaigne, Antoine

    2016-02-01

    This paper describes a new approach in order to formulate well-posed time-domain damping models able to represent various frequency domain profiles of damping properties. The novelty of this approach is to represent the behavior law of a given material directly in a discrete-time framework as a digital filter, which is synthesized for each material from a discrete set of frequency-domain data such as complex modulus through an optimization process. A key point is the addition of specific constraints to this process in order to guarantee stability, causality and verification of thermodynamics second law when transposing the resulting discrete-time behavior law into the time domain. Thus, this method offers a framework which is particularly suitable for time-domain simulations in structural dynamics and acoustics for a wide range of materials (polymers, wood, foam, etc.), allowing to control and even reduce the distortion effects induced by time-discretization schemes on the frequency response of continuous-time behavior laws.

  17. DANCING WITH THE ELECTRONS: TIME-DOMAIN AND CW IN VIVO EPR IMAGING

    PubMed Central

    Subramanian, Sankaran; Krishna, Murali C.

    2009-01-01

    The progress in the development of imaging the distribution of unpaired electrons in living systems and the functional and the potential diagnostic dimensions of such an imaging process, using Electron Paramagnetic Resonance Imaging (EPRI), is traced from its origins with emphasis on our own work. The importance of EPR imaging stems from the fact that many paramagnetic probes show oxygen dependent spectral broadening. Assessment of in vivo oxygen concentration is an important factor in radiation oncology in treatment-planning and monitoring treatment-outcome. The emergence of narrow-line trairylmethyl based, bio-compatible spin probes has enabled the development of radiofrequency time-domain EPRI. Spectral information in time-domain EPRI can be achieved by generating a time sequence of T2* or T2 weighted images. Progress in CW imaging has led to the use of rotating gradients, more recently rapid scan with direct detection, and a combination of all the three. Very low field MRI employing Dynamic Nuclear polarization (Overhauser effect) is also employed for monitoring tumor hypoxia, and re-oxygenation in vivo. We have also been working on the co-registration of MRI and time domain EPRI on mouse tumor models at 300 MHz using a specially designed resonator assembly. The mapping of the unpaired electron distribution and unraveling the spectral characteristics by using magnetic resonance in presence of stationary and rotating gradients in indeed ‘dancing with the (unpaired) electrons’, metaphorically speaking. PMID:22025900

  18. Time Domains of the Hypoxic Ventilatory Response and Their Molecular Basis.

    PubMed

    Pamenter, Mathhew E; Powell, Frank L

    2016-01-01

    Ventilatory responses to hypoxia vary widely depending on the pattern and length of hypoxic exposure. Acute, prolonged, or intermittent hypoxic episodes can increase or decrease breathing for seconds to years, both during the hypoxic stimulus, and also after its removal. These myriad effects are the result of a complicated web of molecular interactions that underlie plasticity in the respiratory control reflex circuits and ultimately control the physiology of breathing in hypoxia. Since the time domains of the physiological hypoxic ventilatory response (HVR) were identified, considerable research effort has gone toward elucidating the underlying molecular mechanisms that mediate these varied responses. This research has begun to describe complicated and plastic interactions in the relay circuits between the peripheral chemoreceptors and the ventilatory control circuits within the central nervous system. Intriguingly, many of these molecular pathways seem to share key components between the different time domains, suggesting that varied physiological HVRs are the result of specific modifications to overlapping pathways. This review highlights what has been discovered regarding the cell and molecular level control of the time domains of the HVR, and highlights key areas where further research is required. Understanding the molecular control of ventilation in hypoxia has important implications for basic physiology and is emerging as an important component of several clinical fields. © 2016 American Physiological Society. Compr Physiol 6:1345-1385, 2016. PMID:27347896

  19. Analytical time-domain Green’s functions for power-law media

    PubMed Central

    Kelly, James F.; McGough, Robert J.; Meerschaert, Mark M.

    2008-01-01

    Frequency-dependent loss and dispersion are typically modeled with a power-law attenuation coefficient, where the power-law exponent ranges from 0 to 2. To facilitate analytical solution, a fractional partial differential equation is derived that exactly describes power-law attenuation and the Szabo wave equation [“Time domain wave-equations for lossy media obeying a frequency power-law,” J. Acoust. Soc. Am. 96, 491–500 (1994)] is an approximation to this equation. This paper derives analytical time-domain Green’s functions in power-law media for exponents in this range. To construct solutions, stable law probability distributions are utilized. For exponents equal to 0, 1∕3, 1∕2, 2∕3, 3∕2, and 2, the Green’s function is expressed in terms of Dirac delta, exponential, Airy, hypergeometric, and Gaussian functions. For exponents strictly less than 1, the Green’s functions are expressed as Fox functions and are causal. For exponents greater than or equal than 1, the Green’s functions are expressed as Fox and Wright functions and are noncausal. However, numerical computations demonstrate that for observation points only one wavelength from the radiating source, the Green’s function is effectively causal for power-law exponents greater than or equal to 1. The analytical time-domain Green’s function is numerically verified against the material impulse response function, and the results demonstrate excellent agreement. PMID:19045774

  20. A time-domain CMOS oscillator-based thermostat with digital set-point programming.

    PubMed

    Chen, Chun-Chi; Lin, Shih-Hao

    2013-01-01

    This paper presents a time-domain CMOS oscillator-based thermostat with digital set-point programming [without a digital-to-analog converter (DAC) or external resistor] to achieve on-chip thermal management of modern VLSI systems. A time-domain delay-line-based thermostat with multiplexers (MUXs) was used to substantially reduce the power consumption and chip size, and can benefit from the performance enhancement due to the scaling down of fabrication processes. For further cost reduction and accuracy enhancement, this paper proposes a thermostat using two oscillators that are suitable for time-domain curvature compensation instead of longer linear delay lines. The final time comparison was achieved using a time comparator with a built-in custom hysteresis to generate the corresponding temperature alarm and control. The chip size of the circuit was reduced to 0.12 mm2 in a 0.35-mm TSMC CMOS process. The thermostat operates from 0 to 90 °C, and achieved a fine resolution better than 0.05 °C and an improved inaccuracy of ± 0.6 °C after two-point calibration for eight packaged chips. The power consumption was 30 µW at a sample rate of 10 samples/s. PMID:23385403

  1. A frequency domain method for the generation of partially coherent normal stationary time domain signals

    SciTech Connect

    Smallwood, D.O.; Paez, T.L.

    1991-01-01

    A procedure for generating vectors of time domain signals which are partially coherent in a prescribed manner is described. The procedure starts with the spectral density matrix, (G{sub xx}(f)), that relates pairs of elements of the vector random process (x(t), {minus}{infinity} < t < {infinity}). The spectral density matrix is decomposed into the form (G{sub xx}(f)) = (U(f)) (S(f)) (U(f)){prime} where (U(f)) is a matrix of complex frequency response functions, and (S(f)) is a diagonal matrix of real functions which can vary with frequency. The factors of the spectral density matrix, (U(f)) and (S(f)), are then used to generate a frame of random data in the frequency domain. The data is transformed into the time domain using an inverse FFT to generate a frame of data in the time domain. Successive frames of data are then windowed, overlapped, and added to form a vector of normal stationary sampled time histories, (x(t)), of arbitrary length. 11 refs., 4 figs., 1 tab.

  2. Dispersion constraints and the Hilbert transform for electromagnetic system response validation

    NASA Astrophysics Data System (ADS)

    Macnae, James; Springall, Ryan

    2011-02-01

    As a check on calibration and drift in each discrete sub-system of a commercial frequency-domain airborne electromagnetic system, we aim to use causality constraints alone to predict in-phase from wide-band quadrature data. There are several possible applications of the prediction of in-phase response from quadrature data including: (1) quality control on base level drift, calibration and phase checks; (2) prediction and validation of noise levels in in-phase from quadrature measurements and vice versa and in future; and (3) interpolation and extrapolation of sparsely sampled data enforcing causality and better frequency-domain - time-domain transformations. In practice, using tests on both synthetic and measured Resolve helicopter-borne electromagnetic frequency domain data, in-phase data points could be predicted using a scaled Hilbert transform with a standard deviation between 40 and 80ppm. However, relative differences between base levels between flight could be resolved to better than 1ppm, which allows an independent quality control check on the accuracy of drift corrections.

  3. THz pulsed time-domain imaging of an oil canvas painting: a case study of a painting by Pablo Picasso

    NASA Astrophysics Data System (ADS)

    Fukunaga, Kaori; Ikari, Tomofumi; Iwai, Kikuko

    2016-02-01

    The terahertz pulsed time-domain imaging technique and near-infrared observation were applied to investigate an oil painting on canvas by Pablo Picasso. The multilayer structure is clearly observed in cross-sectional image by terahertz pulsed time-domain imaging, and particular Cubism style lines were revealed under newly painted area by near-infrared image.

  4. Full Wave Analysis of Passive Microwave Monolithic Integrated Circuit Devices Using a Generalized Finite Difference Time Domain (GFDTD) Algorithm

    NASA Technical Reports Server (NTRS)

    Lansing, Faiza S.; Rascoe, Daniel L.

    1993-01-01

    This paper presents a modified Finite-Difference Time-Domain (FDTD) technique using a generalized conformed orthogonal grid. The use of the Conformed Orthogonal Grid, Finite Difference Time Domain (GFDTD) enables the designer to match all the circuit dimensions, hence eliminating a major source o error in the analysis.

  5. Exploration of resistive targets within shallow marine environments using the circular electrical dipole and the differential electrical dipole methods: a time-domain modelling study

    NASA Astrophysics Data System (ADS)

    Haroon, Amir; Mogilatov, Vladimir; Goldman, Mark; Bergers, Rainer; Tezkan, Bülent

    2016-05-01

    Two novel transient controlled source electromagnetic methods called circular electrical dipole (CED) and differential electrical dipole (DED) are theoretically analysed for applications in shallow marine environments. 1-D and 3-D time-domain modelling studies are used to investigate the detectability and applicability of the methods when investigating resistive layers/targets representing hydrocarbon-saturated formations. The results are compared to the conventional time-domain horizontal electrical dipole (HED) and vertical electrical dipole (VED) sources. The applied theoretical modelling studies demonstrate that CED and DED have higher signal detectability towards resistive targets compared to TD-CSEM, but demonstrate significantly poorer signal amplitudes. Future CED/DED applications will have to solve this issue prior to measuring. Furthermore, the two novel methods have very similar detectability characteristics towards 3-D resistive targets embedded in marine sediments as VED while being less susceptible towards non-verticality. Due to the complex transmitter design of CED/DED the systems are prone to geometrical errors. Modelling studies show that even small transmitter inaccuracies have strong effects on the signal characteristics of CED making an actual marine application difficult at the present time. In contrast, the DED signal is less affected by geometrical errors in comparison to CED and may therefore be more adequate for marine applications.

  6. Local Outer Radiating Boundary Conditions for the Finite-Difference Time-Domain Method Applied to Maxwell's Equations.

    NASA Astrophysics Data System (ADS)

    Steich, David James

    1995-01-01

    The Finite Difference Time Domain (FDTD) method is a simple yet powerful method for numerically solving electromagnetic wave phenomenon on computers. The FDTD technique discretizes Maxwell's equations with finite difference equations. These finite difference equations, which approximate local field behavior, are applied to large spatial lattices allowing calculation of a vast array of electromagnetical phenomenon. The greatest strengths of the FDTD method are in its simplicity, efficiency, and diversity. FDTD is capable of modeling the scattering and coupling to lossy dielectrics, lossy magnetics, anisotropic media, dispersive media, and nonlinear materials for general geometric shapes. Wideband frequency information can be obtained using FDTD for both near and far field observation points in a single computational run. However, along with all of its benefits, the FDTD algorithm has some deficiencies. For most problems of interest, poor accuracy at geometry interfaces of differing media and at outer problem space boundarys where the spatial lattice must be truncated are the two largest error sources of the FDTD algorithm. Although most accuracy issues can be circumvented by expending large amounts of computer memory and cpu time, using excessive computer resources is not always possible and is never appealing. The purpose of this thesis is to generalize, analyze, and test various mainstream local Outer Radiating Boundary Conditions (ORBCs) for the FDTD method applied to Maxwell's equations in order to help gain a better understanding of present ORBC limitations. A common mathematical model is presented for the boundary conditions. Boundary conditions shown to fit the model include Mur, Superabsorption, Liao, Higdon, and Lindman ORBCs of varying orders. Simple operators are defined and then used to generate the final discretized equations for each of the boundary conditions, automatically, without requiring complicated high order equations. The procedure also allows

  7. A dual-field domain-decomposition method for the time-domain finite-element analysis of large finite arrays

    SciTech Connect

    Lou, Zheng; Jin, Jian-Ming . E-mail: j-jin1@uiuc.edu

    2007-03-01

    A novel dual-field time-domain finite-element domain-decomposition method is presented for an efficient and broadband numerical simulation of electromagnetic properties of large finite arrays. Instead of treating the entire array as a single computation domain, the method considers each array element as a smaller subdomain and computes both the electric and magnetic fields inside each subdomain. Adjacent subdomains are related to each other by the equivalent surface currents on the subdomain interfaces in an explicit manner. Furthermore, the method exploits the identical geometry of the array elements and further reduces the memory requirement and CPU time. The proposed method is highly efficient for the simulation of large finite arrays. Numerical stability and computational performance of the method are discussed. Several radiation examples are presented to demonstrate the accuracy and efficiency of the method.

  8. Finite difference time domain analysis of microwave ferrite devices and mobile antenna systems

    NASA Astrophysics Data System (ADS)

    Yildirim, Bahadir Suleyman

    This dissertation presents analysis and design of shielded mobile antenna systems and microwave ferrite devices using a finite-difference time-domain method. Novel shielded antenna structures suitable for cellular communications have been analyzed and designed with emphasize on reducing excessive radiated energy absorbed in user's head and hand, while keeping the antenna performance at its peak in the presence of user. These novel antennas include a magnetically shielded antenna, a dual-resonance shielded antenna and, a shorted and truncated microstrip antenna. The effect of magnetic coating on the performance of a shielded monopole antenna is studied extensively. A parametric study is performed to analyze the dual-resonance phenomenon observed in the dual-resonance shielded antenna, optimize the antenna design within the cellular communications band, and improve the antenna performance. Input impedance, near and far fields of the dual-resonance shielded antenna are calculated using the finite-difference time-domain method. Experimental validation is also presented. In addition, performance of a shorted and truncated microstrip antenna has been investigated over a wide range of substrate parameters and dimensions. Objectives of the research work also include development of a finite-difference time-domain technique to accurately model magnetically anisotropic media, including the effect of non-uniform magnetization within the finite-size ferrite material due to demagnetizing fields. A slow wave thin film isolator and a stripline disc junction circulator are analyzed. An extensive parametric study calculates wide-band frequency-dependent parameters of these devices for various device dimensions and material parameters. Finally, a ferrite-filled stripline configuration is analyzed to study the non- linear behaviour of ferrite by introducing a modified damping factor.

  9. Liverpool Telescope 2: a new robotic facility for time domain astronomy in 2020+

    NASA Astrophysics Data System (ADS)

    Copperwheat, C. M.; Steele, I. A.; Bates, S. D.; Smith, R. J.; Bode, M. F.; Baker, I.; Peacocke, T.; Thomson, K.

    2014-07-01

    The robotic 2m Liverpool Telescope, based on the Canary island of La Palma, has a diverse instrument suite and a strong track record in time domain science, with highlights including early time photometry and spectra of supernovae, measurements of the polarization of gamma-ray burst afterglows, and high cadence light curves of transiting extrasolar planets. In the next decade the time domain will become an increasingly prominent part of the astronomical agenda with new facilities such as LSST, SKA, CTA and Gaia, and promised detections of astrophysical gravitational wave and neutrino sources opening new windows on the transient universe. To capitalise on this exciting new era we intend to build Liverpool Telescope 2: a new robotic facility on La Palma dedicated to time domain science. The next generation of survey facilities will discover large numbers of new transient sources, but there will be a pressing need for follow-up observations for scientific exploitation, in particular spectroscopic follow-up. Liverpool Telescope 2 will have a 4-metre aperture, enabling optical/infrared spectroscopy of faint objects. Robotic telescopes are capable of rapid reaction to unpredictable phenomena, and for fast-fading transients like gamma-ray burst afterglows. This rapid reaction enables observations which would be impossible on less agile telescopes of much larger aperture. We intend Liverpool Telescope 2 to have a world-leading response time, with the aim that we will be taking data with a few tens of seconds of receipt of a trigger from a ground- or space-based transient detection facility. We outline here our scientific goals and present the results of our preliminary optical design studies.

  10. Time Domain Tool Validation Using ARES I-X Flight Data

    NASA Technical Reports Server (NTRS)

    Hough, Steven; Compton, James; Hannan, Mike; Brandon, Jay

    2011-01-01

    The ARES I-X vehicle was launched from NASA's Kennedy Space Center (KSC) on October 28, 2009 at approximately 11:30 EDT. ARES I-X was the first test flight for NASA s ARES I launch vehicle, and it was the first non-Shuttle launch vehicle designed and flown by NASA since Saturn. The ARES I-X had a 4-segment solid rocket booster (SRB) first stage and a dummy upper stage (US) to emulate the properties of the ARES I US. During ARES I-X pre-flight modeling and analysis, six (6) independent time domain simulation tools were developed and cross validated. Each tool represents an independent implementation of a common set of models and parameters in a different simulation framework and architecture. Post flight data and reconstructed models provide the means to validate a subset of the simulations against actual flight data and to assess the accuracy of pre-flight dispersion analysis. Post flight data consists of telemetered Operational Flight Instrumentation (OFI) data primarily focused on flight computer outputs and sensor measurements as well as Best Estimated Trajectory (BET) data that estimates vehicle state information from all available measurement sources. While pre-flight models were found to provide a reasonable prediction of the vehicle flight, reconstructed models were generated to better represent and simulate the ARES I-X flight. Post flight reconstructed models include: SRB propulsion model, thrust vector bias models, mass properties, base aerodynamics, and Meteorological Estimated Trajectory (wind and atmospheric data). The result of the effort is a set of independently developed, high fidelity, time-domain simulation tools that have been cross validated and validated against flight data. This paper presents the process and results of high fidelity aerospace modeling, simulation, analysis and tool validation in the time domain.

  11. Quantitative in vivo imaging of the lung using time-domain fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Ma, Guobin; Jean-Jacques, Muriel; Melanson-Drapeau, Lysanne; Khayat, Mario

    2009-02-01

    In this paper, nebulized or intravenous cetuximab (also known as Erbitux) labeled with NIR dyes is administered in the lungs of the mouse and imaged using a time-domain fluorescence imaging system (Optix(R)). Time resolved measurements provide lifetime of the fluorescent probes. In addition, through time-of-flight information contained in the data, one can also assess probe localization and concentration distribution quantitatively. Results shown include suppression of tissue autofluorescence by lifetime gating and recovery of targeted and non-targeted distributions of cetuximab labeled with the NIR fluorophores.

  12. A computer program for helicopter rotor noise using Lowson's formula in the time domain

    NASA Technical Reports Server (NTRS)

    Parks, C. L.

    1975-01-01

    A computer program (D3910) was developed to calculate both the far field and near field acoustic pressure signature of a tilted rotor in hover or uniform forward speed. The analysis, carried out in the time domain, is based on Lowson's formulation of the acoustic field of a moving force. The digital computer program is described, including methods used in the calculations, a flow chart, program D3910 source listing, instructions for the user, and two test cases with input and output listings and output plots.

  13. Characterization of Hydroxyapatite-Glass Composites Using Terahertz Time-Domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yatongchai, C.; Wren, A. W.; Sundaram, S. K.

    2015-01-01

    Terahertz time-domain spectroscopy (THz-TDS) is presented as a tool for characterization of the hydroxyapatite (HA)-glass composites. The materials under investigation are composites of HA and a calcium zinc silicate glass. Our results show that the refractive index and dielectric constant in THz frequencies provide a reliable determination of glass content of these composites. In addition, the THz-TDS is used to morphological changes in HA during simulated body fluid (SBF) incubation. Our results demonstrate that the THz-TDS can be a promising non-destructive tool.

  14. Characterization of Hydroxyapatite-Glass Composites Using Terahertz Time-Domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yatongchai, C.; Wren, A. W.; Sundaram, S. K.

    2014-08-01

    Terahertz time-domain spectroscopy (THz-TDS) is presented as a tool for characterization of the hydroxyapatite (HA)-glass composites. The materials under investigation are composites of HA and a calcium zinc silicate glass. Our results show that the refractive index and dielectric constant in THz frequencies provide a reliable determination of glass content of these composites. In addition, the THz-TDS is used to morphological changes in HA during simulated body fluid (SBF) incubation. Our results demonstrate that the THz-TDS can be a promising non-destructive tool.

  15. Studies in astronomical time series analysis. I - Modeling random processes in the time domain

    NASA Technical Reports Server (NTRS)

    Scargle, J. D.

    1981-01-01

    Several random process models in the time domain are defined and discussed. Attention is given to the moving average model, the autoregressive model, and relationships between and combinations of these models. Consideration is then given to methods for investigating pulse structure, procedures of model construction, computational methods, and numerical experiments. A FORTRAN algorithm of time series analysis has been developed which is relatively stable numerically. Results of test cases are given to study the effect of adding noise and of different distributions for the pulse amplitudes. A preliminary analysis of the light curve of the quasar 3C 272 is considered as an example.

  16. Enhancement of time-domain acoustic imaging based on generalized cross-correlation and spatial weighting

    NASA Astrophysics Data System (ADS)

    Quaegebeur, Nicolas; Padois, Thomas; Gauthier, Philippe-Aubert; Masson, Patrice

    2016-06-01

    In this paper, an alternative formulation of the time-domain beamforming is proposed using the generalized cross-correlation of measured signals. This formulation uses spatial weighting functions adapted to microphone positions and imaging points. The proposed approach is demonstrated for acoustic source localization using a microphone array, both theoretically and experimentally. An increase in accuracy of acoustic imaging results is shown for both narrow and broadband sources, while a factor of reduction up to 20 in the computation time can be achieved, allowing real-time or volumetric source localization over very large grids.

  17. Ramsey fringes and time-domain multiple-slit interference from vacuum.

    PubMed

    Akkermans, Eric; Dunne, Gerald V

    2012-01-20

    Sequences of alternating-sign time-dependent electric field pulses lead to coherent interference effects in Schwinger vacuum pair production, producing a Ramsey interferometer, an all-optical time-domain realization of the multiple-slit interference effect, directly from the quantum vacuum. The interference, obeying fermionic quantum statistics, is manifest in the momentum dependence of the number of produced electrons and positrons along the linearly polarized electric field. The central value grows like N(2) for N pulses [i.e., N "slits"], and the functional form is well described by a coherent multiple-slit expression. This behavior is generic for many driven quantum systems. PMID:22400718

  18. The detection and identification of selected lube base oil using terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Lu, Tian; Zhou, Qing-li; Jin, Bin; Zhao, Kun; Zhao, Song-qing; Zhang, Cun-lin

    2009-07-01

    Using the terahertz time-domain spectroscopy (THz-TDS), the frequency-dependent absorption coefficient(s) and refractive index (indices) of selected lube base oil (LBO) were extracted in the spectral range of 0.3-1.6 THz. The selected LBO was also characterized by near-infrared spectrum. The experimental results reveal that LBO is more sensitive in the THz range than near-infrared, and the different viscosity index of LBO can be identified according to their different spectral features in THz range. Due to better repeatability, shorter testing time, and easy operation, THz- TDS can be used as a complementary for identifying the chemical composition of LBO.

  19. Vibrational frequencies of anti-diabetic drug studied by terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Du, S. Q.; Li, H.; Xie, L.; Chen, L.; Peng, Y.; Zhu, Y. M.; Li, H.; Dong, P.; Wang, J. T.

    2012-04-01

    By using terahertz time-domain spectroscopy, the absorption spectra of seven anti-diabetic pills have been investigated. For gliquidone, glipizide, gliclazide, and glimepiride, an obvious resonance peak is found at 1.37 THz. Furthermore, to overcome the limit of density functional theory that can analyze the normal mode frequencies of the ground state of organic material, we also present a method that relies on pharmacophore recognition, from which we can obtain the resonance peak at 1.37 THz can be attributed to the vibration of sulfonylurea group. The results indicate that the veracity of density functional theory can be increased by combining pharmacophore recognition.

  20. A generalized nonlinear time-domain tracking control model for advanced technology telescopes

    NASA Astrophysics Data System (ADS)

    Ulich, Bobby; Pflibsen, Kent; Sheppard, Chris; Calmes, Lonnie

    1990-07-01

    The tracking performance of advanced technology telescopes is presently predicted by a time-domain nonlinear control model which incorporates the complex frequency-dependent transfer characteristics of a type II servosystem, including (1) rate and acceleration feedforward, (2) gimbal-drive motors, (3) motor power amplifiers, (4) mechanical drivetrain, (5) telescope structure, and (6) encoders. Disturbances generated by bearing friction, drive motor magnetic cogging, drive motor friction and torque constant variations, wind loads, etc, are included to enhance the accuracy of tracking error predictions under operating conditions. The model is useful in both initial design studies and the evaluation of proposed design modifications.

  1. A terahertz time-domain spectrometer for simultaneous transmission and reflection measurements at normal incidence.

    PubMed

    Brunner, Fabian D J; Schneider, Arno; Günter, Peter

    2009-11-01

    We present a versatile terahertz time-domain spectrometer which allows reflection measurements at normal incidence and double pass transmission measurements in a single experimental setup. Two different modes for transmission measurements are demonstrated for precise measurements of transparent high or low refractive index materials, respectively. The refractive indices and absorption coefficients of cesium iodide, potassium bromide, sodium chloride, polytetrafluoroethylene (PTFE, Teflon), and silicon have been measured in the frequency range between 1.4 and 4.7 THz. The parameters of the Lorentz oscillator functions describing the phonon polariton dispersions of CsI and KBr have been determined. PMID:19997298

  2. Method and apparatus for monitoring the integrity of a geomembrane liner using time domain reflectometry

    DOEpatents

    Morrison, John L.

    2001-04-24

    Leaks are detected in a multi-layered geomembrane liner by a two-dimensional time domain reflectometry (TDR) technique. The TDR geomembrane liner is constructed with an electrically conductive detection layer positioned between two electrically non-conductive dielectric layers, which are each positioned between the detection layer and an electrically conductive reference layer. The integrity of the TDR geomembrane liner is determined by generating electrical pulses within the detection layer and measuring the time delay for any reflected electrical energy caused by absorption of moisture by a dielectric layer.

  3. Determine the Dispersion Relation of an A6 Magnetron Using Conformal Finite Difference Time Domain Method

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Nieter, C.; Stoltz, P. H.; Smithe, D. N.

    2009-05-01

    This work introduces a conformal finite difference time domain (CFDTD) method to accurately determine the dispersion relation of an A6 relativistic magnetron. The accuracy is measured by comparing with accurate SUPERFISH calculations based on finite element method. The results show that an accuracy of 99.4% can be achieved by using only 10,000 mesh points with Dey-Mittra algorithm. By comparison, a mesh number of 360,000 is needed to preserve 99% accuracy using conventional FDTD method. This suggests one can efficiently and accurately study the hot tests of microwave tubes using CFDTD particle-in-cell method instead of conventional FDTD one.

  4. Spherical wave propagation in a poroelastic medium with infinite permeability: time domain solution.

    PubMed

    Ozyazicioglu, Mehmet

    2014-01-01

    Exact time domain solutions for displacement and porepressure are derived for waves emanating from a pressurized spherical cavity, in an infinitely permeable poroelastic medium with a permeable boundary. Cases for blast and exponentially decaying step pulse loadings are considered; letter case, in the limit as decay constant goes to zero, also covers the step (uniform) pressure. Solutions clearly show the propagation of the second (slow) p-wave. Furthermore, Biot modulus Q is shown to have a pronounced influence on wave propagation characteristics in poroelastic media. Results are compared with solutions in classical elasticity theory. PMID:24701190

  5. Spherical Wave Propagation in a Poroelastic Medium with Infinite Permeability: Time Domain Solution

    PubMed Central

    Ozyazicioglu, Mehmet

    2014-01-01

    Exact time domain solutions for displacement and porepressure are derived for waves emanating from a pressurized spherical cavity, in an infinitely permeable poroelastic medium with a permeable boundary. Cases for blast and exponentially decaying step pulse loadings are considered; letter case, in the limit as decay constant goes to zero, also covers the step (uniform) pressure. Solutions clearly show the propagation of the second (slow) p-wave. Furthermore, Biot modulus Q is shown to have a pronounced influence on wave propagation characteristics in poroelastic media. Results are compared with solutions in classical elasticity theory. PMID:24701190

  6. Fiber-optic thermometer using temperature dependent absorption, broadband detection, and time domain referencing

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Piltch, Nancy D.

    1986-01-01

    A fiber-optic thermometer based on temperature dependent absorption in Nd(3+) doped glass is demonstrated over the 298-573 K range. A broadband detection technique allows the use of the complete spectrum of a pulse modulated light emitting diode. A fiber-optic recirculating loop is employed to construct a reference channel in the time domain by generating a train of pulses from one initial pulse. A theoretical model is developed, and experimental data are shown to compare well with the theory. Possible sources of error and instability are identified, and ways to enhance the performance of the system are proposed.

  7. Time-domain surface profile imaging via a hyperspectral Fourier transform spectrometer.

    PubMed

    Dupuis, Julia Rentz; Unlü, M Selim

    2008-06-15

    We describe a method for time-domain surface profile measurements via white-light reflection spectroscopy using a hyperspectral Fourier transform spectrometer (HS-FTS). This technique measures the frequency of the spectral modulation of reflected light from a multilayer optical surface and reports the spatially resolved optical thickness. Owing to the Fourier relationship, the Fourier transform spectrometer manifests this spectral modulation as temporal satellites in interferogram space. We show that measurement of the positions of these satellites can be used to reconstruct the optical thickness profile over a surface using the HS-FTS. PMID:18552962

  8. Time domain and frequency domain design techniques for model reference adaptive control systems

    NASA Technical Reports Server (NTRS)

    Boland, J. S., III

    1971-01-01

    Some problems associated with the design of model-reference adaptive control systems are considered and solutions to these problems are advanced. The stability of the adapted system is a primary consideration in the development of both the time-domain and the frequency-domain design techniques. Consequentially, the use of Liapunov's direct method forms an integral part of the derivation of the design procedures. The application of sensitivity coefficients to the design of model-reference adaptive control systems is considered. An application of the design techniques is also presented.

  9. Time Domain Identification of an Optimal Control Pilot Model with Emphasis on the Objective Function

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.

    1982-01-01

    A method for the identification of the pilot's control compensation using time domain techniques is proposed. From this information we hope to infer a quadratic cost function, supported by the data, that represents a reasonable expression for the pilot's control objective in the task being performed, or an inferred piloting strategy. The objectives for this method are: (1) obtain a better understanding of the fundamental piloting techniques in complex tasks, such as landing approach; (2) the development of a metric measurable in simulations and flight test that correlate with subjective pilot opinion; and (3) to further validate pilot models and pilot vehicle analysis methods.

  10. An Explicit Time-Domain Hybrid Formulation Based on the Unified Boundary Condition

    SciTech Connect

    Madsen, N; Fasenfest, B J; White, D; Stowell, M; Jandhyala, V; Pingenot, J; Champagne, N J; Rockway, J D

    2007-02-28

    An approach to stabilize the two-surface, time domain FEM/BI hybrid by means of a unified boundary condition is presented. The first-order symplectic finite element formulation [1] is used along with a version of the unified boundary condition of Jin [2] reformulated for Maxwell's first-order equations in time to provide both stability and accuracy over the first-order ABC. Several results are presented to validate the numerical solutions. In particular the dipole in a free-space box is analyzed and compared to the Dirchlet boundary condition of Ziolkowski and Madsen [3] and to a Neuman boundary condition approach.

  11. Quantitative analysis of the mixtures of illicit drugs using terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Dejun; Zhao, Shusen; Shen, Jingling

    2008-03-01

    A method was proposed to quantitatively inspect the mixtures of illicit drugs with terahertz time-domain spectroscopy technique. The mass percentages of all components in a mixture can be obtained by linear regression analysis, on the assumption that all components in the mixture and their absorption features be known. For illicit drugs were scarce and expensive, firstly we used common chemicals, Benzophenone, Anthraquinone, Pyridoxine hydrochloride and L-Ascorbic acid in the experiment. Then illicit drugs and a common adulterant, methamphetamine and flour, were selected for our experiment. Experimental results were in significant agreement with actual content, which suggested that it could be an effective method for quantitative identification of illicit drugs.

  12. A Concealed Barcode Identification System Using Terahertz Time-domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Guan, Yu; Yamamoto, Manabu; Kitazawa, Toshiyuki; Tripathi, Saroj R.; Takeya, Kei; Kawase, Kodo

    2015-03-01

    We present a concealed terahertz barcode/chipless tag to achieve remote identification through an obstructing material using terahertz radiation. We show scanned terahertz reflection spectral images of barcodes concealed by a thick obstacle. A concealed and double- side printed terahertz barcode structure is proposed, and we demonstrate that our design has better performance in definition than a single-side printed barcode using terahertz time-domain spectroscopy. This technique combines the benefits of a chipless tag to read encoded information covered by an optically opaque material with low cost and a simple fabrication process. Simulations are also described, along with an explanation of the principle of the terahertz barcode identification system.

  13. Wideband finite difference time domain implementation of surface impedance boundary conditions for good conductors

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.; Yee, Kane S.

    1991-01-01

    Surface impedance boundary conditions are used to reduce the solution volume during the analysis of scattering from lossy dielectric objects. In a finite difference solution, they also can be used to avoid using small cells, made necessary by shorter wavelengths in conducting media, throughout the solution volume. A one dimensional implementation is presented for a surface impedance boundary condition for good conductors in the Finite Difference Time Domain (FDTD) technique. In order to illustrate the FDTD surface impedance boundary condition, a planar air-lossy dielectric interface is considered.

  14. Analysis of drugs-of-abuse and explosives using terahertz time-domain and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Burnett, Andrew; Fan, Wenhui; Upadhya, Prashanth; Cunningham, John; Linfield, Edmund; Davies, Giles; Edwards, Howell; Munshi, Tasnim; O'Neil, Andrew

    2006-02-01

    We demonstrate that, through coherent measurement of the transmitted terahertz electric fields, broadband (0.3-8THz) time-domain spectroscopy can be used to measure far-infrared vibrational modes of a range of illegal drugs and high explosives that are of interest to the forensic and security services. Our results show that these absorption features are highly sensitive to the structural and spatial arrangement of the molecules. Terahertz frequency spectra are also compared with high-resolution low-frequency Raman spectra to assist in understanding the low frequency inter- and intra-molecular vibrational modes of the molecules.

  15. Time-domain modeling and control of a wing-section stall flutter

    NASA Astrophysics Data System (ADS)

    Sun, Zhiwei; Haghighat, Sohrab; Liu, Hugh H. T.; Bai, Junqiang

    2015-03-01

    In this paper a nonlinear time-domain aeroservoelastic model is developed to study stall flutter and design flutter suppression control systems. A novel state-space model description enables for both aeroelastic analysis and control design. As a case study, limit cycle oscillations and bifurcation behavior of a NACA 0012 airfoil undergoing stall flutter are investigated. The results agree well with experimental results reported in the literature. Further, to demonstrate the model capability for control design, an output feedback controller is employed to suppress stall flutter and to stabilize the system at different incoming flow speeds to expand the flutter envelope. Closed-loop simulations confirm the improvement of the flutter envelope.

  16. Finite-difference time-domain analysis of light propagation in cholesteric liquid crystalline droplet array

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kaho; Iwai, Yosuke; Uchida, Yoshiaki; Nishiyama, Norikazu

    2016-08-01

    We numerically analyzed the light propagation in cholesteric liquid crystalline (CLC) droplet array by the finite-difference time-domain (FDTD) method. The FDTD method successfully reproduced the experimental light path observed in the complicated photonic structure of the CLC droplet array more accurately than the analysis of CLC droplets by geometric optics with Bragg condition, and this method help us understand the polarization of the propagating light waves. The FDTD method holds great promise for the design of various photonic devices composed of curved photonic materials like CLC droplets and microcapsules.

  17. Time domain characterization for the electric field considering a Chinese female physical phantom

    NASA Astrophysics Data System (ADS)

    Yang, Xiaodong; Zhang, Qing

    2015-02-01

    Recently, wireless communications around the human body, which are essential for wireless vital data monitoring, have been widely studied. Besides statistical channel modeling, characterization of time-varying electric field is also highly necessary to understand the communication mechanism in this area; however, few studies have been conducted. In this paper, time-varying electric fields, both on the digital human body and in the two-dimensional space around the human body, were studied through the finite-difference time-domain (FDTD) numerical analysis.

  18. Optical time-domain analog pattern correlator for high-speed real-time image recognition.

    PubMed

    Kim, Sang Hyup; Goda, Keisuke; Fard, Ali; Jalali, Bahram

    2011-01-15

    The speed of image processing is limited by image acquisition circuitry. While optical pattern recognition techniques can reduce the computational burden on digital image processing, their image correlation rates are typically low due to the use of spatial optical elements. Here we report a method that overcomes this limitation and enables fast real-time analog image recognition at a record correlation rate of 36.7 MHz--1000 times higher rates than conventional methods. This technique seamlessly performs image acquisition, correlation, and signal integration all optically in the time domain before analog-to-digital conversion by virtue of optical space-to-time mapping. PMID:21263506

  19. Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission

    PubMed Central

    Verhulst, Sarah; Dau, Torsten; Shera, Christopher A.

    2012-01-01

    This paper describes the implementation and performance of a nonlinear time-domain model of the cochlea for transient stimulation and human otoacoustic emission generation. The nonlinearity simulates compressive growth of measured basilar-membrane impulse responses. The model accounts for reflection and distortion-source otoacoustic emissions (OAEs) and simulates spontaneous OAEs through manipulation of the middle-ear reflectance. The model was calibrated using human psychoacoustical and otoacoustic tuning parameters. It can be used to investigate time-dependent properties of cochlear mechanics and the generator mechanisms of otoacoustic emissions. Furthermore, the model provides a suitable preprocessor for human auditory perception models where realistic cochlear excitation patterns are desired. PMID:23231114

  20. Method and Apparatus for Monitoring the Integrity of a Geomembrane Liner using time Domain Reflectometry

    SciTech Connect

    Morris, John L.

    1998-11-09

    Leaks are detected in a multi-layered geomembrane liner by a two-dimensional time domain reflectometry (TDR) technique. The TDR geomembrane liner is constructed with an electrically conductive detection layer positioned between two electrically non-conductive dielectric layers, which are each positioned between the detection layer and an electrically conductive reference layer. The integrity of the TDR geomembrane liner is determined by generating electrical pulses within the detection layer and measuring the time delay for any reflected electrical energy caused by absorption of moisture by a dielectric layer.