Science.gov

Sample records for airborne total dust

  1. Airborne concentrations of metals and total dust during solid catalyst loading and unloading operations at a petroleum refinery.

    PubMed

    Lewis, Ryan C; Gaffney, Shannon H; Le, Matthew H; Unice, Ken M; Paustenbach, Dennis J

    2012-09-01

    Workers handle catalysts extensively at petroleum refineries throughout the world each year; however, little information is available regarding the airborne concentrations and plausible exposures during this type of work. In this paper, we evaluated the airborne concentrations of 15 metals and total dust generated during solid catalyst loading and unloading operations at one of the largest petroleum refineries in the world using historical industrial hygiene samples collected between 1989 and 2006. The total dust and metals, which included aluminum, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, platinum, silicon, silver, vanadium, and zinc, were evaluated in relation to the handling of four different types of solid catalysts associated with three major types of catalytic processes. Consideration was given to the known components of the solid catalysts and any metals that were likely deposited onto them during use. A total of 180 analytical results were included in this analysis, representing 13 personal and 54 area samples. Of the long-term personal samples, airborne concentrations of metals ranged from <0.001 to 2.9mg/m(3), and, in all but one case, resulted in concentrations below the current U.S. Occupational Safety and Health Administration's Permissible Exposure Limits and the American Conference of Governmental Industrial Hygienists' Threshold Limit Values. The arithmetic mean total dust concentration resulting from long-term personal samples was 0.31mg/m(3). The data presented here are the most complete set of its kind in the open literature, and are useful for understanding the potential exposures during solid catalyst handling activities at this petroleum refinery and perhaps other modern refineries during the timeframe examined. PMID:22177528

  2. Airborne Dust in Space Vehicles and Habitats

    NASA Technical Reports Server (NTRS)

    James, John

    2006-01-01

    Airborne dust, suspended inside a space vehicle or in future celestial habitats, can present a serious threat to crew health if it is not controlled. During the Apollo missions to the moon, lunar dust brought inside the capsule caused eye irritation and breathing difficulty to the crew when they launched from the moon and re-acquired "microgravity." During Shuttle flights reactive and toxic dusts such as lithium hydroxide have created a risk to crew health, and fine particles from combustion events can be especially worrisome. Under nominal spaceflight conditions, airborne dusts and particles tend to be larger than on earth because of the absence of gravity settling. Aboard the ISS, dusts are effectively managed by HEPA filters, although floating dust in newly-arrived modules can be a nuisance. Future missions to the moon and to Mars will present additional challenges because of the possibility that external dust will enter the breathing atmosphere of the habitat and reach the crew's respiratory system. Testing with simulated lunar and Martian dust has shown that these materials are toxic when placed into the lungs of test animals. Defining and evaluating the physical and chemical properties of Martian dusts through robotic missions will challenge our ability to prepare better dust simulants and to determine the risk to crew health from exposure to such dusts.

  3. Airborne Dust Models in Valley Fever Research

    NASA Astrophysics Data System (ADS)

    Sprigg, W. A.; Galgiani, J. N.; Vujadinovic, M.; Pejanovic, G.; Vukovic, A. J.; Prasad, A. K.; Djurdjevic, V.; Nickovic, S.

    2011-12-01

    Dust storms (haboobs) struck Phoenix, Arizona, in 2011 on July 5th and again on July 18th. One potential consequence: an estimated 3,600 new cases of Valley Fever in Maricopa County from the first storm alone. The fungi, Coccidioides immitis, the cause of the respiratory infection, Valley Fever, lives in the dry desert soils of the American southwest and southward through Mexico, Central America and South America. The fungi become part of the dust storm and, a few weeks after inhalation, symptoms of Valley Fever may appear, including pneumonia-like illness, rashes, and severe fatigue. Some fatalities occur. Our airborne dust forecast system predicted the timing and extent of the storm, as it has done with other, often different, dust events. Atmosphere/land surface models can be part of public health services to reduce risk of Valley Fever and exacerbation of other respiratory and cardiovascular illness.

  4. Lunar Airborne Dust Toxicity Hazard Assessments (Invited)

    NASA Astrophysics Data System (ADS)

    Cooper, B. L.; McKay, D. S.; Taylor, L. A.; Wallace, W. T.; James, J.; Riofrio, L.; Gonzalez, C. P.

    2009-12-01

    The Lunar Airborne Dust Toxicity Assessment Group (LADTAG) is developing data to set the permissible limits for human exposure to lunar dust. This standard will guide the design of airlocks and ports for EVA, as well as the requirements for filtering and monitoring the atmosphere in habitable vehicles, rovers and other modules. LADTAG’s recommendation for permissible exposure limits will be delivered to the Constellation Program in late 2010. The current worst-case exposure limit of 0.05 mg/m3, estimated by LADTAG in 2006, reflects the concern that lunar dust may be as toxic as quartz dust. Freshly-ground quartz is known to be more toxic than un-ground quartz dust. Our research has shown that the surfaces of lunar soil grains can be more readily activated by grinding than quartz. Activation was measured by the amount of free radicals generated—activated simulants generate Reactive Oxygen Species (ROS) i.e., production of hydroxyl free radicals. Of the various influences in the lunar environment, micrometeorite bombardment probably creates the most long-lasting reactivity on the surfaces of grains, although solar wind impingement and short-wavelength UV radiation also contribute. The comminution process creates fractured surfaces with unsatisfied bonds. When these grains are inhaled and carried into the lungs, they will react with lung surfactant and cells, potentially causing tissue damage and disease. Tests on lunar simulants have shown that dissolution and leaching of metals can occur when the grains are exposed to water—the primary component of lung fluid. However, simulants may behave differently than actual lunar soils. Rodent toxicity testing will be done using the respirable fraction of actual lunar soils (particles with physical size of less than 2.5 micrometers). We are currently separating the fine material from the coarser material that comprises >95% of the mass of each soil sample. Dry sieving is not practical in this size range, so a new system

  5. Immune Alterations in Rats Exposed to Airborne Lunar Dust

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Quiriarte, Heather; Nelman, Mayra; Lam, Chiu-wing; James, John T.; Sams, Clarence

    2014-01-01

    The lunar surface is covered by a layer of fine, reactive dust. Very little is known regarding the toxicity of lunar dust on human physiology. This study assessed the toxicity of airborne lunar dust exposure in rats on pulmonary and systemic immune parameters.

  6. Personal exposure to airborne dust and microorganisms in agricultural environments.

    PubMed

    Lee, Shu-An; Adhikari, Atin; Grinshpun, Sergey A; McKay, Roy; Shukla, Rakesh; Reponen, Tiina

    2006-03-01

    Airborne dust and microorganisms are associated with respiratory diseases and increased mortality and morbidity. Farmers are at high risk of exposure to both of these hazards. Very limited information, however, is available on the combined exposures to both hazards on different types of farms. Moreover, most of the previous studies have measured the mass concentration of particles ignoring the particle size. In this study, farmers' exposure to airborne dust and microorganisms was studied using our newly developed personal sampling system. Particle number concentration and size distribution were measured with an optical particle counter. Simultaneously, particles were collected on a filter and analyzed for microorganisms. The field measurements were conducted in animal confinements (swine, poultry, and dairy) and during grain harvesting (corn and soybean). The results show the following average concentrations on the workers' breathing zone: 1.7 x 10(6) to 2.9 x 10(7) particles/m(3) for total dust, 0.9 x 10(3) to 3.9 x 10(4) spores/m(3) for total fungal spores, 0.3 x 10(3) to 3.6 x 10(4)CFU/m(3) for culturable fungal spores, 0.3 x 10(4) to 3.3 x 10(8) CFU/m(3) for culturable bacteria, and limit of detection (LOD) to 2.8 x 10(3) CFU/m(3) for culturable actinomycetes in animal confinements. The respective concentrations were 4.4 x 10(6) to 5.8 x 10(7) particles/m(3), 3.4 x 10(4) to 6.1 x 10(6) spores/m(3), 8.2 x 10(4) to 7.4 x 10(6) CFU/m(3), 0.4 x 10(5) to 1.4 x 10(6) CFU/m(3), and LOD to 2.6 x 10(4) CFU/m(3) during grain harvesting. The highest contribution of large particles (3-10 microm) in total particles was found during grain harvesting, whereas the size distribution was dominated by smaller particles (< 3 microm) in animal confinements. High fraction (up to 37%) of particles between 2-10 microm was found to be fungal spores. The results indicate that an increase in the concentration of large dust particles (2-10 microm) during grain harvesting was partially

  7. Sampling and analysis method for measuring airborne coal dust mass in mixtures with limestone (rock) dust.

    PubMed

    Barone, T L; Patts, J R; Janisko, S J; Colinet, J F; Patts, L D; Beck, T W; Mischler, S E

    2016-01-01

    Airborne coal dust mass measurements in underground bituminous coal mines can be challenged by the presence of airborne limestone dust, which is an incombustible dust applied to prevent the propagation of dust explosions. To accurately measure the coal portion of this mixed airborne dust, the National Institute for Occupational Safety and Health (NIOSH) developed a sampling and analysis protocol that used a stainless steel cassette adapted with an isokinetic inlet and the low temperature ashing (LTA) analytical method. The Mine Safety and Health Administration (MSHA) routinely utilizes this LTA method to quantify the incombustible content of bulk dust samples collected from the roof, floor, and ribs of mining entries. The use of the stainless steel cassette with isokinetic inlet allowed NIOSH to adopt the LTA method for the analysis of airborne dust samples. Mixtures of known coal and limestone dust masses were prepared in the laboratory, loaded into the stainless steel cassettes, and analyzed to assess the accuracy of this method. Coal dust mass measurements differed from predicted values by an average of 0.5%, 0.2%, and 0.1% for samples containing 20%, 91%, and 95% limestone dust, respectively. The ability of this method to accurately quantify the laboratory samples confirmed the validity of this method and allowed NIOSH to successfully measure the coal fraction of airborne dust samples collected in an underground coal mine. PMID:26618374

  8. Effects of airborne dust collected from Kuwait on human erythrocytes

    SciTech Connect

    Siddiqui, S.M.; Khan, S.A.; Ahmad, S.; Beg, M.U.

    1992-01-01

    Air borne dust as deposited on air conditioner's filter was collected from most polluted regions of Kuwait and for comparison also from Dubai. Kuwait dust samples were found to contain high concentrations of Ni, Mn and Pb and a number of organic compounds different from the oil samples collected from the oil pool in the oil fields. Toxicity evaluation against human erythrocytes showed strong hemolytic nature of the dust. Treatment of erythrocytes with the dust exhibited peroxidative damage of the membrane. The dust collected from Dubai was innocuous. The present data suggest that erythrocyte damaging potential of the dust can be used as a marker of toxicity and provide information about the dissipation of toxic factors from airborne dust with time. 15 refs., 2 figs., 3 tabs.

  9. Methods to assess airborne concentrations of cotton dust.

    PubMed

    Corn, M

    1987-01-01

    Assessment of concentrations of airborne cotton dust in the factory is necessary to determine adherence to applicable Permissible Exposure Limits (PELs) on a day-to-day basis, as well as for investigatory studies of an epidemiological nature. The latter are required on an ongoing basis to determine the adequacy of PELs to prevent disease in the exposed population. A strategy of sampling includes considerations of the numbers of samples to be obtained for statistical validity and the locations of samples. Current practice is to obtain more "personal samples" of exposure wherever possible, but with regard to cotton dust, instrumentation is not available for such sampling. In the U.S., the vertical elutriator is the instrument of choice for determining the concentrations of cotton dust in air. Results are expressed as milligrams of airborne particulate (cotton dust) per cubic meter. PMID:3434562

  10. Long-Term Variability of Airborne Asian Dust Observed from TOMS

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Hsu, N. C.; Seftor, C. J.; Holben, B. N.; Holben, B. N.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Recent studies suggest that airborne Asian dust may not only play an important role in the regional radiation budget, but also influence the air quality over North America through long-range transport. In this paper, we use satellite data to investigate the long-term variability of airborne Asian dust as well as the daily variation of the dust aerosol distribution. By combining the Total Ozone Mapping Spectrometer (TOMS) aerosol index with National Centers for Environmental Prediction (NCEP) wind data, our analysis shows a strong correlation between the generation of dust storms in the region and the passage of springtime weather fronts. This is consistent with earlier studies performed by other researchers. According to both the Nimbus-7 and Earth-Probe TOMS data the Takla Makan desert, the Gobi desert, and the and region of Inner Mongolia are major sources of the eastward-flowing airborne Asian dust. Heavily populated areas in eastern China (e.g., Beijing) are often on the primary path of the dust storms originating in these desert regions. The increasing desertification north of the Beijing region has served to exacerbate problems stemming from these storms. The time series derived from 20 years of TOMS aerosol index data shows the first significant satellite evidence of the atmospheric effect of increasing desertification, indicating that the amount of dust blown eastward has increased strongly during the past few years including the year 2000.

  11. Exposure assessment to airborne endotoxin, dust, ammonia, hydrogen sulfide and carbon dioxide in open style swine houses.

    PubMed

    Chang, C W; Chung, H; Huang, C F; Su, H J

    2001-08-01

    Information is limited for the exposure levels of airborne hazardous substances in swine feed buildings that are not completely enclosed. Open-style breeding, growing and finishing swine houses in six farms in subtropical Taiwan were studied for the airborne concentrations of endotoxin, dust, ammonia, hydrogen sulfide and carbon dioxide. The air in the farrowing and nursery stalls as partially enclosed was also simultaneously evaluated. Three selected gases and airborne dusts were quantified respectively by using Drager diffusion tubes and a filter-weighing method. Endotoxin was analyzed by the Limulus amoebocyte lysate assay. Average concentration of airborne total endotoxin among piggeries was between 36.8 and 298 EU/m(3), while that for respirable endotoxin was 14.1-129 EU/m(3). Mean concentration of total dust was between 0.15 and 0.34 mg/m(3), with average level of respirable dust of 0.14 mg/m(3). The respective concentrations of NH3, CO2 and H2S were less than 5 ppm, 600-895 ppm and less than 0.2 ppm. Airborne concentrations of total dust and endotoxin in the nursery house were higher than in the other types of swine houses. The finishing house presented the highest exposure risk to NH3, CO2 and H2S. Employees working in the finishing stalls were also exposed to the highest airborne levels of respirable endotoxin and dust. On the other hand, the air of the breeding units was the least contaminated in terms of airborne endotoxin, dust, NH3, CO2 and H2S. The airborne concentrations of substances measured in the present study were all lower than most of published studies conducted in mainly enclosed swine buildings. Distinct characteristics, including maintaining swine houses in an open status and frequent spraying water inside the stalls, significantly reduce accumulation of gases and airborne particulates. PMID:11513795

  12. Migration of Contaminated Soil and Airborne Particulates to Indoor Dust

    PubMed Central

    Layton, David W.; Beamer, Paloma I.

    2009-01-01

    We have developed a modeling and measurement framework for assessing transport of contaminated soils and airborne particulates into a residence, their subsequent distribution indoors via resuspension and deposition processes, and removal by cleaning and building exhalation of suspended particles. The model explicitly accounts for the formation of house dust as a mixture of organic matter (OM) such as shed skin cells and organic fibers, soil tracked-in on footwear, and particulate matter (PM) derived from the infiltration of outdoor air. We derived formulas for use with measurements of inorganic contaminants, crustal tracers, OM, and PM to quantify selected transport parameters. Application of the model to residences in the U.S. Midwest indicates that As in ambient air can account for nearly 60% of the As input to floor dust, with soil track-in representing the remainder. Historic data on Pb contamination in Sacramento, CA, was used to reconstruct sources of Pb in indoor dust, showing that airborne Pb was likely the dominant source in the early 1980s. However, as airborne Pb levels declined due to the phase out of leaded gasoline, soil resuspension and track-in eventually became the primary sources of Pb in house dust. PMID:19924944

  13. Airborne desert dust and aeromicrobiology over the Turkish Mediterranean coastline

    USGS Publications Warehouse

    Griffin, Dale W.; Kubilay, Nilgün; Kocak, Mustafa; Gray, Mike A.; Borden, Timothy C.; Shinn, Eugene A.

    2007-01-01

    Between 18 March and 27 October 2002, 220 air samples were collected on 209 of 224 calendar days, on top of a coastal atmospheric research tower in Erdemli, Turkey. The volume of air filtered for each sample was 340 liters. Two hundred fifty-seven bacterial and 2598 fungal colony forming units (CFU) were enumerated from the samples using a low-nutrient agar. Ground-based dust measurements demonstrated that the region is routinely impacted by dust generated regionally and from North Africa and that the highest combined percent recovery of total CFU and African dust deposition occurred in the month of April (93.4% of CFU recovery and 91.1% of dust deposition occurred during African dust days versus no African dust present, for that month). A statistically significant correlation was observed (peak regional African dust months of March, April and May; rs=0.576, P=0.000) between an increase in the prevalence of microorganisms recovered from atmospheric samples on dust days (regional and African as determined by ground-based dust measurements), versus that observed on non-dust days. Given the prevalence of atmospherically suspended desert dust and microorganisms observed in this study, and that culture-based studies typically only recover a small fraction (

  14. Airborne Dust Modified the North American Climate During the 1930's Dust Bowl

    NASA Astrophysics Data System (ADS)

    O'Brien, T. A.; Solmon, F.; Sloan, L. C.; Snyder, M. A.

    2007-05-01

    In the 1930's Dust Bowl, drought in Mid-Western North America, in conjunction with wide-scale planting of drought-vulnerable crops, resulted in massive dust storms. The presence of dust in the atmosphere may have directly altered the energy budget of North America by the scattering and absorption of radiation and thus may have acted as a feedback to the regional drought conditions. Through a climate modeling sensitivity study of North American climate investigating the impact of airborne dust during the 1930's (using a regional model, RegCM3), we find that areas with moderate to high dust-loading have reduced surface temperatures (~1K) and reduced evapotranspiration (~0.5 mm/day). We also find spatially-coherent, statistically significant changes in precipitation patterns over eastern North America during Spring, Summer, and Fall: areas gain and lose as much as 2 mm/day of precipitation. We are working on a more detailed analysis to determine the causal relationship(s) between airborne dust and precipitation patterns; we hypothesize that the spatially non-uniform change in the energy budget, caused by dust loading, modifies regional dynamics and indirectly modifies precipitation patterns.

  15. Examination of water spray airborne coal dust capture with three wetting agents

    PubMed Central

    Organiscak, J.A.

    2015-01-01

    Water spray applications are one of the principal means of controlling airborne respirable dust in coal mines. Since many coals are hydrophobic and not easily wetted by water, wetting agents can be added to the spray water in an effort to improve coal wetting and assist with dust capture. In order to study wetting agent effects on coal dust capture, laboratory experiments were conducted with three wetting agents used by the coal industry on -325 mesh sized Pocahontas No. 3 coal dust. Significant differences in coal dust sink times were observed among the three wetting agents at water mixture concentrations of 0.05%, 0.1% and 0.2%. The best wetting agent as identified by the coal dust sink test was only tested at the lowest 0.05% water mixture concentration and was found to have a negligible effect on spray airborne dust capture. Water spray airborne dust capture results for all three wetting agents tested at a 0.2% water mixture concentration showed that all three wetting agents exhibit similar but small improvements in dust capture efficiency as compared with water. These results indicate that the coal dust sink test may not be a good predictor for the capture of airborne dust. Additional research is needed to examine if the coal dust sink test is a better predictor of wetting agent dust suppression effects during cutting, loading, conveying and dumping of coal products by comparison to airborne dust capture from sprays. PMID:26251565

  16. Exposure to airborne microorganisms, dust and endotoxin during processing of peppermint and chamomile herbs on farms.

    PubMed

    Skórska, Czesława; Sitkowska, Jolanta; Krysińska-Traczyk, Ewa; Cholewa, Grazyna; Dutkiewicz, Jacek

    2005-01-01

    The aim of this study was to determine the levels of microorganisms, dust and endotoxin in the air during processing of peppermint (Mentha piperita) and chamomile (Matricaria recutita) by herb farmers, and to examine the species composition of airborne microflora. Air samples were collected on glass fibre filters by use of personal samplers on 13 farms owned by herb cultivating farmers, located in Lublin province (eastern Poland). The concentrations of total viable microorganisms (bacteria + fungi) in the farm air during processing of peppermint herb were large, within a range from 895.1-6,015.8 x 10(3) cfu/m(3) (median 1,055.3 x 10(3) cfu/m(3)). During processing of chamomile herb they were much lower and varied within a range from 0.88-295.6 x 10(3) cfu/m(3) (median 27.3 x 10(3) cfu/m(3)). Gram-negative bacteria distinctly prevailed during processing of peppermint leaves, forming 46.4-88.5 % of the total airborne microflora. During processing of chamomile herb, Gram-negative bacteria were dominant at 3 out of 6 sampling sites forming 54.7-75.3 % of total microflora, whereas at the remaining 3 sites the most common were fungi forming 46.2-99.9 % of the total count. The species Pantoea agglomerans (synonyms: Erwinia herbicola, Enterobacter agglomerans ), having strong allergenic and endotoxic properties, distinctly prevailed among Gram-negative isolates. Among fungi, the most common species was Alternaria alternata. The concentrations of airborne dust and endotoxin determined on the examined herb farms were large. The concentrations of airborne dust during peppermint and chamomile processing ranged from 86.7-958.9 mg/m(3), and from 1.1-499.2 mg/m(3), respectively (medians 552.3 mg/m(3) and 12.3 mg/m(3)). The concentrations of airborne endotoxin determined during peppermint and chamomile processing were within a wide range 1.53-208.33 microg/m(3) and 0.005-2604.19 microg/m(3) respectively (medians 57.3 microg/m(3) and 0.96 microg/m(3)). In conclusion, farmers

  17. Mineralogical, Chemical, and Optical Interrelationships of Airborne Mineral Dusts

    NASA Astrophysics Data System (ADS)

    Engelbrecht, J. P.; Moosmuller, H.; Pincock, S. L.; Jayanty, R. K. M.; Casuccio, G.

    2014-12-01

    The purpose of the project was to provide information on the mineralogical, chemical and physical interrelationships of re-suspended mineral dust samples collected as grab samples from global dust sources. Surface soil samples were collected from about 65 desert sites, including the southwestern USA (12), Mali (3), Chad (3), Morocco (1), Canary Islands (8), Cape Verde (1), Djibouti (1), Afghanistan (3), Iraq (6), Kuwait (5), Qatar (1), UAE (1), Serbia (3), China (5), Namibia (3), Botswana (4), Australia (3), and Chile (1). The < 38 μm sieved fraction of each sample was re-suspended in an entrainment chamber, from which the airborne mineral dust could be monitored, sampled and analyzed. Instruments integrated into the entrainment facility included two PM10 and two PM2.5 filter samplers, a beta attenuation gauge for the continuous measurement of PM10 and PM2.5 particulate mass fractions, an aerodynamic particle size (APS) analyzer, and a three wavelength (405, 532, 781nm) photoacoustic resonator with integrating reciprocal nephelometer for monitoring absorption and scattering coefficients during the dust re-suspension process. Filter sample media included Teflon® membrane and quartz fiber filters for chemical analysis (71 species), and Nuclepore® filters for individual particle analysis by Scanning Electron Microscopy (SEM). The < 38 μm sieved fractions were also analyzed by X-ray diffraction for their mineral content while the > 38 μm, < 125 μm soil fractions were mineralogically characterized by optical microscopy. We will be presenting results on the optical measurements, also showing the relationship between single scattering albedo (SSA) at three different wavelengths, and chemical as well as mineralogical content and interdependencies of the entrained dust samples. Examples showing the relationships between the single scattering albedos of airborne dusts, and iron (Fe) in hematite, goethite, and clay minerals (montmorillonite, illite, palygorskite), will

  18. β-(1,3)-Glucan Exposure Assessment by Passive Airborne Dust Sampling and New Sensitive Immunoassays▿

    PubMed Central

    Noss, Ilka; Wouters, Inge M.; Bezemer, Gillina; Metwali, Nervana; Sander, Ingrid; Raulf-Heimsoth, Monika; Heederik, Dick J. J.; Thorne, Peter S.; Doekes, Gert

    2010-01-01

    Associations between house dust-associated β-(1,3)-glucan exposure and airway inflammatory reactions have been reported, while such exposures in early childhood have been suggested to protect against asthma and wheezing. Most epidemiological studies have used reservoir dust samples and an inhibition enzyme immunoassay (EIA) for β-(1,3)-glucan exposure assessment. The objective of this study was to develop inexpensive but highly sensitive enzyme immunoassays to measure airborne β-(1,3)-glucans in low-exposure environments, like homes. Specificities of available anti-β-(1,3)-glucan antibodies were defined by direct and inhibition experiments. Three suitable antibody combinations were selected for sandwich EIAs. β-(1,3)-Glucans in passive airborne dust collected with an electrostatic dust fall collector (EDC) and floor dust from seven homes were measured with the three EIAs. Floor dust samples were additionally analyzed in the inhibition EIA. The sandwich EIAs were sensitive enough for airborne glucan measurement and showed different specificities for commercial glucans, while the β-(1,3)-glucan levels in house dust samples correlated strongly. The feasibility of measuring glucans in airborne dust with the recently introduced EDC method was further investigated by selecting the most suitable of the three EIAs to measure and compare β-(1,3)-glucan levels in the EDC and in floor and actively collected airborne dust samples of the previously performed EDC validation study. The EDC β-(1,3)-glucan levels correlated moderately with β-(1,3)-glucans in actively collected airborne dust and floor dust samples, while the glucan levels in the airborne dust and floor dust samples did not correlate. The combination of the newly developed β-(1,3)-glucan sandwich EIA with EDC sampling now allows assessment in large-scale population studies of exposure to airborne β-(1,3)-glucans in homes or other low-exposure environments. PMID:20038709

  19. Microbial immigration across the Mediterranean via airborne dust

    PubMed Central

    Rosselli, Riccardo; Fiamma, Maura; Deligios, Massimo; Pintus, Gabriella; Pellizzaro, Grazia; Canu, Annalisa; Duce, Pierpaolo; Squartini, Andrea; Muresu, Rosella; Cappuccinelli, Pietro

    2015-01-01

    Dust particles lifting and discharge from Africa to Europe is a recurring phenomenon linked to air circulation conditions. The possibility that microorganisms are conveyed across distances entails important consequences in terms of biosafety and pathogens spread. Using culture independent DNA-based analyses via next generation sequencing of the 16 S genes from the airborne metagenome, the atmospheric microbial community was characterized and the hypothesis was tested that shifts in species diversity could be recorded in relation to dust discharge. As sampling ground the island of Sardinia was chosen, being an ideal cornerstone within the Mediterranean and a crossroad of wind circulation amidst Europe and Africa. Samples were collected in two opposite coastal sites and in two different weather conditions comparing dust-conveying winds from Africa with a control situation with winds from Europe. A major conserved core microbiome was evidenced but increases in species richness and presence of specific taxa were nevertheless observed in relation to each wind regime. Taxa which can feature strains with clinical implications were also detected. The approach is reported as a recommended model monitoring procedure for early warning alerts in frameworks of biosafety against natural spread of clinical microbiota across countries as well as to prevent bacteriological warfare. PMID:26542754

  20. Microbial immigration across the Mediterranean via airborne dust.

    PubMed

    Rosselli, Riccardo; Fiamma, Maura; Deligios, Massimo; Pintus, Gabriella; Pellizzaro, Grazia; Canu, Annalisa; Duce, Pierpaolo; Squartini, Andrea; Muresu, Rosella; Cappuccinelli, Pietro

    2015-01-01

    Dust particles lifting and discharge from Africa to Europe is a recurring phenomenon linked to air circulation conditions. The possibility that microorganisms are conveyed across distances entails important consequences in terms of biosafety and pathogens spread. Using culture independent DNA-based analyses via next generation sequencing of the 16 S genes from the airborne metagenome, the atmospheric microbial community was characterized and the hypothesis was tested that shifts in species diversity could be recorded in relation to dust discharge. As sampling ground the island of Sardinia was chosen, being an ideal cornerstone within the Mediterranean and a crossroad of wind circulation amidst Europe and Africa. Samples were collected in two opposite coastal sites and in two different weather conditions comparing dust-conveying winds from Africa with a control situation with winds from Europe. A major conserved core microbiome was evidenced but increases in species richness and presence of specific taxa were nevertheless observed in relation to each wind regime. Taxa which can feature strains with clinical implications were also detected. The approach is reported as a recommended model monitoring procedure for early warning alerts in frameworks of biosafety against natural spread of clinical microbiota across countries as well as to prevent bacteriological warfare. PMID:26542754

  1. Exposure to airborne microorganisms, dust and endotoxin during flax scutching on farms.

    PubMed

    Krysińska-Traczyk, Ewa; Skórska, Czesława; Prazmo, Zofia; Sitkowska, Jolanta; Cholewa, Grazyna; Dutkiewicz, Jacek

    2004-01-01

    Microbiological air sampling was performed on 5 flax farms located in eastern Poland. Air samples for determination of the concentrations of microorganisms, dust and endotoxin were collected in barns during machine scutching of flax stems by the farmers. The concentrations of mesophilic bacteria ranged from 203.5-698.8 x 10(3) cfu/m3, of Gram-negative bacteria from 27.2-123.4 x 10(3) cfu/m3, of thermophilic actinomycetes from 0.5-2.6 x 10(3) cfu/m3, and of fungi from 23.4-99.8 x 10(3) cfu/m3. The concentrations of total airborne microorganisms (bacteria + fungi) were within a range of 245.0-741.0 x 10(3) cfu/m3. The values of the respirable fraction of total airborne microflora on the examined farms were between 45.5-98.3%. Corynebacteria (irregular Gram-positive rods, mostly Corynebacterium spp.) were dominant at all sampling sites, forming 46.8-67.8% of the total airborne microflora. Among Gram-negative bacteria, the most numerous species was Pantoea agglomerans (synonyms: Erwinia herbicola, Enterobacter agglomerans), known to have strong endotoxic and allergenic properties. Among fungi, the allergenic species Alternaria alternata prevailed. Altogether, 25 species or genera of bacteria and 10 species or genera of fungi were identified in the farm air during flax scutching; of these, 11 and 6 species or genera respectively were reported as having allergenic and/or immunotoxic properties. The concentrations of airborne dust ranged within 43.7-648.1 mg/m3 (median 93.6 mg/m3), exceeding on all farms the Polish OEL value of 4 mg/m3. The concentrations of airborne endotoxin ranged within 16.9-172.1 microg/m3 (median 30.0 microg/m3), exceeding at all sampling sites the suggested OEL value of 0.2 microg/m). In conclusion, flax farmers performing machine scutching of flax could be exposed to large concentrations of airborne microorganisms, dust and endotoxin, posing a risk of work-related respiratory disease. PMID:15627342

  2. Health effects of particulate air pollution and airborne desert dust

    NASA Astrophysics Data System (ADS)

    Lelieveld, J.; Pozzer, A.; Giannadaki, D.; Fnais, M.

    2013-12-01

    Air pollution by fine particulate matter (PM2.5) has increased strongly with industrialization and urbanization. In the past decades this increase has taken place at a particularly high pace in South and East Asia. We estimate the premature mortality and the years of human life lost (YLL) caused by anthropogenic PM2.5 and airborne desert dust (DU2.5) on regional and national scales (Giannadaki et al., 2013; Lelieveld et al., 2013). This is based on high-resolution global model calculations that resolve urban and industrial regions in relatively great detail. We apply an epidemiological health impact function and find that especially in large countries with extensive suburban and rural populations, air pollution-induced mortality rates have been underestimated given that previous studies largely focused on the urban environment. We calculate a global premature mortality by anthropogenic aerosols of 2.2 million/year (YLL ≈ 16 million/year) due to lung cancer and cardiopulmonary disease. High mortality rates by PM2.5 are found in China, India, Bangladesh, Pakistan and Indonesia. Desert dust DU2.5 aerosols add about 0.4 million/year (YLL ≈ 3.6 million/year). Particularly significant mortality rates by DU2.5 occur in Pakistan, China and India. The estimated global mean per capita mortality caused by airborne particulates is about 0.1%/year (about two thirds of that caused by tobacco smoking). We show that the highest premature mortality rates are found in the Southeast Asia and Western Pacific regions (about 25% and 46% of the global rate, respectively) where more than a dozen of the most highly polluted megacities are located. References: Giannadaki, D., A. Pozzer, and J. Lelieveld, Modeled global effects of airborne desert dust on air quality and premature mortality, Atmos. Chem. Phys. Discuss. (submitted), 2013. Lelieveld, J., C. Barlas, D. Giannadaki, and A. Pozzer, Model calculated global, regional and megacity premature mortality due to air pollution by ozone

  3. Airborne Fungal and Bacterial Components in PM1 Dust from Biofuel Plants

    PubMed Central

    Madsen, Anne Mette; Schlünssen, Vivi; Olsen, Tina; Sigsgaard, Torben; Avci, Hediye

    2009-01-01

    Fungi grown in pure cultures produce DNA- or RNA-containing particles smaller than spore size (<1.5 μm). High exposures to fungi and bacteria are observed at biofuel plants. Airborne cultivable bacteria are often described to be present in clusters or associated with larger particles with an aerodynamic diameter (dae) of 2–8 μm. In this study, we investigate whether airborne fungal components smaller than spore size are present in bioaerosols in working areas at biofuel plants. Furthermore, we measure the exposure to bacteria and fungal components in airborne particulate matter (PM) with a D50 of 1 μm (called PM1 dust). PM1 was sampled using Triplex cyclones at a working area at 14 Danish biofuel plants. Millipore cassettes were used to sample ‘total dust’. The PM1 particles (29 samples) were analysed for content of 11 different components and the total dust was analysed for cultivable fungi, N-acetyl-β-D-glucosaminidase (NAGase), and (1 → 3)-β-D-glucans. In the 29 PM1 samples, cultivable fungi were found in six samples and with a median concentration below detection level. Using microscopy, fungal spores were identified in 22 samples. The components NAGase and (1 → 3)-β-D-glucans, which are mainly associated with fungi, were present in all PM1 samples. Thermophilic actinomycetes were present in 23 of the 29 PM1 samples [average = 739 colony-forming units (CFU) m−3]. Cultivable and ‘total bacteria’ were found in average concentrations of, respectively, 249 CFU m−3 and 1.8 × 105 m−3. DNA- and RNA-containing particles of different lengths were counted by microscopy and revealed a high concentration of particles with a length of 0.5–1.5 μm and only few particles >1.5 μm. The number of cultivable fungi and β-glucan in the total dust correlated significantly with the number of DNA/RNA-containing particles with lengths of between 1.0 and 1.5 μm, with DNA/RNA-containing particles >1.5 μm, and with other fungal components in PM1

  4. Long-term airborne contamination studied by attic dust in an industrial area: Ajka, Hungary

    NASA Astrophysics Data System (ADS)

    Völgyesi, P.; Jordan, G.; Szabo, Cs.

    2012-04-01

    Heavy industrial activities such as mining, metal industry, coal fired power plants have produced large amount of by-products and wide-spread pollution, particularly in the period of centrally dictated economy after WWII, in Hungary. Several studies suggest that significant amount of these pollutants have been deposited in the urban environment. Nowadays, more than half of the world's population is living in urban areas and people spend almost 80% of their lives indoors in developed countries increasing human health risk due to contamination present in urban dwellings. Attic dust sampling was applied to determine the long-term airborne contamination load in the industrial town of Ajka (Hungary). There has been a high industrial activity in Ajka since the end of the 19th century. In addition to aluminum and alumina industry, coal mining, coal fired power plant and glass industry sites, generated numerous waste heaps which act as multi-contamination sources in the area. In October 2010 the Ajka red mud tailings pond failed and caused an accidental regional contamination of international significance. The major objective of this research was to study and map the spatial distribution of heavy metal contamination in airborne attic dust samples. At 27 sampling sites 30 attic dust samples were collected. Sampling strategy followed a grid-based stratified random sampling design. In each cell a house for attic dust sample collection was selected that was located the closest to a randomly generated point in the grid cell. The project area covers a 8x8 grid of 1x1 km cells with a total area of 64 km2. In order to represent long-term industrial pollution, houses with attics kept intact for at least 30-40 years were selected for sampling. Sampling included the collection of background samples remotely placed from the industrialized urban area. The concentration of the major and toxic elements (Al, Ca, Fe, K, Mg, Mn, Na, P, S, and As, Ba, Cd, Co, Cr, Cu, Li, Mo, Ni, Pb, Se, Sn

  5. MicroMED: a dust particle counter for the characterization of airborne dust close to the surface of Mars

    NASA Astrophysics Data System (ADS)

    Cozzolino, Fabio; Esposito, Francesca; Molfese, Cesare; Cortecchia, Fausto; Saggin, Bortolino; D'amato, Francesco

    2015-04-01

    Monitoring of airborne dust is very important in planetary climatology. Indeed, dust absorbs and scatter solar and thermal radiation, severely affecting atmospheric thermal structure, balance and dynamics (in terms of circulations). Wind-driven blowing of sand and dust is also responsible for shaping planetary surfaces through the formation of sand dunes and ripples, the erosion of rocks, and the creation and transport of soil particles. Dust is permanently present in the atmosphere of Mars and its amount varies with seasons. During regional or global dust storms, more than 80% of the incoming sunlight is absorbed by dust causing an intense atmospheric heating. Airborne dust is therefore a crucial climate component on Mars which impacts atmospheric circulations at all scales. Main dust parameters influencing the atmosphere heating are size distribution, abundance, albedo, single scattering phase function, imaginary part of the index of refraction. Moreover, major improvements of Mars climate models require, in addition to the standard meteorological parameters, quantitative information about dust lifting, transport and removal mechanisms. In this context, two major quantities need to be measured for the dust source to be understood: surface flux and granulometry. While many observations have constrained the size distribution of the dust haze seen from the orbit, it is still not known what the primary airborne dust (e.g. the recently lifted dust) is made of, size-wise. MicroMED has been designed to fill this gap. It will measure the abundance and size distribution of dust, not in the atmospheric column, but close to the surface, where dust is lifted, so to be able to monitor dust injection into the atmosphere. This has never been performed in Mars and other planets exploration. MicroMED is an Optical Particle Counter, analyzing light scattered from single dust particles to measure their size and abundance. A proper fluid-dynamic system, including a pump and a

  6. Latex allergens in tire dust and airborne particles.

    PubMed Central

    Miguel, A G; Cass, G R; Weiss, J; Glovsky, M M

    1996-01-01

    The prevalence and severity of latex allergy has increased dramatically in the last 15 years due to exposure to natural rubber products. Although historically this health risk has been elevated in hospital personnel and patients, a recent survey has indicated a significant potential risk for the general population. To obtain a wide-spread source for latex exposure, we have considered tire debris. We have searched for the presence of latex allergens in passenger car and truck tire tread, in debris deposited from the atmosphere near a freeway, and in airborne particulate matter samples representative of the entire year 1993 at two sites in the Los Angeles basin (California). After extraction of the samples with phosphate buffered saline, a modified-ELISA inhibition assay was used to measure relative allergen potency and Western blot analyses were used to identify latex allergens. The inhibition studies with the human IgE latex assay revealed inhibition by the tire tread source samples and ambient freeway dust, as well as by control latex sap and latex glove extracts. Levels of extractable latex allergen per unit of protein extracted were about two orders of magnitude lower for tire tread as compared to latex gloves. Western blot analyses using binding of human IgE from latex-sensitive patients showed a band at 34-36 kDa in all tire and ambient samples. Long Beach and Los Angeles, California, air samples showed four additional bands between 50 and 135 kDa. Alternative Western blot analyses using rabbit IgG raised against latex proteins showed a broad band at 30-50 kDa in all samples, with additional bands in the urban air samples similar to the IgE results. A latex cross-reactive material was identified in mountain cedar. In conclusion, the latex allergens or latex cross-reactive material present in sedimented and airborne particulate material, derived from tire debris, and generated by heavy urban vehicle traffic could be important factors in producing latex allergy

  7. Airborne Sunphotometry of African Dust and Marine Boundary Layer Aerosols in PRIDE

    NASA Technical Reports Server (NTRS)

    Livingston, John M.; Redemann, Jens; Russell, Philip; Schmid, Beat; Reid, Jeff; Pilewskie, Peter; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    The Puerto Rico Dust Experiment (PRIDE) was conducted during summer 2000 to study the radiative, microphysical and transport properties of Saharan dust in the Caribbean region. During PRIDE, NASA Ames Research Center's six-channel airborne autotracking sunphotometer (AATS-6) was operated aboard a Piper Navajo airplane based at Roosevelt Roads Naval Station on the northeast coast of Puerto Rico. AATS-6 measurements were taken during 21 science flights off the coast of Puerto Rico in the western Caribbean. Data were acquired within and above the Marine Boundary Layer (MBL) and the Saharan Aerosol Layer (SAL) up to 5.5 km altitude tinder a wide range of dust loadings. Aerosol optical depth (AOD) spectra and columnar water vapor (CWV) values have been calculated from the AATS-6 measurements by using sunphotometer calibration data obtained at Mauna Loa Observatory (3A kin ASL) before (May) and after (October) PRIDE. Mid-visible AOD values measured near the surface during PRIDE ranged from 0.07 on the cleanest day to 0.55 on the most turbid day. Values measured above the MBL were as high as 0.35; values above the SAL were as low as 0.01. The fraction of total column AOD due to Saharan dust cannot be determined precisely from AATS-6 AOD data alone due to the uncertainty in the extent of vertical mixing of the dust down through the MBL. However, analyses of ground-based and airborne in-situ aerosol sampling measurements and ground-based aerosol lidar backscatter data should yield accurate characterization of the vertical mixing that will enable calculation of the Saharan dust AOD component from the sunphotometer data. Examples will be presented showing measured AATS-6 AOD spectra, calculated aerosol extinction and water vapor density vertical profiles, and aerosol size distributions retrieved by inversion of the AOD spectra. Near sea-surface AOD spectra acquired by AATS-6 during horizontal flight legs at 30 m ASL are available for validation of AOD derived from coincident

  8. On the visibility of airborne volcanic ash and mineral dust

    NASA Astrophysics Data System (ADS)

    Weinzierl, B.; Sauer, D. N.; Minikin, A.; Reitebuch, O.; Dahlkötter, F.; Mayer, B. C.; Emde, C.; Tegen, I.; Gasteiger, J.; Petzold, A.; Veira, A.; Kueppers, U.; Schumann, U.

    2012-12-01

    After the eruption of the Eyjafjalla volcano (Iceland) in April 2010 which caused the most extensive restrictions of the airspace over Europe since the end of World War II, the aviation safety concept of avoiding "visible ash", i.e. volcanic ash that can be seen by the human eye, was recommended. However so far, no clear definition of "visible ash" and no relation between the visibility of an aerosol layer and related aerosol mass concentrations are available. The goal of our study is to assess whether it is possible from the pilot's perspective in flight to detect the presence of volcanic ash and to distinguish between volcanic ash and other aerosol layers just by sight. In our presentation, we focus the comparison with other aerosols on aerosol types impacting aviation: Besides volcanic ash, dust storms are known to be avoided by aircraft. We use in-situ and lidar data as well photographs taken onboard the DLR research aircraft Falcon during the Saharan Mineral Dust Experiments (SAMUM) in 2006 and 2008 and during the Eyjafjalla volcanic eruption in April/May 2010. We complement this analysis with numerical modelling, using idealized radiative transfer simulations with the 3D Monte Carlo radiative transfer code MYSTIC for a variety of selected viewing geometries. Both aerosol types, Saharan mineral dust and volcanic ash, show an enhanced coarse mode (> 1 μm) aerosol concentration, but volcanic ash aerosol additionally contains a significant number of Aitken mode particles (< 150 nm). Volcanic ash is slightly more absorbing than mineral dust, and the spectral behaviour of the refractive index is slightly different. According to our simulations, these differences are not detectable just by human eye. Furthermore, our data show, that it is difficult to define a lower threshold for the visibility of an aerosol layer because the visual detectability depends on many parameters, including the thickness of the aerosol layer, the brightness and color contrast between the

  9. Exposure to airborne microorganisms, dust and endotoxin during processing of valerian roots on farms.

    PubMed

    Skórska, Czesława; Sitkowska, Jolanta; Krysińska-Traczyk, Ewa; Cholewa, Grazyna; Dutkiewicz, Jacek

    2005-01-01

    The aim of this study was to determine the levels of microorganisms, dust and endotoxin in the air during various stages of valerian (Valeriana officinalis) roots processing by herb farmers and to examine the species composition of airborne microflora. Air samples were collected on glass fibre filters by use of personal samplers on 15 farms owned by valerian cultivating farmers, located in Lublin province (eastern Poland). The concentrations of total viable microorganisms (bacteria + fungi) in the air showed a marked variability and were within a range of 0.95-7,966.6 x 10(3) cfu/m (3). Though median was relatively low (10.75 x 10(3) cfu/m (3)), on 4 farms the concentrations exceeded the level of 10(5) cfu/m (3) and on 1 farm the level of 10(6) cfu/m (3). During the processing of valerian roots, distinct changes could be observed in the composition of airborne microflora. In the first stages of processing, the freshly dug and washed roots until shaking in the drying room, the most numerous were Gram-negative bacteria of the family Pseudomonadaceae (mostly Stenotrophomonas maltophilia, Pseudomonas chlororaphis and Pseudomonas fluorescens). After drying, the dominant organisms were thermo-resistant endospore-forming bacilli (Bacillus spp.) and fungi, among which prevailed Aspergillus fumigatus. Altogether, 29 species or genera of bacteria and 19 species or genera of fungi were identified in the farm air during valerian processing, of these, 10 and 12 species or genera respectively were reported as having allergenic and/or immunotoxic properties. The concentrations of airborne dust and endotoxin on the examined farms were very large and ranged from 10.0-776.7 mg/m (3), and from 0.15-24,448.2 microg/m (3), respectively (medians 198.3 mg/m (3) and 40.48 microg/m (3)). In conclusion, farmers cultivating valerian could be exposed during processing of valerian roots to large concentrations of airborne microorganisms, dust and endotoxin posing a risk of work

  10. Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, volume 73

    NASA Technical Reports Server (NTRS)

    Haas, Michael R. (Editor); Davidson, Jacqueline A. (Editor); Erickson, Edwin F. (Editor)

    1995-01-01

    This symposium was organized to review the science related to NASA's Airborne Astronomy Program on the occasion of the twentieth anniversary of the Kuiper Airborne Observatory (KAO). The theme selected, 'The Galactic Ecosystem: From Gas to Stars to Dust,' was considered to capture the underlying commonality of much of the research discussed. The 8 sessions were as follows: The Interstellar Medium; The Life Cycle of the ISM in Other Galaxies; Star and Planetary System Formation; Our Planetary System: The Solar System; The Enrichment of the Interstellar Medium; The Galactic Center: A Unique Region of the Galactic Ecosystem; Instrumentation for Airborne Astronomy; KAO History and Education; and Missions and the Future of Infrared Astronomy.

  11. Ozone on Mars - The effects of clouds and airborne dust

    NASA Astrophysics Data System (ADS)

    Lindner, B. L.

    1988-02-01

    Photochemistry in the winter polar atmosphere of Mars is examined for several latitudes, cloud types and dust abundances. Variations in cloud opacities and cloud types change O3 abundances only a few percent. However, typical dust abundances induce 10 - 50% increases in O3 abundances, primarily because photodissociation rates are drastically reduced by dust absorption. Furthermore, annual, latitudinal and seasonal cycles in dust opacity cause variations of 50% or greater in the corresponding cycles in O3 abundances. The reflectance spectroscopy technique that has been used to measure the O3 abundance may have difficulty detecting these variations.

  12. Changes in the Airborne Bacterial Community in Outdoor Environments following Asian Dust Events

    PubMed Central

    Yamaguchi, Nobuyasu; Park, Jonguk; Kodama, Makiko; Ichijo, Tomoaki; Baba, Takashi; Nasu, Masao

    2014-01-01

    Bacterial abundance and community compositions have been examined in aeolian dust in order to clarify their possible impacts on public health and ecosystems. The influence of transcontinentally transported bacterial cells on microbial communities in the outdoor environments of downwind areas should be determined because the rapid influx of a large amount of bacterial cells can disturb indigenous microbial ecosystems. In the present study, we analyzed bacteria in air samples (approximately 100 m3 d−1) that were collected on both Asian dust days and non-Asian dust days over 2 years (between November 2010 and July 2012). Changes in bacterial abundance and community composition were investigated based on their 16S rRNA gene amount and sequence diversity. Seasonal monitoring revealed that airborne bacterial abundance was more than 10-fold higher on severe dust days, while moderate dust events did not affect airborne bacterial abundance. A comparison of bacterial community compositions revealed that bacteria in Asian dust did not immediately disturb the airborne microbial community in areas 3,000–5,000 km downwind of dust source regions, even when a large amount of bacterial cells were transported by the atmospheric event. However, microbes in aeolian dust may have a greater impact on indigenous microbial communities in downwind areas near the dust source. Continuous temporal and spatial analyses from dust source regions to downwind regions (e.g., from the Gobi desert to China, Korea, Japan, and North America) will assist in estimating the impact of atmospherically transported bacteria on indigenous microbial ecosystems in downwind areas. PMID:24553107

  13. Assessment of chemical and mineralogical characteristics of airborne dust in the Sistan region, Iran.

    PubMed

    Rashki, A; Eriksson, P G; Rautenbach, C J de W; Kaskaoutis, D G; Grote, W; Dykstra, J

    2013-01-01

    Windblown transport and deposition of dust is widely recognized as an important physical and chemical concern to climate, human health and ecosystems. Sistan is a region located in southeast Iran with extensive wind erosion, severe desertification and intense dust storms, which cause adverse effects in regional air quality and human health. To mitigate the impact of these phenomena, it is vital to ascertain the physical and chemical characteristics of airborne and soil dust. This paper examines for the first time, the mineralogical and chemical properties of dust over Sistan by collecting aerosol samples at two stations established close to a dry-bed lake dust source region, from August 2009 to August 2010. Furthermore, soil samples were collected from topsoil (0-5 cm depth) at several locations in the dry-bed Hamoun lakes and downwind areas. These data were analyzed to investigate the chemical and mineralogical characteristics of dust, relevance of inferred sources and contributions to air pollution. X-ray Diffraction (XRD) analysis of airborne and soil dust samples shows that the dust mineralogy is dominated mainly by quartz (30-40%), calcite (18-23%), muscovite (10-17%), plagioclase (9-12%), chlorite (~6%) and enstatite (~3%), with minor components of dolomite, microcline, halite and gypsum. X-ray Fluorescence (XRF) analyses of all the samples indicate that the most important oxide compositions of the airborne and soil dust are SiO(2), CaO, Al(2)O(3), Na(2)O, MgO and Fe(2)O(3), exhibiting similar percentages for both stations and soil samples. Estimates of Enrichment Factors (EFs) for all studied elements show that all of them have very low EF values, suggesting natural origin from local materials. The results suggest that a common dust source region can be inferred, which is the eroded sedimentary environment in the extensive Hamoun dry lakes lying to the north of Sistan. PMID:22835867

  14. Using proximate analysis to characterize airborne dust generation from bituminous coals

    SciTech Connect

    Page, S.J.; Organiscak, J.A.

    2005-11-01

    Prolonged exposure to airborne respirable coal dust is responsible for coal workers pneumoconiosis (CWP), commonly called black lung. Health research studies have identified that the prevalence and severity of CWP are directly related to both the amount of dust exposure and the coal rank. The amount of airborne respirable dust (ARD) smaller than 10 micrometers generated from breakage of different coals varies widely. To investigate the cause, researchers for the National Institute for Occupational Safety and Health (NIOSH) have conducted experiments to identify the causes of airborne respirable dust liberation. Laboratory crushing experiments were conducted on a range of low to high volatile bituminous coals from eight mines. The results indicate that the proximate analysis of a coal sample can provide a very good indicator of the potential for a dust problem. For application to the coal mining, processing, and utilization industries, data from 977 US coal seams compiled by the Department of Energy (DoE) has been used to calculate this dust generation potential from an equation based on the NIOSH measured data. A simple procedure for this calculation is provided. 1 fig.

  15. Airborne Dust, "The Good Guy or the Bad Guy": How Much do We Know?

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    2010-01-01

    Processes in generating, transporting, and dissipating the airborne dust particles are global phenomena -African dust regularly reaching the Alps; Asian dust seasonally crossing the Pacific into North America, and ultimately the Atlantic into Europe. One of the vital biogeochemical roles dust storms play in Earth's ecosystem is routinely mobilizing mineral dust, as a source of iron, from deserts into oceans for fertilizing the growth of phytoplankton -the basis of the oceanic food chain. Similarly, these dust-laden airs also supply crucial nutrients for the soil of tropical rain forests, the so-called womb of life that hosts 50-90% of the species on Earth. With massive amounts of dust lifted from desert regions and injected into the atmosphere, however, these dust storms often affect daily activities in dramatic ways: pushing grit through windows and doors, forcing people to stay indoors, causing breathing problems, reducing visibility and delaying flights, and by and large creating chaos. Thus, both increasing and decreasing concentrations of doses result in harmful biological effects; so do the airborne dust particles to our Living Earth. Since 1997 NASA has been successfully launching a series of satellites - the Earth Observing System - to intensively study, and gain a better understanding of, the Earth as an integrated system. Through participation in many satellite remote-sensing/retrieval and validation projects over the years, we have gradually developed and refined the SMART (Surface-sensing Measurements for Atmospheric Radiative Transfer) and COMMIT (Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile observatories, a suite of surface remote sensing and in-situ instruments that proved to be vital in providing high temporal measurements, which complement the satellite observations. In this talk, we will present SMART-COMMIT which has played key roles, serving as network or supersite, in major international research projects such

  16. Metal and Metalloid Contaminants in Airborne Dust Associated with Mining Operations

    NASA Astrophysics Data System (ADS)

    Betterton, E. A.; Csavina, J. L.; Field, J. P.; Landázuri, A. C.; Felix Villar, O.; Rine, K. P.; Sáez, A.; Pence, J.; Shayan, H.; Russell, M.

    2011-12-01

    Mining operations are potential sources of airborne metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, with potential deleterious effects on human health and ecology. In this work, we report the size-resolved chemical characterization of atmospheric aerosols sampled near an inactive Superfund site and at an active mining and smelting site in Arizona. Aerosols were characterized with 10-stage (0.054 to 18 μm aerodynamic diameter) multiple orifice uniform deposit impactors (MOUDI), Dustrack monitors, and total suspended particulate (TSP) collectors. The MOUDI results show that arsenic and lead concentrations follow a bimodal distribution, with maxima centered at approximately 0.3 and 7.0 μm aerodynamic diameter. We hypothesize that the sub-micron arsenic and lead are the product of condensation and coagulation of smelting vapors. In the coarse size, contaminants are thought to originate as aeolian dust from mine tailings and other sources.

  17. Investigating the causes of airborne dust in Western United States

    NASA Astrophysics Data System (ADS)

    Kavouras, I. G.; Etyemezian, V.; Xu, J.; Dubois, D.; Pitchford, M.; Green, M.

    2005-12-01

    Dust is a principal component of haze at many of the Western Class I Areas as defined by the Clean Air Act (CAA) adopted by the US congress on 1977. The magnitude of the impact of dust on haze varies by region as well as by season due to source variations in spatial scale, time, location, and causes of emission. Windblown dust emissions occur on both local and regional scales and the magnitude of dust emissions depends on man-made activities, soil properties and meteorology. On a transcontinental scale, enormous, regional dust storms can be transported across oceans and continents and impact the entire western United States. The target of this study was to specifically identify the causes of dust measured in the Class I areas of the western states by developing a methodology for assigning worst-case visibility days when dust was the major component at IMPROVE monitors within the WRAP domain to a set of source-categories over the period 2001 - 2003. The methodology included the development and implementation of the following tools: (i) concentration diagnostic ratios; (ii) multivariate linear regression analysis; (iii) air masses backward trajectories analysis; (iv) land use characteristics and; (v) soil properties. Each day was attributed to: (i) Transcontinental transport of large scale events from Asia; (ii) Small scale local windblown dust events; (iii) A combination of local and regional windblown dust events; (iv) Upwind transport and (v) Other unknown sources. The study included 71 sites from the IMPROVE network located in the Western Regional Air Partnership (WRAP) domain. Meteorological data including wind speed and direction and, precipitation (if available) were retrieved from meteorological stations in the vicinity of the IMPROVE monitors and used to estimate the contribution of "locally" generated windblown dust to visibility impairment. The spatial and temporal variation of the number of days attributed to the aforementioned source-categories was

  18. The role of airborne mineral dusts in human disease

    NASA Astrophysics Data System (ADS)

    Morman, Suzette A.; Plumlee, Geoffrey S.

    2013-06-01

    Exposure to fine particulate matter (PM) is generally acknowledged to increase risk for human morbidity and mortality. However, particulate matter (PM) research has generally examined anthropogenic (industry and combustion by-products) sources with few studies considering contributions from geogenic PM (produced from the Earth by natural processes, e.g., volcanic ash, windborne ash from wildfires, and mineral dusts) or geoanthropogenic PM (produced from natural sources by processes that are modified or enhanced by human activities, e.g., dusts from lakebeds dried by human removal of water, dusts produced from areas that have undergone desertification as a result of human practices). Globally, public health concerns are mounting, related to potential increases in dust emission from climate related changes such as desertification and the associated long range as well as local health effects. Recent epidemiological studies have identified associations between far-traveled dusts from primary sources and increased morbidity and mortality in Europe and Asia. This paper provides an outline of public health research and history as it relates to naturally occurring inorganic mineral dusts. We summarize results of current public health research and describe some of the many challenges related to understanding health effects from exposures to dust aerosols.

  19. Geochemical and microbiological fingerprinting of airborne dust that fell in Canberra, Australia, in October 2002

    NASA Astrophysics Data System (ADS)

    de Deckker, Patrick; Abed, Raeid M. M.; de Beer, Dirk; Hinrichs, Kai-Uwe; O'Loingsigh, Tadhg; Schefuß, Enno; Stuut, Jan-Berend W.; Tapper, Nigel J.; van der Kaars, Sander

    2008-12-01

    During the night of 22-23 October 2002, a large amount of airborne dust fell with rain over Canberra, located some 200 km from Australia's east coast, and at an average altitude of 650 m. It is estimated that during that night about 6 g m-2 of aeolian dust fell. We have conducted a vast number of analyses to "fingerprint" some of the dust and used the following techniques: grain size analysis; scanning electron microscope imagery; major, trace, and rare earth elemental, plus Sr and Nd isotopic analyses; organic compound analyses with respective compound-specific isotope analyses; pollen extraction to identify the vegetation sources; and molecular cloning of 16S rRNA genes in order to identify dust bacterial composition. DNA analyses show that most obtained 16S rRNA sequences belong mainly to three groups: Proteobacteria (25%), Bacteriodetes (23%), and gram-positive bacteria (23%). In addition, we investigated the meteorological conditions that led to the dust mobilization and transport using model and satellite data. Grain sizes of the mineral dust show a bimodal distribution typical of proximal dust, rather than what is found over oceans, and the bimodal aspect of size distribution confirms wet deposition by rain droplets. The inorganic geochemistry points to a source along/near the Darling River in NW New South Wales, a region that is characteristically semiarid, and both the organic chemistry and palynoflora of the dust confirm the location of this source area. Meteorological reconstructions of the event again clearly identify the area near Bourke-Cobar as being the source of the dust. This study paves the way for determining the export of Australian airborne dust both in the oceans and other continents.

  20. Reducing airborne pathogens and dust in commercial hatching cabinets with an electrostatic space charge system.

    PubMed

    Mitchell, B W; Waltman, W D

    2003-01-01

    Commercial hatcheries typically infuse hydrogen peroxide or formaldehyde gas into hatching cabinets to reduce airborne pathogens that may lead to disease transmission during the hatch. A nonchemical option, an electrostatic space charge system (ESCS), was customized for full-sized commercial hatching cabinets and was tested extensively in broiler hatcheries. The ESCS cleans air by transferring a strong negative electrostatic charge to dust and microorganisms that are aerosolized during the hatch and collecting the charged particles on grounded plates or surfaces. In studies with three poultry companies, the ESCS resulted in significant (P < 0.0001) reductions of airborne dust of 77%-79%, in Enterobacteriaceae and fungus levels not significantly different (P > or = 0.05) from those with formaldehyde, and in 93%-96% lower Enterobacteriaceae than with no treatment or with hydrogen peroxide treatment (P < 0.01). The ESCS significantly (P < 0.05) reduced airborne Salmonella by 33%-83% compared with no treatment or hydrogen peroxide treatment. Results of this study suggest that the ESCS is a viable alternative to chemical treatment for reducing airborne pathogens in full-sized commercial hatchers, and it also provides dust control and containment, which should be helpful in reducing cross contamination and loading of ventilation ducts within different areas of the hatchery. PMID:12887184

  1. Assessing sources of airborne mineral dust and other aerosols, in Iraq

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Johann P.; Jayanty, R. K. M.

    2013-06-01

    Most airborne particulate matter in Iraq comes from mineral dust sources. This paper describes the statistics and modeling of chemical results, specifically those from Teflon® filter samples collected at Tikrit, Balad, Taji, Baghdad, Tallil and Al Asad, in Iraq, in 2006/2007. Methodologies applied to the analytical results include calculation of correlation coefficients, Principal Components Analysis (PCA), and Positive Matrix Factorization (PMF) modeling. PCA provided a measure of the covariance within the data set, thereby identifying likely point sources and events. These include airborne mineral dusts of silicate and carbonate minerals, gypsum and salts, as well as anthropogenic sources of metallic fumes, possibly from battery smelting operations, and emissions of leaded gasoline vehicles. Five individual PMF factors (source categories) were modeled, four of which being assigned to components of geological dust, and the fifth to gasoline vehicle emissions together with battery smelting operations. The four modeled geological components, dust-siliceous, dust-calcic, dust-gypsum, and evaporate occur in variable ratios for each site and size fraction (TSP, PM10, and PM2.5), and also vary by season. In general, Tikrit and Taji have the largest and Al Asad the smallest percentages of siliceous dust. In contrast, Al Asad has the largest proportion of gypsum, in part representing the gypsiferous soils in that region. Baghdad has the highest proportions of evaporite in both size fractions, ascribed to the highly salinized agricultural soils, following millennia of irrigation along the Tigris River valley. Although dust storms along the Tigris and Euphrates River valleys originate from distal sources, the mineralogy bears signatures of local soils and air pollutants.

  2. Plasmonic spectra of individual subwavelength particles under the infrared microscope: cells and airborne dust

    NASA Astrophysics Data System (ADS)

    Coe, James V.; Lioi, David B.; Shaffer, Lindsey; Malone, Marvin A.; Luthra, Antriksh; Ravi, Aruna

    2014-03-01

    A plasmonic metal film with a subwavelength hole array (a mesh) is used to capture an individual subwavelength particle, like a single yeast cell or airborne dust particle, and an imaging infrared (IR) microscope, records a scatterfree, IR absorption spectrum of the particle. Individual spectra of wavelength scale particles usually suffer from large scattering effects. This paper starts by demonstrating the plasmonic nature of the mesh in the infrared, proceeds to how this special form of light (surface plasmon polariton mediated transmission resonance) leads to scatter-free IR absorption spectra of individual, subwavelength particles, and ends with work on yeast cells and dust particles from our laboratory air and a household filter.

  3. Factors Affecting Vegetable Growers’ Exposure to Fungal Bioaerosols and Airborne Dust

    PubMed Central

    Hansen, Vinni M.; Meyling, Nicolai Vitt; Winding, Anne; Eilenberg, Jørgen; Madsen, Anne Mette

    2012-01-01

    We have quantified vegetable growers’ exposure to fungal bioaerosol components including (1→3)-β-d-glucan (β-glucan), total fungal spores, and culturable fungal units. Furthermore, we have evaluated factors that might affect vegetable growers’ exposure to fungal bioaerosols and airborne dust. Investigated environments included greenhouses producing cucumbers and tomatoes, open fields producing cabbage, broccoli, and celery, and packing facilities. Measurements were performed at different times during the growth season and during execution of different work tasks. Bioaerosols were collected with personal and stationary filter samplers. Selected fungal species (Beauveria spp., Trichoderma spp., Penicillium olsonii, and Penicillium brevicompactum) were identified using different polymerase chain reaction-based methods and sequencing. We found that the factors (i) work task, (ii) crop, including growth stage of handled plant material, and (iii) open field versus greenhouse significantly affected the workers’ exposure to bioaerosols. Packing of vegetables and working in open fields caused significantly lower exposure to bioaerosols, e.g. mesophilic fungi and dust, than harvesting in greenhouses and clearing of senescent greenhouse plants. Also removing strings in cucumber greenhouses caused a lower exposure to bioaerosols than harvest of cucumbers while removal of old plants caused the highest exposure. In general, the exposure was higher in greenhouses than in open fields. The exposures to β-glucan during harvest and clearing of senescent greenhouse plants were very high (median values ranging between 50 and 1500 ng m−3) compared to exposures reported from other occupational environments. In conclusion, vegetable growers’ exposure to bioaerosols was related to the environment, in which they worked, the investigated work tasks, and the vegetable crop. PMID:22003240

  4. Detection of Coxiella burnetii DNA in Inhalable Airborne Dust Samples from Goat Farms after Mandatory Culling

    PubMed Central

    Hogerwerf, Lenny; Still, Kelly; Heederik, Dick; van Rotterdam, Bart; de Bruin, Arnout; Nielen, Mirjam; Wouters, Inge M.

    2012-01-01

    Coxiella burnetii is thought to infect humans primarily via airborne transmission. However, air measurements of C. burnetii are sparse. We detected C. burnetii DNA in inhalable and PM10 (particulate matter with an aerodynamic size of 10 μm or less) dust samples collected at three affected goat farms, demonstrating that low levels of C. burnetii DNA are present in inhalable size fractions. PMID:22582072

  5. Domestic Mite Antigens in Floor and Airborne Dust at Workplaces in Comparison to Living Areas: A New Immunoassay to Assess Personal Airborne Allergen Exposure

    PubMed Central

    Sander, Ingrid; Zahradnik, Eva; Kraus, Gerhard; Mayer, Stefan; Neumann, Heinz-Dieter; Fleischer, Christina; Brüning, Thomas; Raulf-Heimsoth, Monika

    2012-01-01

    Objectives Allergens produced by domestic mites (DM) are among the most common allergic sensitizers and risk factors for asthma. To compare exposure levels between workplaces and living areas a new assay able to measure airborne DM antigen concentrations was developed. Methods At workplaces and in living areas, 213 floor dust samples and 92 personal inhalable dust samples were collected. For sensitive quantification of DM antigens, a new enzyme immunoassay (EIA) based on polyclonal antibodies to Dermatophagoides farinae extract was developed. Reactivity of five house dust mite and four storage mite species was tested. All dust samples were tested with the new EIA and with the Der f 1 and Der p 1-EIAs (Indoor Biotechnologies, UK) which detect major allergens from D. farinae and D. pteronyssinus by monoclonal antibodies. Samples below the detection limit in the DM-EIA were retested in an assay variant with a fluorogenic substrate (DM-FEIA). Results The newly developed DM-EIA detects antigens from all nine tested domestic mite species. It has a lower detection limit of 200 pg/ml of D.farinae protein, compared to 50 pg/ml for the DM-FEIA. DM antigens were detected by DM-EIA/FEIA in all floor dust and 80 (87%) of airborne samples. Der f 1 was found in 133 (62%) floor dust and in only 6 airborne samples, Der p 1 was found in 70 (33%) of floor samples and in one airborne sample. Der f 1 and DM concentrations were highly correlated. DM-antigens were significantly higher in inhalable airborne samples from textile recycling, bed feather filling, feed production, grain storage and cattle stables in comparison to living areas. Conclusions A new sensitive EIA directed at DM antigens was developed. DM antigen quantities were well correlated to Der f 1 values and were measurable in the majority (87%) of airborne dust samples. Some workplaces had significantly higher DM antigen concentrations than living areas. PMID:23285240

  6. Contribution of airborne dust particles to HONO sources

    NASA Astrophysics Data System (ADS)

    Saliba, N. A.; Moussa, S. G.; El Tayyar, G.

    2014-02-01

    HONO is a major precursor for OH radicals in early mornings. Its formation has been mainly attributed to the heterogeneous hydrolysis of NO2 on surfaces such as soot, glass, mineral oxides and aerosol surfaces. In particular, dust events which are loaded with mineral oxide aerosols have been associated with higher HONO concentrations in the gas phase. In order to understand the mechanism of reactions related to this process, samples during dusty and non-dusty days were collected between October 2009 and April 2011. Based on HYSPLIT backward trajectories, data were divided between wind trajectories originating from Arabian or African deserts. In this study an increase of HONO levels was observed during dusty days. The increase in the acidic gas concentrations was accompanied by an increase in the PM nitrate and sulfate ion concentrations. During high relative humidity (African dusty days), it is proposed that the mechanism of NO2 hydrolysis predominates whereas during Arabian dusty days, where the air is relatively dry, a synergistic mechanism of adsorption and reaction between NO2 and SO2 on dust particles to produce HONO and sulfate in the particle phase is suggested. This study implies that the NOx reactivity on mineral oxide surfaces leads to a higher mixing level of OH. An increase in the sulfate forming capacity could account for the underestimation of sulfates in aerosols when the reactive uptake of SO2 alone is considered.

  7. Geltape method for measurement of work related surface contamination with cobalt containing dust: correlation between surface contamination and airborne exposure.

    PubMed Central

    Poulsen, O M; Olsen, E; Christensen, J M; Vinzent, P; Petersen, O H

    1995-01-01

    OBJECTIVES--The geltape method is a new method for optical measurement of total amount of dust on surfaces. The objectives were to study the potential applicability of this method to measurements of work related cobalt exposure during painting of plates with cobalt dye. METHODS--Consecutive series of work related geltape prints were taken from surfaces inside and outside the ventilation cabins of two plate painters during two full working days. The amount of dust picked up by the geltapes was measured optically with a field monitor. Also, personal air samples were collected on filters at the different work processes. In the laboratory the contents of cobalt on the geltape prints and the filters were measured with inductive coupled plasma atomic emission spectroscopy. RESULTS--The key results were: (a) when the geltape prints were taken from surfaces inside the cabins the optically measured area of the geltapes covered with total dust (area (%)) correlated well with the chemically measured amount of cobalt present on the geltapes. Linear correlation coefficient (R2) was 0.91 for geltape prints taken on the floor and 0.94 for prints taken on the ceiling; (b) the cumulative airborne cobalt exposure, calculated from data on work related exposure by personal sampling, correlated with the area (%) of geltape prints taken from the ceiling of the cabin (R2 = 0.98); (c) the geltape method could be used to distinguish both between work processes with different levels of cobalt exposure, and between plate painters subjected to significant differences in airborne cobalt exposure. CONCLUSION--The geltape method could produce measures of the work related exposures as well as whole day exposure for cobalt. The geltape results correlated with measurements of personal airborne cobalt exposure. In this industry the profile of exposure is well-defined in time, and it seems reasonable to apply this fast and low cost method in routine exposure surveillance to obtain a more detailed

  8. Airborne dust transport to the eastern Pacific Ocean off southern California: Evidence from San Clemente Island

    NASA Astrophysics Data System (ADS)

    Muhs, Daniel R.; Budahn, James; Reheis, Marith; Beann, Jossh; Skipp, Gary; Fisher, Eric

    2007-07-01

    Islands are natural dust traps, and San Clemente Island, California, is a good example. Soils on marine terraces cut into Miocene andesite on this island are clay-rich Vertisols or Alfisols with vertic properties. These soils are overlain by silt-rich mantles, 5-20 cm thick, that contrast sharply with the underlying clay-rich subsoils. The silt mantles have a mineralogy that is distinct from the island bedrock. Silt mantles are rich in quartz, which is rare in the island andesite. The clay fraction of the silt mantles is dominated by mica, also absent from local andesite, and contrasts with the subsoils, dominated by smectite. Ternary plots of immobile trace elements (Sc-Th-La and Ta-Nd-Cr) show that the island andesite has a composition intermediate between average upper continental crust and average oceanic crust. In contrast, the silt and, to a lesser extent, clay fractions of the silt mantles have compositions closer to average upper continental crust. The silt mantles have particle size distributions similar to loess and Mojave Desert dust, but are coarser than long-range-transported Asian dust. We infer from these observations that the silt mantles are derived from airborne dust from the North American mainland, probably river valleys in the coastal mountains of southern California and/or the Mojave Desert. Although average winds are from the northwest in coastal California, easterly winds occur numerous times of the year when "Santa Ana" conditions prevail, caused by a high-pressure cell centered over the Great Basin. Examination of satellite imagery shows that easterly Santa Ana winds carry abundant dust to the eastern Pacific Ocean and the California Channel Islands. Airborne dust from mainland North America may be an important component of the offshore sediment budget in the easternmost Pacific Ocean, a finding of potential biogeochemical and climatic significance.

  9. Airborne dust transport to the eastern Pacific Ocean off southern California: Evidence from San Clemente Island

    USGS Publications Warehouse

    Muhs, D.R.; Budahn, J.; Reheis, M.; Beann, J.; Skipp, G.; Fisher, E.

    2007-01-01

    Islands are natural dust traps, and San Clemente Island, California, is a good example. Soils on marine terraces cut into Miocene andesite on this island are clay-rich Vertisols or Alfisols with vertic properties. These soils are overlain by silt-rich mantles, 5-20 cm thick, that contrast sharply with the underlying clay-rich subsoils. The silt mantles have a mineralogy that is distinct from the island bedrock. Silt mantles are rich in quartz, which is rare in the island andesite. The clay fraction of the silt mantles is dominated by mica, also absent from local andesite, and contrasts with the subsoils, dominated by smectite. Ternary plots of immobile trace elements (Sc-Th-La and Ta-Nd-Cr) show that the island andesite has a composition intermediate between average upper continental crust and average oceanic crust. In contrast, the silt and, to a lesser extent, clay fractions of the silt mantles have compositions closer to average upper continental crust. The silt mantles have particle size distributions similar to loess and Mojave Desert dust, but are coarser than long-range-transported Asian dust. We infer from these observations that the silt mantles are derived from airborne dust from the North American mainland, probably river valleys in the coastal mountains of southern California and/or the Mojave Desert. Although average winds are from the northwest in coastal California, easterly winds occur numerous times of the year when "Santa Ana" conditions prevail, caused by a high-pressure cell centered over the Great Basin. Examination of satellite imagery shows that easterly Santa Ana winds carry abundant dust to the eastern Pacific Ocean and the California Channel Islands. Airborne dust from mainland North America may be an important component of the offshore sediment budget in the easternmost Pacific Ocean, a finding of potential biogeochemical and climatic significance.

  10. Biological indicators of exposure to total and respirable aluminium dust fractions in a primary aluminium smelter.

    PubMed Central

    Röllin, H B; Theodorou, P; Cantrell, A C

    1996-01-01

    OBJECTIVES: The study attempts to define biological indicators of aluminium uptake and excretion in workers exposed to airborne aluminium compounds in a primary aluminium smelter. Also, this study defines the total and respirable aluminium dust fractions in two different potrooms, and correlates their concentrations with biological indicators in this group of workers. METHODS: Air was sampled at defined work sites. Non-destructive and conventional techniques were used to find total and respirable aluminium content of the dust. Blood and urine was collected from 84 volunteers employed at various work stations throughout the smelter and from two different cohorts of controls matched for sex, age, and socioeconomic status. Aluminium in serum samples and urine specimens was measured by flameless atomic absorption with a PE 4100 ZL spectrometer. RESULTS: The correlation of aluminium concentrations in serum and urine samples with the degree of exposure was assessed for three arbitrary exposure categories; low (0.036 mg Al/m3), medium (0.35 mg Al/m3) and high (1.47 mg Al/m3) as found in different areas of the smelter. At medium and high exposure, the ratio of respirable to total aluminium in the dust samples varied significantly. At high exposure, serum aluminium, although significantly raised, was still within the normal range of an unexposed population. The workers with low exposure excreted aluminium in urine at levels significantly higher than the controls, but still within the normal range of the population. However, potroom workers with medium and high exposure had significantly higher urinary aluminium than the normal range. CONCLUSIONS: It is concluded that only urinary aluminium constitutes a practical index of occupational exposure at or above 0.35 mg Al/m3, and that the respirable fraction of the dust may play a major role in the biological response to exposure to aluminium in a smelter environment. PMID:8758038

  11. Airborne and Grain Dust Fungal Community Compositions Are Shaped Regionally by Plant Genotypes and Farming Practices.

    PubMed

    Pellissier, Loïc; Oppliger, Anne; Hirzel, Alexandre H; Savova-Bianchi, Dessislava; Mbayo, Guilain; Mascher, Fabio; Kellenberger, Stefan; Niculita-Hirzel, Hélène

    2016-04-01

    Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km(2) along an elevation gradient of 500 m by tag-encoded 454 pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, and geographic and climatic parameters) and biotic (wheat cultivar and previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity values of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity, whereas wheat cultivar, cropping history, and the number of freezing days per year shaped the taxonomic beta diversity of these communities. PMID:26826229

  12. Analysis of Potentially Toxic Metals in Airborne Cement Dust Around Sagamu, Southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Gbadebo, A. M.; Bankole, O. D.

    This study analyzed the concentration levels of potentially toxic and harmful elements contained in the airborne cement dust generated in the vicinity and farther away 500 m in the conventional four cardinal directions from the West African Portland Cement Company (WAPCO) factory mill, Sagamu. The results indicated that the concentration range of these toxic elements fall between 40.0 and 280,000 μg g-1 in the cement dust samples. Also, the concentration range of these toxic elements in 1 L of air samples varies between 0.01 μg g-1 and 29.92 μg L-1. The results generally show elevated concentrations of all the elements when compared with USA threshold limit of particulate mental concentration (e.g., Pb (1.5 g m-3); Cd (0.004-0.026 g m-3) in the air. These elements in the airborne cement dusts may pose a great threat to the health of plants, animals and residents in and around the factory and also to workers and visitors to the factory.

  13. Sensory and other neurogenic effects of exposures to airborne office dust

    NASA Astrophysics Data System (ADS)

    Mølhave, L.; Kjærgaard, S. K.; Attermann, J.

    This Danish Office Dust Experiment investigated the response of 24 healthy non-sensitive adult subjects to exposure to normal office dust in the air (7 μg m -3 clean air, 136 and 390 μg m -3 TSP). The dust had no major identifiable specific reactive components. The exposure duration was 5 1/4 h and was arranged in a climate chamber in controlled atmospheric conditions. Measurements were made acutely at exposure onset, subacutely at exposure end and next day (late). As secondary aims the time course and threshold of any observed effect of the exposures, and the characteristics of any hyperresponding subgroup were investigated. In a questionnaire with 36 questions the dust exposures caused increased acute, subacute and late perceptions of reduced air quality, acute and subacute increased odor intensity, acute eye irritation, acute and late heavy head, subacute feeling of perspiration, and subacute general irritation. Cough increased subacutely during exposures. In addition, a performance test showed effects of dust exposures which also affected "Mood Scale" ratings. No effect was seen on an addition test for distraction, and objective measurements of skin humidity. The overall conclusion of the study is that healthy subjects without hypersensitivity reactions seem to respond to airborne house dust. The responses are both subjective sensory reactions and other neurogenic effects even at exposure levels within the range found in normal buildings. Some of the effects appeared acutely and decreased through adaptation while others increased during prolonged exposure and remained for more than 17 h after the exposure ended. The findings may indicate for this type of dust a threshold level for the dose-response relationships below 140 μg m -3.

  14. Impact of Direct Soil Exposures from Airborne Dust and Geophagy on Human Health

    PubMed Central

    Sing, David; Sing, Charles F

    2010-01-01

    Over evolutionary time humans have developed a complex biological relationship with soils. Here we describe modes of soil exposure and their biological implications. We consider two types of soil exposure, the first being the continuous exposure to airborne soil, and the second being dietary ingestion of soils, or geophagy. It may be assumed that airborne dust and ingestion of soil have influenced the evolution of particular DNA sequences which control biological systems that enable individual organisms to take advantage of, adapt to and/or protect against exposures to soil materials. We review the potential for soil exposure as an environmental source of epigenetic signals which may influence the function of our genome in determining health and disease. PMID:20617027

  15. Total contribution of airborne lead to blood lead.

    PubMed Central

    Manton, W I

    1985-01-01

    A nine year study of blood lead concentrations and isotope ratios carried out on a married couple shows that pulmonary deposition cannot account for all the airborne lead in blood; that lead from bone may comprise 70% of blood lead; and that during pregnancy blood lead may double due to mobilisation of lead from bone. PMID:3970881

  16. The Martian polar CAP - Radiative effects of ozone, clouds, and airborne dust

    NASA Astrophysics Data System (ADS)

    Lindner, B. L.

    1990-02-01

    The solar and thermal flux striking the polar cap of Mars is computed for various ozone, dust, and cloud abundances and for three solar zenith angles. Ozone does not significantly affect the total energy budget of the polar cap. Hence the observed hemispherical asymmetry in ozone abundance causes only an insignificant hemispherical asymmetry in the polar caps. Vertical optical depths of dust and cloud ranging from zero to 1 cause little change in the total flux absorbed by the polar cap near its edge but increase the absorbed flux significantly as one travels poleward. Hemispherical asymmetries in dust abundance, cloud cover, and surface pressure combine to cause a significant hemispherical asymmetry in the total flux absorbed by the residual polar caps, which helps to explain the dichotomy in the residual polar caps on Mars. Other processes which affect the energy budget of the polar cap are proposed and reviewed, particularly with respect to their interaction with the radiative effects of clouds and dust.

  17. Effect of ultraviolet on the survival of bacteria airborne in simulated Martian dust clouds.

    PubMed

    Hagen, C A; Hawrylewicz, E J; Anderson, B T; Cephus, M L

    1970-01-01

    A chamber was constructed to create simulated Martian dust storms and thereby study the survival of airborne micro-organisms while exposed to the rigors of the Martian environment, including ultraviolet irradiation. Representative types of sporeforming and non-sporeforming bacteria present in spacecraft assembly areas and indigenous to humans were studied. It was found that daily ultraviolet irradiation of 2 to 9 X 10(7) erg cm-2 was not sufficient to sterilize the dust clouds. The soil particles protected the organisms from ultraviolet irradiation since the numbers of survivors from irradiated environments were similar to those from unirradiated environments. Pending further data of the Martian environment, the contamination and dissemination of Mars with terrestrial micro-organisms is still a distinct possibility. PMID:12664918

  18. Machine vision based particle size and size distribution determination of airborne dust particles of wood and bark pellets

    SciTech Connect

    Igathinathane, C; Pordesimo, L.O.

    2009-08-01

    Dust management strategies in industrial environment, especially of airborne dust, require quantification and measurement of size and size distribution of the particles. Advanced specialized instruments that measure airborne particle size and size distribution apply indirect methods that involve light scattering, acoustic spectroscopy, and laser diffraction. In this research, we propose a simple and direct method of airborne dust particle dimensional measurement and size distribution analysis using machine vision. The method involves development of a user-coded ImageJ plugin that measures particle length and width and analyzes size distribution of particles based on particle length from high-resolution scan images. Test materials were airborne dust from soft pine wood sawdust pellets and ground pine tree bark pellets. Subsamples prepared by dividing the actual dust using 230 mesh (63 m) sieve were analyzed as well. A flatbed document scanner acquired the digital images of the dust particles. Proper sampling, layout of dust particles in singulated arrangement, good contrast smooth background, high resolution images, and accurate algorithm are essential for reliable analysis. A halo effect around grey-scale images ensured correct threshold limits. The measurement algorithm used Feret s diameter for particle length and pixel-march technique for particle width. Particle size distribution was analyzed in a sieveless manner after grouping particles according to their distinct lengths, and several significant dimensions and parameters of particle size distribution were evaluated. Results of the measurement and analysis were presented in textual and graphical formats. The developed plugin was evaluated to have a dimension measurement accuracy in excess of 98.9% and a computer speed of analysis of <8 s/image. Arithmetic mean length of actual wood and bark pellets airborne dust particles were 0.1138 0.0123 and 0.1181 0.0149 mm, respectively. The airborne dust particles of

  19. Influence of various dust sampling and extraction methods on the measurement of airborne endotoxin.

    PubMed

    Douwes, J; Versloot, P; Hollander, A; Heederik, D; Doekes, G

    1995-05-01

    The influence of various filter types and extraction conditions on the quantitation of airborne endotoxin with the Limulus amebocyte lysate test was studied by using airborne dusts sampled in a potato processing plant. Samples were collected with an apparatus designed to provide parallel samples. Data from the parallel-sampling experiment were statistically evaluated by using analysis of variance. In addition, the influence of storage conditions on the detectable endotoxin concentration was investigated by using commercially available lipopolysaccharides (LPS) and endotoxin-containing house dust extracts. The endotoxin extraction efficiency of 0.05% Tween 20 in pyrogen-free water was seven times higher than that of pyrogen-free water only. Two-times-greater amounts of endotoxin were extracted from glass fiber, Teflon, and polycarbonate filters than from cellulose ester filters. The temperature and shaking intensity during extraction were not related to the extraction efficiency. Repeated freeze (-20 degrees C)-and-thaw cycles with commercial LPS reconstituted in pyrogen-free water had a dramatic effect on the detectable endotoxin level. A 25% loss in endotoxin activity per freeze-thaw cycle was observed. Storage of LPS samples for a period of 1 year at 7 degrees C had no effect on the endotoxin level. House dust extracts showed a decrease of about 20% in the endotoxin level after they had been frozen and thawed for a second time. The use of different container materials (borosilicate glass, "soft" glass, and polypropylene) did not result in different endotoxin levels. This study indicates that the assessment of endotoxin exposure may differ considerably between groups when different sampling, extraction, and storage procedures are employed. PMID:7646014

  20. Influence of various dust sampling and extraction methods on the measurement of airborne endotoxin.

    PubMed Central

    Douwes, J; Versloot, P; Hollander, A; Heederik, D; Doekes, G

    1995-01-01

    The influence of various filter types and extraction conditions on the quantitation of airborne endotoxin with the Limulus amebocyte lysate test was studied by using airborne dusts sampled in a potato processing plant. Samples were collected with an apparatus designed to provide parallel samples. Data from the parallel-sampling experiment were statistically evaluated by using analysis of variance. In addition, the influence of storage conditions on the detectable endotoxin concentration was investigated by using commercially available lipopolysaccharides (LPS) and endotoxin-containing house dust extracts. The endotoxin extraction efficiency of 0.05% Tween 20 in pyrogen-free water was seven times higher than that of pyrogen-free water only. Two-times-greater amounts of endotoxin were extracted from glass fiber, Teflon, and polycarbonate filters than from cellulose ester filters. The temperature and shaking intensity during extraction were not related to the extraction efficiency. Repeated freeze (-20 degrees C)-and-thaw cycles with commercial LPS reconstituted in pyrogen-free water had a dramatic effect on the detectable endotoxin level. A 25% loss in endotoxin activity per freeze-thaw cycle was observed. Storage of LPS samples for a period of 1 year at 7 degrees C had no effect on the endotoxin level. House dust extracts showed a decrease of about 20% in the endotoxin level after they had been frozen and thawed for a second time. The use of different container materials (borosilicate glass, "soft" glass, and polypropylene) did not result in different endotoxin levels. This study indicates that the assessment of endotoxin exposure may differ considerably between groups when different sampling, extraction, and storage procedures are employed. PMID:7646014

  1. Heavy Metal Content in Airborne Dust of Childhood Leukemia Cluster Areas: Even Small Towns Have Air Pollutants

    NASA Astrophysics Data System (ADS)

    Sheppard, P. R.; Witten, M. L.

    2004-12-01

    Currently in the US, there are at least two ongoing clusters of childhood leukemia, where the incidence rate over the last several years has exceeded the national norm. In Fallon, Nevada, a town of 8,000 people, 16 children have been diagnosed with leukemia since 1995, three of whom have died. In Sierra Vista, Arizona, a town of 38,000 people, 12 children have been diagnosed since 1998, two of whom have died. A possible third cluster of childhood leukemia and other cancers is being monitored in Elk Grove, California, a suburb of Sacramento. For the purpose of characterizing the heavy metal content of airborne dust of these three communities, total suspended particulate samples were collected from each town as well as from nearby towns that could be considered as control comparisons. Sampling was done using portable high-volume blowers and glass- or quartz-fiber filter media. Filters were measured for elemental concentrations using inductively coupled plasma mass spectroscopy. To date, our most notable results are from the Nevada region. Compared to other control towns in the region, Fallon had significantly more tungsten in its airborne dust. Uranium was also higher in dust of Fallon than in other control towns. Uranium is a known health hazard, though it is not necessarily specifically related to childhood leukemia. The role of tungsten in childhood leukemia has not been widely studied. However, other research has identified tungsten exposure as an environmental concern in Fallon. A CDC study of human tissue samples from Fallon has shown high tungsten levels in people of Fallon, and a USGS study of drinking water in Fallon also has shown high tungsten there. Tree-ring research on selected trees has shown high tungsten values in recent rings compared to earlier rings. While these multiple indications of tungsten in the Fallon environment do not directly lead to the conclusion that tungsten causes leukemia, they do combine to suggest that biomedical research on the

  2. A 15-week experimental exposure of pigs to airborne dust with added endotoxin in a continuous flow exposure chamber.

    PubMed Central

    Jolie, R; Bäckström, L; Olson, L; Chase, C

    1999-01-01

    The purpose of this study was to evaluate the effect of longterm exposure to airborne dust and endotoxin on the respiratory system of pigs. A continuous flow exposure chamber was built for the purpose of exposing pigs to selected airborne contaminants. Pigs (n = 6) were exposed to a combination of a very fine corn/soybean meal (40.6 mg/m3) with added lipopolysaccharide (LPS; 12.4 microg/m3) for 8 h/d over 5 d for 15 wk (75 d of exposure). Control pigs (n = 6) were housed in a room with minimal contamination of these airborne contaminants. Surprisingly, dust in the exposure chamber and the control room was highly contaminated with peptidoglycan. Changes in the lung were monitored by collecting bronchoalveolar lavage (BAL) fluid for cytology at 5 different time points throughout the exposure period. Blood samples were collected at the same time for hematology. A non-specific respiratory inflammatory response was found in exposed and control pigs, as suggested by the increased neutrophils in BAL fluid and the small inflammatory areas in the lung tissue. No macroscopic lung lesions were observed in control or exposed pigs. The findings in the control pigs imply that even low dust concentrations and possibly peptidoglycan contamination can induce cellular changes in the BAL fluid and that a true control pig does not exist. In addition, the exposed pigs developed a mild eosinophilia, indicating an allergic response to the airborne contaminants. PMID:10369571

  3. Airborne Dust Cloud Measurements at the INL National Security Test Range

    SciTech Connect

    Michael L. Abbott; Norm Stanley; Larry Radke; Charles Smeltzer

    2007-09-01

    On July 11, 2007, a surface, high-explosive test (<20,000 lb TNT-equivalent) was carried out at the National Security Test Range (NSTR) on the Idaho National Laboratory (INL) Site. Aircraft-mounted rapid response (1-sec) particulate monitors were used to measure airborne PM-10 concentrations directly in the dust cloud and to develop a PM-10 emission factor that could be used for subsequent tests at the NSTR. The blast produced a mushroom-like dust cloud that rose approximately 2,500–3,000 ft above ground level, which quickly dissipated (within 5 miles of the source). In general, the cloud was smaller and less persistence than expected, or that might occur in other areas, likely due to the coarse sand and subsurface conditions that characterize the immediate NSTR area. Maximum short time-averaged (1-sec) PM-10 concentrations at the center of the cloud immediately after the event reached 421 µg m-3 but were rapidly reduced (by atmospheric dispersion and fallout) to near background levels (~10 µg m-3) after about 15 minutes. This occurred well within the INL Site boundary, about 8 km (5 miles) from the NSTR source. These findings demonstrate that maximum concentrations in ambient air beyond the INL Site boundary (closest is 11.2 km from NSTR) from these types of tests would be well within the 150 µg m-3 24-hour National Ambient Air Quality Standards for PM-10. Aircraft measurements and geostatistical techniques were used to successfully quantify the initial volume (1.64E+9 m3 or 1.64 km3) and mass (250 kg) of the PM-10 dust cloud, and a PM-10 emission factor (20 kg m-3 crater soil volume) was developed for this specific type of event at NSTR. The 250 kg of PM-10 mass estimated from this experiment is almost seven-times higher than the 36 kg estimated for the environmental assessment (DOE-ID 2007) using available Environmental Protection Agency (EPA 1995) emission factors. This experiment demonstrated that advanced aircraft-mounted instruments operated by

  4. Geochemical evidence for airborne dust additions to soils in Channel Islands National Park, California

    USGS Publications Warehouse

    Muhs, D.R.; Budahn, J.R.; Johnson, D.L.; Reheis, M.; Beann, J.; Skipp, G.; Fisher, E.; Jones, J.A.

    2008-01-01

    There is an increasing awareness that dust plays important roles in climate change, biogeochemical cycles, nutrient supply to ecosystems, and soil formation. In Channel Islands National Park, California, soils are clay-rich Vertisols or Alfisols and Mollisols with vertic properties. The soils are overlain by silt-rich mantles that contrast sharply with the underlying clay-rich horizons. Silt mantles contain minerals that are rare or absent in the volcanic rocks that dominate these islands. Immobile trace elements (Sc-Th-La and Ta-Nd-Cr) and rare-earth elements show that the basalt and andesite on the islands have a composition intermediate between upper-continental crust and oceanic crust. In contrast, the silt fractions and, to a lesser extent, clay fractions of the silt mantle have compositions closer to average upper-continental crust and very similar to Mojave Desert dust. Island shelves, exposed during the last glacial period, could have provided a source of eolian sediment for the silt mantles, but this is not supported by mineralogical data. We hypothesize that a more likely source for the silt-rich mantles is airborne dust from mainland California and Baja California, either from the Mojave Desert or from the continental shelf during glacial low stands of sea. Although average winds are from the northwest in coastal California, easterly winds occur numerous times of the year when "Santa Ana" conditions prevail, caused by a high-pressure cell centered over the Great Basin. The eolian silt mantles constitute an important medium of plant growth and provide evidence that abundant eolian silt and clay may be delivered to the eastern Pacific Ocean from inland desert sources. ?? 2007 Geological Society of America.

  5. Separating Dust Mixtures and Other External Aerosol Mixtures Using Airborne High Spectral Resolution Lidar Data

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Vaughan, M.; Hostetler, C. A.; Rogers, R. R.; Hair, J. W.; Cook, A. L.; Harper, D. B.

    2013-12-01

    Knowledge of aerosol type is important for source attribution and for determining the magnitude and assessing the consequences of aerosol radiative forcing. The NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL-1) has acquired considerable datasets of both aerosol extensive parameters (e.g. aerosol optical depth) and intensive parameters (e.g. aerosol depolarization ratio, lidar ratio) that can be used to infer aerosol type. An aerosol classification methodology has been used extensively to classify HSRL-1 aerosol measurements of different aerosol types including dust, smoke, urban pollution, and marine aerosol. However, atmospheric aerosol is frequently not a single pure type, but instead occurs as a mixture of types, and this mixing affects the optical and radiative properties of the aerosol. Here we present a comprehensive and unified set of rules for characterizing external mixtures using several key aerosol intensive parameters: extinction-to-backscatter ratio (i.e. lidar ratio), backscatter color ratio, and depolarization ratio. Our mixing rules apply not just to the scalar values of aerosol intensive parameters, but to multi-dimensional normal distributions with variance in each measurement dimension. We illustrate the applicability of the mixing rules using examples of HSRL-1 data where mixing occurred between different aerosol types, including advected Saharan dust mixed with the marine boundary layer in the Caribbean Sea and locally generated dust mixed with urban pollution in the Mexico City surroundings. For each of these cases we infer a time-height cross section of mixing ratio along the flight track and we partition aerosol extinction into portions attributed to the two pure types. Since multiple aerosol intensive parameters are measured and included in these calculations, the techniques can also be used for cases without significant depolarization (unlike similar work by earlier researchers), and so a third example of a

  6. Concentration and size distribution of total airborne microbes in hazy and foggy weather.

    PubMed

    Dong, Lijie; Qi, Jianhua; Shao, Congcong; Zhong, Xi; Gao, Dongmei; Cao, Wanwan; Gao, Jiawei; Bai, Ran; Long, Gaoyuan; Chu, Congcong

    2016-01-15

    Atmospheric bioaerosol particles were collected using a bioaerosol sampler from Oct. 2013 to Aug. 2014 in the coastal region of Qingdao. The total microbes were measured using an epifluorescence microscope after staining with DAPI (4',6-diamidino-2-phenylindole). The concentration of total airborne microbes showed seasonal variation, with the highest value in winter and the lowest in summer. The mean concentration of total microbes was 6.55 × 10(5)Cells/m(3) on non-hazy days. The total microbe concentration increased to 7.09 × 10(5) and 9.00 × 10(5)Cells/m(3) on hazy and foggy days, respectively. The particle sizes of the total microbes presented a bimodal distribution on sunny days, with one peak at 1.1-2.1 μm and another at 4.7-7.0 μm. The size distribution of total microbes showed an increase in the fine fraction on hazy days and an increase in the coarse fraction on foggy days. However, the size distribution became unimodal during a heating period. Spearman correlation analysis showed that temperature and O3 had a significant negative correlation with the airborne microbe concentration, while PM2.5, SO2, NO2, CO and the air quality index (AQI) had significant positive correlations with the airborne microbe concentration during hazy days. The increased number of airborne microbes will affect the air quality on hazy days. PMID:26473703

  7. Investigation of the degree of equilibrium of the long-lived uranium-238 decay-chain members in airborne and bulk uranium-ore dusts

    SciTech Connect

    Jackson, P.O.; Thomas, C.W.

    1982-08-01

    The degree of disequilibrium among /sup 238/U decay chain members in some airborne dusts and typical ores has been established by precise radiochemical analyses. This information is necessary to evaluate the lung dose model currently used for estimating the effect of the inhalation of uranium ore dust. The particle size distributions of airborne decay chain components in dusts at one uranium mill have been investigated. Statistically significant disequilibria were observed for /sup 230/Th, /sup 226/Ra, and /sup 210/Pb in both airborne dusts and composite ore samples. With the exception of ore from one mill in the United States, most of the daughter concentrations in powdered ore composites were within 10% of /sup 238/U. In airborne dusts, the concentration of /sup 226/Ra was typically below /sup 238/U; the minimum /sup 226/Ra concentration observed for airborne ore dusts was 56% of equilibrium. A statistically significant particle size dependence was observed for /sup 226/Ra//sup 238/U ratios in several airborne dusts collected at a uranium mill.

  8. Exposure to microbes, endotoxins and total dust in cigarette and cigar manufacturing: an evaluation of health hazards.

    PubMed

    Reiman, M; Uitti, J

    2000-09-01

    The concentrations of airborne microbes, endotoxins and total dust were measured in one cigar and two cigarette factories in order to evaluate the risk of respiratory symptoms. The role of humidifiers as a source of microbes was investigated. Air samples for the analyses were collected near workers' breathing zones during different phases of production. Gram-negative bacteria, mesophilic fungi, thermotolerant fungi and thermophilic actinomycetes, but not Aspergillus glaucus fungi, were found in higher concentrations in the cigar factory than in the cigarette factories. High microbe concentrations (10(4)-10(5)cfu m(-3)) occurred throughout the production line in the cigar factory. The highest dust and endotoxin concentrations were found in the wick-making department in the cigar factory (3.3mg dust per m(3) and 38ng endotoxin per m(3)) and during the weighing or handling of raw tobacco in the cigarette factories (4.5 mg dust per m(3) and 106ng endotoxin per m(3)). The spray humidifiers in the cigar factory were a more important source of microbes than was raw tobacco. In the cigarette factories, steam humidifiers were used; the humidified air was free of microbes. The microbe concentrations in the tobacco factories were lower than in environments known to have caused allergic alveolitis. PMID:10963711

  9. Dust Transport Across the Atlantic Studied by Airborne Doppler Wind Lidar During the Saltrace Experiment in 2013

    NASA Astrophysics Data System (ADS)

    Chouza, Fernando; Reitebuch, Oliver; Rahm, Stephan; Weinzierl, Bernadett

    2016-06-01

    During the SALTRACE field experiment, conducted during June/July 2013, the Saharan dust transport across the Atlantic was analyzed by a set of ground based, in-situ and airborne instruments, including a 2-μm coherent DWL (Doppler wind lidar) mounted onboard the DLR Falcon 20 research aircraft. An overview of the measurements of aerosol backscatter and extinction, horizontal and vertical winds retrieved from the DWL are presented together with a brief description of the applied methods. The retrieved measurements provide direct observation of Saharan dust transport mechanisms across the Atlantic as well as island induced lee waves in the Barbados region.

  10. Comparison of Air Impaction and Electrostatic Dust Collector Sampling Methods to Assess Airborne Fungal Contamination in Public Buildings.

    PubMed

    Normand, Anne-Cécile; Ranque, Stéphane; Cassagne, Carole; Gaudart, Jean; Sallah, Kankoé; Charpin, Denis-André; Piarroux, Renaud

    2016-03-01

    Many ailments can be linked to exposure to indoor airborne fungus. However, obtaining a precise measurement of airborne fungal levels is complicated partly due to indoor air fluctuations and non-standardized techniques. Electrostatic dust collector (EDC) sampling devices have been used to measure a wide range of airborne analytes, including endotoxins, allergens, β-glucans, and microbial DNA in various indoor environments. In contrast, viable mold contamination has only been assessed in highly contaminated environments such as farms and archive buildings. This study aimed to assess the use of EDCs, compared with repeated air-impactor measurements, to assess airborne viable fungal flora in moderately contaminated indoor environments. Indoor airborne fungal flora was cultured from EDCs and daily air-impaction samples collected in an office building and a daycare center. The quantitative fungal measurements obtained using a single EDC significantly correlated with the cumulative measurement of nine daily air impactions. Both methods enabled the assessment of fungal exposure, although a few differences were observed between the detected fungal species and the relative quantity of each species. EDCs were also used over a 32-month period to monitor indoor airborne fungal flora in a hospital office building, which enabled us to assess the impact of outdoor events (e.g. ground excavations) on the fungal flora levels on the indoor environment. In conclusion, EDC-based measurements provided a relatively accurate profile of the viable airborne flora present during a sampling period. In particular, EDCs provided a more representative assessment of fungal levels compared with single air-impactor sampling. The EDC technique is also simpler than performing repetitive air-impaction measures over the course of several consecutive days. EDC is a versatile tool for collecting airborne samples and was efficient for measuring mold levels in indoor environments. PMID:26491105

  11. A comparative field study on dust measurements by different sampling methods with emphasis on estimating factors for recalculation from chinese 'total dust' measurements to respirable dust concentrations.

    PubMed

    Yang, Lei; Chen, Weihong; Wang, Zhenglun; Sun, Jingzhi; Wang, Limin; Yi, Guilin; Yang, Jinbo; Li, Jichao; Mao, Geshi; Mattenklott, Markus; Koob, Michael; Sun, Yi; Bochmann, Frank; Dahmann, Dirk

    2012-05-01

    In China, dust samplers were originally designed to collect 'total dust' for a short term during production, which is different from the widely adopted sampling strategy for dust. With the aim to provide the conversion factor from Chinese total dust to US and German respirable dust and to look at the influences on conversion factors from environment, production, and instruments, a comparative field study on the dust concentration measurements by different sampling methods was carried out in the same Chinese industries as in the 1989-1990 study and in some other factories. A supplemental experiment was also conducted in a wind tunnel. Dust concentration was measured with a parallel sampling strategy by using the following samplers: 10-mm nylon cyclone for US respirable dust (AR), FSP-Berufsgenossenschaftliches Institut für Arbeitssicherheit (BIA) cyclone for German respirable dust (GR), and samplers for Chinese total dust (CT). Totally, 1434 samples were collected (269 AR, 198 GR, and 967 CT), from which 429 matched sample pairs (249 pairs of AR/CT, 180 GR/CT) were available to calculate conversion ratios. Industry- and job-based conversion factors are presented in this study. The conversion factor of AR/CT was 0.38 for tungsten mines, 0.19 for copper/iron mines, 0.65 for tin mines, and 0.20 for pottery industry, while the factor of GR/CT was 0.69 for tungsten, 0.37 for copper/iron, and 0.52 for pottery. In the job category, AR/CT factors varied from 0.16 to 0.96 and GR/CT from 0.12 to 0.72. For the industries studied in 1988-1989, the AR/CT and GR/CT factors were 0.29 and 0.45, respectively. Both factors were definitely influenced by production, CT dust concentration, sample gain, and variation of dust concentration. Moreover, the respirable dust concentration by FSP-BIA was significantly higher than that by 10-mm cyclones, 63.27-73.10% more as showed also by the wind tunnel experiment. Meanwhile, the GR/CT ratio was significantly larger than the AR/CT in every

  12. Wind barriers suppress fugitive dust and soil-derived airborne particles in arid regions

    SciTech Connect

    Grantz, D.A.; Vaughn, D.L.; Farber, R.J.; Kim, B.; Ashbaugh, L.; Van Curen, T.; Campbell, R.

    1998-07-01

    Areas of abandoned agricultural land in the Antelope Valley, western Mojave (high) desert of California have proven in the previous studies to be recalcitrant to conventional tillage and revegetation strategies designed to suppress wind erosion of soil and transport of sediment and fugitive dust. These areas represented a continuing source of drifting sand and of coarse and respirable suspended particulate matter. The traditional techniques failed because furrows collapsed and the water holding capacity of the overburden was too low to support seed germination and transplant survival. In this study a variety of wind barriers were evaluated for suppression of sediment transport. Airborne particles were measured with an array of coarse particle samplers at heights of 0.2, 1.0, and 2.0 m above the soil surface. Discrete artificial wind barriers, consisting of widely spaced roughness elements were effective in suppressing fugitive emissions. Wind fences established along the leeward edge of an area of blowing sand, perpendicular to the prevailing wind, significantly decreased fugitive emissions. Control was greatest and precision of the measurements was highest under high wind conditions. These techniques provide rapid and effective suppression of fugitive emissions of soil-derived particles under conditions that resist conventional tillage and revegetation techniques. A simple, indirect procedure for determining local wind velocity erosion thresholds requiring only sampling of wind run and suspended particulate mass compared favorably with direct measurement of saltation as a function of wind velocity.

  13. Bioprocess of Kosa bioaerosols: effect of ultraviolet radiation on airborne bacteria within Kosa (Asian dust).

    PubMed

    Kobayashi, Fumihisa; Maki, Teruya; Kakikawa, Makiko; Yamada, Maromu; Puspitasari, Findya; Iwasaka, Yasunobu

    2015-05-01

    Kosa (Asian dust) is a well-known weather phenomenon in which aerosols are carried by the westerly winds from inland China to East Asia. Recently, the frequency of this phenomenon and the extent of damage caused have been increasing. The airborne bacteria within Kosa are called Kosa bioaerosols. Kosa bioaerosols have affected ecosystems, human health and agricultural productivity in downwind areas. In order to develop a new and useful bacterial source and to identify the source region of Kosa bioaerosols, sampling, isolation, identification, measurement of ultraviolet (UV) radiation tolerance and experimental simulation of UV radiation conditions were performed during Kosa bioaerosol transportation. We sampled these bioaerosols using a Cessna 404 airplane and a bioaerosol sampler at an altitude of approximately 2900 m over the Noto Peninsula on March 27, 2010. The bioaerosol particles were isolated and identified as Bacillus sp. BASZHR 1001. The results of the UV irradiation experiment showed that the UV radiation tolerance of Kosa bioaerosol bacteria was very high compared with that of a soil bacterium. Moreover, the UV radiation tolerance of Kosa bioaerosol spores was higher than that of soil bacterial spores. This suggested that Kosa bioaerosols are transported across the atmosphere as living spores. Similarly, by the experimental simulation of UV radiation conditions, the limited source region of this Kosa bioaerosol was found to be southern Russia and there was a possibility of transport from the Kosa source area. PMID:25735592

  14. Optimization of the concentration optics of the Martian airborne dust sensor for MetNet space mission

    NASA Astrophysics Data System (ADS)

    Cortés, F.; González, A.; de Castro, A. J.; López, F.

    2012-06-01

    Martian atmosphere contains a significant and rapidly changing load of suspended dust that never drops to zero. The main component of Martian aerosol is micron-sized dust thought to be a product of soil weathering. Although airborne dust plays a key role in Martian climate, the basic physical properties of these aerosols are still poorly known. The scope of Mars MetNet Mission is to deploy several tens of mini atmospheric stations on the Martian surface. MEIGA-MetNet payload is the Spanish contribution in MetNet. Infrared Laboratory of University Carlos III (LIR-UC3M) is in charge of the design and development of a micro-sensor for the characterization of airborne dust. This design must accomplish with a strict budget of mass and power, 45 g and 1 W respectively. The sensor design criteria have been obtained from a physical model specifically developed for optimizing IR local scattering. The model calculates the spectral power density scattered and detected between 1 and 5 μm by a certain particle distribution and sensor configuration. From model calculations a modification based on the insertion of a compound ellipsoidal concentrator (CEC) has appeared as necessary. Its implementation has multiplied up to 100 the scattered optical power detected, significantly enhancing the detection limits of the sensor.

  15. Perchlorate in indoor dust and human urine in China: contribution of indoor dust to total daily intake.

    PubMed

    Zhang, Tao; Chen, Xiaojia; Wang, Dou; Li, Rudan; Ma, Yufang; Mo, Weiwen; Sun, Hongwen; Kannan, Kurunthachalam

    2015-02-17

    Perchlorate is used in fireworks and China is the largest fireworks producer and consumer in the world. Information regarding human exposure to perchlorate is scarce in China, and exposure via indoor dust ingestion (EDI indoor dust) has rarely been evaluated. In this study, perchlorate was found in indoor dust (detection rate: 100%, median: 47.4 μg/g), human urine (99%, 26.2 ng/mL), drinking water (100%, 3.99 ng/mL), and dairy milk (100%, 12.3 ng/mL) collected from cities that have fireworks manufacturing areas (Yueyang and Nanchang) and in cities that do not have fireworks manufacturing industries (Tianjin, Shijiazhuang, Yuxi and Guilin) in China. In comparison with perchlorate levels reported for other countries, perchlorate levels in urine samples from fireworks sites and nonfireworks sites in China were higher. Median indoor dust perchlorate concentrations were positively correlated (r = 0.964, p < 0.001) with outdoor dust perchlorate levels reported previously. The total daily intake (EDI total) of perchlorate, estimated based on urinary levels, ranged from 0.090 to 27.72 μg/kg body weight (bw)/day for all studied participants; the percentage of donors who had EDI total exceeding the reference dose (RfD) recommended by the United States Environmental Protection Agency (US EPA) was 79%, 48%, and 25% for toddlers (median: 1.829 μg/kg bw/day), adults (0.669 μg/kg bw/day), and children (median: 0.373 μg/kg bw/day), respectively. Toddlers (0.258 μg/kg bw/day) had the highest median EDI indoor dust, which was 2 to 5 times greater than the EDI indoor dust calculated for other age groups (the range of median values: 0.044 to 0.127 μg/kg bw/day). Contribution of indoor dust to EDItotal was 26%, 28%, and 7% for toddlers, children, and adults, respectively. Indoor dust contributed higher percentage to EDI total than that by dairy milk (0.5-5%). PMID:25587720

  16. Chemical speciation of size-segregated floor dusts and airborne magnetic particles collected at underground subway stations in Seoul, Korea.

    PubMed

    Jung, Hae-Jin; Kim, BoWha; Malek, Md Abdul; Koo, Yong Sung; Jung, Jong Hoon; Son, Youn-Suk; Kim, Jo-Chun; Kim, HyeKyoung; Ro, Chul-Un

    2012-04-30

    Previous studies have reported the major chemical species of underground subway particles to be Fe-containing species that are generated from wear and friction processes at rail-wheel-brake and catenaries-pantographs interfaces. To examine chemical composition of Fe-containing particles in more details, floor dusts were collected at five sampling locations of an underground subway station. Size-segregated floor dusts were separated into magnetic and non-magnetic fractions using a permanent magnet. Using X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDX), iron metal, which is relatively harmless, was found to be the dominating chemical species in the floor dusts of the <25 μm size fractions with minor fractions of Mg, Al, Si, Ca, S, and C. From SEM analysis, the floor dusts of the <25 μm size fractions collected on railroad ties appeared to be smaller than 10 μm, indicating that their characteristics should somewhat reflect the characteristics of airborne particles in the tunnel and the platform. As most floor dusts are magnetic, PM levels at underground subway stations can be controlled by removing magnetic indoor particles using magnets. In addition, airborne subway particles, most of which were smaller than 10 μm, were collected using permanent magnets at two underground subway stations, namely Jegi and Yangjae stations, in Seoul, Korea. XRD and SEM/EDX analyses showed that most of the magnetic aerosol particles collected at Jegi station was iron metal, whereas those at Yangjae station contained a small amount of Fe mixed with Na, Mg, Al, Si, S, Ca, and C. The difference in composition of the Fe-containing particles between the two subway stations was attributed to the different ballast tracks used. PMID:22381374

  17. An evaluation of effect of airborne dust from a cotton mill on the guinea-pig ileum with reference to byssinosis.

    PubMed Central

    Cinkotai, F F; Franklin, D W

    1975-01-01

    The effect of airborne dust on the guinea-pig ileum was studied. Tyrode extracts of airborne dust collected freshly in the cardroom of a cotton mill, and extracts of air pollutant samples drawn on the roof of the mill and of the local town hall were all found to induce the guinea-pig ileum to contract when applied in a tissue-bath. However, the force of contraction with air pollutants was rather greater than that with the cardroom dust. Considering the variables involved, the ileum response to the cardroom dust may have been due to ordinary air pollutants which constitute a significant part of the dust. It is concluded that this pharmacological phenomenon is probably not relevant in the context of byssinosis. Images PMID:1156573

  18. Total airborne mold particle sampling: evaluation of sample collection, preparation and counting procedures, and collection devices.

    PubMed

    Godish, Diana; Godish, Thad

    2008-02-01

    This study was conducted to evaluate (i) procedures used to collect, prepare, and count total airborne mold spore/particle concentrations, and (ii) the relative field performance of three commercially available total airborne mold spore/particle sampling devices. Differences between factory and laboratory airflow calibration values of axial fan-driven sampling instruments (used in the study) indicated a need for laboratory calibration using a mass flow meter to ensure that sample results were accurately calculated. An aniline blue-amended Calberla's solution adjusted to a pH of 4.2-4.4 provided good sample mounting/counting results using Dow Corning high vacuum grease, Dow Corning 280A adhesive, and Dow Corning 316 silicone release spray for samples collected using mini-Burkard and Allergenco samplers. Count variability among analysts was most pronounced in 5% counts of relatively low mold particle deposition density samples and trended downward with increased count percentage and particle deposition density. No significant differences were observed among means of 5, 10, and 20% counts and among analysts; a significant interaction effect was observed between analysts' counts and particle deposition densities. Significantly higher mini-Burkard and Air-O-Cell total mold spore/particle counts for 600x vs. 400x (1.9 and 2.3 x higher, respectively), 1000x vs. 600x (1.9 and 2.2 x higher, respectively) and 1000x vs. 400x (3.6 and 4.6 x higher, respectively) comparisons indicated that 1000x magnification counts best quantified total airborne mold spore/particles using light microscopy, and that lower magnification counts may result in unacceptable underreporting of airborne mold spore/particle concentrations. Modest but significantly higher (1.2x) total mold spore concentrations were observed with Allergenco vs. mini-Burkard samples collected in co-located, concurrently operated sampler studies; moderate but significantly higher mini-Burkard count values (1.4x) were

  19. Uranium mill ore dust characterization

    SciTech Connect

    Knuth, R.H.; George, A.C.

    1980-11-01

    Cascade impactor and general air ore dust measurements were taken in a uranium processing mill in order to characterize the airborne activity, the degree of equilibrium, the particle size distribution and the respirable fraction for the /sup 238/U chain nuclides. The sampling locations were selected to limit the possibility of cross contamination by airborne dusts originating in different process areas of the mill. The reliability of the modified impactor and measurement techniques was ascertained by duplicate sampling. The results reveal no significant deviation from secular equilibrium in both airborne and bulk ore samples for the /sup 234/U and /sup 230/Th nuclides. In total airborne dust measurements, the /sup 226/Ra and /sup 210/Pb nuclides were found to be depleted by 20 and 25%, respectively. Bulk ore samples showed depletions of 10% for the /sup 226/Ra and /sup 210/Pb nuclides. Impactor samples show disequilibrium of /sup 226/Ra as high as +-50% for different size fractions. In these samples the /sup 226/Ra ratio was generally found to increase as particle size decreased. Activity median aerodynamic diameters of the airborne dusts ranged from 5 to 30 ..mu..m with a median diameter of 11 ..mu..m. The maximum respirable fraction for the ore dusts, based on the proposed International Commission on Radiological Protection's (ICRP) definition of pulmonary deposition, was < 15% of the total airborne concentration. Ore dust parameters calculated for impactor duplicate samples were found to be in excellent agreement.

  20. Reduction of airborne radioactive dust by means of a charged water spray.

    PubMed

    Bigu, J; Grenier, M G

    1989-07-01

    An electrostatic precipitator based on charged water spray technology has been used in an underground uranium mine to control long-lived radioactive dust and short-lived aerosol concentration in a mine gallery where dust from a rock breaking/ore transportation operation was discharged. Two main sampling stations were established: one upstream of the dust precipitator and one downstream. In addition, dust samplers were placed at different locations between the dust discharge and the end of the mine gallery. Long-lived radioactive dust was measured using cascade impactors and nylon cyclone dust samplers, and measurement of the radioactivity on the samples was carried out by conventional methods. Radon and thoron progeny were estimated using standard techniques. Experiments were conducted under a variety of airflow conditions. A maximum radioactive dust reduction of about 40% (approximately 20% caused by gravitational settling) at a ventilation rate of 0.61 m3/sec was obtained as a result of the combined action of water scrubbing and electrostatic precipitation by the charged water spray electrostatic precipitator. This represents the optimum efficiency attained within the range of ventilation rates investigated. The dust reduction efficiency of the charged water spray decreased with increasing ventilation rate, i.e., decreasing air residence time, and hence, reduced dust cloud/charged water droplets mixing time. PMID:2756864

  1. Natural Airborne Dust and Heavy Metals: A Case Study for Kermanshah, Western Iran (2005–2011)

    PubMed Central

    PIRSAHEB, Meghdad; ZINATIZADEH, Aliakbar; KHOSRAVI, Touba; ATAFAR, Zahra; DEZFULINEZHAD, Saeed

    2014-01-01

    Abstract Background Dust pollution has become a serious environmental problem especially in recent decades. The present study aim was the investigation of the levels of PM10 concentration in Kermanshah, western Iran and also measured five important heavy metals (Pb, Cd, As, Hg and Cr) in some samples during 2005 to 2011. Methods A total 2277 samples were collected from air pollution measurement station belonging to the Department of Environment in Kermanshah. Furthermore, four samples were collected during dusty days to determine the selected heavy metals concentration. The samples were analyzed statistically using the SPSS Ver.16 Results The highest seasonal average concentration in spring was recorded in 2008 with 216.63μg/m3, and the maximum values of 267.79 and 249.09μg/m3 were observed in summer and winter in 2009, respectively. The maximum concentration of 127.1μg/m3 was in autumn in 2010. The metals concentration (Pb, Cd, As, Hg and Cr) of samples were 42.32±5.40, 37.45±9.29, 3.51±2.07, 1.88±1.64 and 0μg/g in July, 2009, respectively. Conclusion According to National Ambient Air Quality of USEPA guidelines, the most days with non-standard, warning, emergency and critical conditions were related to 2009 (120 days) while the least polluted days were recorded in 2006 (16 days). There are concerns about the increasing frequency and intensity trend of dust storms in recent years as a result of special condition in neighboring Western countries which it could endanger public health and environment. All measured heavy metals except mercury was higher than the standard level of WHO and USEPA. PMID:26005656

  2. Effect of electrostatic charge on the aspiration efficiencies of airborne dust samplers: with special reference to asbestos

    SciTech Connect

    Johnston, A.M.; Jones, A.D.; Vincent, J.H.

    1987-07-01

    An experimental investigation has been conducted into the effects of electrostatic charge, carried by the dust particles and by the sampler itself, on the sampling of airborne dusts. Experiments covering both personal and static sampling and a range of sampler types were carried out in the laboratory for both fibrous asbestos and isometric silica gel dusts. Experiments also were carried out in the spinning shop of an asbestos textile factory. The results showed that the aspiration efficiency of the sampler always is reduced as the charge on the sampler increases, independently of the type of sampler and of whether it is used as a static or personal sampler. The effect is most marked when sampling takes place in calm air. It is concluded from the results that, for the levels of charge reached by samplers in most practical situations, the effects on aspiration efficiency will be small. Possible exceptions to this might occur, however, in workplace environments where relative humidity is very low, and charge levels of the sampler (or on the worker wearing the sampler) can become high.

  3. The effect of electrostatic charge on the aspiration efficiencies of airborne dust samplers: with special reference to asbestos.

    PubMed

    Johnston, A M; Jones, A D; Vincent, J H

    1987-07-01

    An experimental investigation has been conducted into the effects of electrostatic charge, carried by the dust particles and by the sampler itself, on the sampling of airborne dusts. Experiments covering both personal and static sampling and a range of sampler types were carried out in the laboratory for both fibrous asbestos and isometric silica gel dusts. Experiments also were carried out in the spinning shop of an asbestos textile factory. The results showed that the aspiration efficiency of the sampler always is reduced as the charge on the sampler increases, independently of the type of sampler and of whether it is used as a static or personal sampler. The effect is most marked when sampling takes place in calm air. It is concluded from the results that, for the levels of charge reached by samplers in most practical situations, the effects on aspiration efficiency will be small. Possible exceptions to this might occur, however, in workplace environments where relative humidity is very low, and charge levels of the sampler (or on the worker wearing the sampler) can become high. PMID:3039822

  4. Airborne Fungi in Sahara Dust Aerosols Reaching the Eastern Caribbean: II. Species Identification Using Molecular Techniques

    NASA Astrophysics Data System (ADS)

    de La Mota, A.; Betancourt, C.; Detres, Y.; Armstrong, R.

    2003-12-01

    Fungi samples from filters collected in Castle Bruce, Dominica from March through July 2002, were previously purified and identified to genus level using classic macroscopic and microscopic techniques. A total of 105 isolated colonies were cultured in liquid media and the mycelial mats used for DNA extraction. PCR was used to amplify the ITS region of the rDNA using the ITS1 and ITS4 primers. Both strands of the amplified products were sequenced and the final identification to species level was completed by a GenBank search. Fourteen different species and one fungal endophyte were identified from genders Aspergillus,Penicillium, Fusarium, Cladosporium, Curvularia and Phanerochaete. Some of these species such as A. fumigatus, A. japonicus, P. citrinum and C. cladosporoides are known to cause respiratory disorders in humans. A. fumigatus causes an aggressive pulmonary allergic response that might result in allergic bronchopulmonary aspergillosis. Other species such as F. equiseti and C. brachyspora are plant pathogens affecting economically important crops. Sahara dust is an important source of fungal spores of species that are not common in the Caribbean region.

  5. Airborne Sunphotometer Measurements of Aerosol Optical Depth and Columnar Water Vapor During the Puerto Rico Dust Experiment, and Comparison with Land, Aircraft, and Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Livingston, John M.; Russell, Philip B.; Reid, Jeffrey; Redemann, Jens; Schmid, Beat; Allen, Duane A.; Torres, Omar; Levy, Robert C.; Remer, Lorraine A.; Holben, Brent N.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    Analyses of aerosol optical depth (AOD) and columnar water vapor (CWV) measurements obtained with the six-channel NASA Ames Airborne Tracking Sunphotometer (AATS-6) mounted on a twin-engine aircraft during the summer 2000 Puerto Rico Dust Experiment are presented. In general, aerosol extinction values calculated from AATS-6 AOD measurements acquired during aircraft profiles up to 5 km ASL reproduce the vertical structure measured by coincident aircraft in-situ measurements of total aerosol number and surface area concentration. Calculations show that the spectral dependence of AOD was small (mean Angstrom wavelength exponents of approximately 0.20) within three atmospheric layers defined as the total column beneath the top of each aircraft profile, the region beneath the trade wind inversion, and the region within the Saharan Air Layer (SAL) above the trade inversion. This spectral behavior is consistent with attenuation of incoming solar radiation by large dust particles or by dust plus sea salt. Values of CWV calculated from profile measurements by AATS-6 at 941.9 nm and from aircraft in-situ measurements by a chilled mirror dewpoint hygrometer agree to within approximately 4% (0.13 g/sq cm). AATS-6 AOD values measured on the ground at Roosevelt Roads Naval Air Station and during low altitude aircraft runs over the adjacent Cabras Island aerosol/radiation ground site agree to within 0.004 to 0.030 with coincident data obtained with an AERONET Sun/sky Cimel radiometer located at Cabras Island. For the same observation times, AERONET retrievals of CWV exceed AATS-6 values by a mean of 0.74 g/sq cm (approximately 21 %) for the 2.9-3.9 g/sq cm measured by AATS-6. Comparison of AATS-6 aerosol extinction values obtained during four aircraft ascents over Cabras Island with corresponding values calculated from coincident aerosol backscatter measurements by a ground-based micro-pulse lidar (MPL-Net) located at Cabras yields a similar vertical structure above the trade

  6. Modeling the total dust production of Enceladus from stochastic charge equilibrium and simulations

    NASA Astrophysics Data System (ADS)

    Meier, Patrick; Motschmann, Uwe; Schmidt, Jürgen; Spahn, Frank; Hill, Thomas W.; Dong, Yaxue; Jones, Geraint H.; Kriegel, Hendrik

    2015-12-01

    Negatively and positively charged nano-sized ice grains were detected in the Enceladus plume by the Cassini Plasma Spectrometer (CAPS). However, no data for uncharged grains, and thus for the total amount of dust, are available. In this paper we estimate this population of uncharged grains based on a model of stochastic charging in thermodynamic equilibrium and on the assumption of quasi-neutrality in the plasma-dust system. This estimation is improved upon by combining simulations of the dust component of the plume and simulations for the plasma environment into one self-consistent model. Calibration of this model with CAPS data provides a total dust production rate of about 12 kg s-1, including larger dust grains up to a few microns in size. We find that the fraction of charged grains dominates over that of the uncharged grains. Moreover, our model reproduces densities of both negatively and positively charged nanograins measured by Cassini CAPS. In Enceladus' plume ion densities up to ~104cm-3 are required by the self-consistent model, resulting in an electron depletion of about 50% in the plasma, because electrons are attached to the negatively charged nanograins. These ion densities correspond to effective ionization rates of about 10-7s-1, which are about two orders of magnitude higher than expected.

  7. Dust Storm Signatures in Global Ionosphere Map of GPS Total Electron Content

    NASA Astrophysics Data System (ADS)

    Lin, Fang-Tse; Shih, Ai-Ling; Liu, Jann-Yenq; Kuo, Cheng-Ling; Lin, Tang-Huang; Lien, Wei-Hung

    2016-04-01

    In this paper both MODIS data and GIM (global ionosphere map) TEC (total electron content) as well as numerical simulations are used to study ionospheric dust storm effects in May 2008. The aerosol optical depth (AOD) and the LTT (latitude-time-TEC) along the Sahara longitude simultaneously reach their maximum values on 28 May 2008. The LLT (latitude-longitude-TEC) map specifically and significantly increases over the Sahara region on 28 May 2008. The simulation suggests that the dust storm may change the atmospheric conductivity, which in turn modifies the GIM TEC over the Sahara area.

  8. Direct growth inhibition assay of total airborne fungi with application of biocide-treated malt extract agar

    PubMed Central

    Er, Chin Ming; Sunar, N.M.; Leman, A.M.; Othman, N.

    2015-01-01

    Indoor air pollution by airborne fungi has risen to become a common issue all over the world and it is hazardous to indoor occupants’ health as it is associated with a series of respiratory-related and skin-related diseases. Selected bioactive compounds from the food industry have been suggested to be effective against individual fungus isolated from indoor environment. However, the techniques used to evaluate these compounds were lengthy and unsuitable against total airborne fungi. Therefore, this paper describes an assay to assess the effectiveness of a bioactive compound to inhibit growth of total airborne fungi.•A combination and modification of previous methods and the NIOSH Manual Analytical Standard Method (NMAM 0800) is proposed.•This method concurrently samples the total airborne fungi and evaluates the ability of bioactive compounds (potassium sorbate in this paper), as a biocide, to treat these indoor airborne fungi.•The current method shortens the time of evaluation from 30 days to only 5 days and employs the counting of colony forming units (CFUs) to ease the measurement of the growth of fungi. PMID:27077051

  9. Direct growth inhibition assay of total airborne fungi with application of biocide-treated malt extract agar.

    PubMed

    Er, Chin Ming; Sunar, N M; Leman, A M; Othman, N

    2015-01-01

    Indoor air pollution by airborne fungi has risen to become a common issue all over the world and it is hazardous to indoor occupants' health as it is associated with a series of respiratory-related and skin-related diseases. Selected bioactive compounds from the food industry have been suggested to be effective against individual fungus isolated from indoor environment. However, the techniques used to evaluate these compounds were lengthy and unsuitable against total airborne fungi. Therefore, this paper describes an assay to assess the effectiveness of a bioactive compound to inhibit growth of total airborne fungi.•A combination and modification of previous methods and the NIOSH Manual Analytical Standard Method (NMAM 0800) is proposed.•This method concurrently samples the total airborne fungi and evaluates the ability of bioactive compounds (potassium sorbate in this paper), as a biocide, to treat these indoor airborne fungi.•The current method shortens the time of evaluation from 30 days to only 5 days and employs the counting of colony forming units (CFUs) to ease the measurement of the growth of fungi. PMID:27077051

  10. Species-specific Fungal DNA in Airborne Dust as Surrogate for Occupational Mycotoxin Exposure?

    PubMed Central

    Halstensen, Anne Straumfors

    2008-01-01

    Possible health risks associated with occupational inhalation of mycotoxin-containing dust remain largely unknown, partly because methods for mycotoxin detection are not sensitive enough for the small dust masses obtained by personal sampling, which is needed for inhalable exposure measurements. Specific and sensitive PCR detection of fungi with mycotoxin-producing potential seem to be a good surrogate for occupational exposure measurements that include all fungal structures independent of morphology and cultivability. Results should, however, be interpreted with caution due to variable correlations with mycotoxin concentrations. PMID:19330091

  11. Thymus-directed immunotoxicity of airborne dust particles from Upper Silesia (Poland) under acute extrapulmonary studies in mice

    SciTech Connect

    Kozlowska, E.; Krzystniak, K.; Drela, N.

    1996-12-27

    Industrial air pollutants from Upper Silesia, Poland, contain over 250 polycyclic and heterocyclic aromatic hydrocarbons and heavy metals, including mutagenic and carcinogenic chemicals that have been shown to from DNA adducts. Over 4 million habitants of Silesia are permanently exposed to the industrial pollution by pulmonary and dermal routes and by contaminated food and water. These chemicals, when examined separately in animals models, were proven immunotoxic. We studied the extrapulmonary immunotoxic potential of a typical mixture of Silesian filter-suspended matter from a selected area, over a specific season and time period. Early changes in the immune system were analyzed in BALB/c mice exposed ip to acute doses of 20-330 mg dust mixture/kg body weight (0.06-1.0 LD50). No major changes were noted for weight and the cellularity of spleen, liver and kidneys. However, dramatic decrease in thymus weight index and thymocyte cell count were noted as early as 24-72 h postexposure, which correlated with almost complete depletion of immature, double-positive CD4{sup +}CD8{sup +} thymocytes. Changes in spleen were less profound; however, increased depletion of B cells over T cells was noted at high doses of the suspended matter. Exposure to the airborne dust also decreased cytokine production by spleen cells, such as interferon-{gamma} (IFN-{gamma}) and tumor necrosis factor-{alpha} (TNF-{alpha}). Overall, a single exposure to Silesian dust, even at the relatively low 0.06 LD50 dose, affected lymphokine production, suppressed B-cell proliferative response, and depleted thymuses of immature, double-positive CD4{sup +}CD8{sup +} cells. A chemical synergism is suspected. To our knowledge, none of the known components of Silesian suspended matter, when examined as a single chemical, was shown to exert such a profound biological effect. 32 refs., 5 figs.

  12. Measurement of Soluble and Total Hexavalent Chromium in the Ambient Airborne Particles in New Jersey

    PubMed Central

    Huang, Lihui; Yu, Chang Ho; Hopke, Philip K.; Lioy, Paul J.; Buckley, Brian T.; Shin, Jin Young; Fan, Zhihua (Tina)

    2015-01-01

    Hexavalent chromium (Cr(VI)) in ambient airborne particulate matter (PM) is a known pulmonary carcinogen and may have both soluble and insoluble forms. The sum of the two forms is defined as total Cr(VI). Currently, there were no methods suitable for large-scale monitoring of total Cr(VI) in ambient PM. This study developed a method to measure total Cr(VI) in ambient PM. This method includes PM collection using a Teflon filter, microwave extraction with 3% Na2CO3-2% NaOH at 95°C for 60 minutes, and Cr(VI) analysis by 1,5-diphenylcarbazide colorimetry at 540 nm. The recoveries of total Cr(VI) were 119.5 ± 10.4% and 106.3 ± 16.7% for the Cr(VI)-certified reference materials, SQC 012 and SRM 2700, respectively. Total Cr(VI) in the reference urban PM (NIST 1648a) was 26.0 ± 3.1 mg/kg (%CV = 11.9%) determined by this method. The method detection limit was 0.33 ng/m3. This method and the one previously developed to measure ambient Cr(VI), which is soluble in pH ~9.0 aqueous solution, were applied to measure Cr(VI) in ambient PM10 collected from three urban areas and one suburban area in New Jersey. The total Cr(VI) concentrations were 1.05–1.41 ng/m3 in the winter and 0.99–1.56 ng/m3 in the summer. The soluble Cr(VI) concentrations were 0.03–0.19 ng/m3 in the winter and 0.12–0.37 ng/m3 in the summer. The summer mean ratios of soluble to total Cr(VI) were 14.3–43.7%, significantly higher than 4.2–14.4% in the winter. The winter concentrations of soluble and total Cr(VI) in the suburban area were significantly lower than in the three urban areas. The results suggested that formation of Cr(VI) via atmospheric chemistry may contribute to the higher soluble Cr(VI) concentrations in the summer. PMID:26120324

  13. Total element concentration and chemical fractionation in airborne particulate matter from Santiago, Chile

    NASA Astrophysics Data System (ADS)

    Richter, Pablo; Griño, Paulina; Ahumada, Inés; Giordano, Ady

    Total element determination and chemical fractionation were carried out in airborne particulate matter (PM 10) from the Cerrillos monitoring station in Santiago, Chile, sampled in July (winter), 1997-2003. Element concentration in the period under study (1997-2003) was statistically analyzed through cluster analysis in order to identify groups of elements having similar behavior along time. Elements such as Cd, Cu, Pb, Ni, As and Mg show a clear decrease in concentration with time. On the contrary, chromium increases its concentration almost linearly during the period. In order to estimate whether the presence of a certain element in PM 10 matrix is mainly due to anthropogenic or natural processes, the enrichment factor of each element was determined. According to their behavior in the sequential extraction procedure, the elements were grouped by multivariate analysis in three clusters: (a) those mobile elements (Pb, Cd, Zn, Mn, Cu and As) which are weakly bound to the matrix (fractions 1 and 2) (b) those elements (V, Ti, and Cr) mainly bound to carbonates and oxides (fraction 3) and (c) the most immobile elements (Ni, Mo, Ca, Mg, Ba and Al), mainly bound to silicates and organic matter (fraction 4). A source of great concern is the fact that elements of such high toxicity as Pb, Cd and As are highly concentrated in both mobile fractions, indicating that these elements have a direct impact on the environment and on the health of the exposed population.

  14. Measurements of total reactive nitrogen during the Airborne Arctic Stratospheric Expedition

    SciTech Connect

    Kawa, S.R.; Anderson, L.C. Univ. of Colorado, Boulder ); Fahey, D.W. ); Loewenstein, M.; Chan, K.R. )

    1990-03-01

    Composite distributions of measured total reactive nitrogen (NO{sub y}) from the NASA ER-2 during the Airborne Arctic Stratospheric Expedition (AASE) are presented. The observed features of these distributions are discussed in terms of the controlling dynamical, chemical, and microphysical processes. In the latitudinal profile from 58{degree}N to within about 4{degree} poleward of the polar vortex boundary, NO{sub y} conforms closely to predictions of NO{sub y} based on N{sub 2}O measurements. The features of the distribution are apparently dynamically controlled. Poleward of 5{degree} of latitude within the boundary, the average NO{sub y} decreases sharply and is significantly lower than that predicted from N{sub 2}O. This feature is consistent with loss of NO{sub y} through sedimentation of particles containing NO{sub y} in polar stratospheric clouds. The observed loss is not as systematic as in the Antarctic, consistent with the observed differences in season and meteorological conditions between the two campaigns.

  15. Waveband selection within 400-4000  cm-1 of optical identification of airborne dust in coal mine tunneling face.

    PubMed

    Wang, Wenzheng; Wang, Yanming; Shi, Guoqing

    2016-04-10

    Aimed at the optical evaluation of pollution levels caused by rock dust in an underground coal mine tunneling face, the optimal detection line and optical channel were investigated. The spatial distribution of airborne rock dust under local mining and ventilation conditions was simulated by the computational fluid dynamics method; thus, combined with the scattering and absorption properties of dust particles and gas molecules, the spectral transmission characteristics of a polluted atmosphere, including dust aerosols within 400-4000  cm-1, were obtained. By eliminating the optical background of mine gases, the pure infrared signals of rock dust were further analyzed. Based on the comparison results, the detection line, which is 1.5 m high and 0.3 m away from the right wall, was determined to be the best observation position, and a waveband of 1505-1525  cm-1 was selected to estimate the dust concentration. In addition, a dual-band detection method was presented, which can simultaneously identify the dust distribution and dispersion. PMID:27139859

  16. Transport of mineral dust derived from airborne wind lidar measurements during SALTRACE

    NASA Astrophysics Data System (ADS)

    Chouza, Fernando; Reitebuch, Oliver; Groß, Silke; Rahm, Stephan; Freudenthaler, Volker; Toledano, Carlos; Weinzierl, Bernadett

    2015-04-01

    During the SALTRACE field experiment conducted between the 10 of June and the 15 of July 2013, the transport and properties of Saharan dust were characterized by a 2-µm Doppler wind lidar (DWL) deployed on the DLR Falcon 20 research aircraft. Unlike aerosol lidars, the DLW is able to simultaneously measure wind fields and -by means of an adequate calibration- aerosol optical properties, which is more adequate for aerosol transport studies. The retrieved horizontal and vertical wind speed provide a direct observation of dust long range transport mechanisms across the Atlantic (e.g. by the African easterly jet) from Western Africa to the Caribbean. Vertical wind observations revealed the structure of island induced lee waves in the Cape Verde and Barbados regions. A novel method for the calibration of DWLs based on simultaneous measurements with a ground-based aerosol lidar and sun photometer was developed. After being calibrated, the system is able to retrieve quantitative aerosol backscatter and extinction coefficients, which is usually not obtained from coherent lidars. Results from the validation with a ground-based aerosol lidar in Barbados and the CALIPSO satellite instrument will be discussed.

  17. Assessing the performance of methods to detect and quantify African dust in airborne particulates.

    PubMed

    Viana, Mar; Salvador, Pedro; Artíñano, Begoña; Querol, Xavier; Alastuey, Andrés; Pey, Jorge; Latz, Achim J; Cabañas, Mercè; Moreno, Teresa; García dos Santos, Saúl; Herce, María Dolores; Diez Hernández, Pablo; Romero García, Dolores; Fernández-Patier, Rosalía

    2010-12-01

    African dust (AD) contributions to particulate matter (PM) levels may be reported by Member States to the European Commission during justification of exceedances of the daily limit value (DLV). However, the detection and subsequent quantification of the AD contribution to PM levels is complex, and only two measurement-based methods are available in the literature: the Spanish-Portuguese reference method (SPR), and the Tel Aviv University method (TAU). In the present study, both methods were assessed. The SPR method was more conservative in the detection of episodes (71 days identified as AD by SPR, vs 81 by TAU), as it is less affected by interferences with local dust sources. The mean annual contribution of AD was lower with the TAU method than with SPR (2.7 vs 3.5 ± 1.5 μg/m(3)). The SPR and TAU AD time series were correlated with daily aluminum levels (a known tracer of AD), as well as with an AD source identified by the Positive Matrix Factorization (PMF) receptor model. Higher r(2) values were obtained with the SPR method than with TAU in both cases (r(2) = 0.72 vs 0.56, y = 0.05x vs y = 0.06x with aluminum levels; r(2)=0.79 vs 0.43, y = 0.8x vs y = 0.4x with the PMF source). We conclude that the SPR method is more adequate from an EU policy perspective (justification of DLV exceedances) due to the fact that it is more conservative than the TAU method. Based on our results, the TAU method requires adaptation of the thresholds in the algorithm to refine detection of low-impact episodes and avoid misclassification of local events as AD. PMID:21049991

  18. The Martian Dust Cycle: Observations and Modeling

    NASA Technical Reports Server (NTRS)

    Kahre, Melinda A.

    2013-01-01

    The dust cycle is critically important for Mars' current climate system. Suspended atmospheric dust affects the radiative balance of the atmosphere, and thus greatly influences the thermal and dynamical state of the atmosphere. Evidence for the presence of dust in the Martian atmosphere can be traced back to yellow clouds telescopically observed as early as the early 19th century. The Mariner 9 orbiter arrived at Mars in November of 1971 to find a planet completely enshrouded in airborne dust. Since that time, the exchange of dust between the planet's surface and atmosphere and the role of airborne dust on Mars' weather and climate has been studied using observations and numerical models. The goal of this talk is to give an overview of the observations and to discuss the successes and challenges associated with modeling the dust cycle. Dust raising events on Mars range in size from meters to hundreds of kilometers. During some years, regional storms merge to produce hemispheric or planet encircling dust clouds that obscure the surface and raise atmospheric temperatures by tens of kelvin. The interannual variability of planet encircling dust storms is poorly understood. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. A low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading are generally observed: one peak occurs before northern winter solstice and one peak occurs after northern winter solstice. Numerical modeling studies attempting to interactively simulate the Martian dust cycle with general circulation models (GCMs) include the lifting, transport, and sedimentation of radiatively active dust. Two dust lifting processes are commonly represented in

  19. A Comparison of "Total Dust" and Inhalable Personal Sampling for Beryllium Exposure

    SciTech Connect

    Carter, Colleen M.

    2012-05-09

    In 2009, the American Conference of Governmental Industrial Hygienists (ACGIH) reduced the Beryllium (Be) 8-hr Time Weighted Average Threshold Limit Value (TLV-TWA) from 2.0 μg/m3 to 0.05 μg/m3 with an inhalable 'I' designation in accordance with ACGIH's particle size-selective criterion for inhalable mass. Currently, per the Department of Energy (DOE) requirements, the Lawrence Livermore National Laboratory (LLNL) is following the Occupational Health and Safety Administration (OSHA) Permissible Exposure Limit (PEL) of 2.0 μg/m3 as an 8-hr TWA, which is also the 2005 ACGIH TLV-TWA, and an Action Level (AL) of 0.2 μg/m3 and sampling is performed using the 37mm (total dust) sampling method. Since DOE is considering adopting the newer 2009 TLV guidelines, the goal of this study was to determine if the current method of sampling using the 37mm (total dust) sampler would produce results that are comparable to what would be measured using the IOM (inhalable) sampler specific to the application of high energy explosive work at LLNL's remote experimental test facility at Site 300. Side-by-side personal sampling using the two samplers was performed over an approximately two-week period during chamber re-entry and cleanup procedures following detonation of an explosive assembly containing Beryllium (Be). The average ratio of personal sampling results for the IOM (inhalable) vs. 37-mm (total dust) sampler was 1.1:1 with a P-value of 0.62, indicating that there was no statistically significant difference in the performance of the two samplers. Therefore, for the type of activity monitored during this study, the 37-mm sampling cassette would be considered a suitable alternative to the IOM sampler for collecting inhalable particulate matter, which is important given the many practical and economic advantages that it presents. However, similar comparison studies would be necessary for this conclusion to be applied to other types of

  20. Total power millimeter-wave spectrometer for measurements of dust opacity at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Potapov, Alexey; Lewen, Frank; Mutschke, Harald; Mohr, Pierre; Schlemmer, Stephan

    2014-07-01

    A highly sensitive total power millimeter-wave spectrometer has been built to investigate the opacity of important interstellar-dust analogues in the 10-300 K temperature range. The key elements of the spectrometer are a frequency agile synthesizer followed by a microwave amplifier and a subsequent frequency multiplier. In a first step, the frequency range of 72-120 GHz is covered by the spectrometer, and a room temperature Schottky detector is employed as a detector. A newly developed two channel (sample/reference) copper sample holder is cryogenically cooled for the 10-300 K range. Here we present the technical details of the spectrometer including examples of the obtained results. The analysis of these results will be published elsewhere.

  1. Analysis of Measurements of Saharan Dust by Airborne and Ground-based Remote Sensing Methods during the Puerto Rico Dust Experiment (PRIDE)

    NASA Technical Reports Server (NTRS)

    Reid, Jeffrey S.; Kinney, James E.; Westphal, Douglas L.; Holben, Brent N.; Welton, E. Judd; Tsay, Si-Chee; Eleuterio, Daniel P.; Campbell, James; Christopher, Sundar A.; Jonsson, Haflidi H.

    2003-01-01

    For 26 days in mid-June and July 2000, a research group comprised of U.S. Navy, NASA, and university scientists conducted the Puerto Rico Dust Experiment (PRIDE). In this paper we give a brief overview of mean meteorological conditions during the study. We focus on findings on African dust transported into the Caribbean utilizing Navajo aircraft and AERONET Sun photometer data. During the study midvisible aerosol optical thickness (AOT) in Puerto Rico averaged 0.25, with a maximum less than 0.5 and with clean marine periods of _0.08. Dust AOTs near the coast of Africa (Cape Verde Islands and Dakar) averaged _0.4, 30% less than previous years. By analyzing dust vertical profiles in addition to supplemental meteorology and MPLNET lidar data we found that dust transport cannot be easily categorized into any particular conceptual model. Toward the end of the study period, the vertical distribution of dust was similar to the commonly assumed Saharan Air Layer (SAL) transport. During the early periods of the study, dust had the highest concentrations in the marine and convective boundary layers with only a, weak dust layer in the SAL being present, a state usually associated with wintertime transport patterns. We corroborate the findings of Maring et al. that in most cases, there was an unexpected lack of vertical stratification of dust particle size. We systematically analyze processes which may impact dust vertical distribution and determine and speculate that dust vertical distribution predominately influenced by flow patterns over Africa and differential advection couple with mixing by easterly waves and regional subsidence.

  2. Analysis of measurements of Saharan dust by airborne and ground-based remote sensing methods during the Puerto Rico Dust Experiment (PRIDE)

    NASA Astrophysics Data System (ADS)

    Reid, Jeffrey S.; Kinney, James E.; Westphal, Douglas L.; Holben, Brent N.; Welton, Ellsworth J.; Tsay, Si-Chee; Eleuterio, Daniel P.; Campbell, James R.; Christopher, Sundar A.; Colarco, P. R.; Jonsson, Haflidi H.; Livingston, John M.; Maring, Hal B.; Meier, Michael L.; Pilewskie, Peter; Prospero, Joseph M.; Reid, Elizabeth A.; Remer, Lorraine A.; Russell, Philip B.; Savoie, Dennis L.; Smirnov, Alexander; Tanré, Didier

    2003-10-01

    For 26 days in mid-June and July 2000, a research group comprised of U.S. Navy, NASA, and university scientists conducted the Puerto Rico Dust Experiment (PRIDE). In this paper we give a brief overview of mean meteorological conditions during the study. We focus on our findings on African dust transported into the Caribbean utilizing a Navajo aircraft and AERONET Sun photometer data. During the study midvisible aerosol optical thickness (AOT) in Puerto Rico averaged 0.25, with a maximum >0.5 and with clean marine periods of ˜0.08. Dust AOTs near the coast of Africa (Cape Verde Islands and Dakar) averaged ˜0.4, 30% less than previous years. By analyzing dust vertical profiles in addition to supplemental meteorology and MPLNET lidar data we found that dust transport cannot be easily categorized into any particular conceptual model. Toward the end of the study period, the vertical distribution of dust was similar to the commonly assumed Saharan Air Layer (SAL) transport. During the early periods of the study, dust had the highest concentrations in the marine and convective boundary layers with only a weak dust layer in the SAL being present, a state usually associated with wintertime transport patterns. We corroborate the findings of [2003] that in most cases, there was an unexpected lack of vertical stratification of dust particle size. We systematically analyze processes that may impact dust vertical distribution and speculate that dust vertical distribution predominately influenced by flow patterns over Africa and differential advection coupled with fair weather cloud entrainment, mixing by easterly waves, and regional subsidence.

  3. Study of the importance of 'total' dust (as compared with the respirable fraction) in causing upper respiratory disease. Final report Mar 77-Feb 80

    SciTech Connect

    Cowie, A.J.; Crawford, N.P.; Miller, B.G.; Dodgson, J.

    1981-06-01

    The importance of the role of dust in the development of coal miners' pneumoconiosis is well established but its relationship with upper respiratory disease ('chronic bronchitis') is less well defined. Research carried out within the last 10 years has demonstrated relationships between the prevalence of chronic respiratory symptoms, reduction of lung function and exposure to the mass of the so-called respirable fraction of coalmine dust. It has been suggested, however, that a fraction of the airborne dust which contained more larger particles than the respirable fraction might be more appropriate for comparison with upper respiratory disease. The aim of the present study is to examine this question.

  4. Airborne manganese as dust vs. fume determining blood levels in workers at a manganese alloy production plant

    PubMed Central

    Park, Robert M.; Baldwin, Mary; Bouchard, Maryse F.; Mergler, Donna

    2015-01-01

    The appropriate exposure metrics for characterizing manganese (Mn) exposure associated with neurobehavioral effects have not been established. Blood levels of Mn (B-Mn) provide a potentially important intermediate marker of Mn airborne exposures. Using data from a study of a population of silicon- and ferro-manganese alloy production workers employed between 1973 and 1991, B-Mn levels were modeled in relation to prior Mn exposure using detailed work histories and estimated respirable Mn concentrations from air-sampling records. Despite wide variation in exposure levels estimated for individual jobs, duration of employment (exposure) was itself a strong predictor of B-Mn levels and strongest when an 80-day half-life was applied to contributions over time (t = 6.95, 7.44, respectively; p < 10 −5). Partitioning exposure concentrations based on process origin into two categories: (1) “large” respirable particulate (Mn-LRP) derived mainly from mechanically generated dust, and (2) “small” respirable particulate (Mn-SRP) primarily electric furnace condensation fume, revealed that B-Mn levels largely track the small, fume exposures. With a half-life of 65 days applied in a model with cumulative exposure terms for both Mn-LRP (t = −0.16, p = 0.87) and Mn-SRP (t = 6.45, p < 10 −5), the contribution of the large-size fraction contribution was negligible. Constructing metrics based on the square root of SRP exposure concentrations produced a better model fit (t = 7.87 vs. 7.44, R2 = 0.2333 vs. 0.2157). In a model containing both duration (t = 0.79, p = 0.43) and (square root) fume (t = 2.47, p = 0.01) metrics, the duration term was a weak contributor. Furnace-derived, small respirable Mn particulate appears to be the primary contributor to B-Mn levels, with a dose-rate dependence in a population chronically exposed to Mn, with air-concentrations declining in recent years. These observations may reflect the presence of homeostatic control of Mn levels in the blood

  5. Airborne manganese as dust vs. fume determining blood levels in workers at a manganese alloy production plant.

    PubMed

    Park, Robert M; Baldwin, Mary; Bouchard, Maryse F; Mergler, Donna

    2014-12-01

    The appropriate exposure metrics for characterizing manganese (Mn) exposure associated with neurobehavioral effects have not been established. Blood levels of Mn (B-Mn) provide a potentially important intermediate marker of Mn airborne exposures. Using data from a study of a population of silicon- and ferro-manganese alloy production workers employed between 1973 and 1991, B-Mn levels were modeled in relation to prior Mn exposure using detailed work histories and estimated respirable Mn concentrations from air-sampling records. Despite wide variation in exposure levels estimated for individual jobs, duration of employment (exposure) was itself a strong predictor of B-Mn levels and strongest when an 80-day half-life was applied to contributions over time (t=6.95, 7.44, respectively; p<10(-5)). Partitioning exposure concentrations based on process origin into two categories: (1) "large" respirable particulate (Mn-LRP) derived mainly from mechanically generated dust, and (2) "small" respirable particulate (Mn-SRP) primarily electric furnace condensation fume, revealed that B-Mn levels largely track the small, fume exposures. With a half-life of 65 days applied in a model with cumulative exposure terms for both Mn-LRP (t=-0.16, p=0.87) and Mn-SRP (t=6.45, p<10(-5)), the contribution of the large-size fraction contribution was negligible. Constructing metrics based on the square root of SRP exposure concentrations produced a better model fit (t=7.87 vs. 7.44, R(2)=0.2333 vs. 0.2157). In a model containing both duration (t=0.79, p=0.43) and (square root) fume (t=2.47, p=0.01) metrics, the duration term was a weak contributor. Furnace-derived, small respirable Mn particulate appears to be the primary contributor to B-Mn levels, with a dose-rate dependence in a population chronically exposed to Mn, with air-concentrations declining in recent years. These observations may reflect the presence of homeostatic control of Mn levels in the blood and other body tissues and be

  6. Comparison of Lead Species in Household Dust Wipes, Soil, and Airborne Particulate Matter in El Paso, Texas, by X-Ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pingitore, N. E.; Clague, J.; Amaya, M. A.

    2006-12-01

    Understanding the interplay of indoor and outdoor sources of lead in an urban setting is one foundation in establishing risk for lead exposure in children in our cities. A household may be the source for lead contamination due to the deterioration of interior lead-based paint, or a sink if lead particles are tracked or blown into the home from such potential ambient sources as yard soil or urban street dust. In addressing this issue, X-Ray Absorption Spectroscopy (XAS) presents the opportunity to directly and quantitatively speciate lead at low concentrations in bulk samples. We performed XAS analyses on dust wipes from window sills or floors from 8 houses that exceeded Federal standards for lead in dust. We entered these data into a Principal Components Analysis (PCA) that also included El Paso environmental samples: lead-based paints, soils, and airborne particulate matter. A simple two-component mixing system accounted for more than 95% of the variance of this data set. Paint and lead oxide appear to be the principal components, with all the samples falling in a compositional range from pure paint to 75% paint, 25% lead oxide. Note that several different lead compounds are possible constituents of a given lead-based paint. The paints spread from one end out along perhaps a fifth of the range of the compositional axis, followed closely, but not overlapped, by the soil samples, which covered the remainder of the compositional range. Two of the dust wipes plotted within the paint range, and the remaining 6 dust wipes plotted randomly through the soil range. Samples of airborne particulate matter plotted in both the paint and soil ranges. These observations suggest that the lead on most of the dust wipes originated outside the house, probably from deteriorated exterior lead-based paint deposited in adjacent yards. This paint mixed with lead oxide present in the soil and entered the houses by the airborne route. The probable source of the oxide in the soil is former

  7. Correlation between Asian Dust and Specific Radioactivities of Fission Products Included in Airborne Samples in Tokushima, Shikoku Island, Japan, Due to the Fukushima Nuclear Accident

    NASA Astrophysics Data System (ADS)

    Sakama, M.; Nagano, Y.; Kitade, T.; Shikino, O.; Nakayama, S.

    2014-06-01

    Radioactive fission product 131I released from the Fukushima Daiichi Nuclear Power Plants (FD-NPP) was first detected on March 23, 2011 in an airborne aerosol sample collected at Tokushima, Shikoku Island, located in western Japan. Two other radioactive fission products, 134Cs and 137Cs were also observed in a sample collected from April 2 to 4, 2011. The maximum specific radioactivities observed in this work were about 2.5 to 3.5 mBq×m-3 in a airborne aerosol sample collected on April 6. During the course of the continuous monitoring, we also made our first observation of seasonal Asian Dust and those fission products associated with the FDNPP accident concurrently from May 2 to 5, 2011. We found that the specific radioactivities of 134Cs and 137Cs decreased drastically only during the period of Asian Dust. And also, it was found that this trend was very similar to the atmospheric elemental concentration (ng×m-3) variation of stable cesium (133Cs) quantified by elemental analyses using our developed ICP-DRC-MS instrument.

  8. Correlation between Asian Dust and Specific Radioactivities of Fission Products Included in Airborne Samples in Tokushima, Shikoku Island, Japan, Due to the Fukushima Nuclear Accident

    SciTech Connect

    Sakama, M.; Nagano, Y.; Kitade, T.; Shikino, O.; Nakayama, S.

    2014-06-15

    Radioactive fission product {sup 131}I released from the Fukushima Daiichi Nuclear Power Plants (FD-NPP) was first detected on March 23, 2011 in an airborne aerosol sample collected at Tokushima, Shikoku Island, located in western Japan. Two other radioactive fission products, {sup 134}Cs and {sup 137}Cs were also observed in a sample collected from April 2 to 4, 2011. The maximum specific radioactivities observed in this work were about 2.5 to 3.5 mBq×m{sup -3} in a airborne aerosol sample collected on April 6. During the course of the continuous monitoring, we also made our first observation of seasonal Asian Dust and those fission products associated with the FDNPP accident concurrently from May 2 to 5, 2011. We found that the specific radioactivities of {sup 134}Cs and {sup 137}Cs decreased drastically only during the period of Asian Dust. And also, it was found that this trend was very similar to the atmospheric elemental concentration (ng×m{sup -3}) variation of stable cesium ({sup 133}Cs) quantified by elemental analyses using our developed ICP-DRC-MS instrument.

  9. Identification and prevalence of culturable mesophilic microfungi in house dust from 100 Danish homes. Comparison between airborne and dust-bound fungi.

    PubMed

    Gravesen, S

    1978-10-01

    In order to encircle possible allergen sources, fungi from house dust were cultivated and identified. Dust from vacuum cleaners was inoculated on Petri dishes containing V-8 agar with addition of penicillin and streptomycin to eliminate the bacterial flora. The number of genera identified were for the most part consistent with the genera trapped from the air. However, presumably owing to their dispersal biology it was demonstrated that members of Mucorales were much more frequently represented in the samples obtained by this method compared with gravimetric and volumetric measurements. The method is recommended as a simple way to demonstrate and identify the mould contents in house dust and as a tool for the identification of some of the real allergenic sources in house dust. PMID:362974

  10. Atmospheric Dust in the Upper Colorado River Basin: Integrated Analysis of Digital Imagery, Total Suspended Particulate, and Meteorological Data

    NASA Astrophysics Data System (ADS)

    Urban, F. E.; Reynolds, R. L.; Neff, J. C.; Fernandez, D. P.; Reheis, M. C.; Goldstein, H.; Grote, E.; Landry, C.

    2012-12-01

    Improved measurement and observation of dust emission and deposition in the American west would advance understanding of (1) landscape conditions that promote or suppress dust emission, (2) dynamics of dryland and montane ecosystems, (3) premature melting of snow cover that provides critical water supplies, and (4) possible effects of dust on human health. Such understanding can be applied to issues of land management, water-resource management, as well as the safety and well-being of urban and rural inhabitants. We have recently expanded the scope of particulate measurement in the Upper Colorado River basin through the establishment of total-suspended-particulate (TSP) measurement stations located in Utah and Colorado with bi-weekly data (filter) collection, along with protocols for characterizing dust-on-snow (DOS) layers in Colorado mountains. A sub-network of high-resolution digital cameras has been co-located with several of the TSP stations, as well as at other strategic locations. These real-time regional dust-event detection cameras are internet-based and collect digital imagery every 6-15 minutes. Measurements of meteorological conditions to support these collections and observations are provided partly by CLIM-MET stations, four of which were deployed in 1998 in the Canyonlands (Utah) region. These stations provide continuous, near real-time records of the complex interaction of wind, precipitation, vegetation, as well as dust emission and deposition, in different land-use settings. The complementary datasets of dust measurement and observation enable tracking of individual regional dust events. As an example, the first DOS event of water year 2012 (Nov 5, 2011), as documented at Senator Beck Basin, near Silverton, Colorado, was also recorded by the camera at Island-in-the-Sky (200 km to the northwest), as well as in aeolian activity and wind data from the Dugout Ranch CLIM-MET station (170 km to the west-northwest). At these sites, strong winds and the

  11. Pulmonary function in relation to total dust exposure at a bauxite refinery and alumina-based chemical products plant

    SciTech Connect

    Townsend, M.C.; Enterline, P.E.; Sussman, N.B.; Bonney, T.B.; Rippey, L.L.

    1985-12-01

    A cross-sectional study of 1,142 male employees at the Arkansas Operations of a large aluminum production company examined the effect on pulmonary function of chronic exposure to total dust produced in the mining and refining of bauxite and the production of alumina chemicals. Never smokers, ex-smokers, and current smokers were analyzed separately. Among never smokers, a pattern of decreasing FEV1 was observed in relation to increasing duration and cumulative total dust exposure. Among never smokers with cumulative total dust exposures of greater than or equal to 100 mg/m3 yr and greater than or equal to 20 yr of exposure, there was a mean reduction from the predicted FEV1 of 0.29 to 0.39 L, in addition to a 3- to 4-fold excess of observed/expected numbers of subjects with FEV1 less than 80% of predicted. These results were observed relative to an external and an internal comparison group. Among current smokers, the deviations from predicted and the excess numbers of subjects with FEV1 less than 80% of predicted were larger in all exposure groups than for the never smokers. However, the quality of the smoking data was inadequate to allow separation of the effects of smoking and dust exposure.

  12. Airborne spectrophotometry of SN 1987A from 1.7 to 12.6 microns - Time history of the dust continuum and line emission

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Rank, David M.; Bregman, Jesse D.; Witteborn, Fred C.; Tielens, A. G. G. M.; Cohen, Martin; Pinto, Philip A.; Axelrod, Timothy S.

    1993-01-01

    Spectrophotometric observations of SN 1987A from the Kuiper Airborne Observatory are presented for five epochs at 60, 260, 415, 615, and 775 days after the explosion. The low-resolution (lambda/Delta lambda = 50-100) spectra of SN 1987A are combined with data from other wavelengths to model the continuum, subtract the continuum from the spectra to determine line strengths and reveal molecular bands, separate the atomic continuum radiation from the dust continuum, and derive constraints on the grain temperatures and optical depths. A scenario for the evolution of SN 1987A and that of the ejecta from which it arises is obtained on the basis of the analysis of the continuum emission.

  13. Design and development of a dust dispersion chamber to quantify the dispersibility of rock dust

    PubMed Central

    Perera, Inoka E.; Sapko, Michael J.; Harris, Marcia L.; Zlochower, Isaac A.; Weiss, Eric S.

    2015-01-01

    Dispersible rock dust must be applied to the surfaces of entries in underground coal mines in order to inert the coal dust entrained or made airborne during an explosion and prevent propagating explosions. 30 CFR. 75.2 states that “… [rock dust particles] when wetted and dried will not cohere to form a cake which will not be dispersed into separate particles by a light blast of air …” However, a proper definition or quantification of “light blast of air” is not provided. The National Institute for Occupational Safety and Health (NIOSH) has, consequently, designed a dust dispersion chamber to conduct quantitative laboratory-scale dispersibility experiments as a screening tool for candidate rock dusts. A reproducible pulse of air is injected into the chamber and across a shallow tray of rock dust. The dust dispersed and carried downwind is monitored. The mass loss of the dust tray and the airborne dust measurements determine the relative dispersibility of the dust with respect to a Reference rock dust. This report describes the design and the methodology to evaluate the relative dispersibility of rock dusts with and without anti-caking agents. Further, the results of this study indicate that the dispersibility of rock dusts varies with particle size, type of anti-caking agent used, and with the untapped bulk density. Untreated rock dusts, when wetted and dried forming a cake that was much less dispersible than the reference rock dust used in supporting the 80% total incombustible content rule. PMID:26834390

  14. Airborne aerosol in situ measurements during TCAP: A closure study of total scattering

    DOE PAGESBeta

    Kassianov, Evgueni; Sedlacek, Arthur; Berg, Larry K.; Pekour, Mikhail; Barnard, James; Chand, Duli; Flynn, Connor; Ovchinnikov, Mikhail; Schmid, Beat; Shilling, John; et al

    2015-07-31

    We present a framework for calculating the total scattering of both non-absorbing and absorbing aerosol at ambient conditions from aircraft data. Our framework is developed emphasizing the explicit use of chemical composition data for estimating the complex refractive index (RI) of particles, and thus obtaining improved ambient size spectra derived from Optical Particle Counter (OPC) measurements. The feasibility of our framework for improved calculations of total scattering is demonstrated using three types of data collected by the U.S. Department of Energy’s (DOE) aircraft during the Two-Column Aerosol Project (TCAP). Namely, these data types are: (1) size distributions measured by amore » suite of OPC’s; (2) chemical composition data measured by an Aerosol Mass Spectrometer and a Single Particle Soot Photometer; and (3) the dry total scattering coefficient measured by a integrating nephelometer and scattering enhancement factor measured with a humidification system. We demonstrate that good agreement (~10%) between the observed and calculated scattering can be obtained under ambient conditions (RH < 80%) by applying chemical composition data for the RI-based correction of the OPC-derived size spectra. We also demonstrate that ignoring the RI-based correction or using non-representative RI values can cause a substantial underestimation (~40%) or overestimation (~35%) of the calculated scattering, respectively.« less

  15. Airborne aerosol in situ measurements during TCAP: A closure study of total scattering

    SciTech Connect

    Kassianov, Evgueni; Sedlacek, Arthur; Berg, Larry K.; Pekour, Mikhail; Barnard, James; Chand, Duli; Flynn, Connor; Ovchinnikov, Mikhail; Schmid, Beat; Shilling, John; Tomlinson, Jason; Fast, Jerome

    2015-07-31

    We present a framework for calculating the total scattering of both non-absorbing and absorbing aerosol at ambient conditions from aircraft data. Our framework is developed emphasizing the explicit use of chemical composition data for estimating the complex refractive index (RI) of particles, and thus obtaining improved ambient size spectra derived from Optical Particle Counter (OPC) measurements. The feasibility of our framework for improved calculations of total scattering is demonstrated using three types of data collected by the U.S. Department of Energy’s (DOE) aircraft during the Two-Column Aerosol Project (TCAP). Namely, these data types are: (1) size distributions measured by a suite of OPC’s; (2) chemical composition data measured by an Aerosol Mass Spectrometer and a Single Particle Soot Photometer; and (3) the dry total scattering coefficient measured by a integrating nephelometer and scattering enhancement factor measured with a humidification system. We demonstrate that good agreement (~10%) between the observed and calculated scattering can be obtained under ambient conditions (RH < 80%) by applying chemical composition data for the RI-based correction of the OPC-derived size spectra. We also demonstrate that ignoring the RI-based correction or using non-representative RI values can cause a substantial underestimation (~40%) or overestimation (~35%) of the calculated scattering, respectively.

  16. Evaluation of SEVIRI Thermal Infra-Red data for airborne dust detection in an arid regions: the UAE case study

    NASA Astrophysics Data System (ADS)

    Gherboudj, I.; Parajuli, S. P.; Ghedira, H.

    2011-12-01

    Our interest in the study of the dust emission cycle over arid area results from the impacts that they have on the climate and atmospheric processes. Large dust concentration emitted even naturally or anthropogenic may reduce surface insolation by extinction of solar radiation. In addition, the knowledge of its spatio-temporal distribution is essential for monitoring several applications such as solar energy potential and health effect. Satellite-based remote sensing is an efficient tool to improve our understanding of the interaction of the desert dust and surrounding climate over regional and global scales with high frequency measurements. Thermal infrared (TIR) channels (3μm -15μm) of different satellites (MVIRI, AVHRR, MODIS, ADEOS-2/POLDER, TOMS, and MSG/SERIVI) were widely used for dust detection. Several dust detection and forecasting algorithms have been proposed based on these satellite data. However, the spatial and temporal variability of the physical characteristics of dust (concentrations, particle size distribution, location in the atmosphere, and chemical composition) has limited their estimations particularly with the dependence of the dust emission on the wind, soil water content, vegetation, and sediment availability. This study focuses on the analysis of the sensitivity of the MSG/SEVIRI TIR observation to dust generation, surface wind, soil moisture, and surface emissivity over the United Arab Emirates (UAE). SEVIRI observations were acquired in 2009 with temporal and spatial resolutions of 30 minutes and about 3km respectively. While the soil moisture is extracted from the AMSR-E data (1:30 AM and 1:30 PM) at spatial resolution of 25 km, the surface emissivity and Aerosol Optical Thickness were extracted from the MODIS products at spatial resolutions of 1 km and 100 km respectively. In coincidence with the satellites acquisitions, meteorological measurements were collected from seven met stations distributed over the selected study area (wind

  17. Airborne Aerosol In situ Measurements during TCAP: A Closure Study of Total Scattering

    SciTech Connect

    Kassianov, Evgueni I.; Berg, Larry K.; Pekour, Mikhail S.; Flynn, Connor J.; Tomlinson, Jason M.; Chand, Duli; Shilling, John E.; Ovchinnikov, Mikhail; Barnard, James C.; Sedlacek, Art; Schmid, Beat

    2015-07-31

    We present here a framework for calculating the total scattering of both non-absorbing and absorbing aerosol at ambient conditions from aircraft data. The synergistically employed aircraft data involve aerosol microphysical, chemical, and optical components and ambient relative humidity measurements. Our framework is developed emphasizing the explicit use of the complementary chemical composition data for estimating the complex refractive index (RI) of particles, and thus obtaining improved ambient size spectra derived from Optical Particle Counter (OPC) measurements. The feasibility of our framework for improved calculations of total aerosol scattering is demonstrated for different ambient conditions with a wide range of relative humidities (from 5 to 80%) using three types of data collected by the U.S. Department of Energy (DOE) G-1 aircraft during the recent Two-Column Aerosol Project (TCAP). Namely, these three types of data employed are: (1) size distributions measured by an Ultra High Sensitivity Aerosol Spectrometer (UHSAS; 0.06-1 µm), a Passive Cavity Aerosol Spectrometer (PCASP; 0.1-3 µm) and a Cloud and Aerosol Spectrometer (CAS; 0.6- >10 µm), (2) chemical composition data measured by an Aerosol Mass Spectrometer (AMS; 0.06-0.6 µm) and a Single Particle Soot Photometer (SP2; 0.06-0.6 µm), and (3) the dry total scattering coefficient measured by a TSI integrating nephelometer at three wavelengths (0.45, 0.55, 0.7 µm) and scattering enhancement factor measured with a humidification system at three RHs (near 45%, 65% and 90%) at a single wavelength (0.525 µm). We demonstrate that good agreement (~10% on average) between the observed and calculated scattering at these three wavelengths can be obtained using the best available chemical composition data for the RI-based correction of the OPC-derived size spectra. We also demonstrate that ignoring the RI-based correction and using non-representative RI values can cause a substantial underestimation (~40

  18. Stable carbon isotopic compositions of organic acids in total suspended particles and dusts from Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Ma, Shexia; Peng, Ping'an; Song, Jianzhong; Zhao, Jinping; He, Lulu; Sheng, Guoying; Fu, Jiamo

    2010-10-01

    Stable carbon isotopic compositions of individual organic acids were determined in total suspended particles and dusts from Guangzhou. The δ 13C values of high molecular weight n-alkanoic acids (C 20-C 28) varied from -34.1‰ to -32.4‰ and tended to be heavier in summer and lighter in winter. These δ 13C values indicate that high molecular weight n-alkanoic acids were derived mainly from emission by C 3 plants. Reduced biological synthesis of high molecular weight n-alkanoic acids in winter may be the reason for the light carbon isotopic composition. The δ 13C values of low molecular weight n-alkanoic acids (C 10-C 18) changed from -31.7‰ to -30.3‰ and exhibited a reverse seasonal trend, i.e., heavier in winter and lighter in summer. Slightly heavier δ 13C values of low molecular weight n-alkanoic acids than those of high molecular weight n-alkanoic acids suggested that they may be emitted from blended sources, e.g., anthropogenic sources and vegetation waxes. Lighter δ 13C values in summer may be attributed to relatively low anthropogenic sources and high botanic sources in summer. Dicarboxylic acids and aromatic acids have been proposed as secondary products from photochemical degradation. The average δ 13C values of dicarboxylic acids and aromatic acids were heavier, and ranged from -25.2‰ to -22.9‰ and from -30.0‰ to -27.6‰, respectively. Both dicarboxylic acids and aromatic acids displayed the same temporal variations in the δ 13C values, i.e., negative δ 13C in the summer samples and positive in the winter samples, which may be controlled by photochemical reactions; they are generally severe in winter in Guangzhou under the monsoon weather system. The heaviest δ 13C values were observed in dicarboxylic acids, indicating that dicarboxylic acids were formed by fast and more complete oxidation reactions. These results indicate that the stable carbon isotopic composition of organic acids may provide important information about sources and

  19. Dust transport over the eastern Mediterranean derived from Total Ozone Mapping Spectrometer, Aerosol Robotic Network, and surface measurements

    NASA Astrophysics Data System (ADS)

    Kalivitis, N.; Gerasopoulos, E.; Vrekoussis, M.; Kouvarakis, G.; Kubilay, N.; Hatzianastassiou, N.; Vardavas, I.; Mihalopoulos, N.

    2007-02-01

    Multiyear surface PM10 measurements performed on Crete Island, Greece, have been used in conjunction with satellite (Total Ozone Mapping Spectrometer (TOMS)) and ground-based remote sensing measurements (Aerosol Robotic Network (AERONET)) to enhance our understanding of the evolution of mineral dust events over the eastern Mediterranean. An analysis of southerly air masses at altitudes of 1000 and 3000 m over a 5 year period (2000-2005), showed that dust can potentially arrive over Crete, either simultaneously in the lower free troposphere and inside the boundary layer (vertical extended transport (VET)) or initially into the free troposphere with the heavier particles gradually being scavenged inside the boundary layer (free troposphere transport (FTT)). Both pathways present significant seasonal variations but on an annual basis contribute almost equally to the dust transport in the area. During VET the aerosol index (AI) derived from TOMS was significantly correlated with surface PM10, and in general AI was found to be adequate for the characterization of dust loadings over the eastern Mediterranean on a climatological basis. A significant covariance between PM10 and AOT was observed during VET as well, indicating that AOT levels from AERONET may be estimated by PM10 levels at the surface. Surface measurements are thus crucial for the validation of remote sensing measurements and hence are a powerful tool for the investigation of the impact of aerosols on climate.

  20. Airborne observations of total RONO2: new constraints on the yield and lifetime of isoprene nitrates

    NASA Astrophysics Data System (ADS)

    Perring, A. E.; Bertram, T. H.; Wooldridge, P. J.; Fried, A.; Heikes, B. G.; Dibb, J.; Crounse, J. D.; Wennberg, P. O.; Blake, N. J.; Blake, D. R.; Brune, W. H.; Singh, H. B.; Cohen, R. C.

    2009-02-01

    Formation of isoprene nitrates (INs) is an important free radical chain termination step ending production of ozone and possibly affecting formation of secondary organic aerosol. Isoprene nitrates also represent a potentially large, unmeasured contribution to OH reactivity and are a major pathway for the removal of nitrogen oxides from the atmosphere. Current assessments indicate that formation rates of isoprene nitrates are uncertain to a factor of 2-3 and the subsequent fate of isoprene nitrates remains largely unconstrained by laboratory, field or modeling studies. Measurements of total alkyl and multifunctional nitrates (ΣANs), NO2, total peroxy nitrates (ΣPNs), HNO3, CH2O, isoprene and other VOC were obtained from the NASA DC-8 aircraft during summer 2004 over the continental US during the INTEX-NA campaign. These observations represent the first characterization of ΣANs over a wide range of land surface types and in the lower free troposphere. ΣANs were a significant, 12-20%, fraction of NOy throughout the experimental domain and ΣANs were more abundant when isoprene was high. We use the observed hydrocarbon species to calculate the relative contributions of ΣAN precursors to their production. These calculations indicate that isoprene represents at least three quarters of the ΣAN source in the summertime continental boundary layer of the US. An observed correlation between ΣANs and CH2O is used to place constraints on nitrate yields from isoprene oxidation, atmospheric lifetimes of the resulting nitrates and recycling efficiencies of nitrates during subsequent oxidation. We find reasonable fits to the data using sets of production rates, lifetimes and recycling efficiencies of INs as follows (4.4%, 16 h, 97%), (8%, 2.5 h, 79%) and (12%, 95 min, 67%). The analysis indicates that the lifetime of ΣANs as a pool of compounds is considerably longer than the lifetime of the individual isoprene nitrates to reaction with OH, implying that the organic nitrate

  1. Airborne observations of total RONO2: new constraints on the yield and lifetime of isoprene nitrates

    NASA Astrophysics Data System (ADS)

    Perring, A. E.; Bertram, T. H.; Wooldridge, P. J.; Fried, A.; Heikes, B. G.; Dibb, J.; Crounse, J. D.; Wennberg, P. O.; Blake, N. J.; Brune, W. H.; Blake, D. R.; Cohen, R. C.

    2008-06-01

    Formation of isoprene nitrates (INs) is an important free radical chain termination step ending production of ozone and possibly affecting formation of secondary organic aerosol. Isoprene nitrates also represent a large, unmeasured contribution to OH reactivity and are a major pathway for the removal of nitrogen oxides from the atmosphere. Current assessments indicate that formation rates of isoprene nitrates are uncertain to a factor of 2 3 and the subsequent fate of isoprene nitrates remains largely unconstrained by laboratory, field or modeling studies. Measurements of total alkyl and multifunction nitrates (ΣANs), NO2, total peroxy nitrates (ΣPNs), HNO3, H2CO, isoprene and other VOC were obtained from the NASA DC-8 aircraft during summer 2004 over the continental US during the INTEX-NA campaign. These observations represent the first characterization of ΣANs over a wide range of land surface types and in the free troposphere. ΣANs were a significant, 12 20%, fraction of NOy throughout the experimental domain and ΣANs were more abundant when isoprene was high. We use the observed VOC to calculate the relative contributions of ΣAN precursors to their production. These calculations indicate that isoprene represents at least 76% of the ΣAN source in the summertime continental boundary layer of the US. An observed correlation between ΣANs and CH2O is used to place constraints on nitrate yields from isoprene oxidation, atmospheric lifetimes of the resulting nitrates and recycling efficiencies of nitrates during subsequent oxidation. We recommend sets of production rates, lifetimes and recycling efficiencies of INs as follows [4.4%, 5 h, 92%], [8%, 2.5 h, 84%] and [12%, 90 min, 74%]. The analysis indicates that the lifetime of ΣANs as a pool of compounds is considerably longer than the lifetime of the individual isoprene nitrates to reaction with OH, implying that the organic nitrate functionality is at least partially maintained through a second oxidation

  2. The relation between the gas, dust and total mass in edge-on spiral galaxies

    NASA Astrophysics Data System (ADS)

    Allaert, Flor

    2015-02-01

    Each component of a galaxy plays its own unique role in regulating the galaxy's evolution. In order to understand how galaxies form and evolve, it is therefore crucial to study the distribution and properties of each of the various components, and the links between them, both radially and vertically. The latter is only possible in edge-on systems. We present the HEROES project, which aims to investigate the 3D structure of the interstellar gas, dust, stars and dark matter in a sample of 7 massive early-type spiral galaxies based on a multi-wavelength data set including optical, NIR, FIR and radio data.

  3. Airborne soil dust and its importance in buffering of atmospheric acidity and critical load assessment, over the semi arid tract of northern India.

    NASA Astrophysics Data System (ADS)

    Sharma, Disha; Kulshrestha, Umesh

    Airborne soil dust and its importance in buffering of atmospheric acidity and critical load assessment, over the semi arid tract of northern India. The Critical Load approach alongwith integrated assessment models has been used in the European nations for policy formations to reduce acidic emissions. This unique approach was applied to assess the of vulnerability of natural systems to the present day atmospheric pollution scenario. The calculated values of critical loads of sulphur ( 225 - 275 eq/ha/yr) and nitrogen (298 - 303 eq/ha/yr), for the soil system in Delhi, were calculated with respect to Anjan grass, Hibiscus and Black siris. The present loads of sulphur (PL(S) = 26.40 eq/ha/yr) and nitrogen (PL(N) = 36.51 eq/ha/yr) were found to be much lower than their critical loads without posing any danger of atmospheric acidic deposition on the soil systems. The study indicated that the system is still protective due to high pH of soil. The nature of buffering capability of calcium derived from soil dust can be considered as a natural tool to combat acidification in the Indian region. The results showed that the pollution status in Delhi is still within the safe limits. However, at the pace at which the city is growing, it is likely that in coming decades, it may exceed these critical values. In order to set deposition limits and avoid adverse effects of acidic deposition this approach can be applied in India too. Such approach is very useful, not only in abating pollution but also in devising means of cost optimal emission abatement strategies.

  4. The role of dust storms in total atmospheric particle concentrations at two sites in the western U.S.

    USGS Publications Warehouse

    Neff, Jason C.; Reynolds, Richard L.; Munson, Seth M.; Fernandez, Daniel; Belnap, Jayne

    2013-01-01

    Mineral aerosols are produced during the erosion of soils by wind and are a common source of particles (dust) in arid and semiarid regions. The size of these particles varies widely from less than 2 µm to larger particles that can exceed 50 µm in diameter. In this study, we present two continuous records of total suspended particle (TSP) concentrations at sites in Mesa Verde and Canyonlands National Parks in Colorado and Utah, USA, respectively, and compare those values to measurements of fine and coarse particle concentrations made from nearby samplers. Average annual concentrations of TSP at Mesa Verde were 90 µg m−3 in 2011 and at Canyonlands were 171 µg m−3 in 2009, 113 µg m−3 in 2010, and 134 µg m−3 in 2011. In comparison, annual concentrations of fine (diameter of 2.5 µm and below) and coarse (2.5–10 µm diameter) particles at these sites were below 10 µg m−3 in all years. The high concentrations of TSP appear to be the result of regional dust storms with elevated concentrations of particles greater than 10 µm in diameter. These conditions regularly occur from spring through fall with 2 week mean TSP periodically in excess of 200 µg m−3. Measurement of particles on filters indicates that the median particle size varies between approximately 10 µm in winter and 40 µm during the spring. These persistently elevated concentrations of large particles indicate that regional dust emission as dust storms and events are important determinants of air quality in this region.

  5. The role of dust storms in total atmospheric particle concentrations at two sites in the western U.S.

    NASA Astrophysics Data System (ADS)

    Neff, J. C.; Reynolds, R. L.; Munson, S. M.; Fernandez, D.; Belnap, J.

    2013-10-01

    Mineral aerosols are produced during the erosion of soils by wind and are a common source of particles (dust) in arid and semiarid regions. The size of these particles varies widely from less than 2 µm to larger particles that can exceed 50 µm in diameter. In this study, we present two continuous records of total suspended particle (TSP) concentrations at sites in Mesa Verde and Canyonlands National Parks in Colorado and Utah, USA, respectively, and compare those values to measurements of fine and coarse particle concentrations made from nearby samplers. Average annual concentrations of TSP at Mesa Verde were 90 µg m-3 in 2011 and at Canyonlands were 171 µg m-3 in 2009, 113 µg m-3 in 2010, and 134 µg m-3 in 2011. In comparison, annual concentrations of fine (diameter of 2.5 µm and below) and coarse (2.5-10 µm diameter) particles at these sites were below 10 µg m-3 in all years. The high concentrations of TSP appear to be the result of regional dust storms with elevated concentrations of particles greater than 10 µm in diameter. These conditions regularly occur from spring through fall with 2 week mean TSP periodically in excess of 200 µg m-3. Measurement of particles on filters indicates that the median particle size varies between approximately 10 µm in winter and 40 µm during the spring. These persistently elevated concentrations of large particles indicate that regional dust emission as dust storms and events are important determinants of air quality in this region.

  6. Airborne microorganisms in the African desert dust corridor over the mid-Atlantic ridge, Ocean Drilling Program, Leg 209

    USGS Publications Warehouse

    Griffin, Dale W.; Westphal, Douglas L.; Gray, Michael A.

    2006-01-01

    The objective of this study was to enhance our understanding of the fate and trans-Atlantic transport of dustborne microorganisms from Northern Africa to the Caribbean and Americas, and more specifically to determine if culturable populations could be detected at a mid-ocean site, closer to the source of dust relative to land-based Caribbean sites, during the early summer months of May and June. Between the dates of 22 May and 30 June 2003, daily air samples were collected and evaluated for the presence of culturable bacterial and fungal colony-forming units (CFU). Here we report a statistically significant correlation between daily atmospheric CFU counts at a mid-ocean research site (???15??N, 45??W) and daily desert dust concentrations as determined by the U.S. Navy's Naval Aerosol Analysis and Prediction System (NAAPS) Global Aerosol Model (Honrath et al. (2004). Journal of Geophysical Research, 109; Johnson et al. (2003). Global Biogeochemical Cycles, 17, 1063; Reid et al. (2004). Geophysical Research Letters, 31; Schollaert, Yoder, Westphal, & O'Reilly (2003). Journal of Geophysical Research, 108, 3191). ?? Springer Science+Business Media B.V. 2006.

  7. Exposure of bakery and pastry apprentices to airborne flour dust using PM2.5 and PM10 personal samplers

    PubMed Central

    Mounier-Geyssant, Estelle; Barthélemy, Jean-François; Mouchot, Lory; Paris, Christophe; Zmirou-Navier, Denis

    2007-01-01

    Background This study describes exposure levels of bakery and pastry apprentices to flour dust, a known risk factor of occupational asthma. Methods Questionnaires on work activity were completed by 286 students. Among them, 34 performed a series of two personal exposure measurements using a PM2.5 and PM10 personal sampler during a complete work shift, one during a cold ("winter") period, and the other during a hot ("summer") period. Results Bakery apprentices experience greater average PM2.5 and PM10 exposures than pastry apprentices (p < 0.006). Exposure values for both particulate fractions are greater in winter (average PM10 values among bakers = 1.10 mg.m-3 [standard deviation: 0.83]) than in summer (0.63 mg.m-3 [0.36]). While complying with current European occupational limit values, these exposures exceed the ACGIH recommendations set to prevent sensitization to flour dust (0.5 mg.m-3). Over half the facilities had no ventilation system. Conclusion Young bakery apprentices incur substantial exposure to known airways allergens, a situation that might elicit early induction of airways inflammation. PMID:17976230

  8. Airborne Petcoke Dust is a Major Source of Polycyclic Aromatic Hydrocarbons in the Athabasca Oil Sands Region.

    PubMed

    Zhang, Yifeng; Shotyk, William; Zaccone, Claudio; Noernberg, Tommy; Pelletier, Rick; Bicalho, Beatriz; Froese, Duane G; Davies, Lauren; Martin, Jonathan W

    2016-02-16

    Oil sands mining has been linked to increasing atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in the Athabasca oil sands region (AOSR), but known sources cannot explain the quantity of PAHs in environmental samples. PAHs were measured in living Sphagnum moss (24 sites, n = 68), in sectioned peat cores (4 sites, n = 161), and snow (7 sites, n = 19) from ombrotrophic bogs in the AOSR. Prospective source samples were also analyzed, including petroleum coke (petcoke, from both delayed and fluid coking), fine tailings, oil sands ore, and naturally exposed bitumen. Average PAH concentrations in near-field moss (199 ng/g, n = 11) were significantly higher (p = 0.035) than in far-field moss (118 ng/g, n = 13), and increasing temporal trends were detected in three peat cores collected closest to industrial activity. A chemical mass-balance model estimated that delayed petcoke was the major source of PAHs to living moss, and among three peat core the contribution to PAHs from delayed petcoke increased over time, accounting for 45-95% of PAHs in contemporary layers. Petcoke was also estimated to be a major source of vanadium, nickel, and molybdenum. Scanning electron microscopy with energy-dispersive X-ray spectroscopy confirmed large petcoke particles (>10 μm) in snow at near-field sites. Petcoke dust has not previously been considered in environmental impact assessments of oil sands upgrading, and improved dust control from growing stockpiles may mitigate future risks. PMID:26771587

  9. Coupling Mars' Dust and Water Cycles: Effects on Dust Lifting Vigor, Spatial Extent and Seasonality

    NASA Technical Reports Server (NTRS)

    Kahre, M. A.; Hollingsworth, J. L.; Haberle, R. M.; Montmessin, F.

    2012-01-01

    The dust cycle is an important component of Mars' current climate system. Airborne dust affects the radiative balance of the atmosphere, thus greatly influencing the thermal and dynamical state of the atmosphere. Dust raising events on Mars occur at spatial scales ranging from meters to planet-wide. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. Generally, a low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading were observed by MGS/TES: one peak occurred before northern winter solstice at Ls 200-240, and one peak occurred after northern winter solstice at L(sub s) 305-340. These maxima in dust loading are thought to be associated with transient eddy activity in the northern hemisphere, which has been observed to maximize pre- and post-solstice. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading. Interactive dust cycle studies typically have not included the formation of water ice clouds or their radiative effects. Water ice clouds can influence the dust cycle by scavenging dust from atmosphere and by interacting with solar and infrared radiation

  10. Repetitive Immunoassay with a Surface Acoustic Wave Device and a Highly Stable Protein Monolayer for On-Site Monitoring of Airborne Dust Mite Allergens.

    PubMed

    Toma, Koji; Miki, Daisuke; Kishikawa, Chisato; Yoshimura, Naoyuki; Miyajima, Kumiko; Arakawa, Takahiro; Yatsuda, Hiromi; Mitsubayashi, Kohji

    2015-10-20

    This work describes a sensor to be incorporated into the on-site monitoring system of airborne house dust mite (HDM) allergens. A surface acoustic wave (SAW) device was combined with self-assembled monolayers of a highly stable antibody capture protein on the SAW surface that have high resistance to pH change. A sandwich assay was used to measure a HDM allergen, Der f 1 derived from Dermatophagoides farinae. Capture antibodies were cross-linked to a protein G based capture layer (ORLA85) on the sensor surface, thereby only Der f 1 and detection antibodies were regenerated by changing pH, resulting in fast repetition of the measurement. The sensor was characterized through 10 repetitive measurements of Der f 1, which demonstrated high reproducibility of the sensor with the coefficient of variation of 5.6%. The limit of detection (LOD) of the sensor was 6.1 ng·mL(-1), encompassing the standard (20 ng·mL(-1)) set by the World Health Organization. Negligible sensor outputs were observed for five different major allergens including other HDM allergens which tend to have cross-reactivity to Der f 1 and their mixtures with Der f 1. Finally, the sensor lifetime was evaluated by conducting three measurements per day, and the sensor output did not substantially change for 4 days. These characteristics make the SAW immunosensor a promising candidate for incorporation into on-site allergen monitoring systems. PMID:26378678

  11. Monitoring Airborne Dust from Source to Sink Using the e-Deep Blue Aerosol Products from VIIRS, MODIS, and Seawifs

    NASA Astrophysics Data System (ADS)

    Carletta, N.; Hsu, N. Y. C.; Bettenhausen, C.; Sayer, A. M.; Lee, J.

    2014-12-01

    Mineral dust sources are typically located in very bright, arid desert regions across the globe. In the past, aerosol retrieval algorithms were unable to properly handle these bright surfaces which lead to large, persistent data gaps. In order to eliminate these gaps, the Deep Blue algorithm was developed and first entered into the MODIS operational stream in Collection 5.1. Since then, the Deep Blue algorithm has evolved to retrieve not only over bright surfaces, but also vegetated surfaces. This updated algorithm has been named the enhanced Deep Blue (e-Deep Blue) algorithm and has been successfully applied to reflectances from the Sea-viewing, Wide Field-of-view Sensor (SeaWiFS, 1997-2010), Moderate Resolution Imaging Spectroradiometer (MODIS, 2000/2002-present), and now the Visible Infrared Imaging Radiometer Suite (VIIRS, 2012-present) aboard the Suomi-NPP platform. This algorithm has been partnered with a new over-ocean algorithm for our SeaWiFS and VIIRS datasets. Due to the broad swath of VIIRS, daily global coverage is achieved at higher spatial resolution compared to MODIS and SeaWiFS. Thus, the evolution of dust can be tracked from source to sink, across both land and ocean using these satellite products. We introduce the basics of the e-Deep Blue algorithm along with our preliminary VIIRS e-Deep Blue products, including aerosol optical thickness at 550nm and Ǻngström exponent. Validation with AErosol RObotic NETwork (AERONET) data are also presented along with the intercomparisons between VIIRS Deep Blue and other satellite products.

  12. Optical dust sensor for the mining industry

    NASA Astrophysics Data System (ADS)

    Sierakowski, Marek W.; Wolinski, Tomasz R.; Domanski, Andrzej W.; Osinska, Katarzyna

    2003-04-01

    One of many hazards in mining industry is presence of airborne dust on underground boards. Hazards caused by dust generated and spread in mines are of the two types: (1) health risk for miners from airborne dust produced from rocks, coal, soluble minerals (pneumoconiosis, toxicity), (2) danger of explosion of carbon dust. Dust particles produced in mines underground range from 0 to about 400 micrometers, have irregular shapes and prevailingly are strongly light absorbing. It is assumed that the most health-risky are particles between 1 μm and 5 μm in size. They are not visible with naked eyes, so their control and measurement need technical equipment. As a standard in polish mines, gravimetric measurement method is used at present. This method works well in post-event evaluation of total health-risk factor, but is not much useful for instantaneous risk warning. In order to recognize and possibly prevent the dust risk as it appears, other methods have to be used, like optical method. Looking towards this demand, an experimental optical dust sensor is demonstrated. The sensor is based on light scattering effect by dust particles, as usual do devices of this type. Originality of this solution lies in construction details of the sensor. Scattering is a complex function of dust kind, size, shape and concentration. Moreover, operating conditions of such a device are cruel -- humidity, elevated temperature, vibrations, and over-all contact with dust -- are harmful for optics. Thus, to achieve reliable indications of the sensor is really a challenge. This paper describes optical construction attempting to overcome difficulties in obtaining dust concentration sensor intended for mining industry and similar applications. First laboratory and operational tests are also reported.

  13. Ice formation via deposition nucleation on mineral dust and organics: dependence of onset relative humidity on total particulate surface area

    NASA Astrophysics Data System (ADS)

    Kanji, Zamin A.; Florea, Octavian; Abbatt, Jonathan P. D.

    2008-04-01

    We present ice nucleation results for Arizona test dust, kaolinite, montmorillonite, silica, silica coated with a hydrophobic octyl chain, oxalic acid dihydrate, Gascoyne leonardite (a humic material), and Aldrich humic acid (sodium salt). The focus was on deposition mode nucleation below water saturation at 233 K. Particles were deposited onto a hydrophobic cold stage by atomization of a slurry/solution and exposed to a constant partial pressure of water vapor. By lowering the temperature of the stage, the relative humidity with respect to ice (RHi) was gradually increased until ice nucleation was observed using digital photography. Different numbers of particles were deposited onto the cold stage by varying the atomization solution concentration and deposition time. For the same total particulate surface area, mineral dust particles nucleated ice at lower supersaturations than all other materials. The most hydrophobic materials, i.e. Gascoyne leonardite and octyl silica, were the least active. For our limit of detection of one ice crystal, the ice onset RHi values were dependent on the total surface area of the particulates, indicating that no unique threshold RHi for ice nucleation prevails.

  14. The use of an experimental room for monitoring of airborne concentrations of microorganisms, glass fibers, and total particles

    SciTech Connect

    Buttner, M.P.; Stetzenbach, L.D.

    1996-12-31

    An experimental room was used as a microcosm for studies of airborne particles and microorganisms in indoor environments. The interior of the room measures 4 by 4 by 2.2 m high and has a hardwood floor and the walls and ceiling are sheetrocked and coated with interior latex paint. Exterior walls are 11.4-cm thick plywood panels consisting of two outer sections of plywood insulated with fiber glass batts. The ceiling is of similar construction with 17.1-cm thick panels. Attached to the room entrance is an anteroom equipped with a HEPA-filtered air shower to reduce mixing of air resulting from entering and exiting during experiments. The room is equipped with a computer-controlled heating, ventilation, and cooling system. Temperature, relative humidity, air flow, and room pressure can be continuously monitored by probes located in the room and air handling system components. Several research projects have been conducted using this room including monitoring the potential for airborne glass fibers released from rigid fibrous ductboard, comparisons of commercially available samplers for monitoring of airborne fungal spores, and a study on the efficacy of vacuum bags to minimize dispersal of particles, including fungal spores from fungal-contaminated carpet. During studies designed to monitor airborne fiberglass, air samples were taken in the room serviced by new rigid fibrous glass ductwork, and the results were compared to those obtained in the room with bare metal ductwork installed. Monitoring of airborne fungal spores using the Andersen six-stage sampler, the high flow Spiral Biotech sampler, the Biotest RCS Plus sampler, and the Burkard spore trap sampler was performed following the release of Penicillium spores into the room through the supply register. Dispersal of carpet-associated particles and fungal spores was measured after vacuuming using conventional cellulose vacuum bags in comparison to recently developed bags.

  15. Chemical speciation of lead dust associated with primary lead smelting.

    PubMed Central

    Spear, T M; Svee, W; Vincent, J H; Stanisich, N

    1998-01-01

    The research presented in this article assessed geochemical factors relating to dust produced during primary lead smelting. Bulk dust samples and size-selective airborne dust samples were collected from four areas of a primary lead smelter and analyzed by X-ray diffraction and sequential chemical extraction. X-ray diffraction showed that the smelter dusts were composed primarily of sulfides, oxides, sulfates, and silicates of metal ores, with galena being the primary dust component. Sequential extraction revealed the solubility of lead compounds at less than 7% in the exchangeable and mildly acidic steps for the bulk dusts collected from four smelter areas. The later steps of the extraction procedure were more effective in dissolving the lead compounds associated with the bulk dust samples, with 43%, 26%, and 8% of the total lead, in the ore storage, sinter, and blast/dross smelter areas, respectively, being extracted in the residual step. Sequential extraction of coarse airborne dust samples from the ore storage and sinter plant showed that 1.2% and 4.1% of the total lead, respectively, was exchangeable. The finer particle size fractions from these areas of the smelter showed higher percentages of exchangeable lead. Of the course airborne dust from the blast/dross furnace processes, 65% of the total lead was exchangeable. However, the largest percentage of lead from these areas was associated with the finer particle-size fractions. If lead bioavailability is related to its solubility as determined through sequential extraction, the health hazards associated with lead exposure may be appreciably enhanced in the blast and dross furnace processes. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:9721256

  16. Sequential digestion for measuring leachable and total lead in the same sample of dust or paint chips by ICP-MS.

    PubMed

    Le Bot, Barbara; Arcelin, Claire; Briand, Emmanuel; Glorennec, Philippe

    2011-01-01

    House lead exposure is generally assessed using total lead, except in France, where acid-leachable lead is used for routine regulatory purposes. In order to allow an international comparison of French lead dust contamination, a sequential digestion protocol is developed to determine both leachable and total lead on the same sample with a two-step digestion stage: firstly, hydrochloric acid is added to the sample at 37°C to solubilize leachable lead; then nitric acid is added to an aliquot at 95°C to solubilize residual (i.e., non-leachable) lead. Both sample fractions are analyzed with inductively coupled plasma mass spectrometry (ICP-MS). The sum of the two fractions allows to determine total lead. This new protocol has been tested with wiped dust (n = 111) and paint chip (n = 46) samples collected in houses (n = 16). The leachability of lead ranged from 63 to 100% in dust and from 4 to 100% in paint. These findings confirm the strong variability of lead leachability in houses samples and thus the importance of considering it for lead poisoning prevention. This double determination of leachable and total lead for each wiped dust or paint sample appears to be a reproducible, simple, low-cost protocol and thus a useful tool for international comparison of house dust lead contamination. PMID:21104496

  17. Modeling air quality during the California Regional PM 10/PM 2.5 Air Quality Study (CPRAQS) using the UCD/CIT source-oriented air quality model - Part III. Regional source apportionment of secondary and total airborne particulate matter

    NASA Astrophysics Data System (ADS)

    Ying, Qi; Lu, Jin; Kleeman, Michael

    A comprehensive air quality modeling project was carried out to simulate regional source contributions to secondary and total (=primary + secondary) airborne particle concentrations in California's Central Valley. A three-week stagnation episode lasting from December 15, 2000 to January 7, 2001, was chosen for study using the air quality and meteorological data collected during the California Regional PM 10/PM 2.5 Air Quality Study (CRPAQS). The UCD/CIT mechanistic air quality model was used with explicit decomposition of the gas phase reaction chemistry to track source contributions to secondary PM. Inert artificial tracers were used with an internal mixture representation to track source contributions to primary PM. Both primary and secondary source apportionment calculations were performed for 15 size fractions ranging from 0.01 to 10 μm particle diameters. Primary and secondary source contributions were resolved for fugitive dust, road dust, diesel engines, catalyst equipped gasoline engines, non-catalyst equipped gasoline engines, wood burning, food cooking, high sulfur fuel combustion, and other anthropogenic sources. Diesel engines were identified as the largest source of secondary nitrate in central California during the study episode, accounting for approximately 40% of the total PM 2.5 nitrate. Catalyst equipped gasoline engines were also significant, contributing approximately 20% of the total secondary PM 2.5 nitrate. Agricultural sources were the dominant source of secondary ammonium ion. Sharp gradients of PM concentrations were predicted around major urban areas. The relative source contributions to PM 2.5 from each source category in urban areas differ from those in rural areas, due to the dominance of primary OC in urban locations and secondary nitrate in the rural areas. The source contributions to ultra-fine particle mass PM 0.1 also show clear urban/rural differences. Wood smoke was found to be the major source of PM 0.1 in urban areas while

  18. Haul road dust control

    SciTech Connect

    Reed, W.R.; Organiscak, J.A.

    2007-10-15

    A field study was conducted to measure dust from haul trucks at a limestone quarry and a coal preparation plant waste hauling operation. The study found that primarily wind, distance and road treatment conditions notably affected the dust concentrations at locations next to, 50 ft from, and 100 ft away from the unpaved haulage road. Airborne dust measured along the unpaved haul road showed that high concentrations of fugitive dust can be generated with these concentrations rapidly decreasing to nearly background levels within 100 ft of the road. Instantaneous respirable dust measurements illustrated that the trucks generate a real-time dust cloud that has a peak concentration with a time-related decay rate as the dust moves past the sampling locations. The respirable dust concentrations and peak levels were notably diminished as the dust cloud was transported, diluted, and diffused by the wind over the 100 ft distance from the road. Individual truck concentrations and peak levels measured next to the dry road surface test section were quite variable and dependent on wind conditions, particularly wind direction, with respect to reaching the sampling location. The vast majority of the fugitive airborne dust generated from unpaved and untreated haulage roads was non-respirable. 6 figs.

  19. Impact of the Saharan dust outbreaks on the ambient levels of total suspended particles (TSP) in the marine boundary layer (MBL) of the Subtropical Eastern North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Alonso-Pérez, S.; Cuevas, E.; Querol, X.; Viana, M.; Guerra, J. C.

    Six years (1998-2003) of measurements of ambient air concentrations of total suspended particulate (TSP) measured at a rural background monitoring station in Tenerife (Canary Islands), the El Río station (ER, 28°08'35″N, 16°39'20″W, 500 m a.s.l.) were studied. African dust outbreaks were objectively identified using a new quantitative tool, called the African Index. This index indicates the percentage of time that an air mass remained over an African region at one of three possible height intervals of the lower troposphere. After identifying these episodes, a study of the background TSP levels at the ER station and of direct and indirect (those which cause vertical deposition of dust) African air mass intrusion impacts was performed. Taking into account both direct and indirect episodes, a total of 322 days of African dust intrusion were objectively identified (a mean of 54 episodes per year) in the period 1998-2003, some of them caused by "transition episodes" or "return African air masses". A subjective method confirmed that 256 of these days were caused by direct impacts of African dust on the ER station. A mean TSP value of 21.6 μg m -3 was found at the station during this period. All the episodes occurred when the TSP concentration was >28.5 μg m -3. The TSP background (˜14 μg m -3) can be assumed to be representative of the MBL of the Eastern North Atlantic subtropical region. The highest number of dust gravitational settlement (or indirect) episodes occurs in summer, but the highest contribution of these episodes to the TSP levels is in March with a monthly mean TSP contribution of up to 30.5 μg m -3.

  20. Pneumoconiosis, lung function and exposure to airborne dust: epidemiological research to compare responses of working coalminers with responses of ex-miners. Part 2. Final report

    SciTech Connect

    Soutar, C.A.; Maclaren, W.; Hurley, F.; Murdoch, R.; Hadden, G.

    1982-03-01

    The relationship between dust exposure and disease for miners was compared with that for ex-miners, in order to determine whether relationships found in other studies on miners alone could be applied to both groups. 17,738 men examined in the 1950s were followed up approximately 22 years later. Sixty one per cent of the survivors were examined, being 40% of the original sample. Records were made of respiratory symptoms, smoking habit, lung spirometry and chest radiograph findings. Radiographs were interpreted according to the International Labour Office Classification of Pneumoconiosis. Lifetime dust exposure was calculated for each subject. The dust/disease relationship was found to be the same for both groups. Ex-miners were found to have more pneumoconiosis and fibrosis and to be in worse health than miners. Pneumoconiosis progression was shown to be related to continued dust exposure; fibrosis progression was related to the presence of dust in the lungs. Dust exposure was shown to cause a mainly restrictive pattern of lung disease in contrast to the obstructive pattern caused by smoking. Colliery-related differences were found in lung disease which it was felt needed further investigation.

  1. An Assessment of the Surface Longwave Direct Radiative Effect of Airborne Dust in Zhangye China During the Asian Monsoon Year Field Experiment (2008)

    NASA Technical Reports Server (NTRS)

    Hansell, Richard A.; Tsay, Si-Chee; Hsu, N. Christina; Ji, Qiang; Bell, Shaun W.; Holben, Brent N.; Ellsworth, Welton J.; Roush, Ted L.; Zhang, Wu; Huang, J.; Li, Zhanquing; Chen, Hongbin

    2012-01-01

    Tiny suspensions of solid particles or liquid droplets, called aerosols, hover in earth's atmosphere and can be found over just about anywhere including oceans, deserts, vegetated areas, and other global regions. Aerosols come in a variety of sizes, shapes, and compositions which depend on such factors as their origin and how long they have been in the atmosphere (i.e., their residence time). Some of the more common types of aerosols include mineral dust and sea salt which get lifted from the desert and ocean surfaces, respectively by mechanical forces such as strong winds. Depending on their size, aerosols will either fall out gravitationally, as in the case of larger particles, or will remain resident in the atmosphere where they can undergo further change through interactions with other aerosols and cloud particles. Not only do aerosols affect air quality where they pose a health risk, they can also perturb the distribution of radiation in the earth-atmosphere system which can inevitably lead to changes in our climate. One aerosol that has been in the forefront of many recent studies, particularly those examining its radiative effects, is mineral dust. The large spatial coverage of desert source regions and the fact that dust can radiatively interact with such a large part of the electromagnetic spectrum due to its range in particle size, makes it an important aerosol to study. Dust can directly scatter and absorb solar and infrared radiation which can subsequently alter the amount of radiation that would otherwise be present in the absence of dust at any level of the atmosphere like the surface. This is known as radiative forcing. At the surface dust can block incoming solar energy, however at infrared wavelengths, dust acts to partially compensate the solar losses. Evaluating the solar radiative effect of dust aerosols is relatively straightforward due in part to the relatively large signal-to-noise ratio in the measurements. At infrared wavelengths, on the

  2. Deposition Rates and Characterization of Arabian Mineral Dust

    NASA Astrophysics Data System (ADS)

    Puthan Purakkal, J.; Stenchikov, G. L.; Engelbrecht, J. P.

    2015-12-01

    Airborne mineral dust directly and indirectly impacts on global climate, continental and marine biochemistry, human and animal health, agriculture, equipment, and visibility. Annual global dust emissions are poorly known with estimates differing by a factor of at least two. Local dust emission and deposition rates are even less quantified. Dust deposition rate is a key parameter, which helps to constrain the modeled dust budget of the atmosphere. However, dust deposition remains poorly known, due to the limited number of reliable measurements. Simulations and satellite observations suggest that coastal dusts contribute substantially to the total deposition flux into the Red Sea. Starting December 2014, deposition samplers, both the "frisbee" type, and passive samplers for individual particle scanning electron microscopy were deployed at King Abdullah University of Science and Technology (KAUST), along the Red Sea in Saudi Arabia. Sampling periods of one month were adopted. The deposition rates range from 3 g m-2 month-1 for fair weather conditions to 23 g m-2 month-1 for high dust events. The X-ray diffraction (XRD) analyses of deposited dust samples show mineralogical compositions different from any of the parent soils, the former consisting mainly of gypsum, calcite, and smaller amounts of albite, montmorillonite, chlorite, quartz and biotite. The deposited dust samples on the other hand contain more gypsum and less quartz than the previously collected soil samples. This presentation discusses the results from XRD, chemical analysis and SEM-based individual particle analysis of the soils and the deposited dust samples. The monthly dust accumulation rates and their seasonal and spatial variability are compared with the regional model predictions. Data from this study provide an observational basis for validating the regional dust mass balance along the Arabian Red Sea coastal plain.

  3. Deriving an atmospheric budget of total organic bromine using airborne in situ measurements from the western Pacific area during SHIVA

    NASA Astrophysics Data System (ADS)

    Sala, S.; Bönisch, H.; Keber, T.; Oram, D. E.; Mills, G.; Engel, A.

    2014-07-01

    During the recent SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) project an extensive data set of all halogen species relevant for the atmospheric budget of total organic bromine was collected in the western Pacific region using the Falcon aircraft operated by the German Aerospace agency DLR (Deutsches Zentrum für Luft- und Raumfahrt) covering a vertical range from the planetary boundary layer up to the ceiling altitude of the aircraft of 13 km. In total, more than 700 measurements were performed with the newly developed fully automated in situ instrument GHOST-MS (Gas chromatograph for the Observation of Tracers - coupled with a Mass Spectrometer) by the Goethe University of Frankfurt (GUF) and with the onboard whole-air sampler WASP with subsequent ground-based state-of-the-art GC / MS analysis by the University of East Anglia (UEA). Both instruments yield good agreement for all major (CHBr3 and CH2Br2) and minor (CH2BrCl, CHBrCl2 and CHBr2Cl) VSLS (very short-lived substances), at least at the level of their 2σ measurement uncertainties. In contrast to the suggestion that the western Pacific could be a region of strongly increased atmospheric VSLS abundance (Pyle et al., 2011), we found only in the upper troposphere a slightly enhanced amount of total organic bromine from VSLS relative to the levels reported in Montzka and Reimann et al. (2011) for other tropical regions. From the SHIVA observations in the upper troposphere, a budget for total organic bromine, including four halons (H-1301, H-1211, H-1202, H-2402), CH3Br and the VSLS, is derived for the level of zero radiative heating (LZRH), the input region for the tropical tropopause layer (TTL) and thus also for the stratosphere. With the exception of the two minor VSLS CHBrCl2 and CHBr2Cl, excellent agreement with the values reported in Montzka and Reimann et al. (2011) is found, while being slightly higher than previous studies from our group based on balloon-borne measurements.

  4. [Chemical characteristics in airborne particulate matter (PM10) during a high pollution spring dust storm episode in Beijing, Tianjin and Zhangjiakou, China].

    PubMed

    Liu, Qing-Yang; Liu, Yan-Ju; Zhao, Qiang; Zhang, Ting-Ting; Zhang, Mei-Gen; Wang, Cun-Mei

    2014-08-01

    Atmospheric particulate matter (PM10) was collected at sampling locations of Beijing, Tianjin and Zhangjiakou from April 1st to May 24th, 2012. The mass concentration of PM10 and concentrations of ions, elemental carbon (EC) and organic carbon (OC) in PM10 were determined. The results showed that average mass concentration of PM10 were 233.82 microg x m(-3) for Beijing, 279.64 microg x (-3) for Tianjin and 238.13 microg x m(-3) for Zhangjiakou, respectively. Backward trajectories results confirmed dust storm events occurred from 27th to 29th April. The maximum daily mass concentrations of PM10 were 755.54 microg x m(-3) for Beijing, 831.32 microg x m(-3) for Tianjin and 582.82 microg x m(-3) for Zhangjiakou during the dust storm episodes, respectively. Water-soluble ions (Na+, NH4+, Ca2+, K+, F-, Cl-, NO3-, SO4(2-)), organic carbon (OC) and elemental carbon (EC) were major aerosol components during the dust storm episodes, and their concentrations were higher than non-dust storm days. In addition, dust storm caused increases in NO3-, SO4(2-) and enrichment of secondary organic carbon (SOC) concentration relative to OC, suggesting that chemical reaction processes involving gas-particle conversion occurred during the long-distance transport of aerosol particles. PMID:25338350

  5. Integration for Airborne Dust Prediction Systems and Vegetation Phenology to Track Pollen for Asthma Alerts in Public Health Decision Support Systems

    NASA Technical Reports Server (NTRS)

    Luvall, J. C.; Sprigg, W. A.; Nickovic, S.; Huete, A.; Budge, A.; Flowers, L.

    2008-01-01

    The objective of the program is to assess the feasibility of combining a dust transport model with MODIS derived phenology to study pollen transport for integration with a public health decision support system. The use of pollen information has specifically be identified as a critical need by the New Mexico State Health department for inclusion in the Environmental Public Health Tracking (EPHT) program. Material and methods: Pollen can be transported great distances. Local observations of plan phenology may be consistent with the timing and source of pollen collected by pollen sampling instruments. The Dust REgional Atmospheric Model (DREAM) is an integrated modeling system designed to accurately describe the dust cycle in the atmosphere. The dust modules of the entire system incorporate the state of the art parameterization of all the major phases of the atmospheric dust life such as production, diffusion, advection, and removal. These modules also include effects of the particles size distribution on aerosol dispersion. The model was modified to use pollen sources instead of dust. Pollen release was estimated based on satellite-derived phenology of key plan species and vegetation communities. The MODIS surface reflectance product (MOD09) provided information on the start of the plant growing season, growth stage, and pollen release. The resulting deterministic model is useful for predicting and simulating pollen emission and downwind concentration to study details of phenology and meteorology and their dependencies. The proposed linkage in this project provided critical information on the location timing and modeled transport of pollen directly to the EPHT> This information is useful to support the centers for disease control and prevention (CDC)'s National EPHT and the state of New Mexico environmental public health decision support for asthma and allergies alerts.

  6. Dust Measurements in Tokamaks

    SciTech Connect

    Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M

    2008-04-23

    Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 {micro}m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

  7. Domestic exposure to fungi and total serum IgE levels in asthmatic children.

    PubMed

    Su, Huey-Jen Jenny; Wu, Pei-Chih; Lei, Huan-Yao; Wang, Jiu-Yao

    2005-08-14

    We measured the number of airborne, viable fungi and house dust mite (HDM) allergen levels in the homes of a group of asthmatic children. Blood samples were drawn and the amounts of total and specific serum IgE were determined. The association between the number of fungal colonies, dust mite allergen exposure, and specific and total IgE was evaluated. The number of viable airborne fungi was high (20,543 CFU/m(3)) in those investigated houses. Der p1 concentrations on child's mattress exceeding 2 microg/g were found in 78.6% of the houses. A quantitative dose-response relationship was demonstrated between the exposure to viable, airborne molds and the amount of total IgE (r = 0.4399 and P = .0249) and the level was further increased in children with coexposure to viable fungi and HDM. PMID:16106103

  8. Airborne Measurements of Nitric Oxide, Nitrogen Dioxide, Ozone, and Total Reactive Nitrogen During the NASA Global Tropospheric Experiment

    NASA Technical Reports Server (NTRS)

    Carroll, Mary Anne

    2000-01-01

    Fabrication of the University of Michigan Multichannel Chemiluminescence Instrument (UMMCI) was completed in early 1996 and the instrument participated in test flights on the NASA P3B at Wallops Island prior to integration and deployment for the PEM- Tropics A Mission. The UMMCI consists of 4 channels for simultaneous measurements of ozone and NO with the option for measurements of NO2 and NOy (total reactive nitrogen) when converters are placed upstream of the NO channels. Each NO channel consists of a zeroing volume and reaction vessel, while the ozone channel consists of an ozone catalyst (or scrubber) trap that is not in line with the reaction vessel. The detectors in all for channels are Hamamatsu photomultiplier tubes, which are followed by pulse amplifier discriminators on the NO channels and an electrometer on the ozone channel. Schematics of the Detector Module and NOx/03 Probe Insert and Diagrams of the Control and Data System, the Power and Ground System, the Gas Flow System, and the Calibration System Flow are attached. Intercomparisons were conducted with G. Gregory, NASA/Langley, during the test flights (following prior calibration of the ozone generator/calibrators at the Wallops Long-Path Absorption facility). Initial test results appeared to be reasonable, and instrument characterization studies proceeded for the ozone channel and the 3 NO channels until deployment for integration for the PEM-Tropics Mission. Ozone data was obtained for Flights #4, and 6-2 1, and finalized data was submitted to the PEM-Tropics Data Archive and to the Science Team during the April 1997 Data Workshop. Although it initially appeared that the instrument sensitivity varied, subsequent tests showed that this was the fault of a leak in the ozone calibrator. In fact; the instrument sensitivity has not been observed to vary in a large number of tests over the years since the PEM-Tropics mission. We have, therefore, a very high degree of confidence in the O3 data that we

  9. Characterizing Dust from Cutting Corian®, a Solid-Surface Composite Material, in a Laboratory Testing System.

    PubMed

    Qi, Chaolong; Echt, Alan; Murata, Taichi K

    2016-06-01

    We conducted a laboratory test to characterize dust from cutting Corian(®), a solid-surface composite material, with a circular saw. Air samples were collected using filters and direct-reading instruments in an automatic laboratory testing system. The average mass concentrations of the total and respirable dusts from the filter samples were 4.78±0.01 and 1.52±0.01mg cm(-3), respectively, suggesting about 31.8% mass of the airborne dust from cutting Corian(®) is respirable. Analysis of the metal elements on the filter samples reveals that aluminum hydroxide is likely the dominant component of the airborne dust from cutting Corian(®), with the total airborne and respirable dusts containing 86.0±6.6 and 82.2±4.1% aluminum hydroxide, respectively. The results from the direct-reading instruments confirm that the airborne dust generated from cutting Corian(®) were mainly from the cutting process with very few particles released from the running circular saw alone. The number-based size distribution of the dusts from cutting Corian(®) had a peak for fine particles at 1.05 µm with an average total concentration of 871.9 particles cm(-3), and another peak for ultrafine particles at 11.8nm with an average total concentration of 1.19×10(6) particles cm(-3) The small size and high concentration of the ultrafine particles suggest additional investigation is needed to study their chemical composition and possible contribution to pulmonary effect. PMID:26872962

  10. Dust storms - Great Plains, Africa, and Mars

    NASA Technical Reports Server (NTRS)

    Woiceshyn, P. M.; Krauss, R.; Minzner, R.; Shenk, W.

    1977-01-01

    Dust storms in the Great Plains of North America and in the Sahara Desert are analyzed on the basis of imagery from the geostationary Synchronous Meteorological Satellite. The onset time, location and areal extent of the dust storms are studied. Over land surfaces, contrast enhancement techniques are needed to obtain an adequate picture of dust storm development. In addition, infrared imagery may provide a means of monitoring the strong horizontal temperature gradients characteristic of dust cloud boundaries. Analogies between terrestrial dust storms and the airborne rivers of dust created by major Martian dust storms are also drawn.

  11. Some stars are totally metal: a new mechanism driving dust across star-forming clouds, and consequences for planets, stars, and galaxies

    SciTech Connect

    Hopkins, Philip F.

    2014-12-10

    Dust grains in neutral gas behave as aerodynamic particles, so they can develop large local density fluctuations entirely independent of gas density fluctuations. Specifically, gas turbulence can drive order-of-magnitude 'resonant' fluctuations in the dust density on scales where the gas stopping/drag timescale is comparable to the turbulent eddy turnover time. Here we show that for large grains (size ≳ 0.1 μm, containing most grain mass) in sufficiently large molecular clouds (radii ≳ 1-10 pc, masses ≳ 10{sup 4} M {sub ☉}), this scale becomes larger than the characteristic sizes of prestellar cores (the sonic length), so large fluctuations in the dust-to-gas ratio are imprinted on cores. As a result, star clusters and protostellar disks formed in large clouds should exhibit significant abundance spreads in the elements preferentially found in large grains (C, O). This naturally predicts populations of carbon-enhanced stars, certain highly unusual stellar populations observed in nearby open clusters, and may explain the 'UV upturn' in early-type galaxies. It will also dramatically change planet formation in the resulting protostellar disks, by preferentially 'seeding' disks with an enhancement in large carbonaceous or silicate grains. The relevant threshold for this behavior scales simply with cloud densities and temperatures, making straightforward predictions for clusters in starbursts and high-redshift galaxies. Because of the selective sorting by size, this process is not necessarily visible in extinction mapping. We also predict the shape of the abundance distribution—when these fluctuations occur, a small fraction of the cores may actually be seeded with abundances Z ∼ 100 (Z) such that they are almost 'totally metal' (Z ∼ 1)! Assuming the cores collapse, these totally metal stars would be rare (1 in ∼10{sup 4} in clusters where this occurs), but represent a fundamentally new stellar evolution channel.

  12. 30 CFR 33.32 - Determination of dust concentration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Determination of dust concentration. 33.32... MINES Test Requirements § 33.32 Determination of dust concentration. (a) Concentrations of airborne dust... microscopic technique shall be employed in determining concentrations of dust in terms of millions...

  13. 30 CFR 33.32 - Determination of dust concentration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Determination of dust concentration. 33.32... MINES Test Requirements § 33.32 Determination of dust concentration. (a) Concentrations of airborne dust... microscopic technique shall be employed in determining concentrations of dust in terms of millions...

  14. 30 CFR 33.32 - Determination of dust concentration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Determination of dust concentration. 33.32... MINES Test Requirements § 33.32 Determination of dust concentration. (a) Concentrations of airborne dust... microscopic technique shall be employed in determining concentrations of dust in terms of millions...

  15. 30 CFR 33.32 - Determination of dust concentration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Determination of dust concentration. 33.32... MINES Test Requirements § 33.32 Determination of dust concentration. (a) Concentrations of airborne dust... microscopic technique shall be employed in determining concentrations of dust in terms of millions...

  16. 30 CFR 33.32 - Determination of dust concentration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Determination of dust concentration. 33.32... MINES Test Requirements § 33.32 Determination of dust concentration. (a) Concentrations of airborne dust... microscopic technique shall be employed in determining concentrations of dust in terms of millions...

  17. The Effect of Dust Storm on the Microbial Quality of Ambient Air in Sanandaj: A City Located in the West of Iran

    PubMed Central

    Nourmoradi, Heshmatollah; Moradnejadi, Kambiz; Moghadam, Fazel Mohammadi; Khosravi, Behdad; Hemati, Lida; Khoshniyat, Ramin; Kazembeigi, Farogh

    2015-01-01

    Background and Aims: The presence of pathogenic microorganisms in the dust storm can cause diseases such as Asthma, Pneumonia, and respiratory infections. The aim of this study was to determine the relationship between air-borne particles with airborne microorganisms in normal and dusty days in Sanandaj, a city located in the west of Iran. Materials and Methods: Air sampling was conducted during the normal and dusty days through Andersen single-stage impactor (28.3 L/min) for 2.5 min. Air particles concentration (PM10) was measured daily and microbial sampling was also conducted on every six days and on the dusty days. Finally, the data was analyzed by SPSS-16 (ANOVA and paired T-tests). Results: The concentration of airborne microorganisms (bacteria and fungi) was increased by an increase of the airborne particles. Particles concentration in May, June and July (twice per month) was more than of the standard value. The predominant species of bacteria and fungi during the occurrence of Dust storm was Bacillus spp. (56.2% of total bacteria) and Mycosporium spp. (28.6% of total fungi), respectively. Discussion and Conclusion: The results showed that the number of airborne microorganisms (bacteria and fungi) increased during the dust storm. Therefore, the microorganisms in the dust storm can cause biological harmful effects on human health. PMID:26153211

  18. Towards the Development of a Low Cost Airborne Sensing System to Monitor Dust Particles after Blasting at Open-Pit Mine Sites

    PubMed Central

    Alvarado, Miguel; Gonzalez, Felipe; Fletcher, Andrew; Doshi, Ashray

    2015-01-01

    Blasting is an integral part of large-scale open cut mining that often occurs in close proximity to population centers and often results in the emission of particulate material and gases potentially hazardous to health. Current air quality monitoring methods rely on limited numbers of fixed sampling locations to validate a complex fluid environment and collect sufficient data to confirm model effectiveness. This paper describes the development of a methodology to address the need of a more precise approach that is capable of characterizing blasting plumes in near-real time. The integration of the system required the modification and integration of an opto-electrical dust sensor, SHARP GP2Y10, into a small fixed-wing and multi-rotor copter, resulting in the collection of data streamed during flight. The paper also describes the calibration of the optical sensor with an industry grade dust-monitoring device, Dusttrak 8520, demonstrating a high correlation between them, with correlation coefficients (R2) greater than 0.9. The laboratory and field tests demonstrate the feasibility of coupling the sensor with the UAVs. However, further work must be done in the areas of sensor selection and calibration as well as flight planning. PMID:26274959

  19. Towards the Development of a Low Cost Airborne Sensing System to Monitor Dust Particles after Blasting at Open-Pit Mine Sites.

    PubMed

    Alvarado, Miguel; Gonzalez, Felipe; Fletcher, Andrew; Doshi, Ashray

    2015-01-01

    Blasting is an integral part of large-scale open cut mining that often occurs in close proximity to population centers and often results in the emission of particulate material and gases potentially hazardous to health. Current air quality monitoring methods rely on limited numbers of fixed sampling locations to validate a complex fluid environment and collect sufficient data to confirm model effectiveness. This paper describes the development of a methodology to address the need of a more precise approach that is capable of characterizing blasting plumes in near-real time. The integration of the system required the modification and integration of an opto-electrical dust sensor, SHARP GP2Y10, into a small fixed-wing and multi-rotor copter, resulting in the collection of data streamed during flight. The paper also describes the calibration of the optical sensor with an industry grade dust-monitoring device, Dusttrak 8520, demonstrating a high correlation between them, with correlation coefficients (R(2)) greater than 0.9. The laboratory and field tests demonstrate the feasibility of coupling the sensor with the UAVs. However, further work must be done in the areas of sensor selection and calibration as well as flight planning. PMID:26274959

  20. Investigation of the effect of atmospheric dust on the determination of total ozone from the earth's ultraviolet reflectivity measurements, 2

    NASA Technical Reports Server (NTRS)

    Dave, J. V.

    1976-01-01

    Results of a detailed analysis of the simulated measurements for the BUV (Nimbus-4) configuration are described by using a total-ozone estimation procedure. A set of recommendations are discussed for increasing the accuracy and confidence level of the total ozone values estimated from the measurements of the earth's ultraviolet reflectivity at five different wavelengths (BUV configuration). A tentative procedure is also considered for the estimation of total ozone from measurements of reflectivity at six different wavelengths specified in the SBUV/TOMS (Nimbus-G) configuration.

  1. Dust, Climate, and Human Health

    NASA Astrophysics Data System (ADS)

    Maynard, N. G.

    2003-12-01

    Air pollution from both natural and anthropogenic causes is considered to be one of the most serious world-wide environment-related health problems, and is expected to become worse with changes in the global climate. Dust storms from the atmospheric transport of desert soil dust that has been lifted and carried by the winds - often over significant distances - have become an increasingly important emerging air quality issue for many populations. Recent studies have shown that the dust storms can cause significant health impacts from the dust itself as well as the accompanying pollutants, pesticides, metals, salt, plant debris, and other inorganic and organic materials, including viable microorganisms (bacteria, viruses and fungi). For example, thousands of tons of Asian desert sediments, some containing pesticides and herbicides from farming regions, are commonly transported into the Arctic during dust storm events. These chemicals have been identified in animal and human tissues among Arctic indigenous populations. Millions of tons of airborne desert dust are being tracked by satellite imagery, which clearly shows the magnitude as well as the temporal and spatial variability of dust storms across the "dust belt" regions of North Africa, the Middle East, and China. This paper summarizes the most recent findings on the effects of airborne desert dust on human health as well as potential climate influences on dust and health

  2. Dust, Climate, and Human Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2003-01-01

    Air pollution from both natural and anthropogenic causes is considered to be one of the most serious world-wide environment-related health problems, and is expected to become worse with changes in the global climate. Dust storms from the atmospheric transport of desert soil dust that has been lifted and carried by the winds - often over significant distances - have become an increasingly important emerging air quality issue for many populations. Recent studies have shown that the dust storms can cause significant health impacts from the dust itself as well as the accompanying pollutants, pesticides, metals, salt, plant debris, and other inorganic and organic materials, including viable microorganisms (bacteria, viruses and fungi). For example, thousands of tons of Asian desert sediments, some containing pesticides and herbicides from farming regions, are commonly transported into the Arctic during dust storm events. These chemicals have been identified in animal and human tissues among Arctic indigenous populations. Millions of tons of airborne desert dust are being tracked by satellite imagery, which clearly shows the magnitude as well as the temporal and spatial variability of dust storms across the "dust belt" regions of North Africa, the Middle East, and China. This paper summarizes the most recent findings on the effects of airborne desert dust on human health as well as potential climate influences on dust and health.

  3. Dust, Climate, and Human Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2003-01-01

    Air pollution from both natural and anthropogenic causes is considered to be one of the most serious world-wide environment-related health problems, and is expected to become worse with changes in the global climate. Dust storms from the atmospheric transport of desert soil dust that has been lifted and carried by the winds - often over significant distances - have become an increasingly important emerging air quality issue for many populations. Recent studies have shown that the dust storms can cause significant health impacts from the dust itself as well as the accompanying pollutants, pesticides, metals, salt, plant debris, and other inorganic and organic materials, including viable microorganisms (bacteria, viruses and fungi). For example, thousands of tons of Asian desert sediments, some containing pesticides and herbicides from farming regions, are commonly transported into the Arctic during dust storm events. These chemicals have been identified in animal and human tissues among Arctic indigenous populations. Millions of tons of airborne desert dust are being tracked by satellite imagery, which clearly shows the magnitude as well as the temporal and spatial variability of dust storms across the "dust belt" regions of North Africa, the Middle East, and China. Ths paper summarizes the most recent findings on the effects of airborne desert dust on human health as well as potential climate influences on dust and health.

  4. Recovery of Atmospheric Water Vapor Total Column Abundance from Imaging Spectrometer Data Around 940 nm - Sensitivity Analysis and Application to Airborne Visible/Infrared Imaging Spectrometer (AVIRI

    NASA Technical Reports Server (NTRS)

    Carrere, V.; Conel, J. E.

    1993-01-01

    Twosimple techniques to retrieve path precipitable water fromthe Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) high spectral resolution radiance data (Continuum Interpolated Band Ratio, CIBR, and Narrow/Wide Ratio, N/W), using the 940 nm water absorption band, are compared.

  5. Size distributions of mineral aerosols and dust emission flux observed over Horqin Sandy Land area in northern China

    NASA Astrophysics Data System (ADS)

    Li, X.; Zhang, H. S.

    2013-01-01

    Size distribution of mineral aerosols is of primary importance in determining their residence time in atmosphere, transport patterns, removal mechanisms as well as their effects on climate and human health. This study aims to obtain dust particle size distribution and size-resolved dust emission flux under different weather conditions over a sandy land area in northern China (Horqin Sandy Land, Inner Mongolia), using the observational data from Horqin sandstorm monitoring station in the spring of 2010 and 2012. Dust (PM20) mass concentration was measured by a 10-stage quartz crystal microbalance (QCM) cascade impactor. The statistical results indicate that finer dust particles (r ≤ 1.0 μm) take a large proportion of all PM20 concentration under clear-day conditions, while coarser dust particles (r ≥ 2.5 μm) concentration increased under dust-day conditions, with the peak occurring between 4-7 μm. The dust particle size distributions during the pre-dust-emission and dust-emission periods of a dust event on 7 April 2012 have similar features to the statistical results. During the dust event, the magnitude of dust emission flux of all sizes increased about one or two orders (0.1-10 μg m-2 s-1) as u* increase from 0.54 to 1.29 m s-1. The maximum total F value was about 43.0 μg m-2 s-1 and the maximum size-resolved F(Ddi) is 12.3 μg m-2 s-1 in 0.3-0.45 μm size bin when u* is 1.29 m s-1. Dust advection has effects on airborne dust size distribution, making the proportion of dust particles of different sizes more uniform, as observed in a non-local dust event on 19 April 2012.

  6. Airborne Measurements of Coarse Mode Aerosol Composition and Abundance

    NASA Astrophysics Data System (ADS)

    Froyd, K. D.; Murphy, D. M.; Brock, C. A.; Ziemba, L. D.; Anderson, B. E.; Wilson, J. C.

    2015-12-01

    Coarse aerosol particles impact the earth's radiative balance by direct scattering and absorption of light and by promoting cloud formation. Modeling studies suggest that coarse mode mineral dust and sea salt aerosol are the dominant contributors to aerosol optical depth throughout much of the globe. Lab and field studies indicate that larger aerosol particles tend to be more efficient ice nuclei, and recent airborne measurements confirm the dominant role of mineral dust on cirrus cloud formation. However, our ability to simulate coarse mode particle abundance in large scale models is limited by a lack of validating measurements above the earth's surface. We present airborne measurements of coarse mode aerosol abundance and composition over several mid-latitude, sub-tropical, and tropical regions from the boundary layer to the stratosphere. In the free troposphere the coarse mode constitutes 10-50% of the total particulate mass over a wide range of environments. Above North America mineral dust typically dominates the coarse mode, but biomass burning particles and sea salt also contribute. In remote environments coarse mode aerosol mainly consists of internally mixed sulfate-organic particles. Both continental and marine convection can enhance coarse aerosol mass through direct lofting of primary particles and by secondary accumulation of aerosol material through cloud processing.

  7. Dynamic Dust Accumulation and Dust Removal Observed on the Mars Exploration Rover Magnets

    NASA Technical Reports Server (NTRS)

    Bertelsen, P.; Bell, J. F., III; Goetz, W.; Gunnlaugsson, H. P.; Herkenhoff, K. E.; Hviid, S. F.; Johnson, J. R.; Kinch, K. M.; Knudsen, J. M.; Madsen, M. B.

    2005-01-01

    The Mars Exploration Rovers each carry a set of Magnetic Properties Experiments designed to investigate the properties of the airborne dust in the Martian atmosphere. It is a preferred interpretation of previous experiments that the airborne dust in the Martian atmosphere is primarily composed by composite silicate particles containing one or more highly magnetic minerals as a minor constituent. The ultimate goal of the magnetic properties experiments on the Mars Exploration Rover mission is to provide some information/ constraints on whether the dust is formed by volcanic, meteoritic, aqueous, or other processes. The first problem is to identify the magnetic mineral(s) in the airborne dust on Mars. While the overall results of the magnetic properties experiments are presented in, this abstract will focus on dust deposition and dust removal on some of the magnets.

  8. Assessment of Korean farmer's exposure level to dust in pig buildings.

    PubMed

    Kim, Ki Youn; Ko, Han Jong; Kim, Yoon Shin; Kim, Chi Nyon

    2008-01-01

    The purpose of the study was to assess Korean farmer's exposure level to dust in pig buildings and dust emissions by investigating airborne concentrations of total and respirable dust. Five main types of pig buildings operating currently in Korea were selected. For area air sampling, 30 sites per each building type were visited during spring (March-May) and autumn (September-November) seasons. For personal air sampling, concentrations of total and respirable dust were measured for 2-3 hours, during cleaning the pig building before the end of the daily shift, by attaching air sampling equipment near to the farmer's breathing zone. Measurement were taken for 8 hours, e.g. average daily work time (09:00-17:00), at 0.5 m above the floor at three locations on the central alley in the pig building. Emission rates of total and respirable dust were estimated by multiplying the mean concentration of total and respirable dust measured near the air outlet by the mean ventilation rate, and expressed either per area or per pig of live weight. The ranges of farmer's exposure level to total dust and respirable dust in the pig buildings were estimated as 0.6-6.7 mg m(-3) and 0.3-3.5 mg m(-3), respectively. The pig buildings operated with a deep-litter bed system showed the highest dust level while the naturally ventilated pig buildings with slats represented the lowest dust level (p<0.05). Emission rates ranged from 35-400 mg h(-1) m(-2) for total dust and from 4-40 mg h(-1) m(-2) for respirable dust, respectively, indicating a similar pattern for the distribution of exposure level. Korean farmers' exposure level to dust in all the pig buildings investigated was below the exposure limit value equal in Korea equal to 10 mg m(-3), while it exceeded the threshold limit values (TLVs) established in other developed countries. In comparison with previous studies performed in other countries, mean exposure level in the pig buildings of Korea was generally lower for total dust and higher

  9. Conveyor dust control

    SciTech Connect

    Goldbeck, L.

    1999-11-01

    In the past, three different approaches have been used to control dust arising at conveyor load zones. They are: Dust Containment consists of those mechanical systems employed to keep material inside the transfer point with the main material body. Dust Suppression systems increase the mass of suspended dust particles, allowing them to fall from the air stream. Dust Collection is the mechanical capture and return of airborne material after it becomes airborne from the main material body. Previously, these three approaches have always been seen as separate entities. They were offered by separate organizations competing in the marketplace. The three technologies vied for their individual piece of the rock, at the expense of the other technologies (and often at the expense of overall success). There have been considerable amounts of I`m better selling, as well as finger pointing at the other systems when problems arose. Each system claimed its own technology was the best, providing the most effective, most cost-efficient, most maintenance-free solution to fugitive material.

  10. Environmental Characterization of GLOBAL Sources of Atmospheric Soil DUST Identified with the NIMBUS 7 Total OZONE Mapping SPECTROMETER (toms) Absorbing Aerosol Product

    NASA Astrophysics Data System (ADS)

    Prospero, Joseph M.; Ginoux, Paul; Torres, Omar; Nicholson, Sharon E.; Gill, Thomas E.

    2002-02-01

    We use the Total Ozone Mapping Spectrometer (TOMS) sensor on the Nimbus 7 satellite to map the global distribution of major atmospheric dust sources with the goal of identifying common environmental characteristics. The largest and most persistent sources are located in the Northern Hemisphere, mainly in a broad "dust belt" that extends from the west coast of North Africa, over the Middle East, Central and South Asia, to China. There is remarkably little large-scale dust activity outside this region. In particular, the Southern Hemisphere is devoid of major dust activity. Dust sources, regardless of size or strength, can usually be associated with topographical lows located in arid regions with annual rainfall under 200-250 mm. Although the source regions themselves are arid or hyperarid, the action of water is evident from the presence of ephemeral streams, rivers, lakes, and playas. Most major sources have been intermittently flooded through the Quaternary as evidenced by deep alluvial deposits. Many sources are associated with areas where human impacts are well documented, e.g., the Caspian and Aral Seas, Tigris-Euphrates River Basin, southwestern North America, and the loess lands in China. Nonetheless, the largest and most active sources are located in truly remote areas where there is little or no human activity. Thus, on a global scale, dust mobilization appears to be dominated by natural sources. Dust activity is extremely sensitive to many environmental parameters. The identification of major sources will enable us to focus on critical regions and to characterize emission rates in response to environmental conditions. With such knowledge we will be better able to improve global dust models and to assess the effects of climate change on emissions in the future. It will also facilitate the interpretation of the paleoclimate record based on dust contained in ocean sediments and ice cores.

  11. Herschel PEP/HerMES: the redshift evolution (0 ≤ z ≤ 4) of dust attenuation and of the total (UV+IR) star formation rate density

    NASA Astrophysics Data System (ADS)

    Burgarella, D.; Buat, V.; Gruppioni, C.; Cucciati, O.; Heinis, S.; Berta, S.; Béthermin, M.; Bock, J.; Cooray, A.; Dunlop, J. S.; Farrah, D.; Franceschini, A.; Le Floc'h, E.; Lutz, D.; Magnelli, B.; Nordon, R.; Oliver, S. J.; Page, M. J.; Popesso, P.; Pozzi, F.; Riguccini, L.; Vaccari, M.; Viero, M.

    2013-06-01

    Using new homogeneous luminosity functions (LFs) in the far-ultraviolet (FUV) from VVDS and in the far-infrared (FIR) from Herschel/PEP and Herschel/HerMES, we studied the evolution of the dust attenuation with redshift. With this information, we were able to estimate the redshift evolution of the total (FUV + FIR) star formation rate density (SFRDTOT). By integrating SFRDTOT, we followed the mass building and analyzed the redshift evolution of the stellar mass density (SMD). This article aims at providing a complete view of star formation from the local Universe to z ~ 4 and, using assumptions on earlier star formation history, compares this evolution with previously published data in an attempt to draw a homogeneous picture of the global evolution of star formation in galaxies. Our main conclusions are that: 1) the dust attenuation AFUV is found to increase from z = 0 to z ~ 1.2 and then starts to decrease until our last data point at z = 3.6; 2) the estimated SFRD confirms published results to z ~ 2. At z > 2, we observe either a plateau or a small increase up to z ~ 3 and then a likely decrease up to z = 3.6; 3) the peak of AFUV is delayed with respect to the plateau of SFRDTOT and a probable origin might be found in the evolution of the bright ends of the FUV and FIR LFs; 4) using assumptions (exponential rise and linear rise with time) for the evolution of the star formation density from z = 3.6 to zform = 10, we integrated SFRDTOT and obtained a good agreement with the published SMDs. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  12. Concentration of lead, cadmium, and iron in sediment dust and total suspended particles before and after initialisation of integral production in iron and steel work plant Zenica.

    PubMed

    Prcanović, Halim; Duraković, Mirnes; Beganović, Sanela

    2012-06-01

    Poor air quality is a common fact for all areas with base industry. The city of Zenica was once the metallurgical centre of Ex-Yugoslavia and is therefore highly polluted at present. Air pollution peaked in 1987 when average concentration of pollutants was extremely high (daily average concentration of SO(2) was 1800 μg m(-3)). With the beginning of the war in 1992, integral production in the steel work plant was shut down, to be re-launched in 2008. Limit values for iron do not exist, but iron has been monitored in Zenica for the past 28 years because of the presence of steel works. Concentrations of cadmium and lead have also been measured because they are very much present in polluted areas with steel works. The concentration of mentioned elements in air deposit and total suspended particles before and after integral production in the steel work plant was re-launched is the subject of this paper. Total suspended particles were measured in two locations using German standard VDI 2463 Blatt 4. Sediment dust was measured in nine locations using Bergerhoff method. The concentration of iron, lead, and cadmium was performed in the chemical laboratory of the Metallurgical Institute "Kemal Kapetanović" Zenica using standard methods. Higher concentrations of these parameters during the period of integral production clearly point to the impact of steel works on Zenica valley. PMID:22728800

  13. Improve dust capture on your surface drill

    SciTech Connect

    Page, S.J.; Listak, J.M.; Reed, R.

    2008-09-15

    Researchers have developed a model to describe airborne respirable dust (ARD) generation on surface coal mine drills. By measuring a few basic parameters and using a graph, a drill operator or engineer can estimate the relative severity of drill dust emissions as well as how much of a reduction in ARD can be obtained by changing any given parameter. 4 refs., 2 figs.

  14. Comparison of coal mine dust size distributions and calibration standards for crystalline silica analysis.

    PubMed

    Page, Steven J

    2003-01-01

    Since 1982 standard calibration materials recommended for respirable crystalline silica analysis by the Mine Safety and Health Administration (MSHA) P7 Infrared Method and the National Institute for Occupational Safety and Health (NIOSH) X-ray Diffraction (XRD) Analytical Method 7500 have undergone minor changes in size distribution. However, a critical assumption has been made that the crystalline silica in ambient mine atmosphere respirable dust samples has also remained essentially unchanged in particle size distribution. Therefore, this work compared recent particle size distributions of underground coal mine dust and the silica component of these dusts with estimated aerodynamic particle size distributions of calibration standard materials MIN-U-SIL 5, Berkeley 5, and SRM 1878 used by two crystalline silica analysis techniques. Dust impactor sampling data for various locations in 13 underground coal mines were analyzed for the respirable mass median aerodynamic diameters. The data suggest that the MSHA P7 method will underestimate the silica content of the sample by at most 7.4% in the median size range 0.9 to 3.6 microm, and that it is unlikely one would obtain any significant error in the MSHA P7 method analysis when the method uses Berkeley 5, MIN-U-SIL 5, or SRM 1878 as a calibration standard material. The results suggest that the NIOSH Analytical Method 7500 would be more appropriate for a dust sample that is representative of the total (no cyclone classifier) rather than the respirable airborne dust, particularly because the mass fraction in the size range below 4 microm is usually a small percentage of the total airborne dust mass. However, NIOSH Analytical Method 7500 is likely to underestimate the silica content of an airborne respirable dust sample by only 5 to 10%. The results of this study also suggest that any changes that may have occurred in the median respirable size of airborne coal mine dust are not significant enough to cause any appreciable

  15. Impacts of Asian dust events on atmospheric fungal communities

    NASA Astrophysics Data System (ADS)

    Jeon, Eun Mi; Kim, Yong Pyo; Jeong, Kweon; Kim, Ik Soo; Eom, Suk Won; Choi, Young Zoo; Ka, Jong-Ok

    2013-12-01

    The composition of atmospheric fungi in Seoul during Asian dust events were assessed by culturing and by molecular methods such as mold specific quantitative PCR (MSQPCR) and internal transcribed spacer cloning (ITS cloning). Culturable fungal concentrations in the air were monitored from May 2008 to July 2011 and 3 pairs of ITS clone libraries, one during Asian dust (AD) day and the other during the adjacent non Asian dust (NAD) day for each pair, were constructed after direct DNA extraction from total suspended particles (TSP) samples. In addition, six aeroallergenic fungi in the atmosphere were also assessed by MSQPCR from October, 2009 to November, 2011. The levels of the airborne culturable fungal concentrations during AD days was significantly higher than that of NAD days (P < 0.005). In addition, the correlation of culturable fungal concentrations with particulate matters equal to or less than 10 μm in aerodynamic diameter (PM10) concentrations was observed to be high (0.775) for the AD days while correlation coefficients of PM10 as well as other particulate parameters with airborne fungal concentrations were significantly negative for the NAD days during intensive monitoring periods (May to June, 2008). It was found that during AD days several airborne allergenic fungal levels measured with MSQPCR increased up to 5-12 times depending on the species. Comparison of AD vs. NAD clones showed significant differences (P < 0.05) in all three cases using libshuff. In addition, high proportions of uncultured soil fungus isolated from semi-arid regions were observed only in AD clone libraries. Thus, it was concluded that AD impacts not only airborne fungal concentrations but also fungal communities.

  16. Reducing Coal Dust With Water Jets

    NASA Technical Reports Server (NTRS)

    Gangal, M. D.; Lewis, E. V.

    1985-01-01

    Jets also cool and clean cutting equipment. Modular pick-and-bucket miner suffers from disadvantage: Creates large quantities of potentially explosive coal dust. Dust clogs drive chain and other parts and must be removed by hand. Picks and bucket lips become overheated by friction and be resharpened or replaced frequently. Addition of oscillating and rotating water jets to pick-and-bucket machine keeps down dust, cools cutting edges, and flushes machine. Rotating jets wash dust away from drive chain. Oscillating jets cool cutting surfaces. Both types of jet wet airborne coal dust; it precipitates.

  17. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  18. Towards the ability to retrieve dust mineral composition from space

    NASA Astrophysics Data System (ADS)

    Klüser, L.; Martynenko, D.; Holzer-Popp, T.

    2012-04-01

    In modern satellite aerosol retrieval algorithms mostly bulk optical properties of mineral dust samples with specific composition are used. Over- or underestimation of dust optical depth often reflects the unability to account for variations in optical properties of the airborne dust. Consequently also other dust properties like particle size or mass concentration cannot be retrieved with any good accuracy. The situation is even worse in the thermal infrared, where the use of different optical property databases has shown to give totally different results in terms of changes to the observed radiance. Although originally designed for sounding of atmospheric temperature and humidity profiles, thermal infrared instruments with high spectral resolution like the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI) or the newly launched Cross-track Infrared Sounder (CrIS) provide valuable information about dust extinction in the infrared window region. Extinction spectra of mineral dust components show highly variable extinction profiles in the infrared window between 830cm-1 and 1250cm-1. Differences in the shape of extinction functions can be used to estimate the optical fraction of the respective component to total dust extinction. For the current version of a IASI dust retrieval measured extinction spectra of six different dust components are used for estimating their relive contributions to the dust optical depth in the infrared. These components are quartz, anhydrite and feldspar as non-clay minerals and the clays illite, kaolinite, montmorillonite and chlorite. Unfortunately, iron oxides cannot be detected from infrared window observations as their spectral extinction variability is insufficient (this would be of large interest, as they are a major source of uncertainty for solar wavelength single-scattering albedo). In the current IASI algorithm singular vector decomposition is used to separate the contributions of

  19. New techniques for spraying dust

    SciTech Connect

    Mukherjee, S.K.

    1984-06-01

    Two recent developments for reducing airborne dust on longwall faces are described. One flushes foam through the drums of a shearer and also sprays foam onto the cutting drum. The other modifies the spray-head to produce different water spray patterns on continuous miners.

  20. Airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-06-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  1. Hebes Chasma Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches are located in Hebes Chasma.

    Image information: VIS instrument. Latitude -1.4, Longitude 286.6 East (73.4 West). 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  2. Structure, inter-annual recurrence, and global-scale connectivity of airborne microbial communities.

    PubMed

    Barberán, Albert; Henley, Jessica; Fierer, Noah; Casamayor, Emilio O

    2014-07-15

    Dust coming from the large deserts on Earth, such as the Sahara, can travel long distances and be dispersed over thousands of square kilometers. Remote dust deposition rates are increasing as a consequence of global change and may represent a mechanism for intercontinental microbial dispersal. Remote oligotrophic alpine lakes are particularly sensitive to dust inputs and can serve as sentinels of airborne microbial transport and the ecological consequences of accelerated intercontinental microbial migration. In this study, we applied high-throughput sequencing techniques (16S rRNA amplicon pyrosequencing) to characterize the microbial communities of atmospheric deposition collected in the Central Pyrenees (NE Spain) along three years. Additionally, bacteria from soils in Mauritania and from the air-water interface of high altitude Pyrenean lakes were also examined. Communities in aerosol deposition varied in time with a strong seasonal component of interannual similarity. Communities from the same season tended to resemble more each other than those from different seasons. Samples from disparate dates, in turn, slightly tended to have more dissimilar microbial assemblages (i.e., temporal distance decay), overall suggesting that atmospheric deposition may influence sink habitats in a temporally predictable manner. The three habitats examined (soil, deposition, and air-water interface) harbored distinct microbial communities, although airborne samples collected in the Pyrenees during Saharan dust outbreaks were closer to Mauritian soil samples than those collected during no Saharan dust episodes. The three habitats shared c.a. 1.4% of the total number of microbial sequences in the dataset. Such successful immigrants were spread in different bacterial classes. Overall, this study suggests that local and regional features may generate global trends in the dynamics and distribution of airborne microbial assemblages, and that the diversity of viable cells in the high

  3. Simulation of the Radiative Impact of High Dust Loading during a Dust Storm in March 2012

    NASA Astrophysics Data System (ADS)

    Puthan Purakkal, J.; Kalenderski, S.; Stenchikov, G. L.

    2013-12-01

    We investigated a severe dust storm that developed over vast areas of the Middle East on 18-19 March 2012 and affected Saudi Arabia, Sudan, Egypt, Jordan, United Arab Emirates, Bahrain, Qatar, Oman, Kuwait, Iraq, Iran, Israel, and Pakistan. The visible aerosol optical depth recorded by the AERONET station on the KAUST campus (22.30o N 39.10o E) during the storm reached 4.5, exceeding the average level by an order of magnitude. To quantify the effects of the dust on atmospheric radiation and dynamics, we analyzed available ground-based and satellite observations and conducted numerical simulations using a fully coupled meteorology-chemistry-aerosol model (WRF-Chem). The model was able to reproduce the spatial and temporal patterns of the aerosol optical depths (AOD) observed by airborne and ground-based instruments. The major dust sources included river valleys of lower Tigris and Euphrates in Iraq, desert areas in Kuwait, Iran, United Arab Emirates, central Arabia including Rub' al Khali, An Nafud, and Ad Dahna, as well as the Red Sea coast of the Arabian Peninsula. The total amount of dust generated across the entire domain during the period of the simulation reached 93.76 Mt; 73.04 Mt of dust was deposited within the domain; 6.56 Mt of dust sunk in the adjacent sea waters, including 1.20 Mt that sedimented into the Red Sea. The model predicted a well-mixed boundary layer expanding up to 3.5 km in the afternoon. Some dust plumes were seen above the Planetary Boundary layer. In our simulations, mineral dust heated the lower atmosphere with a maximum heating rate of 9 K/day. The dust storm reduced the downwelling shortwave radiation at the surface to a maximum daily average value of -134 Wm-2 and the daily averaged long-wave forcing at the surface increased to 43 Wm-2. The combined short-wave cooling and long-wave warming effects of dust aerosols caused significant reduction in the surface air temperature -6.7 K at 1200 UTC on 19 March 2013.

  4. Mineralogical analysis of attic dust samples for contamination source identification in an industrial area, Ajka, Hungary

    NASA Astrophysics Data System (ADS)

    Völgyesi, Péter; Jordan, Gyozo; Gosar, Mateja; Szabó, Csaba; Miler, Miloš; Kónya, Péter; Bartha, András

    2013-04-01

    The post-war centrally directed economy forced massive heavy industry in Hungary, producing huge amount of wastes and pollution. Long-term airborne emissions from mining, coal-fired power plants and alumina industry have left the legacy of widely distributed contamination around industrial areas and nearby settlements in the Ajka region. Recent research suggests that significant amount of airborne pollutants, deposited in the urban environment, can be efficiently studied by attic dust analysis. The sampling strategy followed a grid-based stratified random sampling design and 30 samples were collected in 27 houses (at least 30 years old) in a 8x8 grid of the 64 km2 project area. In order to determine the pollution potential of attic dust samples, geochemical and mineralogical analyses were performed. The main aim of the mineralogical analyses was to study the phase composition of the dust particles and to identify potential anthropogenic sources. The total concentrations of the toxic elements (As, Pb, Cd, Cu, Ni and Zn) were measured with ICP-OES and mercury content was analyzed with atomic absorption spectrometry. Phase analyses of the samples were carried out by the means of scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) and X-Ray diffraction (XRD) methods. Laser particle size analyzer was used to measure the grain size of attic dust particles. Results showed that the studied attic dust in the Ajka urban area was contaminated mostly by Hg, Pb and Zn with contents ranging between 0.1-2 ppm, 42.5-881 ppm and 90.2-954 ppm, respectively. However, the study of extreme data values (statistical outliers) has shown that at certain points airborne dust can be extremely contaminated also with Cd (0.4-11.7 ppm). The size of the attic dust particles varied between 0.2 and 113 µm. Based on the SEM/EDS and XRD analysis, the most frequently identified mineralogical phases were quartz, calcite, gypsum and Fe- and Al-bearing phases. Fe

  5. Airborne endotoxin associated with particles of different sizes and affected by water content in handled straw.

    PubMed

    Madsen, A M; Nielsen, S H

    2010-07-01

    High exposures to endotoxin are observed in environments where organic materials are handled and lower exposures are found in e.g. indoor air. Inhaled endotoxin contributes significantly to the induction of airway inflammation and dysfunction. The size of an inhaled particle influences the deposition in the airways and the following health symptoms. The objective is to characterise the distribution of endotoxin on airborne particles of different sizes in straw storage halls with high exposure and in other environments with lower exposure levels to endotoxin. Furthermore we have studied the influence of water content of handled straw on the size distribution of endotoxin containing particles. Total, inhalable, thoracic and respirable endotoxin and particles have each been quantified in aerosols from boiler rooms and straw storage halls at 24 power plants, including 21 biofuel plants. Inhalable, thoracic and respirable endotoxin have been quantified in aerosols from offices and outdoor air. The endotoxin concentration was higher in airborne thoracic dust than in airborne 'total dust'. The median respirable fraction in the straw storage halls, boiler rooms at biofuel plants, boiler rooms at conventional plants, offices and outdoors was respectively 42%, 9%, 19%, 24% and 34%. Thoracic endotoxin per number of thoracic particles was higher than respirable endotoxin per number of respirable particles at the biofuel plants. In straw storage halls the fraction of endotoxin of respirable size was highest on the days with lowest water content in the received straw. Furthermore the exposures to all endotoxin fractions were highest on days with the lowest water content in the received straw. In conclusion the highest exposures and concentrations of endotoxin occur or tend to occur from thoracic dust. A high variation in endotoxin concentrations and in fractions of respirable or thoracic size is found in the different working areas. This is important in the risk assessment and

  6. Dust storm off Western Africa

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The impacts of Saharan dust storms reach far beyond Africa. Wind-swept deserts spill airborne dust particles out over the Atlantic Ocean where they can enter trade winds bound for Central and North America and the Caribbean. This Moderate Resolution Imaging Spectroradiometer (MODIS) image shows a dust storm casting an opaque cloud of cloud across the Canary Islands and the Atlantic Ocean west of Africa on June 30, 2002. In general it takes between 5 and 7 days for such an event to cross the Atlantic. The dust has been shown to introduce foreign bacteria and fungi that have damaged reef ecosystems and have even been hypothesized as a cause of increasing occurrences of respiratory complaints in places like Florida, where the amount of Saharan dust reaching the state has been increasing over the past 25 years.

  7. Dust and the Dust Bowl: Connections between 1930's drought and dust

    NASA Astrophysics Data System (ADS)

    O'Brien, T. A.; Sloan, L. C.; Solmon, F.; Snyder, M. A.

    2007-12-01

    There have been a number of investigations into the causes and physical mechanisms of the 1930's Dust Bowl, and together they provide a reasonable explanation of the drought in terms of its length and severity. However no published investigations have considered the possible climatic effects caused by the considerable amount of airborne dust that was generated as a consequence of poor land use management in the late 19th and early 20th centuries. In order to investigate the effects of airborne dust on North American climate during the 1930's, we have performed a climate model sensitivity study that isolates the effects of dust on climate in a regional climate model. The results of the study show that an essentially permanent dust cloud existed over North America through the duration of the drought. The dust cloud, which we show was quite thick over its center in the Midwest, blocked enough solar radiation to reduce surface temperatures by about 1 K. In addition, we show that a complex feedback between dust and drought caused a spatial redistribution of precipitation, in which various regions gained or lost an average of about 1 mm/day of precipitation.

  8. Source Identification Of Airborne Antimony On The Basis Of The Field Monitoring And The Source Profiling

    NASA Astrophysics Data System (ADS)

    Iijima, A.; Sato, K.; Fujitani, Y.; Fujimori, E.; Tanabe, K.; Ohara, T.; Shimoda, M.; Kozawa, K.; Furuta, N.

    2008-12-01

    mechanical abrasion of automotive brake pads. The peak of the mass-based particle size distribution of brake abrasion dust was found in a diameter of 2-3 μm. From the morphological viewpoints, shape of brake abrasion dust particle was typically edge- shaped, and high concentrated Sb and sulfur were simultaneously detected in a brake abrasion dust particle because Sb2S3 is used as a solid lubricant for automotive brake pad. Indeed, at the roadside site, total concentration of airborne Sb was twice as much as that observed at residential site. Moreover, the most concentrated Sb was found in a diameter of 2.1-3.6 μm for the roadside APM. Furthermore, in the collected particles with this size range, we found a number of particles of which morphological profiles were similar to those of the brake abrasion dust. Consequently, an automotive brake abrasion dust is expected as the predominant source of airborne Sb in the roadside atmosphere.

  9. Imaging-based dust sensors: equipment and methods

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Greco, Sonia

    2004-05-01

    Dust detection and control in real time, represent one of the most challenging problem in all those environments where fine and ultrafine airborne particulate solids products are present. The presence of such products can be linked to several factors, often directly related and influenced by the working-production actions performed. Independently from the causes generating dust, airborne contaminants are an occupational problem of increasing interest as they are related to a wide number of diseases. In particular, airborne dusts are well known to be associated with several classical occupational lung diseases, such as the pneumoconiosis, especially at high levels of exposure. Nowadays there is also an increasing interest in other dust related diseases, from the most serious as cancer and asthma, to those related with allergies or irritation and other illnesses, also occurring at lower levels of exposure. Among the different critical factors influencing health risk for airborne dust exposure, mainly four have to be considered, that is: i) nature of the dust resulting from working in terms of presence of specific poisoning material, i.e. free silica, and morphological and morphometrical attributes of particulates constituting airborne dust; ii) size of the particles, iii) duration of exposure time and, finally, iv) airborne dust concentration in the breathing zone where the worker performs his activity. A correct dust detection is not easy, especially if some of the previous mentioned factors, have to be detected and quantified in real time in order to define specific "on-line" control actions aimed to reduce the level of the exposure to dust of the workers, as for example: i) modification of aspirating devices operating condition, change of filtering cleaning sequence, etc. . The more severe are the environmental conditions, in terms of dust presence (in quantity and quality) more difficult is to utilize efficient sampling devices. Detection devices, in fact, tend

  10. Dust exposure in Finnish foundries.

    PubMed

    Siltanen, E; Koponen, M; Kokko, A; Engström, B; Reponen, J

    1976-01-01

    Dust measurements were made in 51 iron, 9 steel, and 8 nonferrous foundries, at which 4,316 foundrymen were working. The sampling lasted at least two entire shifts or work days continuously during various operations in each foundry. The dust samples were collected at fixed sites or in the breathing zones of the workers. The mass concentration was determined by weighing and the respirable dust fraction was separated by liquid sedimentation. The free silica content was determined by X-ray diffraction. In the study a total of 3,188 samples were collected in the foundries and 6,505 determinations were made in the laboratory. The results indicated a definite difference in the dust exposure during various operations. The highest dust exposures were found during furnace, cupola, and pouring ladle repair. During cleaning work, sand mixing, and shake-out operations excessive silica dust concentrations were also measured. The lowest dust concentrations were measured during melting and pouring operations. Moderate dust concentrations were measured during coremaking and molding operations. The results obtained during the same operations of iron and steel foundries were similar. The distribution of the workers into various exposure categories, the content of respirable dust and quartz, the correlation between respirable dust and total dust, and the correlation between respirable silica and total dust concentrations are discussed. Observations concerning dust suppression and control methods are briefly considered. PMID:184524

  11. Measurements of Dust Devil Lower Structure and Properties, El Dorado Valley, Nevada, June 2002

    NASA Astrophysics Data System (ADS)

    Towner, M. C.; Ringrose, T. J.; Balme, M.; Greeley, R.; Zarnecki, J. C.

    2002-12-01

    We report the results of a recent field campaign in Nevada, USA, carried out to investigate the lower structure (less than 2m) and dust lofting mechanisms of terrestrial dust devils. Over several days, an instrumented platform was repeatedly deployed from the back of a pickup truck into the path of oncoming dust devils. Around 40 events were recorded, including core penetrations of large and small dust devils, close misses and periods of ambient background conditions before and after dust devil events, and during periods of dust devil inactivity. The platform deployed consisted of a 2 by 1m base with a 2m mast and carried a total of 24 instruments. The instrument suite consisted of horizontal wind profiling down to 5mm above surface, vertical wind speed and direction, temperature and pressure profiling, airborne and saltating particle recorders, vertical electric field gradient measurements, and upward looking UV sensors. We present preliminary results of profiles for several events, together with details of ambient conditions required for dust devil formation.

  12. Airborne crystalline silica concentrations at coal-fired power plants associated with coal fly ash.

    PubMed

    Hicks, Jeffrey; Yager, Janice

    2006-08-01

    This study presents measurements of airborne concentrations of respirable crystalline silica in the breathing zone of workers who were anticipated to encounter coal fly ash. Six plants were studied; two were fired with lignite coal, and the remaining four plants used bituminous and subbituminous coals. A total of 108 personal breathing zone respirable dust air samples were collected. Bulk samples were also collected from each plant site and subjected to crystalline silica analysis. Airborne dust particle size analysis was measured where fly ash was routinely encountered. The results from bituminous and subbituminous fired plants revealed that the highest airborne fly ash concentrations are encountered during maintenance activities: 0.008 mg/m3 to 96 mg/m3 (mean of 1.8 mg/m3). This group exceeded the threshold limit values (TLV) in 60% of the air samples. During normal production activities, airborne concentrations of crystalline silica ranged from nondetectable to 0.18 mg/m3 (mean value of 0.048 mg/m3). Air samples collected during these activities exceeded the current and proposed TLVs in approximately 54% and 65% of samples, respectively. Limited amounts of crystalline silica were detected in samples collected from lignite-fired plants, and approximately 20% of these air samples exceeded the current TLV. Particle size analysis in areas where breathing zone air samples were collected revealed mass median diameters typically between 3 microm and 8 microm. Bulk and air samples were analyzed for all of the common crystalline silica polymorphs, and only alpha quartz was detected. As compared with air samples, bulk samples from the same work areas consistently yielded lower relative amounts of quartz. Controls to limit coal fly ash exposures are indicated during some normal plant operations and during episodes of short term, but high concentrations of dust that may be encountered during maintenance activities, especially in areas where ash accumulations are present

  13. Source apportionment of airborne fine particulate matter in an underground mine.

    PubMed

    McDonald, Jacob D; Zielinska, Barbara; Sagebiel, John C; McDaniel, Mark R; Mousset-Jones, Pierre

    2003-04-01

    The chemical mass balance source apportionment technique was applied to an underground gold mine to assess the contribution of diesel exhaust, rock dust, oil mists, and cigarette smoke to airborne fine (<2.5 microm) particulate matter (PM). Apportionments were conducted in two locations in the mine, one near the mining operations and one near the exit of the mine where the ventilated mine air was exhausted. Results showed that diesel exhaust contributed 78-98% of the fine particulate mass and greater than 90% of the fine particle carbon, with rock dust making up the remainder. Oil mists and cigarette smoke contributions were below detection limits for this study. The diesel exhaust fraction of the total fine PM was higher than the recently implemented mine air quality standards based on total carbon at both sample locations in the mine. PMID:12708502

  14. Long-range-transported Saharan dust in the Caribbean - an electron microscopy perspective of aerosol composition and modification

    NASA Astrophysics Data System (ADS)

    Kandler, Konrad; Hartmann, Markus; Ebert, Martin; Weinbruch, Stephan; Weinzierl, Bernadett; Walser, Adrian; Sauer, Daniel; Wadinga Fomba, Khanneh

    2015-04-01

    From June to July in 2013, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) was performed in the Caribbean. Airborne aerosol sampling was performed onboard the DLR Falcon aircraft in altitudes between 300 m and 5500 m. Ground-based samples were collected at Ragged Point (Barbados, 13.165 °N, 59.432 °W) and at the Cape Verde Atmospheric Observatory (Sao Vicente, 16.864 °N, 24.868 °W). Different types of impactors and sedimentation samplers were used to collect particles between 0.1 µm and 4 µm (airborne) and between 0.1 µm and 100 µm (ground-based). Particles were analyzed by scanning electron microscopy with attached energy-dispersive X-ray analysis, yielding information on particle size, particle shape and chemical composition for elements heavier than nitrogen. A particle size correction was applied to the chemical data to yield better quantification. A total of approximately 100,000 particles were analyzed. For particles larger than 0.7 µm, the aerosol in the Caribbean during the campaign was a mixture of mineral dust, sea-salt at different aging states, and sulfate. Inside the Saharan dust plume - outside the marine boundary layer (MBL) - the aerosol is absolutely dominated by mineral dust. Inside the upper MBL, sea-salt exists as minor component in the aerosol for particles smaller than 2 µm in diameter, larger ones are practically dust only. When crossing the Soufriere Hills volcano plume with the aircraft, an extremely high abundance of small sulfate particles could be observed. At Ragged Point, in contrast to the airborne measurements, aerosol is frequently dominated by sea-salt particles. Dust relative abundance at Ragged Point has a maximum between 5 µm and 10 µm particles diameter; at larger sizes, sea-salt again prevails due to the sea-spray influence. A significant number of dust particles larger than 20 µm was encountered. The dust component in the Caribbean - airborne as well as ground

  15. SPM and fungal spores in the ambient air of west Korea during the Asian dust (Yellow sand) period

    NASA Astrophysics Data System (ADS)

    Yeo, Hwan-Goo; Kim, Jong-Ho

    The relationship between suspended particulate matter (SPM) and fungal spore was investigated in Seosan, a rural county along the west coast of Korea, in the spring of 2000. SPM concentrations in the air were 199.8 μg m -3 in the first Asian dust period (23-24 March), 249.4 μg m -3 in the second Asian dust period (7-9 April) and 98.9 μg m -3 in the non-Asian dust period (12-16 May), respectively. The majority of the total SPM were composed of coarse particles sized about 5 μm during the two Asian dust periods. Four molds genera grown from airborne fungal spores were identified in colonies grown from SPM samples taken during the Asian dust periods. All the genera found, Fusarium, Aspergillus, Penicillium and Basipetospora, are hyphomycetes in the division Deuteromycota. Morphologically, more diversified mycelia of hyphomycetes were grown on the sample captured from 1.1 to 2.1 μm sized SPM than on the other sized samples gathered in the dust periods. On the other hand, no mold was observed on the sample of 1.1-2.1 μm sized SPM in the non-Asian dust period. From these results, it seems evident that several sorts of fine sized fungal spores were suspended in the atmospheric environment of this study area during Asian dust periods.

  16. Direct Characterization of Airborne Particles Associated with Arsenic-rich Mine Tailings: Particle Size Mineralogy and Texture

    SciTech Connect

    M Corriveau; H Jamieson; M Parsons; J Campbell; A Lanzirotti

    2011-12-31

    Windblown and vehicle-raised dust from unvegetated mine tailings can be a human health risk. Airborne particles from As-rich abandoned Au mine tailings from Nova Scotia, Canada have been characterized in terms of particle size, As concentration, As oxidation state, mineral species and texture. Samples were collected in seven aerodynamically fractionated size ranges (0.5-16 {micro}m) using a cascade impactor deployed at three tailings fields. All three sites are used for recreational activities and off-road vehicles were racing on the tailings at two mines during sample collection. Total concentrations of As in the <8 {micro}m fraction varied from 65 to 1040 ng/m{sup 3} of air as measured by proton-induced X-ray emission (PIXE) analysis. The same samples were analysed by synchrotron-based microfocused X-ray absorption near-edge spectroscopy ({micro}XANES) and X-ray diffraction ({micro}XRD) and found to contain multiple As-bearing mineral species, including Fe-As weathering products. The As species present in the dust were similar to those observed in the near-surface tailings. The action of vehicles on the tailings surface may disaggregate material cemented with Fe arsenate and contribute additional fine-grained As-rich particles to airborne dust. Results from this study can be used to help assess the potential human health risks associated with exposure to airborne particles from mine tailings.

  17. Airborne exposures and risk of gastric cancer: a prospective cohort study.

    PubMed

    Sjödahl, Krister; Jansson, Catarina; Bergdahl, Ingvar A; Adami, Johanna; Boffetta, Paolo; Lagergren, Jesper

    2007-05-01

    There is an unexplained male predominance among patients with gastric cancer, and many carcinogens are found in male-dominated dusty occupations. However, the relation between occupational exposures and risk of gastric cancer remains unclear. To investigate whether airborne occupational exposures might influence the risk of noncardia gastric cancer, we used a large, prospective cohort study of male Swedish construction workers. These workers were, during the period 1971-1993, regularly invited to health examinations by a nationwide occupational health service organization. Data on job titles and other variables were collected through self-administered questionnaires and forms completed by the health organization's staff. Industrial hygienists assessed 12 specific airborne occupational exposures for 200 job titles. Gastric cancer, death or emigration occurring during follow-up in 1971-2002 were identified by linkage to the Swedish registers of Cancer, Causes of Death and Total Population, respectively. Incidence rate ratios (IRR) and 95% confidence intervals (CI), adjusted for attained age, tobacco smoking, calendar period and body mass, were derived from Cox regression. Among 256,357 cohort members, contributing 5,378,012 person-years at risk, 948 noncardia gastric cancers were identified. Increased risk of this tumor was found among workers exposed to cement dust (IRR 1.5 [95% CI 1.1-2.1]), quartz dust (IRR 1.3 [95% CI 1.0-1.7]) and diesel exhaust (IRR 1.4 [95% CI 1.1-1.9]). Dose-response relations were observed for these exposures. No consistent positive associations were found regarding exposure to asbestos, asphalt fumes, concrete dust, epoxy resins, isocyanates, metal fumes, mineral fibers, organic solvents or wood dust. In conclusion, this study provides some support to the hypothesis that specific airborne exposures increase the risk of noncardia gastric cancer. PMID:17266028

  18. Dust measurements in tokamaks (invited)

    SciTech Connect

    Rudakov, D. L.; Yu, J. H.; Boedo, J. A.; Hollmann, E. M.; Krasheninnikov, S. I.; Moyer, R. A.; Muller, S. H.; Pigarov, A. Yu.; Rosenberg, M.; Smirnov, R. D.; West, W. P.; Boivin, R. L.; Bray, B. D.; Brooks, N. H.; Hyatt, A. W.; Wong, C. P. C.; Roquemore, A. L.; Skinner, C. H.; Solomon, W. M.; Ratynskaia, S.

    2008-10-15

    Dust production and accumulation present potential safety and operational issues for the ITER. Dust diagnostics can be divided into two groups: diagnostics of dust on surfaces and diagnostics of dust in plasma. Diagnostics from both groups are employed in contemporary tokamaks; new diagnostics suitable for ITER are also being developed and tested. Dust accumulation in ITER is likely to occur in hidden areas, e.g., between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In the DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering is able to resolve particles between 0.16 and 1.6 {mu}m in diameter; using these data the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in two-dimension with a single camera or three-dimension using multiple cameras, but determination of particle size is challenging. In order to calibrate diagnostics and benchmark dust dynamics modeling, precharacterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase in carbon line (CI, CII, C{sub 2} dimer) and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

  19. The Continuous Monitoring of Desert Dust using an Infrared-based Dust Detection and Retrieval Method

    NASA Technical Reports Server (NTRS)

    Duda, David P.; Minnis, Patrick; Trepte, Qing; Sun-Mack, Sunny

    2006-01-01

    Airborne dust and sand are significant aerosol sources that can impact the atmospheric and surface radiation budgets. Because airborne dust affects visibility and air quality, it is desirable to monitor the location and concentrations of this aerosol for transportation and public health. Although aerosol retrievals have been derived for many years using visible and near-infrared reflectance measurements from satellites, the detection and quantification of dust from these channels is problematic over bright surfaces, or when dust concentrations are large. In addition, aerosol retrievals from polar orbiting satellites lack the ability to monitor the progression and sources of dust storms. As a complement to current aerosol dust retrieval algorithms, multi-spectral thermal infrared (8-12 micron) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Meteosat-8 Spinning Enhanced Visible and Infrared Imager (SEVIRI) are used in the development of a prototype dust detection method and dust property retrieval that can monitor the progress of Saharan dust fields continuously, both night and day. The dust detection method is incorporated into the processing of CERES (Clouds and the Earth s Radiant Energy System) aerosol retrievals to produce dust property retrievals. Both MODIS (from Terra and Aqua) and SEVERI data are used to develop the method.

  20. Dust suppression in swine feed using soybean oil.

    PubMed

    Mankell, K O; Janni, K A; Walker, R D; Wilson, M E; Pettigrew, J E; Jacobson, L D; Wilcke, W F

    1995-04-01

    Dust generation from swine feed (corn-soybean meal diet) treated with soybean oil was investigated using a cement mixer in a plywood box. Airborne total dust concentrations in the box were measured gravimetrically using a vacuum pump and filters while 12-kg feed samples were constantly mixed. The treatment factors were soybean oil concentration (0, 1, and 3%), corn bulk density (normal, 730 kg/m3 and low, 600 kg/m3), time of oil addition (before vs after grinding the corn), and storage time (0, 7, and 14 d). The feed was a mixture of soybean meal, base mix, and adjusted amounts of ground corn and soybean oil. Adding soybean oil after grinding at 1 and 3% levels to feed made with normal-bulk density corn suppressed total dust generation (3.39 and .99 mg/m3, respectively) (P < .001) compared with the no oil treatment (29.1 mg/m3). The 3% soybean oil treatment suppressed dust generation (.99 mg/m3) more than the 1% soybean oil treatment (3.39 mg/m3) (P < .001). Adding soybean oil after grinding the corn suppressed dust generation more than adding the oil to the corn before grinding for every oil level (P < .001). More dust was generated by feed made from low-bulk density corn than by feed made with normal-bulk density corn at every oil level (P < .001). There was no evidence of any storage time or treatment x storage time interactions. PMID:7628976

  1. How much dust does Enceladus eject?

    NASA Astrophysics Data System (ADS)

    Kempf, Sascha; Southworth, Benjamin; Schmidt, Juergen; Srama, Ralf; Postberg, Frank

    2016-04-01

    There is an ongoing argument how much dust per second the ice volcanoes on Saturn's ice moon eject. By adjusting their plume model to the dust flux measured by the Cassini dust detector during the close Enceladus flyby in 2005, Schmidt et al. (2008) obtained a total dust production rate in the plumes of about

  2. How much dust does Enceladus eject?

    NASA Astrophysics Data System (ADS)

    Kempf, Sascha; Srama, Ralf; Postberg, Frank; Schmidt, Juergen

    2016-07-01

    There is an ongoing argument how much dust per second the ice volcanoes on Saturn's ice moon eject. By adjusting their plume model to the dust flux measured by the Cassini dust detector during the close Enceladus flyby in 2005, Schmidt et al. (2008) obtained a total dust production rate in the plumes of about

  3. Long-Term Exposure to Silica Dust and Risk of Total and Cause-Specific Mortality in Chinese Workers: A Cohort Study

    PubMed Central

    Chen, Weihong; Liu, Yuewei; Wang, Haijiao; Hnizdo, Eva; Sun, Yi; Su, Liangping; Zhang, Xiaokang; Weng, Shaofan; Bochmann, Frank; Hearl, Frank J.; Chen, Jingqiong; Wu, Tangchun

    2012-01-01

    Background Human exposure to silica dust is very common in both working and living environments. However, the potential long-term health effects have not been well established across different exposure situations. Methods and Findings We studied 74,040 workers who worked at 29 metal mines and pottery factories in China for 1 y or more between January 1, 1960, and December 31, 1974, with follow-up until December 31, 2003 (median follow-up of 33 y). We estimated the cumulative silica dust exposure (CDE) for each worker by linking work history to a job–exposure matrix. We calculated standardized mortality ratios for underlying causes of death based on Chinese national mortality rates. Hazard ratios (HRs) for selected causes of death associated with CDE were estimated using the Cox proportional hazards model. The population attributable risks were estimated based on the prevalence of workers with silica dust exposure and HRs. The number of deaths attributable to silica dust exposure among Chinese workers was then calculated using the population attributable risk and the national mortality rate. We observed 19,516 deaths during 2,306,428 person-years of follow-up. Mortality from all causes was higher among workers exposed to silica dust than among non-exposed workers (993 versus 551 per 100,000 person-years). We observed significant positive exposure–response relationships between CDE (measured in milligrams/cubic meter–years, i.e., the sum of silica dust concentrations multiplied by the years of silica exposure) and mortality from all causes (HR 1.026, 95% confidence interval 1.023–1.029), respiratory diseases (1.069, 1.064–1.074), respiratory tuberculosis (1.065, 1.059–1.071), and cardiovascular disease (1.031, 1.025–1.036). Significantly elevated standardized mortality ratios were observed for all causes (1.06, 95% confidence interval 1.01–1.11), ischemic heart disease (1.65, 1.35–1.99), and pneumoconiosis (11.01, 7.67–14.95) among workers exposed

  4. Mechanical intervention for reducing dust concentration in traditional rice mills

    PubMed Central

    PRANAV, Prabhanjan K.; BISWAS, Mrinmoy

    2016-01-01

    A huge number of workers are employed in traditional rice mills where they are potentially exposed to dust. In this study a dust collection system was developed to capture the airborne dust in the rice mill. The feeding and sieving section of the mill was identified as major dust creating zone. The dust was captured by creating suitable air stream at feeding and sieving sections of the mill and collected in cyclone dust collector. The air stream was created by blower which was selected on the basis to get minimum air speed of 0.5 m/s in the working zones of workers. It was observed that the developed system is successfully collects the significant amount of dust and able to reduce the dust concentration up to 58%. Further, the respirable dust concentration reduced to below 5 mg/m3 throughout the mill which is within the recommended limit of dust exposure. PMID:26829976

  5. Dust Detector

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.

    2001-01-01

    We discuss a recent sounding rocket experiment which found charged dust in the Earth's tropical mesosphere. The dust detector was designed to measure small (5000 - 10000 amu.) charged dust particles, most likely of meteoric origin. A 5 km thick layer of positively charged dust was found at an altitude of 90 km, in the vicinity of an observed sporadic sodium layer and sporadic E layer. The observed dust was positively charged in the bulk of the dust layer, but was negatively charged near the bottom.

  6. 30 CFR 33.4 - Types of dust collectors for which certificates of approval may be granted.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions § 33.4 Types of dust collectors for which... specifically to prevent dissemination of airborne dust generated by drilling into coal-mine rock strata...

  7. 30 CFR 33.4 - Types of dust collectors for which certificates of approval may be granted.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions § 33.4 Types of dust collectors for which... specifically to prevent dissemination of airborne dust generated by drilling into coal-mine rock strata...

  8. Atmospheric dust and acid rain

    SciTech Connect

    Hedin, L.O.; Likens, G.E.

    1996-12-01

    Why is acid rain still an environmental problem in Europe and North America despite antipollution reforms? The answer really is blowing in the wind: atmospheric dust. These airborne particles can help neutralize the acids falling on forests, but dust levels are unusually low these days. In the air dust particles can neutralize acid rain. What can we do about acid rain and atmospheric dust? Suggestions range from the improbable to the feasible. One reasonable suggestion is to reduce emissions of acidic pollutants to levels that can be buffered by natural quantities of basic compounds in the atmosphere; such a goal would mean continued reductions in sulfur dioxide and nitrogen oxides, perhaps even greater than those prescribed in the 1990 Amendments to the Clean Air Act in the U.S. 5 figs.

  9. Assessment of the permissible exposure level to manganese in workers exposed to manganese dioxide dust.

    PubMed Central

    Roels, H A; Ghyselen, P; Buchet, J P; Ceulemans, E; Lauwerys, R R

    1992-01-01

    The prevalence of neuropsychological and respiratory symptoms, lung ventilatory parameters, neurofunctional performances (visual reaction time, eye-hand coordination, hand steadiness, audioverbal short term memory), and several biological parameters (calcium, iron, luteinising hormone (LH), follicle stimulating hormone (FSH), and prolactin concentrations in serum, blood counts, manganese (Mn) concentration in blood and in urine) were examined in a group of workers (n = 92) exposed to MnO2 dust in a dry alkaline battery factory and a matched control group (n = 101). In the battery plant, the current exposure of the workers to airborne Mn was measured with personal samplers and amounted on average (geometric mean) to 215 and 948 micrograms Mn/m3 for respirable and total dust respectively. For each worker, the lifetime integrated exposure to respirable and total airborne Mn dust was also assessed. The geometric means of the Mn concentrations in blood (MnB) and in urine (MnU) were significantly higher in the Mn exposed group than in the control group (MnB 0.81 v 0.68 microgram/100 ml; MnU 0.84 v 0.09 microgram/g creatinine). On an individual basis, MnU and MnB were not related to various external exposure parameters (duration of exposure, current exposure, or lifetime integrated exposure to airborne Mn). On a group basis, a statistically significant association was found between MnU and current Mn concentrations in air. No appreciable difference between the exposed and the control workers was found with regard to the other biological measurements (calcium, LH, FSH, and prolactin in serum). Although the erythropoietic parameters and serum iron concentration were in the normal range for both groups, there was a statistically significant trend towards lower values in the Mn exposed workers. The prevalences of reported neuropsychological and respiratory symptoms, the lung function parameters, and the audioverbal short term memory scores did not differ between the control

  10. Fingerprints in the Dust

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These MISR nadir-camera images of eastern China compare a somewhat hazy summer view from July 9, 2000 (left) with a spectacularly dusty spring view from April 7, 2001 (middle). The left-hand and middle images are from Terra orbits 2967 and 6928, respectively, and extend from central Manchuria near the top to portions of North and South Korea at the bottom. They are approximately 380 kilometers in width.

    Asia's desert areas are prone to soil erosion, as underground water tables are lowered by prolonged drought and by industrial and agricultural water use. Heavy winds blowing eastward across the arid and sparsely vegetated surfaces of Mongolia and western China pick up large quantities of yellow dust. Airborne dust clouds from the April 2001 storm blew across the Pacific Ocean and were carried as far as North America. The minerals transported in this manner are believed to provide nutrients for both oceanic and land ecosystems.

    According to the Xinhua News Agency in China, nearly one million tons of Gobi Desert dust blow into Beijing each year. During a similar dust outbreak last year, the Associated Press reported that the visibility in Beijing had been reduced the point where buildings were barely visible across city streets, and airline schedules were significantly disrupted. The dust has also been implicated in adverse health effects such as respiratory discomfort and eye irritation.

    The image on the right is a higher resolution MISR nadir-camera view of a portion of the April 7, 2001 dust cloud. It covers an area roughly 250 kilometers wide by 470 kilometers high. When viewed at full magnification, a number of atmospheric wave features, like the ridges and valleys of a fingerprint, are apparent. These are probably induced by surface topography, which can disturb the wind flow. A few small cumulus clouds are also visible, and are casting shadows on the thick lower dust layer.

    Analyses of images such as these constitute one phase of MISR

  11. The dust retention capacities of urban vegetation-a case study of Guangzhou, South China.

    PubMed

    Liu, Lu; Guan, Dongsheng; Peart, M R; Wang, Gang; Zhang, Hui; Li, Zhiwei

    2013-09-01

    Urban vegetation increasingly plays an important role in the improvement of the urban atmospheric environment. This paper deals with the dust retention capacities of four urban tree species (Ficus virens var. sublanceolata, Ficus microcarpa, Bauhinia blakeana, and Mangifera indica Linn) in Guangzhou. The dust-retaining capacities of four tree species are studied under different pollution intensities and for different seasons. Remote sensing imagery was used to estimate the total aboveground urban vegetation biomass in different functional areas of urban Guangzhou, information that was then used to estimate the dust-retaining capacities of the different functional areas and the total removal of airborne particulates in urban Guangzhou by foliage. The results showed that urban vegetation can remove dust from the atmosphere thereby improving air quality. The major findings are that dust retention, or capture, vary between the four species of tree studied; it also varied between season and between types of urban functional area, namely industrial, commercial/road traffic, residential, and clean areas. Dust accumulation over time was also studied and reached a maximum, and saturation, after about 24 days. The overall aboveground biomass of urban vegetation in Guangzhou was estimated to be 52.0 × 10(5) t, its total leaf area 459.01 km(2), and the dust-retaining capacity was calculated at 8012.89 t per year. The present study demonstrated that the foliage of tree species used in urban greening make a substantial contribution to atmospheric dust removal and retention in urban Guangzhou. PMID:23608974

  12. The Lunar Environment: Determining the Health Effects of Exposure to Moon Dusts

    NASA Technical Reports Server (NTRS)

    Khan-Mayberry, Noreen

    2007-01-01

    The moon's surface is covered with a thin layer of fine, charged, reactive dust capable of layer of fine, charged, reactive dust capable of capable of entering habitats and vehicle compartments, where it can result in crewmember health problems. NASA formed the Lunar Airborne Dust Toxicity Advisory Group (LADTAG) to study the effects of exposure to Lunar Dust on human health. To date, no scientifically defensible toxicological studies have been performed on lunar dusts, specifically the determination of exposure limits and their affect on human health. The multi-center LADTAG (Lunar Airborne Dust Toxicology center LADTAG (Lunar Airborne Dust Toxicology Advisory Group) was formed in response to the Office of the Chief Health and Medical Office s (OCHMO) request to develop recommendations for defining risk (OCHMO) request to develop recommendations for defining risk defining risk criteria for human lunar dust exposure.

  13. House dust in seven Danish offices

    NASA Astrophysics Data System (ADS)

    Mølhave, L.; Schneider, T.; Kjærgaard, S. K.; Larsen, L.; Norn, S.; Jørgensen, O.

    Floor dust from Danish offices was collected and analyzed. The dust was to be used in an exposure experiment. The dust was analyzed to show the composition of the dust which can be a source of airborne dust indoors. About 11 kg of dust from vacuum cleaner bags from seven Danish office buildings with about 1047 occupants (12 751 m 2) was processed according to a standardized procedure yielding 5.5 kg of processed bulk dust. The bulk dust contained 130.000-160.000 CFU g -1 microorganisms and 71.000-90.000 CFU g -1 microfungi. The content of culturable microfungi was 65-123 CFU 30 g -1 dust. The content of endotoxins ranged from 5.06-7.24 EU g -1 (1.45 ng g -1 to 1.01 ng g -1). Allergens (ng g -1) were from 147-159 (Mite), 395-746 (dog) and 103-330 (cat). The macro molecular organic compounds (the MOD-content) varied from 7.8-9.8 mg g -1. The threshold of release of histamine from basophil leukocytes provoked by the bulk dust was between 0.3 and 1.0 mg ml -1. The water content was 2% (WGT) and the organic fraction 33%. 6.5-5.9% (dry) was water soluble. The fiber content was less than 0.2-1.5% (WGT) and the desorbable VOCs was 176-319 μg g -1. Most of the VOC were aldehydes. However, softeners for plastic (DBP and DEHP) were present. The chemical composition includes human and animal skin fragments, paper fibers, glass wool, wood and textilefibers and inorganic and metal particles. The sizes ranged from 0.001-1 mm and the average specific density was 1.0 g m -3. The bulk dust was resuspended and injected into an exposure chamber. The airborne dust was sampled and analyzed to illustrate the exposures that can result from sedimented dirt and dust. The airborne dust resulting from the bulk dust reached concentrations ranging from 0.26-0.75 mg m -3 in average contained 300-170 CFU m -3. The organic fraction was from 55-70% and the water content about 2.5% (WGT). The content of the dust was compared to the similar results reported in the literature and its toxic potency is

  14. Cosmic dust

    NASA Technical Reports Server (NTRS)

    Brownlee, Donald E.; Sandford, Scott A.

    1992-01-01

    Dust is a ubiquitous component of our galaxy and the solar system. The collection and analysis of extraterrestrial dust particles is important to exobiology because it provides information about the sources of biogenically significant elements and compounds that accumulated in distant regions of the solar nebula and that were later accreted on the planets. The topics discussed include the following: general properties of interplanetary dust; the carbonaceous component of interplanetary dust particles; and the presence of an interstellar component.

  15. Tikhonravov Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches are located within a small crater inside Tikhonravov Crater.

    Image information: VIS instrument. Latitude 12.6, Longitude 37.1 East (322.9 West). 36 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Lycus Sulci Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches occur on the slopes of Lycus Sulci near Olympus Mons.

    Image information: VIS instrument. Latitude 28.1, Longitude 220.4 East (139.6 West). 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  17. Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches are located in a small canyon within a crater rim northeast of Naktong Vallis.

    Image information: VIS instrument. Latitude 7.1, Longitude 34.7 East (325.3 West). 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    This region of dust avalanches is located in and around a crater to the west of yesterday's image.

    Image information: VIS instrument. Latitude 14.7, Longitude 32.7 East (327.3 West). 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  19. Dust Storm

    Atmospheric Science Data Center

    2013-04-16

    article title:  Massive Dust Storm over Australia     View ... at JPL September 22, 2009 - Massive dust storm over Australia. project:  MISR category:  ... Sep 22, 2009 Images:  Dust Storm location:  Australia and New Zealand ...

  20. Sahara Dust

    Atmospheric Science Data Center

    2013-04-15

    article title:  Casting Light and Shadows on a Saharan Dust Storm     ... (nadir) camera. High-altitude cirrus clouds cast shadows on the underlying ocean and dust layer, which are visible in shades of ... was unable to retrieve elevation data. However, the edges of shadows cast by the cirrus clouds onto the dust (indicated by blue and cyan ...

  1. Fennec dust forecast intercomparison over the Sahara in June 2011

    NASA Astrophysics Data System (ADS)

    Chaboureau, Jean-Pierre; Flamant, Cyrille; Dauhut, Thibaut; Kocha, Cécile; Lafore, Jean-Philippe; Lavaysse, Chistophe; Marnas, Fabien; Mokhtari, Mohamed; Pelon, Jacques; Reinares Martínez, Irene; Schepanski, Kerstin; Tulet, Pierre

    2016-06-01

    In the framework of the Fennec international programme, a field campaign was conducted in June 2011 over the western Sahara. It led to the first observational data set ever obtained that documents the dynamics, thermodynamics and composition of the Saharan atmospheric boundary layer (SABL) under the influence of the heat low. In support to the aircraft operation, four dust forecasts were run daily at low and high resolutions with convection-parameterizing and convection-permitting models, respectively. The unique airborne and ground-based data sets allowed the first ever intercomparison of dust forecasts over the western Sahara. At monthly scale, large aerosol optical depths (AODs) were forecast over the Sahara, a feature observed by satellite retrievals but with different magnitudes. The AOD intensity was correctly predicted by the high-resolution models, while it was underestimated by the low-resolution models. This was partly because of the generation of strong near-surface wind associated with thunderstorm-related density currents that could only be reproduced by models representing convection explicitly. Such models yield emissions mainly in the afternoon that dominate the total emission over the western fringes of the Adrar des Iforas and the Aïr Mountains in the high-resolution forecasts. Over the western Sahara, where the harmattan contributes up to 80 % of dust emission, all the models were successful in forecasting the deep well-mixed SABL. Some of them, however, missed the large near-surface dust concentration generated by density currents and low-level winds. This feature, observed repeatedly by the airborne lidar, was partly forecast by one high-resolution model only.

  2. Characterisation of airborne particles collected within and proximal to an opencast coalmine: South Wales, U.K.

    PubMed

    Jones, Tim; Blackmore, Pete; Leach, Matt; Bérubé, Kelly; Sexton, Keith; Richards, Roy

    2002-05-01

    Airborne particulate matter has been collected from within, and proximal to, an opencast coal mine in south Wales. This work forms the first part of a three year project to collect and characterise, then determine the possible toxicology of airborne particles in the south Wales region. High-resolution Field Emission SEM has shown that the coal mine dusts consist largely of an assemblage of mineral grains and vehicle exhaust particles. SEM-EDX has shown that the mineralogical make-up of the PM10 is complex, heterogeneous, and constantly changing. These findings are supported by analytical TEM-EPXMA. However, patterns can be determined relating the mineralogical composition of the airborne particles to collection locations and mining activities within the opencast. At our study opencast, Park Slip West, quartz, which has known health effects, never exceeded 30% of the total collection mass, and average levels were much less. Vehicle exhaust emissions was the largest source in terms of particle numbers. The mass of airborne particulate matter within the pit averaged approximately twice that of outside the pit: importantly however, this higher mass was due to relatively large, and non-respirable, mineral grains. This study demonstrates that the physicochemical and mineralogical characterisation of airborne particles from mining and quarrying is essential to quantify the respirable fraction, and to identify potentially hazardous components within the PM10. PMID:12004982

  3. Phase partitioning and bioaccessibility of Pb in suspended dust from unsurfaced roads in Missouri-A potential tool for determining mitigation response

    NASA Astrophysics Data System (ADS)

    Witt, Emitt C.; Shi, Honglan; Wronkiewicz, David J.; Pavlowsky, Robert T.

    2014-05-01

    Airborne particulate material collected from seventeen rural unsurfaced roads in Missouri's agricultural and resource mining areas were characterized using the BCR sequential extraction procedure and simulated in vitro body fluids to determine the phase partitioning and bioaccessibility of Pb associated with roadway dusts. Results show that dusts produced from driving over unsurfaced roads in the mining area has a substantial portion of the Pb concentration associated with the more mobile exchangeable-plus-carbonate and reducible geochemical phases. By comparison, unsurfaced road dusts outside the resource mining area have lower metal contents, as expected, and a larger portion of the total Pb concentration associated with the immobile oxidizable and non-silicate bound residual phases. SEM/EDS analysis suggests the minerals associated with the more mobile Pb components include cerussite, Pb oxides and sulfates. Compared with the coarser >1 μm size fraction of dust, the <1 μm fraction contains a substantially higher concentration of Pb in association with clay minerals. Extraction tests using simulated body fluids show that gastric fluid can mobilize as much as 69% of the total Pb concentration in mining area road dust samples after five hours. Simulated alveolar lung fluid also was an efficient extractor of Pb from the <1 μm sample dust fraction, dissolving up to 100% of the available Pb after 100 h. Regression analysis suggests that aqua regia total Pb concentration is a good predictor of mobility and bioaccessibility and can be used to minimize costs associated with monitoring suspended dust contamination.

  4. Gusev Dust Devil, Sol 543

    NASA Technical Reports Server (NTRS)

    2005-01-01

    One dust devil scoots across the center of the view in this movie clip showing a few dust devils inside Mars' Gusev Crater. The clip consists of frames taken by the navigation camera on NASA's Mars Exploration Rover Spirit during the rover's 543rd martian day, or sol (July 13, 2005).

    Spirit began seeing dust devil activity around the beginning of Mars' spring season. Activity increased as spring continued, but fell off again for about two weeks during a dust storm. As the dust storm faded away, dust devil activity came back. In the mid-afternoons as the summer solstice approached, dust devils were a very common occurrence on the floor of Gusev crater. The early-spring dust devils tended to move southwest-to-northeast, across the dust devil streaks in Gusev seen from orbit. Increasingly as the season progresses, the dust devils are seen moving northwest-to-southeast, in the same direction as the streaks. Scientists are watching for the big dust devils that leave those streaks.

    In this clip, contrast has been enhanced for anything in the images that changes from frame to frame, that is, for the dust moved by wind. The total time elapsed during the taking of these frames was 8 minutes, 21 seconds.

  5. Dust vertical distribution in the Caribbean during the Puerto Rico Dust Experiment

    NASA Astrophysics Data System (ADS)

    Reid, Jeffrey S.; Westphal, Douglas L.; Livingston, John M.; Savoie, Dennis L.; Maring, Hal B.; Jonsson, Haflidi H.; Eleuterio, Daniel P.; Kinney, James E.; Reid, Elizabeth A.

    2002-04-01

    As part of Puerto Rico Dust Experiment (PRIDE), a Piper Navajo research aircraft, equipped with particle probes and an airborne Sun photometer, was deployed to Puerto Rico in July 2000. During the study, mid-visible optical depths in Puerto Rico due to dust reached 0.5. In the middle of the summer transport season, the vertical distributions of dust were similar to that commonly assumed in the region with dust concentrated in the Saharan Air Layer (SAL) aloft. However, during the first half of the study period, dust had the highest concentrations in the marine and convective boundary layers, with lower dust concentrations above the trade inversion despite the presence of a strong SAL. Supporting meteorology suggests that the state of the monsoon on the coast of Africa influences the nature of the vertical distribution of dust in the Caribbean.

  6. Circumstellar dust

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    1986-01-01

    The presence of dust in the general interstellar medium is inferred from the extinction, polarization, and scattering of starlight; the presence of dark nebulae; interstellar depletions; the observed infrared emission around certain stars and various types of interstellar clouds. Interstellar grains are subject to various destruction mechanisms that reduce their size or even completely destroy them. A continuous source of newly formed dust must therefore be present for dust to exist in the various phases of the interstellar medium (ISM). The working group has the following goals: (1) review the evidences for the formation of dust in the various sources; (2) examine the clues to the nature and composition of the dust; (3) review the status of grain formation theories; (4) examine any evidence for the processing of the dust prior to its injection into the interstellar medium; and (5) estimate the relative contribution of the various sources to the interstellar dust population.

  7. Impact and monitoring of dust storms in Taklimakan desert

    NASA Astrophysics Data System (ADS)

    Feng, G. G.; Li, X.; Zheng, Z.

    2012-12-01

    The Taklimakan is China's largest, driest, and warmest desert in total area of 338000km^2 with perimeter of 436 km, it is also known as one of the world's largest shifting-sand deserts. Fully 85 percent of the total area consists of mobile, crescent-shaped sand dunes and are virtually devoid of vegetation. The abundant sand provides material for frequent intense dust storms. The Taklimakan desert fills the expansive Tarim Basin between the Kunlun Mountains and the Tibet Plateau to the south and the Tian Shan Mountains to the north. The Tarim River flows across the basin from west-to-east. In these places, the oases created by fresh surface water support agriculture. Studies outside Xinjiang indicated that 80% dust source of storms was from farmland. Dust storms in the Tarim Basin occur for 20 to 59 days, mainly in spring every year. However, little effort was taken to investigate soil wind erosion and dust emission around the desert. Quantitative understanding of individual dust events in the arid Taklimakan desert, for example, the dust emission rates and the long-range transport, are still incomplete. Therefore, the dust events were observed through routine satellite sensors, lidar instruments, airborne samplers, and surface-based aerosol monitors. Soil wind erosion and suspended particulates emission of four major dust storms from the desert and the typical oasis farmlands at the north rim of the desert were measured using creep sampler, BSNE and TSP at eight heights in 2012. In addition, Aqua satellite AOD data, the NAAPS Global Aeosol model, the CALIPSO satellite products, EPA's AirNow AQI of PM2.5 and HYSPLIT Back Trajectory model were applied to analyze dust transport across the Pacific. Four significant dust storms were observed at the north rim of Taklimakan desert in the spring, 2012. During those events, predominant wind direction ranged from 296 to 334°, wind speed over 7 m/s at 2 m lasted for 471-1074 min, gust wind speed ranged from 11-18m/s. It was

  8. Deriving an atmospheric budget of total organic bromine using airborne in-situ measurements of brominated hydrocarbons in the Western Pacific during SHIVA.

    NASA Astrophysics Data System (ADS)

    Sala, Stephan; Bönisch, Harald; Keber, Timo; Engel, Andreas

    2013-04-01

    Halogenated hydrocarbons play a major role as precursors for stratospheric ozone depletion. Released from the surface in the troposphere, the halocarbons reach the stratosphere via transport through the tropical tropopause layer. Measurements of stratospheric BrO indicate an existing gap between the abundance of long lived brominated halocarbons, such as Halons and methyl bromide (CH3Br), and the abundance of inorganic bromine in the stratosphere. Recently, it has been realized that in addition to these long-lived substances so called very short-lived substances (VSLS) can also contribute significantly to the stratospheric halogen loading. The VSLS have lifetimes less than half a year and are predominantly emitted from climate-sensitive natural sources, e.g. marine macro-algae. A main source region for those emissions is the Western Pacific where sea surface temperatures are high and air masses from the surface can be transported rapidly into the TTL (Tropical Tropopause Layer) by deep convective systems. In this work, we present results derived by our measurement data from the field campaign which was part of the SHIVA (Stratospheric Halogens in a Varying Atmosphere) Project. One aspect of this campaign, which took place in November and December 2011, was the deployment of the German research aircraft "Falcon" in the Western Pacific at Miri in Malaysia. From there we performed sixteen local flights in total; these flights covered a spatial range from the boundary layer up to 11km altitude around the area of Borneo. Our contribution to the campaign was the deployment of a newly developed GC/MS system operated in negative chemical ionization mode for the fast analysis of halogenated hydrocarbons in ambient air onboard the aircraft. The long lived halocarbons H1301, H1211, H1202, H2402 as well as CH3Br and the very short lived substances CHBr3, CH2Br2, CHBr2Cl, CHBrCl2 and CHBrCl were be analyzed with the instrument. We derive a detailed budget of total organic

  9. Planetary Dust: Cross-Functional Considerations

    NASA Technical Reports Server (NTRS)

    Wagner, Sandra

    2006-01-01

    Apollo astronauts learned first hand how problems with dust impact lunar surface missions. After three days, lunar dust contaminating on EVA suit bearings led to such great difficulty in movement that another EVA would not have been possible. Dust clinging to EVA suits was transported into the Lunar Module. During the return trip to Earth, when microgravity was reestablished, the dust became airborne and floated through the cabin. Crews inhaled the dust and it irritated their eyes. Some mechanical systems aboard the spacecraft were damaged due to dust contamination. Study results obtained by Robotic Martian missions indicate that Martian surface soil is oxidative and reactive. Exposures to the reactive Martian dust will pose an even greater concern to the crew health and the integrity of the mechanical systems. As NASA embarks on planetary surface missions to support its Exploration Vision, the effects of these extraterrestrial dusts must be well understood and systems must be designed to operate reliably and protect the crew in the dusty environments of the Moon and Mars. The AIM Dust Assessment Team was tasked to identify systems that will be affected by the respective dust, how they will be affected, associated risks of dust exposure, requirements that will need to be developed, identified knowledge gaps, and recommended scientific measurements to obtain information needed to develop requirements, and design and manufacture the surface systems that will support crew habitation in the lunar and Martian outposts.

  10. Status and Future of Dust Storm Forecasting

    NASA Astrophysics Data System (ADS)

    Westphal, D. L.

    2002-12-01

    In recent years, increased attention has been given to the large amounts of airborne dust derived from the deserts and desertified areas of the world and transported over scales ranging from local to global. This dust can have positive and negative impacts on human activities and the environment, including modifying cloud formation, fertilizing the ocean, degrading air quality, reducing visibility, transporting pathogens, and inducing respiratory problems. The atmospheric radiative forcing by the dust has implications for global climate change and presently is one of the largest unknowns in climate models. These uncertainties have lead to much of the funding for research into the sources, properties, and fate of atmospheric dust. As a result of advances in numerical weather prediction over the past decades and the recent climate research, we are now in a position to produce operational dust storm forecasts. International organizations and national agencies are developing programs for dust forecasting. The approaches and applications of dust detection and forecasting are as varied as the nations that are developing the models. The basic components of a dust forecasting system include atmospheric forcing, dust production, and dust microphysics. The forecasting applications include air and auto traffic safety, shipping, health, national security, climate and weather. This presentation will summarize the methods of dust storm forecasting and illustrate the various applications. The major remaining uncertainties (e.g. sources and initialization) will be discussed as well as approaches for solving those problems.

  11. [Occupational dust exposure and prevalence of respiratory symptoms among conduit repair workers].

    PubMed

    Kumagai, S; Kurumatani, N; Nakachi, S; Nakagiri, S; Hara, K

    1993-11-01

    The amount of water supply in Japan was 16 billion ton as of 1989. Water from rivers and other sources is purified, sterilized and then supplied to the residents through conduits. When conduits are accidentally damaged, they must be repaired by the workers of the Waterworks Bureau of the local government. In this task, the workers are exposed to airborne dust which develops while digging and filling the ground and cutting the conduit and the concrete covering the road. The purpose of the present study was to estimate the airborne dust exposure level among the workers and to investigate its effect on their respiratory organs. First, we measured the total dust exposure concentration of 20 conduit repair workers and the total dust concentration in 10 office rooms. Second, we conducted a self-administered questionnaire survey to estimate the prevalence of respiratory symptoms among the employees of 119 Waterworks Bureaus. The subjects of the analysis were 322 conduit repair workers and as their controls 345 clerical/engineering workers. The results can be summarized as follows: 1) The average daily total dust exposure while repairing conduits ranged from 0.27 to 5.05 mg/m3 (mean = 0.91 mg/m3), while that while exchanging water meters from 0.23 to 0.52 mg/m3 (mean 0.41 mg/m3). These values were 4.6 and 2.1 fold higher than the total dust concentration in office rooms (mean = 0.20 mg/m3). 2) With the use of fluorescent X-ray method, iron and aluminum were detected in all samples collected while repairing conduits and the intensity of X-ray increased with increase in weight of collected dust. Iron exposure concentration ranged from 0.006 to 0.095 mg/m3, which is much higher than the levels in the air in urban areas. Iron and aluminum could not be detected by fluorescent X-ray method in most of the samples collected in office rooms. These findings indicate that the main element in the dust collected while repairing conduits is soil, while that in office rooms is tobacco

  12. Airborne microorganisms from waste containers.

    PubMed

    Jedlicka, Sabrina S; Stravitz, David M; Lyman, Charles E

    2012-01-01

    In physician's offices and biomedical labs, biological waste is handled every day. This waste is disposed of in waste containers designed for holding red autoclave bags. The containers used in these environments are closed hands-free containers, often with a step pedal. While these containers protect the user from surface-borne microorganisms, the containers may allow airborne microorganisms to escape via the open/close mechanism because of the air current produced upon open/close cycles. In this study, the air current was shown to be sufficient to allow airborne escape of microorganisms held in the container, including Aspergillus niger. However, bacterial cultures, such as Escherichia coli and Lactococcus lactis did not escape. This may be due to the choice of bacterial cultures and the absence of solid waste, such as dust or other particulate matter in the waste containers, that such strains of bacteria could travel on during aerosolization. We compared these results to those obtained using a re-designed receptacle, which mimimizes air currents, and detected no escaping microorganisms. This study highlights one potential source of airborne contamination in labs, hospitals, and other environments that dispose of biological waste. PMID:23047084

  13. Ventilatory function in workers exposed to tea and wood dust.

    PubMed Central

    Al Zuhair, Y S; Whitaker, C J; Cinkotai, F F

    1981-01-01

    Changes in ventilatory capacity during the work shift were studied in workers exposed to tea dust in tea-packing plants, wood dust in two furniture factories, and virtually no dust in an inoperational power station. The FEV1 and FVC in workers exposed to dust were found to decline during the work shift by a small but significant volume. The MMFR, Vmax 50% and Vmax 75% were to variable to display any trend. No dose-response relationship could be discerned between the fall in workers' ventilatory capacity and the concentrations of airborne dust or microbes to which they were exposed. Bronchodilators could reverse the fall in FEV1. PMID:7317296

  14. Dust Emissions from Undisturbed and Disturbed, Crusted Playa Surfaces: Cattle Trampling Effect

    NASA Astrophysics Data System (ADS)

    Zobeck, T. M.; Baddock, M. C.; van Pelt, R.; Fredrickson, E. L.

    2009-12-01

    Dry playa lake beds can be a significant source of fine dust emissions during high wind events in arid and semiarid landscapes. The physical and chemical properties of the playa surface control the amount and properties of the dust emitted. In this study, we use a field wind tunnel to quantify the dust emissions from a bare, fine-textured playa surface located in the Chihuahua Desert at the Jornada Experimental Range, near Las Cruces, New Mexico, USA. We tested natural, undisturbed crusted surfaces and surfaces that had been subjected to two levels of domestic animal disturbance. The animal disturbance was provided by trampling produced from one and ten passes along the length of the wind tunnel by a 630 kg Angus-Hereford cross cow. The trampling broke the durable crust and created loose erodible material. Each treatment (natural crust, one pass, and ten passes) was replicated three times. A push-type wind tunnel with a 6 m long, 0.5 m wide, and 1 m high test section was used to generate dust emissions under controlled conditions. Clean medium sand was dropped onto the playa surface to act as an abrader material. The tunnel wind speed was equivalent to 15 m/s at a height of 2 m over a smooth soil surface. The tunnel was initially run for ten minutes, with no abrader added. A second 30 minute run was subsequently sampled as abrader was added to the wind stream. Dust and saltating material were collected using an isokinetic slot sampler at the end of the tunnel. Total airborne dust was collected on two 25 cm x 20 cm glass fiber filters (GFF) and measured using a GRIMM particle monitor every 6 sec throughout each test run. Disturbance by trampling generated increased saltating material and airborne dust. The amount of saltating material measured during the initial (no abrader added) run was approximately 70% greater and 5.8 times the amount of saltating material measured on the one pass and ten pass plots, respectively, compared with that observed on the undisturbed

  15. Modeling and Remote Sensing for a Dust/Health Early Warning System

    NASA Astrophysics Data System (ADS)

    Sprigg, W. A.

    2015-12-01

    Airborne desert dust is a human health problem in much of the world. While controlling emissions from arid lands is problematic, advances in remote sensing and modeling have matured sufficiently to reduce risks of exposure. Active dust sources are identified and monitored from space-based platforms and from modeled back-trajectories. Satellite-based sensors detect and monitor airborne dust crossing oceans and circling the globe. High-resolution dust forecasts and simulations over the U.S. southwest have been successfully demonstrated. Operational dust forecast systems could warn of intercontinental dust movements and potential dust exposure hazards on spatial scales of a few kilometers and on time scales sufficient for planning and avoiding risks. This paper will show how the World Meteorological Organization's Sand and Dust Storm Warning Advisory and Assessment System could coordinate international collaboration for a worldwide Dust/Health Early Warning System modeled after the decades-long success of the international Famine Early Warning System.

  16. Protoplanetary Dust

    NASA Astrophysics Data System (ADS)

    Apai, Dániel; Lauretta, Dante S.

    2010-01-01

    Preface; 1. Planet formation and protoplanetary dust Daniel Apai and Dante Lauretta; 2. The origins of protoplanetary dust and the formation of accretion disks Hans-Peter Gail and Peter Hope; 3. Evolution of protoplanetary disk structures Fred Ciesla and Cornelius P. Dullemond; 4. Chemical and isotopic evolution of the solar nebula and protoplanetary disks Dmitry Semenov, Subrata Chakraborty and Mark Thiemens; 5. Laboratory studies of simple dust analogs in astrophysical environments John R. Brucato and Joseph A. Nuth III; 6. Dust composition in protoplanetaty dust Michiel Min and George Flynn; 7. Dust particle size evolution Klaus M. Pontoppidan and Adrian J. Brearly; 8. Thermal processing in protoplanetary nebulae Daniel Apai, Harold C. Connolly Jr. and Dante S. Lauretta; 9. The clearing of protoplanetary disks and of the protosolar nebula Ilaira Pascucci and Shogo Tachibana; 10. Accretion of planetesimals and the formation of rocky planets John E. Chambers, David O'Brien and Andrew M. Davis; Appendixes; Glossary; Index.

  17. Protoplanetary Dust

    NASA Astrophysics Data System (ADS)

    Apai, D.´niel; Lauretta, Dante S.

    2014-02-01

    Preface; 1. Planet formation and protoplanetary dust Daniel Apai and Dante Lauretta; 2. The origins of protoplanetary dust and the formation of accretion disks Hans-Peter Gail and Peter Hope; 3. Evolution of protoplanetary disk structures Fred Ciesla and Cornelius P. Dullemond; 4. Chemical and isotopic evolution of the solar nebula and protoplanetary disks Dmitry Semenov, Subrata Chakraborty and Mark Thiemens; 5. Laboratory studies of simple dust analogs in astrophysical environments John R. Brucato and Joseph A. Nuth III; 6. Dust composition in protoplanetaty dust Michiel Min and George Flynn; 7. Dust particle size evolution Klaus M. Pontoppidan and Adrian J. Brearly; 8. Thermal processing in protoplanetary nebulae Daniel Apai, Harold C. Connolly Jr. and Dante S. Lauretta; 9. The clearing of protoplanetary disks and of the protosolar nebula Ilaira Pascucci and Shogo Tachibana; 10. Accretion of planetesimals and the formation of rocky planets John E. Chambers, David O'Brien and Andrew M. Davis; Appendixes; Glossary; Index.

  18. Airborne crystalline silica concentrations at coal-fired power plants associated with coal fly ash

    SciTech Connect

    Hicks, J.; Yager, J.

    2006-08-15

    This study presents measurements of airborne concentrations of respirable crystalline silica in the breathing zone of workers who were anticipated to encounter coal fly ash. Six plants were studied; two were fired with lignite coal, and the remaining four plants used bituminous and subbituminous coals. A total of 108 personal breathing zone respirable dust air samples were collected. Bulk samples were also collected from each plant site and subjected to crystalline silica analysis. Airborne dust particle size analysis was measured where fly ash was routinely encountered. The results from bituminous and subbituminous fired plants revealed that the highest airborne fly ash concentrations are encountered during maintenance activities: 0.008 mg/m{sup 3} to 96 mg/m{sup 3} (mean of 1.8 mg/m{sup 3}). This group exceeded the threshold limit values (TLV) in 60% of the air samples. During normal production activities, airborne concentrations of crystalline silica ranged from nondetectable to 0.18 mg/m{sup 3} (mean value of 0.048 mg/m{sup 3}). Air samples collected during these activities exceeded the current and proposed TLVs in approximately 54% and 65% of samples, respectively. Limited amounts of crystalline silica were detected in samples collected from lignite-fired plants, and approximately 20% of these air samples exceeded the current TLV. Particle size analysis in areas where breathing zone air samples were collected revealed mass median diameters typically between 3 {mu}m and 8 {mu}m. Bulk and air samples were analyzed for all of the common crystalline silica polymorphs, and only alpha quartz was detected.

  19. Gusev Dust Devil, sol 532

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This movie clip shows a dust devil seen by NASA's Mars Exploration Rover Spirit during the rover's 532nd martian day, or sol (July 2, 2005). The dust-carrying whirlwind is moving across a plain inside Gusev Crater and viewed from Spirit's vantage point on hills rising from the plain. The clip consists of frames taken by Spirit's navigation camera, processed to enhance contrast for anything in the images that changes from frame to frame. The total elapsed time during the taking of these frames was 8 minutes, 48 seconds.

    Spirit began seeing dust devil activity around the beginning of Mars' spring season. Activity increased as spring continued, but fell off again for about two weeks during a dust storm. As the dust storm faded away, dust devil activity came back. In the mid-afternoons as the summer solstice approached, dust devils were a very common occurrence on the floor of Gusev crater. The early-spring dust devils tended to move southwest-to-northeast, across the dust devil streaks in Gusev seen from orbit. Increasingly as the season progresses, the dust devils are seen moving northwest-to-southeast, in the same direction as the streaks. Scientists are watching for the big dust devils that leave those streaks.

  20. The global transport of dust

    USGS Publications Warehouse

    Griffin, Dale W.; Kellogg, C.A.; Garrison, V.H.; Shinn, E.A.

    2002-01-01

    By some estimates as much as two billion metric tons of dust are lifted into the Earth's atmosphere every year. Most of this dust is stirred up by storms, the more dramatic of which are aptly named dust storms. But more than mere dirt is carried aloft. Drifting with the suspended dust particles are soil pollutants such as herbicides and pesticides and a significant number of microorganisms-bacteria, viruses and fungi. We can gain some appreciation of how much microbial life is actually floating in our atmosphere by performing a quick calculation. There are typically about one million bacteria per gram of soil, but let's be conservative and suppose there are only 10,000 bacteria per gram of airborne sediment. Assuming a modest one billion metric tons of sediment in the atmosphere, these numbers translate into a quintillion (1018) sediment-borne bacteria moving around the planet each year-enough to form a microbial bridge between Earth and Jupiter. Here we consider what we've learned about the airborne transport of sediment across the globe, and review some of the remarkable studies in this reemerging field that had it origins more than 100 years ago.

  1. Atmospheric aging of dust ice nucleating particles - a combined laboratory and field approach

    NASA Astrophysics Data System (ADS)

    Boose, Yvonne; Rodríguez, Sergio; García, M. Isabel; Linke, Claudia; Schnaiter, Martin; Zipori, Assaf; Crawford, Ian; Lohmann, Ulrike; Kanji, Zamin A.; Sierau, Berko

    2016-04-01

    We present INP data measured in-situ at two mostly free tropospheric locations: the High Altitude Research Station Jungfraujoch (JFJ) in the Swiss Alps, located at 3580 m above sea level (asl) and the Izaña observatory on Tenerife, off the West African shore (2373 m asl). INP concentrations were measured online with the Portable Ice Nucleation Chamber, PINC, at the Jungfraujoch in the winters of 2012, 2013 and 2014 and at Izaña in the summers of 2013 and 2014. Each measurement period lasted between 2 to 6 weeks. During summer, Izaña is frequently within the Saharan Air Layer and thus often exposed to Saharan dust events. Saharan dust also reaches the Jungfraujoch mainly during spring. For offline ice nucleation analysis in the laboratory under similar thermodynamic conditions, airborne dust was collected a) at Izaña with a cyclone directly from the air and b) collected from the surface of the Aletsch glacier close to the JFJ after deposition. Supporting measurements of aerosol particle size distributions and fluorescence were conducted at both locations, as well as cloud water isotope analysis at the Jungfraujoch and aerosol chemistry at Izaña. For both locations the origin of the INPs was investigated with a focus on dust and biological particles using back trajectories and chemical signature. Results show that dust aerosol is the dominant INP type at both locations at a temperature of 241 K. In addition to Saharan dust, also more local, basaltic dust is found at the Jungfraujoch. Biological particles are not observed to play a role for ice nucleation in clouds during winter at Jungfraujoch but are enriched in INP compared to the total aerosol at Izaña also during dust events. The comparison of the laboratory and the field measurements at Izaña indicates a good reproducibility of the field data by the collected dust samples. Field and laboratory data of the dust samples from both locations show that the dust arriving at JFJ is less ice nucleation active

  2. The 2011 Draconids: The First European Airborne Meteor Observation Campaign

    NASA Astrophysics Data System (ADS)

    Vaubaillon, Jeremie; Koten, Pavel; Margonis, Anastasios; Toth, Juraj; Rudawska, Regina; Gritsevich, Maria; Zender, Joe; McAuliffe, Jonathan; Pautet, Pierre-Dominique; Jenniskens, Peter; Koschny, Detlef; Colas, Francois; Bouley, Sylvain; Maquet, Lucie; Leroy, Arnaud; Lecacheux, Jean; Borovicka, Jiri; Watanabe, Junichi; Oberst, Jürgen

    2015-02-01

    On 8 October 2011, the Draconid meteor shower (IAU, DRA) was predicted to cause two brief outbursts of meteors, visible from locations in Europe. For the first time, a European airborne meteor observation campaign was organized, supported by ground-based observations. Two aircraft were deployed from Kiruna, Sweden, carrying six scientists, 19 cameras and eight crew members. The flight geometry was chosen such that it was possible to obtain double-station observations of many meteors. The instrument setup on the aircraft as well as on the ground is described in full detail. The main peak from 1900-dust ejecta happened at the predicted time and at the predicted rate. The second peak was observed from the earlier flight and from the ground, and was caused most likely by trails ejected in the nineteenth century. A total of 250 meteors were observed, for which light curve data were derived. The trajectory, velocity, deceleration and orbit of 35 double station meteors were measured. The magnitude distribution index was high, as a result of which there was no excess of meteors near the horizon. The light curve proved to be extremely flat on average, which was unexpected. Observations of spectra allowed us to derive the compositional information of the Draconids meteoroids and showed an early release of sodium, usually interpreted as resulting from fragile meteoroids. Lessons learned from this experience are derived for future airborne meteor shower observation campaigns.

  3. Viability and potential for immigration of airborne bacteria from Africa that reach high mountain lakes in Europe.

    PubMed

    Hervàs, Anna; Camarero, Lluís; Reche, Isabel; Casamayor, Emilio O

    2009-06-01

    We have analysed the diversity of the bacteria, which grow after addition of concentrated airborne particles and desert dust in different microcosms combinations with water samples from oligotrophic alpine lakes. We used, on the one hand, airborne bacteria transported by an African dust plume and collected in a high mountain area in the central Pyrenees (Spain). On the other hand, we collected desert dust in Mauritania (c. 3000 km distance, and a few days estimated airborne journey), a known source region for dust storms in West Africa, which originates many of the dust plumes landing on Europe. In all the dust-amended treatments we consistently observed bacterial growth of common phyla usually found in freshwater ecosystems, i.e. Alpha-, Beta- and Gammaproteobacteria, Actinobacteria, and a few Bacteroidetes, but with different composition based on lake water pretreatment and dust type. Overall, we tentatively split the bacterial community in (i) typical freshwater non-airborne bacteria, (ii) cosmopolitan long-distance airborne bacteria, (iii) non-freshwater low-distance airborne bacteria, (iv) non-freshwater long-distance airborne soil bacteria and (v) freshwater non-soil airborne bacteria. We identified viable long-distance airborne bacteria as immigrants in alpine lakes (e.g. Sphingomonas-like) but also viable putative airborne pathogens with the potential to grow in remote alpine areas (Acinetobacter-like and Arthrobacter-like). Generation of atmospheric aerosols and remote dust deposition is a global process, largely enhanced by perturbations linked to the global change, and high mountain lakes are very convenient worldwide model systems for monitoring global-scale bacterial dispersion and pathogens entries in remote pristine environments. PMID:19453609

  4. Dust Storm

    Atmospheric Science Data Center

    2013-04-16

    ... contrast strongly with the dust storm that swept across Iraq and Saudi Arabia on May 13, 2004 (bottom panels). These data products from ... as yellowish ripples that obscure a large part of southern Iraq. The dust is easy to discern over the dark waters of the teardrop-shaped ...

  5. Rocket dust storms and detached dust layers in the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Spiga, Aymeric; Faure, Julien; Madeleine, Jean-Baptiste; Määttänen, Anni; Forget, François

    2013-04-01

    Airborne dust is the main climatic agent in the Martian environment. Local dust storms play a key role in the dust cycle; yet their life cycle is poorly known. Here we use mesoscale modeling that includes the transport of radiatively active dust to predict the evolution of a local dust storm monitored by OMEGA on board Mars Express. We show that the evolution of this dust storm is governed by deep convective motions. The supply of convective energy is provided by the absorption of incoming sunlight by dust particles, rather than by latent heating as in moist convection on Earth. We propose to use the terminology "rocket dust storm," or conio-cumulonimbus, to describe those storms in which rapid and efficient vertical transport takes place, injecting dust particles at high altitudes in the Martian troposphere (30-50 km). Combined to horizontal transport by large-scale winds, rocket dust storms produce detached layers of dust reminiscent of those observed with Mars Global Surveyor and Mars Reconnaissance Orbiter. Since nighttime sedimentation is less efficient than daytime convective transport, and the detached dust layers can convect during the daytime, these layers can be stable for several days. The peak activity of rocket dust storms is expected in low-latitude regions at clear seasons (late northern winter to late northern summer), which accounts for the high-altitude tropical dust maxima unveiled by Mars Climate Sounder. Dust-driven deep convection has strong implications for the Martian dust cycle, thermal structure, atmospheric dynamics, cloud microphysics, chemistry, and robotic and human exploration.

  6. Andromeda's dust

    SciTech Connect

    Draine, B. T.; Aniano, G.; Krause, Oliver; Groves, Brent; Sandstrom, Karin; Klaas, Ulrich; Linz, Hendrik; Rix, Hans-Walter; Schinnerer, Eva; Schmiedeke, Anika; Walter, Fabian; Braun, Robert; Leroy, Adam E-mail: ganiano@ias.u-psud.fr

    2014-01-10

    Spitzer Space Telescope and Herschel Space Observatory imaging of M31 is used, with a physical dust model, to construct maps of dust surface density, dust-to-gas ratio, starlight heating intensity, and polycyclic aromatic hydrocarbon (PAH) abundance, out to R ≈ 25 kpc. The global dust mass is M {sub d} = 5.4 × 10{sup 7} M {sub ☉}, the global dust/H mass ratio is M {sub d}/M {sub H} = 0.0081, and the global PAH abundance is (q {sub PAH}) = 0.039. The dust surface density has an inner ring at R = 5.6 kpc, a maximum at R = 11.2 kpc, and an outer ring at R ≈ 15.1 kpc. The dust/gas ratio varies from M {sub d}/M {sub H} ≈ 0.026 at the center to ∼0.0027 at R ≈ 25 kpc. From the dust/gas ratio, we estimate the interstellar medium metallicity to vary by a factor ∼10, from Z/Z {sub ☉} ≈ 3 at R = 0 to ∼0.3 at R = 25 kpc. The dust heating rate parameter (U) peaks at the center, with (U) ≈ 35, declining to (U) ≈ 0.25 at R = 20 kpc. Within the central kiloparsec, the starlight heating intensity inferred from the dust modeling is close to what is estimated from the stars in the bulge. The PAH abundance reaches a peak q {sub PAH} ≈ 0.045 at R ≈ 11.2 kpc. When allowance is made for the different spectrum of the bulge stars, q {sub PAH} for the dust in the central kiloparsec is similar to the overall value of q {sub PAH} in the disk. The silicate-graphite-PAH dust model used here is generally able to reproduce the observed dust spectral energy distribution across M31, but overpredicts 500 μm emission at R ≈ 2-6 kpc, suggesting that at R = 2-6 kpc, the dust opacity varies more steeply with frequency (with β ≈ 2.3 between 200 and 600 μm) than in the model.

  7. Interactions Between Mineral Dust, Climate, and Ocean Ecosystems

    NASA Technical Reports Server (NTRS)

    Gasso, Santiago; Grassian, Vicki H.; Miller, Ron L.

    2010-01-01

    Over the past decade, technological improvements in the chemical and physical characterization of dust have provided insights into a number of phenomena that were previously unknown or poorly understood. In addition, models are now incorporating a wider range of physical processes, which will allow us to better quantify the climatic and ecological impacts of dust. For example, some models include the effect of dust on oceanic photosynthesis and thus on atmospheric CO 2 (Friedlingstein et al. 2006). The impact of long-range dust transport, with its multiple forcings and feedbacks, is a relatively new and complex area of research, where input from several disciplines is needed. So far, many of these effects have only been parameterized in models in very simple terms. For example, the representation of dust sources remains a major uncertainty in dust modeling and estimates of the global mass of airborne dust. This is a problem where Earth scientists could make an important contribution, by working with climate scientists to determine the type of environments in which easily erodible soil particles might have accumulated over time. Geologists could also help to identify the predominant mineralogical composition of dust sources, which is crucial for calculating the radiative and chemical effects of dust but is currently known for only a few regions. Understanding how climate and geological processes control source extent and characterizing the mineral content of airborne dust are two of the fascinating challenges in future dust research.

  8. Chemical composition of urban airborne particulate matter in Ulaanbaatar

    NASA Astrophysics Data System (ADS)

    Nishikawa, Masataka; Matsui, Ichiro; Batdorj, Dashdondog; Jugder, Dulam; Mori, Ikuko; Shimizu, Atsushi; Sugimoto, Nobuo; Takahashi, Katsuyuki

    2011-10-01

    Atmospheric pollution caused by airborne particulate matter in the winter season in Ulaanbaatar, Mongolia is a very serious problem. However, there is a complete lack of scientific observation data to define the situation prior to any remediation. PM10 and PM2.5 average monthly values obtained by continuous monitoring showed the concentrations of particles of both size categories exceeded 100 μg m-3 during November to February (winter). PM10 particles were sampled with filters in January (i.e. during the heating period) and June (i.e.non-heating period) of 2008 in central Ulaanbaatar. To determine the composition of urban airborne particulate matter we analyzed a range of ionic components, multiple elements including heavy metals, and organic and inorganic carbon (soot). We also measured the stable carbon isotope ratio of the soot. Total carbon (sum of organic carbon and inorganic carbon) accounted for 47% of the mass of the PM10 during the heating period and 33% during the non-heating period, and was the largest component of urban airborne particulate matter in Ulaanbaatar. Stable isotope ratios (δ13C) of soot generated during the heating period (-23.4 ± 0.2‰) approximated the ratios for coal used in Ulaanbaatar (-21.3 to -24.4‰), while the ratios during the non-heating period (-27.1 ± 0.4‰) were clearly different from the coal values. In the heating period, a very high correlation was observed between soot and organic carbon, SO42-, NO3-, F-, Zn, As, and Pb, and we concluded that they were derived from coal combustion along with soot. In addition, the concentrations and their ratios relative to each other of Al, Fe, Ca, K, Na, Mg, and Mn hardly differed between the heating period and the non-heating period, and it was concluded that they were derived from soil dust.

  9. The Fate of Saharan Dust Across the Atlantic and Implications for a Central American Dust Barrier

    NASA Technical Reports Server (NTRS)

    Nowottnick, E.; Colarco, P.; da Silva, A.; Hlavka, D.; McGill, M.

    2011-01-01

    Saharan dust was observed over the Caribbean basin during the summer 2007 NASA Tropical Composition, Cloud, and Climate Coupling (TC4) field experiment. Airborne Cloud Physics Lidar (CPL) and satellite observations from MODIS suggest a barrier to dust transport across Central America into the eastern Pacific. We use the NASA GEOS-5 atmospheric transport model with online aerosol tracers to perform simulations of the TC4 time period in order to understand the nature of this barrier. Our simulations are driven by the Modem Era Retrospective-Analysis for Research and Applications (MERRA) meteorological analyses. We evaluate our baseline simulated dust distributions using MODIS and CALIOP satellite and ground-based AERONET sun photometer observations. GEOS-5 reproduces the observed location, magnitude, and timing of major dust events, but our baseline simulation does not develop as strong a barrier to dust transport across Central America as observations suggest. Analysis of the dust transport dynamics and lost processes suggest that while both mechanisms play a role in defining the dust transport barrier, loss processes by wet removal of dust are about twice as important as transport. Sensitivity analyses with our model showed that the dust barrier would not exist without convective scavenging over the Caribbean. The best agreement between our model and the observations was obtained when dust wet removal was parameterized to be more aggressive, treating the dust as we do hydrophilic aerosols.

  10. Dust climatology of the western United States

    SciTech Connect

    Changery, M.J.

    1983-04-01

    Beginning and ending times of dust-caused visibility values were extracted from original records for approximately 180 stations in the western US for the general period of record 1948 to 1977. Maps are presented depicting the annual total number of hours with visibility below specified values, annual number of dust episodes, dust episode durations, season of occurrence, and probability of thunderstorm-inducement.

  11. The Beginnings of Airborne Astronomy, 1920 - 1930: an Historical Narrative

    NASA Technical Reports Server (NTRS)

    Craine, E. R.

    1984-01-01

    The emergence of airborne astronomy in the early twentieth century is recounted. The aerial expedition to observe the solar eclipse on September 10, 1923, is described. Observation of the total solar eclipse of January 24, 1925, is discussed. The Honey Lake aerial expedition to study the solar eclipse of April 28, 1930, is also described. Four major accomplishments in airborne astronomy during the period 1920 to 1930 are listed. Airborne expeditions were undertaken at every logical opportunity, starting a continuous sequence of airborne astronomical expeditions which was to remain unbroken, except by World War II, to the present day. Although the scientific returns of the first ten years were modest, they did exist. Interest in, and support for, airborne astronomy was generated not only among astronomers but also among the public. Albert Stevens, arguably the true father of airborne astronomy, was to become interested in applying his considerable skill and experience to the airborne acquisition of astronomical data.

  12. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  13. THE AIRBORNE CULTURABLE MICROBIAL ECOLOGY OF SEVEN FEEDYARDS IN THE HIGH PLAINS OF TEXAS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concentrated animal feeding operations (CAFO) produce a large amount of manure that can impact the environment if not managed properly. Environmental issues at CAFO include odor, pathogens, endotoxins (ET), and dust. The role of ET and pathogens with dust emissions was investigated. Airborne microbi...

  14. Evidence for dust transport in Viking IR thermal mapper opacity data

    NASA Technical Reports Server (NTRS)

    Martin, Terry Z.

    1993-01-01

    Global maps of 9-micron dust opacity derived from radiometric observations made by the Viking Orbiter IR Thermal Mapper instruments have revealed a wealth of new information about the distribution of airborne dust over 1.36 Mars years from 1976-1979. In particular, the changing dust distribution during major dust storms is of interest since the data provide a point of contact with both Earth-based observations of storm growth and with global circulation models.

  15. Dust in the Wind: Modern and Ancient Dust Compositions

    NASA Astrophysics Data System (ADS)

    Hummer, P. J.; Pierce, J. L.; Benner, S. G.

    2013-12-01

    The addition of wind-blown sediments to soils can alter soil grain-size distributions, chemistry, and hydrologic properties, which can substantially affect geomorphic and hydrologic processes. In the Snake River Plain of Idaho, dust deposition has a profound influence on soil development, soil fertility and other soil characteristics. A rigorous study of the movement and chemistry of dust in the Boise area has not been completed. This study will establish a sampling method for dust collection, define the elemental signature of Boise dust and analyze Quaternary loess deposits to determine if the composition of dust in the Boise area has changed. We constructed passive marble samplers to collect wind-blown sediments within the Dry Creek Experimental Watershed (DCEW) located in the Boise Front foothills about 16 km northeast of Boise, Idaho. Mass flux amounts and the mineralogical composition of dust samples will provide information about the influence of wind-blown sediments on the soils of Dry Creek Experimental Watershed. ICP-MS analysis of samples will define an elemental signature for Boise dust. Comparison of modern dust with ancient loess will improve the understanding of the role of climate change in dust transport. We analyzed hourly wind speed data collected over the past 10 years from three weather stations to investigate trends in the timing of peak wind events. Average annual wind speeds range from 1.29 to 4.91 mph with a total average of 2.82 mph. Analysis of wind speeds indicate that while the majority of the highest wind events occur in the winter, wind events that occur during the summer months may be responsible for transporting dust. Recent large dust storms may have originated from extensive burned rangelands, and/or large plowed agricultural land. Future work will investigate the percentages of organic vs. inorganic material in loess, in order to narrow down possible sources of dust in the Snake River Plain.

  16. Exozodiacal dust

    NASA Astrophysics Data System (ADS)

    Kuchner, Marc Jason

    Besides the sun, the most luminous feature of the solar system is a cloud of "zodiacal" dust released by asteroids and comets that pervades the region interior to the asteroid belt. Similar clouds of dust around other stars---exozodiacal clouds---may be the best tracers of the habitable zones of extra-solar planetary systems. This thesis discusses three searches for exozodiacal dust: (1) We observed six nearby main-sequence stars with the Keck telescope at 11.6 microns, correcting for atmosphere-induced wavefront aberrations and deconvolving the point spread function via classical speckle analysis. We compare our data to a simple model of the zodiacal dust in our own system based on COBE DIRBE observations and place upper limits on the density of exozodiacal dust in these systems. (2) We observed Sirius, Altair, and Procyon with the NICMOS Coronagraph on the Hubble Space Telescope to look for scattered light from exozodiacal dust and faint companions within 10 AU from these stars. (3) The planned nulling capability of the Keck Interferometer should allow it to probe the region <200 milliarcsecond from a bright star and to suppress on-axis starlight by factors of 10 -3 to reveal faint circumstellar material. We model the response of the Keck Interferometer to hypothetical exozodiacal clouds to derive detection limits that account for the effects of stellar leakage, photon noise, noise from null depth fluctuations, and the fact that the cloud's shape is not known a priori. We also discuss the interaction of dust with planets. We used the COBE DIRBE Sky and Zodi Atlas and the IRAS Sky Survey Atlas to search for dynamical signatures of three different planets in the solar system dust complex: (1) We searched the COBE DIRBE Sky and Zodi Atlas for a wake of dust trailing Mars. We compare the DIRBE images to a model Mars wake based on the empirical model of the Earth's wake as seen by the DIRBE. (2) We searched the COBE DIRRE Sky and Zodi Atlas for Tiojan dust near

  17. Source apportionment of secondary airborne particulate matter in a polluted atmosphere.

    PubMed

    Mysliwiec, Mitchell J; Kleeman, Michael J

    2002-12-15

    Secondary airborne particulate matter formed from gas-phase pollutants contributes significantly to the most severe particulate air quality events that occur in the United States each year. In this study, a mechanistic air quality model is demonstrated that can predict source contributions to the size distribution of secondary airborne particulate matter. Calculations performed for a typical air quality episode in Southern California show that NOx released from diesel engines and catalyst-equipped gasoline engines account for the majority of the secondary particulate nitrate aerosol measured at inland locations. NH3 released from catalyst-equipped gasoline engines, farm animals, and residential sources account for the majority of the secondary particulate ammonium ion at inland locations in the region. When both tailpipe and road dust emissions are considered, transportation sources dominate the size distribution of total (primary plus secondary) airborne particulate matter in the South Coast Air Basin during the episode studied. These findings suggest that the public health risk associated with air pollution released from transportation sources is significant relative to other public health threats such as traffic accidents. PMID:12521164

  18. Exposure to Bioaerosols in Poultry Houses at Different Stages of Fattening; Use of Real-time PCR for Airborne Bacterial Quantification

    PubMed Central

    Oppliger, Anne; Charrière, Nicole; Droz, Pierre-Olivier; Rinsoz, Thomas

    2008-01-01

    Previous studies have demonstrated that poultry house workers are exposed to very high levels of organic dust and consequently have an increased prevalence of adverse respiratory symptoms. However, the influence of the age of broilers on bioaerosol concentrations has not been investigated. To evaluate the evolution of bioaerosol concentration during the fattening period, bioaerosol parameters (inhalable dust, endotoxin and bacteria) were measured in 12 poultry confinement buildings in Switzerland, at three different stages of the birds’ growth; samples of air taken from within the breathing zones of individual poultry house employees as they caught the chickens ready to be transported for slaughter were also analysed. Quantitative polymerase chain reaction (Q-PCR) was used to assess the quantity of total airborne bacteria and total airborne Staphylococcus species. Bioaerosol levels increased significantly during the fattening period of the chickens. During the task of catching mature birds, the mean inhalable dust concentration for a worker was 26 ± 1.9 mg m−3 and endotoxin concentration was 6198 ± 2.3 EU m−3 air, >6-fold higher than the Swiss occupational recommended value (1000 EU m−3). The mean exposure level of bird catchers to total bacteria and Staphylococcus species measured by Q-PCR is also very high, respectively, reaching values of 53 (±2.6) × 107 cells m−3 air and 62 (±1.9) × 106 m−3 air. It was concluded that in the absence of wearing protective breathing apparatus, chicken catchers in Switzerland risk exposure beyond recommended limits for all measured bioaerosol parameters. Moreover, the use of Q-PCR to estimate total and specific numbers of airborne bacteria is a promising tool for evaluating any modifications intended to improve the safety of current working practices. PMID:18497431

  19. Global potential of dust devil occurrence

    NASA Astrophysics Data System (ADS)

    Jemmett-Smith, Bradley; Marsham, John; Knippertz, Peter; Gilkeson, Carl

    2014-05-01

    Mineral dust is a key constituent in the climate system. Airborne mineral dust forms the largest component of the global aerosol budget by mass and subsequently affects climate, weather and biogeochemical processes. There remains large uncertainty in the quantitative estimates of the dust cycle. Dry boundary-layer convection serves as an effective mechanism for dust uplift, typically through a combination of rotating dust devils and non-rotating larger and longer-lived convective plumes. These microscale dry-convective processes occur over length scales of several hundred metres or less. They are difficult to observe and model, and therefore their contribution to the global dust budget is highly uncertain. Using an analytical approach to extrapolate limited observations, Koch and Renno (2006) suggest that dust devils and plumes could contribute as much as 35%. Here, we use a new method for quantifying the potential of dust devil occurrence to provide an alternative perspective on this estimate. Observations have shown that dust devil and convective plume occurrence is favoured in hot arid regions under relatively weak background winds, large ground-to-air temperature gradients and deep dry convection. By applying such known constraints to operational analyses from the European Centre for Medium Range Weather Forecasts (ECMWF), we provide, to the best of the authors' knowledge, the first hourly estimates of dust devil occurrence including an analysis of sensitivity to chosen threshold uplift. The results show the expected diurnal variation and allow an examination of the seasonal cycle and day-to-day variations in the conditions required for dust devil formation. They confirm that desert regions are expected to have by far the highest frequency of dry convective vortices, with winds capable of dust uplift. This approach is used to test the findings of Koch and Renno (2006). Koch J., Renno N. (2006). The role of convective plumes and vortices on the global aerosol

  20. China Dust

    Atmospheric Science Data Center

    2013-04-16

    ... induced by surface topography, which can disturb the wind flow. A few small cumulus clouds are also visible, and are casting shadows ... Experiment, an international campaign aimed at studying the offshore transport of airborne particles from the Asian continent. For more ...

  1. On the Role of Flash Floods for Dust Emission over North Africa: Alluvial Sediments acting as Dust Source

    NASA Astrophysics Data System (ADS)

    Schepanski, K.; Klueser, L.; Tegen, I.

    2014-12-01

    Studies analyzing satellite dust products show that numerous dust sources are located in the foothills of arid and semi-arid mountain regions. There, alluvial sediments deposited on valley bottoms and flood plains are very susceptible to wind erosion and frequently serve as dust source. This study focuses on the spatio-temporal distribution of dust source activation events over the mountain foothills and flood plains over North Africa. Satellite dust retrievals with sub-daily resolution such as from Meteosat Second Generation (MSG) Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and METOP A/B Infrared Atmospheric Sounding Interferometer (IASI) instruments are used to identify dust source regions. Identified dust source regions are then linked to soil properties and land type classification data sets. Information on the mineralogical composition of transported dust inferred from IASI observation are used (a) to investigate the impact of different source geomorphologies and thus different radiative properties of airborne dust particles, and (b) to estimate the contribution of dust uplift from alluvial sediments compared to dust emission from non-hydrological sources. Ultimately, this study contributes to the understanding of controlling mechanism on the interannual variability of dust source activation and will improve current dust emission modules coupled to atmosphere models.

  2. 2-DUST: Dust radiative transfer code

    NASA Astrophysics Data System (ADS)

    Ueta, Toshiya; Meixner, Margaret

    2016-04-01

    2-DUST is a general-purpose dust radiative transfer code for an axisymmetric system that reveals the global energetics of dust grains in the shell and the 2-D projected morphologies of the shell that are strongly dependent on the mixed effects of the axisymmetric dust distribution and inclination angle. It can be used to model a variety of axisymmetric astronomical dust systems.

  3. Airborne Gamma-Spectrometry in Switzerland

    SciTech Connect

    Butterweck, Gernot; Bucher, Benno; Rybach, Ladislaus

    2008-08-07

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of {sup 137}Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  4. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The characteristics of an Airborne Oceanographic Lidar (AOL) are given. The AOL system is described and its potential for various measurement applications including bathymetry and fluorosensing is discussed.

  5. Particle size distributions of Trade-Wind African dust measured in the air and after dispersal in water

    NASA Astrophysics Data System (ADS)

    Prospero, J. M.; Custals, L.

    2012-12-01

    The paleoclimate community uses dust particle size measurements in ice cores and sediments in an effort to retrieve information about dust sources and transport and the changes that occur with time. These measurements are typically made on particles suspended in water using a Coulter-type (electric zone sensing) instrument or with electro-optical measurements calibrated against a Coulter. In contrast the atmospheric community measures particles suspended in the atmosphere using instruments based on completely different principles. Because dust particles are typically complex agglomerates that can disperse in liquids, the measurements made with Coulter-type instruments cannot be easily related to atmospheric measurements. Consequently many of the assumptions made in the paleoclimate community about dust sources and transport based on particle sizes in cores cannot be readily tested against present-day measurements. We addressed this issue by making measurements of airborne dust in Barbados and Miami using a Coulter Multisizer™ 3. We collected airborne particles in two ways: 1) bulk (total) aerosol samples collected on a membrane filters, and 2) size-separated samples collected with a MOUDI cascade impactor which yields information about the degree of agglomeration of particles in different aerosol size classes. During the summer dust season, the bulk filters yield well-defined dust volume distribution peaks that are relatively stable from event-to-event at both Miami and Barbados. Volume geometric mean diameters (GMD) are centered around 2 μm; the GMD is marginally higher during heavy dust days than low-dust days. The most dramatic changes in size distributions occur during winter-spring dust events when the GMD ranges from around 1 μm to around 3 to 4 μm. It is notable that the size distributions truncate above 4 - 5 μm diameter; there are very few particles above 5 - 6 μm diameter except for single particles which could be due to contamination. We attribute

  6. An update on airborne contact dermatitis: 2001-2006.

    PubMed

    Santos, Raquel; Goossens, An

    2007-12-01

    Reports on airborne dermatoses are mainly published in the context of occupational settings. Hence, in recent years, dermatologists and also occupational physicians have become increasingly aware of the airborne source of contact dermatitis, resulting mainly from exposure to irritants or allergens. However, their occurrence is still underestimated, because reports often omit the term 'airborne' in relation to dust or volatile allergens. For the present update, we screened the journals 'Contact Dermatitis' (July 2000 to December 2006); 'Dermatitis', formerly named 'American Journal of Contact Dermatitis'; 'La Lettre du Gerda' (January 2000 to December 2006); and also included relevant articles from other journals published during the same period. This resulted in an updated list of airborne dermatitis causes. PMID:17988283

  7. Levels of gram-negative bacteria, Aspergillus fumigatus, dust, and endotoxin at compost plants.

    PubMed Central

    Clark, C S; Rylander, R; Larsson, L

    1983-01-01

    Airborne gram-negative bacteria, endotoxins, dust, and Aspergillus fumigatus were measured in four compost plants in Sweden. At sites where material was processed, the number of airborne A. fumigatus exceeded 10(6)/m3, whereas the number of gram-negative bacteria was usually lower. Dust levels were moderate, and endotoxin levels were well below 0.5 micrograms/m3. Medical studies to evaluate the effects of this type of microbial exposure are recommended. PMID:6347061

  8. Molecular imprint of dust evolution

    NASA Astrophysics Data System (ADS)

    Akimkin, Vitaly; Zhukovska, Svitlana; Wiebe, Dmitri; Semenov, Dmitry; Pavlyuchenkov, Yaroslav; Vasyunin, Anton; Birnstiel, Til; Henning, Thomas

    2013-07-01

    Evolution of sub-micron grains is an essential process during early stages of planet formation. The dust growth and sedimentation to the midplane affect a spectral energy distribution. At the same time dust evolution can alter significantly the distribution of gas that is a factor of 100 more massive than dust and can be traced with molecular line observations. We present simulations of protoplanetary disk structure with grain evolution using the ANDES code ("AccretioN disk with Dust Evolution and Sedimentation"). ANDES comprises (1) a 1+1D frequency-dependent continuum radiative transfer module, (2) a module to calculate the chemical evolution using an extended gas-grain chemical network with UV/X-ray-driven processes and surface reactions, (3) a module to calculate the gas thermal energy balance, and (4) a 1+1D module that simulates dust grain evolution. Such a set of physical processes allows us to assess the impact of dust evolution on the gas component, which is primarily related to radiation field and total available surface for chemical reactions. Considering cases of (i) evolved dust (2 Myr of grain coagulation, fragmentation and sedimentation) and (ii) pristine dust (well- mixed 0.1 micron grains), we found a sufficient changes in disk physical and chemical structure caused by the dust evolution. Due to higher transparency of the evolved disk model UV-shielded molecular layer is shifted closer to the midplane. The presence of big grains in the disk midplane delays the freeze-out of volatile gas-phase species such as CO, while the depletion is still effective in adjacent upper layers. Molecular concentrations of many species are enhanced in the disk model with dust evolution (CO2, NH2CN, HNO, H2O, HCOOH, HCN, CO) which provides an opportunity to use these molecules as tracers of dust evolution.

  9. Allergies, asthma, and dust

    MedlinePlus

    Allergic rhinitis - dust ... make allergies or asthma worse are called triggers. Dust is a common trigger. When your asthma or allergies become worse due to dust, you are said to have a dust allergy. ...

  10. Understanding mineral dusts from the Middle East

    NASA Astrophysics Data System (ADS)

    Engelbrecht, J. P.; McDonald, E.; Gillies, J. A.; Jayanty, J.; Casuccio, G.; Gertler, A.

    2012-12-01

    The purpose of the program was to provide scientifically founded information on the chemical and physical properties of airborne mineral dust collected during a period of approximately one year, largely in 2006, at Djibouti, Afghanistan (Bagram, Khowst), Qatar, United Arab Emirates, Iraq (Balad, Baghdad, Tallil, Tikrit, Taji, Al Asad), and Kuwait (Northern, Central, Coastal, and Southern regions). To fully understand mineral dusts, their chemical and physical properties as well as mineralogical interrelationships were accurately established. Three collocated low volume particulate samplers, one each for the total suspended (TSP), less than 10 μm in aerodynamic diameter (PM10), and less than 2.5 μm in aerodynamic diameter (PM2.5) particulate matter were deployed at each of the 15 sites, operating on a "1 in 6 day" sampling schedule. A total of 3,136 filter samples were collected on a 1-in-6 day schedule, along with one-time bulk soil samples, at each of the 15 sites. Sample media included Teflon® membrane and quartz fiber filters for chemical analysis (71 species), and Nuclepore® filters for individual particle analysis by Scanning Electron Microscopy (SEM). The provisional study of the data revealed three broad air pollution sources: geological dust, smoke from burn pits, and until now unidentified lead-zinc smelters and battery-processing facilities. SEM results and secondary electron imagery show that quartz and other silicate minerals and, to a lesser extent, dolomite and calcite particles are coated by a thin Si-Al-Mg layer, probably the clay minerals palygorskite and/or montmorillonite/illite. Positive Matrix Factorization (PMF) was performed on aerosol samples collected at six military sites in Iraq (Balad, Baghdad, Tallil, Tikrit, Taji, and Al Asad). PMF results reflect chemical differences amongst sources impacting at individual sites, further complicated by the regional geomorphology and meteorology. Sampling sites are seldom impacted by one source at

  11. Assessment of Occupational Exposure to Dust and Crystalline Silica in Foundries

    PubMed Central

    Omidianidost, Ali; Azari, Mansour R.; Golbabaei, Farideh

    2015-01-01

    Background: The term “crystalline silica” refers to crystallized form of SiO2 and quartz, as the most abundant compound on the earth’s crust; it is capable of causing silicosis and lung cancer upon inhaling large doses in the course of occupational exposure. The aim of this study was to assess occupational exposure to dust and crystalline silica in foundries in Pakdasht, Iran. Materials and Methods: In this study, airborne dust samples were collected on PVC filters (37 mm diameter, 0.8 mm pore size), by using a sampling pump and open face cyclone at a flow rate of 2.2 l/min for a maximum volume of 800 liters. For determining crystalline silica spectrometry was used according to the National Institute of Occupational Safety and Health (NIOSH) method No. 7601 for analysis of samples. Results: Results showed that crystalline silica concentration was higher than NIOSH and the American Conference of Government Industrial Hygienist (ACGIH) allowed extent (0.025 mg/m3). Concentration of crystalline silica was 0.02–0.1 mg/m3. Total dust concentration average was higher than the allowed extent by Permissible Exposure Limit (PEL) of the Occupational Safety and Health Administration (OSHA). Conclusion: It is essential to take necessary measures to control crystalline silica dust regarding the fact that 50% of workers are exposed to higher than the allowed extent. PMID:26858767

  12. Spectral absorption coefficients and imaginary parts of refractive indices of Saharan dust during SAMUM-1

    NASA Astrophysics Data System (ADS)

    Müller, T.; Schladitz, A.; Massling, A.; Kaaden, N.; Kandler, K.; Wiedensohler, A.

    2009-02-01

    ABSTRACT During the SAMUM-1 experiment, absorption coefficients and imaginary parts of refractive indices of mineral dust particles were investigated in southern Morocco. Main absorbing constituents of airborne samples were identified to be iron oxide and soot. Spectral absorption coefficients were measured using a spectral optical absorption photometer (SOAP) in the wavelength range from 300 to 800 nm with a resolution of 50 nm. A new method that accounts for a loading-dependent correction of fibre filter based absorption photometers, was developed. The imaginary part of the refractive index was determined using Mie calculations from 350 to 800 nm. The spectral absorption coefficient allowed a separation between dust and soot absorption. A correlation analysis showed that the dust absorption coefficient is correlated (R2 up to 0.55) with the particle number concentration for particle diameters larger than 0.5 μm, whereas the coefficient of determination R2 for smaller particles is below 0.1. Refractive indices were derived for both the total aerosol and a dust aerosol that was corrected for soot absorption. Average imaginary parts of refractive indices of the entire aerosol are 7.4 × 10-3, 3.4 × 10-3 and 2.0 × 10-3 at wavelengths of 450, 550 and 650 nm. After a correction for the soot absorption, imaginary parts of refractive indices are 5.1 × 10-3, 1.6 × 10-3 and 4.5 × 10-4.

  13. Extinction-to-Backscatter Ratios of Saharan Dust Layers Derived from In-Situ Measurements and CALIPSO Overflights During NAMMA

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Liu, Zhaoyan; Vaughan, Mark A.; Hu, Yongxiang; Ismail, Syed; Powell, Kathleen A.; Winker, David M.; Trepte, Charles R.; Anderson, Bruce E.

    2010-01-01

    We determine the aerosol extinction-to-backscatter (Sa) ratios of dust using airborne in-situ measurements of microphysical properties, and CALIPSO observations during the NASA African Monsoon Multidisciplinary Analyses (NAMMA). The NAMMA field experiment was conducted from Sal, Cape Verde during Aug-Sept 2006. Using CALIPSO measurements of the attenuated backscatter of lofted Saharan dust layers, we apply the transmittance technique to estimate dust Sa ratios at 532 nm and a 2-color method to determine the corresponding 1064 nm Sa. Using this method, we found dust Sa ratios of 39.8 plus or minus 1.4 sr and 51.8 plus or minus 3.6 sr at 532 nm and 1064 nm, respectively. Secondly, Sa ratios at both wavelengths is independently calculated using size distributions measured aboard the NASA DC-8 and estimates of Saharan dust complex refractive indices applied in a T-Matrix scheme. We found Sa ratios of 39.1 plus or minus 3.5 sr and 50.0 plus or minus 4 sr at 532 nm and 1064 nm, respectively, using the T-Matrix calculations applied to measured size spectra. Finally, in situ measurements of the total scattering (550 nm) and absorption coefficients (532 nm) are used to generate an extinction profile that is used to constrain the CALIPSO 532 nm extinction profile.

  14. The Efficiency of Biofilters at Mitigating Airborne MRSA from a Swine Nursery.

    PubMed

    Ferguson, D D; Smith, T C; Donham, K J; Hoff, S J

    2015-10-01

    Our prior studies have been in agreement with other researchers in detecting airborne methicillin-resistant Staphylococcus aureus (MRSA) inside and downwind of a swine housing facility. MRSA emitted in the exhaust air of swine facilities creates a potential risk of transmission of these organisms to people in the general area of these facilities as well as to other animals. This study investigated a possible means of reducing those risks. We investigated the efficiency of biofilters to remove MRSA from the exhaust air of a swine building. Two types of biofilter media (hardwood chips and western red cedar shredded bark) were evaluated. Efficiency was measured by assessing both viable MRSA (viable cascade impactor) and dust particles (optical particle courter) in the pre-filtered and post-filtered air of a functioning swine production facility. Our study revealed that hardwood chips were respectively 92% and 88% efficient in removing viable MRSA and total dust particles. Western red cedar was 95% efficient in removing viable MRSA and 86% efficient in removing dust particles. Our findings suggest that biofilters can be used as effective engineering controls to mitigate the transmission of aerosolized MRSA in the exhaust air of enclosed swine housing facilities. PMID:26710579

  15. Immune response to flour and dust mites in a United Kingdom bakery.

    PubMed Central

    Tee, R D; Gordon, D J; Gordon, S; Crook, B; Nunn, A J; Musk, A W; Venables, K M; Taylor, A J

    1992-01-01

    In a study of 279 United Kingdom bakery workers a high prevalence of immunological response to storage mites was found. To determine whether this was the consequence of exposure to storage mites in bakery work, a population of salt packing workers was examined as a comparison group not at occupational risk of exposure to storage mites. Forty two per cent of both groups were atopic (had a positive skin prick response greater than negative controls to D pteronyssinus, grass pollen, or cat fur by 2 mm or more) and 33% had an immediate skin prick test response to at least one of four storage mites (L destructor, G domesticus, T putrescentiae, A Siro). A higher percentage of the salt packing workers than the bakery workers had a positive radioallergosorbent test (RAST) (greater than or equal to 0.35 PRU) to D pteronyssinus and to the four storage mites. Logistic regression analysis identified atopy as the most significant variable for a positive skin test and RAST response to storage mites in both groups of workers. RAST inhibition was used to analyse extracted area and personal air samples. Analysis of static area samples for aeroallergen showed immunological identity with flour but L destructor was found in only one of seven exposed filters. The concentration of airborne flour was related to exposure rank of perceived dustiness and gravimetric measurement of total dust. Nineteen out of 32 filters from workers in jobs with higher dust exposure (rank >/=6) had a level of > 10 microgram/m(3) flour whereas this concentrations was exceeded in only one of 23 filters from workers in low dust exposure (< rank 6). It is concluded that storage mites are not of special significance in allergic responses in bakery workers. The development of immunological (and airway) responsiveness to inhaled flour dust is increased in those exposed to higher concentrations of airborne allergen, which appears to be predominantly flour and not storage mites. PMID:1515350

  16. Relationship of airborne trimellitic anhydride concentrations to trimellitic anhydride--induced symptoms and immune responses

    SciTech Connect

    Bernstein, D.I.; Roach, D.E.; McGrath, K.G.; Larsen, R.S.; Zeiss, C.R.; Patterson, R.

    1983-12-01

    Eighteen workers exposed to trimellitic anhydride (TMA) powder were evaluated in 1979. Twelve of these workers were available for longitudinal study until 1982. Annual clinical evaluations and serum radioimmunoassays for total antibody binding and specific IgE binding to /sup 125/I-TM-HSA were performed. In 1979, five workers had antibody against TM-HSA. Of these, three workers were diagnosed with the late respiratory systemic syndrome (LRSS) and one worker with TMA-induced allergic rhinitis. The LRSS workers had significantly elevated total antibody binding of /sup 125/I-TM-HSA and the worker with rhinitis had significantly elevated specific IgE binding of /sup 125/I-TM-HSA per milliliter of serum. Although TMA handling was intermittent throughout the year, average airborne dust concentrations from 1974 to 1978 at job stations of the two heaviest TMA-exposed occupations, operator and assistant operator, were 2.1 and 0.82 mg/m3, respectively. After local exhaust ventilation had been improved, average airborne dust concentrations of TMA at the two latter job stations fell to levels of 0.03 and 0.01 mg/m3, respectively, in 1982. The decrease in TMA exposure coincided with a gradual fall in total antibody binding of /sup 125/I-TM-HSA per milliliter in 1982 and symptomatic improvement in the three individuals with the LRSS. The continuous low-level exposure of the worker with TMA rhinitis was sufficient to elicit a rise in specific IgE against TM-HSA from 1.1 ng of 125I-TM-HSA bound per milliliter in 1979 to 2.12 in 1982.

  17. Sol 568 Dust Devil in Gusev, Unenhanced

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This movie clip shows several dust devils moving from right to left across a plain inside Mars' Gusev Crater, as seen from the vantage point of NASA's Mars Exploration Rover Spirit in hills rising from the plain. The clip consists of frames taken by Spirit's navigation camera during the rover's 543rd martian day, or sol (July 13, 2005). Unlike some other movie clips of dust devils seen by Spirit, the images in this clip have not been processed to enhance contrast of the dust devils. The total time elapsed during the taking of these frames was 12 minutes, 17 seconds.

    Spirit began seeing dust devil activity around the beginning of Mars' spring season. Activity increased as spring continued, but fell off again for about two weeks during a dust storm. As the dust storm faded away, dust devil activity came back. In the mid-afternoons as the summer solstice approached, dust devils were a very common occurrence on the floor of Gusev crater. The early-spring dust devils tended to move southwest-to-northeast, across the dust devil streaks in Gusev seen from orbit. Increasingly as the season progresses, the dust devils are seen moving northwest-to-southeast, in the same direction as the streaks. Scientists are watching for the big dust devils that leave those streaks.

  18. Efficiency of dust sampling inlets in calm air.

    PubMed

    Breslin, J A; Stein, R L

    1975-08-01

    Measurement of airborne dust concentrations usually involves drawing a sample of the dust-laden air into the measuring instrument through an inlet. Even if the surrounding air is calm, theoretical calculations predict that large particles may not be sampled accurately due to the combined effects of gravity and inertia on the particles near the sampling inlet. Tests were conducted to determine the conditions of particle size, inlet radius, and flow rare necessary for accurate dust sampling. A coal-dust aerosol was sampled simultaneously through inlets of different diameters at the same volume flow-rate and collected on filters. The dust was removed from the filters and the particles were counted and sized with a Coulter counter. Results showed that published criteria for inlet conditions for correct sampling are overly restrictive and that respirable-size particles are sampled correctly in the normal range or operation of most dust sampling instruments. PMID:1227283

  19. Direct-reading inhalable dust monitoring--an assessment of current measurement methods.

    PubMed

    Thorpe, Andrew; Walsh, Peter T

    2013-08-01

    Direct-reading dust monitors designed specifically to measure the inhalable fraction of airborne dust are not widely available. Current practice therefore often involves comparing the response of photometer-type dust monitors with the concentration measured with a reference gravimetric inhalable sampler, which is used to adjust the dust monitor measurement. However, changes in airborne particle size can result in significant errors in the estimation of inhalable concentration by this method. The main aim of this study was to assess how these dust monitors behave when challenged with airborne dust containing particles in the inhalable size range and also to investigate alternative dust monitors whose response might not be as prone to variations in particle size or that could be adapted to measure inhalable dust concentration. Several photometer-type dust monitors and a Respicon TM, tapered element oscillating microbalance (TEOM) personal dust monitor (PDM) 3600, TEOM 1400, and Dustrak DRX were assessed for the measurement of airborne inhalable dust during laboratory and field trials. The PDM was modified to allow it to sample and measure larger particles in the inhalable size range. During the laboratory tests, the dust monitors and reference gravimetric samplers were challenged inside a large dust tunnel with aerosols of industrial dusts known to present an inhalable hazard and aluminium oxide powders with a range of discrete particle sizes. A constant concentration of each dust type was generated and peak concentrations of larger particles were periodically introduced to investigate the effects of sudden changes in particle size on monitor calibration. The PDM, Respicon, and DataRam photometer were also assessed during field trials at a bakery, joinery, and a grain mill. Laboratory results showed that the Respicon, modified PDM, and TEOM 1400 observed good linearity for all types of dust when compared with measurements made with a reference IOM sampler; the

  20. Rocket dust storms and detached layers in the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Spiga, A.; Faure, J.; Madeleine, J.; Maattanen, A. E.; Forget, F.

    2012-12-01

    Airborne dust is the main climatic agent in the Martian environment. Local dust storms play a key role in the dust cycle; yet their life cycle is poorly known. Here we use mesoscale modeling with radiatively-active transported dust to predict the evolution of a local dust storm monitored by OMEGA onboard Mars Express. We show that the evolution of this dust storm is governed by deep convective motions. The supply of convective energy is provided by the absorption of incoming sunlight by dust particles, in lieu of latent heating in moist convection on Earth. We propose to use the terminology "rocket dust storm", or conio-cumulonimbus, to describe those storms in which rapid and efficient vertical transport takes place, injecting dust particles at high altitudes in the Martian troposphere (30 to 50 km). Combined to horizontal transport by large-scale winds, rocket dust storms form detached layers of dust reminiscent of those observed with instruments onboard Mars Global Surveyor and Mars Reconnaissance Orbiter. Detached layers are stable over several days owing to nighttime sedimentation being unable to counteract daytime convective transport, and to the resupply of convective energy at sunrise. The peak activity of rocket dust storms is expected in low-latitude regions at clear season, which accounts for the high-altitude tropical dust maximum unveiled by Mars Climate Sounder. Our findings on dust-driven deep convection have strong implications for the Martian dust cycle, thermal structure, atmospheric dynamics, cloud microphysics, chemistry, and robotic and human exploration.ensity-scaled dust optical depth at local times 1400 1600 and 1800 (lat 2.5°S, Ls 135°) hortwave heating rate at local time 1500 and latitude 2.5°S.

  1. Dust in protoplanetary disks: observations

    NASA Astrophysics Data System (ADS)

    Waters, L. B. F. M.

    2015-09-01

    Solid particles, usually referred to as dust, are a crucial component of interstellar matter and of planet forming disks surrounding young stars. Despite the relatively small mass fraction of ≈1% (in the solar neighborhood of our galaxy; this number may differ substantially in other galaxies) that interstellar grains represent of the total mass budget of interstellar matter, dust grains play an important role in the physics and chemistry of interstellar matter. This is because of the opacity dust grains at short (optical, UV) wavelengths, and the surface they provide for chemical reactions. In addition, dust grains play a pivotal role in the planet formation process: in the core accretion model of planet formation, the growth of dust grains from the microscopic size range to large, cm-sized or larger grains is the first step in planet formation. Not only the grain size distribution is affected by planet formation. Chemical and physical processes alter the structure and chemical composition of dust grains as they enter the protoplanetary disk and move closer to the forming star. Therefore, a lot can be learned about the way stars and planets are formed by observations of dust in protoplanetary disks. Ideally, one would like to measure the dust mass, the grain size distribution, grain structure (porosity, fluffiness), the chemical composition, and all of these as a function of position in the disk. Fortunately, several observational diagnostics are available to derive constrains on these quantities. In combination with rapidly increasing quality of the data (spatial and spectral resolution), a lot of progress has been made in our understanding of dust evolution in protoplanetary disks. An excellent review of dust evolution in protoplanetary disks can be found in Testi et al. (2014). 2nd Lecture of the Summer School "Protoplanetary Disks: Theory and Modelling Meet Observations"

  2. Retrospective exposure assessment to airborne asbestos among power industry workers

    PubMed Central

    2010-01-01

    Background A method of individually assessing former exposure to asbestos fibres is a precondition of risk-differentiated health surveillance. The main aims of our study were to assess former levels of airborne asbestos exposure in the power industry in Germany and to propose a basic strategy for health surveillance and the early detection of asbestos related diseases. Methods Between March 2002 and the end of 2006, we conducted a retrospective questionnaire based survey of occupational tasks and exposures with airborne asbestos fibres in a cohort of 8632 formerly asbestos exposed power industry workers. The data on exposure and occupation were entered into a specially designed computer programme, based on ambient monitoring of airborne asbestos fibre concentrations. The cumulative asbestos exposure was expressed as the product of the eight-hour time weighted average and the total duration of exposure in fibre years (fibres/cubic centimetre-years). Results Data of 7775 (90% of the total) participants working in installations for power generation, power distribution or gas supply could be evaluated. The power generation group (n = 5284) had a mean age of 56 years, were exposed for 20 years and had an average cumulative asbestos exposure of 42 fibre years. The occupational group of "metalworkers" (n = 1600) had the highest mean value of 79 fibre years. The corresponding results for the power distribution group (n = 2491) were a mean age of 45 years, a mean exposure duration of 12 years and an average cumulative asbestos exposure of only 2.5 fibre years. The gas supply workers (n = 512) had a mean age of 54 years and a mean duration of exposure of 15 years. Conclusions While the surveyed cohort as a whole was heavily exposed to asbestos dust, the power distribution group had a mean cumulative exposure of only 6% of that found in the power generation group. Based on the presented data, risk-differentiated disease surveillance focusing on metalworkers and electricians

  3. Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations

    NASA Astrophysics Data System (ADS)

    Ryder, C. L.; McQuaid, J. B.; Flamant, C.; Washington, R.; Brindley, H. E.; Highwood, E. J.; Marsham, J. H.; Parker, D. J.; Todd, M. C.; Banks, J. R.; Brooke, J. K.; Engelstaedter, S.; Estellés, V.; Formenti, P.; Garcia-Carreras, L.; Kocha, C.; Marenco, F.; Rosenberg, P.; Sodemann, H.; Allen, C. J. T.; Bourdon, A.; Bart, M.; Cavazos-Guerra, C.; Chevaillier, S.; Crosier, J.; Darbyshire, E.; Dean, A. R.; Dorsey, J. R.; Kent, J.; O'Sullivan, D.; Schepanski, K.; Szpek, K.; Woolley, A.

    2015-01-01

    The Fennec climate program aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE Falcon 20 is described, with specific focus on instrumentation specially developed and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include: (1) the first airborne measurement of dust particles sized up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in-situ observations of processes in SABL clouds showing dust acting as CCN and IN at -15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold-pool (haboob) issued from deep convection over the Atlas, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area measurements suggest coarser particles provide a route for ozone depletion, (9) discrepancies between airborne coarse mode size distributions and AERONET sunphotometer retrievals under

  4. Investigation of the entry characteristics of dust samplers of a type used in the British nuclear industry

    NASA Astrophysics Data System (ADS)

    Mark, D.; Vincent, J. H.; Stevens, D. C.; Marshall, M.

    Experiments have been carried out in a large wind tunnel to investigate the entry characteristics of dust samplers—both static and personal—of the type used to monitor 'total' airborne radioactive paniculate in the British nuclear industry. These samplers were exposed to test dusts of closely-graded fused alumina under experimental conditions relevant to the environmental conditions found in nuclear industry workplaces. For the static samplers (60-mm open face filter holders), performance was determined by reference to a 10-mm isokinetic probe. The resultant aspiration efficiency ( A) was found to be close to unity for the range of environmental conditions found in the nuclear industry workplace and for particles with aerodynamic diameter up to about 30 μm. Also it is unaffected by mounting the sampler itself on the large bluff body of the sampling pump. The performances of the personal samplers (of the 25-mm filter holder type) were assessed in terms of the ratio ( R) between the mass of dust entering each personal sampler when worn on the body of a mannequin and that entering the mouth of the mannequin under simulated breathing. The results show that, for nuclear industry workplace conditions, the personal samplers reflect satisfactorily the health-related 'total' dust exposure of the wearer.

  5. Assessment of Iceland as a dust source

    NASA Astrophysics Data System (ADS)

    Arnalds, Ólafur; Ólafsson, Haraldur; Dagsson-Waldhauserova, Pavla

    2016-04-01

    Iceland has extremely active dust sources that result in large-scale emissions and deposition on land and at sea. The dust has a volcanogenic origin of basaltic composition with about 10% Fe content. We used two independent methods to quantify dust emission from Iceland and dust deposition at sea. Firstly, the aerial extent (map) of deposition on land was extended to ocean areas around Iceland. Secondly, surveys of the number of dust events over the past decades and calculations of emissions and sea deposition for the dust storms were made. The results show that total emissions range from 30.5 (dust-event-based calculation) to 40.1 million t yr

  6. A DUST-SETTLING CHAMBER FOR SAMPLING-INSTRUMENT COMPARISON STUDIES

    EPA Science Inventory

    Introduction: Few methods exist that can evenly and reproducibly deposit dusts onto surfaces for surface-sampling methodological studies. A dust-deposition chamber was designed for that purpose.

    Methods: A 1-m3 Rochester-type chamber was modified to produce high airborne d...

  7. Airborne GLM Simulator (FEGS)

    NASA Astrophysics Data System (ADS)

    Quick, M.; Blakeslee, R. J.; Christian, H. J., Jr.; Stewart, M. F.; Podgorny, S.; Corredor, D.

    2015-12-01

    Real time lightning observations have proven to be useful for advanced warning and now-casting of severe weather events. In anticipation of the launch of the Geostationary Lightning Mapper (GLM) onboard GOES-R that will provide continuous real time observations of total (both cloud and ground) lightning, the Fly's Eye GLM Simulator (FEGS) is in production. FEGS is an airborne instrument designed to provide cal/val measurements for GLM from high altitude aircraft. It consists of a 5 x 5 array of telescopes each with a narrow passband filter to isolate the 777.4 nm neutral oxygen emission triplet radiated by lightning. The telescopes will measure the optical radiance emitted by lightning that is transmitted through the cloud top with a temporal resolution of 10 μs. When integrated on the NASA ER-2 aircraft, the FEGS array with its 90° field-of-view will observe a cloud top area nearly equal to a single GLM pixel. This design will allow FEGS to determine the temporal and spatial variation of light that contributes to a GLM event detection. In addition to the primary telescope array, the instrument includes 5 supplementary optical channels that observe alternate spectral emission features and will enable the use of FEGS for interesting lightning physics applications. Here we present an up-to-date summary of the project and a description of its scientific applications.

  8. Transport of Alaskan Dust into the Gulf of Alaska and Comparison with Similar High-Latitude Dust Environments

    NASA Technical Reports Server (NTRS)

    Crusium, John; Levy, Rob; Wang, Jun; Campbell, Rob; Schroth, Andrew W.

    2012-01-01

    Transport of Alaskan dust into the Gulf of Alaska and comparison with similar high-latitude dust environments. An airborne flux of the micronutrient iron, derived from dust originating from coastal regions may be an important contributor of iron to the Gulf of Alaska's (GoA) oligotrophic waters. Dust blowing off glacier termini and dry riverbeds is a recurring phenomenon in Alaska, usually occurring in the autumn. Since previous studies assumed that dust originating in the deserts of Asia was the largest source of . airborne iron to the GoA, the budget of aeolian deposition of iron needs to be reassessed. Since late 20 I 0, our group has been monitoring dust activity using satellites over the Copper River Delta (CRD) where the most vigorous dust plumes have been observed. Since 2011, sample aerosol concentration and their composition are being collected at Middleton Island (100km off shore of CRD). This presentation will show a summary of the ongoing dust observations and compare with other similar environments (Patagonia, Iceland) by showing case studies. Common features will be highlighted

  9. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  10. The role of endotoxin in grain dust-induced lung disease.

    PubMed

    Schwartz, D A; Thorne, P S; Yagla, S J; Burmeister, L F; Olenchock, S A; Watt, J L; Quinn, T J

    1995-08-01

    To identify the role of endotoxin in grain dust-induced lung disease, we conducted a population-based, cross-sectional investigation among grain handlers and postal workers. The study subjects were selected by randomly sampling all grain facilities and post offices within 100 miles of Iowa City. Our study population consisted of 410 grain workers and 201 postal workers. Grain workers were found to be exposed to higher concentrations of airborne dust (p = 0.0001) and endotoxin (p = 0.0001) when compared with postal workers. Grain workers had a significantly higher prevalence of work-related (cough, phlegm, wheezing, chest tightness, and dyspnea) and chronic (usual cough or phlegm production) respiratory symptoms than postal workers. Moreover, after controlling for age, gender, and cigarette smoking status, work-related respiratory symptoms were strongly associated with the concentration of endotoxin in the bioaerosol in the work setting. The concentration of total dust in the bioaerosol was marginally related to these respiratory problems. After controlling for age, gender, and cigarette smoking status, grain workers were found to have reduced spirometric measures of airflow (FEV1, FEV1/FVC, and FEF25-75) and enhanced airway reactivity to inhaled histamine when compared with postal workers. Although the total dust concentration in the work environment appeared to have little effect on these measures of airflow obstruction, higher concentrations of endotoxin in the bioaerosol were associated with diminished measures of airflow and enhanced bronchial reactivity. Our results indicate that the concentration of endotoxin in the bioaerosol may be particularly important in the development of grain dust-induced lung disease. PMID:7633714

  11. Heavy metal speciation in various grain sizes of industrially contaminated street dust using multivariate statistical analysis.

    PubMed

    Yıldırım, Gülşen; Tokalıoğlu, Şerife

    2016-02-01

    A total of 36 street dust samples were collected from the streets of the Organised Industrial District in Kayseri, Turkey. This region includes a total of 818 work places in various industrial areas. The modified BCR (the European Community Bureau of Reference) sequential extraction procedure was applied to evaluate the mobility and bioavailability of trace elements (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in street dusts of the study area. The BCR was classified into three steps: water/acid soluble fraction, reducible and oxidisable fraction. The remaining residue was dissolved by using aqua regia. The concentrations of the metals in street dust samples were determined by flame atomic absorption spectrometry. Also the effect of the different grain sizes (<38µm, 38-53µm and 53-74µm) of the 36 street dust samples on the mobility of the metals was investigated using the modified BCR procedure. The mobility sequence based on the sum of the first three phases (for <74µm grain size) was: Cd (71.3)>Cu (48.9)>Pb (42.8)=Cr (42.1)>Ni (41.4)>Zn (40.9)>Co (36.6)=Mn (36.3)>Fe (3.1). No significant difference was observed among metal partitioning for the three particle sizes. Correlation, principal component and cluster analysis were applied to identify probable natural and anthropogenic sources in the region. The principal component analysis results showed that this industrial district was influenced by traffic, industrial activities, air-borne emissions and natural sources. The accuracy of the results was checked by analysis of both the BCR-701 certified reference material and by recovery studies in street dust samples. PMID:26595510

  12. Escaping the regulatory dust bowl: fugitive dust and the Clean Air Act

    SciTech Connect

    Probst, G.L.; Becker, R.E. Jr.

    1982-01-01

    The Environmental Protection Agency's (EPA's) regulatory program, as it relates to particulates, is overly complicated. In attempting to accommodate statutory language insensitive to particulate differences, after becoming aware of the varying effects of different-sized particles, EPA has developed an unworkable program. Although agricultural, recreational, transportation, and industrial activities contribute to the airborne dust (or, in the Clean Air Act vernacular, fugitive dust), this article focuses on mining activities. Surface mining inevitably stirs up considerable fugitive dust, and a description of mining activities in arid conditions, and how they fit in with a developing regulatory program, reveals a story of a national program that fails to provide for rational policy and regional flexibility. The article also recommends some regulatory and statutory solutions that could relatively easily correct EPA's fugitive dust program.

  13. Simultaneous gas-phase and total water detection for airborne applications with a multi-channel TDL spectrometer at 1.4 μm and 2.6 μm

    NASA Astrophysics Data System (ADS)

    Buchholz, Bernhard; Afchine, Armin; Klein, Alexander; Barthel, Jochen; Kallweit, Sören; Klostermann, Tim; Krämer, Martina; Schiller, Cornelius; Ebert, Volker

    2013-04-01

    Water vapor measurements especially within clouds are difficult, in particular due to numerous instrument-specific limitations in precision, time resolution and accuracy. Notably the quantification of the ice and gas-phase water content in cirrus clouds, which play an important role in the global climate system, require new high-speed hygrometers concepts which are capable of resolving large water vapor gradients. Previously we demonstrated a stationary concept of a Tunable Diode Laser Absorption Spectroscopy (TDLAS)-based quantification of the ice/liquid water by independent, but simultaneous measurements of A) the gas-phase water in an open-path configuration (optical-path 125 m) and B) the total water in an extractive version with a closed cell (30 m path) after evaporating the condensed water [1]. In this case we used laboratory TDLAS instrumentation in combination with a long absorption paths and applied those to the AIDA cloud camber [2]. Recently we developed an advanced, miniature version of the concept, suitable for mobile field applications and in particular for use on aircrafts. First tests of our new, fiber-coupled open-path TDLAS cell [3] for airborne applications were combined with the experiences of our extractive SEALDH instruments [4] and led to a new, multi-channel, "multi-phase TDL-hygrometer" called "HAI" ("Hygrometer for Atmospheric Investigations"). HAI, which is explicitly designed for the new German HALO (High Altitude and Long Range Research Aircraft) airplane, provides a similar, but improved functionality like the stationary, multi-phase TDLAS developed for AIDA. However HAI comes in a much more compact, six height units, 30 kg, electronics rack for the main unit and with a new, completely fiber-coupled, compact, 21 kg, dual-wavelength open-path TDL-cell which is placed in the aircraft's skin. HAI is much more complex and versatile than the AIDA precursor and can be seen as comprised of four TDL-spectrometers, as it simultaneously

  14. Dust ablation in Pluto's atmosphere

    NASA Astrophysics Data System (ADS)

    Horanyi, Mihaly; Poppe, Andrew; Sternovsky, Zoltan

    2016-04-01

    Based on measurements by dust detectors onboard the Pioneer 10/11 and New Horizons spacecraft the total production rate of dust particles born in the Edgeworth Kuiper Belt (EKB) has been be estimated to be on the order of 5 ṡ 103 kg/s in the approximate size range of 1 - 10 μm. Dust particles are produced by collisions between EKB objects and their bombardment by both interplanetary and interstellar dust particles. Dust particles of EKB origin, in general, migrate towards the Sun due to Poynting-Robertson drag but their distributions are further sculpted by mean-motion resonances as they first approach the orbit of Neptune and later the other planets, as well as mutual collisions. Subsequently, Jupiter will eject the vast majority of them before they reach the inner solar system. The expected mass influx into Pluto atmosphere is on the order of 200 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that volatile rich particles can fully sublimate due to drag heating and deposit their mass in narrow layers. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles by comparing the altitude of the deposition layers to the observed haze layers.

  15. A new data set of soil mineralogy for dust-cycle modeling

    NASA Astrophysics Data System (ADS)

    Journet, E.; Balkanski, Y.; Harrison, S. P.

    2013-09-01

    The mineralogy of airborne dust affects the impact of dust particles on direct and indirect radiative forcing, on atmospheric chemistry and on biogeochemical cycling. It is determined partly by the mineralogy of the dust-source regions and partly by size-dependent fractionation during erosion and transport. Here we present a data set that characterizes the clay and silt sized fractions of global soil units in terms of the abundance of 12 minerals that are important for dust-climate interactions: quartz, feldspars, illite, smectite, kaolinite, chlorite, vermiculite, mica, calcite, gypsum, hematite and goethite. The basic mineralogical information is derived from the literature, and is then expanded following explicit rules, in order to characterize as many soil units as possible. We present three alternative realisations of the mineralogical maps that account for the uncertainties in the mineralogical data. We examine the implications of the new database for calculations of the single scattering albedo of airborne dust and thus for dust radiative forcing.

  16. Lagrangian dust model simulations for a case of moist convective dust emission and transport in the western Sahara region during Fennec/LADUNEX

    NASA Astrophysics Data System (ADS)

    Sodemann, H.; Lai, T. M.; Marenco, F.; Ryder, C. L.; Flamant, C.; Knippertz, P.; Rosenberg, P.; Bart, M.; McQuaid, J. B.

    2015-06-01

    Due to the harshness and inaccessibility of desert regions, the uncertainties concerning the processes of dust mobilization at the surface, airborne transport, and sedimentation are still considerable, limiting the ability to perform model simulations. In June 2011, a comprehensive data set of ground-based and airborne in situ measurements and remote sensing observations was acquired within the Fennec/Lagrangian Dust Source Inversion Experiment (LADUNEX) field campaign in the western Sahara region. Here we evaluate the ability of the state-of-the-art Lagrangian particle dispersion model FLEXPART, newly fitted with a dust mobilization capability, to simulate dust transport in this region. We investigate a case where a large mesoscale convective system (MCS) triggered dust emissions in central Mali, which subsequently moved as a large cold pool dust front toward northern Mauritania. Specifying dust mobilization for this case is shown to be an important obstacle to simulating dust transport during this event, since neither the MCS nor the associated cold pool-causing dust emission is represented in the meteorological analysis. Obtaining a realistic dust transport simulation for this case therefore requires an inversion approach using a manual specification of the dust sources supported by satellite imagery. When compared to in situ and remote sensing data from two aircraft, the Lagrangian dust transport simulations represent the overall shape and evolution of the dust plume well. While accumulation and coarse mode dust are well represented in the simulation, giant mode particles are considerably underestimated. Our results re-emphasize that dust emission associated with deep moist convection remains a key issue for reliable dust model simulations in northern Africa.

  17. Clear-Sky Closure Studies of Tropospheric Aerosol and Water Vapor During ACE-2 Using Airborne Sunphotometer, Airborne In-Situ, Space-Borne, and Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Collins, Donald R.; Gasso, Santiago; Oestroem, Elisabeth; Powell, Donna M.; Welton, Ellsworth J.; Durkee, Philip A.; Livingston, John M.; Russell, Philip B.; Flagan, Richard C.; Seinfeld, John H.; Hegg, Dean A.; Noone, Kevin J.; Voss, Kenneth J.; Gordon, Howard R.; Reagan, John A.; Spinhirne, James D.

    2000-01-01

    We report on clear-sky column closure experiments (CLEARCOLUMN) performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present CLEARCOLUMN results obtained by combining airborne sunphotometer and in-situ (a differential mobility analyzer, three optical particle counters, three nephelometers, and one absorption photometer) measurements taken aboard the Pelican aircraft, space-borne NOAA/AVHRR data and ground-based lidars. A wide range of aerosol types was encountered throughout the ACE-2 area, including background Atlantic marine, European pollution-derived, and (although less frequently than expected) African mineral dust. During the two days discussed here, vertical profiles flown in cloud free air masses revealed three distinctly different layers: a marine boundary layer (MBL) with varying pollution levels, an elevated dust layer, and a very clean layer between the MBL and the dust layer. Based on size-resolved composition information we have established an aerosol model that allows us to compute optical properties of the ambient aerosol using the optical particle counter results. In the dust, the agreement in layer AOD (lambda=380-1060 nm) is 3-8%. In the MBL there is a tendency for the in-situ results to be slightly lower than the sunphotometer measurements (10-17% at lambda=525 nm), but these differences are within the combined error bars of the measurements and computations. Aerosol size-distribudon closure based on in-situ size distributions and inverted sunphotometer extinction spectra has been achieved in the MBL (total surface area and volume agree within 0.2, and 7%, respectively) but not in the dust layer. The fact that the three nephelometers operated at three different relative humidities (RH) allowed to parameterize hygroscopic growth and to therefore estimate optical properties at ambient RH. The parameters derived for different aerosol types are themselves useful for the aerosol modeling

  18. Toolsets for Airborne Data

    Atmospheric Science Data Center

    2015-04-02

    article title:  Toolsets for Airborne Data     View larger image The ... limit of detection values. Prior to accessing the TAD Web Application ( https://tad.larc.nasa.gov ) for the first time, users must ...

  19. Dust Devils at Gusev, Sol 525

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This movie clip shows several dust devils moving across the plain inside Mars' Gusev Crater. It consists of frames taken by the navigation camera on NASA's Mars Exploration Rover Spirit during the rover's 525th martian day, or sol (June 25, 2005).

    Spirit began seeing dust devil activity around the beginning of Mars' spring season. Activity increased as spring continued, but fell off again for about two weeks during a dust storm. As the dust storm faded away, dust devil activity came back. In the mid-afternoons as the summer solstice approached, dust devils were a very common occurrence on the floor of Gusev crater. The early-spring dust devils tended to move southwest-to-northeast, across the dust devil streaks in Gusev seen from orbit. Increasingly as the season progresses, the dust devils are seen moving northwest-to-southeast, in the same direction as the streaks. Scientists are watching for the big dust devils that leave those streaks. In this clip, contrast has been enhanced for anything in the images that changes from frame to frame, that is, for the dust moved by wind. The total time elapsed during the taking of these frames was 12 minutes, 25 seconds.

  20. Dust Devils at Gusev, Sol 537

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This movie clip shows some distant dust devils and one closer one blowing across the floor of Mars' Gusev Crater. It consists of frames taken by the navigation camera on NASA's Mars Exploration Rover Spirit during the rover's 537th martian day, or sol (July 7, 2005).

    Spirit began seeing dust devil activity around the beginning of Mars' spring season. Activity increased as spring continued, but fell off again for about two weeks during a dust storm. As the dust storm faded away, dust devil activity came back. In the mid-afternoons as the summer solstice approached, dust devils were a very common occurrence on the floor of Gusev crater. The early-spring dust devils tended to move southwest-to-northeast, across the dust devil streaks in Gusev seen from orbit. Increasingly as the season progresses, the dust devils are seen moving northwest-to-southeast, in the same direction as the streaks. Scientists are watching for the big dust devils that leave those streaks.

    In this clip, contrast has been enhanced for anything in the images that changes from frame to frame, that is, for the dust moved by wind. The total time elapsed during the taking of these frames was 13 minutes, 46 seconds.

  1. Sensitivities of five alpha continuous air monitors for detection of airborne sup 239 Pu

    SciTech Connect

    McIsaac, C.V.; Amaro, C.R.

    1992-07-01

    Results of measurements of the sensitivities of five alpha continuous air monitors (CAMs) for detection of airborne {sup 239}Pu are presented. Four commercially available alpha CAMs (Kurz model 8311, Merlin Gerin Edgar, RADeCO model 452, and Victoreen model 758) and a prototype alpha CAM currently in use at Argonne National Laboratory- West (ANL-W) were tested sampling natural ambient air and laboratory-generated atmospheres laden with either blank dust or dust containing nCi/g concentrations of {sup 239}Pu. Cumulative alpha spectra were stored at 30 or 60 minute intervals during each sampling and were subsequently analyzed using three different commonly used alpha spectrum analysis algorithms. The effect of airborne dust concentration and sample filter porosity on detector resolution and sensitivity for airborne {sup 239}Pu are described.

  2. Sensitivities of five alpha continuous air monitors for detection of airborne {sup 239}Pu

    SciTech Connect

    McIsaac, C.V.; Amaro, C.R.

    1992-07-01

    Results of measurements of the sensitivities of five alpha continuous air monitors (CAMs) for detection of airborne {sup 239}Pu are presented. Four commercially available alpha CAMs (Kurz model 8311, Merlin Gerin Edgar, RADeCO model 452, and Victoreen model 758) and a prototype alpha CAM currently in use at Argonne National Laboratory- West (ANL-W) were tested sampling natural ambient air and laboratory-generated atmospheres laden with either blank dust or dust containing nCi/g concentrations of {sup 239}Pu. Cumulative alpha spectra were stored at 30 or 60 minute intervals during each sampling and were subsequently analyzed using three different commonly used alpha spectrum analysis algorithms. The effect of airborne dust concentration and sample filter porosity on detector resolution and sensitivity for airborne {sup 239}Pu are described.

  3. The airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven; Schall, Harold; Shattuck, Paul

    2007-05-01

    The Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the current program status.

  4. Column Closure Studies of Lower Tropospheric Aerosol and Water Vapor During ACE-Asia Using Airborne Sunphotometer, Airborne In-Situ and Ship-Based Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Hegg, A.; Wang, J.; Bates, D.; Redemann, J.; Russells, P. B.; Livingston, J. M.; Jonsson, H. H.; Welton, E. J.; Seinfield, J. H.

    2003-01-01

    We assess the consistency (closure) between solar beam attenuation by aerosols and water vapor measured by airborne sunphotometry and derived from airborne in-situ, and ship-based lidar measurements during the April 2001 Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). The airborne data presented here were obtained aboard the Twin Otter aircraft. Comparing aerosol extinction o(550 nm) from four different techniques shows good agreement for the vertical distribution of aerosol layers. However, the level of agreement in absolute magnitude of the derived aerosol extinction varied among the aerosol layers sampled. The sigma(550 nm) computed from airborne in-situ size distribution and composition measurements shows good agreement with airborne sunphotometry in the marine boundary layer but is considerably lower in layers dominated by dust if the particles are assumed to be spherical. The sigma(550 nm) from airborne in-situ scattering and absorption measurements are about approx. 13% lower than those obtained from airborne sunphotometry during 14 vertical profiles. Combining lidar and the airborne sunphotometer measurements reveals the prevalence of dust layers at altitudes up to 10 km with layer aerosol optical depth (from 3.5 to 10 km altitude) of approx. 0.1 to 0.2 (500 nm) and extinction-to-backscatter ratios of 59-71 sr (523 nm). The airborne sunphotometer aboard the Twin Otter reveals a relatively dry atmosphere during ACE- Asia with all water vapor columns less than 1.5 cm and water vapor densities w less than 12 g/cu m. Comparing layer water vapor amounts and w from the airborne sunphotometer to the same quantities measured with aircraft in-situ sensors leads to a high correlation (r(sup 3)=0.96) but the sunphotometer tends to underestimate w by 7%.

  5. Airborne Endotoxin from Indoor and Outdoor Environments:Effect of Sample Dilution on the Kinetic Limulus Amebocyte Lysate (LAL) Assay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Airborne endotoxin in occupational environments are a potential respiratory hazard to individuals. In this study, total and inhalable airborne endotoxin samples were collected via filtration from inside animal housing units and downwind from agricultural production sites and a wastewater treatment ...

  6. The infrared spectrum of the Galactic center and the composition of interstellar dust

    NASA Technical Reports Server (NTRS)

    Tielens, A. G.; Wooden, D. H.; Allamandola, L. J.; Bregman, J.; Witteborn, F. C.

    1996-01-01

    We have obtained 5-8 micrometers spectra of the Galactic center from the Kuiper Airborne Observatory at resolving powers of approximately 50, approximately 150, and approximately 300. These spectra show absorption features at 5.5, 5.8, 6.1, and 6.8 micrometers. Together with previously observed features in the 3 micrometers region, these features are compared with laboratory spectra of candidate materials. The 3.0 and 6.1 micrometers features are due to the OH stretching and bending variations of H2O and are well fitted by water of hydration in silicates (e.g., talc). The 3.0 micrometer band is equally well fitted by ice mixtures containing 30% H2O, but such mixtures do not provide a good fit to the observed 6.1 micrometer band. The 3.4 and 6.8 micrometers features are identified with the CH stretching and deformation modes in CH2 and CH3 groups in saturated aliphatic hydrocarbons. The 6.1 micrometer band shows a short wavelength shoulder centered on 5.8 micrometer, attributed to carbonyl (C double bond O) groups in this interstellar hydrocarbon dust component. Finally, the narrow 5.5 micrometer feature is also attributed to carbonyl groups, but in the form of metal carbonyls [e.g., Fe(CO)4]. We have derived column densities and abundances along the line of sight toward the Galactic center for the various identified dust components. This analysis shows that hydrocarbon grains contain only 0.08 of the elemental abundance of C and contribute only a relatively minor fraction (0.1) of the total dust volume. Most of the interstellar dust volume is made up of silicates (approximately 0.6). Small graphite grains, responsible for the 2200 angstroms bump, account for 0.07 of the total dust volume. The remaining one-quarter of the interstellar dust volume consists of a material(s) without strong IR absorption features. Likely candidates include large graphite grains, diamonds, or amorphous carbon grains, which all have weak or no IR active modes. Finally, various models for

  7. Byssinosis, Chronic Bronchitis, and Ventilatory Capacities in Workers Exposed to Soft Hemp Dust

    PubMed Central

    Valić, F.; Žuškin, E.; Walford, Joan; Keršić, W.; Pauković, R.

    1968-01-01

    A study was made of 93 women and 13 men employed in the spinning department of a factory in Yugoslavia processing soft hemp (Cannabis sativa). There were seven occupational groups, with average concentrations of total airborne hemp dust ranging from 2·9 mg./m.3 to more than 19·5 mg./m.3. Thirtyeight women and 11 men, employed in other departments of the factory with average total dust concentrations below 1·0 mg./m.3, were studied as controls. In the spinning department 40·6% of the workers had byssinosis and 15·1% had chronic bronchitis (defined as persistent cough and phlegm on most days for as much as three months each year during the last two years). None of the controls suffered from either disease. After adjustment for age, sitting height, and sex, the F.E.V.0·75 and F.V.C. measured at the beginning of the shift were used to assess the long-term effects of hemp dust on the ventilatory function of the lung. The age-adjusted ratio F.E.V.0·75/F.V.C. was also used. A comparison between the control group and the seven exposed groups showed no meaningful association between ventilatory function and present levels of dust exposure, but byssinotics with chronic bronchitis had a mean age-adjusted F.E.V.0·75/F.V.C. ratio significantly lower than that of workers with neither disease (P<0·05). Acute effects of hemp dust, measured by the change in F.E.V.0·75 and F.V.C. during the shift, were considerable. There were marked reductions in the mean F.E.V.0·75 and F.V.C. during the shift in all the occupational groups exposed to high concentrations of dust. Byssinotics with chronic bronchitis had a significantly greater mean decrease in F.E.V.0·75 during the shift than the byssinotics without chronic bronchitis, and the workers with neither disease (P<0·02). There is no doubt that the dust of Cannabis sativa hemp can cause byssinosis and at least temporary impairment of ventilatory function, varying in severity according to the level of dust exposure and the

  8. Dust Spectroscopy and the Nature of Grains

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.

    2006-01-01

    Ground-based, air-borne and space-based, infrared spectra of a wide variety of objects have revealed prominent absorption and emission features due to large molecules and small dust grains. Analysis of this data reveals a highly diverse interstellar and circumstellar grain inventory, including both amorphous materials and highly crystalline compounds (silicates and carbon). This diversity points towards a wide range of physical and chemical birthsites as well as a complex processing of these grains in the interstellar medium. In this talk, I will review the dust inventory contrasting and comparing both the interstellar and circumstellar reservoirs. The focus will be on the processes that play a role in the lifecycle of dust in the interstellar medium.

  9. Characterization of dust emission from alluvial sediments using aircraft observations and modeling

    NASA Astrophysics Data System (ADS)

    Schepanski, K.; Flamant, C.; Chaboureau, J.; Kocha, C.; Banks, J.; Brindley, H. E.; Lavaysse, C.; Marnas, F.; Pelon, J.; Tulet, P.

    2013-12-01

    Recent studies using satellite observations show that numerous dust sources are located in the foothills of arid and semi-arid mountain regions such as over North Africa. Alluvial sediments deposited on the valley bottoms and flood plains are very prone to wind erosion and frequently serve as dust source. High surface wind speeds related to the break-down of the nocturnal low-level jet (LLJ) during the morning hours are identified as a frequent driving mechanism for dust uplift. We investigate dust emission from alluvial dust sources located within the upland region in northern Mauritania and discuss the impact of valleys with regard to their role as dust source. Measures for local atmospheric dust burden were retrieved from airborne observations, MSG SEVIR dust AOD fields and MesoNH model simulations, and analyzed in order to provide complementary information on dust source activation and local dust transport at different horizontal scales. Vertical distribution of atmospheric mineral dust was obtained from the LNG backscatter lidar system flying aboard the French Falcon-20 aircraft. Lidar extinction coefficients were compared to topography, aerial photographs, and dust AOD fields to confirm the relevance of alluvial sediments at the valley bottoms as dust source. The observed dust emission event was further evaluated using the regional model MesoNH. A sensitivity study on the impact of the horizontal grid spacing highlights the importance of the spatial resolution on simulated dust loadings. The results further illustrate the importance of an explicit representation of alluvial dust sources in such models to better capture the spatial-temporal distribution of airborne dust concentrations.

  10. Modeling Respiratory Toxicity of Authentic Lunar Dust

    NASA Technical Reports Server (NTRS)

    Santana, Patricia A.; James, John T.; Lam, Chiu-Wing

    2010-01-01

    The lunar expeditions of the Apollo operations from the 60 s and early 70 s have generated awareness about lunar dust exposures and their implication towards future lunar explorations. Critical analyses on the reports from the Apollo crew members suggest that lunar dust is a mild respiratory and ocular irritant. Currently, NASA s space toxicology group is functioning with the Lunar Airborne Dust Toxicity Assessment Group (LADTAG) and the National Institute for Occupational Safety and Health (NIOSH) to investigate and examine toxic effects to the respiratory system of rats in order to establish permissible exposure levels (PELs) for human exposure to lunar dust. In collaboration with the space toxicology group, LADTAG and NIOSH the goal of the present research is to analyze dose-response curves from rat exposures seven and twenty-eight days after intrapharyngeal instillations, and model the response using BenchMark Dose Software (BMDS) from the Environmental Protection Agency (EPA). Via this analysis, the relative toxicities of three types of Apollo 14 lunar dust samples and two control dust samples, titanium dioxide (TiO2) and quartz will be determined. This will be executed for several toxicity endpoints such as cell counts and biochemical markers in bronchoaveolar lavage fluid (BALF) harvested from the rats.

  11. Pulmonary Toxicity Studies of Lunar Dusts in Rodents

    NASA Technical Reports Server (NTRS)

    Lam, Chiu-wing; James, John T.; Taylor, Larry

    2008-01-01

    NASA will build an outpost on the lunar surface for long-duration human habitation and research. The surface of the Moon is covered by a layer of fine, reactive dust, and the living quarters in the lunar outpost are expected to be contaminated by lunar dust. NASA established the Lunar Airborne Dust Toxicity Advisory Group (LADTAG) to evaluate the risk of exposure to the dust and to establish safe exposure limits for astronauts working in the lunar habitat. Because the toxicity of lunar dust is not known, LADTAG has recommended investigating its toxicity in the lungs of laboratory animals. After receiving this recommendation, NASA directed the JSC Toxicology Laboratory to determine the pulmonary toxicity of lunar dust in exposed rodents. The rodent pulmonary toxicity studies proposed here are the same as those proposed by the LADTAG. Studies of the pulmonary toxicity of a dust are generally done first in rodents by intratracheal instillation (ITI). This toxicity screening test is then followed by an inhalation study, which requires much more of the test dust and is labor intensive. We succeeded in completing an ITI study on JSC-1 lunar dust simulant in mice (Lam et al., Inhalation Toxicology 14:901-916, 2002, and Inhalation Toxicology 14: 917-928, 2002), and have conducted a pilot ITI study to examine the acute toxicity of an Apollo lunar (highland) dust sample. Preliminary results obtained by examining lung lavage fluid from dust-treated mice show that lunar dust was somewhat toxic (more toxic than TiO2, but less than quartz dust). More extensive studies have been planned to further examine lung lavage fluid for biomarkers of toxicity and lung tissues for histopathological lesions in rodents exposed to aged and activated lunar dust samples. In these studies, reference dusts (TiO2 and quartz) of known toxicities and have industrial exposure limits will be studied in parallel so the relative toxicity of lunar dust can be determined. The ITI results will also be

  12. Pulmonary Toxicity Studies of Lunar Dusts in Rodents

    NASA Technical Reports Server (NTRS)

    Lam, C.-W.; James, J. T.; Taylor, L.; Zeidler-Erdely, P. C.; Castranova, V.

    2009-01-01

    NASA will build an outpost on the Moon for prolonged human habitation and research. The lunar surface is covered by a layer of fine, reactive dust. Astronauts on the Moon will go in and out of the base for various activities, and will inevitably bring some dust into the living quarters. Depressurizing the airlock so that astronauts can exit for outdoor activities could also bring dust inside the airlock to the habitable area. Concerned about the potential health effects on astronauts exposed to airborne lunar dust, NASA directed the JSC Toxicology Laboratory to determine the pulmonary toxicity of lunar dust. The toxicity data also will be needed by toxicologists to establish safe exposure limits for astronauts residing in the lunar habitat and by environmental engineers to design an appropriate dust mitigation strategy. We conducted a study to examine biomarkers of toxicity (inflammation and cytotoxicity) in lung lavage fluids from mice intrapharyngeally instilled with lunar dust samples; we also collected lung tissue from the mice for histopathological examination 3 months after the dust instillation. Reference dusts (TiO2 and quartz) having known toxicities and industrial exposure limits were studied in parallel with lunar dust so that the relative toxicity of lunar dust can be determined. A 6-month histopathology study has been planned. These instillation experiments will be followed by inhalation studies, which are more labor intensive and technologically difficult. The animal inhalation studies will be conducted first with an appropriate lunar dust simulant to ensure that the exposure techniques to be used with actual lunar dust will be successful. The results of these studies collectively will reveal the toxicological risk of exposures and enable us to establish exposure limits on lunar dust for astronauts living in the lunar habitat.

  13. Characterization of airborne individual particles collected in an urban area, a satellite city and a clean air area in Beijing, 2001

    NASA Astrophysics Data System (ADS)

    Shi, Zongbo; Shao, Longyi; Jones, T. P.; Whittaker, A. G.; Lu, Senlin; Bérubé, K. A.; He, Taoe; Richards, R. J.

    Collection campaigns for PM 10 and PM 2.5 have been conducted in a northwestern Beijing urban area in monthly periods over 2001, with 7 days collection per month. The samples were also collected simultaneously in a satellite city, Nankou, and a clean air area near the Ming Tombs Reservoir (MTR) over the domestic heating (March) and non-heating (July/August) periods in 2001 (both for one week). To assist the analysis, three types of 'source' particulate matter (PM) samples were taken. These consisted of coal combustion ash collected on top of a coke oven; dust storm particles collected during dust storm periods; and roadside PM 10 collected on a major road in Beijing. Monitoring results reveal that, in the urban area, particle mass levels were higher in winter than in other seasons. The 1-week/month average PM 10 mass levels were over 250 μg m -3 in winter. The particle mass levels in the satellite city were slightly lower than those at the urban site, and the lowest mass levels occurred at the MTR site. The morphology and chemical composition of individual airborne particles were determined by scanning electron microscopy, and image analysis was employed to study the number-size distributions. The number-size distributions of mineral particles showed that those in the Asia-Dust storm (ADS) collections are mostly coarser than 1 μm, while mineral particles of the non-ADS collections are predominately finer than 1 μm. The particles in the respirable (<2.5 μm) fraction accounted for 99% of the total particles in airborne PM samples. Soot aggregates were generally the most abundant components in airborne PM samples at all three sites. The fly ash (spherical) particles at the MTR site were significantly enriched over the heating period, indicating a domestic coal-burning source.

  14. Short-term variability of mineral dust, metals and carbon emission from road dust resuspension

    NASA Astrophysics Data System (ADS)

    Amato, Fulvio; Schaap, Martijn; Denier van der Gon, Hugo A. C.; Pandolfi, Marco; Alastuey, Andrés; Keuken, Menno; Querol, Xavier

    2013-08-01

    Particulate matter (PM) pollution in cities has severe impact on morbidity and mortality of their population. In these cities, road dust resuspension contributes largely to PM and airborne heavy metals concentrations. However, the short-term variation of emission through resuspension is not well described in the air quality models, hampering a reliable description of air pollution and related health effects. In this study we experimentally show that the emission strength of resuspension varies widely among road dust components/sources. Our results offer the first experimental evidence of different emission rates for mineral dust, heavy metals and carbon fractions due to traffic-induced resuspension. Also, the same component (or source) recovers differently in a road in Barcelona (Spain) and a road in Utrecht (The Netherlands). This finding has important implications on atmospheric pollution modelling, mostly for mineral dust, heavy metals and carbon species. After rain events, recoveries were generally faster in Barcelona rather than in Utrecht. The largest difference was found for the mineral dust (Al, Si, Ca). Tyre wear particles (organic carbon and zinc) recovered faster than other road dust particles in both cities. The source apportionment of road dust mass provides useful information for air quality management.

  15. Airborne Aerosol Closure Studies During PRIDE

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Livingston, John M.; Russell, Philip B.; Schmid, Beat; Reid, Jeff

    2000-01-01

    The Puerto Rico Dust Experiment (PRIDE) was conducted during June/July of 2000 to study the properties of Saharan dust aerosols transported across the Atlantic Ocean to the Caribbean Islands. During PRIDE, the NASA Ames Research Center six-channel (380 - 1020 nm) airborne autotracking sunphotometer (AATS-6) was operated aboard a Piper Navajo airplane alongside a suite of in situ aerosol instruments. The in situ aerosol instrumentation relevant to this paper included a Forward Scattering Spectrometer Probe (FSSP-100) and a Passive Cavity Aerosol Spectrometer Probe (PCASP), covering the radius range of approx. 0.05 to 10 microns. The simultaneous and collocated measurement of multi-spectral aerosol optical depth and in situ particle size distribution data permits a variety of closure studies. For example, vertical profiles of aerosol optical depth obtained during local aircraft ascents and descents can be differentiated with respect to altitude and compared to extinction profiles calculated using the in situ particle size distribution data (and reasonable estimates of the aerosol index of refraction). Additionally, aerosol extinction (optical depth) spectra can be inverted to retrieve estimates of the particle size distributions, which can be compared directly to the in situ size distributions. In this paper we will report on such closure studies using data from a select number of vertical profiles at Cabras Island, Puerto Rico, including measurements in distinct Saharan Dust Layers. Preliminary results show good agreement to within 30% between mid-visible aerosol extinction derived from the AATS-6 optical depth profiles and extinction profiles forward calculated using 60s-average in situ particle size distributions and standard Saharan dust aerosol refractive indices published in the literature. In agreement with tendencies observed in previous studies, our initial results show an underestimate of aerosol extinction calculated based on the in situ size distributions

  16. Dust agglomeration

    NASA Technical Reports Server (NTRS)

    2000-01-01

    John Marshall, an investigator at Ames Research Center and a principal investigator in the microgravity fluid physics program, is studying the adhesion and cohesion of particles in order to shed light on how granular systems behave. These systems include everything from giant dust clouds that form planets to tiny compressed pellets, such as the ones you swallow as tablets. This knowledge should help us control the grains, dust, and powders that we encounter or use on a daily basis. Marshall investigated electrostatic charge in microgravity on the first and second U.S. Microgravity Laboratory shuttle missions to see how grains aggregate, or stick together. With gravity's effects eliminated on orbit, Marshall found that the grains of sand that behaved ever so freely on Earth now behaved like flour. They would just glom together in clumps and were quite difficult to disperse. That led to an understanding of the prevalence of the electrostatic forces. The granules wanted to aggregate as little chains, like little hairs, and stack end to end. Some of the chains had 20 or 30 grains. This phenomenon indicated that another force, what Marshall believes to be an electrostatic dipole, was at work.(The diagram on the right emphasizes the aggregating particles in the photo on the left, taken during the USML-2 mission in 1995.)

  17. Canyon Dust

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03682 Canyon Dust

    These dust slides are located on the wall of Thithonium Chasma.

    Image information: VIS instrument. Latitude -4.1N, Longitude 275.7E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. Dust Slides

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03677 Linear Clouds

    Dust slides are common in the dust covered region called Lycus Sulci. A large fracture is also visible in this image.

    Image information: VIS instrument. Latitude 28.1N, Longitude 226.3E. 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  19. Dust collector

    SciTech Connect

    Nelson, R.T.

    1986-10-21

    This patent describes a dust collector comprising: (a) a housing having inlet means for receiving air to be cleaned; (b) a plurality of filter units within the housing; (c) a first centrifugal fan arranged for drawing air through the units for removing dust from the air; (d) a plurality of ducts each connected to a corresponding one of the units at one end and to the first fan at the other end to provide passages for air from the units to the first fan, the ducts through a portion of their length being arranged in side-by-side relationship; (e) a second centrifugal fan for providing reverse flow of air through the ducts to the units, the second fan providing a high volume of air at low pressure; (f) a transverse duct connected to the second fan and extending transversely of the portion of the plurality of ducts and adjacent thereto: (g) a plurality of openings providing communication between the transverse duct and each of the plurality of ducts; (i) rotatable means engaging the vanes for sequentially moving the vanes between the first and second positions.

  20. Observations of Saharan dust in the Caribbean and Implications for Regional Climate Variability

    NASA Technical Reports Server (NTRS)

    Remer, L.; Einaudi, Franco

    2001-01-01

    Massive quantities of dust aerosol, originating at source locations in the Saharan desert are frequently transported westward across the Atlantic. Saharan dust has been frequently identified at ground-based stations in South America, on Barbados, in Florida and in Texas. Recently, in July of 2000, the Puerto Rican Dust Experiment (PRiDE), consisting of researchers from the U.S. Navy, NASA, the University of Miami and the University of Puerto Rico joined together to study this important phenomenon. Numerical forecast models tracked each dust event as the dust left the African continent and transversed the Atlantic. Ground-based, ship-based, airborne and satellite sensors were used to characterize the physical and radiative properties of the dust aerosol. The dust plays an important role in terms of radiative forcing of regional climate. Satellite sensors such as NASA's EOS-MODIS aboard the Terra satellite will provide important continuing information on the dust aerosol and its climatic effects.

  1. Interstellar Dust: Contributed Papers

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M. (Editor); Allamandola, Louis J. (Editor)

    1989-01-01

    A coherent picture of the dust composition and its physical characteristics in the various phases of the interstellar medium was the central theme. Topics addressed included: dust in diffuse interstellar medium; overidentified infrared emission features; dust in dense clouds; dust in galaxies; optical properties of dust grains; interstellar dust models; interstellar dust and the solar system; dust formation and destruction; UV, visible, and IR observations of interstellar extinction; and quantum-statistical calculations of IR emission from highly vibrationally excited polycyclic aromatic hydrocarbon (PAH) molecules.

  2. Exposure level and distribution characteristics of airborne bacteria and fungi in Seoul metropolitan subway stations.

    PubMed

    Kim, Ki Youn; Kim, Yoon Shin; Kim, Daekeun; Kim, Hyeon Tae

    2011-01-01

    The exposure level and distribution characteristics of airborne bacteria and fungi were assessed in the workers' activity areas (station office, bedroom, ticket office and driver's seat) and passengers' activity areas (station precinct, inside the passenger carriage, and platform) of the Seoul metropolitan subway. Among investigated areas, the levels of airborne bacteria and fungi in the workers' bedroom and station precincts were relatively high. No significant difference was found in the concentration of airborne bacteria and fungi between the underground and above ground activity areas of the subway. The genera identified in all subway activity areas with a 5% or greater detection rate were Staphylococcus, Micrococcus, Bacillus and Corynebacterium for airborne bacteria and Penicillium, Cladosporium, Chrysosporium, Aspergillus for airborne fungi. Staphylococcus and Micrococcus comprised over 50% of the total airborne bacteria and Penicillium and Cladosporium comprised over 60% of the total airborne fungi, thus these four genera are the predominant genera in the subway station. PMID:21173524

  3. Steelworks dust -- From waste to product

    SciTech Connect

    Strohmeier, G.; Bonestell, J.E.

    1995-07-01

    Scrap-borne zinc and lead are enriched in the electric arc furnace dusts. Its Pb/Zn content of over 20% renders the dumping of this dust impossible in many countries, for both statutory and financial reasons. The Waelz process is the only reliable large-scale method for processing such dusts. 45% of the total electric furnace dusts occurring throughout Europe are being processed in Waelz plants with several operating in the US. The dust is treated in a rotary kiln where it is heated to approximately 1,200 C. Lead and zinc are volatilized under reducing conditions and collected as fine dust from the off-gas by cooling. The Waelz oxide recovered in the off-gas filters contains approximately 55% Zn and up to 10% Pb, and is ideal feedstock for the Imperial Smelting furnace for lead/zinc recovery. The remaining slag is inert and unleachable so that it can be used as a building aggregate.

  4. Receptor modeling of globally circulating airborne particles collected at Mauna Loa Observatory, Hawaii

    SciTech Connect

    Hermann, D.M.

    1988-01-01

    Weekly airborne particle samples were collected at Mauna Loa Observatory (MLO), Hawaii from February 1979 through May 1985. Receptor models were used to identify sources of airborne particles at MLO, determine compositions of particles from these sources, and assess the relative impacts of them. Major sources of ambient particles at MLO include Asian continental material, oceanic biological production of Se and SO{sub 4} species, marine particles, Asian anthropogenic material, local volcanic emissions, and basalt. Source composition profiles were developed for each component. The Asian continental component represents particles transported from Eastern Asia to the North Pacific, and the component consists of crustal material contaminated by anthropogenic emissions. To account for variations in the relative strengths of anthropogenic and crustal sources, a separate Asian anthropogenic component was also developed. During the dust season, Asian continental material accounts for 80% of total suspended particulate material (TSP) at MLO, oceanic productions of Se and SO{sub 4} 11%, marine particles 2.8%, basalt 1.9%, volcanic emissions 1.7%, and Asian anthropogenic material in excess of Asian continental material 3.2%. During the clean season, the oceanic biological production of Se and SO{sub 4} contributes 62% of TSP at MLO. Continental material contributes 22%, marine particles 6.4%, basalt 2.7%, volcanic emissions 2.4%, and anthropogenic materials in excess of continental material 4.3%.

  5. Sources of Asian dust and role of climate change versus desertification in Asian dust emission

    NASA Astrophysics Data System (ADS)

    Zhang, X. Y.; Gong, S. L.; Zhao, T. L.; Arimoto, R.; Wang, Y. Q.; Zhou, Z. J.

    2003-12-01

    Simulations of Asian dust emissions over the past 43 years are presented based on a size-dependent soil dust emission and transport model (NARCM) along with supporting data from a network of surface stations. The deserts in Mongolia and in western and northern China (mainly the Taklimakan and Badain Juran, respectively) contribute ~70% of the total dust emissions; non-Chinese sources account for ~40% of this. Several areas, especially the Onqin Daga sandy land, Horqin sandy land, and Mu Us Desert, have increased in dust emissions over the past 20 years, but efforts to reduce desertification in these areas may have little effect on Asian dust emission amount because these are not key sources. The model simulations indicate that meteorology and climate have had a greater influence on the Asian dust emissions and associated Asian dust storm occurrences than desertification.

  6. [Comparison between calculation- and measurement-based assessments of the effects of ambient air dust concentration on the environment and health status of the population living in the vicinity of a mineral mining plant].

    PubMed

    Wiecek, Edward; Woźniak, Helena

    2004-01-01

    Airborne and PM10 fraction dust concentrations were measured at seven measurement points in the area occupied by the plant. A GRIMM 1.105 laser meter was used to determine automatically total dust and PM10 fraction concentrations at 1 min intervals. The measurements were continued for 1 to 3 days at selected measurement points. The results were used to calculate the 30-min and mean 24-h (C24) concentrations. Significant differences were found to exist in the assessment based on the calculated and measured results of the ambient air dust concentrations. The calculation-based assessment did not predict any values above admissible limits, while the measurement-based assessment resulted in dust concentration values dangerous to the exposed population living in the vicinity of the plant, over both short (days) and long (years) time intervals. In emergency situation, when the dust-collection system was inoperative, dust concentrations in the ambient atmosphere of the plant were even 100 times higher than the current admissible values. PMID:15156772

  7. Asian anthropogenic dust and its climate effect (Invited)

    NASA Astrophysics Data System (ADS)

    Huang, J.; Liu, J.; Chen, B.

    2013-12-01

    Anthropogenic dust originates mainly from areas of localized human disturbance, such as traffic-on-roads, agricultural fields, grazing, military installations, construction sites, and off-road vehicle areas. To understand historical and possible future changes in dust emissions, the percentage of atmospheric dust load originating from anthropogenic source and its distribution must be quantified. CALIPSO lidar, which shoots a laser into the atmosphere, provides new insight into the detection of anthropogenic dust emission. Here, we present the distribution of Asian anthropogenic dust emissions and its relation to human activity by using CALIPSO lidar measurements. We found that the local anthropogenic dust aerosols account for significant portion of the total dust burden in the atmosphere. The anthropogenic dust emissions mainly occur over the heavy human activity and poor ecosystem region, such as semi-arid region. The impact of Asian anthropogenic dust on regional climate will also be discussed in this talk.

  8. Dust devil vortices seen by the Mars Pathfinder camera

    USGS Publications Warehouse

    Metzger, S.M.; Carr, J.R.; Johnson, J. R.; Parker, T.J.; Lemmon, M.T.

    1999-01-01

    Discovery of dust devil vortices in Mars Pathfinder (MPF) images reveals a dust entrainment mechanism at work on Mars. Scattering of visible light by dust in the Martian atmosphere creates a pronounced haze, preventing conventional image processing from displaying dust plumes. Spectral differencing techniques have enhanced five localized dust plumes from the general haze in images acquired near midday, which we determine to be dust devils. Processing of 440 nm images highlights dust devils as distinct occultation features against the horizon. The dust devils are interpreted to be 14-79 m wide, 46-350 m tall, travel at 0.5-4.6 m/s, with dust loading of 7E-5 kg m-3, relative to the general haze of 9E-8 kg m-3, and total particulate transport of 2.2 - 700 kg. The vortices match predictions from terrestrial analog studies. Copyright 1999 by the American Geophysical Union.

  9. The Airborne Laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-09-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  10. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  11. Dust Complex onboard the ExoMars-2018 lander for investigations of Martian dust dynamics

    NASA Astrophysics Data System (ADS)

    Zakharov, Alexander; Horanyi, Mihaly; Afonin, Valeri; Esposito, Francesca; Seran, Elena; Gotlib, Vladimir; Koepke, Mark; Kuznetsov, Ilya; Lyash, Andrey; Dolnikov, Gennady

    The load of suspended dust in the Martian atmosphere varies dramatically but never drops entirely to zero. Effects of airborne dust contribute to the dynamic and thermodynamic evolution of the atmosphere and its large-scale circulation processes on diurnal, seasonal and annual time-scales. Suspended dust plays a key role in determining the present climate of Mars and probably influenced the past climatic conditions and surface evolution. Atmosphere dust and windblown dust are responsible for erosion, redistribution of dust on the surface, and surface weathering. The mechanisms for dust entrainment in the atmosphere are not completely understood, as the current data available so far do not allow us to identify the efficiency of the various processes. Dust-grain transport on the surface of Mars has never been directly measured despite great interest in and high scientific and technological ramifications of the associated phenomena. This paper describes planned, future investigations of the Martian dust environment made possible by the proposed scientific payload “Dust Complex” (DC) of the ExoMars-2018 mission’s landing platform. DC is a suite of four sensors devoted to the study of Aeolian processes on Mars with a primary aim of monitoring the diurnal, seasonal, and annual dust-environment cycles by Martian-ground-based measurements of dust flux in situ, i.e., in the near-surface atmosphere of Mars. This suite includes 1) an Impact Sensor, for the measurement of the sand-grain dynamics and electrostatics, 2) a particle-counter sensor, MicroMED, for the measurement of airborne dust size distribution and number density, 3) an Electric Probe, for the measurement of the ambient electric field, and 4) a radiofrequency antenna. Besides outlining design details of DC and the characterisation of its capabilities, this presentation reviews various dust effects and dust phenomena that are anticipated to occur in the near-surface environment on Mars and that are possible

  12. NASA Airborne Lidar July 1991

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar July 1991 Data from the 1991 NASA Langley Airborne Lidar flights following the eruption of Pinatubo in July ... and Osborn [1992a, 1992b]. Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  13. NASA Airborne Lidar May 1992

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar May 1992 An airborne Nd:YAG (532 nm) lidar was operated by the NASA Langley Research Center about a year following the June 1991 eruption of ... Osborn [1992a, 1992b].  Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  14. Detection of anthropogenic dust using CALIPSO lidar measurements

    NASA Astrophysics Data System (ADS)

    Huang, J. P.; Liu, J. J.; Chen, B.; Nasiri, S. L.

    2015-10-01

    Anthropogenic dusts are those produced by human activities on disturbed soils, which are mainly cropland, pastureland, and urbanized regions, and are a subset of the total dust load which includes natural sources from desert regions. Our knowledge of anthropogenic dusts is still very limited due to a lack of data. To understand the contribution of anthropogenic dust to the total global dust load, it is important to identify it apart from total dust. In this study, a new technique for distinguishing anthropogenic dust from natural dust is proposed by using Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) dust and planetary boundary layer (PBL) height retrievals along with a land use data set. Using this technique, the global distribution of dust is analyzed and the relative contribution of anthropogenic and natural dust sources to regional and global emissions are estimated. Results reveal that local anthropogenic dust aerosol due to human activity, such as agriculture, industrial activity, transportation, and overgrazing, accounts for about 25 % of the global continental dust load. Of these anthropogenic dust aerosols, more than 53 % come from semi-arid and semi-wet regions. Annual mean anthropogenic dust column burden (DCB) values range from 0.42 g m-2, with a maximum in India, to 0.12 g m-2, with a minimum in North America. A better understanding of anthropogenic dust emission will enable us to focus on human activities in these critical regions and with such knowledge we will be more able to improve global dust models and to explore the effects of anthropogenic emission on radiative forcing, climate change, and air quality in the future.

  15. Detection of anthropogenic dust using CALIPSO lidar measurements

    NASA Astrophysics Data System (ADS)

    Huang, J.; Liu, J.; Chen, B.; Nasiri, S. L.

    2015-04-01

    Anthropogenic dusts are those produced by human activities on disturbed soils, which are mainly cropland, pasture, and urbanized regions and are a subset of the total dust load which includes natural sources from desert regions. Our knowledge of anthropogenic dusts is still very limited due to a lack of data on source distribution and magnitude, and on their effect on radiative forcing which may be comparable to other anthropogenic aerosols. To understand the contribution of anthropogenic dust to the total global dust load and its effect on radiative transfer and climate, it is important to identify them from total dust. In this study, a new technique for distinguishing anthropogenic dust from natural dust is proposed by using Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) dust and planetary boundary layer (PBL) height retrievals along with a land use dataset. Using this technique, the global distribution of dust is analyzed and the relative contribution of anthropogenic and natural dust sources to regional and global emissions are estimated. Results reveal that local anthropogenic dust aerosol due to human activity, such as agriculture, industrial activity, transportation, and overgrazing, accounts for about 25% of the global continental dust load. Of these anthropogenic dust aerosols, more than 53% come from semi-arid and semi-wet regions. Annual mean anthropogenic dust column burden (DCB) values range from 0.42 g m-2 with a maximum in India to 0.12 g m-2 with a minimum in North America. A better understanding of anthropogenic dust emission will enable us to focus on human activities in these critical regions and with such knowledge we will be better able to improve global dust models and to explore the effects of anthropogenic emission on radiative forcing, climate change and air quality in the future.

  16. Dust feed mechanism

    DOEpatents

    Milliman, Edward M.

    1984-01-01

    The invention is a dust feed device for delivery of a uniform supply of dust for long periods of time to an aerosolizing means for production of a dust suspension. The device utilizes at least two tandem containers having spiral brushes within the containers which transport the dust from a supply to the aerosolizer means.

  17. Using NASA EOS in the Arabian and Saharan Deserts to Examine Dust Particle Size and Spectral Signature of Aerosols

    NASA Astrophysics Data System (ADS)

    Brenton, J. C.; Keeton, T.; Barrick, B.; Cowart, K.; Cooksey, K.; Florence, V.; Herdy, C.; Luvall, J. C.; Vasquez, S.

    2012-12-01

    Exposure to high concentrations of airborne particulate matter can have adverse effects on the human respiratory system. Ground-based studies conducted in Iraq have revealed the presence of potential human pathogens in airborne dust. According to the Environmental Protection Agency (EPA), airborne particulate matter below 2.5μm (PM2.5) can cause long-term damage to the human respiratory system. Given the relatively high incidence of new-onset respiratory disorders experienced by US service members deployed to Iraq, this research offers a new glimpse into how satellite remote sensing can be applied to questions related to human health. NASA's Earth Observing System (EOS) can be used to determine spectral characteristics of dust particles, the depth of dust plumes, as well as dust particle sizes. Comparing dust particle size from the Sahara and Arabian Deserts gives insight into the composition and atmospheric transport characteristics of dust from each desert. With the use of NASA SeaWiFS DeepBlue Aerosol, dust particle sizes were estimated using Angström exponent. Brightness Temperature Difference (BTD) equation was used to determine the distribution of particle sizes, the area of the dust storm, and whether silicate minerals were present in the dust. The Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra satellite was utilized in calculating BTD. Minimal research has been conducted on the spectral characteristics of airborne dust in the Arabian and Sahara Deserts. Mineral composition of a dust storm that occurred 17 April 2008 near Baghdad was determined using imaging spectrometer data from the Jet Propulsion Laboratory Spectral Library and EO-1 Hyperion data. Mineralogy of this dust storm was subsequently compared to that of a dust storm that occurred over the Bodélé Depression in the Sahara Desert on 7 June 2003.

  18. PERSPECTIVE: Dust, fertilization and sources

    NASA Astrophysics Data System (ADS)

    Remer, Lorraine A.

    2006-11-01

    between a model and observations J. Geophys. Res. 111 D06207 (doi:10.1029/2005JD005791) [5] Ginoux P et al 2001 Sources and distribution of dust aerosol simulated with the GOCART model J. Geophys. Res. 106 20255-74 (doi:10.1029/2000JD000053) [6] Prospero J M, Ginoux P, Torres O, Nicholson S E and Gill T E 2002 Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product Rev. Geophys. 40 (1) 1002 (doi:10.1029/2000RG000095) [7] Koren I, Kaufman Y J, Washington R, Todd M C, Rudich Y, Martins J V and Rosenfeld D 2006 The Bodélé depression: a single spot in the Sahara that provides most of the mineral dust to the Amazon forest Environ. Res Lett. 1 014005 (doi:10.1088/1748-9326/1/1/014005) Photo of Lorraine A Remer Lorraine A Remer received a BS degree in atmospheric science from the University of California, Davis, in 1980, an MS degree in oceanography from the Scripps Institution of Oceanography, University of California, San Diego, in 1983, and a PhD degree, also in atmospheric science from the University of California, Davis, in 1991. She became involved with the MODIS retrievals of atmospheric aerosols in 1991, first as a Research Scientist with Science Systems and Applications, Inc., and subsequently with the National Aeronautics and Space Administration, which she joined in 1998. She is an Associate Member of the MODIS Science Team and a Member of the Global Aerosol Climatology Project Science Team.

  19. Exposure to airborne microorganisms and endotoxin in herb processing plants.

    PubMed

    Dutkiewicz, J; Krysińska-Traczyk, E; Skórska, C; Sitkowska, J; Prazmo, Z; Golec, M

    2001-01-01

    Microbiological air sampling was performed in two herb processing plants located in eastern Poland. Air samples for determination of the levels of bacteria, fungi, dust and endotoxin were collected at 14 sites during cleaning, cutting, grinding, sieving, sorting and packing of 11 kinds of herbs (nettle, caraway, birch, celandine, marjoram, mint, peppermint, sage, St. John's wort, calamus, yarrow), used for production of medications, cosmetics and spices. It was found that processing of herbs was associated with a very high pollution of the air with bacteria, fungi, dust and endotoxin. The numbers of microorganisms (bacteria and fungi) in the air of herb processing plants ranged within 40.6-627.4 x 10(3) cfu/m3 (mean +/- S.D = 231.4 +/- 181.0 x 10(3) cfu/m3). The greatest concentrations were noted at the initial stages of production cycle, during cleaning, cutting and grinding of herbs. The numbers of airborne microorganisms were also significantly (p<0.0001) related to the kind of processed herb, being the greatest at processing marjoram, nettle, yarrow and mint. The values of the respirable fraction of airborne microflora in the examined facilities varied within a fairly wide range and were between 14.7-67.7%. The dominant microorganisms in the air of herb processing plants were mesophilic bacteria, among which endospore-forming bacilli (Bacillus spp.) and actinomycetes of the species Streptomyces albus were most numerous. Among Gram-negative bacteria, the most common was endotoxin-producing species Alcaligenes faecalis. Altogether, 37 species or genera of bacteria and 23 species or genera of fungi were identified in the air of herb processing plants, of these, 11 and 10 species or genera respectively were reported as having allergenic and/or immunotoxic properties. The concentrations of dust and bacterial endotoxin in the air of herb processing plants were large with extremely high levels at some sampling sites. The concentrations of airborne dust ranged within 3

  20. Exposure to grain dust in Great Britain.

    PubMed

    Spankie, Sally; Cherrie, John W

    2012-01-01

    Airborne grain dust is a complex mixture of fragments of organic material from grain, plus mineral matter from soil, and possible insect, fungal, or bacterial contamination or their toxic products, such as endotoxin. In the 1990s, grain workers in Britain were frequently exposed to inhalable dust >10 mg.m(-3) (8 h), with particularly high exposures being found at terminals where grain was imported or exported and in drying operations (personal exposure typically approximately 20 mg.m(-3)). Since then, the industry has made substantial progress in improving the control of airborne dust through better-designed processes, increased automation, and an improved focus on product quality. We have used information from the published scientific literature and a small survey of industry representatives to estimate current exposure levels. These data suggest that current long-term exposure to inhalable dust for most workers is on average less than approximately 3 mg.m(-3), with perhaps 15-20% of individual personal exposures being >10 mg.m(-3). There are no published data from Britain on short-term exposure during cleaning and other tasks. We have estimated average levels for a range of tasks and judge that the highest levels, for example during some cleaning activities and certain process tasks such as loading and packing, are probably approximately10 mg.m(-3). Endotoxin levels were judged likely to be <10⁴ EU m(-3) throughout the industry provided inhalable dust levels are <10 mg.m(-3). There are no published exposure data on mycotoxin, respirable crystalline silica, and mite contamination but these are not considered to present widespread problems in the British industry. Further research should be carried out to confirm these findings. PMID:21976307

  1. Electric Dust Devils and Dust Storms

    NASA Astrophysics Data System (ADS)

    Renno, N. O.; Yana, C.

    2004-12-01

    Electrical fields measurements in terrestrial dust devils show that they maintain tremendous charge separation and that their electric fields exceeds the breakdown potential (~10 kV/m) of the Martian atmosphere (Farrell et al., 2002, 2003; Krauss et al., 2002; Renno et al., 2004). Typical Martian dust devils are be up to 100 times larger and much stronger than the small terrestrial analogues. Martian dust devils have higher dust content and may produce even stronger electrical fields. Indeed, the dust devils observed in the Pathfinder images have about 700 times the dust content of the local background atmosphere (Metzger et al., 1999). Thus, strong charge separations and electric-field breakdown are likely to occur on Martian dust devils and dust storms. Our theory (Renno et al., 2004) and laboratory experiments in a Mars chamber shows that collisions between sand and dust particles produce non-thermal microwave radiation. The non-thermal microwave emission allows not only the indirect detection of electric activity but also the determination of the physical properties of Martian sand and dust by remote sensing. Besides being geologically important, electrically charged Martian dust devils and dust storms are potential hazards to Landers and will be dangerous to future astronauts exploring its surface. Indeed, the design of adequate mechanical and electrical systems for these Landers cannot progress effectively without a better understanding of Martian dust devils and dust storms. Moreover, ancillary phenomena associated with electrically charged vortices can ionize atmospheric gases and might have important implications for atmosphere chemistry and even habitability.

  2. Aerosol-radiation-cloud and precipitation processes during dust events (Invited)

    NASA Astrophysics Data System (ADS)

    Kallos, G. B.; Solomos, S.; Kushta, J.; Mitsakou, C.; Athanasiadis, P.; Spyrou, C.; Tremback, C.

    2010-12-01

    In places like the Mediterranean region where anthropogenic aerosols coexist with desert dust the aerosol-radiation-cloud processes are rather complicated. The mixture of different age of air pollutants of anthropogenic origin with Saharan dust and sea salt may lead to the formation of other particles with different characteristics. The mixture of the aerosols and gases from anthropogenic and natural origin (desert dust and sea salt) results in the formation of new types of PM with different physico-chemical properties and especially hygroscopicity (e.g. inside clouds or within the marine boundary layer) through heterogeneous processes. The new particle formation has different characteristics and therefore they have different impacts on cloud formation and precipitation. In an attempt to better understand links and feedbacks between air pollution and climate the new Integrated Community Limited Area Modeling System - ICLAMS has been developed. ICLAMS is an enhanced version of RAMS.v6 modeling system. It includes sub-models for the dust and sea salt cycles, gas and aqueous phase chemistry, gas to particle conversion and heterogeneous chemistry processes. All these processes are directly coupled with meteorology. RAMS has an explicit cloud microphysical scheme with eight categories of hydrometeors. The cloud droplets spectrum is explicitly calculated from model meteorology and prognostic CCN and IN properties (total number concentration, size distribution properties and chemical composition). Sulphate coated dust particles are efficient CCN because of their increased hygroscopicity while uncoated dust particles are efficient IN. The photochemical processes are directly linked to the RAMS radiative transfer scheme, which in the new model is RRTM. Absorption of short wave solar radiation from airborne dust leads to heating of the dust layer which can also affect the cloud processes. Mid and low tropospheric warming by dust is one of the new features that the model can

  3. Four Interstellar Dust Candidates from the Stardust Interstellar Dust Collector

    NASA Technical Reports Server (NTRS)

    Westphal, A. J.; Allen, C.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; Butterworth, A. L.; Cloetens, P.; Davis, A. M.; Floss, C.; Flynn, G. J.; Fougeray, P.; Frank, D.; Gainsforth, Z.; Grun, E.; Heck, P. R.; Jillier, J. K.; Hoppe, P.; Howard, L.; Hudson, B.; Huss, G. R.

    2011-01-01

    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approx. 0.1 sq m in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 sq m/day. The Stardust Interstellar Preliminary Examination (ISPE) is a consortium-based project to characterize the collection using nondestructive techniques. The goals and restrictions of the ISPE are described . A summary of analytical techniques is described.

  4. Airborne antenna pattern calculations

    NASA Technical Reports Server (NTRS)

    Knerr, T. J.; Schaffner, P. R.; Mielke, R. R.; Gilreath, M. C.

    1980-01-01

    A procedure for numerically calculating radiation patterns of fuselage-mounted airborne antennas using the Volumetric Pattern Analysis Program is presented. Special attention is given to aircraft modeling. An actual case study involving a large commercial aircraft is included to illustrate the analysis procedure.

  5. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  6. Airborne Fraunhofer Line Discriminator

    NASA Technical Reports Server (NTRS)

    Gabriel, F. C.; Markle, D. A.

    1969-01-01

    Airborne Fraunhofer Line Discriminator enables prospecting for fluorescent materials, hydrography with fluorescent dyes, and plant studies based on fluorescence of chlorophyll. Optical unit design is the coincidence of Fraunhofer lines in the solar spectrum occurring at the characteristic wavelengths of some fluorescent materials.

  7. Airborne Remote Sensing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA imaging technology has provided the basis for a commercial agricultural reconnaissance service. AG-RECON furnishes information from airborne sensors, aerial photographs and satellite and ground databases to farmers, foresters, geologists, etc. This service produces color "maps" of Earth conditions, which enable clients to detect crop color changes or temperature changes that may indicate fire damage or pest stress problems.

  8. Saharan dust storms: nature and consequences

    NASA Astrophysics Data System (ADS)

    Goudie, A. S.; Middleton, N. J.

    2001-12-01

    This paper reviews recent work on the role of Saharan dust in environmental change, the location and strength of source areas, the transport paths of material away from the desert, the rates of Saharan dust deposition, the nature of that material (including PeriSaharan loess) and the changing rates of dust activity in response to long and short-term climatic changes. The Sahara produces more aeolian soil dust than any other world desert, and Saharan dust has an important impact on climatic processes, nutrient cycles, soil formation and sediment cycles. These influences spread far beyond Africa, thanks to the great distances over which Saharan dust is transported. The precise locations of Saharan dust source areas are not well known, but data from the Total Ozone Mapping Spectrometer (TOMS) suggest two major source areas: the Bodélé depression and an area covering eastern Mauritania, western Mali and southern Algeria. Trajectories of long-distance transport are relatively well documented, but the links between source areas and seasonal Saharan dust pathways are not. However, it is possible that Harmattan dust from the Bodélé depression may not be the source of the prominent winter plume over the tropical North Atlantic, as is often suggested in the literature. Few of the data on particle size characteristics of Saharan dust are derived from major source areas or from Africa itself. Saharan dusts sampled from the Harmattan plume and over Europe are dominated by SiO 2 and Al 2O 3, a characteristic they share with North American and Chinese dusts. The concentrations of these two major elements are similar to those found in world rocks. PeriSaharan loess is conspicuous by its relative absence, considering the Sahara's dominance of the global desert dust cycle both in the contemporary era and through the geological past. In recent decades, the frequency of Saharan dust events has varied markedly in response to climatic factors such as drought and anthropogenic

  9. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  10. Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Crater wall dust avalanches in southern Arabia Terra.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 10.3, Longitude 24.5 East (335.5 West). 19 meter/pixel resolution.

  11. Global Dust Budgets of the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Matsuura, Mikako

    2013-03-01

    Within galaxies, gas and dust are constantly exchanged between stars and the interstellar medium (ISM). The life-cycle of gas and dust is the key to the evolution of galaxies. Despite its importance, it is has been very difficult to trace the life-cycle of gas and dust via observations. The Spitzer Space Telescope and Herschel Space Observatory have provided a great opportunity to study the life-cycle of the gas and dust in very nearby galaxies, the Magellanic Clouds. AGB stars are more important contributors to the dust budget in the Large Magellanic Cloud (LMC), while in the Small Magellanic Cloud (SMC), SNe are dominant. However, it seems that the current estimates of the total dust production from AGB stars is insufficient to account for dust present in the ISM. Other dust sources are needed, and supernovae are promising sources. Alternatively the time scale of dust lifetime itself needs some revisions, potentially because they could be unevenly distributed in the ISM or clumps.

  12. Dust particle dynamics in atmospheric dust devils

    NASA Astrophysics Data System (ADS)

    Izvekova, Yulia; Popel, Sergey

    2016-04-01

    Dust particle dynamics is modeled in the Dust Devils (DDs). DD is a strong, well-formed, and relatively long-lived whirlwind, ranging from small (half a meter wide and a few meters tall) to large (more than 100 meters wide and more than 1000 meters tall) in Earth's atmosphere. We develop methods for the description of dust particle charging in DDs, discuss the ionization processes in DDs, and model charged dust particle motion. Our conclusions are consistent with the fact that DD can lift a big amount of dust from the surface of a planet into its atmosphere. On the basis of the model we perform calculations and show that DDs are important mechanism for dust uplift in the atmospheres of Earth and Mars. Influence of DD electric field on dynamics of dust particles is investigated. It is shown that influence of the electric field on dust particles trajectories is significant near the ground. At some altitude (more then a quarter of the height of DD) influence of the electric field on dust particles trajectories is negligible. For the calculation of the dynamics of dust electric field can be approximated by effective dipole located at a half of the height of DD. This work was supported by the Russian Federation Presidential Program for State Support of Young Scientists (project no. MK-6935.2015.2).

  13. Dust absorption over the ``Great Indian Desert'' inferred using ground-based and satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Moorthy, K. Krishna; Babu, S. Suresh; Satheesh, S. K.; Srinivasan, J.; Dutt, C. B. S.

    2007-05-01

    Mineral dust is the single largest contributor of natural aerosols over land. Dust aerosols exhibit high variability in their radiative effects because their composition varies locally. This arises because of the regional distinctiveness of the soil characteristics as well as the accumulation of other aerosol species, such as black carbon, on dust while airborne. To accurately estimate the climate impact of dust, spatial and temporal distribution of its radiative properties are essential. However, this is poorly understood over many regions of the world, including the Indian region. In this paper, infrared (IR) radiance (10.5-12.5 μm) acquired from METEOSAT-5 satellite (˜5-km resolution) is used to retrieve dust aerosol characteristics over the "Great Indian Desert" and adjacent regions. The infrared radiance depression on account of the presence of dust in the atmosphere has been used as an index of dust load, called the Infrared Difference Dust Index (IDDI). Simultaneous, ground-based spectral optical depths estimated at visible and near-infrared wavelengths (using a multiwavelength solar radiometer) are used along with the IDDI to infer the dust absorption. The inferred single scattering albedo of dust was in the range of 0.88-0.94. We infer that dust over the Indian desert is of more absorbing nature (compared with African dust). Seasonally, the absorption is least in summer and most in winter. The large dust absorption leads to lower atmospheric warming of 0.7-1.2 K day-1.

  14. Evaluation of longwall dust sources. Open file report 15 Sep 80-15 Apr 83

    SciTech Connect

    Ludlow, J.; Marshall, E.

    1983-04-01

    The major objective of this study was to define the relative contributions of various sources of respirable airborne dust on longwall faces. In order to define the contribution of various primary sources, continuous dust level data were recorded on five longwalls for an average of five shifts at each. By analysis of these data with records of face activity, it was possible to determine the overall contribution of each of the major elements of the longwall system to overall respirable dust exposure at various face locations. Average levels were determined for roof support generated dust, conveyor and intake dust, and for dust levels during various shearer activities. When average levels are compared between mines, a significant degree of consistency is noted. Another objective of the study was to differentiate the various dust sources associated with the shearer.

  15. Direct observations of the atmospheric processing of Asian mineral dust

    NASA Astrophysics Data System (ADS)

    Sullivan, R. C.; Guazzotti, S. A.; Sodeman, D. A.; Prather, K. A.

    2006-05-01

    The accumulation of secondary acid products and ammonium on individual mineral dust particles during ACE-Asia has been measured in real-time using ATOFMS. Changes in the amounts of sulphate, nitrate, and chloride mixed with dust particles corresponded to different air mass source regions. During volcanically influenced periods, dust mixed with sulphate dominated. This rapidly switched to dust predominantly mixed with chloride when the first Asian dust front reached the R/V Ronald Brown. We hypothesise that the high degree of mixing of dust with chloride was caused by the prior reaction of NOy(g) and volcanic SO2(g) with sea salt particles, reducing the availability of nitrate and sulphate precursors while releasing HCl(g), which then reacted with the incoming dust front. The segregation of sulphate from nitrate and chloride in individual dust particles is demonstrated for the first time. This is likely caused by the dust plume encountering elevated SO2(g) in the Chinese interior before reaching coastal urban areas polluted by both SO2(g) and NOx(g). This caused the fractions of dust mixed with nitrate and/or chloride to be strongly dependent on the total dust loadings, whereas dust mixed with sulphate did not show this same dust concentration dependence. Ammonium was also significantly mixed with dust and the amount correlated strongly with the total amount of secondary acid reaction products in the dust. Submicron dust and ammonium sulphate were internally mixed, contrary to frequent statements that they exist as an external mixture. The size distribution of the mixing state of dust with these secondary species validates previous models and mechanisms of the atmospheric processing of dust. The uptake of secondary acids was also dependent on the individual dust particle mineralogy; nitrate accumulated on calcium-rich dust while sulphate accumulated on aluminosilicate-rich dust. Oxidation of S(IV) to S(VI) by iron in the aluminosilicate-rich dust is a probable

  16. Hazards of explosives dusts

    NASA Astrophysics Data System (ADS)

    The Bureau of Mines has investigated the hazards of military explosives dispersed as dust clouds in a 20-L test chamber. For purposes of personnel safety, the spark ignitability of the explosives in the form of unconfined dust layers was also studied. The 20-L data show that most of the explosive dusts were capable of sustaining explosions as dust clouds dispersed in air and some dusts were even capable of sustaining explosions when dispersed in nitrogen. The finest sizes of explosive dusts were less reactive than the larger sizes; this is opposite to the particle size effect observed previously for the pure fuel dusts. The data for the explosive dusts were compared to those for pure fuel dusts.

  17. An evaluation of analytical methods, air sampling techniques, and airborne occupational exposure of metalworking fluids.

    PubMed

    Verma, Dave K; Shaw, Don S; Shaw, M Lorraine; Julian, Jim A; McCollin, Shari-Ann; des Tombe, Karen

    2006-02-01

    This article summarizes an assessment of air sampling and analytical methods for both oil and water-based metalworking fluids (MWFs). Three hundred and seventy-four long-term area and personal airborne samples were collected at four plants using total (closed-face) aerosol samplers and thoracic samplers. A direct-reading device (DustTrak) was also used. The processes sampled include steel tube making, automotive component manufacturing, and small part manufacturing in a machine shop. The American Society for Testing and Materials (ASTM) Method PS42-97 of analysis was evaluated in the laboratory. This evaluation included sample recovery, determination of detection limits, and stability of samples during storage. Results of the laboratory validation showed (a) the sample recovery to be about 87%, (b) the detection limit to be 35 microg, and (c) sample stability during storage at room temperature to decline rapidly within a few days. To minimize sample loss, the samples should be stored in a freezer and analyzed within a week. The ASTM method should be the preferred method for assessing metalworking fluids (MWFs). The ratio of thoracic aerosol to total aerosol ranged from 0.6 to 0.7. A similar relationship was found between the thoracic extractable aerosol and total extractable aerosol. The DustTrak, with 10-microm sampling head, was useful in pinpointing the areas of potential exposure. MWF exposure at the four plants ranged from 0.04 to 3.84 mg/m3 with the geometric mean ranging between 0.22 to 0.59 mg/m3. Based on this data and the assumption of log normality, MWF exposures are expected to exceed the National Institute for Occupational Safety and Health recommended exposure limit of 0.5 mg/m3 as total mass and 0.4 mg/m3 as thoracic mass about 38% of the time. In addition to controlling airborne MWF exposure, full protection of workers would require the institution of programs for fluid management and dermal exposure prevention. PMID:16361218

  18. [Air-borne disease].

    PubMed

    Lameiro Vilariño, Carmen; del Campo Pérez, Victor M; Alonso Bürger, Susana; Felpeto Nodar, Irene; Guimarey Pérez, Rosa; Pérez Alvarellos, Alberto

    2003-11-01

    Respiratory protection is a factor which worries nursing professionals who take care of patients susceptible of transmitting microorganisms through the air more as every day passes. This type of protection covers the use of surgical or hygienic masks against the transmission of infection by airborne drops to the use of highly effective masks or respirators against the transmission of airborne diseases such as tuberculosis or SARS, a recently discovered disease. The adequate choice of this protective device and its correct use are fundamental in order to have an effective protection for exposed personnel. The authors summarize the main protective respiratory devices used by health workers, their characteristics and degree of effectiveness, as well as the circumstances under which each device is indicated for use. PMID:14705591

  19. Validation of Saharan Dust Layer Characteristics with Lidar Observations

    NASA Technical Reports Server (NTRS)

    Karyampudi, V. Mohan; Palm, Steve; Reagan, John; Grant, W. B.; Pierce, Harold; Browell, E. V.; Melfi, S. H.

    1998-01-01

    Lidar backscattering profiles available from the LITE data set have been used to estimate the optical depths of the Saharan dust layer over West Africa and E. Atlantic regions, in the context of validating the 3-D conceptual model of the Saharan dust plume proposed by Karyampudi and Carlson. The aerosol extinction profiles and optical depths were retrieved from LITE using the Fernald et al. (1972) method. An extinction-to-backscattering ratio, S(sub a), of 25 was selected for optical depth calculations. The spatial analysis of total column and Saharan dust layer optical depths show higher optical depths over W. Africa that decrease westward over E. Atlantic. The higher optical depths over W. Africa, in general, are associated with heavy dust being raised from the surface in dust source regions. Rapid depletion of these heavy dust particles, perhaps due to sedimentation, appear to decrease the dust loading within the dust layer as the plume leaves the west African continent. Higher optical depths are generally confined to the southern edge of the dust layer, where the middle level jet appears to transport the heavy dust concentrations that tend to mix downward from vertical mixing associated with the strong vertical shears underneath the middle jet. Thus, LITE measurements although, in general, validate the Saharan dust plume conceptual model, show maximum values of optical depths near the southern edge of the dust plume over the E. Atlantic region instead of near the center of the dust plume as described in the conceptual model.

  20. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  1. MLS airborne antenna research

    NASA Technical Reports Server (NTRS)

    Yu, C. L.; Burnside, W. D.

    1975-01-01

    The geometrical theory of diffraction was used to analyze the elevation plane pattern of on-aircraft antennas. The radiation patterns for basic elements (infinitesimal dipole, circumferential and axial slot) mounted on fuselage of various aircrafts with or without radome included were calculated and compared well with experimental results. Error phase plots were also presented. The effects of radiation patterns and error phase plots on the polarization selection for the MLS airborne antenna are discussed.

  2. The impact of dust on sulfate aerosol, CN and CCN during an East Asian dust storm

    NASA Astrophysics Data System (ADS)

    Manktelow, P. T.; Carslaw, K. S.; Mann, G. W.; Spracklen, D. V.

    2010-01-01

    A global model of aerosol microphysics is used to simulate a large East Asian dust storm during the ACE-Asia experiment. We use the model together with size resolved measurements of aerosol number concentration and composition to examine how dust modified the production of sulfate aerosol and the particle size distribution in East Asian outflow. Simulated size distributions and mass concentrations of dust, sub- and super-micron sulfate agree well with observations from the C-130 aircraft. Modeled mass concentrations of fine sulfate (Dp<1.3 μm) decrease by ~10% due to uptake of sulfur species onto super-micron dust. We estimate that dust enhanced the mass concentration of coarse sulfate (Dp>1.0 μm) by more than an order of magnitude, but total sulfate concentrations increase by less than 2% because decreases in fine sulfate have a compensating effect. Our analysis shows that the sulfate associated with dust can be explained largely by the uptake of H2SO4 rather than reaction of SO2 on the dust surface, which we assume is suppressed once the particles are coated in sulfate. We suggest that many previous model investigations significantly overestimated SO2 oxidation on East Asian dust, possibly due to the neglect of surface saturation effects. We extend previous model experiments by examining how dust modified existing particle concentrations in Asian outflow. Total particle concentrations (condensation nuclei, CN) modeled in the dust-pollution plume are reduced by up to 20%, but we predict that dust led to less than 10% depletion in particles large enough to act as cloud condensation nuclei (CCN). Our analysis suggests that E. Asian dust storms have only a minor impact on sulfate particles present at climate-relevant sizes.

  3. The impact of dust on sulfate aerosol, CN and CCN during an East Asian dust storm

    NASA Astrophysics Data System (ADS)

    Manktelow, P. T.; Carslaw, K. S.; Mann, G. W.; Spracklen, D. V.

    2009-07-01

    A global model of aerosol microphysics is used to simulate a large East Asian dust storm during the ACE-Asia experiment. We use the model together with size resolved measurements of aerosol number concentration and composition to examine how dust modified the production of sulfate aerosol and the particle size distribution in East Asian outflow. Simulated size distributions and mass concentrations of dust, sub- and super-micron sulfate agree well with observations from the C-130 aircraft. Modelled mass concentrations of fine sulfate (Dp<1.3 μm) decrease by ~10% due to uptake of sulfur species onto super-micron dust. We estimate that dust enhanced the mass concentration of coarse sulfate (Dp<1.0 μm) by more than an order of magnitude, but total sulfate concentrations increase by less than 2% because decreases in fine sulfate have a compensating effect. Our analysis shows that the sulfate associated with dust can be explained largely by the uptake of H2SO4 rather than reaction of SO2 on the dust surface, which we assume is suppressed once the particles are coated in sulfate. We suggest that many previous model investigations significantly overestimated SO2 oxidation on East Asian dust, possibly due to the neglect of surface saturation effects. We extend previous model experiments by examining how dust modified existing particle concentrations in Asian outflow. Total particle concentrations modelled in the dust-pollution plume are reduced by up to 20%, but we predict that dust led to less than 10% depletion in particles large enough to act as cloud condensation nuclei. Our analysis suggests that E. Asian dust storms have only a minor impact on sulfate particles present at climate-relevant sizes.

  4. Effect of Dust Storms on the Atmospheric Microbiome in the Eastern Mediterranean.

    PubMed

    Mazar, Yinon; Cytryn, Eddie; Erel, Yigal; Rudich, Yinon

    2016-04-19

    We evaluated the impact of Saharan dust storms on the local airborne microbiome in a city in the Eastern Mediterranean area. Samples of particles with diameter less than 10 μm were collected during two spring seasons on both dusty and nondusty days. DNA was extracted, and partial 16S rRNA gene amplicons were sequenced using the Illumina platform. Bioinformatic analysis showed the effect of dust events on the diversity of the atmospheric microbiome. The relative abundance of desert soil-associated bacteria increased during dust events, while the relative abundance of anthropogenic-influenced taxa decreased. Quantitative polymerase chain reaction measurements of selected clinically significant antibiotic resistance genes (ARGs) showed that their relative abundance decreased during dust events. The ARG profiles on dust-free days were similar to those in aerosol collected in a poultry house, suggesting a strong agricultural influence on the local ambient profiles. We conclude that dust storms enrich the ambient airborne microbiome with new soil-derived bacteria that disappear as the dust settles, suggesting that the bacteria are transported attached to the dust particles. Dust storms do not seem to be an important vector for transport of probed ARGs. PMID:27001166

  5. Saharan Mineral Dust Experiments SAMUM-1 and SAMUM-2: what have we learned?

    NASA Astrophysics Data System (ADS)

    Ansmann, Albert; Petzold, Andreas; Kandler, Konrad; Tegen, Ina; Wendisch, Manfred; Müller, Detlef; Weinzierl, Bernadett; Müller, Thomas; Heintzenberg, Jost

    2011-09-01

    Two comprehensive field campaigns were conducted in 2006 and 2008 in the framework of the Saharan Mineral Dust Experiment (SAMUM) project. The relationship between chemical composition, shape morphology, size distribution and optical effects of the dust particles was investigated. The impact of Saharan dust on radiative transfer and the feedback of radiative effects upon dust emission and aerosol transport were studied. Field observations (ground-based, airborne and remote sensing) and modelling results were compared within a variety of dust closure experiments with a strong focus on vertical profiling. For the first time, multiwavelength Raman/polarization lidars and an airborne high spectral resolution lidar were involved in major dust field campaigns and provided profiles of the volume extinction coefficient of the particles at ambient conditions (for the full dust size distribution), of particle-shape-sensitive optical properties at several wavelengths, and a clear separation of dust and smoke profiles allowing for an estimation of the single-scattering albedo of the biomass-burning aerosol. SAMUM-1 took place in southern Morocco close to the Saharan desert in the summer of 2006, whereas SAMUM-2 was conducted in Cape Verde in the outflow region of desert dust and biomass-burning smoke from western Africa in the winter of 2008. This paper gives an overview of the SAMUM concept, strategy and goals, provides snapshots (highlights) of SAMUM-2 observations and modelling efforts, summarizes main findings of SAMUM-1 and SAMUM-2 and finally presents a list of remaining problems and unsolved questions.

  6. Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States

    PubMed Central

    Prospero, Joseph M.

    1999-01-01

    Soil dust is a major constituent of airborne particles in the global atmosphere. Dust plumes frequently cover huge areas of the earth; they are one of the most prominent and commonly visible features in satellite imagery. Dust is believed to play a role in many biogeochemical processes, but the importance of dust in these processes is not well understood because of the dearth of information about the global distribution of dust and its physical, chemical, and mineralogical properties. This paper describes some features of the large-scale distribution of dust and identifies some of the geological characteristics of important source areas. The transport of dust from North Africa is presented as an example of possible long-range dust effects, and the impact of African dust on environmental processes in the western North Atlantic and the southeastern United States is assessed. Dust transported over long distances usually has a mass median diameter <10 μm. Small wind-borne soil particles show signs of extensive weathering; consequently, the physical and chemical properties of the particles will greatly depend on the weathering history in the source region and on the subsequent modifications that occur during transit in the atmosphere (typically a period of a week or more). To fully understand the role of dust in the environment and in human health, mineralogists will have to work closely with scientists in other disciplines to characterize the properties of mineral particles as an ensemble and as individual particles especially with regard to surface characteristics. PMID:10097049

  7. Numerical simulation of the October 2002 dust event in Australia

    NASA Astrophysics Data System (ADS)

    Shao, Yaping; Leys, John F.; McTainsh, Grant H.; Tews, Kenn

    2007-04-01

    In comparison to the major dust sources in the Northern Hemisphere, Australia is a relatively minor contributor to the global dust budget. However, severe dust storms do occur in Australia, especially in drought years. In this study, we simulate the 22-23 October 2002 dust storm using an integrated dust model, which is probably the most severe dust storm in Australia in at least the past 40 years. The model results are compared with synoptic visibility data and satellite images and for several stations, with high-volume sampler measurements. The model simulations are then used to estimate dust load, emission, and deposition, both for over the continent and for over the ocean. The main dust sources and sinks are identified. Dust sources include the desert areas in northern South Australia, the grazing lands in western New South Wales (NSW), and the farm lands in NSW, Victoria, and Western Australia, as well as areas in Queensland and Northern Territory. The desert areas appear to be the strongest source. The maximum dust emission is around 2000 μg m-2 s-1, and the maximum net dust emission is around 500 μg m-2 s-1. The total amount of dust eroded from the Australian continent during this dust event is around 95.8 Mt, of which 93.67 Mt is deposited on the continent and 2.13 Mt in the ocean. The maximum total dust load over the simulation domain is around 5 Mt. The magnitude of this Australian dust storm corresponds to a northeast Asian dust storm of moderate size.

  8. Airborne field strength monitoring

    NASA Astrophysics Data System (ADS)

    Bredemeyer, J.; Kleine-Ostmann, T.; Schrader, T.; Münter, K.; Ritter, J.

    2007-06-01

    In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper.

  9. Mutagenicity of airborne particles.

    PubMed

    Chrisp, C E; Fisher, G L

    1980-09-01

    The physical and chemical properties of airborne particles are important for the interpretation of their potential biologic significance as genotoxic hazards. For polydisperse particle size distributions, the smallest, most respirable particles are generally the most mutagenic. Particulate collection for testing purposes should be designed to reduce artifact formation and allow condensation of mutagenic compounds. Other critical factors such as UV irradiation, wind direction, chemical reactivity, humidity, sample storage, and temperature of combustion are important. Application of chemical extraction methods and subsequent class fractionation techniques influence the observed mutagenic activity. Particles from urban air, coal fly ash, automobile and diesel exhaust, agricultural burning and welding fumes contain primarily direct-acting mutagens. Cigarette smoke condensate, smoke from charred meat and protein pyrolysates, kerosene soot and cigarette smoke condensates contain primarily mutagens which require metabolic activation. Fractionation coupled with mutagenicity testing indicates that the most potent mutagens are found in the acidic fractions of urban air, coal fly ash, and automobile diesel exhaust, whereas mutagens in rice straw smoke and cigarette smoke condensate are found primarily in the basic fractions. The interaction of the many chemical compounds in complex mixtures from airborne particles is likely to be important in determining mutagenic or comutagenic potentials. Because the mode of exposure is generally frequent and prolonged, the presence of tumor-promoting agents in complex mixtures may be a major factor in evaluation of the carcinogenic potential of airborne particles. PMID:7005667

  10. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  11. Microbial Contents of Vacuum Cleaner Bag Dust and Emitted Bioaerosols and Their Implications for Human Exposure Indoors

    PubMed Central

    Veillette, Marc; Knibbs, Luke D.; Pelletier, Ariane; Charlebois, Remi; Blais Lecours, Pascale; He, Congrong; Morawska, Lidia

    2013-01-01

    Vacuum cleaners can release large concentrations of particles, both in their exhaust air and from resuspension of settled dust. However, the size, variability, and microbial diversity of these emissions are unknown, despite evidence to suggest they may contribute to allergic responses and infection transmission indoors. This study aimed to evaluate bioaerosol emission from various vacuum cleaners. We sampled the air in an experimental flow tunnel where vacuum cleaners were run, and their airborne emissions were sampled with closed-face cassettes. Dust samples were also collected from the dust bag. Total bacteria, total archaea, Penicillium/Aspergillus, and total Clostridium cluster 1 were quantified with specific quantitative PCR protocols, and emission rates were calculated. Clostridium botulinum and antibiotic resistance genes were detected in each sample using endpoint PCR. Bacterial diversity was also analyzed using denaturing gradient gel electrophoresis (DGGE), image analysis, and band sequencing. We demonstrated that emission of bacteria and molds (Penicillium/Aspergillus) can reach values as high as 1E5 cell equivalents/min and that those emissions are not related to each other. The bag dust bacterial and mold content was also consistent across the vacuums we assessed, reaching up to 1E7 bacterial or mold cell equivalents/g. Antibiotic resistance genes were detected in several samples. No archaea or C. botulinum was detected in any air samples. Diversity analyses showed that most bacteria are from human sources, in keeping with other recent results. These results highlight the potential capability of vacuum cleaners to disseminate appreciable quantities of molds and human-associated bacteria indoors and their role as a source of exposure to bioaerosols. PMID:23934489

  12. Application of traditional cyclone with spray scrubber to remove airborne silica particles emitted from stone-crushing factories.

    PubMed

    Bahrami, Abdulrahman; Ghorbani, Farshid; Mahjub, Hossien; Golbabei, Farideh; Aliabadi, Mohsan

    2009-08-01

    The traditional cyclone with spray scrubber was developed for the removal of airborne silica particles from local exhaust ventilation (LEV). The objective of this research is to evaluate the efficiency of this process for removing silica particles in LEV. After designing and installing a traditional cyclone and spray scrubber, air samples were obtained at the inlet and outlet of the apparatus. The mass of each collected sample was determined gravimetrically using EPA method. The efficiency of the cyclone with spray scrubber for the removal of dust particles from the LEV system was determined to be in the range of 92-99%. There was a high correlation between the inlet concentration of dust particles and the efficiency of the apparatus. The total pressure across the system was 772.17-1120.90 Pa. It was concluded that a traditional cyclone with a spray scrubber can effectively remove a very high percentage of the incoming silica particles from an LEV. The total pressure drop across the current process is less than the pressure drop across other treatment equipment, which means that our process can effectively remove silica particles while using less electricity than other processes. PMID:19672019

  13. How much dust does Enceladus eject?

    NASA Astrophysics Data System (ADS)

    Kempf, Sascha; Horanyi, Mihaly; Schmidt, Jürgen; Southworth, Ben

    2015-04-01

    There is an ongoing argument how much dust per second the ice volcanoes on Saturn's ice moon Enceladus eject. By adjusting their plume model to the dust flux measured by the Cassini dust detector during the close Enceladus flyby in 2005, as well as to the plume brightness in Cassini imaging, Schmidt et al. (2008) obtained a total dust production rate in the plumes of about 5 kg/s. On the other hand, Ingersoll and Ewald (2011) derived a dust production rate of 51 kg/s from photometry of very high phase-angle images of the plume, a method that is sensitive also to particles in the size range of microns and larger. Knowledge of the production rate is essential for estimating the dust to gas mass ratio, which in turn is an important constraint for finding the plume source mechanism. Here we report on numerical simulations of the Enceladus dust plume. We run a large number of dynamical simulations including gravity and Lorentz force to investigate the earliest phase of the ring particle life span. The magnetic field in the vicinity of Enceladus is based on the model by Simon et al. (2012). The evolution of the electrostatic charge carried by the initially uncharged grains is treated self-consistently. Our numerical simulations reproduce dust measurements by the Cassini Cosmic Dust Analyzer (CDA) during Cassini plume traversals as well as the snowfall pattern derived from ISS observations of the Enceladus surface (Schenk et al, 2011, EPSC abstract). Based on our simulation results we are able to draw conclusions about the dust production rate as well as wether the Enceladus dust plume constitutes a dusty plasma.

  14. Pantoea agglomerans: a mysterious bacterium of evil and good. Part II--Deleterious effects: Dust-borne endotoxins and allergens--focus on grain dust, other agricultural dusts and wood dust.

    PubMed

    Dutkiewicz, Jacek; Mackiewicz, Barbara; Lemieszek, Marta Kinga; Golec, Marcin; Skórska, Czesława; Góra-Florek, Anna; Milanowski, Janusz

    2016-01-01

    Pantoea agglomerans, a Gram-negative bacterium developing in a variety of plants as epiphyte or endophyte is particularly common in grain and grain dust, and has been identified by an interdisciplinary group from Lublin, eastern Poland, as a causative agent of work-related diseases associated with exposure to grain dust and other agricultural dusts. The concentration of P. agglomerans in grain as well as in the settled grain and flour dust was found to be high, ranging from 10(4)-10(8) CFU/g, while in the air polluted with grain or flour dust it ranged from 10(3)-10(5) CFU/m(3) and formed 73.2-96% of the total airborne Gram-negative bacteria. The concentration of P. agglomerans was also relatively high in the air of the facilities processing herbs and other plant materials, while it was lower in animal farms and in wood processing facilities. Pantoea agglomerans produces a biologically-potent endotoxin (cell wall lipopolysaccharide, LPS). The significant part of this endotoxin occurs in dusts in the form of virus-sized globular nanoparticles measuring 10-50 nm that could be described as the 'endotoxin super-macromolecules'. A highly significant relationship was found (R=0.804, P=0.000927) between the concentration of the viable P. agglomerans in the air of various agricultural and wood industry settings and the concentration of bacterial endotoxin in the air, as assessed by the Limulus test. Although this result may be interfered by the presence of endotoxin produced by other Gram-negative species, it unequivocally suggests the primary role of the P. agglomerans endotoxin as an adverse agent in the agricultural working environment, causing toxic pneumonitis (ODTS). Numerous experiments by the inhalation exposure of animals to various extracts of P. agglomerans strains isolated from grain dust, including endotoxin isolated with trichloroacetic acid (LPS-TCA), endotoxin nanoparticles isolated in sucrose gradient (VECN), and mixture of proteins and endotoxin obtained

  15. Sources, solubility, and acid processing of aerosol iron and phosphorous over the South China Sea: East Asian dust and pollution outflows vs. Southeast Asian biomass burning

    NASA Astrophysics Data System (ADS)

    Hsu, S.-C.; Gong, G.-C.; Shiah, F.-K.; Hung, C.-C.; Kao, S.-J.; Zhang, R.; Chen, W.-N.; Chen, C.-C.; Chou, C. C.-K.; Lin, Y.-C.; Lin, F.-J.; Lin, S.-H.

    2014-08-01

    Iron and phosphorous are essential to marine microorganisms in vast regions in oceans worldwide. Atmospheric inputs are important allochthonous sources of Fe and P. The variability in airborne Fe deposition is hypothesized to serve an important function in previous glacial-interglacial cycles, contributing to the variability in atmospheric CO2 and ultimately the climate. Understanding the mechanisms underlying the mobilization of airborne Fe and P from insoluble to soluble forms is critical to evaluate the biogeochemical effects of these elements. In this study, we present a robust power-law correlation between fractional Fe solubility and non-sea-salt-sulfate / Total-Fe (nss-sulfate / FeT) molar ratio independent of distinct sources of airborne Fe of natural and/or anthropogenic origins over the South China Sea. This area receives Asian dust and pollution outflows and Southeast Asian biomass burning. This correlation is also valid for nitrate and total acids, demonstrating the significance of acid processing in enhancing Fe mobilization. Such correlations are also found for P, yet source dependent. These relationships serve as straightforward parameters that can be directly incorporated into available atmosphere-ocean coupling models that facilitate the assessment of Fe and P fertilization effects. Although biomass burning activity may supply Fe to the bioavailable Fe pool, pyrogenic soils are possibly the main contributors, not the burned plants. This finding warrants a multidisciplinary investigation that integrates atmospheric observations with the resulting biogeochemistry in the South China Sea, which is influenced by atmospheric forcings and nutrient dynamics with monsoons.

  16. Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients.

    PubMed

    Esselborn, Michael; Wirth, Martin; Fix, Andreas; Tesche, Matthias; Ehret, Gerhard

    2008-01-20

    An airborne high spectral resolution lidar (HSRL) based on an iodine absorption filter and a high-power frequency-doubled Nd:YAG laser has been developed to measure backscatter and extinction coefficients of aerosols and clouds. The instrument was operated aboard the Falcon 20 research aircraft of the German Aerospace Center (DLR) during the Saharan Mineral Dust Experiment in May-June 2006 to measure optical properties of Saharan dust. A detailed description of the lidar system, the analysis of its data products, and measurements of backscatter and extinction coefficients of Saharan dust are presented. The system errors are discussed and airborne HSRL results are compared to ground-based Raman lidar and sunphotometer measurements. PMID:18204721

  17. Dust Plume off Mauritania

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A thick plume of dust blew off the coast of Mauritania in western Africa on October 2, 2007. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite observed the dust plume as it headed toward the southwest over the Atlantic Ocean. In this image, the dust varies in color from nearly white to medium tan. The dust plume is easier to see over the dark background of the ocean, but the plume stretches across the land surface to the east, as well. The dust plume's structure is clearest along the coastline, where relatively clear air pockets separate distinct puffs of dust. West of that, individual pillows of dust push together to form a more homogeneous plume. Near its southwest tip, the plume takes on yet another shape, with stripes of pale dust fanning out toward the northwest. Occasional tiny white clouds dot the sky overhead, but skies are otherwise clear.

  18. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  19. A new method for determining the sources of airborne particles.

    PubMed

    Oteros, J; García-Mozo, H; Alcázar, P; Belmonte, J; Bermejo, D; Boi, M; Cariñanos, P; Díaz de la Guardia, C; Fernández-González, D; González-Minero, F; Gutiérrez-Bustillo, A M; Moreno-Grau, S; Pérez-Badía, R; Rodríguez-Rajo, F J; Ruíz-Valenzuela, L; Suárez-Pérez, J; Trigo, M M; Domínguez-Vilches, E; Galán, C

    2015-05-15

    Air quality is a major issue for humans owing to the fact that the content of particles in the atmosphere has multiple implications for life quality, ecosystem dynamics and environment. Scientists are therefore particularly interested in discovering the origin of airborne particles. A new method has been developed to model the relationship between the emission surface and the total amount of airborne particles at a given distance, employing olive pollen and olive groves as examples. A third-degree polynomial relationship between the air particles at a particular point and the distance from the source was observed, signifying that the nearest area to a point is not that which is most correlated with its air features. This work allows the origin of airborne particles to be discovered and could be implemented in different disciplines related to atmospheric aerosol, thus providing a new approach with which to discover the dynamics of airborne particles. PMID:25837296

  20. House-Dust Allergy

    PubMed Central

    Johnson, C. A.

    1982-01-01

    House-dust allergy is a common cause of perennial allergic rhinitis and extrinsic asthma. Symptoms tend to be worse when the patient is in bed. A positive skin test properly performed and interpreted confirms the diagnosis. The house-dust mite is the most important antigenic component of house-dust. Treatment consists of environmental control directed at reducing the mite content of bedroom dust, plus control of symptoms with drugs. Immunotherapy is controversial. ImagesFig. 1 PMID:21286201

  1. Chemical speciation, human health risk assessment and pollution level of selected heavy metals in urban street dust of Shiraz, Iran

    NASA Astrophysics Data System (ADS)

    Keshavarzi, Behnam; Tazarvi, Zahra; Rajabzadeh, Mohammad Ali; Najmeddin, Ali

    2015-10-01

    The distribution, pollution level, sources and health risk of Hg, As, Cd, Cu, Cr, Ni, Mn, Fe, Pb, Sb and Zn in urban street dust were investigated. X-ray diffraction analysis of dust samples shows that the mineralogy of airborne dusts is dominated by calcite, dolomite and quartz. The total concentration of trace elements across the sampling sites ranged from 36.8 to 234.3 mg kg-1 for Pb, 0.004-4.504 mg kg-1 for Hg, 160.9-778.3 mg kg-1 for Zn, 245-652 mg kg-1 for Mn, 39.4-117.9 mg kg-1 for Ni, 31.6-105.9 mg kg-1 for Cr, 49.8-232.5 mg kg-1 for Cu, 5.3-8.6 mg kg-1 for As, 0.31-0.85 mg kg-1 for Cd, 0.76-9.45 mg kg-1 for Sb, and 16,300-24,900 mg kg-1 for Fe. The enrichment factor results reveal the following order: Cu > Hg > Sb > Zn > Pb > Ni > Cr > As > Mn > Cd > Fe. Among the measured elements, the highest mobility factor belongs to Pb (79.2%), Hg (74.6%), Zn (64.1%) and Mn (56.4%). According to the calculated Hazard Quotient (HQ) and Hazard Index (HI), special attention should be paid to Hg, Pb, Zn, and Mn in the street dusts of Shiraz. Multivariate statistics indicate that traffic, natural soil particles and industrial activities are likely to be the main sources of heavy metals in Shiraz street dusts.

  2. China Dust and Sand

    Atmospheric Science Data Center

    2013-04-16

    ... article title:  Dust and Sand Sweep Over Northeast China     View Larger Image ... these views of the dust and sand that swept over northeast China on March 10, 2004. Information on the height of the dust and an ...

  3. Middle East Dust

    Atmospheric Science Data Center

    2013-04-16

    ... only some of the dust over eastern Syria and southeastern Turkey can be discerned. The dust is much more obvious in the center panel, ... 18, 2002 - A large dust plume extends across Syria and Turkey. project:  MISR category:  gallery ...

  4. Dust in the Universe

    ERIC Educational Resources Information Center

    Hemenway, Mary Kay; Armosky, Brad J.

    2004-01-01

    Space is seeming less and less like empty space as new discoveries and reexaminations fill in the gaps. And, ingenuity and technology, like the Spitzer Space Telescope, is allowing examination of the far reaches of the Milky Way and beyond. Even dust is getting its due, but not the dust everyone is familiar with. People seldom consider the dust in…

  5. Niamey Dust Observations

    DOE Data Explorer

    Flynn, Connor

    2008-10-01

    Niamey aerosol are composed of two main components: dust due to the proximity of the Sahara Desert, and soot from local and regional biomass burning. The purpose of this data product is to identify when the local conditions are dominated by the dust component so that the properties of the dust events can be further studied.

  6. Interstellar Dust Instrumentation

    NASA Astrophysics Data System (ADS)

    Sternovsky, Zoltan; Gruen, E.; Horanyi, M.; Drake, K.; Collette, A.; Kempf, S.; Srama, R.; Postberg, F.; Krueger, H.; Auer, S.

    2010-10-01

    Interstellar grains traversing the inner planetary system have been identified by the Ulysses dust detector. Space dust detectors on other missions confirmed this finding. Analysis of the Stardust collectors is under way to search for and analyze such exotic grains. Interstellar dust particles can be detected and analyzed in the near-Earth space environment. New instrumentation has been developed to determine the origin of dust particles and their elemental composition. A Dust Telescope is a combination of a Dust Trajectory Sensor (DTS, Rev. Sci. Instrum. 79, 084501, 2008) together with a high mass resolution mass analyzer for the chemical composition of dust particles in space. Dust particles' trajectories are determined by the measurement of induced electric signals when a charged grain flies through a position sensitive electrode system. A modern DTS can measure dust particles as small as 0.2 micron in radius and dust speeds up to 100 km/s. Large area chemical analyzers of 0.1 m2 sensitive area have been tested at a dust accelerator and it was demonstrated that they have sufficient mass resolution to resolve ions with atomic mass number up to >100 (Earth, Moon and Planets, DOI: 10.1007/s11038-005-9040-z, 2005; Rev. Sci. Instrum. 78, 014501, 2007). The advanced Dust Telescope is capable of identifying interstellar and interplanetary grains, and measuring their mass, velocity vector, charge, elemental and isotopic compositions. An Active Dust Collector combines a DTS with an aerogel or other dust collector materials, e.g. like the ones used on the Stardust mission. The combination of a DTS with a dust collector provides not only individual trajectories of the collected particles but also their impact time and position on the collector which proves essential in finding collected sub-micron sized grains on the collector.

  7. Investigating the Effects of Water Ice Cloud Radiative Forcing on the Predicted Patterns and Strength of Dust Lifting on Mars

    NASA Astrophysics Data System (ADS)

    Kahre, Melinda A.; Hollingsworth, Jeffery L.; Haberle, Robert M.

    2014-11-01

    The dust cycle is critical for the current Mars climate system because airborne dust significantly influences the thermal and dynamical structure of the atmosphere. The atmospheric dust loading varies with season and exhibits variability on a range of spatial and temporal scales. Until recently, interactive dust cycle modeling studies that include the lifting, transport, and sedimentation of radiatively active dust have not included the formation or radiative effects of water ice clouds. While the simulated patterns of dust lifting and global dust loading from these investigations of the dust cycle in isolation reproduce some characteristics of the observed dust cycle, there are also marked differences between the predictions and the observations. Water ice clouds can influence when, where, and how much dust is lifted from the surface by altering the thermal structure of the atmosphere and the character and strength of the general circulation. Using an updated version of the NASA Ames Mars Global Climate Model (GCM), we show that including water ice cloud formation and their radiative effects affect the magnitude and spatial extent of dust lifting, particularly in the northern hemisphere during the pre- and post- winter solstitial seasons. Feedbacks between dust lifting, cloud formation, circulation intensification and further dust lifting are isolated and shown to be important for improving the behavior of the simulated dust cycle.

  8. Lipid biomarker analysis for the quantitative analysis of airborne microorganisms

    SciTech Connect

    Macnaughton, S.J.; Jenkins, T.L.; Cormier, M.R.

    1997-08-01

    There is an ever increasing concern regarding the presence of airborne microbial contaminants within indoor air environments. Exposure to such biocontaminants can give rise to large numbers of different health effects including infectious diseases, allergenic responses and respiratory problems, Biocontaminants typically round in indoor air environments include bacteria, fungi, algae, protozoa and dust mites. Mycotoxins, endotoxins, pollens and residues of organisms are also known to cause adverse health effects. A quantitative detection/identification technique independent of culturability that assays both culturable and non culturable biomass including endotoxin is critical in defining risks from indoor air biocontamination. Traditionally, methods employed for the monitoring of microorganism numbers in indoor air environments involve classical culture based techniques and/or direct microscopic counting. It has been repeatedly documented that viable microorganism counts only account for between 0.1-10% of the total community detectable by direct counting. The classic viable microbiologic approach doe`s not provide accurate estimates of microbial fragments or other indoor air components that can act as antigens and induce or potentiate allergic responses. Although bioaerosol samplers are designed to damage the microbes as little as possible, microbial stress has been shown to result from air sampling, aerosolization and microbial collection. Higher collection efficiency results in greater cell damage while less cell damage often results in lower collection efficiency. Filtration can collect particulates at almost 100% efficiency, but captured microorganisms may become dehydrated and damaged resulting in non-culturability, however, the lipid biomarker assays described herein do not rely on cell culture. Lipids are components that are universally distributed throughout cells providing a means to assess independent of culturability.

  9. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    PHARUS (phased array universal SAR) is an airborne SAR concept which is being developed in the Netherlands. The PHARUS system differs from other airborne SARs by the use of a phased array antenna, which provides both for the flexibility in the design as well as for a compact, light-weight instrument that can be carried on small aircraft. The concept allows for the construction of airborne SAR systems on a common generic basis but tailored to specific user needs and can be seen as a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna. The whole approach is aimed at providing an economic and yet technically sophisticated solution to remote sensing or surveying needs of a specific user. The solid state phased array antenna consists of a collection of radiating patches; the design flexibility for a large part resides in the freedom to choose the number of patches, and thereby the essential radar performance parameters such as resolution and swath width. Another consequence of the use of the phased array antenna is the system's compactness and the possibility to rigidly mount it on a small aircraft. The use of small aircraft of course considerably improves the cost/benefit ratio of the use of airborne SAR. Flight altitude of the system is flexible between about 7,000 and 40,000 feet, giving much operational freedom within the meteo and airspace control limits. In the PHARUS concept the airborne segment is complemented by a ground segment, which consists of a SAR processor, possibly extended by a matching image processing package. (A quick look image is available in real-time on board the aircraft.) The SAR processor is UNIX based and runs on easily available hardware (SUN station). Although the additional image processing software is available, the SAR processing software is nevertheless designed to be able to interface with commercially available image processing software, as well as being able

  10. Dust and Planetary Rings

    NASA Astrophysics Data System (ADS)

    Siddiqui, Muddassir

    ABSTRACT Space is not empty it has comic radiations (CMBR), dust etc. Cosmic dust is that type of dust which is composed of particles in space which vary from few molecules to 0.1micro metres in size. This type of dust is made up of heavier atoms born in the heart of stars and supernova. Mainly it contains dust grains and when these dust grains starts compacting then it turns to dense clouds, planetary ring dust and circumstellar dust. Dust grains are mainly silicate particles. Dust plays a major role in our solar system, for example in zodiacal light, Saturn's B ring spokes, planetary rings at Jovian planets and comets. Observations and measurements of cosmic dust in different regions of universe provide an important insight into the Universe's recycling processes. Astronomers consider dust in its most recycled state. Cosmic dust have radiative properties by which they can be detected. Cosmic dusts are classified as intergalactic dusts, interstellar dusts and planetary rings. A planetary ring is a ring of cosmic dust and other small particles orbiting around a planet in flat disc shape. All of the Jovian planets in our solar system have rings. But the most notable one is the Saturn's ring which is the brightest one. In March 2008 a report suggested that the Saturn's moon Rhea may have its own tenuous ring system. The ring swirling around Saturn consists of chunks of ice and dust. Most rings were thought to be unstable and to dissipate over course of tens or hundreds of millions of years but it now appears that Saturn's rings might be older than that. The dust particles in the ring collide with each other and are subjected to forces other than gravity of its own planet. Such collisions and extra forces tend to spread out the rings. Pluto is not known to have any ring system but some Astronomers believe that New Horizons probe might find a ring system when it visits in 2015.It is also predicted that Phobos, a moon of Mars will break up and form into a planetary ring

  11. Asian Dust Weather Categorization with Satellite and Surface Observations

    NASA Technical Reports Server (NTRS)

    Lin, Tang-Huang; Hsu, N. Christina; Tsay, Si-Chee; Huang, Shih-Jen

    2011-01-01

    This study categorizes various dust weather types by means of satellite remote sensing over central Asia. Airborne dust particles can be identified by satellite remote sensing because of the different optical properties exhibited by coarse and fine particles (i.e. varying particle sizes). If a correlation can be established between the retrieved aerosol optical properties and surface visibility, the intensity of dust weather can be more effectively and consistently discerned using satellite rather than surface observations. In this article, datasets consisting of collocated products from Moderate Resolution Imaging Spectroradiometer Aqua and surface measurements are analysed. The results indicate an exponential relationship between the surface visibility and the satellite-retrieved aerosol optical depth, which is subsequently used to categorize the dust weather. The satellite-derived spatial frequency distributions in the dust weather types are consistent with China s weather station reports during 2003, indicating that dust weather classification using satellite data is highly feasible. Although the period during the springtime from 2004 to 2007 may be not sufficient for statistical significance, our results reveal an increasing tendency in both intensity and frequency of dust weather over central Asia during this time period.

  12. An investigation on factors influencing dust accumulation on CSP mirrors

    NASA Astrophysics Data System (ADS)

    Pennetta, S.; Yu, S.; Borghesani, P.; Cholette, M.; Barry, John; Guan, Z.

    2016-05-01

    The profitability of a CSP plant is highly affected by the efficiency of the solar field: it is essential to maintain mirrors' reflectivity at high level to avoid thermal power loss. Dust fouling is the main cause of reflectivity loss and cleaning of mirrors is a crucial activity to restore economical level of reflectivity. However, the high cost of cleaning operations requires the study and identification of a balanced plan for the dust removal. The dust generation and transport to the plant site is the first mechanism that needs to be modelled to identify the optimal schedule for cleaning operations and it is highly dependent on weather conditions. Several studies have suggested a dependency of reflectors performance with humidity level, frequency of rainfalls, wind and mirrors' tilting angle, however rarely quantitative correlation studies have been performed to validate these hypotheses. The aim of this research is to provide an in-depth insight on interaction between the main parameters and airborne dust concentration, providing quantitative information for the development of future mirror dusting models. Outcomes evidence the crucial role of high winds responsible of dust concentration in conjunction with higher wind direction frequencies in the range 60-120°. Actually, in this scenario a perfectly monotonic increase of dust accumulation in the air has been observed with high correspondence of wind direction. A very low effect is provided by the ambient temperature as the contribution of the barometric pressure.

  13. Modeling the Acceleration Process of Dust in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Jia, Y. D.; Lai, H.; Russell, C. T.; Wei, H.

    2015-12-01

    In previous studies we have identified structures created by nano-dust in the solar wind, and we have observed the expected draping and diverting signatures of such structures using well-spaced multi-spacecraft observations. In this study, we reproduce such an interaction event with our multi-fluid MHD model, modeling the dust particles as a fluid. When the number density of dust particles is comparable to the solar wind ions, a significant draping in the IMF is created, with amplitude larger than the ambient fluctuations. We note that such a density is well above several nano dust particles per Debye sphere and a dusty fluid is appropriate for modeling the dust-solar wind interaction. We assume a spherical cloud of dust travelling with 90% solar wind speed. In addition to reproducing the IMF response to the nano-dust at the end-stage of dust acceleration, we model the entire process of such acceleration in the gravity field of the inner heliosphere. It takes hours for the smallest dust with 3000 amu per proton charge to reach the solar wind speed. We find the dust cloud stretched along the solar wind flow. Such stretching enhances the draping of IMF, compared to the spherical cloud we used in an earlier stage of this study. This model will be further used to examine magnetic perturbations at an earlier stage of dust cloud acceleration, and then determine the size, density, and total mass of dust cloud, as well as its creation and acceleration.

  14. Steady-state properties and statistical distribution of atmospheric dust devils

    NASA Astrophysics Data System (ADS)

    Kurgansky, Michael V.

    2006-08-01

    A steady Rankine-like vortex model of a dust devil is reported, which takes into account the sunlight absorption by airborne dust particles and the diabatic heating of a rotating dust column. For the maximum swirl velocity being a few times larger than the mean updraft velocity, the model admits significant simplifications allowing for its complete analytical treatment. The competitive effects of (i) the surface heat fluxes and (ii) the suspended-dust-caused diabatic heating on the vortex constitution (strength, height and shape) are examined. The second factor is found to be more influential for the strongest vortices. A reference exponential distribution of dust devils over their radius (visible diameter), which was introduced based on general arguments of mathematical information theory, is shown to fit satisfactory well the observational data on dust devils in Arizona and southern California and, in a preliminary way, on Mars.

  15. Airborne radioactive contamination monitoring

    SciTech Connect

    Whitley, C.R.; Adams, J.R.; Bounds, J.A.; MacArthur, D.W.

    1996-03-01

    Current technologies for the detection of airborne radioactive contamination do not provide real-time capability. Most of these techniques are based on the capture of particulate matter in air onto filters which are then processed in the laboratory; thus, the turnaround time for detection of contamination can be many days. To address this shortcoming, an effort is underway to adapt LRAD (Long-Range-Alpha-Detection) technology for real-time monitoring of airborne releases of alpa-emitting radionuclides. Alpha decays in air create ionization that can be subsequently collected on electrodes, producing a current that is proportional to the amount of radioactive material present. Using external fans on a pipe containing LRAD detectors, controlled samples of ambient air can be continuously tested for the presence of radioactive contamination. Current prototypes include a two-chamber model. Sampled air is drawn through a particulate filter and then through the first chamber, which uses an electrostatic filter at its entrance to remove ambient ionization. At its exit, ionization that occurred due to the presence of radon is collected and recorded. The air then passes through a length of pipe to allow some decay of short-lived radon species. A second chamber identical to the first monitors the remaining activity. Further development is necessary on air samples without the use of particulate filtering, both to distinguish ionization that can pass through the initial electrostatic filter on otherwise inert particulate matter from that produced through the decay of radioactive material and to separate both of these from the radon contribution. The end product could provide a sensitive, cost-effective, real-time method of determining the presence of airborne radioactive contamination.

  16. SHAPING THE DUST MASS-STAR-FORMATION RATE RELATION

    SciTech Connect

    Hjorth, Jens; Gall, Christa; Michałowski, Michał J. E-mail: cgall@phys.au.dk

    2014-02-20

    There is a remarkably tight relation between the observationally inferred dust masses and star-formation rates (SFRs) of Sloan Digital Sky Survey galaxies, M {sub dust} ∝ SFR{sup 1.11}. Here we extend the M {sub dust}-SFR relation to the high end and show that it bends over at very large SFRs (i.e., dust masses are lower than predicted for a given SFR). We identify several distinct evolutionary processes in the diagram: (1) a star-bursting phase in which dust builds up rapidly at early times. The maximum attainable dust mass in this process is the cause of the bend-over of the relation. A high dust-formation efficiency, a bottom-light initial mass function, and negligible supernova shock dust destruction are required to produce sufficiently high dust masses. (2) A quiescent star-forming phase in which the subsequent parallel decline in dust mass and SFR gives rise to the M {sub dust}-SFR relation, through astration and dust destruction. The dust-to-gas ratio is approximately constant along the relation. We show that the power-law slope of the M {sub dust}-SFR relation is inversely proportional to the global Schmidt-Kennicutt law exponent (i.e., ∼0.9) in simple chemical evolution models. (3) A quenching phase which causes star formation to drop while the dust mass stays roughly constant or drops proportionally. Combined with merging, these processes, as well as the range in total baryonic mass, give rise to a complex population of the diagram which adds significant scatter to the original M {sub dust}-SFR relation. (4) At very high redshifts, a population of galaxies located significantly below the local relation is predicted.

  17. Airborne Raman lidar

    NASA Astrophysics Data System (ADS)

    Heaps, Wm. S.; Burris, J.

    1996-12-01

    We designed and tested an airborne lidar system using Raman scattering to make simultaneous measurements of methane, water vapor, and temperature in a series of flights on a NASA-operated C-130 aircraft. We present the results for methane detection, which show that the instrument has the requisite sensitivity to atmospheric trace gases. Ultimately these measurements can be used to examine the transport of chemically processed air from within the polar vortex to mid-latitudinal regions and the exchange of stratospheric air between tropical and mid-latitudinal regions.

  18. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  19. Interstellar Dust - A Review

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2012-01-01

    The study of the formation and the destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic materials. Although dust with all its components plays an important role in the evolution of interstellar physics and chemistry and in the formation of organic materials, little is known on the formation and destruction processes of carbonaceous dust. Laboratory experiments that are performed under conditions that simulate interstellar and circumstellar environments to provide information on the nature, the size and the structure of interstellar dust particles, the growth and the destruction processes of interstellar dust and the resulting budget of extraterrestrial organic molecules. A review of the properties of dust and of the laboratory experiments that are conducted to study the formation processes of dust grains from molecular precursors will be given.

  20. Light Dust Devil Tracks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    14 October 2004 Many Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) images exhibit wild patterns of dark streaks thought to have formed by the passage of many dust devils. The dust devils disrupt the dust coating the martian surface, leaving behind a streak. However, not all dust devils make streaks, and not all dust devil streaks are dark. Some are light---it simply depends upon which is darker, the substrate or the dust that the spinning vortex disrupts. The example of light-toned dust devil streaks shown here is located in southern Schiaparelli Basin near 5.3oS, 343.3oW. The image covers an area about 3 km (1.9 mi) across; sunlight illuminates the scene from the left/upper left.

  1. Dust Ablation in Pluto's Atmosphere

    NASA Astrophysics Data System (ADS)

    Horanyi, M.; Poppe, A. R.; Sternovsky, Z.

    2015-12-01

    Based on measurements by in situ dust detectors onboard the Pioneer and New Horizon spacecraft the total production rate of dust particles born in the Kuiper belt can be estimated to be on the order of 5 x 10 ^3 kg/s in the approximate size range of 1 - 10 micron. These particles slowly migrate inward due to Poynting - Robertson drag and their spatial distribution is shaped by mean motion resonances with the gas giant planets in the outer solar system. The expected mass influx into Pluto's atmosphere is on the order of 50 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that, if the particles are rich in volatiles, they can fully sublimate due to drag heating and deposit their mass in a narrow layer. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles, as well as on our newly developed models of Pluto's atmosphere that can be learned by matching the altitude where haze layers could be formed.

  2. The composition and evolution of dust in astrophysical environments

    NASA Astrophysics Data System (ADS)

    Markwick-Kemper, Francisca

    2003-03-01

    Dust is produced in the circumstellar environments of evolved stars and then ejected by a stellar wind into the surrounding interstellar medium (ISM). Here, it may reside for a long time (> 10^9 years) before it ends up in a molecular cloud where star formation takes place. When a star is formed, in many cases a dusty disk remains from which a planetary system may form as well. Both within the ISM and in the winds from cool stars, about half of the matter heavier than helium is contained within solid particles. Therefore, dust is an important tracer of the physical conditions in astrophysical environments. By measuring the composition of the dust grains we can study the formation and processing of the material, and thus derive a record of the physical circumstances. As we understand better the physics of dust in our own Galaxy, we will be better able to use infrared studies of other galaxies to learn about their history and use this knowledge to interpret dusty systems at high redshift. I will work on the formation and evolution of dust in the Galaxy and the Magellanic Clouds. From previous studies performed with IRAS, the Kuiper Airborne Observatory (KAO), and the Infrared Space Observatory (ISO), we have learned that the composition of interstellar dust is very different from that of circumstellar dust. I plan to pursue a vigorous observational program which uses the unique capabilities of SIRTF to quantitatively investigate the life cycle of dust in the Milky Way and the Magellanic Clouds. I propose to determine the composition of the dust in various astrophysical environments using the spectroscopy modes offered on SIRTF, in order to study the formation and processing of the identified dust species. For this purpose the spectrographic data will be compared to optical constants of astrophysically relevant minerals, derived from laboratory measurements.

  3. Treated and untreated rock dust: Quartz content and physical characterization.

    PubMed

    Soo, Jhy-Charm; Lee, Taekhee; Chisholm, William P; Farcas, Daniel; Schwegler-Berry, Diane; Harper, Martin

    2016-11-01

    Rock dusting is used to prevent secondary explosions in coal mines, but inhalation of rock dusts can be hazardous if the crystalline silica (e.g., quartz) content in the respirable fraction is high. The objective of this study is to assess the quartz content and physical characteristics of four selected rock dusts, consisting of limestone or marble in both treated (such as treatment with stearic acid or stearates) and untreated forms. Four selected rock dusts (an untreated and treated limestone and an untreated and treated marble) were aerosolized in an aerosol chamber. Respirable size-selective sampling was conducted along with particle size-segregated sampling using a Micro-Orifice Uniform Deposit Impactor. Fourier Transform Infrared spectroscopy and scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) analyses were used to determine quartz mass and particle morphology, respectively. Quartz percentage in the respirable dust fraction of untreated and treated forms of the limestone dust was significantly higher than in bulk samples, but since the bulk percentage was low the enrichment factor would not have resulted in any major change to conclusions regarding the contribution of respirable rock dust to the overall airborne quartz concentration. The quartz percentage in the marble dust (untreated and treated) was very low and the respirable fractions showed no enrichment. The spectra from SEM-EDX analysis for all materials were predominantly from calcium carbonate, clay, and gypsum particles. No free quartz particles were observed. The four rock dusts used in this study are representative of those presented for use in rock dusting, but the conclusions may not be applicable to all available materials. PMID:27314444

  4. Halo dust detection around NGC 891

    NASA Astrophysics Data System (ADS)

    Bocchio, M.; Bianchi, S.; Hunt, L. K.; Schneider, R.

    2016-02-01

    Context. Observations of edge-on galaxies allow us to investigate the vertical extent and properties of dust, gas and stellar distributions. NGC 891 has been studied for decades and represents one of the best studied cases of an edge-on galaxy. Aims: We use deep Photoconductor Array Camera and Spectrometer (PACS) data together with Infrared Array Camera (IRAC), Multiband Imaging Photometer for Spitzer (MIPS) and Spectral and Photometric Imaging Receiver (SPIRE) data to study the vertical extent of dust emission around NGC 891. We also test for the presence of a more extended, thick dust component. Methods: By performing a convolution of an intrinsic vertical profile emission with each instrument point spread function (PSF) and comparing it with observations we derived the scale height of a thin and thick dust-disc component. Results: The emission is best fit with the sum of a thin and a thick dust component for all wavelengths considered. The scale height of both dust components shows a gradient goes from 70 μm to 250 μm. This could be due either to a drop in dust heating (and thus the dust's temperature) with the distance from the plane, or to a sizable contribution (~15-80%) of an unresolved thin disc of hotter dust to the observed surface brightness at shorter wavelengths. The scale height of the thick dust component, using observations from 70 μm to 250 μm, has been estimated at (1.44 ± 0.12) kpc, which is consistent with previous estimates (i.e. extinction and scattering in optical bands and mid-infrared (MIR) emission). The amount of dust mass at distances greater than ~2 kpc from the midplane represents 2-3.3% of the total galactic dust mass, and the abundance of small grains relative to large grains is almost halved compared to levels in the midplane. Conclusions: The paucity of small grains high above the midplane might indicate that dust is hit by interstellar shocks or galactic fountains and entrained together with gas. The halo dust component is

  5. THE DUST BUDGET OF THE SMALL MAGELLANIC CLOUD: ARE ASYMPTOTIC GIANT BRANCH STARS THE PRIMARY DUST SOURCE AT LOW METALLICITY?

    SciTech Connect

    Boyer, M. L.; Gordon, K. D.; Meixner, M.; Sargent, B. A.; Srinivasan, S.; Riebel, D.; McDonald, I.; Van Loon, J. Th.; Clayton, G. C.; Sloan, G. C.

    2012-03-20

    We estimate the total dust input from the cool evolved stars in the Small Magellanic Cloud, using the 8 {mu}m excess emission as a proxy for the dust-production rate (DPR). We find that asymptotic giant branch (AGB) and red supergiant (RSG) stars produce (8.6-9.5) Multiplication-Sign 10{sup -7} M{sub Sun} yr{sup -1} of dust, depending on the fraction of far-infrared sources that belong to the evolved star population (with 10%-50% uncertainty in individual DPRs). RSGs contribute the least (<4%), while carbon-rich AGB stars (especially the so-called extreme AGB stars) account for 87%-89% of the total dust input from cool evolved stars. We also estimate the dust input from hot stars and supernovae (SNe), and find that if SNe produce 10{sup -3} M{sub Sun} of dust each, then the total SN dust input and AGB input are roughly equivalent. We consider several scenarios of SN dust production and destruction and find that the interstellar medium (ISM) dust can be accounted for solely by stellar sources if all SNe produce dust in the quantities seen around the dustiest examples and if most SNe explode in dense regions where much of the ISM dust is shielded from the shocks. We find that AGB stars contribute only 2.1% of the ISM dust. Without a net positive contribution from SNe to the dust budget, this suggests that dust must grow in the ISM or be formed by another unknown mechanism.

  6. Mineral dust transport in the Arctic modelled with FLEXPART

    NASA Astrophysics Data System (ADS)

    Groot Zwaaftink, Christine; Grythe, Henrik; Stohl, Andreas

    2016-04-01

    Aeolian transport of mineral dust is suggested to play an important role in many processes. For instance, mineral aerosols affect the radiation balance of the atmosphere, and mineral deposits influence ice sheet mass balances and terrestrial and ocean ecosystems. While many efforts have been done to model global dust transport, relatively little attention has been given to mineral dust in the Arctic. Even though this region is more remote from the world's major dust sources and dust concentrations may be lower than elsewhere, effects of mineral dust on for instance the radiation balance can be highly relevant. Furthermore, there are substantial local sources of dust in or close to the Arctic (e.g., in Iceland), whose impact on Arctic dust concentrations has not been studied in detail. We therefore aim to estimate contributions of different source regions to mineral dust in the Arctic. We have developed a dust mobilization routine in combination with the Lagrangian dispersion model FLEXPART to make such estimates. The lack of details on soil properties in many areas requires a simple routine for global simulations. However, we have paid special attention to the dust sources on Iceland. The mobilization routine does account for topography, snow cover and soil moisture effects, in addition to meteorological parameters. FLEXPART, driven with operational meteorological data from European Centre for Medium-Range Weather Forecasts, was used to do a three-year global dust simulation for the years 2010 to 2012. We assess the model performance in terms of surface concentration and deposition at several locations spread over the globe. We will discuss how deposition and dust load patterns in the Arctic change throughout seasons based on the source of the dust. Important source regions for mineral dust found in the Arctic are not only the major desert areas, such as the Sahara, but also local bare-soil regions. From our model results, it appears that total dust load in the

  7. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown. PMID:23406937

  8. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  9. Martian dust aerosols in the North Polar summer: scattering properties and shape

    NASA Astrophysics Data System (ADS)

    Mason, E.; Lemmon, M. T.

    2013-12-01

    Martian atmospheric dust appears to be largely homogenized, yet many sources are present through seasonally distinct processes: Southern summer dust storms, polar cap edge storms, and dust devils. The Phoenix landing site fell within a region of a northern seasonal ice cap with the receding cap edge to its north. The Phoenix Lander's Surface Stereo Imager performed several cross-sky brightness surveys to characterize atmospheric dust in the Martian north polar environment. These surveys, comparable to those by the Viking and Pathfinder landers and the Mars Exploration Rovers, constrain the size distribution and scattering and absorption properties of the airborne dust. We analyze a set taken in early summer in order to compare the results to those of previous missions and constrain the size of dust in a near-cap-edge environment. The spectrophotometric data from 440-1000 nm were taken shortly after a period of local dust storms and during a period of active dust devil lifting, and thus approximate a measurement of the lifted dust. We will present a discussion of constraints on the size distribution, spectral single scattering albedo and imaginary index of refraction of the dust. We also present the first polarimetric observations from inside the Martian atmosphere. These observations show the dust is weakly polarizing in a way that is, as expected, inconsistent with Mie scattering.

  10. An Assessment of Dust Effects on Planetary Surface Systems to Support Exploration Requirements

    NASA Technical Reports Server (NTRS)

    Wagner, Sandy

    2004-01-01

    Apollo astronauts learned first hand how problems with dust impact lunar surface missions. After three days, lunar dust contamination on EVA suit bearings led to such great difficulty in movement that another EVA would not have been possible. Dust clinging to EVA suits was transported into the Lunar Module. During the return trip to Earth, when micro gravity was reestablished, the dust became airborne and floated through the cabin. Crews inhaled the dust and it irritated their eyes. Some mechanical systems aboard the spacecraft were damaged due to dust contamination. Study results obtained by Robotic Martian missions indicate that Martian surface soil is oxidative and reactive. Exposures to the reactive Martian dust will pose an even greater concern to the crew health and the integrity of the mechanical systems. As NASA embarks on planetary surface missions to support its Exploration Vision, the effects of these extraterrestrial dusts must be well understood and systems must be designed to operate reliably and protect the crew in the dusty environments of the Moon and Mars. The AIM Dust Assessment Team was tasked to identify systems that will be affected by the respective dust, how they will be affected, associated risks of dust exposure, requirements that will need to be developed, identified knowledge gaps, and recommended scientific measurements to obtain information needed to develop requirements, and design and manufacture the surface systems that will support crew habitation in the lunar and Martian outposts.

  11. Martian dust aerosols in the North Polar summer: scattering properties and shape

    NASA Astrophysics Data System (ADS)

    Mason, Emily; Lemmon, M.

    2013-10-01

    Martian atmospheric dust appears to be largely homogenized. However, there are a continuum of sources that are accessed by seasonally distinct processes: Southern summer dust storms, polar cap edge storms, and dust devils. The Phoenix landing site was in a region that fell within the northern seasonal ice cap; its mission began while the receding cap edge was north of the site. The Phoenix Lander’s Surface Stereo Imager performed several cross-sky brightness surveys to characterize atmospheric dust in the Martian north polar environment. These surveys, comparable to those by the Viking and Pathfinder landers and the Mars Exploration Rovers, constrain the size distribution and scattering and absorption properties of the airborne dust. We analyze a set taken in early summer in order to compare the results to those of previous missions and constrain the size of dust in a near-cap-edge environment. The spectrophotometric data from 440-1000 nm were taken shortly after a period of local dust storms and during a period of active dust-devil lifting, and thus approximate a measurement of the lifted dust. We will present a discussion of constraints on the size distribution, spectral single scattering albedo and imaginary index of refraction of the dust. We also present the first polarimetric observations from inside the Martian atmosphere. These observations show the dust is weakly polarizing in a way that is, as expected, inconsistent with Mie scattering.

  12. DUST FORMATION IN THE EJECTA OF COMMON ENVELOPE SYSTEMS

    SciTech Connect

    Lue Guoliang; Zhu Chunhua; Podsiadlowski, Philipp

    2013-05-10

    The material that is ejected in a common-envelope (CE) phase in a close binary system provides an ideal environment for dust formation. By constructing a simple toy model to describe the evolution of the density and the temperature of CE ejecta and using the AGBDUST code to model dust formation, we show that dust can form efficiently in this environment. The actual dust masses produced in the CE ejecta depend strongly on their temperature and density evolution. We estimate the total dust masses produced by CE evolution by means of a population synthesis code and show that, compared to dust production in asymptotic giant branch stars, the dust produced in CE ejecta may be quite significant and could even dominate under certain circumstances.

  13. The characterization of airborne occupational safety and health hazards in selected small businesses; manufacturing wood pallets.

    PubMed

    Malkin, Robert; Lentz, Thomas J; Topmiller, Jennifer; Hudock, Stephen D; Niemeier, Richard W

    2006-01-01

    Researchers from the National Institute for Occupational Safety and Health (NIOSH) investigated occupational safety and health concerns in the small business wood pallet manufacturing industry because of an injury rate (2000) 226% greater than that for general industry. NIOSH investigators conducted walk-through evaluations at seven wood pallet manufacturing companies, and returned to four of them to take environmental measurements. Carbon monoxide (CO) levels, noise levels, and total particulate were measured, ergonomic observations made, and occupational safety practices analyzed at each of the four facilities where measurements were taken. The focus of this study is the evaluation of airborne particulate and carbon monoxide exposures for the purpose of determining areas of potentially high exposures. This knowledge can guide the plant owner or health professional to determine whether further measurements are necessary and where they might be needed. Safety factors and physical stressors (noise and ergonomic stressors) were described in a previously published companion paper. Although we did not take 8 h samples, we did find certain exposures that were potentially of concern to the small business owner. The main findings of this investigation were as follows: 1) CO levels in three plants, for the time periods measured, were less than the OSHA permissible exposure limit (PEL) of 50 parts per million (ppm) for an 8-h TWA. Three measurements, all from one plant, were due to a older and defective forklift and were above 50 ppm. 2) Total dust measures ranged from 0.86 to 1.67 mg/m3, taken adjacent to an operating machine cutting hardwood and measured up to 6 min. The American Conference of Governmental Industrial Hygienists (ACGIH) guideline for hardwood dust is 1.0 mg/m3, again for an 8-h TWA. PMID:16610535

  14. Airborne transmission of lyssaviruses.

    PubMed

    Johnson, N; Phillpotts, R; Fooks, A R

    2006-06-01

    In 2002, a Scottish bat conservationist developed a rabies-like disease and subsequently died. This was caused by infection with European bat lyssavirus 2 (EBLV-2), a virus closely related to Rabies virus (RABV). The source of this infection and the means of transmission have not yet been confirmed. In this study, the hypothesis that lyssaviruses, particularly RABV and the bat variant EBLV-2, might be transmitted via the airborne route was tested. Mice were challenged via direct introduction of lyssavirus into the nasal passages. Two hours after intranasal challenge with a mouse-adapted strain of RABV (Challenge Virus Standard), viral RNA was detectable in the tongue, lungs and stomach. All of the mice challenged by direct intranasal inoculation developed disease signs by 7 days post-infection. Two out of five mice challenged by direct intranasal inoculation of EBLV-2 developed disease between 16 and 19 days post-infection. In addition, a simple apparatus was evaluated in which mice could be exposed experimentally to infectious doses of lyssavirus from an aerosol. Using this approach, mice challenged with RABV, but not those challenged with EBLV-2, were highly susceptible to infection by inhalation. These data support the hypothesis that lyssaviruses, and RABV in particular, can be spread by airborne transmission in a dose-dependent manner. This could present a particular hazard to personnel exposed to aerosols of infectious RABV following accidental release in a laboratory environment. PMID:16687600

  15. Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations

    NASA Astrophysics Data System (ADS)

    Ryder, C. L.; McQuaid, J. B.; Flamant, C.; Rosenberg, P. D.; Washington, R.; Brindley, H. E.; Highwood, E. J.; Marsham, J. H.; Parker, D. J.; Todd, M. C.; Banks, J. R.; Brooke, J. K.; Engelstaedter, S.; Estelles, V.; Formenti, P.; Garcia-Carreras, L.; Kocha, C.; Marenco, F.; Sodemann, H.; Allen, C. J. T.; Bourdon, A.; Bart, M.; Cavazos-Guerra, C.; Chevaillier, S.; Crosier, J.; Darbyshire, E.; Dean, A. R.; Dorsey, J. R.; Kent, J.; O'Sullivan, D.; Schepanski, K.; Szpek, K.; Trembath, J.; Woolley, A.

    2015-07-01

    The Fennec climate programme aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE (Service des Avions Français Instrumentés pour la Recherche en Environnement) Falcon 20 is described, with specific focus on instrumentation specially developed for and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include (1) the first airborne measurement of dust particles sizes of up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI (Spinning Enhanced Visible Infra-Red Imager) satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in situ observations of processes in SABL clouds showing dust acting as cloud condensation nuclei (CCN) and ice nuclei (IN) at -15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold pool (haboob) issued from deep convection over the Atlas Mountains, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area

  16. Health risk assessment of exposure to polybrominated diphenyl ethers (PBDEs) contained in residential air particulate and dust in Guangzhou and Hong Kong

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zheng, Jinshu; Chan, Chuen-Yu; Huang, Min-juan; Cheung, Kwai Chung; Wong, Ming Hung

    2014-06-01

    Polybrominated diphenyl ethers (PBDEs) were measured in air particulate PM2.5 (less than 2.5 μm), TSP (Total Suspend Particle) and dust samples from different households of two major urban centers of Pearl River Delta (PRD). ∑PBDEs in PM2.5 of households in Guangzhou (GZ) (52.9-2.03 × 103 pg m-3 mean 239 pg m-3) were significantly higher than Hong Kong (HK) (0.25-160 pg m-3, mean 43.8 pg m-3). Higher ∑PBDEs occurred in indoor TSP, ranging between 117 and 1.14 × 103 pg m-3, with a median of 333 pg m-3. BDE-209 was the largest contributor to PBDEs contained in household dust, PM2.5 and TSP samples of GZ. Among the particles in household environment, PM2.5 accumulated the highest PBDEs, especially BDE-209. The constant Cparticle/Cdust values suggested that sorption is the dominant mechanism through which PBDEs are associated with settled dust and airborne particles. PBDEs were fairly uniform from urban sites to suburban sites, indicating the predominant indoor sources of PBDEs. Compared with indoor PM2.5, indoor dust ingestion made an important contribution of particle associated PBDEs exposure for adults (25 years old) and toddlers (1-2 years old). Non-dietary exposure dominated total PBDEs exposure, accounting for 91.8-99.0% exposure dose for toddlers and 45.1-82.2% for adults. Dust ingestion (69.3-96.1%) was the predominant PBDEs exposure route for toddlers.

  17. Estimation of individual dust exposure by magnetopneumography in stainless steel production.

    PubMed

    Huvinen, M; Oksanen, L; Kalliomäki, K; Kalliomäki, P L; Moilanen, M

    1997-06-20

    The objectives of the study were to measure the magnetic dust lung burden of workers in stainless steel production by magnetopneumography (MPG) and to investigate the relationship of the results with air-borne concentrations of dust, total and hexavalent chromium as well as urinary excretion of chromium. There were 128 workers from the chromite mine, sintering plant, ferrochrome smelter, stainless steel smelting shop, cold rolling mill and welding shop in the exposed groups and five persons from the office staff in the control group. The remanent magnetic field (RMF) in the lungs was slightly elevated among workers in the ferrochromium and steel smelting shops; the levels were, however, lower than those reported for welders earlier and those observed in the welding/repair shop. Workers in the mine, concentrator and sintering plants and in the cold rolling mill exhibited remanent magnetic fields comparable to the referents. There was a relationship between the RMF and the actual urinary chromium concentration. Miners and concentrator and sintering plant workers showed retarded relaxation rate (ReR) of the remanent magnetic field. However, the RMF of the first two of these groups were low (< 0.1 nT) and this made it difficult to measure the ReR accurately. The duration of exposure correlated weakly but significantly with the relaxation rate, while smoking was not related to it. PMID:9200856

  18. Effect of deployment time on endotoxin and allergen exposure assessment using electrostatic dust collectors.

    PubMed

    Kilburg-Basnyat, Brita; Metwali, Nervana; Thorne, Peter S

    2015-01-01

    The electrostatic dust collector (EDC) is a passive dust sampling device for exposure assessment of airborne endotoxin and possibly allergens. EDCs consist of a non-conducting plastic folder holding two or four electrostatic cloths of defined area. The sampling time needed to achieve detectable and reproducible loading for bioaerosols has not been systematically evaluated. Thus, in 15 Iowa farm homes EDCs were deployed for 7-, 14-, and 28-day sampling periods to determine if endotoxin and allergens could be quantified and if loading rates were uniform over time, i.e. if loads doubled from 7 to 14 days or 14 to 28 days and quadrupled from 7 to 28 days. Loadings between left and right paired EDC cloths were not significantly different and were highly correlated for endotoxin, total protein, and cat (Fel d1), dog (Can f1), and mouse (Mus m1) allergens (P < 0.001). EDCs performed especially well for endotoxin sampling with close agreement between paired samples (Pearson r = 0.96, P < 0.001). Endotoxin loading of the EDCs doubled from 7- to 14-day deployments as hypothesized although the loading rate decreased from 14 to 28 days of sampling with only a 1.38-fold increase. Allergen exposure assessment using EDCs was overall less satisfactory. Although there was reasonable agreement between paired samples, only exposures to cat, dog, and mouse allergens were reliable and these only at the longer deployment times. PMID:25187036

  19. An evidential example of airborne bacteria in a crowded, underground public concourse in Tokyo

    NASA Astrophysics Data System (ADS)

    Seino, Kaoruko; Takano, Takehito; Nakamura, Keiko; Watanabe, Masafumi

    2005-01-01

    We examined airborne bacteria in an underground concourse in Tokyo and investigated conditions that influenced bacterial counts. Airborne bacteria were collected by using an impactor sampler. Colonies on plate count agar (PCA) and Columbia colistin-nalidixic acid agar with 5% sheep blood (CNA agar) were enumerated. The range, geometric mean, and 95% CI of the bacterial counts (CFU m-3) on PCA and CNA agar were 150-1380, 456, 382-550 and 50-990, 237, 182-309, respectively. Bacterial counts on PCA significantly correlated with number of the pedestrians (r=0.89), relative humidity (r=0.70) and airborne dust (PM5.0) (r=0.73). Results of a multiple regression indicated independent positive association between the number of pedestrians and bacterial counts on PCA (p<0.01) after excluding the influence of relative humidity and airborne dust. Similar results were obtained with the statistical analysis for the counts of bacteria on CNA agar. Gram-positive cocci were dominant on PCA and CNA agar. Staphylococcus epidermidis and Micrococcus spp. were dominant among the 11 genera and 19 species identified in the present study. Considering the pattern of identified species and the significant independent association between number of pedestrians and bacterial counts, airborne bacteria in a crowded underground concourse were mostly originated from the pedestrians who were walking in the underground concourse. This study gave an evidential example of bacterial conditions in the air of an underground crowded public space in Tokyo.

  20. The impact of surface dust source exhaustion on the martian dust cycle, dust storms and interannual variability, as simulated by the MarsWRF General Circulation Model

    NASA Astrophysics Data System (ADS)

    Newman, Claire E.; Richardson, Mark I.

    2015-09-01

    Observations of albedo on Mars suggest a largely invariant long-term mean surface dust distribution, but also reveal variations on shorter (seasonal to annual) timescales, particularly associated with major dust storms. We study the impact of finite surface dust availability on the dust cycle in the MarsWRF General Circulation Model (GCM), which uses radiatively active dust with parameterized 'dust devil' and wind stress dust lifting to enable the spontaneous production of dust storms, and tracks budgets of dust lifting, deposition, and total surface dust inventory. We seek a self-consistent, long-term 'steady state' dust cycle for present day Mars, consisting of (a) a surface dust distribution that varies from year to year but is constant longer-term and in balance with current dust redistribution processes, and (b) a fixed set of dust lifting parameters that continue to produce major storms for this distribution of surface dust. We relax the GCM's surface dust inventory toward this steady state using an iterative process, in which dust lifting rate parameters are increased as progressively more surface sites are exhausted of dust. Late in the equilibration process, the GCM exhibits quasi-steady state behavior in which few new surface grid points are exhausted during a 60 year period with constant dust lifting parameters. Complex regional-scale dust redistribution occurs on time-scales from less than seasonal to decadal, and the GCM generates regional to global dust storms with many realistic features. These include merging regional storms, cross-equatorial storms, and the timing and location of several storm types, though very early major storms and large amounts of late storm activity are not reproduced. Surface dust availability in key onset and growth source regions appears vital for 'early' major storms, with replenishment of these regions required before another large storm can occur, whereas 'late' major storms appear primarily dependent on atmospheric

  1. The dissolution of natural and artificial dusts in glutamic acid

    NASA Astrophysics Data System (ADS)

    Ling, Zhang; Faqin, Dong; Xiaochun, He

    2015-06-01

    This article describes the characteristics of natural dusts, industrial dusts, and artificial dusts, such as mineral phases, chemical components, morphological observation and size. Quartz and calcite are the main phases of natural dusts and industrial dusts with high SiO2 and CaO and low K2O and Na2O in the chemical composition. The dissolution and electrochemical action of dusts in glutamic acid liquor at the simulated human body temperature (37 °C) in 32 h was investigated. The potential harm that the dust could lead to in body glutamic acid acidic environment, namely biological activity, is of great importance for revealing the human toxicological mechanism. The changes of pH values and electric conductivity of suspension of those dusts were similar, increased slowly in the first 8 h, and then the pH values increased rapidly. The total amount of dissolved ions of K, Ca, Na, and Mg was 35.4 to 429 mg/kg, particularly Ca was maximal of 20 to 334 mg/kg. The total amount of dissolved ions of Fe, Zn, Mn, Pb, and Ba was 0.18 to 5.59 mg/kg and in Al and Si was 3.0 to 21.7 mg/kg. The relative solubility order of dusts in glutamic acid is wollastonite > serpentine > sepiolite, the cement plant industrial dusts > natural dusts > power plant industrial dusts. The wollastonite and cement plant industrial dusts have the highest solubility, which also have high content of CaO; this shows that there are a poorer corrosion-resisting ability and lower bio-resistibility. Sepiolite and power plant industrial dusts have lowest solubility, which also have high content of SiO2; this shows that there are a higher corrosion-resisting ability and stronger bio-resistibility.

  2. Dust storms and their impact on ocean and human health: dust in Earth's atmosphere

    USGS Publications Warehouse

    Griffin, Dale W.; Kellog, Christina A.

    2004-01-01

    Satellite imagery has greatly influenced our understanding of dust activity on a global scale. A number of different satellites such as NASA's Earth-Probe Total Ozone Mapping Spectrometer (TOMS) and Se-viewing Field-of-view Sensor (SeaWiFS) acquire daily global-scale data used to produce imagery for monitoring dust storm formation and movement. This global-scale imagery has documented the frequent transmission of dust storm-derived soils through Earth's atmosphere and the magnitude of many of these events. While various research projects have been undertaken to understand this normal planetary process, little has been done to address its impact on ocean and human health. This review will address the ability of dust storms to influence marine microbial population densities and transport of soil-associated toxins and pathogenic microorganisms to marine environments. The implications of dust on ocean and human health in this emerging scientific field will be discussed.

  3. Airborne Infrared Spectrograph for Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Golub, L.; Cheimets, P.; DeLuca, E. E.; Samra, J.; Judge, P. G.

    2015-12-01

    Direct measurements of the coronal magnetic field have significant potential to enhance our understanding of coronal dynamics, and improve forecasting models. Of particular interest are observations of coronal field lines in the Transition Corona, the transitional region between closed and open flux systems, providing important information on eruptive instabilities and on the origin of the slow solar wind. While current instruments routinely observe the photospheric and chromospheric magnetic fields, the proposed airborne spectrometer will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. The targeted lines are five forbidden magnetic dipole transitions between 1.4 and 4 um. The airborne system will consist of a telescope, grating spectrometer and pointing/stabilization system to be flown on the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) during the 21 August 2017 total solar eclipse. We will discuss the scientific objectives of the 2017 flight, describe details of the instrument design, and present the observing program for the eclipse.

  4. Characterisation of airborne particulate pollution in the Cu smelter and former mining town of Karabash, South Ural Mountains of Russia.

    PubMed

    Williamson, B J; Udachin, V; Purvis, O W; Spiro, B; Cressey, G; Jones, G C

    2004-11-01

    Airborne total suspended particulates (TSP), dusts from smelter blast furnace and converter stacks, and filtrates of snow melt waters have been characterised in the Cu smelter and former mining town of Karabash, Russia. TSP was collected at sites up- and downwind of the smelter and large waste and tailings dumps (Oct. 2000 and July 2001). Methods for particle size, mineralogical and elemental determinations have been tested and described, and a new PSD-MicroSOURCE XRD technique developed for the mineralogical analysis of microsamples on filter substrates. TSP in downwind samples has a mean equivalent spherical diameter of 0.5 microm (s.d. = 0.2) and was found to be 100% respirable. The main element of human health/environmental concern, above Russian maximum permitted levels (1 microg m(-3), average over any time period), was Pb which was measured at 16-30 microg m(-3) in downwind samples. Individual particulates mainly consisted of complex mixtures of anglesite (PbSO4), Zn2SnO4 and poorly ordered Zn sulphates. From experimental and theoretical considerations, a high proportion of contained Pb, Zn, Cd and As in this material is considered to be in a readily bioavailable form. Chemical and mineralogical differences between the TSP, stack dusts and snow samples are discussed, as well as the implications for human and regional environmental health. PMID:15473539

  5. Atmospheric microbiology in the northern Caribbean during African dust events

    USGS Publications Warehouse

    Griffin, Dale W.; Kellogg, C.A.; Garrison, V.H.; Lisle, J.T.; Borden, T.C.; Shinn, E.A.

    2003-01-01

    Between July 2000 and August 2001 forty-three air samples were collected in the northern Caribbean: Twenty-six in the US Virgin Islands, and 17 samples aboard ship during two 1-week cruises. Samples were collected during African dust events and non-dust conditions and screened for the presence of culturable bacteria and fungi. A total of 3,652 liters of air were collected during non-dust conditions, with 19 bacteria and 28 fungi being recovered. During dust conditions a total of 2,369 liters of air were screened resulting in the recovery of 171 bacteria and 76 fungi. A statistically significant difference was found between the two data sets. These results support previous African dust research and further demonstrate that dust particles can serve as a vessel for the global dispersion of bacteria and fungi. Dustborne microorganisms may play a significant role in the ecology and health of downwind ecosystems.

  6. Depression of alveolar macrophage hydrogen peroxide and superoxide anion release by mineral dusts: Correlation with antimony, lead, and arsenic contents

    SciTech Connect

    Gulyas, H.; Labedzka, M.; Gercken, G. )

    1990-04-01

    Activated rabbit alveolar macrophages were incubated with airborne dusts from four West German sites (1 to 200 micrograms/10(6) cells) and waste incinerator fly ash fractions (50 to 500 micrograms/10(6) cells). Quartz dust DQ 12 (5 to 200 micrograms/10(6) cells) and Fe2O3 (0.05 to 50 micrograms/10(6) cells) were used as control dusts. The zymosan-stimulated hydrogen peroxide and superoxide anion release of the macrophages were not affected significantly by Fe2O3. All other investigated dusts decreased the two cell functions which were correlated negatively with surfaces, particle numbers, and antimony, lead, and arsenic contents of the dusts. The influence of heavy metal antagonisms and dust surfaces on dust toxicity against alveolar macrophages is discussed.

  7. Depression of alveolar macrophage hydrogen peroxide and superoxide anion release by mineral dusts: correlation with antimony, lead, and arsenic contents.

    PubMed

    Gulyas, H; Labedzka, M; Gercken, G

    1990-04-01

    Activated rabbit alveolar macrophages were incubated with airborne dusts from four West German sites (1 to 200 micrograms/10(6) cells) and waste incinerator fly ash fractions (50 to 500 micrograms/10(6) cells). Quartz dust DQ 12 (5 to 200 micrograms/10(6) cells) and Fe2O3 (0.05 to 50 micrograms/10(6) cells) were used as control dusts. The zymosan-stimulated hydrogen peroxide and superoxide anion release of the macrophages were not affected significantly by Fe2O3. All other investigated dusts decreased the two cell functions which were correlated negatively with surfaces, particle numbers, and antimony, lead, and arsenic contents of the dusts. The influence of heavy metal antagonisms and dust surfaces on dust toxicity against alveolar macrophages is discussed. PMID:2159400

  8. Mapping the physico-chemical properties of mineral dust in western Africa: mineralogical composition

    NASA Astrophysics Data System (ADS)

    Formenti, P.; Caquineau, S.; Desboeufs, K.; Klaver, A.; Chevaillier, S.; Journet, E.; Rajot, J. L.

    2014-04-01

    In the last few years, several ground-based and airborne field campaigns have allowed exploring the properties and impacts of mineral dust in western Africa, one of the major emission and transport areas worldwide. In this paper, we explore the synthesis of these observations to provide with a large-scale quantitative view of the mineralogical composition and its variability with source region and time after transport. This work reveals that mineral dust in western Africa is a mixture of clays, quartz, iron and titanium oxides, representing at least 92% of the dust mass. Calcite ranged between 0.3 and 8.4% of the dust mass depending on the origin. Our data do not show a systematic dependence of the dust mineralogical composition with origin, likely as in most of the cases they represent the composition of the atmospheric burden after 1-2 days after emission, when air masses mix and give raise to a more uniform dust load. This has implications for the representation of the mineral dust composition in regional and global circulation models, and satellite retrievals. Iron oxides account for 58 ± 7% of the mass of elemental Fe, and between 2 and 5% of the dust mass. Most of them are composed of goethite, representing between 52 and 78% of the iron oxide mass. We estimate that titanium oxides account for 1-2% of the dust mass, depending on whether the dust is of Saharan or Sahelian origin. The mineralogical composition is a critical parameter to estimate the radiative and biogeochemical impact of mineral dust. The results on dust composition have been applied to estimate the optical properties as so as the iron fractional solubility of Saharan and Sahelian dust. Data presented in this paper are provided in numerical form upon email request while they are being implemented as a public database, the Dust-Mapped Archived Properties (DUST-MAP), an open repository for compositional data from other source regions in Africa and worldwide.

  9. Pulmonary Toxicity Studies of Lunar Dust in Rodents

    NASA Technical Reports Server (NTRS)

    Lam, Chiu-Wing; James, John T.

    2012-01-01

    NASA has been contemplating returning astronauts to the moon for long-duration habitation and research and using it as a stepping-stone to Mars. Other spacefaring nations are planning to send humans to the moon for the first time. The surface of the moon is covered by a layer of fine dust. Fine terrestrial dusts, if inhaled, are known to pose a health risk to humans. Some Apollo crews briefly exposed to moon dust that adhered to spacesuits and became airborne in the Lunar Module reported eye and throat irritation. The habitable area of any lunar landing vehicle or outpost would inevitably become contaminated with lunar dust. To assess the health risks of exposure of humans to airborne lunar dust, we evaluated the toxicity of Apollo 14 moon dust in animal lungs. Studies of the pulmonary toxicity of a dust are generally first done by intratracheal instillation (ITI) of aqueous suspensions of the test dust into the lungs of rodents. If a test dust is irritating or cytotoxic to the lungs, the alveolar macrophages, after phagocytizing the dust particles, will release cellular messengers to recruit white blood cells (WBCs) and to induce dilation of blood capillary walls to make them porous, allowing the WBCs to gain access to the alveolar space. The dilation of capillary walls also allows serum proteins and water entering the lung. Besides altering capillary integrity, a toxic dust can also directly kill the cells that come into contact with it or ingest it, after which the dead cells would release their contents, including lactate dehydrogenase (a common enzyme marker of cell death or tissue damage). In the treated animals, we lavaged the lungs 1 and 4 weeks after the dust instillation and measured the concentrations of these biomarkers of toxicity in the bronchioalveolar lavage fluids to determine the toxicity of the dust. To assess whether the inflammation and cellular injury observed in the biomarker study would lead to persistent or progressive histopathological

  10. A literature review of concentrations and size distributions of ambient airborne Pb-containing particulate matter

    NASA Astrophysics Data System (ADS)

    Cho, Seung-Hyun; Richmond-Bryant, Jennifer; Thornburg, Jonathan; Portzer, Jeff; Vanderpool, Robert; Cavender, Kevin; Rice, Joann

    2011-09-01

    The final 2008 lead (Pb) national ambient air quality standards (NAAQS) revision maintains Pb in total suspended particulate matter as the indicator. However, the final rule permits the use of low-volume PM 10 (particulate matter sampled with a 50% cut-point of 10 μm) Federal Reference Method (FRM) monitors in lieu of total suspended particulate (TSP) monitors for some non-source-oriented monitoring. PM 10 FRM monitors are known to provide more reliable concentration measurements than TSP samplers because they are omni-directional samplers and so are not biased by wind conditions. However, by design they exclude the upper tail of the particle size distribution. Hence, each monitor produces uncertainties about measured concentrations of Pb-bearing PM. Uncertainties in reported Pb data are also related to spatiotemporal variation of the concentration and size distribution of Pb-bearing PM. Therefore, a comprehensive literature review was performed to summarize the current knowledge regarding the concentration and size distribution of Pb particles in the atmosphere. The objectives of this review were to compile data that could shed light on these uncertainties, to provide insights useful during future Pb NAAQS reviews, and to identify areas where more research is needed. Results of this review indicated that Pb size distribution data are relatively limited and often outdated. Thirty-nine articles were found to have sufficiently detailed information regarding airborne Pb concentrations, study location, sample collection methods, and analytical techniques; only 16 of those papers reported Pb concentration data for multiple size fractions. For the most part, U.S. and European studies from the last forty years illustrate that the largest mode of the size distribution of airborne particle-bound Pb has shifted to larger sizes while airborne Pb concentrations have decreased in urban areas. This shift occurred as tetraethyl Pb additives in gasoline were phased out and

  11. DUST FORMATION IN MACRONOVAE

    SciTech Connect

    Takami, Hajime; Ioka, Kunihito; Nozawa, Takaya E-mail: kunihito.ioka@kek.jp

    2014-07-01

    We examine dust formation in macronovae (as known as kilonovae), which are the bright ejecta of neutron star binary mergers and one of the leading sites of r-process nucleosynthesis. In light of information about the first macronova candidate associated with GRB 130603B, we find that dust grains of r-process elements have difficulty forming because of the low number density of the r-process atoms, while carbon or elements lighter than iron can condense into dust if they are abundant. Dust grains absorb emission from ejecta with an opacity even greater than that of the r-process elements, and re-emit photons at infrared wavelengths. Such dust emission can potentially account for macronovae without r-process nucleosynthesis as an alternative model. This dust scenario predicts a spectrum with fewer features than the r-process model and day-scale optical-to-ultraviolet emission.

  12. Bright Dust Devil Tracks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    9 June 2004 Martian dust devils sometimes disrupt thin coatings of surface dust to create dark streak patterns on the surface. However, not all dust devils make streaks, and not all dust devil streaks are dark. In Syria Planum, the streaks are lighter than the surrounding plains. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows an example from Syria near 8.8oS, 103.6oW. The thin coating of surface dust in this region is darker than the substrate beneath it. This is fairly unusual for Mars, because most dust is bright. This image covers an area about 3 km (1.9 mi) across and is illuminated by sunlight from the left/lower left.

  13. AIRBORNE-CONTACT DERMATITIS OF NON-PLANT ORIGIN: AN OVERVIEW

    PubMed Central

    Ghosh, Sanjay

    2011-01-01

    Airborne-contact dermatitis (ABCD) represents a unique type of contact dermatitis originating from dust, sprays, pollens or volatile chemicals by airborne fumes or particles without directly touching the allergen. ABCD in Indian patients has been attributed exclusively by pollens of the plants like Parthenium hysterophorus, etc., but in recent years the above scenario has been changing rapidly in urban and semiurban perspective especially in developing countries. ABCD has been reported worldwide due to various type of nonplant allergens and their clinical feature are sometimes distinctive. Preventive aspect has been attempted by introduction of different chemicals of less allergic potential. PMID:22345776

  14. Modeling of asteroidal dust production rates

    NASA Technical Reports Server (NTRS)

    Durda, Daniel D.; Dermott, Stanley F.; Gustafson, Bo A. S.

    1992-01-01

    The production rate of dust associated with the prominent Hirayama asteroid families and the background asteroidal population are modeled with the intent of using the families as a calibrator of mainbelt dust production. However, the dust production rates of asteroid families may be highly stochastic; there is probably more than an order of magnitude variation in the total area of dust associated with a family. Over 4.5 x 10(exp 9) years of collisional evolution, the volume (mass) of a family is ground down by an order of magnitude, suggesting a similar loss from the entire mainbelt population. Our collisional models show that the number of meteoroids deliverable to Earth also varies stochastically, but only by a factor of 2 to 3.

  15. On dust emissions from the jovian system

    NASA Technical Reports Server (NTRS)

    Zook, H. A.; Gruen, E.; Baguhl, M.; Balogh, A.; Bame, S. J.; Fechtig, H.; Forsyth, R.; Hanner, M. S.; Horanyi, M.; Kissel, J.

    1993-01-01

    As described by Gruen et al., the dust impact detector on the Ulysses spacecraft detected a totally unexpected series of dust streams in the outer solar system near the orbit of Jupiter. Five considerations lead us to believe that the dust streams emanate from the jovian system itself: the dust streams only occur within about 1 AU of the jovian system, with the strongest stream being the one closest to Jupiter (about 550 R(sub J) away); the direction from which they arrive is never far from the line-of-sight direction to Jupiter; the time period between streams is about 28 (+/- 3) days; the impact velocities are very high--mostly around 40 km/s; and we can think of no cometary, asteroidal, or interstellar source that could give rise to the above four phenomena (such streams have never before been detected).

  16. AIRBORNE RADIATION DETECTOR

    DOEpatents

    Cartmell, T.R.; Gifford, J.F.

    1959-08-01

    An ionization chamber used for measuring the radioactivity of dust present in atmospheric air is described. More particularly. the patent describes a device comprising two concentric open ended, electrically connected cylinders between which is disposed a wire electrcde. A heating source is disposed inside of the cylinder to circulate air through the space between the two cylinders by convective flow. A high voltage electric field between the wire electrcde of the electrically connected cylinder will cause ionization of the air as it passes therethrough.

  17. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  18. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  19. Personal exposures to airborne metals in London taxi drivers and office workers in 1995 and 1996.

    PubMed

    Pfeifer, G D; Harrison, R M; Lynam, D R

    1999-09-01

    In 1995, a petroleum marketer introduced a diesel fuel additive in the UK containing Mn as MMT (methylcyclopentadienyl manganese tricarbonyl). A small study of personal exposures to airborne Mn in London was conducted before and after introduction of the additive to identify any major impact of the additive on exposures. In 1995, personal exposures to Mn were measured in two groups, taxi drivers and office workers (10 subjects per group) for two consecutive 7-day periods. A similar study was carried out in 1996 to determine if exposures had changed. Samples were also analyzed for Ca, Al, Mg and Pb. In 1996, exposures to aerosol mass as total suspended particulates (TSP) and PM2.5 were measured in addition to the metals. Manganese exposures in this cohort did not increase as a result of introduction of the additive. However, a significant source of Mn exposure was discovered during the conduct of these tests. The mean exposure to Mn was higher among the office workers in both years than that of the taxi drivers. This was due to the fact that approximately half of the office workers commuted via the underground railway system where airborne dust and metal concentrations are significantly elevated over those in the general environment. Similar results have been noted in other cities having underground rail systems. Exposure to Mn, Pb, Ca, and Mg were not significantly different between the 2 years. Taxi drivers had higher exposures than office workers to Mg and Pb in both years. Commuting via the underground also had a significant impact on exposures to TSP, PM2.5, Al, and Ca, but had little effect on exposures to Mg. The aerosol in the underground was particularly enriched in Mn, approximately 10-fold, when compared to the aerosol in the general environment. There are several possible sources for this Mn, including mechanical wear of the steel wheels on the steel rais, vaporization of metal from sparking of the third rail, or brake wear. PMID:10535124

  20. Performance Basis for Airborne Separation

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    2008-01-01

    Emerging applications of Airborne Separation Assistance System (ASAS) technologies make possible new and powerful methods in Air Traffic Management (ATM) that may significantly improve the system-level performance of operations in the future ATM system. These applications typically involve the aircraft managing certain components of its Four Dimensional (4D) trajectory within the degrees of freedom defined by a set of operational constraints negotiated with the Air Navigation Service Provider. It is hypothesized that reliable individual performance by many aircraft will translate into higher total system-level performance. To actually realize this improvement, the new capabilities must be attracted to high demand and complexity regions where high ATM performance is critical. Operational approval for use in such environments will require participating aircraft to be certified to rigorous and appropriate performance standards. Currently, no formal basis exists for defining these standards. This paper provides a context for defining the performance basis for 4D-ASAS operations. The trajectory constraints to be met by the aircraft are defined, categorized, and assessed for performance requirements. A proposed extension of the existing Required Navigation Performance (RNP) construct into a dynamic standard (Dynamic RNP) is outlined. Sample data is presented from an ongoing high-fidelity batch simulation series that is characterizing the performance of an advanced 4D-ASAS application. Data of this type will contribute to the evaluation and validation of the proposed performance basis.

  1. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  2. A Climate of Dust: 2500-years of Southwestern Dustiness

    NASA Astrophysics Data System (ADS)

    Routson, C.; Overpeck, J. T.; Woodhouse, C. A.

    2012-12-01

    Airborne dust in the arid southwest United States has important implications for drought, snowpack and water resources. Dust storms are entrained from Southwestern deserts by spring winds and westerly storm systems and deposited on the snow-covered Rocky Mountains. These dust-on-snow events reduce albedo and cause the snowpack to absorb more heat, accelerating ablation and subsequently reducing available runoff, a critical water resource for the environmental, and the agricultural, industrial, and municipal water uses. To characterize the long-term variability and natural risk of Southwest dustiness, we have developed a 2500-year-long, sub-decadal resolution, record of dust deposition from lake sediments in the south San Juan Mountains, Colorado. We used μXray-fluorescence (μXRF) to analyze the elemental composition of a sediment core representing 2500 years of local deposition. We also analyzed local bedrock and dust deposited on local snowpack to constrain dust-input end-members for our site, and employed an end-member mixing method to calculate the fraction of wind deposited dust in our lake sediment through time. We also developed an independent high-resolution grain size record from the same sediment, which shows dust grain size concentration corroborates our μXRF dust record. Our new record shows unprecedented dustiness associated with recent land disturbance, drought, and livestock grazing, consistent with previous work in the region. Furthermore, distinct periods in the past are associated with anomalous dustiness on both short and long timescales. Combined with annually resolved tree-ring based drought reconstructions, our new record provides key insight into changing relationships between Southwestern aridity and dustiness. As global temperatures rise and the Southwest shifts toward a more arid landscape, understanding the relationship between dustiness, drought, and water resources will become ever more imperative.

  3. Saharan Dust Effects on Human Health: A Challenge for Cuba's Researchers.

    PubMed

    Venero-Fernández, Silvia J

    2016-07-01

    WHO considers the effects of air pollution one of the most pressing global health priorities. Several years ago, scientists began noting a link between Saharan dust (a meteorological phenomenon that diminishes air quality as it spreads over the globe) and some diseases, but the few studies to date have been inconsistent. Cuba has the human and material resources to study the association between Saharan dust and health. It is important to encourage creation of multidisciplinary research teams to do so. KEYWORDS Health, airborne particulate matter, dust, air pollutants, environmental health, climate, Cuba. PMID:27510936

  4. Dust Devil Tracks

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 8 May 2002) The Science This image, centered near 50.0 S and 17.7 W displays dust devil tracks on the surface. Most of the lighter portions of the image likely have a thin veneer of dust settled on the surface. As a dust devil passes over the surface, it acts as a vacuum and picks up the dust, leaving the darker substrate exposed. In this image there is a general trend of many of the tracks running from east to west or west to east, indicating the general wind direction. There is often no general trend present in dust devil tracks seen in other images. The track patterns are quite ephemeral and can completely change or even disappear over the course of a few months. Dust devils are one of the mechanisms that Mars uses to constantly pump dust into the ubiquitously dusty atmosphere. This atmospheric dust is one of the main driving forces of the present Martian climate. The Story Vrrrrooooooooom. Think of a tornado, the cartoon Tasmanian devil, or any number of vacuum commercials that powerfully suck up swirls of dust and dirt. That's pretty much what it's like on the surface of Mars a lot of the time. Whirlpools of wind called

  5. Cometary dust composition

    NASA Technical Reports Server (NTRS)

    Gehrz, R. D.; Hanner, M. S.

    1988-01-01

    The earth based measurements and in situ sampling of Comet Halley have provided new data about the chemical composition of cometary grains. Recent progress in laboratory studies of interplanetary dust particles (IDPs) complement the comet data, allowing inferences about the mineralogy and physical structure of the comet dust to be drawn from the observed elemental composition and infrared spectra. The in situ dust composition measurements at Halley, the composition of IDPs and their relation to comet dust, and the origin of the 3.4 micron hydrocarbon feature is discussed. Related discussion is also presented on aromatic components in comets and the 3.4 micron feature. These topics are briefly summarized.

  6. Operational Dust Prediction

    NASA Technical Reports Server (NTRS)

    Benedetti, Angela; Baldasano, Jose M.; Basart, Sara; Benincasa, Francesco; Boucher, Olivier; Brooks, Malcolm E.; Chen, Jen-Ping; Colarco, Peter R.; Gong, Sunlin; Huneeus, Nicolas; Jones, Luke; Lu, Sarah; Menut, Laurent; Morcrette, Jean-Jacques; Mulcahy, Jane; Nickovic, Slobodan; Garcia-Pando, Carlos P.; Reid, Jeffrey S.; Sekiyama, Thomas T.; Tanaka, Taichu Y.; Terradellas, Enric; Westphal, Douglas L.; Zhang, Xiao-Ye; Zhou, Chun-Hong

    2014-01-01

    Over the last few years, numerical prediction of dust aerosol concentration has become prominent at several research and operational weather centres due to growing interest from diverse stakeholders, such as solar energy plant managers, health professionals, aviation and military authorities and policymakers. Dust prediction in numerical weather prediction-type models faces a number of challenges owing to the complexity of the system. At the centre of the problem is the vast range of scales required to fully account for all of the physical processes related to dust. Another limiting factor is the paucity of suitable dust observations available for model, evaluation and assimilation. This chapter discusses in detail numerical prediction of dust with examples from systems that are currently providing dust forecasts in near real-time or are part of international efforts to establish daily provision of dust forecasts based on multi-model ensembles. The various models are introduced and described along with an overview on the importance of dust prediction activities and a historical perspective. Assimilation and evaluation aspects in dust prediction are also discussed.

  7. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  8. Extinction-to-Backscatter Ratios of Saharan Dust Layers Derived from In-Situ Measurements and CALIPSO Overflights During NAMMA

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Liu, Zhaoyan; Vaughan, Mark A.; Thornhill, Kenneth L., II; Kittaka, Chieko; Ismail, Syed; Chen, Gao; Powell, Kathleen A.; Winker, David M.; Trepte, Charles R.; Trepte, Charles R.; Winstead, Edward L.; Anderson, Bruce E.

    2010-01-01

    We determine the extinction-to-backscatter (Sa) ratios of dust using (1) airborne in-situ measurements of microphysical properties, (2) modeling studies, and (3) the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) observations recorded during the NASA African Monsoon Multidisciplinary Analyses (NAMMA) field experiment conducted from Sal, Cape Verde during Aug-Sept 2006. Using CALIPSO measurements of the attenuated backscatter of lofted Saharan dust layers, we apply the transmittance technique to estimate dust Sa ratios at 532 nm and a 2-color method to determine the corresponding 1064 nm Sa. This method yielded dust Sa ratios of 39.8 plus or minus 1.4 sr and 51.8 plus or minus 3.6 sr at 532 nm and 1064 nm, respectively. Secondly, Sa at both wavelengths is independently calculated using size distributions measured aboard the NASA DC-8 and estimates of Saharan dust complex refractive indices applied in a T-Matrix scheme. We found Sa ratios of 39.1 plus or minus 3.5 sr and 50.0 plus or minus 4 sr at 532 nm and 1064 nm, respectively, using the T-Matrix calculations applied to measured size spectra. Finally, in situ measurements of the total scattering (550 nm) and absorption coefficients (532 nm) are used to generate an extinction profile that is used to constrain the CALIPSO 532 nm extinction profile and thus generate a stratified 532 nm Sa. This method yielded an Sa ratio at 532 nm of 35.7 sr in the dust layer and 25 sr in the marine boundary layer consistent with a predominantly seasalt aerosol near the ocean surface. Combinatorial simulations using noisy size spectra and refractive indices were used to estimate the mean and uncertainty (one standard deviation) of these Sa ratios. These simulations produced a mean (plus or minus uncertainty) of 39.4 (plus or minus 5.9) sr and 56.5 (plus or minus 16.5) sr at 532 nm and 1064 nm, respectively, corresponding to percent uncertainties of 15% and 29%. These results will provide a measurements

  9. Extinction-to-backscatter ratios of Saharan dust layers derived from in situ measurements and CALIPSO overflights during NAMMA

    NASA Astrophysics Data System (ADS)

    Omar, Ali; Liu, Zhaoyan; Vaughan, Mark; Thornhill, Kenneth; Kittaka, Chieko; Ismail, Syed; Hu, Yongxiang; Chen, Gao; Powell, Kathleen; Winker, David; Trepte, Charles; Winstead, Edward; Anderson, Bruce

    2010-12-01

    We determine the extinction-to-backscatter (Sa) ratios of dust using (1) airborne in situ measurements of microphysical properties, (2) modeling studies, and (3) the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) observations recorded during the NASA African Monsoon Multidisciplinary Analyses (NAMMA) field experiment conducted from Sal, Cape Verde during August to September 2006. Using CALIPSO measurements of the attenuated backscatter of lofted Saharan dust layers, we apply the transmittance technique to estimate dust Sa ratios at 532 nm and a two-color method to determine the corresponding 1064 nm Sa. This method yielded dust Sa ratios of 39.8 ± 1.4 and 51.8 ± 3.6 sr at 532 and 1064 nm, respectively. Second, Sa at both wavelengths is independently calculated using size distributions measured aboard the NASA DC-8 and estimates of Saharan dust complex refractive indices applied in a T-Matrix scheme. We found Sa ratios of 39.1 ± 3.5 and 50.0 ± 4 sr at 532 and 1064 nm, respectively, using the T-Matrix calculations applied to measured size spectra. Finally, in situ measurements of the total scattering (550 nm) and absorption coefficients (532 nm) are used to generate an extinction profile that is used to constrain the CALIPSO 532 nm extinction profile and thus generate a stratified 532 nm Sa. This method yielded an Sa ratio at 532 nm of 35.7 sr in the dust layer and 25 sr in the marine boundary layer consistent with a predominantly sea-salt aerosol near the ocean surface. Combinatorial simulations using noisy size spectra and refractive indices were used to estimate the mean and uncertainty (one standard deviation) of these Sa ratios. These simulations produced a mean (± uncertainty) of 39.4 (±5.9) and 56.5 (±16.5) sr at 532 and 1064 nm, respectively, corresponding to percentage uncertainties of 15% and 29%. These results will provide a measurements-based estimate of the dust Sa for use in backscatter lidar inversion algorithms

  10. Direct observations of the atmospheric processing of Asian mineral dust

    NASA Astrophysics Data System (ADS)

    Sullivan, R. C.; Guazzotti, S. A.; Sodeman, D. A.; Prather, K. A.

    2007-02-01

    The accumulation of secondary acids and ammonium on individual mineral dust particles during ACE-Asia has been measured with an online single-particle mass spectrometer, the ATOFMS. Changes in the amounts of sulphate, nitrate, and chloride mixed with dust particles correlate with air masses from different source regions. The uptake of secondary acids depended on the individual dust particle mineralogy; high amounts of nitrate accumulated on calcium-rich dust while high amounts of sulphate accumulated on aluminosilicate-rich dust. Oxidation of S(IV) to S(VI) by iron in the aluminosilicate dust is a possible explanation for this enrichment of sulphate, which has important consequences for the fertilization of remote oceans by soluble iron. This study shows the segregation of sulphate from nitrate and chloride in individual aged dust particles for the first time. A transport and aging timeline provides an explanation for the observed segregation. Our data suggests that sulphate became mixed with the dust first. This implies that the transport pathway is more important than the reaction kinetics in determining which species accumulate on mineral dust. Early in the study, dust particles in volcanically influenced air masses were mixed predominately with sulphate. Dust mixed with chloride then dominated over sulphate and nitrate when a major dust front reached the R. V. Ronald Brown. We hypothesize that the rapid increase in chloride on dust was due to mixing with HCl(g) released from acidified sea salt particles induced by heterogeneous reaction with volcanic SO2(g), prior to the arrival of the dust front. The amount of ammonium mixed with dust correlated strongly with the total amount of secondary acid reaction products in the dust. Submicron dust and ammonium sulphate were internally mixed, contrary to frequent reports that they exist as external mixtures. The size distribution of the mixing state of dust with these secondary species validates previous mechanisms of

  11. Whither Cometary Dust?

    NASA Astrophysics Data System (ADS)

    Lisse, Carey M.

    2010-10-01

    In this paper I will discuss recent findings that have important implications for our understanding of the formation and evolution of primitive solar system dust, including: - Nesvorny et al. (2010), following up on their dynamical analyses of the zodiacal dust bands as sourced by the breakup of the Karin (5Mya) and Veritas (8Mya) asteroid families, argue that over 90% of the interplanetary dust cloud at 1 AU comes from JFC comets with near-circularized, low inclination orbits. This implies that the noted IPD collections of anhydrous and hydrous dust particles are likely to be from Oort cloud and JFC comets, respectively, not from asteroids and comets as thought in the past. Hydrous dust particles from comets like 85P/Wild2 and 9P/Tempel 1 would be consistent with results from the STARDUST and Deep Impact experiments. - Estimates of the dust particle size distributions (PSDs) in the comae of 85P/Wild2 (Green et al. 2004, 2007) and 73P/SW-3 (Sitko et al. 2010, Vaubaillon & Reach 2010) and in the trails of comets (Reach et al. 2007) have broken power law structure, with a plateau enhancement of particles of 1 mm - 1 cm in size. This size is also the size of most chondritic inclusions, and the predicted size range of the "aggregational barrier", where collisions between dust particles become destructive. - Studies of the albedo and polarization properties of cometary dust (Kolokolova et al. 2007) suggest there are 2 major groupings, one with low scattering capability and one with high. While these families could possibly have been explained by systematics in the PSDs of the emitted dust, independent work by Lisse et al. (2008) on the mineralogy of a number of highly dusty comets has shown evidence for one family of comets with highly crystalline dust and another with highly amorphous dust.

  12. Concentration and determinants of molds and allergens in indoor air and house dust of French dwellings.

    PubMed

    Dallongeville, Arnaud; Le Cann, Pierre; Zmirou-Navier, Denis; Chevrier, Cécile; Costet, Nathalie; Annesi-Maesano, Isabella; Blanchard, Olivier

    2015-12-01

    Molds and allergens are common indoor biocontaminants. The aims of this study were to assess the concentrations of common molds in indoor air and floor dust and the concentrations of house dust mite, cat and dog allergens in mattress dust in French dwellings, and to assess predictors of these concentrations. A sample of 150 houses in Brittany (western France) was investigated. Airborne Cladosporium and Penicillium were detected in more than 90% of the dwellings, Aspergillus in 46% and Alternaria in only 6% of the housings. Regarding floor dust samples, Cladosporium and Penicillium were detected in 92 and 80% of the housings respectively, Aspergillus in 49% and Alternaria in 14%. House dust mite allergens Der p1 and Der f1 were detected in 90% and 77% of the mattress dust samples respectively and Can f1 and Fel d1 in 37% and 89% of the homes. Airborne and dustborne mold concentrations, although not statistically correlated (except for Aspergillus) shared most of their predictors. Multivariate linear models for mold levels, explaining up to 62% of the variability, showed an influence of the season, of the age of the dwelling, of aeration habits, presence of pets, smoking, signals of dampness, temperature and relative humidity. Allergens in the dust of the mattress were strongly related to the presence of pets and cleaning practices of bedsheets, these factors accounting for 60% of the variability. This study highlights ubiquitous contamination by molds and underlines complex interaction between outdoor and indoor sources and factors. PMID:26094801

  13. Airborne Electro-Optical Sensor Simulation System. Final Report.

    ERIC Educational Resources Information Center

    Hayworth, Don

    The total system capability, including all the special purpose and general purpose hardware comprising the Airborne Electro-Optical Sensor Simulation (AEOSS) System, is described. The functional relationship between hardware portions is described together with interface to the software portion of the computer image generation. Supporting rationale…

  14. Exposures and health effects from inorganic agricultural dusts.

    PubMed Central

    Schenker, M

    2000-01-01

    Most studies of respiratory disease from dust exposure in the agricultural workplace have focused on allergic diseases caused by inorganic dusts, specifically occupational asthma and hypersensitivity pneumonitis. Exposures to inorganic (mineral) dusts among farmers and farm workers may be substantial. Such exposures are most frequent in dry-climate farming regions. In such locations farming activities that perturb the soil (e.g., plowing, tilling) commonly result in exposures to farm operators of 1-5 mg/m(3) respirable dust and >= 20 mg/m(3) total dust. The composition of inorganic dust in agriculture generally reflects the soil composition. Crystalline silica may represent up to 20% of particles, and silicates represent up to 80%. These very high concentrations of inorganic dust are likely to explain some of the increase in chronic bronchitis reported in many studies of farmers. Pulmonary fibrosis (mixed dust pneumoconiosis) has been reported in agricultural workers, and dust samples from the lungs in these cases reflect the composition of agricultural soils, strongly suggesting an etiologic role for inorganic agricultural dusts. However, the prevalence and clinical severity of these cases are unknown, and many exposures are to mixed organic and inorganic dusts. Epidemiologic studies of farmers in diverse geographic settings also have observed an increase in chronic obstructive pulmonary disease morbidity and mortality. It is plausible that agricultural exposure to inorganic dusts is causally associated with chronic bronchitis, interstitial fibrosis, and chronic obstructive pulmonary disease, but the independent contribution of mineral dusts beyond the effects of organic dusts remains to be determined. Images Figure 1 Figure 2 Figure 3 PMID:10931784

  15. Exposures and health effects from inorganic agricultural dusts.

    PubMed

    Schenker, M

    2000-08-01

    Most studies of respiratory disease from dust exposure in the agricultural workplace have focused on allergic diseases caused by inorganic dusts, specifically occupational asthma and hypersensitivity pneumonitis. Exposures to inorganic (mineral) dusts among farmers and farm workers may be substantial. Such exposures are most frequent in dry-climate farming regions. In such locations farming activities that perturb the soil (e.g., plowing, tilling) commonly result in exposures to farm operators of 1-5 mg/m(3) respirable dust and >= 20 mg/m(3) total dust. The composition of inorganic dust in agriculture generally reflects the soil composition. Crystalline silica may represent up to 20% of particles, and silicates represent up to 80%. These very high concentrations of inorganic dust are likely to explain some of the increase in chronic bronchitis reported in many studies of farmers. Pulmonary fibrosis (mixed dust pneumoconiosis) has been reported in agricultural workers, and dust samples from the lungs in these cases reflect the composition of agricultural soils, strongly suggesting an etiologic role for inorganic agricultural dusts. However, the prevalence and clinical severity of these cases are unknown, and many exposures are to mixed organic and inorganic dusts. Epidemiologic studies of farmers in diverse geographic settings also have observed an increase in chronic obstructive pulmonary disease morbidity and mortality. It is plausible that agricultural exposure to inorganic dusts is causally associated with chronic bronchitis, interstitial fibrosis, and chronic obstructive pulmonary disease, but the independent contribution of mineral dusts beyond the effects of organic dusts remains to be determined. PMID:10931784

  16. Mapping the mineralogical composition of mineral dust in Western Africa

    NASA Astrophysics Data System (ADS)

    Formenti, Paola; Caquineau, Sandrine; Desboeufs, Karine; Klaver, Anne; Chevaillier, Servanne; Journet, Emilie; Rajot, Jean Louis

    2014-05-01

    In the last few years, several ground-based and airborne field campaigns have allowed exploring the properties and impacts of mineral dust in Western Africa, one of the major emission and transport areas worldwide. In this paper, we explore the synthesis of these observations to provide with a large-scale quantitative view of the mineralogical composition and its variability with time after transport and source region. This work reveals that mineral dust in Western Africa can be represented as a mixture of illite, kaolinite, quartz, iron and titanium oxides, representing at least 92% of the dust mass. Calcite ranged between 0.3 and 8.4% of the dust mass depending on the origin. Our data do not show a systematic dependence of the dust composition with origin, likely as in most of the cases they represent the composition of the atmospheric burden after 1-2 days after emission, when air masses mix and give raise to a more uniform dust load. This has implications for the representation of the mineral dust composition in regional and global circulation models, and satellite retrievals. We estimate that iron oxides account for 58 ± 7% of the mass of elemental Fe, and between 2 and 5% of the dust mass. We provide with first time estimates of the partitioning of hematite and goethite in major dust sources such as the Bodélé and the South Algeria deserts. Goethite represents between 47 and 71% of the iron oxide mass. Likewise, we found that titanium oxides account for between 1 and 2% of the dust mass. On the basis of these compositional data, we provide with estimates of the complex refractive index relevant to the direct effect of mineral dust on the radiative budget. Data presented in this paper are provided in numerical form upon email request while they are being implemented as a public database, the Dust-Mapped Archived Properties (DUST-MAP), an open repository for compositional data from other source regions in Africa and worldwide.

  17. The Nature of Interstellar Dust

    NASA Technical Reports Server (NTRS)

    Huss, G. R.

    2003-01-01

    The STARDUST mission is designed to collect dust the coma of comet Wild 2 and to collect interstellar dust on a second set of collectors. We have a reasonable idea of what to expect from the comet dust collection because the research community has been studying interplanetary dust particles for many years. It is less clear what we should expect from the interstellar dust. This presentation discusses what we might expect to find on the STARDUST interstellar dust collector.

  18. Risk of Adverse Health and Performance Effects of Celestial Dust Exposure

    NASA Technical Reports Server (NTRS)

    Scully, Robert R.; Meyers, Valerie E.

    2015-01-01

    Crew members can be directly exposed to celestial dust in several ways. After crew members perform extravehicular activities (EVAs), they may introduce into the habitat dust that will have collected on spacesuits and boots. Cleaning of the suits between EVAs and changing of the Environmental Control Life Support System filters are other operations that could result in direct exposure to celestial dusts. In addition, if the spacesuits used in exploration missions abrade the skin, as current EVA suits have, then contact with these wounds would provide a source of exposure. Further, if celestial dusts gain access to a suit's interior, as was the case during the Apollo missions, the dust could serve as an additional source of abrasions or enhance suit-induced injuries. When a crew leaves the surface of a celestial body and returns to microgravity, the dust that is introduced into the return vehicle will "float," thus increasing the opportunity for ocular and respiratory injury. Because the features of the respirable fraction of lunar dusts indicate they could be toxic to humans, NASA conducted several studies utilizing lunar dust simulants and authentic lunar dust to determine the unique properties of lunar dust that affect physiology, assess the dermal and ocular irritancy of the dust, and establish a permissible exposure limit for episodic exposure to airborne lunar dust during missions that would involve no more than 6 months stay on the lunar surface. Studies, with authentic lunar soils from both highland (Apollo 16) and mare (Apollo17) regions demonstrated that the lunar soil is highly abrasive to a high fidelity model of human skin. Studies of lunar dust returned during the Apollo 14 mission from an area of the moon in which the soils were comprised of mineral constituents from both major geological regions (highlands and mares regions) demonstrated only minimal ocular irritancy, and pulmonary toxicity that was less than the highly toxic terrestrial crystalline

  19. Elemental characterization of the airborne pollen surface using Electron Probe Microanalysis (EPMA)

    NASA Astrophysics Data System (ADS)

    Duque, Laura; Guimarães, Fernanda; Ribeiro, Helena; Sousa, Raquel; Abreu, Ilda

    2013-08-01

    Recent worldwide increase in pollinoses has been attributed to the synergy between pollen and pollutants. We used EPMA for the elemental characterization of the airborne pollen surface in order to find out what occurs to the wall of pollen grains when they are together with other atmospheric pollutants. Analyses were performed both to airborne pollen and to pollen that was collected from Acer spp., Platanus spp. and Pinus spp. trees. Airborne samples were assembled using a Hirst-type volumetric spore sampler set in the coastal city of Porto, Portugal. Airborne pollen samples showed major elemental differences when compared to the control pollen sample of the same species, namely in the amounts of Cl, Na and Mg, which very significantly increased on airborne samples, revealing an important influence of the ocean. Mineral dust also contributed to modify the pollen surface, by increasing Si contents on Acer spp. and Platanus spp. airborne pollen. Our results revealed consistent positive effects of the relative humidity and the precipitation in the increase of Cl, Na and Mg relative amounts on the pollen surface. This study shows that pollen grains have the ability to adsorb and/or absorb other materials, which may contribute to enhance pollen's harmful effects on people's health.

  20. Combustible dust tests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sugar dust explosion in Georgia on February 7, 2008 killed 14 workers and injured many others (OSHA, 2009). As a consequence of this explosion, OSHA revised its Combustible Dust National Emphasis (NEP) program. The NEP targets 64 industries with more than 1,000 inspections and has found more tha...

  1. Pathfinder Spies Dust Devils

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This set of images from NASA's 1997 Pathfinder mission highlight the dust devils that gust across the surface of Mars. The right image shows the dusty martian sky as our eye would see it. The left image has been enhanced to expose the dust devils that lurk in the hazy sky.

  2. Dust resuspension without saltation