Science.gov

Sample records for airborne total dust

  1. Airborne concentrations of metals and total dust during solid catalyst loading and unloading operations at a petroleum refinery.

    PubMed

    Lewis, Ryan C; Gaffney, Shannon H; Le, Matthew H; Unice, Ken M; Paustenbach, Dennis J

    2012-09-01

    Workers handle catalysts extensively at petroleum refineries throughout the world each year; however, little information is available regarding the airborne concentrations and plausible exposures during this type of work. In this paper, we evaluated the airborne concentrations of 15 metals and total dust generated during solid catalyst loading and unloading operations at one of the largest petroleum refineries in the world using historical industrial hygiene samples collected between 1989 and 2006. The total dust and metals, which included aluminum, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, platinum, silicon, silver, vanadium, and zinc, were evaluated in relation to the handling of four different types of solid catalysts associated with three major types of catalytic processes. Consideration was given to the known components of the solid catalysts and any metals that were likely deposited onto them during use. A total of 180 analytical results were included in this analysis, representing 13 personal and 54 area samples. Of the long-term personal samples, airborne concentrations of metals ranged from <0.001 to 2.9mg/m(3), and, in all but one case, resulted in concentrations below the current U.S. Occupational Safety and Health Administration's Permissible Exposure Limits and the American Conference of Governmental Industrial Hygienists' Threshold Limit Values. The arithmetic mean total dust concentration resulting from long-term personal samples was 0.31mg/m(3). The data presented here are the most complete set of its kind in the open literature, and are useful for understanding the potential exposures during solid catalyst handling activities at this petroleum refinery and perhaps other modern refineries during the timeframe examined. PMID:22177528

  2. Airborne concentrations of metals and total dust during solid catalyst loading and unloading operations at a petroleum refinery.

    PubMed

    Lewis, Ryan C; Gaffney, Shannon H; Le, Matthew H; Unice, Ken M; Paustenbach, Dennis J

    2012-09-01

    Workers handle catalysts extensively at petroleum refineries throughout the world each year; however, little information is available regarding the airborne concentrations and plausible exposures during this type of work. In this paper, we evaluated the airborne concentrations of 15 metals and total dust generated during solid catalyst loading and unloading operations at one of the largest petroleum refineries in the world using historical industrial hygiene samples collected between 1989 and 2006. The total dust and metals, which included aluminum, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, platinum, silicon, silver, vanadium, and zinc, were evaluated in relation to the handling of four different types of solid catalysts associated with three major types of catalytic processes. Consideration was given to the known components of the solid catalysts and any metals that were likely deposited onto them during use. A total of 180 analytical results were included in this analysis, representing 13 personal and 54 area samples. Of the long-term personal samples, airborne concentrations of metals ranged from <0.001 to 2.9mg/m(3), and, in all but one case, resulted in concentrations below the current U.S. Occupational Safety and Health Administration's Permissible Exposure Limits and the American Conference of Governmental Industrial Hygienists' Threshold Limit Values. The arithmetic mean total dust concentration resulting from long-term personal samples was 0.31mg/m(3). The data presented here are the most complete set of its kind in the open literature, and are useful for understanding the potential exposures during solid catalyst handling activities at this petroleum refinery and perhaps other modern refineries during the timeframe examined.

  3. Airborne Dust in Space Vehicles and Habitats

    NASA Technical Reports Server (NTRS)

    James, John

    2006-01-01

    Airborne dust, suspended inside a space vehicle or in future celestial habitats, can present a serious threat to crew health if it is not controlled. During the Apollo missions to the moon, lunar dust brought inside the capsule caused eye irritation and breathing difficulty to the crew when they launched from the moon and re-acquired "microgravity." During Shuttle flights reactive and toxic dusts such as lithium hydroxide have created a risk to crew health, and fine particles from combustion events can be especially worrisome. Under nominal spaceflight conditions, airborne dusts and particles tend to be larger than on earth because of the absence of gravity settling. Aboard the ISS, dusts are effectively managed by HEPA filters, although floating dust in newly-arrived modules can be a nuisance. Future missions to the moon and to Mars will present additional challenges because of the possibility that external dust will enter the breathing atmosphere of the habitat and reach the crew's respiratory system. Testing with simulated lunar and Martian dust has shown that these materials are toxic when placed into the lungs of test animals. Defining and evaluating the physical and chemical properties of Martian dusts through robotic missions will challenge our ability to prepare better dust simulants and to determine the risk to crew health from exposure to such dusts.

  4. Airborne Dust Models in Valley Fever Research

    NASA Astrophysics Data System (ADS)

    Sprigg, W. A.; Galgiani, J. N.; Vujadinovic, M.; Pejanovic, G.; Vukovic, A. J.; Prasad, A. K.; Djurdjevic, V.; Nickovic, S.

    2011-12-01

    Dust storms (haboobs) struck Phoenix, Arizona, in 2011 on July 5th and again on July 18th. One potential consequence: an estimated 3,600 new cases of Valley Fever in Maricopa County from the first storm alone. The fungi, Coccidioides immitis, the cause of the respiratory infection, Valley Fever, lives in the dry desert soils of the American southwest and southward through Mexico, Central America and South America. The fungi become part of the dust storm and, a few weeks after inhalation, symptoms of Valley Fever may appear, including pneumonia-like illness, rashes, and severe fatigue. Some fatalities occur. Our airborne dust forecast system predicted the timing and extent of the storm, as it has done with other, often different, dust events. Atmosphere/land surface models can be part of public health services to reduce risk of Valley Fever and exacerbation of other respiratory and cardiovascular illness.

  5. Airborne dust particle counting techniques.

    PubMed

    Sharma, S G; Prasad, B D

    2006-03-01

    The paper briefly describes an electro-optical system for counting of dust particles, which is based on the scattering phenomena. Utilizing the scattering of light by various size particles present in the environment, various particle counting techniques have been developed in order to measure the scattered intensity of light. Light scatters in all directions but much more in the so-called near forward direction 17( composite function) off axis, at 163( composite function) from the light source in the visible range. On the basis of two techniques, the right angle and forward angle scattering, opto-mechanical systems have been developed which measure scattered intensity and particulate matter. The forward scattering Nephelometer is more sensitive and therefore is more suitable for pollution monitoring than the right angle scattering Nephelometer. Whereas the right angle scattering Nephelometer has the utility in extremely low concentration in ppb level owing to the excellent light trap efficiency in comparison to forward scattering Nephelometer. In this paper measurement techniques and measurement results associated with design and development of a real time particle analyser are also discussed.

  6. Lunar Airborne Dust Toxicity Hazard Assessments (Invited)

    NASA Astrophysics Data System (ADS)

    Cooper, B. L.; McKay, D. S.; Taylor, L. A.; Wallace, W. T.; James, J.; Riofrio, L.; Gonzalez, C. P.

    2009-12-01

    The Lunar Airborne Dust Toxicity Assessment Group (LADTAG) is developing data to set the permissible limits for human exposure to lunar dust. This standard will guide the design of airlocks and ports for EVA, as well as the requirements for filtering and monitoring the atmosphere in habitable vehicles, rovers and other modules. LADTAG’s recommendation for permissible exposure limits will be delivered to the Constellation Program in late 2010. The current worst-case exposure limit of 0.05 mg/m3, estimated by LADTAG in 2006, reflects the concern that lunar dust may be as toxic as quartz dust. Freshly-ground quartz is known to be more toxic than un-ground quartz dust. Our research has shown that the surfaces of lunar soil grains can be more readily activated by grinding than quartz. Activation was measured by the amount of free radicals generated—activated simulants generate Reactive Oxygen Species (ROS) i.e., production of hydroxyl free radicals. Of the various influences in the lunar environment, micrometeorite bombardment probably creates the most long-lasting reactivity on the surfaces of grains, although solar wind impingement and short-wavelength UV radiation also contribute. The comminution process creates fractured surfaces with unsatisfied bonds. When these grains are inhaled and carried into the lungs, they will react with lung surfactant and cells, potentially causing tissue damage and disease. Tests on lunar simulants have shown that dissolution and leaching of metals can occur when the grains are exposed to water—the primary component of lung fluid. However, simulants may behave differently than actual lunar soils. Rodent toxicity testing will be done using the respirable fraction of actual lunar soils (particles with physical size of less than 2.5 micrometers). We are currently separating the fine material from the coarser material that comprises >95% of the mass of each soil sample. Dry sieving is not practical in this size range, so a new system

  7. Immune Alterations in Rats Exposed to Airborne Lunar Dust

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Quiriarte, Heather; Nelman, Mayra; Lam, Chiu-wing; James, John T.; Sams, Clarence

    2014-01-01

    The lunar surface is covered by a layer of fine, reactive dust. Very little is known regarding the toxicity of lunar dust on human physiology. This study assessed the toxicity of airborne lunar dust exposure in rats on pulmonary and systemic immune parameters.

  8. Sampling and analysis method for measuring airborne coal dust mass in mixtures with limestone (rock) dust.

    PubMed

    Barone, T L; Patts, J R; Janisko, S J; Colinet, J F; Patts, L D; Beck, T W; Mischler, S E

    2016-01-01

    Airborne coal dust mass measurements in underground bituminous coal mines can be challenged by the presence of airborne limestone dust, which is an incombustible dust applied to prevent the propagation of dust explosions. To accurately measure the coal portion of this mixed airborne dust, the National Institute for Occupational Safety and Health (NIOSH) developed a sampling and analysis protocol that used a stainless steel cassette adapted with an isokinetic inlet and the low temperature ashing (LTA) analytical method. The Mine Safety and Health Administration (MSHA) routinely utilizes this LTA method to quantify the incombustible content of bulk dust samples collected from the roof, floor, and ribs of mining entries. The use of the stainless steel cassette with isokinetic inlet allowed NIOSH to adopt the LTA method for the analysis of airborne dust samples. Mixtures of known coal and limestone dust masses were prepared in the laboratory, loaded into the stainless steel cassettes, and analyzed to assess the accuracy of this method. Coal dust mass measurements differed from predicted values by an average of 0.5%, 0.2%, and 0.1% for samples containing 20%, 91%, and 95% limestone dust, respectively. The ability of this method to accurately quantify the laboratory samples confirmed the validity of this method and allowed NIOSH to successfully measure the coal fraction of airborne dust samples collected in an underground coal mine.

  9. Longitudinal study of dust and airborne endotoxin in the home.

    PubMed

    Park, J H; Spiegelman, D L; Burge, H A; Gold, D R; Chew, G L; Milton, D K

    2000-11-01

    To characterize the seasonal variability of endotoxin levels, we measured endotoxin in dust from the bed, bedroom floor, and kitchen floor in 20 homes, and in air from the bedroom in 15 of the homes. All homes were located in the greater Boston, Massachusetts, area and were sampled each month from April 1995 to June 1996. Outdoor air was collected at two locations. We found greater within-home than between-home variance for bedroom floor, kitchen floor, and airborne endotoxin. However, the reverse was true for bed dust endotoxin. Thus, studies using single measurements of dust endotoxin are most likely to reliably distinguish between homes if bed dust is sampled. Dust endotoxin levels were not significantly associated with airborne endotoxin. Airborne endotoxin was significantly (p = 0. 04) and positively associated with absolute humidity in a mixed-effect model adjusting for a random home effect and fixed effect of sampling month and home characteristics. This finding implies that indoor humidity may be an important factor controlling endotoxin exposure. We found a significant (p < 0.05) seasonal effect in kitchen floor dust (spring > fall) and bedroom airborne endotoxin (spring > winter), but not in the other indoor samples. We found significant seasonal pattern in outdoor airborne endotoxin (summer > winter). PMID:11102291

  10. Methods to assess airborne concentrations of cotton dust.

    PubMed

    Corn, M

    1987-01-01

    Assessment of concentrations of airborne cotton dust in the factory is necessary to determine adherence to applicable Permissible Exposure Limits (PELs) on a day-to-day basis, as well as for investigatory studies of an epidemiological nature. The latter are required on an ongoing basis to determine the adequacy of PELs to prevent disease in the exposed population. A strategy of sampling includes considerations of the numbers of samples to be obtained for statistical validity and the locations of samples. Current practice is to obtain more "personal samples" of exposure wherever possible, but with regard to cotton dust, instrumentation is not available for such sampling. In the U.S., the vertical elutriator is the instrument of choice for determining the concentrations of cotton dust in air. Results are expressed as milligrams of airborne particulate (cotton dust) per cubic meter. PMID:3434562

  11. Endotoxins in baled cottons and airborne dusts in textile mills in the People's Republic of China.

    PubMed Central

    Olenchock, S A; Christiani, D C; Mull, J C; Ye, T T; Lu, P L

    1983-01-01

    Bulk cotton samples and airborne vertical elutriated cotton dusts were obtained from textile mills in Shanghai, People's Republic of China. Analysis of endotoxin contents revealed that baled cottons which were grown in different countries varied in endotoxin contamination. The two textile mills, which operated at similar overall airborne dust levels, differed markedly in the levels of airborne endotoxins. The data suggest that the biological activity or "toxicity" of airborne cotton dusts may not be correlated directly with gravimetric dust levels. PMID:6639029

  12. Long-Term Variability of Airborne Asian Dust Observed from TOMS

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Hsu, N. C.; Seftor, C. J.; Holben, B. N.; Holben, B. N.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Recent studies suggest that airborne Asian dust may not only play an important role in the regional radiation budget, but also influence the air quality over North America through long-range transport. In this paper, we use satellite data to investigate the long-term variability of airborne Asian dust as well as the daily variation of the dust aerosol distribution. By combining the Total Ozone Mapping Spectrometer (TOMS) aerosol index with National Centers for Environmental Prediction (NCEP) wind data, our analysis shows a strong correlation between the generation of dust storms in the region and the passage of springtime weather fronts. This is consistent with earlier studies performed by other researchers. According to both the Nimbus-7 and Earth-Probe TOMS data the Takla Makan desert, the Gobi desert, and the and region of Inner Mongolia are major sources of the eastward-flowing airborne Asian dust. Heavily populated areas in eastern China (e.g., Beijing) are often on the primary path of the dust storms originating in these desert regions. The increasing desertification north of the Beijing region has served to exacerbate problems stemming from these storms. The time series derived from 20 years of TOMS aerosol index data shows the first significant satellite evidence of the atmospheric effect of increasing desertification, indicating that the amount of dust blown eastward has increased strongly during the past few years including the year 2000.

  13. Elemental composition of airborne dust in the Shale Shaker House during an offshore drilling operation.

    PubMed

    Hansen, A B; Larsen, E; Hansen, L V; Lyngsaae, M; Kunze, H

    1991-12-01

    During 2 days of an offshore drilling operation in the North Sea, 16 airborne dust samples from the atmosphere of the Shale Shaker House were collected onto filters. During this operation, drilling mud composed of a water slurry of barite (BaSO4) together with minor amounts of additives, among them chrome lignosulphonate and chrome lignite, was circulated between the borehole and the Shale Shaker House. The concentration of airborne dust in the atmosphere was determined and the elemental composition of the particles analysed by both PIXE (proton-induced X-ray emission) and ICP-MS (inductively coupled plasma-mass spectrometry). The total amount of dust collected varied from 0.04 to 1.41 mg m-3 with barium (Ba) as the single most abundant element. The open shale shakers turned out to be the major cause of generation of dust from the solid components of the drilling mud.

  14. Elemental composition of airborne dust in the Shale Shaker House during an offshore drilling operation.

    PubMed

    Hansen, A B; Larsen, E; Hansen, L V; Lyngsaae, M; Kunze, H

    1991-12-01

    During 2 days of an offshore drilling operation in the North Sea, 16 airborne dust samples from the atmosphere of the Shale Shaker House were collected onto filters. During this operation, drilling mud composed of a water slurry of barite (BaSO4) together with minor amounts of additives, among them chrome lignosulphonate and chrome lignite, was circulated between the borehole and the Shale Shaker House. The concentration of airborne dust in the atmosphere was determined and the elemental composition of the particles analysed by both PIXE (proton-induced X-ray emission) and ICP-MS (inductively coupled plasma-mass spectrometry). The total amount of dust collected varied from 0.04 to 1.41 mg m-3 with barium (Ba) as the single most abundant element. The open shale shakers turned out to be the major cause of generation of dust from the solid components of the drilling mud. PMID:1768013

  15. Migration of contaminated soil and airborne particulates to indoor dust.

    PubMed

    Layton, David W; Beamer, Paloma I

    2009-11-01

    We have developed a modeling and measurement framework for assessing transport of contaminated soils and airborne particulates into a residence, their subsequent distribution indoors via resuspension and deposition processes, and removal by cleaning and building exhalation of suspended particles. The model explicitly accounts for the formation of house dust as a mixture of organic matter (OM) such as shed skin cells and organic fibers, soil tracked-in on footwear, and particulate matter (PM) derived from the infiltration of outdoor air. We derived formulas for use with measurements of inorganic contaminants, crustal tracers, OM, and PM to quantify selected transport parameters. Application of the model to residences in the U.S. Midwest indicates that As in ambient air can account for nearly 60% of the As input to floor dust, with soil track-in representing the remainder. Historic data on Pb contamination in Sacramento, CA, were used to reconstruct sources of Pb in indoor dust, showing that airborne Pb was likely the dominant source in the early 1980s. However, as airborne Pb levels declined due to the phase-out of leaded gasoline, soil resuspension and track-in eventually became the primary sources of Pb in house dust.

  16. Airborne fungal and bacterial components in PM1 dust from biofuel plants.

    PubMed

    Madsen, Anne Mette; Schlünssen, Vivi; Olsen, Tina; Sigsgaard, Torben; Avci, Hediye

    2009-10-01

    Fungi grown in pure cultures produce DNA- or RNA-containing particles smaller than spore size (<1.5 microm). High exposures to fungi and bacteria are observed at biofuel plants. Airborne cultivable bacteria are often described to be present in clusters or associated with larger particles with an aerodynamic diameter (d(ae)) of 2-8 microm. In this study, we investigate whether airborne fungal components smaller than spore size are present in bioaerosols in working areas at biofuel plants. Furthermore, we measure the exposure to bacteria and fungal components in airborne particulate matter (PM) with a D(50) of 1 microm (called PM(1) dust). PM(1) was sampled using Triplex cyclones at a working area at 14 Danish biofuel plants. Millipore cassettes were used to sample 'total dust'. The PM(1) particles (29 samples) were analysed for content of 11 different components and the total dust was analysed for cultivable fungi, N-acetyl-beta-D-glucosaminidase (NAGase), and (1 --> 3)-beta-D-glucans. In the 29 PM(1) samples, cultivable fungi were found in six samples and with a median concentration below detection level. Using microscopy, fungal spores were identified in 22 samples. The components NAGase and (1 --> 3)-beta-D-glucans, which are mainly associated with fungi, were present in all PM(1) samples. Thermophilic actinomycetes were present in 23 of the 29 PM(1) samples [average = 739 colony-forming units (CFU) m(-3)]. Cultivable and 'total bacteria' were found in average concentrations of, respectively, 249 CFU m(-3) and 1.8 x 10(5) m(-3). DNA- and RNA-containing particles of different lengths were counted by microscopy and revealed a high concentration of particles with a length of 0.5-1.5 microm and only few particles >1.5 microm. The number of cultivable fungi and beta-glucan in the total dust correlated significantly with the number of DNA/RNA-containing particles with lengths of between 1.0 and 1.5 microm, with DNA/RNA-containing particles >1.5 microm, and with other

  17. Airborne desert dust and aeromicrobiology over the Turkish Mediterranean coastline

    USGS Publications Warehouse

    Griffin, Dale W.; Kubilay, Nilgün; Kocak, Mustafa; Gray, Mike A.; Borden, Timothy C.; Shinn, Eugene A.

    2007-01-01

    Between 18 March and 27 October 2002, 220 air samples were collected on 209 of 224 calendar days, on top of a coastal atmospheric research tower in Erdemli, Turkey. The volume of air filtered for each sample was 340 liters. Two hundred fifty-seven bacterial and 2598 fungal colony forming units (CFU) were enumerated from the samples using a low-nutrient agar. Ground-based dust measurements demonstrated that the region is routinely impacted by dust generated regionally and from North Africa and that the highest combined percent recovery of total CFU and African dust deposition occurred in the month of April (93.4% of CFU recovery and 91.1% of dust deposition occurred during African dust days versus no African dust present, for that month). A statistically significant correlation was observed (peak regional African dust months of March, April and May; rs=0.576, P=0.000) between an increase in the prevalence of microorganisms recovered from atmospheric samples on dust days (regional and African as determined by ground-based dust measurements), versus that observed on non-dust days. Given the prevalence of atmospherically suspended desert dust and microorganisms observed in this study, and that culture-based studies typically only recover a small fraction (

  18. Examination of water spray airborne coal dust capture with three wetting agents

    PubMed Central

    Organiscak, J.A.

    2015-01-01

    Water spray applications are one of the principal means of controlling airborne respirable dust in coal mines. Since many coals are hydrophobic and not easily wetted by water, wetting agents can be added to the spray water in an effort to improve coal wetting and assist with dust capture. In order to study wetting agent effects on coal dust capture, laboratory experiments were conducted with three wetting agents used by the coal industry on -325 mesh sized Pocahontas No. 3 coal dust. Significant differences in coal dust sink times were observed among the three wetting agents at water mixture concentrations of 0.05%, 0.1% and 0.2%. The best wetting agent as identified by the coal dust sink test was only tested at the lowest 0.05% water mixture concentration and was found to have a negligible effect on spray airborne dust capture. Water spray airborne dust capture results for all three wetting agents tested at a 0.2% water mixture concentration showed that all three wetting agents exhibit similar but small improvements in dust capture efficiency as compared with water. These results indicate that the coal dust sink test may not be a good predictor for the capture of airborne dust. Additional research is needed to examine if the coal dust sink test is a better predictor of wetting agent dust suppression effects during cutting, loading, conveying and dumping of coal products by comparison to airborne dust capture from sprays. PMID:26251565

  19. Exposure to airborne microorganisms, dust and endotoxin during processing of peppermint and chamomile herbs on farms.

    PubMed

    Skórska, Czesława; Sitkowska, Jolanta; Krysińska-Traczyk, Ewa; Cholewa, Grazyna; Dutkiewicz, Jacek

    2005-01-01

    The aim of this study was to determine the levels of microorganisms, dust and endotoxin in the air during processing of peppermint (Mentha piperita) and chamomile (Matricaria recutita) by herb farmers, and to examine the species composition of airborne microflora. Air samples were collected on glass fibre filters by use of personal samplers on 13 farms owned by herb cultivating farmers, located in Lublin province (eastern Poland). The concentrations of total viable microorganisms (bacteria + fungi) in the farm air during processing of peppermint herb were large, within a range from 895.1-6,015.8 x 10(3) cfu/m(3) (median 1,055.3 x 10(3) cfu/m(3)). During processing of chamomile herb they were much lower and varied within a range from 0.88-295.6 x 10(3) cfu/m(3) (median 27.3 x 10(3) cfu/m(3)). Gram-negative bacteria distinctly prevailed during processing of peppermint leaves, forming 46.4-88.5 % of the total airborne microflora. During processing of chamomile herb, Gram-negative bacteria were dominant at 3 out of 6 sampling sites forming 54.7-75.3 % of total microflora, whereas at the remaining 3 sites the most common were fungi forming 46.2-99.9 % of the total count. The species Pantoea agglomerans (synonyms: Erwinia herbicola, Enterobacter agglomerans ), having strong allergenic and endotoxic properties, distinctly prevailed among Gram-negative isolates. Among fungi, the most common species was Alternaria alternata. The concentrations of airborne dust and endotoxin determined on the examined herb farms were large. The concentrations of airborne dust during peppermint and chamomile processing ranged from 86.7-958.9 mg/m(3), and from 1.1-499.2 mg/m(3), respectively (medians 552.3 mg/m(3) and 12.3 mg/m(3)). The concentrations of airborne endotoxin determined during peppermint and chamomile processing were within a wide range 1.53-208.33 microg/m(3) and 0.005-2604.19 microg/m(3) respectively (medians 57.3 microg/m(3) and 0.96 microg/m(3)). In conclusion, farmers

  20. Mineralogical, Chemical, and Optical Interrelationships of Airborne Mineral Dusts

    NASA Astrophysics Data System (ADS)

    Engelbrecht, J. P.; Moosmuller, H.; Pincock, S. L.; Jayanty, R. K. M.; Casuccio, G.

    2014-12-01

    The purpose of the project was to provide information on the mineralogical, chemical and physical interrelationships of re-suspended mineral dust samples collected as grab samples from global dust sources. Surface soil samples were collected from about 65 desert sites, including the southwestern USA (12), Mali (3), Chad (3), Morocco (1), Canary Islands (8), Cape Verde (1), Djibouti (1), Afghanistan (3), Iraq (6), Kuwait (5), Qatar (1), UAE (1), Serbia (3), China (5), Namibia (3), Botswana (4), Australia (3), and Chile (1). The < 38 μm sieved fraction of each sample was re-suspended in an entrainment chamber, from which the airborne mineral dust could be monitored, sampled and analyzed. Instruments integrated into the entrainment facility included two PM10 and two PM2.5 filter samplers, a beta attenuation gauge for the continuous measurement of PM10 and PM2.5 particulate mass fractions, an aerodynamic particle size (APS) analyzer, and a three wavelength (405, 532, 781nm) photoacoustic resonator with integrating reciprocal nephelometer for monitoring absorption and scattering coefficients during the dust re-suspension process. Filter sample media included Teflon® membrane and quartz fiber filters for chemical analysis (71 species), and Nuclepore® filters for individual particle analysis by Scanning Electron Microscopy (SEM). The < 38 μm sieved fractions were also analyzed by X-ray diffraction for their mineral content while the > 38 μm, < 125 μm soil fractions were mineralogically characterized by optical microscopy. We will be presenting results on the optical measurements, also showing the relationship between single scattering albedo (SSA) at three different wavelengths, and chemical as well as mineralogical content and interdependencies of the entrained dust samples. Examples showing the relationships between the single scattering albedos of airborne dusts, and iron (Fe) in hematite, goethite, and clay minerals (montmorillonite, illite, palygorskite), will

  1. beta-(1,3)-Glucan exposure assessment by passive airborne dust sampling and new sensitive immunoassays.

    PubMed

    Noss, Ilka; Wouters, Inge M; Bezemer, Gillina; Metwali, Nervana; Sander, Ingrid; Raulf-Heimsoth, Monika; Heederik, Dick J J; Thorne, Peter S; Doekes, Gert

    2010-02-01

    Associations between house dust-associated beta-(1,3)-glucan exposure and airway inflammatory reactions have been reported, while such exposures in early childhood have been suggested to protect against asthma and wheezing. Most epidemiological studies have used reservoir dust samples and an inhibition enzyme immunoassay (EIA) for beta-(1,3)-glucan exposure assessment. The objective of this study was to develop inexpensive but highly sensitive enzyme immunoassays to measure airborne beta-(1,3)-glucans in low-exposure environments, like homes. Specificities of available anti-beta-(1,3)-glucan antibodies were defined by direct and inhibition experiments. Three suitable antibody combinations were selected for sandwich EIAs. beta-(1,3)-Glucans in passive airborne dust collected with an electrostatic dust fall collector (EDC) and floor dust from seven homes were measured with the three EIAs. Floor dust samples were additionally analyzed in the inhibition EIA. The sandwich EIAs were sensitive enough for airborne glucan measurement and showed different specificities for commercial glucans, while the beta-(1,3)-glucan levels in house dust samples correlated strongly. The feasibility of measuring glucans in airborne dust with the recently introduced EDC method was further investigated by selecting the most suitable of the three EIAs to measure and compare beta-(1,3)-glucan levels in the EDC and in floor and actively collected airborne dust samples of the previously performed EDC validation study. The EDC beta-(1,3)-glucan levels correlated moderately with beta-(1,3)-glucans in actively collected airborne dust and floor dust samples, while the glucan levels in the airborne dust and floor dust samples did not correlate. The combination of the newly developed beta-(1,3)-glucan sandwich EIA with EDC sampling now allows assessment in large-scale population studies of exposure to airborne beta-(1,3)-glucans in homes or other low-exposure environments.

  2. Microbial immigration across the Mediterranean via airborne dust.

    PubMed

    Rosselli, Riccardo; Fiamma, Maura; Deligios, Massimo; Pintus, Gabriella; Pellizzaro, Grazia; Canu, Annalisa; Duce, Pierpaolo; Squartini, Andrea; Muresu, Rosella; Cappuccinelli, Pietro

    2015-01-01

    Dust particles lifting and discharge from Africa to Europe is a recurring phenomenon linked to air circulation conditions. The possibility that microorganisms are conveyed across distances entails important consequences in terms of biosafety and pathogens spread. Using culture independent DNA-based analyses via next generation sequencing of the 16 S genes from the airborne metagenome, the atmospheric microbial community was characterized and the hypothesis was tested that shifts in species diversity could be recorded in relation to dust discharge. As sampling ground the island of Sardinia was chosen, being an ideal cornerstone within the Mediterranean and a crossroad of wind circulation amidst Europe and Africa. Samples were collected in two opposite coastal sites and in two different weather conditions comparing dust-conveying winds from Africa with a control situation with winds from Europe. A major conserved core microbiome was evidenced but increases in species richness and presence of specific taxa were nevertheless observed in relation to each wind regime. Taxa which can feature strains with clinical implications were also detected. The approach is reported as a recommended model monitoring procedure for early warning alerts in frameworks of biosafety against natural spread of clinical microbiota across countries as well as to prevent bacteriological warfare. PMID:26542754

  3. Microbial immigration across the Mediterranean via airborne dust

    PubMed Central

    Rosselli, Riccardo; Fiamma, Maura; Deligios, Massimo; Pintus, Gabriella; Pellizzaro, Grazia; Canu, Annalisa; Duce, Pierpaolo; Squartini, Andrea; Muresu, Rosella; Cappuccinelli, Pietro

    2015-01-01

    Dust particles lifting and discharge from Africa to Europe is a recurring phenomenon linked to air circulation conditions. The possibility that microorganisms are conveyed across distances entails important consequences in terms of biosafety and pathogens spread. Using culture independent DNA-based analyses via next generation sequencing of the 16 S genes from the airborne metagenome, the atmospheric microbial community was characterized and the hypothesis was tested that shifts in species diversity could be recorded in relation to dust discharge. As sampling ground the island of Sardinia was chosen, being an ideal cornerstone within the Mediterranean and a crossroad of wind circulation amidst Europe and Africa. Samples were collected in two opposite coastal sites and in two different weather conditions comparing dust-conveying winds from Africa with a control situation with winds from Europe. A major conserved core microbiome was evidenced but increases in species richness and presence of specific taxa were nevertheless observed in relation to each wind regime. Taxa which can feature strains with clinical implications were also detected. The approach is reported as a recommended model monitoring procedure for early warning alerts in frameworks of biosafety against natural spread of clinical microbiota across countries as well as to prevent bacteriological warfare. PMID:26542754

  4. Health effects of particulate air pollution and airborne desert dust

    NASA Astrophysics Data System (ADS)

    Lelieveld, J.; Pozzer, A.; Giannadaki, D.; Fnais, M.

    2013-12-01

    Air pollution by fine particulate matter (PM2.5) has increased strongly with industrialization and urbanization. In the past decades this increase has taken place at a particularly high pace in South and East Asia. We estimate the premature mortality and the years of human life lost (YLL) caused by anthropogenic PM2.5 and airborne desert dust (DU2.5) on regional and national scales (Giannadaki et al., 2013; Lelieveld et al., 2013). This is based on high-resolution global model calculations that resolve urban and industrial regions in relatively great detail. We apply an epidemiological health impact function and find that especially in large countries with extensive suburban and rural populations, air pollution-induced mortality rates have been underestimated given that previous studies largely focused on the urban environment. We calculate a global premature mortality by anthropogenic aerosols of 2.2 million/year (YLL ≈ 16 million/year) due to lung cancer and cardiopulmonary disease. High mortality rates by PM2.5 are found in China, India, Bangladesh, Pakistan and Indonesia. Desert dust DU2.5 aerosols add about 0.4 million/year (YLL ≈ 3.6 million/year). Particularly significant mortality rates by DU2.5 occur in Pakistan, China and India. The estimated global mean per capita mortality caused by airborne particulates is about 0.1%/year (about two thirds of that caused by tobacco smoking). We show that the highest premature mortality rates are found in the Southeast Asia and Western Pacific regions (about 25% and 46% of the global rate, respectively) where more than a dozen of the most highly polluted megacities are located. References: Giannadaki, D., A. Pozzer, and J. Lelieveld, Modeled global effects of airborne desert dust on air quality and premature mortality, Atmos. Chem. Phys. Discuss. (submitted), 2013. Lelieveld, J., C. Barlas, D. Giannadaki, and A. Pozzer, Model calculated global, regional and megacity premature mortality due to air pollution by ozone

  5. Effect of an electrostatic space charge system on airborne dust and subsequent potential transmission of microorganisms to broiler breeder pullets by airborne dust.

    PubMed

    Richardson, L J; Mitchell, B W; Wilson, J L; Hofacre, C L

    2003-01-01

    High levels of dust and microorganisms are known to be associated with animal confinement rearing facilities. Many of the microorganisms are carried by dust particles, thus providing an excellent vector for horizontal disease transmission between birds. Two environmentally controlled rooms containing female broiler breeder pullets (n = 300) were used to evaluate the effectiveness of an electrostatic space charge system (ESCS) in reducing airborne dust and gram-negative bacteria levels over an 8-wk period (starting when the birds were 10 wk old). The ESCS was used to evaluate the effectiveness of reducing airborne microorganism levels by charging airborne dust particles and causing the particles to be attracted to grounded surfaces (i.e., walls, floor, equipment). The use of the ESCS resulted in a 64% mean reduction in gram-negative bacteria. Airborne dust levels were reduced an average of 37% over a 1-wk period in the experimental room compared with the control room on the basis of samples taken every 10 min. The reductions of airborne dust and bacteria in this study are comparable with earlier results obtained with the ESCS in commercial hatching cabinets and experimental caged layer rooms, suggesting the system could also be applied to other types of enclosed animal housing. PMID:12713167

  6. [Occurrence of molds in airborne dusts in poultry farms].

    PubMed

    Gemeinhardt, H; Wallenstein, G

    1985-01-01

    To reach conclusions in terms of industrial hygiene, mycological samples were taken in modern poultry farms between 1979 and 1981. Sedimentation plates, the Krotow slit collector and the SPG-10 airborne dust sampler were used to determine the mould content of the air. The lowest germ counts were made in cage systems, while somewhat higher numbers were recorded among adult bids kept in the floor systems. Unexpectedly high numbers of mould germs were found in the air of large poultry houses where chickens were reared on relatively fresh litter. The fungus genera Penicillium and Cladosporium and, in one case, the species Scopulariopsis brevicaulis were predominant on old litter in both the floor and the cage system, whereas moulds of the Aspergillus group (Aspergillus candidus and A. versicolor) were additionally existent on fresh straw layers.

  7. Statistical analysis of the size and elemental composition of airborne coal mine dust

    SciTech Connect

    Lee, C.

    1986-01-01

    The specific purpose of this thesis is to analyze two of the basic characteristics of airborne coal mine dust, size and elemental composition, and to study their ramifications on dust control measures and medical studies of coal workers' pneumoconiosis. A dust-sampling strategy using multi-stage cascade impactors is established for characterization purposes. Analysis of the size data based upon the aerodynamic diameter is performed to examine the two assumptions implicitly made in the current practice for coal mine dust size presentation; lognormality and unimodality in the mass size distribution. The bimodal lognormal model is able to identify the major modal patterns observed in the empirical models. Association of the elemental composition of coal with the rank is tested to be significant. Size dependency and locational variation of elemental composition of airborne coal mine dust are significant. The size dependency is more significant in the immediate return of the continuous miner operation and the elements showing significant locational variability are found to be enriched near the roof bolter operation. The coal seam is the main source of major elements in airborne coal mine dust, while no consistent relationship exists for the trace elements. The significance of the dust in the intake air as a potential source for the elements in airborne coal mine dust is shown. Dust reentrained along the shuttle car route is also found to be a significant dust source. Dust particles in the respirable size range are likely to transport through the working area.

  8. Characteristics of airborne coal mine dust and its implication to coal workers' pneumoconiosis

    SciTech Connect

    Kim, H.

    1989-01-01

    Size selective airborne dust samples were collected using 4-stage cassette impactors at nine different locations in continuous mining sections in each of five coal seams located in the Appalachian bituminous coal field. These coal seams were the Upper Freeport, Pittsburgh, Kittanning, Coalburg, and Pocahontas. Mineralogical analyses were performed by an x-ray powder diffraction photographic technique. The distributions of total and respirable dust concentrations were fit best by a log-normal distribution. The effects of the coal seam and the sampling location on dust levels were significant. The results of the particle size distribution analyses suggest that coal mine dust has a multi-modal distribution. The effects of the coal seam and the sampling locations were significant. The distributions obtained were often affected by such mine-related variables as ventilation rate, relative humidity, and the section dimensions. Nine minerals commonly found in the coal mine dust samples collected from the coal seams studied were illite, calcite, kaolinite, quartz, dolomite, siderite, gypsum, anhydrite, and pyrite in descending order of magnitude. Relative abundance of all mineral species except siderite and gypsum was coal seam specific and suggests that existence of coal seam variability of mineral content. Although mineral content was affected by sampling locations and the sections within a mine, the magnitude was small when compared with that of cal seams. Mineral content also appears to be affected by particle size, although no particular pattern was observed.

  9. Airborne Fungal and Bacterial Components in PM1 Dust from Biofuel Plants

    PubMed Central

    Madsen, Anne Mette; Schlünssen, Vivi; Olsen, Tina; Sigsgaard, Torben; Avci, Hediye

    2009-01-01

    Fungi grown in pure cultures produce DNA- or RNA-containing particles smaller than spore size (<1.5 μm). High exposures to fungi and bacteria are observed at biofuel plants. Airborne cultivable bacteria are often described to be present in clusters or associated with larger particles with an aerodynamic diameter (dae) of 2–8 μm. In this study, we investigate whether airborne fungal components smaller than spore size are present in bioaerosols in working areas at biofuel plants. Furthermore, we measure the exposure to bacteria and fungal components in airborne particulate matter (PM) with a D50 of 1 μm (called PM1 dust). PM1 was sampled using Triplex cyclones at a working area at 14 Danish biofuel plants. Millipore cassettes were used to sample ‘total dust’. The PM1 particles (29 samples) were analysed for content of 11 different components and the total dust was analysed for cultivable fungi, N-acetyl-β-D-glucosaminidase (NAGase), and (1 → 3)-β-D-glucans. In the 29 PM1 samples, cultivable fungi were found in six samples and with a median concentration below detection level. Using microscopy, fungal spores were identified in 22 samples. The components NAGase and (1 → 3)-β-D-glucans, which are mainly associated with fungi, were present in all PM1 samples. Thermophilic actinomycetes were present in 23 of the 29 PM1 samples [average = 739 colony-forming units (CFU) m−3]. Cultivable and ‘total bacteria’ were found in average concentrations of, respectively, 249 CFU m−3 and 1.8 × 105 m−3. DNA- and RNA-containing particles of different lengths were counted by microscopy and revealed a high concentration of particles with a length of 0.5–1.5 μm and only few particles >1.5 μm. The number of cultivable fungi and β-glucan in the total dust correlated significantly with the number of DNA/RNA-containing particles with lengths of between 1.0 and 1.5 μm, with DNA/RNA-containing particles >1.5 μm, and with other fungal components in PM1

  10. Effects of studded tires on roadside airborne dust pollution in Niigata, Japan

    NASA Astrophysics Data System (ADS)

    Fukuzaki, Norio; Yanaka, Takaaki; Urushiyama, Yoshio

    Two series of dust samples, collected by Andersen impactors (denoted by AN) and low-volume air samplers (denoted by LV), were investigated with respect to roadside airborne dusts collected in two different periods in 1983. These were the periods (i) with studded tires (February and March) and (ii) without studded tires (October). Multi-element determinations of these samples were made by neutron activation analysis and atomic absorption spectrometry. The total concentration of AN in roadside air for period (i) was about three times higher than for the period without studded tires. The lithophilic elements such as Na, Al, K, Ca, Ti, Fe and Th, and component-metal elements of stud tip, W and Ta, produced a significant increase in atmospheric concentration in winter. The contribution of pavement material, one of the most interesting components of airborne particles in this study, was related to total AN and LV by the chemical element balance method. It made up only 16 percent (9.1 μgm -3) of AN in October, compared with 46 percent (70.2 μgm -3) in February. It was also observed that the atmospheric concentrations of pavement debris to total LV decreased with the distance from the road to each sampling site.

  11. Long-term airborne contamination studied by attic dust in an industrial area: Ajka, Hungary

    NASA Astrophysics Data System (ADS)

    Völgyesi, P.; Jordan, G.; Szabo, Cs.

    2012-04-01

    Heavy industrial activities such as mining, metal industry, coal fired power plants have produced large amount of by-products and wide-spread pollution, particularly in the period of centrally dictated economy after WWII, in Hungary. Several studies suggest that significant amount of these pollutants have been deposited in the urban environment. Nowadays, more than half of the world's population is living in urban areas and people spend almost 80% of their lives indoors in developed countries increasing human health risk due to contamination present in urban dwellings. Attic dust sampling was applied to determine the long-term airborne contamination load in the industrial town of Ajka (Hungary). There has been a high industrial activity in Ajka since the end of the 19th century. In addition to aluminum and alumina industry, coal mining, coal fired power plant and glass industry sites, generated numerous waste heaps which act as multi-contamination sources in the area. In October 2010 the Ajka red mud tailings pond failed and caused an accidental regional contamination of international significance. The major objective of this research was to study and map the spatial distribution of heavy metal contamination in airborne attic dust samples. At 27 sampling sites 30 attic dust samples were collected. Sampling strategy followed a grid-based stratified random sampling design. In each cell a house for attic dust sample collection was selected that was located the closest to a randomly generated point in the grid cell. The project area covers a 8x8 grid of 1x1 km cells with a total area of 64 km2. In order to represent long-term industrial pollution, houses with attics kept intact for at least 30-40 years were selected for sampling. Sampling included the collection of background samples remotely placed from the industrialized urban area. The concentration of the major and toxic elements (Al, Ca, Fe, K, Mg, Mn, Na, P, S, and As, Ba, Cd, Co, Cr, Cu, Li, Mo, Ni, Pb, Se, Sn

  12. MicroMED: a dust particle counter for the characterization of airborne dust close to the surface of Mars

    NASA Astrophysics Data System (ADS)

    Cozzolino, Fabio; Esposito, Francesca; Molfese, Cesare; Cortecchia, Fausto; Saggin, Bortolino; D'amato, Francesco

    2015-04-01

    Monitoring of airborne dust is very important in planetary climatology. Indeed, dust absorbs and scatter solar and thermal radiation, severely affecting atmospheric thermal structure, balance and dynamics (in terms of circulations). Wind-driven blowing of sand and dust is also responsible for shaping planetary surfaces through the formation of sand dunes and ripples, the erosion of rocks, and the creation and transport of soil particles. Dust is permanently present in the atmosphere of Mars and its amount varies with seasons. During regional or global dust storms, more than 80% of the incoming sunlight is absorbed by dust causing an intense atmospheric heating. Airborne dust is therefore a crucial climate component on Mars which impacts atmospheric circulations at all scales. Main dust parameters influencing the atmosphere heating are size distribution, abundance, albedo, single scattering phase function, imaginary part of the index of refraction. Moreover, major improvements of Mars climate models require, in addition to the standard meteorological parameters, quantitative information about dust lifting, transport and removal mechanisms. In this context, two major quantities need to be measured for the dust source to be understood: surface flux and granulometry. While many observations have constrained the size distribution of the dust haze seen from the orbit, it is still not known what the primary airborne dust (e.g. the recently lifted dust) is made of, size-wise. MicroMED has been designed to fill this gap. It will measure the abundance and size distribution of dust, not in the atmospheric column, but close to the surface, where dust is lifted, so to be able to monitor dust injection into the atmosphere. This has never been performed in Mars and other planets exploration. MicroMED is an Optical Particle Counter, analyzing light scattered from single dust particles to measure their size and abundance. A proper fluid-dynamic system, including a pump and a

  13. On the visibility of airborne volcanic ash and mineral dust

    NASA Astrophysics Data System (ADS)

    Weinzierl, B.; Sauer, D. N.; Minikin, A.; Reitebuch, O.; Dahlkötter, F.; Mayer, B. C.; Emde, C.; Tegen, I.; Gasteiger, J.; Petzold, A.; Veira, A.; Kueppers, U.; Schumann, U.

    2012-12-01

    After the eruption of the Eyjafjalla volcano (Iceland) in April 2010 which caused the most extensive restrictions of the airspace over Europe since the end of World War II, the aviation safety concept of avoiding "visible ash", i.e. volcanic ash that can be seen by the human eye, was recommended. However so far, no clear definition of "visible ash" and no relation between the visibility of an aerosol layer and related aerosol mass concentrations are available. The goal of our study is to assess whether it is possible from the pilot's perspective in flight to detect the presence of volcanic ash and to distinguish between volcanic ash and other aerosol layers just by sight. In our presentation, we focus the comparison with other aerosols on aerosol types impacting aviation: Besides volcanic ash, dust storms are known to be avoided by aircraft. We use in-situ and lidar data as well photographs taken onboard the DLR research aircraft Falcon during the Saharan Mineral Dust Experiments (SAMUM) in 2006 and 2008 and during the Eyjafjalla volcanic eruption in April/May 2010. We complement this analysis with numerical modelling, using idealized radiative transfer simulations with the 3D Monte Carlo radiative transfer code MYSTIC for a variety of selected viewing geometries. Both aerosol types, Saharan mineral dust and volcanic ash, show an enhanced coarse mode (> 1 μm) aerosol concentration, but volcanic ash aerosol additionally contains a significant number of Aitken mode particles (< 150 nm). Volcanic ash is slightly more absorbing than mineral dust, and the spectral behaviour of the refractive index is slightly different. According to our simulations, these differences are not detectable just by human eye. Furthermore, our data show, that it is difficult to define a lower threshold for the visibility of an aerosol layer because the visual detectability depends on many parameters, including the thickness of the aerosol layer, the brightness and color contrast between the

  14. Influence of coal type on water spray suppression of airborne respirable dust

    SciTech Connect

    Organiscak, J.A. ); Leon, M.H. )

    1994-08-01

    A laboratory study was conducted to investigate the water spray capture efficiency of airborne respirable dust generated from nine different bituminous coal seams. Experiments involved grinding a uniform coal sample mass, injecting the dust into a closed steady-state chamber, and measuring the aerosol's decay response when exposed to a hollow cone water spray. The amount of airborne dust generated from these differential coal types varied, but had similar particle size distributions. The spray knockdown efficiency was comparable among coal types, and the size distribution of the dust was uniformly reduced by the water spray. Since water spray capture efficiency remained essentially uniform, the dust concentration at the end of the spray period was a function of the amount of dust generated. Therefore, a particular water spray system used in different coal seams under identical operating conditions (seam height, airflow, water pressure and flow, mining practices, etc.) can be expected to remove airborne dust in a uniform manner. However, dust concentrations will likely vary around identical water spray control systems used in different underground mines because of the diversity in operating conditions and the amount of dust generated from different coal scams. 11 refs., 8 figs., 3 tabs.

  15. Airborne Sunphotometry of African Dust and Marine Boundary Layer Aerosols in PRIDE

    NASA Technical Reports Server (NTRS)

    Livingston, John M.; Redemann, Jens; Russell, Philip; Schmid, Beat; Reid, Jeff; Pilewskie, Peter; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    The Puerto Rico Dust Experiment (PRIDE) was conducted during summer 2000 to study the radiative, microphysical and transport properties of Saharan dust in the Caribbean region. During PRIDE, NASA Ames Research Center's six-channel airborne autotracking sunphotometer (AATS-6) was operated aboard a Piper Navajo airplane based at Roosevelt Roads Naval Station on the northeast coast of Puerto Rico. AATS-6 measurements were taken during 21 science flights off the coast of Puerto Rico in the western Caribbean. Data were acquired within and above the Marine Boundary Layer (MBL) and the Saharan Aerosol Layer (SAL) up to 5.5 km altitude tinder a wide range of dust loadings. Aerosol optical depth (AOD) spectra and columnar water vapor (CWV) values have been calculated from the AATS-6 measurements by using sunphotometer calibration data obtained at Mauna Loa Observatory (3A kin ASL) before (May) and after (October) PRIDE. Mid-visible AOD values measured near the surface during PRIDE ranged from 0.07 on the cleanest day to 0.55 on the most turbid day. Values measured above the MBL were as high as 0.35; values above the SAL were as low as 0.01. The fraction of total column AOD due to Saharan dust cannot be determined precisely from AATS-6 AOD data alone due to the uncertainty in the extent of vertical mixing of the dust down through the MBL. However, analyses of ground-based and airborne in-situ aerosol sampling measurements and ground-based aerosol lidar backscatter data should yield accurate characterization of the vertical mixing that will enable calculation of the Saharan dust AOD component from the sunphotometer data. Examples will be presented showing measured AATS-6 AOD spectra, calculated aerosol extinction and water vapor density vertical profiles, and aerosol size distributions retrieved by inversion of the AOD spectra. Near sea-surface AOD spectra acquired by AATS-6 during horizontal flight legs at 30 m ASL are available for validation of AOD derived from coincident

  16. Exposure to airborne microorganisms, dust and endotoxin during processing of valerian roots on farms.

    PubMed

    Skórska, Czesława; Sitkowska, Jolanta; Krysińska-Traczyk, Ewa; Cholewa, Grazyna; Dutkiewicz, Jacek

    2005-01-01

    The aim of this study was to determine the levels of microorganisms, dust and endotoxin in the air during various stages of valerian (Valeriana officinalis) roots processing by herb farmers and to examine the species composition of airborne microflora. Air samples were collected on glass fibre filters by use of personal samplers on 15 farms owned by valerian cultivating farmers, located in Lublin province (eastern Poland). The concentrations of total viable microorganisms (bacteria + fungi) in the air showed a marked variability and were within a range of 0.95-7,966.6 x 10(3) cfu/m (3). Though median was relatively low (10.75 x 10(3) cfu/m (3)), on 4 farms the concentrations exceeded the level of 10(5) cfu/m (3) and on 1 farm the level of 10(6) cfu/m (3). During the processing of valerian roots, distinct changes could be observed in the composition of airborne microflora. In the first stages of processing, the freshly dug and washed roots until shaking in the drying room, the most numerous were Gram-negative bacteria of the family Pseudomonadaceae (mostly Stenotrophomonas maltophilia, Pseudomonas chlororaphis and Pseudomonas fluorescens). After drying, the dominant organisms were thermo-resistant endospore-forming bacilli (Bacillus spp.) and fungi, among which prevailed Aspergillus fumigatus. Altogether, 29 species or genera of bacteria and 19 species or genera of fungi were identified in the farm air during valerian processing, of these, 10 and 12 species or genera respectively were reported as having allergenic and/or immunotoxic properties. The concentrations of airborne dust and endotoxin on the examined farms were very large and ranged from 10.0-776.7 mg/m (3), and from 0.15-24,448.2 microg/m (3), respectively (medians 198.3 mg/m (3) and 40.48 microg/m (3)). In conclusion, farmers cultivating valerian could be exposed during processing of valerian roots to large concentrations of airborne microorganisms, dust and endotoxin posing a risk of work

  17. The influence of coal physical and mechanical properties and mining energy consumption factor on airborne respirable dust level

    SciTech Connect

    Koziel, A.; Malec, M.; Wardas, E.

    1999-07-01

    The fact that there are not any explicitly defined relationships describing the influence of physical and mechanical properties of coal and of energy consumption factor on dust level prompted Polish and American investigators to carry out a joint research project within the framework of the US-Poland Maria Sklodowska-Curie Joint Fund II. The paper presents methods used to perform tests under laboratory conditions at the Pittsburgh Research Laboratory as well as under real conditions in the course of coal cutting in Polish coal mines. Measuring systems and results of the tests are described. The analysis carried out has provided a basis for determining the influence of specified operational parameters, i.e., coal compression strength R{sub c}, coal cuttability factor A, energy consumption factor of mining E{sub uc}, load of cutting drums as well as of laboratory parameters, i.e., grindability, coal breakage characteristics (product size distribution), moisture content, volatile and fixed carbon content, specific energy of crushing on a level of generated dust (total dust, specific dust and airborne respirable dust). The effect of technical parameters, i.e., face height, airflow velocity in a face, amount and pressure of water in spraying systems of longwall shearers, depth of cut taken by a cutting drum and application of powered cowls on dust level under operating conditions are also presented. Results of the tests made it possible to work out guidelines relating to methods and technology for effective reduction of dust emission on longwall faces.

  18. Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, volume 73

    NASA Technical Reports Server (NTRS)

    Haas, Michael R. (Editor); Davidson, Jacqueline A. (Editor); Erickson, Edwin F. (Editor)

    1995-01-01

    This symposium was organized to review the science related to NASA's Airborne Astronomy Program on the occasion of the twentieth anniversary of the Kuiper Airborne Observatory (KAO). The theme selected, 'The Galactic Ecosystem: From Gas to Stars to Dust,' was considered to capture the underlying commonality of much of the research discussed. The 8 sessions were as follows: The Interstellar Medium; The Life Cycle of the ISM in Other Galaxies; Star and Planetary System Formation; Our Planetary System: The Solar System; The Enrichment of the Interstellar Medium; The Galactic Center: A Unique Region of the Galactic Ecosystem; Instrumentation for Airborne Astronomy; KAO History and Education; and Missions and the Future of Infrared Astronomy.

  19. Changes in the Airborne Bacterial Community in Outdoor Environments following Asian Dust Events

    PubMed Central

    Yamaguchi, Nobuyasu; Park, Jonguk; Kodama, Makiko; Ichijo, Tomoaki; Baba, Takashi; Nasu, Masao

    2014-01-01

    Bacterial abundance and community compositions have been examined in aeolian dust in order to clarify their possible impacts on public health and ecosystems. The influence of transcontinentally transported bacterial cells on microbial communities in the outdoor environments of downwind areas should be determined because the rapid influx of a large amount of bacterial cells can disturb indigenous microbial ecosystems. In the present study, we analyzed bacteria in air samples (approximately 100 m3 d−1) that were collected on both Asian dust days and non-Asian dust days over 2 years (between November 2010 and July 2012). Changes in bacterial abundance and community composition were investigated based on their 16S rRNA gene amount and sequence diversity. Seasonal monitoring revealed that airborne bacterial abundance was more than 10-fold higher on severe dust days, while moderate dust events did not affect airborne bacterial abundance. A comparison of bacterial community compositions revealed that bacteria in Asian dust did not immediately disturb the airborne microbial community in areas 3,000–5,000 km downwind of dust source regions, even when a large amount of bacterial cells were transported by the atmospheric event. However, microbes in aeolian dust may have a greater impact on indigenous microbial communities in downwind areas near the dust source. Continuous temporal and spatial analyses from dust source regions to downwind regions (e.g., from the Gobi desert to China, Korea, Japan, and North America) will assist in estimating the impact of atmospherically transported bacteria on indigenous microbial ecosystems in downwind areas. PMID:24553107

  20. Using proximate analysis to characterize airborne dust generation from bituminous coals

    SciTech Connect

    Page, S.J.; Organiscak, J.A.

    2005-11-01

    Prolonged exposure to airborne respirable coal dust is responsible for coal workers pneumoconiosis (CWP), commonly called black lung. Health research studies have identified that the prevalence and severity of CWP are directly related to both the amount of dust exposure and the coal rank. The amount of airborne respirable dust (ARD) smaller than 10 micrometers generated from breakage of different coals varies widely. To investigate the cause, researchers for the National Institute for Occupational Safety and Health (NIOSH) have conducted experiments to identify the causes of airborne respirable dust liberation. Laboratory crushing experiments were conducted on a range of low to high volatile bituminous coals from eight mines. The results indicate that the proximate analysis of a coal sample can provide a very good indicator of the potential for a dust problem. For application to the coal mining, processing, and utilization industries, data from 977 US coal seams compiled by the Department of Energy (DoE) has been used to calculate this dust generation potential from an equation based on the NIOSH measured data. A simple procedure for this calculation is provided. 1 fig.

  1. Airborne Dust, "The Good Guy or the Bad Guy": How Much do We Know?

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    2010-01-01

    Processes in generating, transporting, and dissipating the airborne dust particles are global phenomena -African dust regularly reaching the Alps; Asian dust seasonally crossing the Pacific into North America, and ultimately the Atlantic into Europe. One of the vital biogeochemical roles dust storms play in Earth's ecosystem is routinely mobilizing mineral dust, as a source of iron, from deserts into oceans for fertilizing the growth of phytoplankton -the basis of the oceanic food chain. Similarly, these dust-laden airs also supply crucial nutrients for the soil of tropical rain forests, the so-called womb of life that hosts 50-90% of the species on Earth. With massive amounts of dust lifted from desert regions and injected into the atmosphere, however, these dust storms often affect daily activities in dramatic ways: pushing grit through windows and doors, forcing people to stay indoors, causing breathing problems, reducing visibility and delaying flights, and by and large creating chaos. Thus, both increasing and decreasing concentrations of doses result in harmful biological effects; so do the airborne dust particles to our Living Earth. Since 1997 NASA has been successfully launching a series of satellites - the Earth Observing System - to intensively study, and gain a better understanding of, the Earth as an integrated system. Through participation in many satellite remote-sensing/retrieval and validation projects over the years, we have gradually developed and refined the SMART (Surface-sensing Measurements for Atmospheric Radiative Transfer) and COMMIT (Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile observatories, a suite of surface remote sensing and in-situ instruments that proved to be vital in providing high temporal measurements, which complement the satellite observations. In this talk, we will present SMART-COMMIT which has played key roles, serving as network or supersite, in major international research projects such

  2. The role of airborne mineral dusts in human disease

    NASA Astrophysics Data System (ADS)

    Morman, Suzette A.; Plumlee, Geoffrey S.

    2013-06-01

    Exposure to fine particulate matter (PM) is generally acknowledged to increase risk for human morbidity and mortality. However, particulate matter (PM) research has generally examined anthropogenic (industry and combustion by-products) sources with few studies considering contributions from geogenic PM (produced from the Earth by natural processes, e.g., volcanic ash, windborne ash from wildfires, and mineral dusts) or geoanthropogenic PM (produced from natural sources by processes that are modified or enhanced by human activities, e.g., dusts from lakebeds dried by human removal of water, dusts produced from areas that have undergone desertification as a result of human practices). Globally, public health concerns are mounting, related to potential increases in dust emission from climate related changes such as desertification and the associated long range as well as local health effects. Recent epidemiological studies have identified associations between far-traveled dusts from primary sources and increased morbidity and mortality in Europe and Asia. This paper provides an outline of public health research and history as it relates to naturally occurring inorganic mineral dusts. We summarize results of current public health research and describe some of the many challenges related to understanding health effects from exposures to dust aerosols.

  3. The application of performance standards to personal airborne dust samplers.

    PubMed

    Kenny, L C; Lidén, G

    1989-01-01

    This paper summarizes current proposals for the specification and testing of personal sampler performance, and discusses their implications for the precision of dust concentration estimates. A method of specifying the performance of a sampling instrument in terms of the range of masses it would collect from various dust clouds is proposed. Some of the practical difficulties which are likely to arise in the process of testing real samplers with respect to performance standards are discussed.

  4. Speciation of airborne dust from a nickel refinery roasting operation.

    PubMed

    Andersen, I; Berge, S R; Resmann, F

    1998-04-01

    Earlier work-related lung and nasal cancer studies included estimates of exposures to different nickel species in the refinery. Based on the metallurgy, only insoluble nickel was believed to be present around the roasters but mixed exposure was assumed in most areas, including the tankhouse. Occasional leaching tests of samples from the roaster area have indicated the presence of soluble nickel. This study reports on five parallel sets of dust samples collected from different floors with standard equipment and treated as follows. Two sets were leached with an ammonium citrate buffer at pH 4.4. Undissolved material was treated with HClO4/HNO3, evaporated to dryness and dissolved in HCl, Ni, Cu, Co, Fe, Se, and As were determined in both fractions. Water soluble Ni was found in all samples, ranging from 5-35%. Sulfate in the solutions correlated nearly stoichiometrically to the total metal content. The three remaining sets were investigated by, respectively, differential leaching, X-ray diffraction and scanning electron microscopy. The percentage of soluble nickel found by differential leaching corresponded well with those obtained by the simplified procedure. X-Ray diffraction analysis showed the presence of NiSO4.6H2O as well as oxides of Ni and Cu. This study indicates mixed exposures also in the roaster area. It also clearly indicates that basing exposure on the metallurgy alone can lead to serious misjudgements. The impact of this new information on the interpretation of cancer incidence at this refinery must await the analysis in an ongoing case-reference study. PMID:9684402

  5. Geochemical and microbiological fingerprinting of airborne dust that fell in Canberra, Australia, in October 2002

    NASA Astrophysics Data System (ADS)

    de Deckker, Patrick; Abed, Raeid M. M.; de Beer, Dirk; Hinrichs, Kai-Uwe; O'Loingsigh, Tadhg; Schefuß, Enno; Stuut, Jan-Berend W.; Tapper, Nigel J.; van der Kaars, Sander

    2008-12-01

    During the night of 22-23 October 2002, a large amount of airborne dust fell with rain over Canberra, located some 200 km from Australia's east coast, and at an average altitude of 650 m. It is estimated that during that night about 6 g m-2 of aeolian dust fell. We have conducted a vast number of analyses to "fingerprint" some of the dust and used the following techniques: grain size analysis; scanning electron microscope imagery; major, trace, and rare earth elemental, plus Sr and Nd isotopic analyses; organic compound analyses with respective compound-specific isotope analyses; pollen extraction to identify the vegetation sources; and molecular cloning of 16S rRNA genes in order to identify dust bacterial composition. DNA analyses show that most obtained 16S rRNA sequences belong mainly to three groups: Proteobacteria (25%), Bacteriodetes (23%), and gram-positive bacteria (23%). In addition, we investigated the meteorological conditions that led to the dust mobilization and transport using model and satellite data. Grain sizes of the mineral dust show a bimodal distribution typical of proximal dust, rather than what is found over oceans, and the bimodal aspect of size distribution confirms wet deposition by rain droplets. The inorganic geochemistry points to a source along/near the Darling River in NW New South Wales, a region that is characteristically semiarid, and both the organic chemistry and palynoflora of the dust confirm the location of this source area. Meteorological reconstructions of the event again clearly identify the area near Bourke-Cobar as being the source of the dust. This study paves the way for determining the export of Australian airborne dust both in the oceans and other continents.

  6. Airborne dust and aeroallergen concentration in a horse stable under two different management systems.

    PubMed

    Woods, P S; Robinson, N E; Swanson, M C; Reed, C E; Broadstone, R V; Derksen, F J

    1993-05-01

    Airborne dust concentration (ADC) was measured in 2 different horse management systems using an Andersen cascade impactor in the box-stall, and a personal Marple cascade impactor attached to the halter to measure ADC in the breathing zone. The levels of aeroallergens implicated in chronic obstructive pulmonary disease were measured by radioallergosorbent-inhibition immunoassay. A conventional management system (System C) utilising hay feed and straw bedding, and a recommended environment (System R) utilising wood shaving bedding and a complete pelleted diet were studied. In the stall, total and respirable ADC (geometric mean) were significantly higher in System C (2.55 mg/m3; 0.44 mg/m3, respectively) than in System R (0.70 mg/m3; 0.20 mg/m3, respectively). In System C, the total and respirable ADC in the breathing zone (17.51 mg/m3; 9.28 mg/m3) were much higher than in the stall, but values in both regions were similar in System R (0.52 mg/m3; 0.30 mg/m3). Major aeroallergens were significantly higher in System C than in System R: Micropolyspora faeni (1423 ng/m3 and 705 ng/m3), Aspergillus fumigatus (1823 ng/m3 and 748 ng/m3), and mite allergens (1420 ng/m3 and 761 ng/m3). Measurement of ADC with personal samplers indicates that the very high inhalation challenge in the breathing zone is not reflected in measurements of stall air quality. When compared with System C, System R produced only 3% of the respirable dust burden in the breathing zone and a decreased aeroallergen challenge.

  7. The effect of airborne dust on astronomical polarization measurements

    NASA Astrophysics Data System (ADS)

    Bailey, Jeremy; Ulanowski, Z.; Lucas, P. W.; Hough, J. H.; Hirst, E.; Tamura, M.

    2008-05-01

    In the past, it has generally been assumed that polarization observations made with ground-based telescopes are unaffected by the passage of light through the Earth's atmosphere. Here, we report observations with a new high-sensitivity astronomical polarimeter (PlanetPol) made during a Saharan dust event over the La Palma observatory in 2005 May that show excess linear polarization in the horizontal direction due to the passage of the starlight through the dust. The polarization reached a maximum value of 4.8 × 10-5 at 56° zenith distance and varied over five nights in proportion to the change in dust optical depth. Polarization of transmitted light (dichroism) does not occur for spherical or randomly oriented non-spherical particles. Thus, these results imply that some fraction of the dust grain population aligns with a preferred orientation. We use T-matrix models to demonstrate that the observed polarization direction implies a vertical orientation for the long axis of the particles. We suggest a possible mechanism for vertical orientation resulting from the electric field in the atmosphere. These results will need to be taken into account in the design and use of future instruments for high-sensitivity astronomical polarimetry. The results also indicate possible new approaches to studying aerosol particles and their effects on the Earth's atmosphere.

  8. Dust aerosol optical properties using ground-based and airborne lidar in the framework of FENNEC

    NASA Astrophysics Data System (ADS)

    Marnas, Fabien; Chazette, Patrick; Flamant, Cyrille; Royer, Philippe; Boytard, Mai-Lan; Genau, Pascal; Doira, Pascal; Bruneau, Didier; Pelon, Jacques; Sanak, Joseph

    2013-04-01

    The FENNEC program aims to improve our knowledge of both the role of the Saharan Heat Low (SHL) on the West African monsoon and the interactions between the African continent and the Mediterranean basin through the Saharan dust transport. The Saharan desert is the major source of mineral dust in the world and may significantly impact the air quality over the Western Europe by increasing the particular matter content. Two lidar systems were operated by the French component of the FENNEC project: an airborne lidar which was flown aboard the French Falcon 20 research aircraft and a ground-based lidar which was located in the southeastern part of Spain, close to Marbella. The presence of dust in the Saharan atmospheric boundary layer has been easily highlighted using the lidars and confirmed by ground-based sunphotometer and observations from both MODIS and SEVIRI spaceborne instruments. The simultaneous use of the sunphotometer-derived Angstrom exponent and the lidar-derived backscatter to extinction ratio is appeared to be a good approach to separate the optical contribution of dust from local aerosols for the coastal site. Over Spain, the dust layer was mainly located above the planetary boundary layer with several kilometers thick. Over the tropical Atlantic Ocean and the Mauritania the airborne lidar shows a high planetary boundary layer (~5 km above the mean sea level) associated to strong aerosol optical thickness (> 0.8 at 532 nm). The airborne lidar data have been inverted using both MODIS and SEVIRI-derived aerosol optical thickness. The differences between dust optical properties close to and remote from the sources will be discussed.

  9. Assessing sources of airborne mineral dust and other aerosols, in Iraq

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Johann P.; Jayanty, R. K. M.

    2013-06-01

    Most airborne particulate matter in Iraq comes from mineral dust sources. This paper describes the statistics and modeling of chemical results, specifically those from Teflon® filter samples collected at Tikrit, Balad, Taji, Baghdad, Tallil and Al Asad, in Iraq, in 2006/2007. Methodologies applied to the analytical results include calculation of correlation coefficients, Principal Components Analysis (PCA), and Positive Matrix Factorization (PMF) modeling. PCA provided a measure of the covariance within the data set, thereby identifying likely point sources and events. These include airborne mineral dusts of silicate and carbonate minerals, gypsum and salts, as well as anthropogenic sources of metallic fumes, possibly from battery smelting operations, and emissions of leaded gasoline vehicles. Five individual PMF factors (source categories) were modeled, four of which being assigned to components of geological dust, and the fifth to gasoline vehicle emissions together with battery smelting operations. The four modeled geological components, dust-siliceous, dust-calcic, dust-gypsum, and evaporate occur in variable ratios for each site and size fraction (TSP, PM10, and PM2.5), and also vary by season. In general, Tikrit and Taji have the largest and Al Asad the smallest percentages of siliceous dust. In contrast, Al Asad has the largest proportion of gypsum, in part representing the gypsiferous soils in that region. Baghdad has the highest proportions of evaporite in both size fractions, ascribed to the highly salinized agricultural soils, following millennia of irrigation along the Tigris River valley. Although dust storms along the Tigris and Euphrates River valleys originate from distal sources, the mineralogy bears signatures of local soils and air pollutants.

  10. Factors Affecting Vegetable Growers’ Exposure to Fungal Bioaerosols and Airborne Dust

    PubMed Central

    Hansen, Vinni M.; Meyling, Nicolai Vitt; Winding, Anne; Eilenberg, Jørgen; Madsen, Anne Mette

    2012-01-01

    We have quantified vegetable growers’ exposure to fungal bioaerosol components including (1→3)-β-d-glucan (β-glucan), total fungal spores, and culturable fungal units. Furthermore, we have evaluated factors that might affect vegetable growers’ exposure to fungal bioaerosols and airborne dust. Investigated environments included greenhouses producing cucumbers and tomatoes, open fields producing cabbage, broccoli, and celery, and packing facilities. Measurements were performed at different times during the growth season and during execution of different work tasks. Bioaerosols were collected with personal and stationary filter samplers. Selected fungal species (Beauveria spp., Trichoderma spp., Penicillium olsonii, and Penicillium brevicompactum) were identified using different polymerase chain reaction-based methods and sequencing. We found that the factors (i) work task, (ii) crop, including growth stage of handled plant material, and (iii) open field versus greenhouse significantly affected the workers’ exposure to bioaerosols. Packing of vegetables and working in open fields caused significantly lower exposure to bioaerosols, e.g. mesophilic fungi and dust, than harvesting in greenhouses and clearing of senescent greenhouse plants. Also removing strings in cucumber greenhouses caused a lower exposure to bioaerosols than harvest of cucumbers while removal of old plants caused the highest exposure. In general, the exposure was higher in greenhouses than in open fields. The exposures to β-glucan during harvest and clearing of senescent greenhouse plants were very high (median values ranging between 50 and 1500 ng m−3) compared to exposures reported from other occupational environments. In conclusion, vegetable growers’ exposure to bioaerosols was related to the environment, in which they worked, the investigated work tasks, and the vegetable crop. PMID:22003240

  11. [Effect of impactor sampling on the ratio of respirable dust concentration to total dust concentration].

    PubMed

    Liu, G; Guo, W

    1998-11-30

    The aim of this study was to verify the change of the ratio of Respirable Dust Concentration (RDC) to Total Dust Concentration (TDC) taken by two-stage impactor sampling. The results showed that there was a correlation between the ratio of RDC/TDC and TDC (correlation coefficient was 0.8576, 0.8689, 0.8736 and 0.9674, respectively) under the condition of identical sampling volume, and the ratio increases along with the elevated TDC.

  12. Geltape method for measurement of work related surface contamination with cobalt containing dust: correlation between surface contamination and airborne exposure.

    PubMed Central

    Poulsen, O M; Olsen, E; Christensen, J M; Vinzent, P; Petersen, O H

    1995-01-01

    OBJECTIVES--The geltape method is a new method for optical measurement of total amount of dust on surfaces. The objectives were to study the potential applicability of this method to measurements of work related cobalt exposure during painting of plates with cobalt dye. METHODS--Consecutive series of work related geltape prints were taken from surfaces inside and outside the ventilation cabins of two plate painters during two full working days. The amount of dust picked up by the geltapes was measured optically with a field monitor. Also, personal air samples were collected on filters at the different work processes. In the laboratory the contents of cobalt on the geltape prints and the filters were measured with inductive coupled plasma atomic emission spectroscopy. RESULTS--The key results were: (a) when the geltape prints were taken from surfaces inside the cabins the optically measured area of the geltapes covered with total dust (area (%)) correlated well with the chemically measured amount of cobalt present on the geltapes. Linear correlation coefficient (R2) was 0.91 for geltape prints taken on the floor and 0.94 for prints taken on the ceiling; (b) the cumulative airborne cobalt exposure, calculated from data on work related exposure by personal sampling, correlated with the area (%) of geltape prints taken from the ceiling of the cabin (R2 = 0.98); (c) the geltape method could be used to distinguish both between work processes with different levels of cobalt exposure, and between plate painters subjected to significant differences in airborne cobalt exposure. CONCLUSION--The geltape method could produce measures of the work related exposures as well as whole day exposure for cobalt. The geltape results correlated with measurements of personal airborne cobalt exposure. In this industry the profile of exposure is well-defined in time, and it seems reasonable to apply this fast and low cost method in routine exposure surveillance to obtain a more detailed

  13. Airborne measurements of total reactive odd nitrogen (NO(y))

    NASA Technical Reports Server (NTRS)

    Huebler, G.; Fahey, D. W.; Ridley, B. A.; Gregory, G. L.; Fehsenfeld, F. C.

    1992-01-01

    Airborne total reactive odd nitrogen measurements were made during August and September 1986 over the continental United States and off the west coast over the Pacific Ocean during NASA's Global Tropospheric Experiment/Chemical Instrumentation Test and Evaluation 2 program. Measurements were made in the marine and continental boundary layer and the free troposphere up to 6.1 km altitude. NO(y) mixing ratios between 24 pptv and more than 1 ppbv were found, with median values of 101 pptv in the marine boundary layer, 298 pptv in the marine free troposphere, and 288 pptv in the continental free troposphere, respectively. The marine troposphere exhibited layered structure which was also seen in the simultaneously measured ozone mixing ratio and dew point temperature. The averaged vertical NO(y) profile over the ocean does not show a distinct gradient. The NO(y) mixing ratio over the continent decreases with increasing altitude. The latter is consistent with our understanding that the continents are the major source region for these gases.

  14. Airborne dust transport to the eastern Pacific Ocean off southern California: Evidence from San Clemente Island

    USGS Publications Warehouse

    Muhs, D.R.; Budahn, J.; Reheis, M.; Beann, J.; Skipp, G.; Fisher, E.

    2007-01-01

    Islands are natural dust traps, and San Clemente Island, California, is a good example. Soils on marine terraces cut into Miocene andesite on this island are clay-rich Vertisols or Alfisols with vertic properties. These soils are overlain by silt-rich mantles, 5-20 cm thick, that contrast sharply with the underlying clay-rich subsoils. The silt mantles have a mineralogy that is distinct from the island bedrock. Silt mantles are rich in quartz, which is rare in the island andesite. The clay fraction of the silt mantles is dominated by mica, also absent from local andesite, and contrasts with the subsoils, dominated by smectite. Ternary plots of immobile trace elements (Sc-Th-La and Ta-Nd-Cr) show that the island andesite has a composition intermediate between average upper continental crust and average oceanic crust. In contrast, the silt and, to a lesser extent, clay fractions of the silt mantles have compositions closer to average upper continental crust. The silt mantles have particle size distributions similar to loess and Mojave Desert dust, but are coarser than long-range-transported Asian dust. We infer from these observations that the silt mantles are derived from airborne dust from the North American mainland, probably river valleys in the coastal mountains of southern California and/or the Mojave Desert. Although average winds are from the northwest in coastal California, easterly winds occur numerous times of the year when "Santa Ana" conditions prevail, caused by a high-pressure cell centered over the Great Basin. Examination of satellite imagery shows that easterly Santa Ana winds carry abundant dust to the eastern Pacific Ocean and the California Channel Islands. Airborne dust from mainland North America may be an important component of the offshore sediment budget in the easternmost Pacific Ocean, a finding of potential biogeochemical and climatic significance.

  15. Estimating factors to convert Chinese 'Total Dust' measurements to ACGIH respirable concentrations in metal mines and pottery industries.

    PubMed

    Gao, P; Chen, B T; Hearl, F J; McCawley, M A; Schwerha, D J; Odencrantz, J; Chen, W; Chen, J; Soderholm, S C

    2000-06-01

    Historical data on the dust exposures of Chinese workers in metal mines (iron/copper, tin, tungsten) and pottery industries are being used in an ongoing joint Chinese/United States epidemiological study to investigate the exposure-response relationship for the development of silicosis, lung cancer, and other diseases. The historical data include 'total dust' concentrations determined by a Chinese method. Information about particle size distribution and the chemical and mineralogical content of airborne particles is generally not available. In addition, the historical Chinese sampling strategy is different from a typical American eight-hour time-weighted average (TWA) sampling strategy, because the Chinese samples were collected for approximately 15 minutes during production so the sample could be compared to their maximum allowable concentration (MAC) standard. Therefore, in order to assess American respirable dust exposure standards in light of the Chinese experience, factors are needed to convert historical Chinese total dust concentrations to respirable dust concentrations. As a part of the joint study to estimate the conversion factors, airborne dust samples were collected in 20 metal mines and 9 pottery factories in China during 1988 and 1989 using three different samplers: 10mm nylon cyclones, multi-stage 'cassette' impactors, and the traditional Chinese total dust samplers. More than 100 samples were collected and analysed for each of the three samplers. The study yielded two different estimates of the conversion factor from the Chinese total dust concentrations (measured during production processes) to respirable dust concentrations. The multivariate analysis of variance (MANOVA) reveals that, with a fixed sampling/analysis method, conversion factors were not statistically different among the different job titles within each industry. It also indicates that conversion factors among the industries were not statistically different. However, the two estimates

  16. Airborne and Grain Dust Fungal Community Compositions Are Shaped Regionally by Plant Genotypes and Farming Practices

    PubMed Central

    Pellissier, Loïc; Oppliger, Anne; Hirzel, Alexandre H.; Savova-Bianchi, Dessislava; Mbayo, Guilain; Mascher, Fabio; Kellenberger, Stefan

    2016-01-01

    Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km2 along an elevation gradient of 500 m by tag-encoded 454 pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, and geographic and climatic parameters) and biotic (wheat cultivar and previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity values of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity, whereas wheat cultivar, cropping history, and the number of freezing days per year shaped the taxonomic beta diversity of these communities. PMID:26826229

  17. Airborne and Grain Dust Fungal Community Compositions Are Shaped Regionally by Plant Genotypes and Farming Practices.

    PubMed

    Pellissier, Loïc; Oppliger, Anne; Hirzel, Alexandre H; Savova-Bianchi, Dessislava; Mbayo, Guilain; Mascher, Fabio; Kellenberger, Stefan; Niculita-Hirzel, Hélène

    2016-04-01

    Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km(2) along an elevation gradient of 500 m by tag-encoded 454 pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, and geographic and climatic parameters) and biotic (wheat cultivar and previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity values of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity, whereas wheat cultivar, cropping history, and the number of freezing days per year shaped the taxonomic beta diversity of these communities. PMID:26826229

  18. Analysis of Potentially Toxic Metals in Airborne Cement Dust Around Sagamu, Southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Gbadebo, A. M.; Bankole, O. D.

    This study analyzed the concentration levels of potentially toxic and harmful elements contained in the airborne cement dust generated in the vicinity and farther away 500 m in the conventional four cardinal directions from the West African Portland Cement Company (WAPCO) factory mill, Sagamu. The results indicated that the concentration range of these toxic elements fall between 40.0 and 280,000 μg g-1 in the cement dust samples. Also, the concentration range of these toxic elements in 1 L of air samples varies between 0.01 μg g-1 and 29.92 μg L-1. The results generally show elevated concentrations of all the elements when compared with USA threshold limit of particulate mental concentration (e.g., Pb (1.5 g m-3); Cd (0.004-0.026 g m-3) in the air. These elements in the airborne cement dusts may pose a great threat to the health of plants, animals and residents in and around the factory and also to workers and visitors to the factory.

  19. Biological indicators of exposure to total and respirable aluminium dust fractions in a primary aluminium smelter.

    PubMed Central

    Röllin, H B; Theodorou, P; Cantrell, A C

    1996-01-01

    OBJECTIVES: The study attempts to define biological indicators of aluminium uptake and excretion in workers exposed to airborne aluminium compounds in a primary aluminium smelter. Also, this study defines the total and respirable aluminium dust fractions in two different potrooms, and correlates their concentrations with biological indicators in this group of workers. METHODS: Air was sampled at defined work sites. Non-destructive and conventional techniques were used to find total and respirable aluminium content of the dust. Blood and urine was collected from 84 volunteers employed at various work stations throughout the smelter and from two different cohorts of controls matched for sex, age, and socioeconomic status. Aluminium in serum samples and urine specimens was measured by flameless atomic absorption with a PE 4100 ZL spectrometer. RESULTS: The correlation of aluminium concentrations in serum and urine samples with the degree of exposure was assessed for three arbitrary exposure categories; low (0.036 mg Al/m3), medium (0.35 mg Al/m3) and high (1.47 mg Al/m3) as found in different areas of the smelter. At medium and high exposure, the ratio of respirable to total aluminium in the dust samples varied significantly. At high exposure, serum aluminium, although significantly raised, was still within the normal range of an unexposed population. The workers with low exposure excreted aluminium in urine at levels significantly higher than the controls, but still within the normal range of the population. However, potroom workers with medium and high exposure had significantly higher urinary aluminium than the normal range. CONCLUSIONS: It is concluded that only urinary aluminium constitutes a practical index of occupational exposure at or above 0.35 mg Al/m3, and that the respirable fraction of the dust may play a major role in the biological response to exposure to aluminium in a smelter environment. PMID:8758038

  20. Sensory and other neurogenic effects of exposures to airborne office dust

    NASA Astrophysics Data System (ADS)

    Mølhave, L.; Kjærgaard, S. K.; Attermann, J.

    This Danish Office Dust Experiment investigated the response of 24 healthy non-sensitive adult subjects to exposure to normal office dust in the air (7 μg m -3 clean air, 136 and 390 μg m -3 TSP). The dust had no major identifiable specific reactive components. The exposure duration was 5 1/4 h and was arranged in a climate chamber in controlled atmospheric conditions. Measurements were made acutely at exposure onset, subacutely at exposure end and next day (late). As secondary aims the time course and threshold of any observed effect of the exposures, and the characteristics of any hyperresponding subgroup were investigated. In a questionnaire with 36 questions the dust exposures caused increased acute, subacute and late perceptions of reduced air quality, acute and subacute increased odor intensity, acute eye irritation, acute and late heavy head, subacute feeling of perspiration, and subacute general irritation. Cough increased subacutely during exposures. In addition, a performance test showed effects of dust exposures which also affected "Mood Scale" ratings. No effect was seen on an addition test for distraction, and objective measurements of skin humidity. The overall conclusion of the study is that healthy subjects without hypersensitivity reactions seem to respond to airborne house dust. The responses are both subjective sensory reactions and other neurogenic effects even at exposure levels within the range found in normal buildings. Some of the effects appeared acutely and decreased through adaptation while others increased during prolonged exposure and remained for more than 17 h after the exposure ended. The findings may indicate for this type of dust a threshold level for the dose-response relationships below 140 μg m -3.

  1. Effect of ultraviolet on the survival of bacteria airborne in simulated Martian dust clouds.

    PubMed

    Hagen, C A; Hawrylewicz, E J; Anderson, B T; Cephus, M L

    1970-01-01

    A chamber was constructed to create simulated Martian dust storms and thereby study the survival of airborne micro-organisms while exposed to the rigors of the Martian environment, including ultraviolet irradiation. Representative types of sporeforming and non-sporeforming bacteria present in spacecraft assembly areas and indigenous to humans were studied. It was found that daily ultraviolet irradiation of 2 to 9 X 10(7) erg cm-2 was not sufficient to sterilize the dust clouds. The soil particles protected the organisms from ultraviolet irradiation since the numbers of survivors from irradiated environments were similar to those from unirradiated environments. Pending further data of the Martian environment, the contamination and dissemination of Mars with terrestrial micro-organisms is still a distinct possibility.

  2. Machine vision based particle size and size distribution determination of airborne dust particles of wood and bark pellets

    SciTech Connect

    Igathinathane, C; Pordesimo, L.O.

    2009-08-01

    Dust management strategies in industrial environment, especially of airborne dust, require quantification and measurement of size and size distribution of the particles. Advanced specialized instruments that measure airborne particle size and size distribution apply indirect methods that involve light scattering, acoustic spectroscopy, and laser diffraction. In this research, we propose a simple and direct method of airborne dust particle dimensional measurement and size distribution analysis using machine vision. The method involves development of a user-coded ImageJ plugin that measures particle length and width and analyzes size distribution of particles based on particle length from high-resolution scan images. Test materials were airborne dust from soft pine wood sawdust pellets and ground pine tree bark pellets. Subsamples prepared by dividing the actual dust using 230 mesh (63 m) sieve were analyzed as well. A flatbed document scanner acquired the digital images of the dust particles. Proper sampling, layout of dust particles in singulated arrangement, good contrast smooth background, high resolution images, and accurate algorithm are essential for reliable analysis. A halo effect around grey-scale images ensured correct threshold limits. The measurement algorithm used Feret s diameter for particle length and pixel-march technique for particle width. Particle size distribution was analyzed in a sieveless manner after grouping particles according to their distinct lengths, and several significant dimensions and parameters of particle size distribution were evaluated. Results of the measurement and analysis were presented in textual and graphical formats. The developed plugin was evaluated to have a dimension measurement accuracy in excess of 98.9% and a computer speed of analysis of <8 s/image. Arithmetic mean length of actual wood and bark pellets airborne dust particles were 0.1138 0.0123 and 0.1181 0.0149 mm, respectively. The airborne dust particles of

  3. Dielectrophoretic separation of airborne microbes and dust particles using a microfluidic channel for real-time bioaerosol monitoring.

    PubMed

    Moon, Hui-Sung; Nam, Yun-Woo; Park, Jae Chan; Jung, Hyo-Il

    2009-08-01

    Airborne microbes such as fungi, bacteria, and viruses are a threat to public health. Robust and real-time detection systems are necessary to prevent and control such dangerous biological particles in public places and dwellings. For direct and real-time detection of airborne microbes, samples must be collected and typically resuspended in liquid prior to detection; however, environmental particles such as dust are also trapped in such samples. Therefore, the isolation of target bacteria or a selective collection of microbes from unwanted nonbiological particles prior to detection is of great importance. Dielectrophoresis (DEP), the translational motion of charge neutral matter in nonuniform electric fields, is an emerging technique that can rapidly separate biological particles in microfluidics because low voltages produce significant and contactless forces on particles without any modification or labeling. In this paper, we propose a new method for the separation of airborne microbes using DEP with a simple and novel curved electrode design for separating bacteria in a solution containing beads or dust that are taken from an airborne environmental sample. Using this method, we successfully isolated 90% of the airborne bacterium Micrococcus luteus from a mixture of bacteria and dust using a microfluidic device, consisting of novel curved electrodes that attract bacteria and repel or leave dust particles. As there has been little research on analyzing environmental samples using microfluidics and DEP, this work describes a novel strategy for a rapid and direct bioaerosol monitoring system.

  4. Respiratory protection provided by N95 filtering facepiece respirators against airborne dust and microorganisms in agricultural farms.

    PubMed

    Lee, Shu-An; Adhikari, Atin; Grinshpun, Sergey A; McKay, Roy; Shukla, Rakesh; Zeigler, Haoyue Li; Reponen, Tiina

    2005-11-01

    A new system was used to determine the workplace protection factors (WPF) for dust and bioaerosols in agricultural environments. The field study was performed with a subject wearing an N95 filtering facepiece respirator while performing animal feeding, grain harvesting and unloading, and routine investigation of facilities. As expected, the geometric means (GM) of the WPFs increased with increasing particle size ranging from 21 for 0.7-1 microm particles to 270 for 5-10 microm particles (p < 0.001). The WPF for total culturable fungi (GM = 35) was significantly greater than for total culturable bacteria (GM = 9) (p = 0.01). Among the different microorganism groups, the WPFs of Cladosporium, culturable fungi, and total fungi were significantly correlated with the WPFs of particles of the same sizes. As compared with the WPFs for dust particles, the WPFs for bioaerosols were found more frequently below 10, which is a recommended assigned protection factor (APF) for N95 filtering facepiece respirators. More than 50% of the WPFs for microorganisms (mean aerodynamic diameter < 5 microm) were less than the proposed APF of 10. Even lower WPFs were calculated after correcting for dead space and lung deposition. Thus, the APF of 10 for N95 filtering facepiece respirators seems inadequate against microorganisms (mean aerodynamic size < 5 microm). These results provide useful pilot data to establish guidelines for respiratory protection against airborne dust and microorganisms on agricultural farms. The method is a promising tool for further epidemiological and intervention studies in agricultural and other similar occupational and nonoccupational environments. PMID:16234218

  5. Real-time PCR detection of toxigenic Fusarium in airborne and settled grain dust and associations with trichothecene mycotoxins.

    PubMed

    Halstensen, Anne Straumfors; Nordby, Karl-Christian; Eduard, Wijnand; Klemsdal, Sonja Sletner

    2006-12-01

    Inhalation of immunomodulating mycotoxins produced by Fusarium spp. that are commonly found in grain dust may imply health risks for grain farmers. Airborne Fusarium and mycotoxin exposure levels are mainly unknown due to difficulties in identifying Fusarium and mycotoxins in personal aerosol samples. We used a novel real-time PCR method to quantify the fungal trichodiene synthase gene (tri5) and DNA specific to F. langsethiae and F. avenaceum in airborne and settled grain dust, determined the personal inhalant exposure level to toxigenic Fusarium during various activities, and evaluated whether quantitative measurements of Fusarium-DNA could predict trichothecene levels in grain dust. Airborne Fusarium-DNA was detected in personal samples even from short tasks (10-60 min). The median Fusarium-DNA level was significantly higher in settled than in airborne grain dust (p < 0.001), and only the F. langsethiae-DNA levels correlated significantly in settled and airborne dust (r(s) = 0.20, p = 0.003). Both F. langsethiae-DNA and tri5-DNA were associated with HT-2 and T-2 toxins (r(s) = 0.24-0.71, p < 0.05 to p < 00.01) in settled dust, and could thus be suitable as indicators for HT-2 and T-2. The median personal inhalant exposure to specific toxigenic Fusarium spp. was less than 1 genome m(-3), but the exposure ranged from 0-10(5) genomes m(-3). This study is the first to apply real-time PCR on personal samples of inhalable grain dust for the quantification of tri5 and species-specific Fusarium-DNA, which may have potential for risk assessments of inhaled trichothecenes. PMID:17133280

  6. Heavy Metal Content in Airborne Dust of Childhood Leukemia Cluster Areas: Even Small Towns Have Air Pollutants

    NASA Astrophysics Data System (ADS)

    Sheppard, P. R.; Witten, M. L.

    2004-12-01

    Currently in the US, there are at least two ongoing clusters of childhood leukemia, where the incidence rate over the last several years has exceeded the national norm. In Fallon, Nevada, a town of 8,000 people, 16 children have been diagnosed with leukemia since 1995, three of whom have died. In Sierra Vista, Arizona, a town of 38,000 people, 12 children have been diagnosed since 1998, two of whom have died. A possible third cluster of childhood leukemia and other cancers is being monitored in Elk Grove, California, a suburb of Sacramento. For the purpose of characterizing the heavy metal content of airborne dust of these three communities, total suspended particulate samples were collected from each town as well as from nearby towns that could be considered as control comparisons. Sampling was done using portable high-volume blowers and glass- or quartz-fiber filter media. Filters were measured for elemental concentrations using inductively coupled plasma mass spectroscopy. To date, our most notable results are from the Nevada region. Compared to other control towns in the region, Fallon had significantly more tungsten in its airborne dust. Uranium was also higher in dust of Fallon than in other control towns. Uranium is a known health hazard, though it is not necessarily specifically related to childhood leukemia. The role of tungsten in childhood leukemia has not been widely studied. However, other research has identified tungsten exposure as an environmental concern in Fallon. A CDC study of human tissue samples from Fallon has shown high tungsten levels in people of Fallon, and a USGS study of drinking water in Fallon also has shown high tungsten there. Tree-ring research on selected trees has shown high tungsten values in recent rings compared to earlier rings. While these multiple indications of tungsten in the Fallon environment do not directly lead to the conclusion that tungsten causes leukemia, they do combine to suggest that biomedical research on the

  7. Airborne Dust Cloud Measurements at the INL National Security Test Range

    SciTech Connect

    Michael L. Abbott; Norm Stanley; Larry Radke; Charles Smeltzer

    2007-09-01

    On July 11, 2007, a surface, high-explosive test (<20,000 lb TNT-equivalent) was carried out at the National Security Test Range (NSTR) on the Idaho National Laboratory (INL) Site. Aircraft-mounted rapid response (1-sec) particulate monitors were used to measure airborne PM-10 concentrations directly in the dust cloud and to develop a PM-10 emission factor that could be used for subsequent tests at the NSTR. The blast produced a mushroom-like dust cloud that rose approximately 2,500–3,000 ft above ground level, which quickly dissipated (within 5 miles of the source). In general, the cloud was smaller and less persistence than expected, or that might occur in other areas, likely due to the coarse sand and subsurface conditions that characterize the immediate NSTR area. Maximum short time-averaged (1-sec) PM-10 concentrations at the center of the cloud immediately after the event reached 421 µg m-3 but were rapidly reduced (by atmospheric dispersion and fallout) to near background levels (~10 µg m-3) after about 15 minutes. This occurred well within the INL Site boundary, about 8 km (5 miles) from the NSTR source. These findings demonstrate that maximum concentrations in ambient air beyond the INL Site boundary (closest is 11.2 km from NSTR) from these types of tests would be well within the 150 µg m-3 24-hour National Ambient Air Quality Standards for PM-10. Aircraft measurements and geostatistical techniques were used to successfully quantify the initial volume (1.64E+9 m3 or 1.64 km3) and mass (250 kg) of the PM-10 dust cloud, and a PM-10 emission factor (20 kg m-3 crater soil volume) was developed for this specific type of event at NSTR. The 250 kg of PM-10 mass estimated from this experiment is almost seven-times higher than the 36 kg estimated for the environmental assessment (DOE-ID 2007) using available Environmental Protection Agency (EPA 1995) emission factors. This experiment demonstrated that advanced aircraft-mounted instruments operated by

  8. Geochemical evidence for airborne dust additions to soils in Channel Islands National Park, California

    USGS Publications Warehouse

    Muhs, D.R.; Budahn, J.R.; Johnson, D.L.; Reheis, M.; Beann, J.; Skipp, G.; Fisher, E.; Jones, J.A.

    2008-01-01

    There is an increasing awareness that dust plays important roles in climate change, biogeochemical cycles, nutrient supply to ecosystems, and soil formation. In Channel Islands National Park, California, soils are clay-rich Vertisols or Alfisols and Mollisols with vertic properties. The soils are overlain by silt-rich mantles that contrast sharply with the underlying clay-rich horizons. Silt mantles contain minerals that are rare or absent in the volcanic rocks that dominate these islands. Immobile trace elements (Sc-Th-La and Ta-Nd-Cr) and rare-earth elements show that the basalt and andesite on the islands have a composition intermediate between upper-continental crust and oceanic crust. In contrast, the silt fractions and, to a lesser extent, clay fractions of the silt mantle have compositions closer to average upper-continental crust and very similar to Mojave Desert dust. Island shelves, exposed during the last glacial period, could have provided a source of eolian sediment for the silt mantles, but this is not supported by mineralogical data. We hypothesize that a more likely source for the silt-rich mantles is airborne dust from mainland California and Baja California, either from the Mojave Desert or from the continental shelf during glacial low stands of sea. Although average winds are from the northwest in coastal California, easterly winds occur numerous times of the year when "Santa Ana" conditions prevail, caused by a high-pressure cell centered over the Great Basin. The eolian silt mantles constitute an important medium of plant growth and provide evidence that abundant eolian silt and clay may be delivered to the eastern Pacific Ocean from inland desert sources. ?? 2007 Geological Society of America.

  9. Separating Dust Mixtures and Other External Aerosol Mixtures Using Airborne High Spectral Resolution Lidar Data

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Vaughan, M.; Hostetler, C. A.; Rogers, R. R.; Hair, J. W.; Cook, A. L.; Harper, D. B.

    2013-12-01

    Knowledge of aerosol type is important for source attribution and for determining the magnitude and assessing the consequences of aerosol radiative forcing. The NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL-1) has acquired considerable datasets of both aerosol extensive parameters (e.g. aerosol optical depth) and intensive parameters (e.g. aerosol depolarization ratio, lidar ratio) that can be used to infer aerosol type. An aerosol classification methodology has been used extensively to classify HSRL-1 aerosol measurements of different aerosol types including dust, smoke, urban pollution, and marine aerosol. However, atmospheric aerosol is frequently not a single pure type, but instead occurs as a mixture of types, and this mixing affects the optical and radiative properties of the aerosol. Here we present a comprehensive and unified set of rules for characterizing external mixtures using several key aerosol intensive parameters: extinction-to-backscatter ratio (i.e. lidar ratio), backscatter color ratio, and depolarization ratio. Our mixing rules apply not just to the scalar values of aerosol intensive parameters, but to multi-dimensional normal distributions with variance in each measurement dimension. We illustrate the applicability of the mixing rules using examples of HSRL-1 data where mixing occurred between different aerosol types, including advected Saharan dust mixed with the marine boundary layer in the Caribbean Sea and locally generated dust mixed with urban pollution in the Mexico City surroundings. For each of these cases we infer a time-height cross section of mixing ratio along the flight track and we partition aerosol extinction into portions attributed to the two pure types. Since multiple aerosol intensive parameters are measured and included in these calculations, the techniques can also be used for cases without significant depolarization (unlike similar work by earlier researchers), and so a third example of a

  10. Seasonal variations of sugars in atmospheric particulate matter from Gosan, Jeju Island: Significant contributions of airborne pollen and Asian dust in spring

    NASA Astrophysics Data System (ADS)

    Fu, Pingqing; Kawamura, Kimitaka; Kobayashi, Minoru; Simoneit, Bernd R. T.

    2012-08-01

    Sugars are important water-soluble organic constituents of atmospheric particulate matter (PM). In order to better understand the sources and seasonal variations of sugars in aerosols, primary saccharides (fructose, glucose, sucrose, and trehalose) and sugar alcohols (arabitol and mannitol), together with levoglucosan, have been studied in ambient aerosols at Gosan, Jeju Island in the western North Pacific, the downwind region of the Asian outflow, using gas chromatography-mass spectrometry. The results showed that the sugar composition varied seasonally with a total concentration range of 6.8-1760 ng m-3 (mean 246 ng m-3). The total identified sugars had the highest concentration in April, the spring bloom season at Jeju Island, when sucrose contributed up to 80% of the total sugars. The dominance of sucrose was also detected in pollen samples, suggesting that pollen can contribute significantly to sucrose in aerosols during the spring bloom. The seasonal variation of trehalose is consistent with those of non-sea-salt Ca2+ and δ13C of total carbon with elevated levels during the Asian dust storm events. This study indicates that sugar compounds in atmospheric PM over East Asia can be derived from biomass burning, Asian dust, and primary biological aerosols such as fungal spores and pollen. Furthermore, this study supports the idea that sucrose could be used as a tracer for airborne pollen grains, and trehalose as a tracer for Asian dust outflow.

  11. Airborne bacteria transported with Sahara dust particles from Northern Africa to the European Alps

    NASA Astrophysics Data System (ADS)

    Lazzaro, A.; Meola, M.

    2015-12-01

    The Sahara Desert is the most important source of aerosols transported across the Mediterranean towards Europe. Airborne microorganisms associated with aerosols may be transported over long distances and act as colonizers of distant habitats. However, little is known on the composition and viability of such microorganisms, due to difficulties related to their detection, collection and isolation. Here we describe an in-depth assessment of the bacterial communities associated with Sahara dust (SD) particles deposited on snow. Two distinct SD events reaching the European Alps in February and May 2014 were preserved as distinct ochre-coloured layers within the snowpack. In June 2014, we collected samples from a snow profile at 3621 m a.s.l. close to the Jungfraujoch (Swiss Alps). SD particles were analyzed by Scanning Electron Microscopy and Energy-Dispersive X-Ray Spectroscopy (SEM-EDX). Backward trajectories were calculated using the NOAA HYSPLIT model. Bacterial communities were charac-terized by MiSeq Illumina sequencing of the 16S rRNA gene. Microbial physiological profiles were assessed by incubation of samples on BIOLOG plates. The SD-layers were generally enriched in illite and kaolinite particles as compared to the adjacent snow layers. The source of SD could be traced back to Algeria. We observed distinct bacterial community structures in the SD-layers as compared to the clean snow layers. While sporulating bacteria were not enriched in the SD-layers, low abundant (<1%) phyla such as Gemmatimonadetes and Deinococcus-Thermus appeared to be specific bioindicators for SD. Both phyla are adapted to arid oligotrophic environments and UV radiation and thus are well suited to survive the harsh conditions of long-distance airborne transport. Our results show that bacteria are viable and metabolically active after the trek to the European Alps.

  12. Comparison of Air Impaction and Electrostatic Dust Collector Sampling Methods to Assess Airborne Fungal Contamination in Public Buildings.

    PubMed

    Normand, Anne-Cécile; Ranque, Stéphane; Cassagne, Carole; Gaudart, Jean; Sallah, Kankoé; Charpin, Denis-André; Piarroux, Renaud

    2016-03-01

    Many ailments can be linked to exposure to indoor airborne fungus. However, obtaining a precise measurement of airborne fungal levels is complicated partly due to indoor air fluctuations and non-standardized techniques. Electrostatic dust collector (EDC) sampling devices have been used to measure a wide range of airborne analytes, including endotoxins, allergens, β-glucans, and microbial DNA in various indoor environments. In contrast, viable mold contamination has only been assessed in highly contaminated environments such as farms and archive buildings. This study aimed to assess the use of EDCs, compared with repeated air-impactor measurements, to assess airborne viable fungal flora in moderately contaminated indoor environments. Indoor airborne fungal flora was cultured from EDCs and daily air-impaction samples collected in an office building and a daycare center. The quantitative fungal measurements obtained using a single EDC significantly correlated with the cumulative measurement of nine daily air impactions. Both methods enabled the assessment of fungal exposure, although a few differences were observed between the detected fungal species and the relative quantity of each species. EDCs were also used over a 32-month period to monitor indoor airborne fungal flora in a hospital office building, which enabled us to assess the impact of outdoor events (e.g. ground excavations) on the fungal flora levels on the indoor environment. In conclusion, EDC-based measurements provided a relatively accurate profile of the viable airborne flora present during a sampling period. In particular, EDCs provided a more representative assessment of fungal levels compared with single air-impactor sampling. The EDC technique is also simpler than performing repetitive air-impaction measures over the course of several consecutive days. EDC is a versatile tool for collecting airborne samples and was efficient for measuring mold levels in indoor environments.

  13. Statistical analysis of the size and elemental composition of airborne coal-mine dust. Open File Report (Interim) 1984-86

    SciTech Connect

    Mutmansky, J.M.; Lee, C.

    1987-03-01

    The report was part of an ongoing effort at The Pennsylvania State University to investigate the characteristics of airborne mine dusts and its relationship to coal worker's pneumoconiosis (CWP). The specific purpose of the project was to analyze the size and elemental composition of airborne coal mine dusts and the ramifications of these characteristics. A dust sampling strategy using multi-stage cascade impactors was established for characterization purposes. Analysis of the size distributions of the collected samples was performed based upon the aerodynamic diameter of the dust. Patterns of lognormality and bimodality were found in the data. Elemental analysis was performed by the PIXE method for both major and trace elements. Size dependency and locational variation of the elemental composition of the airborne dust were significant in some cases. Relationships to the mining section activities were also investigated.

  14. Bioprocess of Kosa bioaerosols: effect of ultraviolet radiation on airborne bacteria within Kosa (Asian dust).

    PubMed

    Kobayashi, Fumihisa; Maki, Teruya; Kakikawa, Makiko; Yamada, Maromu; Puspitasari, Findya; Iwasaka, Yasunobu

    2015-05-01

    Kosa (Asian dust) is a well-known weather phenomenon in which aerosols are carried by the westerly winds from inland China to East Asia. Recently, the frequency of this phenomenon and the extent of damage caused have been increasing. The airborne bacteria within Kosa are called Kosa bioaerosols. Kosa bioaerosols have affected ecosystems, human health and agricultural productivity in downwind areas. In order to develop a new and useful bacterial source and to identify the source region of Kosa bioaerosols, sampling, isolation, identification, measurement of ultraviolet (UV) radiation tolerance and experimental simulation of UV radiation conditions were performed during Kosa bioaerosol transportation. We sampled these bioaerosols using a Cessna 404 airplane and a bioaerosol sampler at an altitude of approximately 2900 m over the Noto Peninsula on March 27, 2010. The bioaerosol particles were isolated and identified as Bacillus sp. BASZHR 1001. The results of the UV irradiation experiment showed that the UV radiation tolerance of Kosa bioaerosol bacteria was very high compared with that of a soil bacterium. Moreover, the UV radiation tolerance of Kosa bioaerosol spores was higher than that of soil bacterial spores. This suggested that Kosa bioaerosols are transported across the atmosphere as living spores. Similarly, by the experimental simulation of UV radiation conditions, the limited source region of this Kosa bioaerosol was found to be southern Russia and there was a possibility of transport from the Kosa source area. PMID:25735592

  15. Wind barriers suppress fugitive dust and soil-derived airborne particles in arid regions

    SciTech Connect

    Grantz, D.A.; Vaughn, D.L.; Farber, R.J.; Kim, B.; Ashbaugh, L.; Van Curen, T.; Campbell, R.

    1998-07-01

    Areas of abandoned agricultural land in the Antelope Valley, western Mojave (high) desert of California have proven in the previous studies to be recalcitrant to conventional tillage and revegetation strategies designed to suppress wind erosion of soil and transport of sediment and fugitive dust. These areas represented a continuing source of drifting sand and of coarse and respirable suspended particulate matter. The traditional techniques failed because furrows collapsed and the water holding capacity of the overburden was too low to support seed germination and transplant survival. In this study a variety of wind barriers were evaluated for suppression of sediment transport. Airborne particles were measured with an array of coarse particle samplers at heights of 0.2, 1.0, and 2.0 m above the soil surface. Discrete artificial wind barriers, consisting of widely spaced roughness elements were effective in suppressing fugitive emissions. Wind fences established along the leeward edge of an area of blowing sand, perpendicular to the prevailing wind, significantly decreased fugitive emissions. Control was greatest and precision of the measurements was highest under high wind conditions. These techniques provide rapid and effective suppression of fugitive emissions of soil-derived particles under conditions that resist conventional tillage and revegetation techniques. A simple, indirect procedure for determining local wind velocity erosion thresholds requiring only sampling of wind run and suspended particulate mass compared favorably with direct measurement of saltation as a function of wind velocity.

  16. Bioprocess of Kosa bioaerosols: effect of ultraviolet radiation on airborne bacteria within Kosa (Asian dust).

    PubMed

    Kobayashi, Fumihisa; Maki, Teruya; Kakikawa, Makiko; Yamada, Maromu; Puspitasari, Findya; Iwasaka, Yasunobu

    2015-05-01

    Kosa (Asian dust) is a well-known weather phenomenon in which aerosols are carried by the westerly winds from inland China to East Asia. Recently, the frequency of this phenomenon and the extent of damage caused have been increasing. The airborne bacteria within Kosa are called Kosa bioaerosols. Kosa bioaerosols have affected ecosystems, human health and agricultural productivity in downwind areas. In order to develop a new and useful bacterial source and to identify the source region of Kosa bioaerosols, sampling, isolation, identification, measurement of ultraviolet (UV) radiation tolerance and experimental simulation of UV radiation conditions were performed during Kosa bioaerosol transportation. We sampled these bioaerosols using a Cessna 404 airplane and a bioaerosol sampler at an altitude of approximately 2900 m over the Noto Peninsula on March 27, 2010. The bioaerosol particles were isolated and identified as Bacillus sp. BASZHR 1001. The results of the UV irradiation experiment showed that the UV radiation tolerance of Kosa bioaerosol bacteria was very high compared with that of a soil bacterium. Moreover, the UV radiation tolerance of Kosa bioaerosol spores was higher than that of soil bacterial spores. This suggested that Kosa bioaerosols are transported across the atmosphere as living spores. Similarly, by the experimental simulation of UV radiation conditions, the limited source region of this Kosa bioaerosol was found to be southern Russia and there was a possibility of transport from the Kosa source area.

  17. Vertical mass impact and features of Saharan dust intrusions derived from ground-based remote sensing in synergy with airborne in-situ measurements

    NASA Astrophysics Data System (ADS)

    Córdoba-Jabonero, Carmen; Andrey-Andrés, Javier; Gómez, Laura; Adame, José Antonio; Sorribas, Mar; Navarro-Comas, Mónica; Puentedura, Olga; Cuevas, Emilio; Gil-Ojeda, Manuel

    2016-10-01

    A study of the vertical mass impact of Saharan dust intrusions is presented in this work. Simultaneous ground-based remote-sensing and airborne in-situ measurements performed during the AMISOC-TNF campaign over the Tenerife area (Canary Islands) in summertime from 01 July to 11 August 2013 were used for that purpose. A particular dusty (DD) case, associated to a progressively arriving dust intrusion lasting for two days on 31 July (weak incidence) and 01 August (strong incidence), is especially investigated. AERONET AOD and AEx values were ranging, respectively, from 0.2 to 1.4 and 0.35 to 0.05 along these two days. Vertical particle size distributions within fine and coarse modes (0.16-2.8 μm range) were obtained from aircraft aerosol spectrometer measurements. Extinction profiles and Lidar Ratio (LR) values were derived from MPLNET/Micro Pulse Lidar observations. MAXDOAS measurements were also used to retrieve the height-resolved aerosol extinction for evaluation purposes in comparison to Lidar-derived profiles. The synergy between Lidar observations and airborne measurements is established in terms of the Mass Extinction Efficiency (MEE) to calculate the vertical mass concentration of Saharan dust particles. Both the optical and microphysical profilings show dust particles mostly confined in a layer of 4.3 km thickness from 1.7 to 6 km height. LR ranged between 50 and 55 sr, typical values for Saharan dust particles. In addition, this 2-day dust event mostly affected the Free Troposphere (FT), being less intense in the Boundary Layer (BL). In particular, rather high Total Mass Concentrations (TMC) were found on the stronger DD day (01 August 2013): 124, 70 and 21 μg m-3 were estimated, respectively, at FT and BL altitudes and on the near-surface level. This dust impact was enhanced due to the increase of large particles affecting the FT, but also the BL, likely due to their gravitational settling. However, the use of an assumed averaged MEE value can be

  18. Optimization of the concentration optics of the Martian airborne dust sensor for MetNet space mission

    NASA Astrophysics Data System (ADS)

    Cortés, F.; González, A.; de Castro, A. J.; López, F.

    2012-06-01

    Martian atmosphere contains a significant and rapidly changing load of suspended dust that never drops to zero. The main component of Martian aerosol is micron-sized dust thought to be a product of soil weathering. Although airborne dust plays a key role in Martian climate, the basic physical properties of these aerosols are still poorly known. The scope of Mars MetNet Mission is to deploy several tens of mini atmospheric stations on the Martian surface. MEIGA-MetNet payload is the Spanish contribution in MetNet. Infrared Laboratory of University Carlos III (LIR-UC3M) is in charge of the design and development of a micro-sensor for the characterization of airborne dust. This design must accomplish with a strict budget of mass and power, 45 g and 1 W respectively. The sensor design criteria have been obtained from a physical model specifically developed for optimizing IR local scattering. The model calculates the spectral power density scattered and detected between 1 and 5 μm by a certain particle distribution and sensor configuration. From model calculations a modification based on the insertion of a compound ellipsoidal concentrator (CEC) has appeared as necessary. Its implementation has multiplied up to 100 the scattered optical power detected, significantly enhancing the detection limits of the sensor.

  19. A brief report of gram-negative bacterial endotoxin levels in airborne and settled dusts in animal confinement buildings

    SciTech Connect

    Thedell, T.D.; Mull, J.C.; Olenchock, S.A.

    1980-01-01

    Gram-negative bacterial endotoxins, implicated in adverse worker health responses, were found in settled and airborne dust samples obtained from poultry and swine confinement units. Results of the Limulus amebocyte lysate gel test found endotoxin levels in dust samples ranged from 4.5 to 47.7 micrograms of FDA Klebsiella endotoxin equivalents/gm. Differences in endotoxin levels between dust samples may have been due to variables in time, geographic locations, confined animals, confinement buildings and equipment, and methods of sample collection. Animal confinement workers are potentially exposed to large amounts of gram-negative bacterial endotoxins; however, the respiratory health effects of such exposures to animal confinement workers have yet to be determined.

  20. Potential exposures to airborne and settled surface dust in residential areas of lower Manhattan following the collapse of the World Trade Center--New York City, November 4-December 11, 2001.

    PubMed

    2003-02-21

    Following the terrorist attacks of September 11, 2001, which destroyed the World Trade Center (WTC) in lower Manhattan, the New York City (NYC) Department of Health and Mental Hygiene (DOHMH) and the Agency for Toxic Substances and Disease Registry (ATSDR), with assistance from the U.S. Public Health Service (PHS) Commissioned Corps Readiness Force and the WTC Environmental Assessment Working Group, assessed the composition of outdoor and indoor settled surface and airborne dust in residential areas around the WTC and in comparison areas. This report summarizes the results of the investigation, which found 1) similar levels of airborne total fibers in lower and in upper Manhattan, 2) greater percentage levels of synthetic vitreous fibers (SVF) and mineral components of concrete and building wallboard in settled dust of residential areas in lower Manhattan than in upper Manhattan, and 3) low levels of asbestos in some settled surface dust in lower Manhattan residential areas. Based in part on the results of this investigation, the U.S. Environmental Protection Agency (EPA) is cleaning and sampling residential areas as requested by lower Manhattan residents. In addition, to assess any short- or long-term health effects of smoke, dust, and airborne substances around the WTC site, DOHMH and ATSDR are developing a registry that will track the health of persons who were most highly exposed to these materials.

  1. An Assessment of the Surface Longwave Direct Radiative Effect of Airborne Saharan Dust During the NAMMA Field Campaign

    NASA Technical Reports Server (NTRS)

    Hansell, R. A.; Tsay, S. C.; Ji, Q.; Hsu, N. C.; Jeong, M. J.; Wang, S. H.; Reid, J. S.; Liou, K. N.; Ou, S. C.

    2010-01-01

    In September 2006, NASA Goddard s mobile ground-based laboratories were deployed to Sal Island in Cape Verde (16.73degN, 22.93degW) to support the NASA African Monsoon Multidisciplinary Analysis (NAMMA) field study. The Atmospheric Emitted Radiance Interferometer (AERI), a key instrument for spectrally characterizing the thermal IR, was used to retrieve the dust IR aerosol optical depths (AOTs) in order to examine the diurnal variability of airborne dust with emphasis on three separate dust events. AERI retrievals of dust AOT are compared with those from the coincident/collocated multifilter rotating shadow-band radiometer (MFRSR), micropulse lidar (MPL), and NASA Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) sensors. The retrieved AOTs are then inputted into the Fu-Liou 1D radiative transfer model to evaluate local instantaneous direct longwave radiative effects (DRE(sub LW)) of dust at the surface in cloud-free atmospheres and its sensitivity to dust microphysical parameters. The top-of-atmosphere DRE(sub LW) and longwave heating rate profiles are also evaluated. Instantaneous surface DRE(sub LW) ranges from 2 to 10 W/sq m and exhibits a strong linear dependence with dust AOT yielding a DRE(sub LW) of 16 W/sq m per unit dust AOT. The DRE(sub LW) is estimated to be approx.42% of the diurnally averaged direct shortwave radiative effect at the surface but of opposite sign, partly compensating for the shortwave losses. Certainly nonnegligible, the authors conclude that DRE(sub LW) can significantly impact the atmospheric energetics, representing an important component in the study of regional climate variation.

  2. Chemical speciation of size-segregated floor dusts and airborne magnetic particles collected at underground subway stations in Seoul, Korea.

    PubMed

    Jung, Hae-Jin; Kim, BoWha; Malek, Md Abdul; Koo, Yong Sung; Jung, Jong Hoon; Son, Youn-Suk; Kim, Jo-Chun; Kim, HyeKyoung; Ro, Chul-Un

    2012-04-30

    Previous studies have reported the major chemical species of underground subway particles to be Fe-containing species that are generated from wear and friction processes at rail-wheel-brake and catenaries-pantographs interfaces. To examine chemical composition of Fe-containing particles in more details, floor dusts were collected at five sampling locations of an underground subway station. Size-segregated floor dusts were separated into magnetic and non-magnetic fractions using a permanent magnet. Using X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDX), iron metal, which is relatively harmless, was found to be the dominating chemical species in the floor dusts of the <25 μm size fractions with minor fractions of Mg, Al, Si, Ca, S, and C. From SEM analysis, the floor dusts of the <25 μm size fractions collected on railroad ties appeared to be smaller than 10 μm, indicating that their characteristics should somewhat reflect the characteristics of airborne particles in the tunnel and the platform. As most floor dusts are magnetic, PM levels at underground subway stations can be controlled by removing magnetic indoor particles using magnets. In addition, airborne subway particles, most of which were smaller than 10 μm, were collected using permanent magnets at two underground subway stations, namely Jegi and Yangjae stations, in Seoul, Korea. XRD and SEM/EDX analyses showed that most of the magnetic aerosol particles collected at Jegi station was iron metal, whereas those at Yangjae station contained a small amount of Fe mixed with Na, Mg, Al, Si, S, Ca, and C. The difference in composition of the Fe-containing particles between the two subway stations was attributed to the different ballast tracks used. PMID:22381374

  3. Chemical speciation of size-segregated floor dusts and airborne magnetic particles collected at underground subway stations in Seoul, Korea.

    PubMed

    Jung, Hae-Jin; Kim, BoWha; Malek, Md Abdul; Koo, Yong Sung; Jung, Jong Hoon; Son, Youn-Suk; Kim, Jo-Chun; Kim, HyeKyoung; Ro, Chul-Un

    2012-04-30

    Previous studies have reported the major chemical species of underground subway particles to be Fe-containing species that are generated from wear and friction processes at rail-wheel-brake and catenaries-pantographs interfaces. To examine chemical composition of Fe-containing particles in more details, floor dusts were collected at five sampling locations of an underground subway station. Size-segregated floor dusts were separated into magnetic and non-magnetic fractions using a permanent magnet. Using X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDX), iron metal, which is relatively harmless, was found to be the dominating chemical species in the floor dusts of the <25 μm size fractions with minor fractions of Mg, Al, Si, Ca, S, and C. From SEM analysis, the floor dusts of the <25 μm size fractions collected on railroad ties appeared to be smaller than 10 μm, indicating that their characteristics should somewhat reflect the characteristics of airborne particles in the tunnel and the platform. As most floor dusts are magnetic, PM levels at underground subway stations can be controlled by removing magnetic indoor particles using magnets. In addition, airborne subway particles, most of which were smaller than 10 μm, were collected using permanent magnets at two underground subway stations, namely Jegi and Yangjae stations, in Seoul, Korea. XRD and SEM/EDX analyses showed that most of the magnetic aerosol particles collected at Jegi station was iron metal, whereas those at Yangjae station contained a small amount of Fe mixed with Na, Mg, Al, Si, S, Ca, and C. The difference in composition of the Fe-containing particles between the two subway stations was attributed to the different ballast tracks used.

  4. Perchlorate in indoor dust and human urine in China: contribution of indoor dust to total daily intake.

    PubMed

    Zhang, Tao; Chen, Xiaojia; Wang, Dou; Li, Rudan; Ma, Yufang; Mo, Weiwen; Sun, Hongwen; Kannan, Kurunthachalam

    2015-02-17

    Perchlorate is used in fireworks and China is the largest fireworks producer and consumer in the world. Information regarding human exposure to perchlorate is scarce in China, and exposure via indoor dust ingestion (EDI indoor dust) has rarely been evaluated. In this study, perchlorate was found in indoor dust (detection rate: 100%, median: 47.4 μg/g), human urine (99%, 26.2 ng/mL), drinking water (100%, 3.99 ng/mL), and dairy milk (100%, 12.3 ng/mL) collected from cities that have fireworks manufacturing areas (Yueyang and Nanchang) and in cities that do not have fireworks manufacturing industries (Tianjin, Shijiazhuang, Yuxi and Guilin) in China. In comparison with perchlorate levels reported for other countries, perchlorate levels in urine samples from fireworks sites and nonfireworks sites in China were higher. Median indoor dust perchlorate concentrations were positively correlated (r = 0.964, p < 0.001) with outdoor dust perchlorate levels reported previously. The total daily intake (EDI total) of perchlorate, estimated based on urinary levels, ranged from 0.090 to 27.72 μg/kg body weight (bw)/day for all studied participants; the percentage of donors who had EDI total exceeding the reference dose (RfD) recommended by the United States Environmental Protection Agency (US EPA) was 79%, 48%, and 25% for toddlers (median: 1.829 μg/kg bw/day), adults (0.669 μg/kg bw/day), and children (median: 0.373 μg/kg bw/day), respectively. Toddlers (0.258 μg/kg bw/day) had the highest median EDI indoor dust, which was 2 to 5 times greater than the EDI indoor dust calculated for other age groups (the range of median values: 0.044 to 0.127 μg/kg bw/day). Contribution of indoor dust to EDItotal was 26%, 28%, and 7% for toddlers, children, and adults, respectively. Indoor dust contributed higher percentage to EDI total than that by dairy milk (0.5-5%).

  5. Perchlorate in indoor dust and human urine in China: contribution of indoor dust to total daily intake.

    PubMed

    Zhang, Tao; Chen, Xiaojia; Wang, Dou; Li, Rudan; Ma, Yufang; Mo, Weiwen; Sun, Hongwen; Kannan, Kurunthachalam

    2015-02-17

    Perchlorate is used in fireworks and China is the largest fireworks producer and consumer in the world. Information regarding human exposure to perchlorate is scarce in China, and exposure via indoor dust ingestion (EDI indoor dust) has rarely been evaluated. In this study, perchlorate was found in indoor dust (detection rate: 100%, median: 47.4 μg/g), human urine (99%, 26.2 ng/mL), drinking water (100%, 3.99 ng/mL), and dairy milk (100%, 12.3 ng/mL) collected from cities that have fireworks manufacturing areas (Yueyang and Nanchang) and in cities that do not have fireworks manufacturing industries (Tianjin, Shijiazhuang, Yuxi and Guilin) in China. In comparison with perchlorate levels reported for other countries, perchlorate levels in urine samples from fireworks sites and nonfireworks sites in China were higher. Median indoor dust perchlorate concentrations were positively correlated (r = 0.964, p < 0.001) with outdoor dust perchlorate levels reported previously. The total daily intake (EDI total) of perchlorate, estimated based on urinary levels, ranged from 0.090 to 27.72 μg/kg body weight (bw)/day for all studied participants; the percentage of donors who had EDI total exceeding the reference dose (RfD) recommended by the United States Environmental Protection Agency (US EPA) was 79%, 48%, and 25% for toddlers (median: 1.829 μg/kg bw/day), adults (0.669 μg/kg bw/day), and children (median: 0.373 μg/kg bw/day), respectively. Toddlers (0.258 μg/kg bw/day) had the highest median EDI indoor dust, which was 2 to 5 times greater than the EDI indoor dust calculated for other age groups (the range of median values: 0.044 to 0.127 μg/kg bw/day). Contribution of indoor dust to EDItotal was 26%, 28%, and 7% for toddlers, children, and adults, respectively. Indoor dust contributed higher percentage to EDI total than that by dairy milk (0.5-5%). PMID:25587720

  6. An evaluation of effect of airborne dust from a cotton mill on the guinea-pig ileum with reference to byssinosis.

    PubMed

    Cinkotai, F F; Franklin, D W

    1975-08-01

    The effect of airborne dust on the guinea-pig ileum was studied. Tyrode extracts of airborne dust collected freshly in the cardroom of a cotton mill, and extracts of air pollutant samples drawn on the roof of the mill and of the local town hall were all found to induce the guinea-pig ileum to contract when applied in a tissue-bath. However, the force of contraction with air pollutants was rather greater than that with the cardroom dust. Considering the variables involved, the ileum response to the cardroom dust may have been due to ordinary air pollutants which constitute a significant part of the dust. It is concluded that this pharmacological phenomenon is probably not relevant in the context of byssinosis.

  7. Total airborne mold particle sampling: evaluation of sample collection, preparation and counting procedures, and collection devices.

    PubMed

    Godish, Diana; Godish, Thad

    2008-02-01

    This study was conducted to evaluate (i) procedures used to collect, prepare, and count total airborne mold spore/particle concentrations, and (ii) the relative field performance of three commercially available total airborne mold spore/particle sampling devices. Differences between factory and laboratory airflow calibration values of axial fan-driven sampling instruments (used in the study) indicated a need for laboratory calibration using a mass flow meter to ensure that sample results were accurately calculated. An aniline blue-amended Calberla's solution adjusted to a pH of 4.2-4.4 provided good sample mounting/counting results using Dow Corning high vacuum grease, Dow Corning 280A adhesive, and Dow Corning 316 silicone release spray for samples collected using mini-Burkard and Allergenco samplers. Count variability among analysts was most pronounced in 5% counts of relatively low mold particle deposition density samples and trended downward with increased count percentage and particle deposition density. No significant differences were observed among means of 5, 10, and 20% counts and among analysts; a significant interaction effect was observed between analysts' counts and particle deposition densities. Significantly higher mini-Burkard and Air-O-Cell total mold spore/particle counts for 600x vs. 400x (1.9 and 2.3 x higher, respectively), 1000x vs. 600x (1.9 and 2.2 x higher, respectively) and 1000x vs. 400x (3.6 and 4.6 x higher, respectively) comparisons indicated that 1000x magnification counts best quantified total airborne mold spore/particles using light microscopy, and that lower magnification counts may result in unacceptable underreporting of airborne mold spore/particle concentrations. Modest but significantly higher (1.2x) total mold spore concentrations were observed with Allergenco vs. mini-Burkard samples collected in co-located, concurrently operated sampler studies; moderate but significantly higher mini-Burkard count values (1.4x) were

  8. Natural Airborne Dust and Heavy Metals: A Case Study for Kermanshah, Western Iran (2005–2011)

    PubMed Central

    PIRSAHEB, Meghdad; ZINATIZADEH, Aliakbar; KHOSRAVI, Touba; ATAFAR, Zahra; DEZFULINEZHAD, Saeed

    2014-01-01

    Abstract Background Dust pollution has become a serious environmental problem especially in recent decades. The present study aim was the investigation of the levels of PM10 concentration in Kermanshah, western Iran and also measured five important heavy metals (Pb, Cd, As, Hg and Cr) in some samples during 2005 to 2011. Methods A total 2277 samples were collected from air pollution measurement station belonging to the Department of Environment in Kermanshah. Furthermore, four samples were collected during dusty days to determine the selected heavy metals concentration. The samples were analyzed statistically using the SPSS Ver.16 Results The highest seasonal average concentration in spring was recorded in 2008 with 216.63μg/m3, and the maximum values of 267.79 and 249.09μg/m3 were observed in summer and winter in 2009, respectively. The maximum concentration of 127.1μg/m3 was in autumn in 2010. The metals concentration (Pb, Cd, As, Hg and Cr) of samples were 42.32±5.40, 37.45±9.29, 3.51±2.07, 1.88±1.64 and 0μg/g in July, 2009, respectively. Conclusion According to National Ambient Air Quality of USEPA guidelines, the most days with non-standard, warning, emergency and critical conditions were related to 2009 (120 days) while the least polluted days were recorded in 2006 (16 days). There are concerns about the increasing frequency and intensity trend of dust storms in recent years as a result of special condition in neighboring Western countries which it could endanger public health and environment. All measured heavy metals except mercury was higher than the standard level of WHO and USEPA. PMID:26005656

  9. Uranium mill ore dust characterization

    SciTech Connect

    Knuth, R.H.; George, A.C.

    1980-11-01

    Cascade impactor and general air ore dust measurements were taken in a uranium processing mill in order to characterize the airborne activity, the degree of equilibrium, the particle size distribution and the respirable fraction for the /sup 238/U chain nuclides. The sampling locations were selected to limit the possibility of cross contamination by airborne dusts originating in different process areas of the mill. The reliability of the modified impactor and measurement techniques was ascertained by duplicate sampling. The results reveal no significant deviation from secular equilibrium in both airborne and bulk ore samples for the /sup 234/U and /sup 230/Th nuclides. In total airborne dust measurements, the /sup 226/Ra and /sup 210/Pb nuclides were found to be depleted by 20 and 25%, respectively. Bulk ore samples showed depletions of 10% for the /sup 226/Ra and /sup 210/Pb nuclides. Impactor samples show disequilibrium of /sup 226/Ra as high as +-50% for different size fractions. In these samples the /sup 226/Ra ratio was generally found to increase as particle size decreased. Activity median aerodynamic diameters of the airborne dusts ranged from 5 to 30 ..mu..m with a median diameter of 11 ..mu..m. The maximum respirable fraction for the ore dusts, based on the proposed International Commission on Radiological Protection's (ICRP) definition of pulmonary deposition, was < 15% of the total airborne concentration. Ore dust parameters calculated for impactor duplicate samples were found to be in excellent agreement.

  10. Variations in the structure of airborne bacterial communities in a downwind area during an Asian dust (Kosa) event.

    PubMed

    Maki, Teruya; Puspitasari, Findya; Hara, Kazutaka; Yamada, Maromu; Kobayashi, Fumihisa; Hasegawa, Hiroshi; Iwasaka, Yasunobu

    2014-08-01

    Asian dust (Kosa) events transport airborne microorganisms that significantly impact biological ecosystems, human health, and ice-cloud formation in downwind areas. However, the composition and population dynamics of airborne bacteria have rarely been investigated in downwind areas during Kosa events. In this study, air samplings were sequentially performed at the top of a 10-m high building within the Kosa event arrival area (Kanazawa City, Japan) from May 1 to May 7, 2011, during a Kosa event. The particle concentrations of bacterial cells and mineral particles were ten-fold higher during the Kosa event than on non-Kosa event days. A 16S ribosomal DNA clone library prepared from the air samples primarily contained sequences from three phyla: Cyanobacteria, Firmicutes, and Alphaproteobacteria. The clones from Cyanobacteria were mainly from a marine type of Synechococcus species that was dominant during the first phase of the Kosa event and was continuously detected throughout the Kosa event. The clones from Alphaproteobacteria were mainly detected at the initial and final periods of the Kosa event, and phylogenetic analysis showed that their sequences clustered with those from a marine bacterial clade (the SAR clade) and Sphingomonas spp. During the middle of the Kosa event, the Firmicutes species Bacillus subtilis and Bacillus pumilus were predominant; these species are known to be predominant in the atmosphere above the Chinese desert, which is the source of the dust during Kosa events. The clones obtained after the Kosa event had finished were mainly from Bacillus megaterium, which is thought to originate from local terrestrial areas. Our results suggest that airborne bacterial communities at the ground level in areas affected by Kosa events change their species compositions during a Kosa event toward those containing terrestrial and pelagic bacteria transported from the Sea of Japan and the continental area of China by the Kosa event. PMID:24815557

  11. Endotoxin levels in settled airborne dust in European schools: the HITEA school study.

    PubMed

    Jacobs, J H; Krop, E J M; Borras-Santos, A; Zock, J-P; Taubel, M; Hyvarinnen, A; Pekkanen, J; Doekes, G; Heederik, D J J

    2014-04-01

    Indoor exposure to microbial agents is known to influence respiratory health. Besides home exposure, exposure in schools can affect respiratory health. In this study, we measured endotoxin in settled dust in primary schools in three European countries from three different geographical regions with different climates. Our aim was to characterize endotoxin levels in primary schools and evaluate associations with potential determinants. Endotoxin levels were repeatedly assessed in 23 schools in Spain (n = 7), the Netherlands (n = 10), and Finland (n = 6) using electrostatic dustfall collectors. In total, 645 measurements were taken in 237 classrooms. Endotoxin levels differed significantly between countries; Dutch schools had the highest levels, while Finnish schools showed the lowest levels. In each country, differences in endotoxin levels were observed between schools and over the sampling periods. Estimates improved after adjustment for sampling period. Factors affecting endotoxin levels in a school differed per country. In general, endotoxin levels were higher in lower grades and in classrooms with higher occupancy. School endotoxin levels may contribute significantly to total endotoxin exposure in children and teachers. As the correlation between the repeated measurements is reasonable, single endotoxin measurements form a reasonable basis for estimating annual endotoxin levels in schools.

  12. Saharan dust long-range transport across the Atlantic studied by an airborne Doppler wind lidar and the MACC model

    NASA Astrophysics Data System (ADS)

    Chouza, Fernando; Reitebuch, Oliver; Benedetti, Angela; Weinzierl, Bernadett

    2016-09-01

    A huge amount of dust is transported every year from north Africa into the Caribbean region. This paper presents an investigation of this long-range transport process based on airborne Doppler wind lidar (DWL) measurements conducted during the SALTRACE campaign (June-July 2013), as well as an evaluation of the ability of the MACC (Monitoring Atmospheric Composition and Climate) global aerosol model to reproduce it and its associated features. Although both the modeled winds from MACC and the measurements from the DWL show a generally good agreement, some differences, particularly in the African easterly jet (AEJ) intensity, were noted. The observed differences between modeled and measured wind jet speeds are between 5 and 10 m s-1. The vertical aerosol distribution within the Saharan dust plume and the marine boundary layer is investigated during the June-July 2013 period based on the MACC aerosol model results and the CALIOP satellite lidar measurements. While the modeled Saharan dust plume extent shows a good agreement with the measurements, a systematic underestimation of the marine boundary layer extinction is observed. Additionally, three selected case studies covering different aspects of the Saharan dust long-range transport along the west African coast, over the North Atlantic Ocean and the Caribbean are presented. For the first time, DWL measurements are used to investigate the Saharan dust long-range transport. Simultaneous wind and backscatter measurements from the DWL are used, in combination with the MACC model, to analyze different features associated with the long-range transport, including an African easterly wave trough, the AEJ and the intertropical convergence zone.

  13. Aging of mineral dust during transport from the Sahara into the Cape Verde area - results from airborne measurements during SAMUM

    NASA Astrophysics Data System (ADS)

    Weinzierl, B.; Sauer, D.; Esselborn, M.; Petzold, A.; Veira, A.; Rose, M.; Mund, S.; Wirth, M.; Ansmann, A.; Tesche, M.; Groß, S.; Freudenthaler, V.

    2012-04-01

    The Saharan Mineral Dust Experiment (SAMUM) was conducted to better understand the properties of fresh and aged mineral dust. Within SAMUM, two field missions were performed: SAMUM-1 (summer 2006, Morocco) focused on the chemical, microphysical, optical and radiative properties of fresh dust aerosol in the vertical column over the Sahara, while SAMUM-2 (winter 2008, Cape Verde) concentrated on the properties of aged dust and the mixing of mineral dust with biomass burning aerosol. During both field experiments, the DLR Falcon research aircraft was equipped with an extensive set of aerosol instruments for size, volatility, and absorption measurements, impactor sampling for chemical analyses and with a nadir-looking High Spectral Resolution Lidar (HSRL). In the Cape Verde area, we found a complex stratification with dust covering the altitude range below 2 km and tropical biomass burning layers aloft. We show that the aerosol type of individual aerosol layers can be classified based on depolarization and lidar ratios and, in addition, on in situ measured Ångström exponents of absorption åap. The dust layers had a geometrical depth of 1.3 ± 0.4 km and showed a median åap of 3.95. The median effective diameter Deff was 2.5 μm and the dust layers over Cape Verde yielded clear signals of aging: large particles were depleted due to gravitational settling and the accumulation mode diameter was shifted towards larger sizes as a result of coagulation. The tropical biomass layers had a depth of 2.0 ± 1.1 km and were characterized by a median åap of 1.34. They always contained a certain amount of large dust particles and showed a median Deff of 1.1 μm and a fine mode Deff,fine of 0.33. The dust and biomass burning layers had a median aerosol optical depth (AOD) of 0.23 and 0.09, respectively. The median contributions of the dust and biomass burning layers to the AOD of the total atmospheric column below 10 km were 75 and 37%, respectively. We present the properties of

  14. Directed air flow to reduce airborne particulate and bacterial contamination in the surgical field during total hip arthroplasty.

    PubMed

    Stocks, Gregory W; O'Connor, Daniel P; Self, Sean D; Marcek, Geoff A; Thompson, Brandon L

    2011-08-01

    This study evaluated the use of a system that delivers a small field of local, directed air from a high-efficiency particulate air (HEPA) filter to reduce airborne particulate and airborne bacteria in the surgical field during total hip arthroplasty. Thirty-six patients were randomized into 3 groups: with directed air flow, with the directed air flow system present but turned off, and control. Airborne particulate and bacteria were collected from within 5 cm of the surgical wound. All particulate and bacterial counts at the surgical site were significantly lower in the directed air flow group (P < .001). The directed air flow system was effective in reducing airborne particulate and colony-forming units in the surgical field during total hip arthroplasty. PMID:20851565

  15. Airborne Fungi in Sahara Dust Aerosols Reaching the Eastern Caribbean: II. Species Identification Using Molecular Techniques

    NASA Astrophysics Data System (ADS)

    de La Mota, A.; Betancourt, C.; Detres, Y.; Armstrong, R.

    2003-12-01

    Fungi samples from filters collected in Castle Bruce, Dominica from March through July 2002, were previously purified and identified to genus level using classic macroscopic and microscopic techniques. A total of 105 isolated colonies were cultured in liquid media and the mycelial mats used for DNA extraction. PCR was used to amplify the ITS region of the rDNA using the ITS1 and ITS4 primers. Both strands of the amplified products were sequenced and the final identification to species level was completed by a GenBank search. Fourteen different species and one fungal endophyte were identified from genders Aspergillus,Penicillium, Fusarium, Cladosporium, Curvularia and Phanerochaete. Some of these species such as A. fumigatus, A. japonicus, P. citrinum and C. cladosporoides are known to cause respiratory disorders in humans. A. fumigatus causes an aggressive pulmonary allergic response that might result in allergic bronchopulmonary aspergillosis. Other species such as F. equiseti and C. brachyspora are plant pathogens affecting economically important crops. Sahara dust is an important source of fungal spores of species that are not common in the Caribbean region.

  16. Airborne Fungi in Sahara Dust Aerosols Reaching the Eastern Caribbean: I. Taxonomic Characterization by Morphological Features

    NASA Astrophysics Data System (ADS)

    Rivera-Denizard, O.; Betancourt, C.; Armstrong, R. A.; Detres, Y.

    2003-12-01

    A wide variety of microorganisms are dispersed into the Caribbean region due to the input of Saharan dust aerosols during the summer months. These microorganisms can cause diseases in plants and animals, and might be responsible for an increase incidence of asthma and respiratory diseases in this region. A PM 2.5 air sampling station was installed in Castle Bruce, Dominica from March through July of 2002. Fourteen filters were obtained by running the air sampler continuously for 24 hour periods. The samples were collected in sterile Teflon filters (47 mm in diameter, 0.2 um pore size), inoculated in Malt Extract Agar (MEA) with lactic acid and incubated at 29° C. Colonies were counted, isolated and cultured on separate Petri dishes. Fungal classification to the genus level used macroscopic features and microscopic evaluation. The Nomarski light microscopy technique was used for identification of reproductive structures. A total of 105 colonies were isolated. Six genera including Aspergillus, Penicillium, Cladosporium, Fusarium, Curvularia,and Nigrospora were identified. The protocol for the molecular characterization to species level is presented as the second part of this work.

  17. Airborne Sunphotometer Measurements of Aerosol Optical Depth and Columnar Water Vapor During the Puerto Rico Dust Experiment, and Comparison with Land, Aircraft, and Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Livingston, John M.; Russell, Philip B.; Reid, Jeffrey; Redemann, Jens; Schmid, Beat; Allen, Duane A.; Torres, Omar; Levy, Robert C.; Remer, Lorraine A.; Holben, Brent N.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    Analyses of aerosol optical depth (AOD) and columnar water vapor (CWV) measurements obtained with the six-channel NASA Ames Airborne Tracking Sunphotometer (AATS-6) mounted on a twin-engine aircraft during the summer 2000 Puerto Rico Dust Experiment are presented. In general, aerosol extinction values calculated from AATS-6 AOD measurements acquired during aircraft profiles up to 5 km ASL reproduce the vertical structure measured by coincident aircraft in-situ measurements of total aerosol number and surface area concentration. Calculations show that the spectral dependence of AOD was small (mean Angstrom wavelength exponents of approximately 0.20) within three atmospheric layers defined as the total column beneath the top of each aircraft profile, the region beneath the trade wind inversion, and the region within the Saharan Air Layer (SAL) above the trade inversion. This spectral behavior is consistent with attenuation of incoming solar radiation by large dust particles or by dust plus sea salt. Values of CWV calculated from profile measurements by AATS-6 at 941.9 nm and from aircraft in-situ measurements by a chilled mirror dewpoint hygrometer agree to within approximately 4% (0.13 g/sq cm). AATS-6 AOD values measured on the ground at Roosevelt Roads Naval Air Station and during low altitude aircraft runs over the adjacent Cabras Island aerosol/radiation ground site agree to within 0.004 to 0.030 with coincident data obtained with an AERONET Sun/sky Cimel radiometer located at Cabras Island. For the same observation times, AERONET retrievals of CWV exceed AATS-6 values by a mean of 0.74 g/sq cm (approximately 21 %) for the 2.9-3.9 g/sq cm measured by AATS-6. Comparison of AATS-6 aerosol extinction values obtained during four aircraft ascents over Cabras Island with corresponding values calculated from coincident aerosol backscatter measurements by a ground-based micro-pulse lidar (MPL-Net) located at Cabras yields a similar vertical structure above the trade

  18. Measurements of total reactive nitrogen during the Airborne Arctic Stratospheric Expedition

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Fahey, D. W.; Anderson, L. C.; Loewenstein, M.; Chan, K. R.

    1990-01-01

    Composite distributions of measured total reactive nitrogen NO(y), from the NASA ER-2 during the Airborne Arctic Stratospheric Expedition are presented. The observed features of these distributions are discussed in terms of the controlling dynamical, chemical and microphysical processes. In the latitudinal profile from 58 deg N to within about 4 deg poleward of the polar vortex boundary, NO(y) conforms closely to predictions of NO(y) based on N2O measurements. Poleward of 5 deg of latitude within the boundary, the average NO(y) decreases sharply and is significantly lower than that predicted from N2O. This feature is consistent with loss of NO(y) through sedimentation of particles containing NO(y) in polar stratospheric clouds.

  19. [Effect of water sprinkling on total dust and mineral fiber concentration during serpentine asbestos processing].

    PubMed

    Woźniak, H; Wiecek, E; Pelc, W; Dobrucka, D; Opalska, B

    1993-01-01

    By means of personal air sampler and Fibre Monitor FM-7400 concentrations of total dust and respirable mineral fibre were measured at work-posts, after sprinkling places with the highest emission of dust, in the plant where serpentine asbestos, used as road stone, was processed. It was found that due to sprinkling mean concentrations of total dust during a shift decreased by 1.5 (at inspection post) to 13.5 times at the post where crushing and sorting machines were served (before sprinkling -29.7 mg/m3 and after 2.2 mg/m3). It was found, at the same time, that sprinkling no decreased the concentration of mineral fibres.

  20. Levels and risk assessment for humans and ecosystems of platinum-group elements in the airborne particles and road dust of some European cities.

    PubMed

    Gómez, B; Palacios, M A; Gómez, M; Sanchez, J L; Morrison, G; Rauch, S; McLeod, C; Ma, R; Caroli, S; Alimonti, A; Petrucci, E; Bocca, B; Schramel, P; Zischka, M; Petterson, C; Wass, U

    2002-11-01

    Traffic is the main source of platinum-group element (PGE) contamination in populated urban areas. There is increasing concern about the hazardous effects of these new pollutants for people and for other living organisms in these areas. Airborne and road dusts, as well as tree bark and grass samples were collected at locations in the European cities of Göteborg (Sweden), Madrid (Spain), Rome (Italy), Munich (Germany), Sheffield and London (UK). Today, in spite of the large number of parameters that can influence the airborne PGE content, the results obtained so far indicate significantly higher PGE levels at traffic sites compared with the rural or non-polluted zones that have been investigated (background levels). The average Pt content in airborne particles found in downtown Madrid, Göteborg and Rome is in the range 7.3-13.1 pg m(-3). The ring roads of these cities have values in the range 4.1-17.7 pg m(-3). In Munich, a lower Pt content was found in airborne particles (4.1 pg m(-3)). The same tendency has been noted for downtown Rh, with contents in the range 2.2-2.8 pg m(-3), and in the range 0.8-3.0 and 0.3 pg m(-3) for motorway margins in Munich. The combined results obtained using a wide-range airborne classifier (WRAC) collector and a PM-10 or virtual impactor show that Pt is associated with particles for a wide range of diameters. The smaller the particle size, the lower the Pt concentration. However, in particles total particles suspended in air. However, from the environmental risk point of view, an exposure to PGEs in traffic-related ambient air is at least three orders of magnitude below the levels for which adverse

  1. Direct growth inhibition assay of total airborne fungi with application of biocide-treated malt extract agar.

    PubMed

    Er, Chin Ming; Sunar, N M; Leman, A M; Othman, N

    2015-01-01

    Indoor air pollution by airborne fungi has risen to become a common issue all over the world and it is hazardous to indoor occupants' health as it is associated with a series of respiratory-related and skin-related diseases. Selected bioactive compounds from the food industry have been suggested to be effective against individual fungus isolated from indoor environment. However, the techniques used to evaluate these compounds were lengthy and unsuitable against total airborne fungi. Therefore, this paper describes an assay to assess the effectiveness of a bioactive compound to inhibit growth of total airborne fungi.•A combination and modification of previous methods and the NIOSH Manual Analytical Standard Method (NMAM 0800) is proposed.•This method concurrently samples the total airborne fungi and evaluates the ability of bioactive compounds (potassium sorbate in this paper), as a biocide, to treat these indoor airborne fungi.•The current method shortens the time of evaluation from 30 days to only 5 days and employs the counting of colony forming units (CFUs) to ease the measurement of the growth of fungi. PMID:27077051

  2. Direct growth inhibition assay of total airborne fungi with application of biocide-treated malt extract agar

    PubMed Central

    Er, Chin Ming; Sunar, N.M.; Leman, A.M.; Othman, N.

    2015-01-01

    Indoor air pollution by airborne fungi has risen to become a common issue all over the world and it is hazardous to indoor occupants’ health as it is associated with a series of respiratory-related and skin-related diseases. Selected bioactive compounds from the food industry have been suggested to be effective against individual fungus isolated from indoor environment. However, the techniques used to evaluate these compounds were lengthy and unsuitable against total airborne fungi. Therefore, this paper describes an assay to assess the effectiveness of a bioactive compound to inhibit growth of total airborne fungi.•A combination and modification of previous methods and the NIOSH Manual Analytical Standard Method (NMAM 0800) is proposed.•This method concurrently samples the total airborne fungi and evaluates the ability of bioactive compounds (potassium sorbate in this paper), as a biocide, to treat these indoor airborne fungi.•The current method shortens the time of evaluation from 30 days to only 5 days and employs the counting of colony forming units (CFUs) to ease the measurement of the growth of fungi. PMID:27077051

  3. Passive airborne dust sampling with the electrostatic dustfall collector: optimization of storage and extraction procedures for endotoxin and glucan measurement.

    PubMed

    Noss, Ilka; Doekes, Gert; Sander, Ingrid; Heederik, Dick J J; Thorne, Peter S; Wouters, Inge M

    2010-08-01

    We recently introduced a passive dust sampling method for airborne endotoxin and glucan exposure assessment-the electrostatic dustfall collector (EDC). In this study, we assessed the effects of different storage and extraction procedures on measured endotoxin and glucan levels, using 12 parallel EDC samples from 10 low exposed indoor environments. Additionally, we compared 2- and 4-week sampling with the prospect of reaching higher dust yields. Endotoxin concentrations were highest after extraction with pyrogen-free water (pf water) + Tween. Phosphate-buffered saline (PBS)-Tween yielded significantly (44%) lower levels, and practically no endotoxin was detected after extraction in pf water without Tween. Glucan levels were highest after extraction in PBS-Tween at 120 degrees C, whereas extracts made in NaOH at room temperature or 120 degrees C were completely negative. Direct extraction from the EDC cloth or sequential extraction after a preceding endotoxin extraction yielded comparable glucan levels. Sample storage at different temperatures before extraction did not affect endotoxin and glucan concentrations. Doubling the sampling duration yielded similar endotoxin and only 50% higher glucan levels. In conclusion, of the tested variables, the extraction medium was the predominant factor affecting endotoxin and glucan yields.

  4. Monitoring airborne dust in a high density coal-fired power station region in North Yorkshire.

    PubMed

    Vallack, H W; Chadwick, M J

    1993-01-01

    Concerns about the levels of dust deposition in the vicinity of coal-fired power stations in North Yorkshire, in particular Drax Power Station, prompted the commissioning of a detailed monitoring study in the area. This paper describes the first two years' work. The first 12-month study concentrated on the village of Barlow close to Drax Power Station, whilst in the second 12-month study, monitoring sites were spread along a transect passing through the power station belt formed by Ferrybridge, Eggborough and Drax Power Stations. Two monitoring sites were common to both 12-month studies, thus giving two years of continuous monitoring. Pairs of wet Frisbee dust deposit gauges (based on inverted Frisbees) were located at each site. Undissolved particulate matter from each gauge was weighed and characterized by microscopic examination of individual particles. The first 12-month study revealed a downward gradient in dust deposition rate and cenosphere content with distance from Drax Power Station. The high cenosphere content at Barlow, especially at the eastern end, suggested that there was a significant contribution from coal-fired power stations. In the second year, the overall pattern of dust deposition rate and cenosphere content across the power station belt suggested that power stations were contributing to higher levels. In particular, relatively high levels were again found at Barlow. Wind direction correlations point to the fly-ash tip next to Drax Power Station as being the source of cenospheres arriving at Barlow. It is concluded that in both years the fly-ash tip Drax Power Station was making a significant contribution to higher than expected dust deposition rates at Barlow, particularly its eastern end. Other villages in the area may also have been affected by dust originating from coal-fired power stations.

  5. Dust Storm Signatures in Global Ionosphere Map of GPS Total Electron Content

    NASA Astrophysics Data System (ADS)

    Lin, Fang-Tse; Shih, Ai-Ling; Liu, Jann-Yenq; Kuo, Cheng-Ling; Lin, Tang-Huang; Lien, Wei-Hung

    2016-04-01

    In this paper both MODIS data and GIM (global ionosphere map) TEC (total electron content) as well as numerical simulations are used to study ionospheric dust storm effects in May 2008. The aerosol optical depth (AOD) and the LTT (latitude-time-TEC) along the Sahara longitude simultaneously reach their maximum values on 28 May 2008. The LLT (latitude-longitude-TEC) map specifically and significantly increases over the Sahara region on 28 May 2008. The simulation suggests that the dust storm may change the atmospheric conductivity, which in turn modifies the GIM TEC over the Sahara area.

  6. Dust storm contributions to airborne particulate matter in Reykjavík, Iceland

    NASA Astrophysics Data System (ADS)

    Thorsteinsson, Throstur; Gísladóttir, Guđrún; Bullard, Joanna; McTainsh, Grant

    2011-10-01

    Episodes of high levels of particulate matter (PM) in Reykjavík occur several times a year. The main sources of daily variation in PM are traffic or highly localized (e.g. construction) sources, however several episodes have been identified where these are not the cause. Examining PM10 (diameter < 10 μm) levels around the time when dust storms are seen on satellite images, and verifying that the weather conditions are favorable for the duration of the high levels of PM (>50-100 μg m-3; 30-min average), demonstrates that dust storms are the source of these increased levels of PM10. Since satellite coverage is sparse, visual confirmation of many such peaks in PM10 cannot be achieved. The level of pollution measured in Reykjavík during dust storms indicates that at least 200 kg s-1 of PM10 sized material is being eroded and transported away from sand plains ˜110 km away - this equates to an emission rate of 35 g m2 h-1. The source regions for dust storms in Iceland are the sandur areas on the southern coast of Iceland, and regions close to the glaciers. With climate warming, and fast retreating glaciers, the potential source regions in Iceland are rapidly increasing.

  7. Swine confinement buildings: effects of airborne particles and settled dust on airway smooth muscles.

    PubMed

    Demanche, Annick; Bonlokke, Jakob; Beaulieu, Marie-Josee; Assayag, Evelyne; Cormier, Yvon

    2009-01-01

    Swine confinement workers are exposed to various contaminants. These agents can cause airway inflammation and bronchoconstriction. This study was undertaken to evaluate if the bronchoconstrictive effects of swine barn air and settled dust are mediated by endotoxin, and if these effects are directly mediated on airway smooth muscles. Mouse tracheas where isolated and mounted isometrically in organ baths. Tracheas, with or without epithelium, were attached to a force transducer and tension was recorded. Concentrated swine building air at 68 EU/ml or settled dust extract at 0.01 g/ml were added for 20 minutes and tracheal smooth muscle contraction was measured. Direct role of LPS was assessed by removing it from air concentrates with an endotoxin affinity resin. Swine barn air and settled dust extract caused contraction of tracheal smooth muscle by 26 and 20%, respectively, of the maximal induced by methacholine. Removal of epithelium did not affect the contractile effects. LPS alone and LPS with peptidoglycans did not induce contraction. However, when endotoxin was removed from swine barn air concentrates, it lost 24% of its contractile effect. Concentrated swine barn air and settled dust have direct effects on airway smooth muscles. This effect is partially due to LPS but a synergy with other components of the environment of swine confinement buildings is required. PMID:20047256

  8. Waveband selection within 400-4000  cm-1 of optical identification of airborne dust in coal mine tunneling face.

    PubMed

    Wang, Wenzheng; Wang, Yanming; Shi, Guoqing

    2016-04-10

    Aimed at the optical evaluation of pollution levels caused by rock dust in an underground coal mine tunneling face, the optimal detection line and optical channel were investigated. The spatial distribution of airborne rock dust under local mining and ventilation conditions was simulated by the computational fluid dynamics method; thus, combined with the scattering and absorption properties of dust particles and gas molecules, the spectral transmission characteristics of a polluted atmosphere, including dust aerosols within 400-4000  cm-1, were obtained. By eliminating the optical background of mine gases, the pure infrared signals of rock dust were further analyzed. Based on the comparison results, the detection line, which is 1.5 m high and 0.3 m away from the right wall, was determined to be the best observation position, and a waveband of 1505-1525  cm-1 was selected to estimate the dust concentration. In addition, a dual-band detection method was presented, which can simultaneously identify the dust distribution and dispersion.

  9. Transport of mineral dust derived from airborne wind lidar measurements during SALTRACE

    NASA Astrophysics Data System (ADS)

    Chouza, Fernando; Reitebuch, Oliver; Groß, Silke; Rahm, Stephan; Freudenthaler, Volker; Toledano, Carlos; Weinzierl, Bernadett

    2015-04-01

    During the SALTRACE field experiment conducted between the 10 of June and the 15 of July 2013, the transport and properties of Saharan dust were characterized by a 2-µm Doppler wind lidar (DWL) deployed on the DLR Falcon 20 research aircraft. Unlike aerosol lidars, the DLW is able to simultaneously measure wind fields and -by means of an adequate calibration- aerosol optical properties, which is more adequate for aerosol transport studies. The retrieved horizontal and vertical wind speed provide a direct observation of dust long range transport mechanisms across the Atlantic (e.g. by the African easterly jet) from Western Africa to the Caribbean. Vertical wind observations revealed the structure of island induced lee waves in the Cape Verde and Barbados regions. A novel method for the calibration of DWLs based on simultaneous measurements with a ground-based aerosol lidar and sun photometer was developed. After being calibrated, the system is able to retrieve quantitative aerosol backscatter and extinction coefficients, which is usually not obtained from coherent lidars. Results from the validation with a ground-based aerosol lidar in Barbados and the CALIPSO satellite instrument will be discussed.

  10. Particle Size Distribution of Airborne Microorganisms and Pathogens during an Intense African Dust Event in the Eastern Mediterranean

    PubMed Central

    Polymenakou, Paraskevi N.; Mandalakis, Manolis; Stephanou, Euripides G.; Tselepides, Anastasios

    2008-01-01

    Background The distribution of microorganisms, and especially pathogens, over airborne particles of different sizes has been ignored to a large extent, but it could have significant implications regarding the dispersion of these microorganisms across the planet, thus affecting human health. Objectives We examined the microbial quality of the aerosols over the eastern Mediterranean region during an African storm to determine the size distribution of microorganisms in the air. Methods We used a five-stage cascade impactor for bioaerosol collection in a coastal city on the eastern Mediterranean Sea during a north African dust storm. Bacterial communities associated with aerosol particles of six different size ranges were characterized following molecular culture–independent methods, regardless of the cell culturability (analysis of 16S rRNA genes). Results All 16S rDNA clone libraries were diverse, including sequences commonly found in soil and marine ecosystems. Spore-forming bacteria such as Firmicutes dominated large particle sizes (> 3.3 μm), whereas clones affiliated with Actinobacteria (found commonly in soil) and Bacteroidetes (widely distributed in the environment) gradually increased their abundance in aerosol particles of reduced size (< 3.3 μm). A large portion of the clones detected at respiratory particle sizes (< 3.3 μm) were phylogenetic neighbors to human pathogens that have been linked to several diseases. Conclusions The presence of aerosolized bacteria in small size particles may have significant implications to human health via intercontinental transportation of pathogens. PMID:18335093

  11. Airborne total gaseous mercury and exposure in a Venezuelan mining area.

    PubMed

    Garcia-Sanchez, Antonio; Contreras, Felicia; Adams, Meliton; Santos, Fernando

    2006-10-01

    This paper presents a short-term monitoring study of total gaseous mercury (TGM) in air, and exposure to airborne mercury. The evaluation was carried out in polluted mining sites (El Callao, Venezuela), where for decades mercury has been used in diverse stages of gold mining activities. The contamination is mainly due to emission of Hg0 during gold amalgamation and burning, which can cause direct human health risks. Total gaseous mercury (TGM) in air was analysed in mill, jewellery and indoor house sites, and at different heights (height profiles near the surface) at polluted and not polluted sites. Mercury concentration in air was measured with a portable mercury analyser (Lumex Ra-915+). Time weighted average mercury (TWA) was calculated for the evaluation of mercury exposure. TWA values ranged between 0.28 microg m(-3) and >100 microg m(-3). These measurements were done during sunny and dry days. In the case of mills and gold workshops, the values were over the limit recommended by the World Health Organization to exposure (25 microg m(-3)) and NIOSH limit (50 microg m(-3)). Indoors in a house, the air Hg average value was 2.58 microg m(-3) exceeding EPA (0.3 microg m(-3)) and ATSDR (1 microg m(-3)) guidelines. The mercury concentration at different height profiles, varied between 1766 microg m(-3) and 0.014 microg m(-3). Mercury height profiles were described by a power function model of the form c(Hg) = ah(-b), where a parameter describes the magnitude of Hg emission. For polluted sites there was a significant correlation between a and Hg in soil or Hg emission from soil to air, while b is only significantly correlated with air temperature. An air and soil mercury measurement transect was carried out at a mill site up to a distance of 1000 m, and it was observed that the air mercury concentration decreases with increasing distance from the mill site, and inversely to Hg soil content.

  12. Investigation of bacterial effects of Asian dust events through comparison with seasonal variability in outdoor airborne bacterial community

    PubMed Central

    Park, Jonguk; Ichijo, Tomoaki; Nasu, Masao; Yamaguchi, Nobuyasu

    2016-01-01

    Atmospheric bacterial dispersion with aeolian dust has been reported to have a potential impact on public health and ecosystems. Asian dust is a major aeolian event that results in an estimated 4 million tons of Asian dust particles falling in Japan annually, 3,000–5,000 km away from their source regions. However, most studies have only investigated the effects of Asian dust during dust seasons. Therefore, in this study, outdoor bacterial abundance and community composition were determined by 16S rRNA quantitative PCR and amplicon sequencing, respectively, and compared on Asian and non-Asian dust days (2013–2015; 44 samples over four seasons). Seasonal variations in bacterial abundance of non-Asian dust days were not observed. Bacterial abundance of individual samples collected on non-Asian dust days changed dynamically relative to Asian dust days, with bacterial abundance occasionally reaching those of Asian dust days. The bacterial community composition on non-Asian dust days was rather stable seasonally, and did not differ from that on Asian dust days. These results indicate that bacteria in Asian dust does not immediately influence indigenous bacterial communities at the phylum/class level in distant downwind areas; accordingly, further studies of bacterial communities in downwind areas closer to the dust source are warranted. PMID:27761018

  13. Analysis of Measurements of Saharan Dust by Airborne and Ground-based Remote Sensing Methods during the Puerto Rico Dust Experiment (PRIDE)

    NASA Technical Reports Server (NTRS)

    Reid, Jeffrey S.; Kinney, James E.; Westphal, Douglas L.; Holben, Brent N.; Welton, E. Judd; Tsay, Si-Chee; Eleuterio, Daniel P.; Campbell, James; Christopher, Sundar A.; Jonsson, Haflidi H.

    2003-01-01

    For 26 days in mid-June and July 2000, a research group comprised of U.S. Navy, NASA, and university scientists conducted the Puerto Rico Dust Experiment (PRIDE). In this paper we give a brief overview of mean meteorological conditions during the study. We focus on findings on African dust transported into the Caribbean utilizing Navajo aircraft and AERONET Sun photometer data. During the study midvisible aerosol optical thickness (AOT) in Puerto Rico averaged 0.25, with a maximum less than 0.5 and with clean marine periods of _0.08. Dust AOTs near the coast of Africa (Cape Verde Islands and Dakar) averaged _0.4, 30% less than previous years. By analyzing dust vertical profiles in addition to supplemental meteorology and MPLNET lidar data we found that dust transport cannot be easily categorized into any particular conceptual model. Toward the end of the study period, the vertical distribution of dust was similar to the commonly assumed Saharan Air Layer (SAL) transport. During the early periods of the study, dust had the highest concentrations in the marine and convective boundary layers with only a, weak dust layer in the SAL being present, a state usually associated with wintertime transport patterns. We corroborate the findings of Maring et al. that in most cases, there was an unexpected lack of vertical stratification of dust particle size. We systematically analyze processes which may impact dust vertical distribution and determine and speculate that dust vertical distribution predominately influenced by flow patterns over Africa and differential advection couple with mixing by easterly waves and regional subsidence.

  14. A Comparison of "Total Dust" and Inhalable Personal Sampling for Beryllium Exposure

    SciTech Connect

    Carter, Colleen M.

    2012-05-09

    In 2009, the American Conference of Governmental Industrial Hygienists (ACGIH) reduced the Beryllium (Be) 8-hr Time Weighted Average Threshold Limit Value (TLV-TWA) from 2.0 μg/m3 to 0.05 μg/m3 with an inhalable 'I' designation in accordance with ACGIH's particle size-selective criterion for inhalable mass. Currently, per the Department of Energy (DOE) requirements, the Lawrence Livermore National Laboratory (LLNL) is following the Occupational Health and Safety Administration (OSHA) Permissible Exposure Limit (PEL) of 2.0 μg/m3 as an 8-hr TWA, which is also the 2005 ACGIH TLV-TWA, and an Action Level (AL) of 0.2 μg/m3 and sampling is performed using the 37mm (total dust) sampling method. Since DOE is considering adopting the newer 2009 TLV guidelines, the goal of this study was to determine if the current method of sampling using the 37mm (total dust) sampler would produce results that are comparable to what would be measured using the IOM (inhalable) sampler specific to the application of high energy explosive work at LLNL's remote experimental test facility at Site 300. Side-by-side personal sampling using the two samplers was performed over an approximately two-week period during chamber re-entry and cleanup procedures following detonation of an explosive assembly containing Beryllium (Be). The average ratio of personal sampling results for the IOM (inhalable) vs. 37-mm (total dust) sampler was 1.1:1 with a P-value of 0.62, indicating that there was no statistically significant difference in the performance of the two samplers. Therefore, for the type of activity monitored during this study, the 37-mm sampling cassette would be considered a suitable alternative to the IOM sampler for collecting inhalable particulate matter, which is important given the many practical and economic advantages that it presents. However, similar comparison studies would be necessary for this conclusion to be applied to other types of

  15. Airborne manganese as dust vs. fume determining blood levels in workers at a manganese alloy production plant.

    PubMed

    Park, Robert M; Baldwin, Mary; Bouchard, Maryse F; Mergler, Donna

    2014-12-01

    The appropriate exposure metrics for characterizing manganese (Mn) exposure associated with neurobehavioral effects have not been established. Blood levels of Mn (B-Mn) provide a potentially important intermediate marker of Mn airborne exposures. Using data from a study of a population of silicon- and ferro-manganese alloy production workers employed between 1973 and 1991, B-Mn levels were modeled in relation to prior Mn exposure using detailed work histories and estimated respirable Mn concentrations from air-sampling records. Despite wide variation in exposure levels estimated for individual jobs, duration of employment (exposure) was itself a strong predictor of B-Mn levels and strongest when an 80-day half-life was applied to contributions over time (t=6.95, 7.44, respectively; p<10(-5)). Partitioning exposure concentrations based on process origin into two categories: (1) "large" respirable particulate (Mn-LRP) derived mainly from mechanically generated dust, and (2) "small" respirable particulate (Mn-SRP) primarily electric furnace condensation fume, revealed that B-Mn levels largely track the small, fume exposures. With a half-life of 65 days applied in a model with cumulative exposure terms for both Mn-LRP (t=-0.16, p=0.87) and Mn-SRP (t=6.45, p<10(-5)), the contribution of the large-size fraction contribution was negligible. Constructing metrics based on the square root of SRP exposure concentrations produced a better model fit (t=7.87 vs. 7.44, R(2)=0.2333 vs. 0.2157). In a model containing both duration (t=0.79, p=0.43) and (square root) fume (t=2.47, p=0.01) metrics, the duration term was a weak contributor. Furnace-derived, small respirable Mn particulate appears to be the primary contributor to B-Mn levels, with a dose-rate dependence in a population chronically exposed to Mn, with air-concentrations declining in recent years. These observations may reflect the presence of homeostatic control of Mn levels in the blood and other body tissues and be

  16. Study of the importance of 'total' dust (as compared with the respirable fraction) in causing upper respiratory disease. Final report Mar 77-Feb 80

    SciTech Connect

    Cowie, A.J.; Crawford, N.P.; Miller, B.G.; Dodgson, J.

    1981-06-01

    The importance of the role of dust in the development of coal miners' pneumoconiosis is well established but its relationship with upper respiratory disease ('chronic bronchitis') is less well defined. Research carried out within the last 10 years has demonstrated relationships between the prevalence of chronic respiratory symptoms, reduction of lung function and exposure to the mass of the so-called respirable fraction of coalmine dust. It has been suggested, however, that a fraction of the airborne dust which contained more larger particles than the respirable fraction might be more appropriate for comparison with upper respiratory disease. The aim of the present study is to examine this question.

  17. China Dust

    Atmospheric Science Data Center

    2013-04-16

    ... SpectroRadiometer (MISR) nadir-camera images of eastern China compare a somewhat hazy summer view from July 9, 2000 (left) with a ... arid and sparsely vegetated surfaces of Mongolia and western China pick up large quantities of yellow dust. Airborne dust clouds from the ...

  18. Total power millimeter-wave spectrometer for measurements of dust opacity at cryogenic temperatures.

    PubMed

    Potapov, Alexey; Lewen, Frank; Mutschke, Harald; Mohr, Pierre; Schlemmer, Stephan

    2014-07-01

    A highly sensitive total power millimeter-wave spectrometer has been built to investigate the opacity of important interstellar-dust analogues in the 10-300 K temperature range. The key elements of the spectrometer are a frequency agile synthesizer followed by a microwave amplifier and a subsequent frequency multiplier. In a first step, the frequency range of 72-120 GHz is covered by the spectrometer, and a room temperature Schottky detector is employed as a detector. A newly developed two channel (sample/reference) copper sample holder is cryogenically cooled for the 10-300 K range. Here we present the technical details of the spectrometer including examples of the obtained results. The analysis of these results will be published elsewhere.

  19. Evaluation and field calibration of the Miniram PDM-3 aerosol monitor for measuring respirable and total coal dust.

    PubMed

    Middendorf, P J; Lehocky, A H; Williams, P L

    1999-01-01

    The MIE Miniram PDM-3 is a real-time aerosol dust monitor designed to measure dust based on Mie scattering. It has an optional in-line filter that, when attached to a constant flow air sampling pump, allows a gravimetric air sample to be collected from the same air stream that passes through the Miniram sensing chamber. This study compared real-time Miniram digital respirable and total dust readings with concentrations from an in-line 5 microns polyvinyl chloride filter connected to a constant flow pump and with results from traditional respirable and total dust samples. Area samples were collected at three coal-fired power generating facilities over a 2-month period. Traditional respirable dust concentrations ranged from 0.04 to 10.8 mg/m3. In the monitored range of concentrations the Miniram respirable concentrations and the in-line respirable dust concentrations were not significantly different (p > or = 0.05), nor were the Miniram in-line filter concentrations and the side-by-side respirable dust concentrations significantly different (p > or = 0.05). However, the Miniram respirable concentrations and the traditional respirable concentrations were significantly different (p = 0.02). The Statistical Analysis System (SAS) procedure CALIS, which meets the statistical requirements for developing calibration lines for two variables each measured with error, is used to develop field calibration curves for the comparisons between direct-reading instrument concentrations and concentrations from traditional National Institute for Occupational Safety and Health methods for total and respirable dust.

  20. Correlation between Asian Dust and Specific Radioactivities of Fission Products Included in Airborne Samples in Tokushima, Shikoku Island, Japan, Due to the Fukushima Nuclear Accident

    SciTech Connect

    Sakama, M.; Nagano, Y.; Kitade, T.; Shikino, O.; Nakayama, S.

    2014-06-15

    Radioactive fission product {sup 131}I released from the Fukushima Daiichi Nuclear Power Plants (FD-NPP) was first detected on March 23, 2011 in an airborne aerosol sample collected at Tokushima, Shikoku Island, located in western Japan. Two other radioactive fission products, {sup 134}Cs and {sup 137}Cs were also observed in a sample collected from April 2 to 4, 2011. The maximum specific radioactivities observed in this work were about 2.5 to 3.5 mBq×m{sup -3} in a airborne aerosol sample collected on April 6. During the course of the continuous monitoring, we also made our first observation of seasonal Asian Dust and those fission products associated with the FDNPP accident concurrently from May 2 to 5, 2011. We found that the specific radioactivities of {sup 134}Cs and {sup 137}Cs decreased drastically only during the period of Asian Dust. And also, it was found that this trend was very similar to the atmospheric elemental concentration (ng×m{sup -3}) variation of stable cesium ({sup 133}Cs) quantified by elemental analyses using our developed ICP-DRC-MS instrument.

  1. Correlation between Asian Dust and Specific Radioactivities of Fission Products Included in Airborne Samples in Tokushima, Shikoku Island, Japan, Due to the Fukushima Nuclear Accident

    NASA Astrophysics Data System (ADS)

    Sakama, M.; Nagano, Y.; Kitade, T.; Shikino, O.; Nakayama, S.

    2014-06-01

    Radioactive fission product 131I released from the Fukushima Daiichi Nuclear Power Plants (FD-NPP) was first detected on March 23, 2011 in an airborne aerosol sample collected at Tokushima, Shikoku Island, located in western Japan. Two other radioactive fission products, 134Cs and 137Cs were also observed in a sample collected from April 2 to 4, 2011. The maximum specific radioactivities observed in this work were about 2.5 to 3.5 mBq×m-3 in a airborne aerosol sample collected on April 6. During the course of the continuous monitoring, we also made our first observation of seasonal Asian Dust and those fission products associated with the FDNPP accident concurrently from May 2 to 5, 2011. We found that the specific radioactivities of 134Cs and 137Cs decreased drastically only during the period of Asian Dust. And also, it was found that this trend was very similar to the atmospheric elemental concentration (ng×m-3) variation of stable cesium (133Cs) quantified by elemental analyses using our developed ICP-DRC-MS instrument.

  2. Estimating total aqueous and airborne chemical emissions from ozonated and chemically treated cooling towers

    SciTech Connect

    Pryor, A.

    1996-10-01

    Cooling tower operations result in aqueous and airborne emissions into the environment in the form of blowdown and drift, respectively. Increased regulatory and licensing requirements often obligate end users to quantify the nature and amount of any added chemicals in such emissions. This paper presents a methodology whereby cooling tower operators can perform such calculations for conventionally chemically treated cooling towers as well as ozonated cooling towers. Emissions from cooling towers depend on the operating characteristics of the tower (recirculation rate, drift rate), makeup and cooling water quality (makeup water mineral concentration, cooling water cycles of concentration), the amount of chemicals added to the cooling water, and/or the amount of ozone injected into the cooling water and the mass transfer efficiency of the ozone injection process.

  3. Airborne spectrophotometry of SN 1987A from 1.7 to 12.6 microns - Time history of the dust continuum and line emission

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Rank, David M.; Bregman, Jesse D.; Witteborn, Fred C.; Tielens, A. G. G. M.; Cohen, Martin; Pinto, Philip A.; Axelrod, Timothy S.

    1993-01-01

    Spectrophotometric observations of SN 1987A from the Kuiper Airborne Observatory are presented for five epochs at 60, 260, 415, 615, and 775 days after the explosion. The low-resolution (lambda/Delta lambda = 50-100) spectra of SN 1987A are combined with data from other wavelengths to model the continuum, subtract the continuum from the spectra to determine line strengths and reveal molecular bands, separate the atomic continuum radiation from the dust continuum, and derive constraints on the grain temperatures and optical depths. A scenario for the evolution of SN 1987A and that of the ejecta from which it arises is obtained on the basis of the analysis of the continuum emission.

  4. Elevated Airborne Exposures of Teenagers to Manganese, Chromium, and Iron from Steel Dust and New York City’s Subway System

    PubMed Central

    CHILLRUD, STEVEN N.; EPSTEIN, DAVID; ROSS, JAMES M.; SAX, SONJA N.; PEDERSON, DEE; SPENGLER, JOHN D.; KINNEY, PATRICK L.

    2011-01-01

    There is increasing interest in potential health effects of airborne exposures to hazardous air pollutants at relatively low levels. This study focuses on sources, levels, and exposure pathways of manganese, chromium, and iron among inner-city high school students in New York City (NYC) and the contribution of subways. Samples of fine particulate matter (PM2.5) were collected during winter and summer over 48 h periods in a variety of settings including inside homes, outdoors, and personal samples (i.e., sampling packs carried by subjects). PM2.5 samples were also collected in the NYC subway system. For NYC, personal samples had significantly higher concentrations of iron, manganese, and chromium than did home indoor and ambient samples. The ratios and strong correlations between pairs of elements suggested steel dust as the source of these metals for a large subset of the personal samples. Time–activity data suggested NYC subways as a likely source of these elevated personal metals. In duplicate PM2.5 samples that integrated 8 h of underground subway exposure, iron, manganese, and chromium levels (>2 orders of magnitude above ambient levels) and their ratios were consistent with the elevated personal exposures. Steel dust in the NYC subway system was the dominant source of airborne exposures to iron, manganese, and chromium for many young people enrolled in this study, with the same results expected for other NYC subway riders who do not have occupational exposures to these metals. However, there are currently no known health effects at the exposure levels observed in this study. PMID:14968857

  5. Pulmonary function in relation to total dust exposure at a bauxite refinery and alumina-based chemical products plant

    SciTech Connect

    Townsend, M.C.; Enterline, P.E.; Sussman, N.B.; Bonney, T.B.; Rippey, L.L.

    1985-12-01

    A cross-sectional study of 1,142 male employees at the Arkansas Operations of a large aluminum production company examined the effect on pulmonary function of chronic exposure to total dust produced in the mining and refining of bauxite and the production of alumina chemicals. Never smokers, ex-smokers, and current smokers were analyzed separately. Among never smokers, a pattern of decreasing FEV1 was observed in relation to increasing duration and cumulative total dust exposure. Among never smokers with cumulative total dust exposures of greater than or equal to 100 mg/m3 yr and greater than or equal to 20 yr of exposure, there was a mean reduction from the predicted FEV1 of 0.29 to 0.39 L, in addition to a 3- to 4-fold excess of observed/expected numbers of subjects with FEV1 less than 80% of predicted. These results were observed relative to an external and an internal comparison group. Among current smokers, the deviations from predicted and the excess numbers of subjects with FEV1 less than 80% of predicted were larger in all exposure groups than for the never smokers. However, the quality of the smoking data was inadequate to allow separation of the effects of smoking and dust exposure.

  6. Evaluation of workers' exposure to total, respirable and silica dust and the related health symptoms in Senjedak stone quarry, Iran.

    PubMed

    Golbabaei, Farideh; Barghi, Mohammad-Ali; Sakhaei, Manouchehr

    2004-01-01

    The present research was conducted in a stone quarry of marble located in northeast of Iran. Time weighted average of total dust, respirable dust, and crystalline silica (alpha-quartz) concentration in workers' breathing zone were monitored by using both gravimetric and XRD methods. The results showed that the employees working in hammer drill process had the highest exposure to the total and respirable dust: 107.9 +/- 8.0 mg/m3, 11.2 +/- 0.77 mg/m3 respectively, while the cutting machine workers had the lowest exposure (9.3 +/- 3.0 mg/m3, 1.8 +/- 0.82 mg/m3). The maximum concentration of a-quartz in total and respirable dust were detected equal to 0.670 +/- 8.49 x 10(-2) and 5.7 x 10(-2) +/- 1.6 x 10(-2) mg/m3 respectively, which belonged to the exposure of the workers of hammer drill process. The prevalence of skin and respiratory symptoms were higher in hammer drill workers, however, respiratory symptoms showed no significant prevalence. Regarding the average age of workers (31.6 +/- 1.9 yr) and average of their work history (3.8 +/- 1.0 yr), these results were predictable.

  7. Airborne aerosol in situ measurements during TCAP: A closure study of total scattering

    DOE PAGES

    Kassianov, Evgueni; Sedlacek, Arthur; Berg, Larry K.; Pekour, Mikhail; Barnard, James; Chand, Duli; Flynn, Connor; Ovchinnikov, Mikhail; Schmid, Beat; Shilling, John; et al

    2015-07-31

    We present a framework for calculating the total scattering of both non-absorbing and absorbing aerosol at ambient conditions from aircraft data. Our framework is developed emphasizing the explicit use of chemical composition data for estimating the complex refractive index (RI) of particles, and thus obtaining improved ambient size spectra derived from Optical Particle Counter (OPC) measurements. The feasibility of our framework for improved calculations of total scattering is demonstrated using three types of data collected by the U.S. Department of Energy’s (DOE) aircraft during the Two-Column Aerosol Project (TCAP). Namely, these data types are: (1) size distributions measured by amore » suite of OPC’s; (2) chemical composition data measured by an Aerosol Mass Spectrometer and a Single Particle Soot Photometer; and (3) the dry total scattering coefficient measured by a integrating nephelometer and scattering enhancement factor measured with a humidification system. We demonstrate that good agreement (~10%) between the observed and calculated scattering can be obtained under ambient conditions (RH < 80%) by applying chemical composition data for the RI-based correction of the OPC-derived size spectra. We also demonstrate that ignoring the RI-based correction or using non-representative RI values can cause a substantial underestimation (~40%) or overestimation (~35%) of the calculated scattering, respectively.« less

  8. Airborne aerosol in situ measurements during TCAP: A closure study of total scattering

    SciTech Connect

    Kassianov, Evgueni; Sedlacek, Arthur; Berg, Larry K.; Pekour, Mikhail; Barnard, James; Chand, Duli; Flynn, Connor; Ovchinnikov, Mikhail; Schmid, Beat; Shilling, John; Tomlinson, Jason; Fast, Jerome

    2015-07-31

    We present a framework for calculating the total scattering of both non-absorbing and absorbing aerosol at ambient conditions from aircraft data. Our framework is developed emphasizing the explicit use of chemical composition data for estimating the complex refractive index (RI) of particles, and thus obtaining improved ambient size spectra derived from Optical Particle Counter (OPC) measurements. The feasibility of our framework for improved calculations of total scattering is demonstrated using three types of data collected by the U.S. Department of Energy’s (DOE) aircraft during the Two-Column Aerosol Project (TCAP). Namely, these data types are: (1) size distributions measured by a suite of OPC’s; (2) chemical composition data measured by an Aerosol Mass Spectrometer and a Single Particle Soot Photometer; and (3) the dry total scattering coefficient measured by a integrating nephelometer and scattering enhancement factor measured with a humidification system. We demonstrate that good agreement (~10%) between the observed and calculated scattering can be obtained under ambient conditions (RH < 80%) by applying chemical composition data for the RI-based correction of the OPC-derived size spectra. We also demonstrate that ignoring the RI-based correction or using non-representative RI values can cause a substantial underestimation (~40%) or overestimation (~35%) of the calculated scattering, respectively.

  9. Design and development of a dust dispersion chamber to quantify the dispersibility of rock dust

    PubMed Central

    Perera, Inoka E.; Sapko, Michael J.; Harris, Marcia L.; Zlochower, Isaac A.; Weiss, Eric S.

    2015-01-01

    Dispersible rock dust must be applied to the surfaces of entries in underground coal mines in order to inert the coal dust entrained or made airborne during an explosion and prevent propagating explosions. 30 CFR. 75.2 states that “… [rock dust particles] when wetted and dried will not cohere to form a cake which will not be dispersed into separate particles by a light blast of air …” However, a proper definition or quantification of “light blast of air” is not provided. The National Institute for Occupational Safety and Health (NIOSH) has, consequently, designed a dust dispersion chamber to conduct quantitative laboratory-scale dispersibility experiments as a screening tool for candidate rock dusts. A reproducible pulse of air is injected into the chamber and across a shallow tray of rock dust. The dust dispersed and carried downwind is monitored. The mass loss of the dust tray and the airborne dust measurements determine the relative dispersibility of the dust with respect to a Reference rock dust. This report describes the design and the methodology to evaluate the relative dispersibility of rock dusts with and without anti-caking agents. Further, the results of this study indicate that the dispersibility of rock dusts varies with particle size, type of anti-caking agent used, and with the untapped bulk density. Untreated rock dusts, when wetted and dried forming a cake that was much less dispersible than the reference rock dust used in supporting the 80% total incombustible content rule. PMID:26834390

  10. Airborne Aerosol In situ Measurements during TCAP: A Closure Study of Total Scattering

    SciTech Connect

    Kassianov, Evgueni I.; Berg, Larry K.; Pekour, Mikhail S.; Flynn, Connor J.; Tomlinson, Jason M.; Chand, Duli; Shilling, John E.; Ovchinnikov, Mikhail; Barnard, James C.; Sedlacek, Art; Schmid, Beat

    2015-07-31

    We present here a framework for calculating the total scattering of both non-absorbing and absorbing aerosol at ambient conditions from aircraft data. The synergistically employed aircraft data involve aerosol microphysical, chemical, and optical components and ambient relative humidity measurements. Our framework is developed emphasizing the explicit use of the complementary chemical composition data for estimating the complex refractive index (RI) of particles, and thus obtaining improved ambient size spectra derived from Optical Particle Counter (OPC) measurements. The feasibility of our framework for improved calculations of total aerosol scattering is demonstrated for different ambient conditions with a wide range of relative humidities (from 5 to 80%) using three types of data collected by the U.S. Department of Energy (DOE) G-1 aircraft during the recent Two-Column Aerosol Project (TCAP). Namely, these three types of data employed are: (1) size distributions measured by an Ultra High Sensitivity Aerosol Spectrometer (UHSAS; 0.06-1 µm), a Passive Cavity Aerosol Spectrometer (PCASP; 0.1-3 µm) and a Cloud and Aerosol Spectrometer (CAS; 0.6- >10 µm), (2) chemical composition data measured by an Aerosol Mass Spectrometer (AMS; 0.06-0.6 µm) and a Single Particle Soot Photometer (SP2; 0.06-0.6 µm), and (3) the dry total scattering coefficient measured by a TSI integrating nephelometer at three wavelengths (0.45, 0.55, 0.7 µm) and scattering enhancement factor measured with a humidification system at three RHs (near 45%, 65% and 90%) at a single wavelength (0.525 µm). We demonstrate that good agreement (~10% on average) between the observed and calculated scattering at these three wavelengths can be obtained using the best available chemical composition data for the RI-based correction of the OPC-derived size spectra. We also demonstrate that ignoring the RI-based correction and using non-representative RI values can cause a substantial underestimation (~40

  11. Stable carbon isotopic compositions of organic acids in total suspended particles and dusts from Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Ma, Shexia; Peng, Ping'an; Song, Jianzhong; Zhao, Jinping; He, Lulu; Sheng, Guoying; Fu, Jiamo

    2010-10-01

    Stable carbon isotopic compositions of individual organic acids were determined in total suspended particles and dusts from Guangzhou. The δ 13C values of high molecular weight n-alkanoic acids (C 20-C 28) varied from -34.1‰ to -32.4‰ and tended to be heavier in summer and lighter in winter. These δ 13C values indicate that high molecular weight n-alkanoic acids were derived mainly from emission by C 3 plants. Reduced biological synthesis of high molecular weight n-alkanoic acids in winter may be the reason for the light carbon isotopic composition. The δ 13C values of low molecular weight n-alkanoic acids (C 10-C 18) changed from -31.7‰ to -30.3‰ and exhibited a reverse seasonal trend, i.e., heavier in winter and lighter in summer. Slightly heavier δ 13C values of low molecular weight n-alkanoic acids than those of high molecular weight n-alkanoic acids suggested that they may be emitted from blended sources, e.g., anthropogenic sources and vegetation waxes. Lighter δ 13C values in summer may be attributed to relatively low anthropogenic sources and high botanic sources in summer. Dicarboxylic acids and aromatic acids have been proposed as secondary products from photochemical degradation. The average δ 13C values of dicarboxylic acids and aromatic acids were heavier, and ranged from -25.2‰ to -22.9‰ and from -30.0‰ to -27.6‰, respectively. Both dicarboxylic acids and aromatic acids displayed the same temporal variations in the δ 13C values, i.e., negative δ 13C in the summer samples and positive in the winter samples, which may be controlled by photochemical reactions; they are generally severe in winter in Guangzhou under the monsoon weather system. The heaviest δ 13C values were observed in dicarboxylic acids, indicating that dicarboxylic acids were formed by fast and more complete oxidation reactions. These results indicate that the stable carbon isotopic composition of organic acids may provide important information about sources and

  12. Dust transport over the eastern Mediterranean derived from Total Ozone Mapping Spectrometer, Aerosol Robotic Network, and surface measurements

    NASA Astrophysics Data System (ADS)

    Kalivitis, N.; Gerasopoulos, E.; Vrekoussis, M.; Kouvarakis, G.; Kubilay, N.; Hatzianastassiou, N.; Vardavas, I.; Mihalopoulos, N.

    2007-02-01

    Multiyear surface PM10 measurements performed on Crete Island, Greece, have been used in conjunction with satellite (Total Ozone Mapping Spectrometer (TOMS)) and ground-based remote sensing measurements (Aerosol Robotic Network (AERONET)) to enhance our understanding of the evolution of mineral dust events over the eastern Mediterranean. An analysis of southerly air masses at altitudes of 1000 and 3000 m over a 5 year period (2000-2005), showed that dust can potentially arrive over Crete, either simultaneously in the lower free troposphere and inside the boundary layer (vertical extended transport (VET)) or initially into the free troposphere with the heavier particles gradually being scavenged inside the boundary layer (free troposphere transport (FTT)). Both pathways present significant seasonal variations but on an annual basis contribute almost equally to the dust transport in the area. During VET the aerosol index (AI) derived from TOMS was significantly correlated with surface PM10, and in general AI was found to be adequate for the characterization of dust loadings over the eastern Mediterranean on a climatological basis. A significant covariance between PM10 and AOT was observed during VET as well, indicating that AOT levels from AERONET may be estimated by PM10 levels at the surface. Surface measurements are thus crucial for the validation of remote sensing measurements and hence are a powerful tool for the investigation of the impact of aerosols on climate.

  13. Total exposure to airborne particulate matter in cities: the effect of biomass combustion.

    PubMed

    Sarigiannis, Dimosthenis Α; Karakitsios, Spyros P; Kermenidou, Marianthi; Nikolaki, Spyridoula; Zikopoulos, Dimitrios; Semelidis, Stauros; Papagiannakis, Apostolos; Tzimou, Roxani

    2014-09-15

    The study deals with the seasonal variability of PM exposure and the effect that biomass combustion has upon it in the urban environment. The study is based on measurements, chemical analyses and modeling results performed in Thessaloniki (Greece). The measurements campaign included the assessment of outdoor and indoor air quality and the evaluation of biomass use for domestic heating. The outdoor measurements highlighted a significant increase of PM10 (from 30.1 to 73.1 μg/m(3)) and PM2.5 (from 19.4 to 62.7 μg/m(3)) concentrations during the transition from the warm to the cold period of the year 2012 compared to 2011. The increase in ambient air PM during the winter was attributed to the use of biomass burning for space heating. The latter was verified by the presence of levoglucosan in the PM (concentrations up to 8 μg/m(3)), especially for samples taken from the urban background site. Outdoor PM concentrations were also modeled using an artificial neural network model taking into account major meteorological parameters; the latter explained more than 90% of PM10 and PM2.5 day-to-day variability. Indoor concentrations followed a similar pattern, while in the case of fireplace use, average daily concentrations rise to 10 μg/m(3) and 14 μg/m(3) for PM2.5 and PM10 respectively. Indoor air concentrations were affected the most by the ambient air particle infiltration. Indoor air quality went down after 3h of open fire biomass combustion for space heating. Personal exposure was significantly determined by overall indoor air quality. Yet, dynamic exposure analysis revealed that peaks of intake do not correspond to peaks of ambient air PM concentrations altering thus total exposure patterns. Thus, cost-effective public health protection has to aim at reducing the exposure profile of susceptible population sub-groups combining awareness raising, emission reduction measures and financial incentives to influence the choice of space heating systems. PMID:25000575

  14. Coal miners' mortality in relaton to radiological category, lung function and exposure to airborne dust. Final report

    SciTech Connect

    Miller, B.G.; Jacobsen, M.; Steele, R.C.

    1981-06-01

    This report describes mortality among 29,553 British coal miners. They represent 93.5% of 31,611 men who were surveyed radiologically at 24 coal mines in the period 1953 through 1958. The main aim of the work was to consider risks of death attributed to various underlying causes, as recorded on death certificates, in relation to radiological signs of pneumoconiosis, measures of lung function, and exposure to respirable coal mine dust.

  15. Analysis of Variation in Total Airborne Bacteria Concentration to Assess the Performance of Biological Safety Cabinets in Microbial Laboratories

    PubMed Central

    Hwang, Sung Ho; Park, Hyun Hee; Yoon, Chung Sik

    2014-01-01

    Background The purpose of this study was to compare the concentration of total airborne bacteria (TAB) in biosafety cabinets (BSCs) at universities and hospital microbial laboratories to assess the performance of BSCs. Methods TAB was determined by using the single-stage Anderson sampler (BioStage Viable Cascade Impactor). The samples were obtained three times (with the BSC turned off and the shield open; with the BSC turned off and the shield closed; and with the BSC tuned on and operating) from the areas in front of 11 BSCs. Results TAB concentrations of accredited and nonaccredited BSCs were determined. No significant differences were observed in the TAB concentrations of the accredited BSCs and the nonaccredited BSCs for the areas outside the BSCs in the laboratories (p > 0.05). TAB concentrations for the BSCs sampled with the shield open and the instrument turned off showed differences based on the sampling site outside the BSC in each laboratory. Conclusion These results imply that TAB concentration is not altered by the performance of the BSCs or TAB itself and/or concentration of TAB outside the BSC is not a good index of BSC performance. PMID:24932416

  16. Human occupancy as a source of indoor airborne bacteria.

    PubMed

    Hospodsky, Denina; Qian, Jing; Nazaroff, William W; Yamamoto, Naomichi; Bibby, Kyle; Rismani-Yazdi, Hamid; Peccia, Jordan

    2012-01-01

    Exposure to specific airborne bacteria indoors is linked to infectious and noninfectious adverse health outcomes. However, the sources and origins of bacteria suspended in indoor air are not well understood. This study presents evidence for elevated concentrations of indoor airborne bacteria due to human occupancy, and investigates the sources of these bacteria. Samples were collected in a university classroom while occupied and when vacant. The total particle mass concentration, bacterial genome concentration, and bacterial phylogenetic populations were characterized in indoor, outdoor, and ventilation duct supply air, as well as in the dust of ventilation system filters and in floor dust. Occupancy increased the total aerosol mass and bacterial genome concentration in indoor air PM(10) and PM(2.5) size fractions, with an increase of nearly two orders of magnitude in airborne bacterial genome concentration in PM(10). On a per mass basis, floor dust was enriched in bacterial genomes compared to airborne particles. Quantitative comparisons between bacterial populations in indoor air and potential sources suggest that resuspended floor dust is an important contributor to bacterial aerosol populations during occupancy. Experiments that controlled for resuspension from the floor implies that direct human shedding may also significantly impact the concentration of indoor airborne particles. The high content of bacteria specific to the skin, nostrils, and hair of humans found in indoor air and in floor dust indicates that floors are an important reservoir of human-associated bacteria, and that the direct particle shedding of desquamated skin cells and their subsequent resuspension strongly influenced the airborne bacteria population structure in this human-occupied environment. Inhalation exposure to microbes shed by other current or previous human occupants may occur in communal indoor environments.

  17. Airborne soil dust and its importance in buffering of atmospheric acidity and critical load assessment, over the semi arid tract of northern India.

    NASA Astrophysics Data System (ADS)

    Sharma, Disha; Kulshrestha, Umesh

    Airborne soil dust and its importance in buffering of atmospheric acidity and critical load assessment, over the semi arid tract of northern India. The Critical Load approach alongwith integrated assessment models has been used in the European nations for policy formations to reduce acidic emissions. This unique approach was applied to assess the of vulnerability of natural systems to the present day atmospheric pollution scenario. The calculated values of critical loads of sulphur ( 225 - 275 eq/ha/yr) and nitrogen (298 - 303 eq/ha/yr), for the soil system in Delhi, were calculated with respect to Anjan grass, Hibiscus and Black siris. The present loads of sulphur (PL(S) = 26.40 eq/ha/yr) and nitrogen (PL(N) = 36.51 eq/ha/yr) were found to be much lower than their critical loads without posing any danger of atmospheric acidic deposition on the soil systems. The study indicated that the system is still protective due to high pH of soil. The nature of buffering capability of calcium derived from soil dust can be considered as a natural tool to combat acidification in the Indian region. The results showed that the pollution status in Delhi is still within the safe limits. However, at the pace at which the city is growing, it is likely that in coming decades, it may exceed these critical values. In order to set deposition limits and avoid adverse effects of acidic deposition this approach can be applied in India too. Such approach is very useful, not only in abating pollution but also in devising means of cost optimal emission abatement strategies.

  18. Airborne Petcoke Dust is a Major Source of Polycyclic Aromatic Hydrocarbons in the Athabasca Oil Sands Region.

    PubMed

    Zhang, Yifeng; Shotyk, William; Zaccone, Claudio; Noernberg, Tommy; Pelletier, Rick; Bicalho, Beatriz; Froese, Duane G; Davies, Lauren; Martin, Jonathan W

    2016-02-16

    Oil sands mining has been linked to increasing atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in the Athabasca oil sands region (AOSR), but known sources cannot explain the quantity of PAHs in environmental samples. PAHs were measured in living Sphagnum moss (24 sites, n = 68), in sectioned peat cores (4 sites, n = 161), and snow (7 sites, n = 19) from ombrotrophic bogs in the AOSR. Prospective source samples were also analyzed, including petroleum coke (petcoke, from both delayed and fluid coking), fine tailings, oil sands ore, and naturally exposed bitumen. Average PAH concentrations in near-field moss (199 ng/g, n = 11) were significantly higher (p = 0.035) than in far-field moss (118 ng/g, n = 13), and increasing temporal trends were detected in three peat cores collected closest to industrial activity. A chemical mass-balance model estimated that delayed petcoke was the major source of PAHs to living moss, and among three peat core the contribution to PAHs from delayed petcoke increased over time, accounting for 45-95% of PAHs in contemporary layers. Petcoke was also estimated to be a major source of vanadium, nickel, and molybdenum. Scanning electron microscopy with energy-dispersive X-ray spectroscopy confirmed large petcoke particles (>10 μm) in snow at near-field sites. Petcoke dust has not previously been considered in environmental impact assessments of oil sands upgrading, and improved dust control from growing stockpiles may mitigate future risks.

  19. Airborne Petcoke Dust is a Major Source of Polycyclic Aromatic Hydrocarbons in the Athabasca Oil Sands Region.

    PubMed

    Zhang, Yifeng; Shotyk, William; Zaccone, Claudio; Noernberg, Tommy; Pelletier, Rick; Bicalho, Beatriz; Froese, Duane G; Davies, Lauren; Martin, Jonathan W

    2016-02-16

    Oil sands mining has been linked to increasing atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in the Athabasca oil sands region (AOSR), but known sources cannot explain the quantity of PAHs in environmental samples. PAHs were measured in living Sphagnum moss (24 sites, n = 68), in sectioned peat cores (4 sites, n = 161), and snow (7 sites, n = 19) from ombrotrophic bogs in the AOSR. Prospective source samples were also analyzed, including petroleum coke (petcoke, from both delayed and fluid coking), fine tailings, oil sands ore, and naturally exposed bitumen. Average PAH concentrations in near-field moss (199 ng/g, n = 11) were significantly higher (p = 0.035) than in far-field moss (118 ng/g, n = 13), and increasing temporal trends were detected in three peat cores collected closest to industrial activity. A chemical mass-balance model estimated that delayed petcoke was the major source of PAHs to living moss, and among three peat core the contribution to PAHs from delayed petcoke increased over time, accounting for 45-95% of PAHs in contemporary layers. Petcoke was also estimated to be a major source of vanadium, nickel, and molybdenum. Scanning electron microscopy with energy-dispersive X-ray spectroscopy confirmed large petcoke particles (>10 μm) in snow at near-field sites. Petcoke dust has not previously been considered in environmental impact assessments of oil sands upgrading, and improved dust control from growing stockpiles may mitigate future risks. PMID:26771587

  20. Airborne microorganisms in the African desert dust corridor over the mid-Atlantic ridge, Ocean Drilling Program, Leg 209

    USGS Publications Warehouse

    Griffin, Dale W.; Westphal, Douglas L.; Gray, Michael A.

    2006-01-01

    The objective of this study was to enhance our understanding of the fate and trans-Atlantic transport of dustborne microorganisms from Northern Africa to the Caribbean and Americas, and more specifically to determine if culturable populations could be detected at a mid-ocean site, closer to the source of dust relative to land-based Caribbean sites, during the early summer months of May and June. Between the dates of 22 May and 30 June 2003, daily air samples were collected and evaluated for the presence of culturable bacterial and fungal colony-forming units (CFU). Here we report a statistically significant correlation between daily atmospheric CFU counts at a mid-ocean research site (???15??N, 45??W) and daily desert dust concentrations as determined by the U.S. Navy's Naval Aerosol Analysis and Prediction System (NAAPS) Global Aerosol Model (Honrath et al. (2004). Journal of Geophysical Research, 109; Johnson et al. (2003). Global Biogeochemical Cycles, 17, 1063; Reid et al. (2004). Geophysical Research Letters, 31; Schollaert, Yoder, Westphal, & O'Reilly (2003). Journal of Geophysical Research, 108, 3191). ?? Springer Science+Business Media B.V. 2006.

  1. Repetitive Immunoassay with a Surface Acoustic Wave Device and a Highly Stable Protein Monolayer for On-Site Monitoring of Airborne Dust Mite Allergens.

    PubMed

    Toma, Koji; Miki, Daisuke; Kishikawa, Chisato; Yoshimura, Naoyuki; Miyajima, Kumiko; Arakawa, Takahiro; Yatsuda, Hiromi; Mitsubayashi, Kohji

    2015-10-20

    This work describes a sensor to be incorporated into the on-site monitoring system of airborne house dust mite (HDM) allergens. A surface acoustic wave (SAW) device was combined with self-assembled monolayers of a highly stable antibody capture protein on the SAW surface that have high resistance to pH change. A sandwich assay was used to measure a HDM allergen, Der f 1 derived from Dermatophagoides farinae. Capture antibodies were cross-linked to a protein G based capture layer (ORLA85) on the sensor surface, thereby only Der f 1 and detection antibodies were regenerated by changing pH, resulting in fast repetition of the measurement. The sensor was characterized through 10 repetitive measurements of Der f 1, which demonstrated high reproducibility of the sensor with the coefficient of variation of 5.6%. The limit of detection (LOD) of the sensor was 6.1 ng·mL(-1), encompassing the standard (20 ng·mL(-1)) set by the World Health Organization. Negligible sensor outputs were observed for five different major allergens including other HDM allergens which tend to have cross-reactivity to Der f 1 and their mixtures with Der f 1. Finally, the sensor lifetime was evaluated by conducting three measurements per day, and the sensor output did not substantially change for 4 days. These characteristics make the SAW immunosensor a promising candidate for incorporation into on-site allergen monitoring systems.

  2. Study on size distribution of total aerosol and water-soluble ions during an Asian dust storm event at Jeju Island, Korea.

    PubMed

    Park, S H; Song, C B; Kim, M C; Kwon, S B; Lee, K W

    2004-01-01

    Soil dust particles transported from loess regions of the Asian continent, called Asian dust, highly influences the air quality of north-eastern Asia and the northern Pacific Ocean. In order to investigate the effects of these dust storms on the chemical composition of atmospheric aerosol particles with different size, measurements of size distributions of total aerosol and major ion species were carried out on Jeju Island, Korea during April 2001. Juju Island was chosen for the study because the levels of emissions of anthropogenic air pollutants are very low. A 5-stage cascade impactor was used to sample size-fractionated aerosol particles. Samples were analyzed for major water-soluble ions using Dionex DX-120 ion chromatograph. The average mass concentration of total aerosol was found to be 24.4 and 108.3 microg m(-3) for non-Asian dust and Asian dust periods, respectively. The total aerosol size distribution, measured during the non-Asian dust period, was bimodal, whereas the coarse particles dominated the size distribution of total aerosol during the Asian dust period. It was found that SO4(2-), NH4+ and K+ were mainly distributed in fine particles, while Cl-, NO3-, Na+, Mg2+ and Ca2+ were in coarse particles. Although SO4(2-) was mainly distributed in fine particles, during the Asian dust period, the concentrations in coarse particles were significantly increased. This indicates heterogeneous oxidation of SO2 on wet surfaces of basic soil dust particles. The NH4+ was found to exist as (NH4)2SO4 in fine particles, with a molar ratio of NH4+ to SO4(2-) of 2.37 and 1.52 for non-Asian dust and Asian dust periods, respectively. Taking into account the proximity of the sampling site to the sea, and the observed chloride depletion, coarse mode nitrate, during the non-Asian dust period, is assumed to originate from the reaction of nitric acid with sodium chloride on the surfaces of sea-salt particles although the chloride depletion was not shown to be large enough to

  3. The relation between the gas, dust and total mass in edge-on spiral galaxies

    NASA Astrophysics Data System (ADS)

    Allaert, Flor

    2015-02-01

    Each component of a galaxy plays its own unique role in regulating the galaxy's evolution. In order to understand how galaxies form and evolve, it is therefore crucial to study the distribution and properties of each of the various components, and the links between them, both radially and vertically. The latter is only possible in edge-on systems. We present the HEROES project, which aims to investigate the 3D structure of the interstellar gas, dust, stars and dark matter in a sample of 7 massive early-type spiral galaxies based on a multi-wavelength data set including optical, NIR, FIR and radio data.

  4. Coupling Mars' Dust and Water Cycles: Effects on Dust Lifting Vigor, Spatial Extent and Seasonality

    NASA Technical Reports Server (NTRS)

    Kahre, M. A.; Hollingsworth, J. L.; Haberle, R. M.; Montmessin, F.

    2012-01-01

    The dust cycle is an important component of Mars' current climate system. Airborne dust affects the radiative balance of the atmosphere, thus greatly influencing the thermal and dynamical state of the atmosphere. Dust raising events on Mars occur at spatial scales ranging from meters to planet-wide. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. Generally, a low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading were observed by MGS/TES: one peak occurred before northern winter solstice at Ls 200-240, and one peak occurred after northern winter solstice at L(sub s) 305-340. These maxima in dust loading are thought to be associated with transient eddy activity in the northern hemisphere, which has been observed to maximize pre- and post-solstice. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading. Interactive dust cycle studies typically have not included the formation of water ice clouds or their radiative effects. Water ice clouds can influence the dust cycle by scavenging dust from atmosphere and by interacting with solar and infrared radiation

  5. The role of dust storms in total atmospheric particle concentrations at two sites in the western U.S.

    NASA Astrophysics Data System (ADS)

    Neff, J. C.; Reynolds, R. L.; Munson, S. M.; Fernandez, D.; Belnap, J.

    2013-10-01

    Mineral aerosols are produced during the erosion of soils by wind and are a common source of particles (dust) in arid and semiarid regions. The size of these particles varies widely from less than 2 µm to larger particles that can exceed 50 µm in diameter. In this study, we present two continuous records of total suspended particle (TSP) concentrations at sites in Mesa Verde and Canyonlands National Parks in Colorado and Utah, USA, respectively, and compare those values to measurements of fine and coarse particle concentrations made from nearby samplers. Average annual concentrations of TSP at Mesa Verde were 90 µg m-3 in 2011 and at Canyonlands were 171 µg m-3 in 2009, 113 µg m-3 in 2010, and 134 µg m-3 in 2011. In comparison, annual concentrations of fine (diameter of 2.5 µm and below) and coarse (2.5-10 µm diameter) particles at these sites were below 10 µg m-3 in all years. The high concentrations of TSP appear to be the result of regional dust storms with elevated concentrations of particles greater than 10 µm in diameter. These conditions regularly occur from spring through fall with 2 week mean TSP periodically in excess of 200 µg m-3. Measurement of particles on filters indicates that the median particle size varies between approximately 10 µm in winter and 40 µm during the spring. These persistently elevated concentrations of large particles indicate that regional dust emission as dust storms and events are important determinants of air quality in this region.

  6. The role of dust storms in total atmospheric particle concentrations at two sites in the western U.S.

    USGS Publications Warehouse

    Neff, Jason C.; Reynolds, Richard L.; Munson, Seth M.; Fernandez, Daniel; Belnap, Jayne

    2013-01-01

    Mineral aerosols are produced during the erosion of soils by wind and are a common source of particles (dust) in arid and semiarid regions. The size of these particles varies widely from less than 2 µm to larger particles that can exceed 50 µm in diameter. In this study, we present two continuous records of total suspended particle (TSP) concentrations at sites in Mesa Verde and Canyonlands National Parks in Colorado and Utah, USA, respectively, and compare those values to measurements of fine and coarse particle concentrations made from nearby samplers. Average annual concentrations of TSP at Mesa Verde were 90 µg m−3 in 2011 and at Canyonlands were 171 µg m−3 in 2009, 113 µg m−3 in 2010, and 134 µg m−3 in 2011. In comparison, annual concentrations of fine (diameter of 2.5 µm and below) and coarse (2.5–10 µm diameter) particles at these sites were below 10 µg m−3 in all years. The high concentrations of TSP appear to be the result of regional dust storms with elevated concentrations of particles greater than 10 µm in diameter. These conditions regularly occur from spring through fall with 2 week mean TSP periodically in excess of 200 µg m−3. Measurement of particles on filters indicates that the median particle size varies between approximately 10 µm in winter and 40 µm during the spring. These persistently elevated concentrations of large particles indicate that regional dust emission as dust storms and events are important determinants of air quality in this region.

  7. Predictors of airborne endotoxin concentrations in inner city homes.

    PubMed

    Mazique, D; Diette, G B; Breysse, P N; Matsui, E C; McCormack, M C; Curtin-Brosnan, J; Williams, D L; Peng, R D; Hansel, N N

    2011-05-01

    Few studies have assessed in home factors which contribute to airborne endotoxin concentrations. In 85 inner city Baltimore homes, we found no significant correlation between settled dust and airborne endotoxin concentrations. Certain household activities and characteristics, including frequency of dusting, air conditioner use and type of flooring, explained 36-42% of the variability of airborne concentrations. Measurements of both airborne and settled dust endotoxin concentrations may be needed to fully characterize domestic exposure in epidemiologic investigations. PMID:21429483

  8. Optical dust sensor for the mining industry

    NASA Astrophysics Data System (ADS)

    Sierakowski, Marek W.; Wolinski, Tomasz R.; Domanski, Andrzej W.; Osinska, Katarzyna

    2003-04-01

    One of many hazards in mining industry is presence of airborne dust on underground boards. Hazards caused by dust generated and spread in mines are of the two types: (1) health risk for miners from airborne dust produced from rocks, coal, soluble minerals (pneumoconiosis, toxicity), (2) danger of explosion of carbon dust. Dust particles produced in mines underground range from 0 to about 400 micrometers, have irregular shapes and prevailingly are strongly light absorbing. It is assumed that the most health-risky are particles between 1 μm and 5 μm in size. They are not visible with naked eyes, so their control and measurement need technical equipment. As a standard in polish mines, gravimetric measurement method is used at present. This method works well in post-event evaluation of total health-risk factor, but is not much useful for instantaneous risk warning. In order to recognize and possibly prevent the dust risk as it appears, other methods have to be used, like optical method. Looking towards this demand, an experimental optical dust sensor is demonstrated. The sensor is based on light scattering effect by dust particles, as usual do devices of this type. Originality of this solution lies in construction details of the sensor. Scattering is a complex function of dust kind, size, shape and concentration. Moreover, operating conditions of such a device are cruel -- humidity, elevated temperature, vibrations, and over-all contact with dust -- are harmful for optics. Thus, to achieve reliable indications of the sensor is really a challenge. This paper describes optical construction attempting to overcome difficulties in obtaining dust concentration sensor intended for mining industry and similar applications. First laboratory and operational tests are also reported.

  9. Application of real-time PCR for total airborne bacterial assessment: Comparison with epifluorescence microscopy and culture-dependent methods

    NASA Astrophysics Data System (ADS)

    Rinsoz, Thomas; Duquenne, Philippe; Greff-Mirguet, Guylaine; Oppliger, Anne

    Traditional culture-dependent methods to quantify and identify airborne microorganisms are limited by factors such as short-duration sampling times and inability to count non-culturable or non-viable bacteria. Consequently, the quantitative assessment of bioaerosols is often underestimated. Use of the real-time quantitative polymerase chain reaction (Q-PCR) to quantify bacteria in environmental samples presents an alternative method, which should overcome this problem. The aim of this study was to evaluate the performance of a real-time Q-PCR assay as a simple and reliable way to quantify the airborne bacterial load within poultry houses and sewage treatment plants, in comparison with epifluorescence microscopy and culture-dependent methods. The estimates of bacterial load that we obtained from real-time PCR and epifluorescence methods, are comparable, however, our analysis of sewage treatment plants indicate these methods give values 270-290 fold greater than those obtained by the "impaction on nutrient agar" method. The culture-dependent method of air impaction on nutrient agar was also inadequate in poultry houses, as was the impinger-culture method, which gave a bacterial load estimate 32-fold lower than obtained by Q-PCR. Real-time quantitative PCR thus proves to be a reliable, discerning, and simple method that could be used to estimate airborne bacterial load in a broad variety of other environments expected to carry high numbers of airborne bacteria.

  10. The use of an experimental room for monitoring of airborne concentrations of microorganisms, glass fibers, and total particles

    SciTech Connect

    Buttner, M.P.; Stetzenbach, L.D.

    1996-12-31

    An experimental room was used as a microcosm for studies of airborne particles and microorganisms in indoor environments. The interior of the room measures 4 by 4 by 2.2 m high and has a hardwood floor and the walls and ceiling are sheetrocked and coated with interior latex paint. Exterior walls are 11.4-cm thick plywood panels consisting of two outer sections of plywood insulated with fiber glass batts. The ceiling is of similar construction with 17.1-cm thick panels. Attached to the room entrance is an anteroom equipped with a HEPA-filtered air shower to reduce mixing of air resulting from entering and exiting during experiments. The room is equipped with a computer-controlled heating, ventilation, and cooling system. Temperature, relative humidity, air flow, and room pressure can be continuously monitored by probes located in the room and air handling system components. Several research projects have been conducted using this room including monitoring the potential for airborne glass fibers released from rigid fibrous ductboard, comparisons of commercially available samplers for monitoring of airborne fungal spores, and a study on the efficacy of vacuum bags to minimize dispersal of particles, including fungal spores from fungal-contaminated carpet. During studies designed to monitor airborne fiberglass, air samples were taken in the room serviced by new rigid fibrous glass ductwork, and the results were compared to those obtained in the room with bare metal ductwork installed. Monitoring of airborne fungal spores using the Andersen six-stage sampler, the high flow Spiral Biotech sampler, the Biotest RCS Plus sampler, and the Burkard spore trap sampler was performed following the release of Penicillium spores into the room through the supply register. Dispersal of carpet-associated particles and fungal spores was measured after vacuuming using conventional cellulose vacuum bags in comparison to recently developed bags.

  11. Airborne particulate matter (PM) filter analysis and modeling by total reflection X-ray fluorescence (TXRF) and X-ray standing wave (XSW).

    PubMed

    Borgese, L; Salmistraro, M; Gianoncelli, A; Zacco, A; Lucchini, R; Zimmerman, N; Pisani, L; Siviero, G; Depero, L E; Bontempi, E

    2012-01-30

    This work is presented as an improvement of a recently introduced method for airborne particulate matter (PM) filter analysis [1]. X-ray standing wave (XSW) and total reflection X-ray fluorescence (TXRF) were performed with a new dedicated laboratory instrumentation. The main advantage of performing both XSW and TXRF, is the possibility to distinguish the nature of the sample: if it is a small droplet dry residue, a thin film like or a bulk sample. Another advantage is related to the possibility to select the angle of total reflection to make TXRF measurements. Finally, the possibility to switch the X-ray source allows to measure with more accuracy lighter and heavier elements (with a change in X-ray anode, for example from Mo to Cu). The aim of the present study is to lay the theoretical foundation of the new proposed method for airborne PM filters quantitative analysis improving the accuracy and efficiency of quantification by means of an external standard. The theoretical model presented and discussed demonstrated that airborne PM filters can be considered as thin layers. A set of reference samples is prepared in laboratory and used to obtain a calibration curve. Our results demonstrate that the proposed method for quantitative analysis of air PM filters is affordable and reliable without the necessity to digest filters to obtain quantitative chemical analysis, and that the use of XSW improve the accuracy of TXRF analysis.

  12. Airborne Particulate Matter (PM) filter analysis and modeling by Total reflection X-Ray Fluorescence (TXRF) and X-Ray Standing Wave (XSW)

    PubMed Central

    Borgese, L.; Salmistraro, M.; Gianoncelli, A; Zacco, A.; Lucchini, R.; Zimmerman, N.; Pisani, L.; Siviero, G.; Depero, L. E.; Bontempi, E.

    2011-01-01

    This work is presented as an improvement of a recently introduced method for airborne particulate matter (PM) filter analysis [1]. X-ray Standing Wave (XSW) and Total reflection X-Ray Fluorescence (TXRF) were performed with a new dedicated laboratory instrumentation. The main advantage of performing both XSW and TXRF, is the possibility to distinguish the nature of the sample: if it is a small droplet dry residue, a thin film like or a bulk sample; and to select the angle of total reflection to make TXRF measurements. Finally, the possibility to switch the X-ray source allows to measure with more accuracy lighter and heavier elements (with a a change in X-ray anode, for example from Mo to Cu). The aim of the present study is to lay the theoretical foundation of the new proposed method for airborne PM filters quantitative analysis improving the accuracy and efficiency of quantification by means of an external standard. The theoretical model presented and discussed demonstrated that airborne PM filters can be considered as thin layers. A set of reference samples is prepared in laboratory and used to obtain a calibration curve. Our results demonstrate that the proposed method for quantitative analysis of air PM filters is affordable and reliable without the necessity to digest filters to obtain quantitative chemical analysis, and that the use of XRW improve the accuracy of TXRF analysis. PMID:22284465

  13. Chemical speciation of lead dust associated with primary lead smelting.

    PubMed Central

    Spear, T M; Svee, W; Vincent, J H; Stanisich, N

    1998-01-01

    The research presented in this article assessed geochemical factors relating to dust produced during primary lead smelting. Bulk dust samples and size-selective airborne dust samples were collected from four areas of a primary lead smelter and analyzed by X-ray diffraction and sequential chemical extraction. X-ray diffraction showed that the smelter dusts were composed primarily of sulfides, oxides, sulfates, and silicates of metal ores, with galena being the primary dust component. Sequential extraction revealed the solubility of lead compounds at less than 7% in the exchangeable and mildly acidic steps for the bulk dusts collected from four smelter areas. The later steps of the extraction procedure were more effective in dissolving the lead compounds associated with the bulk dust samples, with 43%, 26%, and 8% of the total lead, in the ore storage, sinter, and blast/dross smelter areas, respectively, being extracted in the residual step. Sequential extraction of coarse airborne dust samples from the ore storage and sinter plant showed that 1.2% and 4.1% of the total lead, respectively, was exchangeable. The finer particle size fractions from these areas of the smelter showed higher percentages of exchangeable lead. Of the course airborne dust from the blast/dross furnace processes, 65% of the total lead was exchangeable. However, the largest percentage of lead from these areas was associated with the finer particle-size fractions. If lead bioavailability is related to its solubility as determined through sequential extraction, the health hazards associated with lead exposure may be appreciably enhanced in the blast and dross furnace processes. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:9721256

  14. Lofting of dust by very large explosions

    SciTech Connect

    Mason, A.S.; Finnegan, D.L.; Hagan, R.C.; Raymond, R. Jr.; Cocks, G.G.; Zoller, W.H.; Peach, C.L.

    1987-08-01

    One of the goals of the Minor Scale test was to determine the quantity, form, and composition of dust lofted by a large detonation of a conventional high explosive at ground level. The explosive charge was 4427 tonnes of ammonium nitrate-fuel oil (ANFO), whose blast effect is approximately equal to that of an 8 kT nuclear device. The experimental techniques used to determine the amount of dust were (1) use of elements in soil as natural tracers, (2) inclusion of tracer elements in the ANFO charge and the immediate surroundings, (3) airborne collection of the lofted dust on filter media, and (4) analysis of the samples for both tracers and dust. The tracer content of the sample can then relate the dust collected to the total amount lofted and to the location of its origin within the experimental setup. Indium, in the oxide form, was placed within the explosive charge, and tantalum as very fine dust, was placed near the soil surface immediately adjacent to the charge container. The amounts of the tracers and of dust collected by each filter were measured by instrumental neutron activation analysis. A research aircraft equipped with well-characterized high-volume filter samplers was flown through the dust cloud at 10 levels between the top at 4.6 km and the bottom at 1.7 km above ground level. The cloud dust density was distinctly biomodal; its maxima were at 4.1 and 2.9 km. The majority of the indium was associated with the dust in the upper part of the cloud, and the majority of the tantalum was in the lower part. The estimate of the total dust lofted by use of the naturally occurring tracers was 3.0 x 10/sup 9/ g. Samples are being studied by scanning electron microscopy to determine their particle size and composition distributions as functions of location within the cloud.

  15. Total suspended dust and heavy metal levels emitted from a workplace compared with nearby residential houses

    NASA Astrophysics Data System (ADS)

    Abdul-Wahab, Sabah A.; Yaghi, Basma

    Total suspended particulate matter (TSP) were collected from the workplace in Sohar Industrial Estate (SIE) in Oman. The samples were taken from 19 different industrial activities that represent major sources of particulate matter in the SIE. The collected samples were analyzed for 9 heavy metals (Cr, Cu, Mn, Ni, Pb, Zn, Cd, V and Mo) by using the inductively coupled plasma optical emission spectrometry analysis (ICP-OES). Furthermore, the indoor TSP and heavy metal concentrations were measured inside 12 houses within Sohar residential area to determine the contributions of various industrial activities on nearby residential houses. The results indicated that the mean concentrations of heavy metals in the TSP were too low to yield any known environmental health effects. In general, the results showed that the concentrations of heavy metals in the workplaces of SIE and its nearby houses were low compared to the guideline values. In addition, the values were low in comparison with other known sites around the world. Moreover, significant contribution from industrial sources at SIE was evidenced at nearby houses.

  16. THE DISTRIBUTION OF CHLORPYRIFOSIN AIR, CARPETING, AND DUST AND ITS REEMISSION FROM CARPETING FOLLOWING THE USE OF TOTAL RELEASE AEROSOLS IN AN INDOOR AIR QUALITY TEST HOUSE

    EPA Science Inventory

    The paper gives results of experiments to explore the relationships between the insecticide chlorpyrifos and its distribution into carpet., carpet dust, and reemission into air. Two total release aerosols containing 0.5% chlorpyrifos were applied in the living room and den of EP...

  17. An evaluation of total and inhalable samplers for the collection of wood dust in three wood products industries.

    PubMed

    Harper, Martin; Muller, Brian S

    2002-10-01

    In 1998 the American Conference for Governmental Industrial Hygienists (ACGIH) proposed size selective sampling for wood dust based on the inhalable fraction. Thus the proposed threshold limit values (TLVs) require the use of a sampler whose performance matches the inhalable convention. The Institute of Occupational Medicine (IOM) sampler has shown good agreement with the inhalable convention under controlled conditions, and the Button sampler, developed by the University of Cincinnati, has shown reasonable agreement in at least one laboratory study. The Button sampler has not been previously evaluated under wood working conditions, and the IOM has been shown to sample more mass than expected when compared to the standard closed-face cassette, which may be due to the collection of very large particles in wood working environments. Some projectile particles may be > 100 microm aerodynamic diameter and thus outside the range of the convention. Such particles, if present, can bias the estimates of concentration considerably. This study is part of an on-going research focus into selecting the most appropriate inhalable sampler for use in these industries, and to examine the impact of TLV changes. This study compared gravimetric analyses (National Institute of Occupational Safety and Health Method 0500) of side-by-side personal samples using the Button, IOM, and 37 mm closed-face cassette (CFC) under field-use conditions. A total of 51 good sample pairs were collected from three wood products industries involved in the manufacturing of cabinets, furniture, and shutters. Paired t-tests were run on each sample pair using Statistical Package for the Social Sciences (SPSS) version 10. The IOM and the CFC measured statistically different concentrations (p < 0.0005, n = 16). The IOM and Button measured statistically different concentrations (p = 0.020, n = 12). The Button and CFC did not measure statistically different concentrations of wood dust (p = 0.098, n = 23). Sampler

  18. Haul road dust control

    SciTech Connect

    Reed, W.R.; Organiscak, J.A.

    2007-10-15

    A field study was conducted to measure dust from haul trucks at a limestone quarry and a coal preparation plant waste hauling operation. The study found that primarily wind, distance and road treatment conditions notably affected the dust concentrations at locations next to, 50 ft from, and 100 ft away from the unpaved haulage road. Airborne dust measured along the unpaved haul road showed that high concentrations of fugitive dust can be generated with these concentrations rapidly decreasing to nearly background levels within 100 ft of the road. Instantaneous respirable dust measurements illustrated that the trucks generate a real-time dust cloud that has a peak concentration with a time-related decay rate as the dust moves past the sampling locations. The respirable dust concentrations and peak levels were notably diminished as the dust cloud was transported, diluted, and diffused by the wind over the 100 ft distance from the road. Individual truck concentrations and peak levels measured next to the dry road surface test section were quite variable and dependent on wind conditions, particularly wind direction, with respect to reaching the sampling location. The vast majority of the fugitive airborne dust generated from unpaved and untreated haulage roads was non-respirable. 6 figs.

  19. Pneumoconiosis, lung function and exposure to airborne dust: epidemiological research to compare responses of working coalminers with responses of ex-miners. Part 2. Final report

    SciTech Connect

    Soutar, C.A.; Maclaren, W.; Hurley, F.; Murdoch, R.; Hadden, G.

    1982-03-01

    The relationship between dust exposure and disease for miners was compared with that for ex-miners, in order to determine whether relationships found in other studies on miners alone could be applied to both groups. 17,738 men examined in the 1950s were followed up approximately 22 years later. Sixty one per cent of the survivors were examined, being 40% of the original sample. Records were made of respiratory symptoms, smoking habit, lung spirometry and chest radiograph findings. Radiographs were interpreted according to the International Labour Office Classification of Pneumoconiosis. Lifetime dust exposure was calculated for each subject. The dust/disease relationship was found to be the same for both groups. Ex-miners were found to have more pneumoconiosis and fibrosis and to be in worse health than miners. Pneumoconiosis progression was shown to be related to continued dust exposure; fibrosis progression was related to the presence of dust in the lungs. Dust exposure was shown to cause a mainly restrictive pattern of lung disease in contrast to the obstructive pattern caused by smoking. Colliery-related differences were found in lung disease which it was felt needed further investigation.

  20. An Assessment of the Surface Longwave Direct Radiative Effect of Airborne Dust in Zhangye China During the Asian Monsoon Year Field Experiment (2008)

    NASA Technical Reports Server (NTRS)

    Hansell, Richard A.; Tsay, Si-Chee; Hsu, N. Christina; Ji, Qiang; Bell, Shaun W.; Holben, Brent N.; Ellsworth, Welton J.; Roush, Ted L.; Zhang, Wu; Huang, J.; Li, Zhanquing; Chen, Hongbin

    2012-01-01

    Tiny suspensions of solid particles or liquid droplets, called aerosols, hover in earth's atmosphere and can be found over just about anywhere including oceans, deserts, vegetated areas, and other global regions. Aerosols come in a variety of sizes, shapes, and compositions which depend on such factors as their origin and how long they have been in the atmosphere (i.e., their residence time). Some of the more common types of aerosols include mineral dust and sea salt which get lifted from the desert and ocean surfaces, respectively by mechanical forces such as strong winds. Depending on their size, aerosols will either fall out gravitationally, as in the case of larger particles, or will remain resident in the atmosphere where they can undergo further change through interactions with other aerosols and cloud particles. Not only do aerosols affect air quality where they pose a health risk, they can also perturb the distribution of radiation in the earth-atmosphere system which can inevitably lead to changes in our climate. One aerosol that has been in the forefront of many recent studies, particularly those examining its radiative effects, is mineral dust. The large spatial coverage of desert source regions and the fact that dust can radiatively interact with such a large part of the electromagnetic spectrum due to its range in particle size, makes it an important aerosol to study. Dust can directly scatter and absorb solar and infrared radiation which can subsequently alter the amount of radiation that would otherwise be present in the absence of dust at any level of the atmosphere like the surface. This is known as radiative forcing. At the surface dust can block incoming solar energy, however at infrared wavelengths, dust acts to partially compensate the solar losses. Evaluating the solar radiative effect of dust aerosols is relatively straightforward due in part to the relatively large signal-to-noise ratio in the measurements. At infrared wavelengths, on the

  1. Mammalian airborne allergens.

    PubMed

    Aalberse, Rob C

    2014-01-01

    Historically, horse dandruff was a favorite allergen source material. Today, however, allergic symptoms due to airborne mammalian allergens are mostly a result of indoor exposure, be it at home, at work or even at school. The relevance of mammalian allergens in relation to the allergenic activity of house dust extract is briefly discussed in the historical context of two other proposed sources of house dust allergenic activity: mites and Maillard-type lysine-sugar conjugates. Mammalian proteins involved in allergic reactions to airborne dust are largely found in only 2 protein families: lipocalins and secretoglobins (Fel d 1-like proteins), with a relatively minor contribution of serum albumins, cystatins and latherins. Both the lipocalin and the secretoglobin family are very complex. In some instances this results in a blurred separation between important and less important allergenic family members. The past 50 years have provided us with much detailed information on the genomic organization and protein structure of many of these allergens. However, the complex family relations, combined with the wide range of post-translational enzymatic and non-enzymatic modifications, make a proper qualitative and quantitative description of the important mammalian indoor airborne allergens still a significant proteomic challenge. PMID:24925404

  2. Deriving an atmospheric budget of total organic bromine using airborne in-situ measurements from the Western Pacific during SHIVA

    NASA Astrophysics Data System (ADS)

    Sala, S.; Bönisch, H.; Keber, T.; Oram, D. E.; Mills, G.; Engel, A.

    2014-02-01

    During the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) project an extensive dataset of all halogen species relevant for the atmospheric budget of total organic bromine has been collected in the West Pacific region using the FALCON aircraft operated by the German Aerospace agency DLR (Deutsches Zentrum für Luft- und Raumfahrt) covering a vertical range from the planetary boundary layer up to the ceiling altitude of the aircraft of 13 km. In total, more than 700 measurements were performed with the newly developed fully-automated in-situ instrument GHOST-MS (Gas cHromatograph for the Observation of Tracers - coupled with a Mass Spectrometer) by the Goethe University of Frankfurt (GUF) and with the onboard whole-air sampler WASP with subsequent ground based state-of-the-art GC/MS analysis by the University of East Anglia (UEA). Both instruments yield good agreement for all major (CHBr3 and CH2Br2) and minor (CHBrCl, CHBrCl2 and CHBr2Cl) VSLS (very short-lived substances), at least at the level of their 2 σ measurement uncertainties. In contrast to the suggestion that the Western Pacific could be a major source region for VSLS (Pyle et al., 2011), we found only slightly enhanced mixing ratios of brominated halogen source gases relative to the levels reported in Montzka et al. (2011) for other tropical regions. A budget for total organic bromine, including all four halons,CH3Br and the VSLS, is derived for the upper troposphere, the input region for the TTL and thus also for the stratosphere, compiled from the SHIVA dataset. With exception of the two minor VSLS CHBrCl2 and CHBr2Cl, excellent agreement with the values reported in Montzka et al. (2011) is found, while being slightly higher than previous studies from our group based on balloon-borne measurements.

  3. Deriving an atmospheric budget of total organic bromine using airborne in situ measurements from the western Pacific area during SHIVA

    NASA Astrophysics Data System (ADS)

    Sala, S.; Bönisch, H.; Keber, T.; Oram, D. E.; Mills, G.; Engel, A.

    2014-07-01

    During the recent SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) project an extensive data set of all halogen species relevant for the atmospheric budget of total organic bromine was collected in the western Pacific region using the Falcon aircraft operated by the German Aerospace agency DLR (Deutsches Zentrum für Luft- und Raumfahrt) covering a vertical range from the planetary boundary layer up to the ceiling altitude of the aircraft of 13 km. In total, more than 700 measurements were performed with the newly developed fully automated in situ instrument GHOST-MS (Gas chromatograph for the Observation of Tracers - coupled with a Mass Spectrometer) by the Goethe University of Frankfurt (GUF) and with the onboard whole-air sampler WASP with subsequent ground-based state-of-the-art GC / MS analysis by the University of East Anglia (UEA). Both instruments yield good agreement for all major (CHBr3 and CH2Br2) and minor (CH2BrCl, CHBrCl2 and CHBr2Cl) VSLS (very short-lived substances), at least at the level of their 2σ measurement uncertainties. In contrast to the suggestion that the western Pacific could be a region of strongly increased atmospheric VSLS abundance (Pyle et al., 2011), we found only in the upper troposphere a slightly enhanced amount of total organic bromine from VSLS relative to the levels reported in Montzka and Reimann et al. (2011) for other tropical regions. From the SHIVA observations in the upper troposphere, a budget for total organic bromine, including four halons (H-1301, H-1211, H-1202, H-2402), CH3Br and the VSLS, is derived for the level of zero radiative heating (LZRH), the input region for the tropical tropopause layer (TTL) and thus also for the stratosphere. With the exception of the two minor VSLS CHBrCl2 and CHBr2Cl, excellent agreement with the values reported in Montzka and Reimann et al. (2011) is found, while being slightly higher than previous studies from our group based on balloon-borne measurements.

  4. [Chemical characteristics in airborne particulate matter (PM10) during a high pollution spring dust storm episode in Beijing, Tianjin and Zhangjiakou, China].

    PubMed

    Liu, Qing-Yang; Liu, Yan-Ju; Zhao, Qiang; Zhang, Ting-Ting; Zhang, Mei-Gen; Wang, Cun-Mei

    2014-08-01

    Atmospheric particulate matter (PM10) was collected at sampling locations of Beijing, Tianjin and Zhangjiakou from April 1st to May 24th, 2012. The mass concentration of PM10 and concentrations of ions, elemental carbon (EC) and organic carbon (OC) in PM10 were determined. The results showed that average mass concentration of PM10 were 233.82 microg x m(-3) for Beijing, 279.64 microg x (-3) for Tianjin and 238.13 microg x m(-3) for Zhangjiakou, respectively. Backward trajectories results confirmed dust storm events occurred from 27th to 29th April. The maximum daily mass concentrations of PM10 were 755.54 microg x m(-3) for Beijing, 831.32 microg x m(-3) for Tianjin and 582.82 microg x m(-3) for Zhangjiakou during the dust storm episodes, respectively. Water-soluble ions (Na+, NH4+, Ca2+, K+, F-, Cl-, NO3-, SO4(2-)), organic carbon (OC) and elemental carbon (EC) were major aerosol components during the dust storm episodes, and their concentrations were higher than non-dust storm days. In addition, dust storm caused increases in NO3-, SO4(2-) and enrichment of secondary organic carbon (SOC) concentration relative to OC, suggesting that chemical reaction processes involving gas-particle conversion occurred during the long-distance transport of aerosol particles. PMID:25338350

  5. [Chemical characteristics in airborne particulate matter (PM10) during a high pollution spring dust storm episode in Beijing, Tianjin and Zhangjiakou, China].

    PubMed

    Liu, Qing-Yang; Liu, Yan-Ju; Zhao, Qiang; Zhang, Ting-Ting; Zhang, Mei-Gen; Wang, Cun-Mei

    2014-08-01

    Atmospheric particulate matter (PM10) was collected at sampling locations of Beijing, Tianjin and Zhangjiakou from April 1st to May 24th, 2012. The mass concentration of PM10 and concentrations of ions, elemental carbon (EC) and organic carbon (OC) in PM10 were determined. The results showed that average mass concentration of PM10 were 233.82 microg x m(-3) for Beijing, 279.64 microg x (-3) for Tianjin and 238.13 microg x m(-3) for Zhangjiakou, respectively. Backward trajectories results confirmed dust storm events occurred from 27th to 29th April. The maximum daily mass concentrations of PM10 were 755.54 microg x m(-3) for Beijing, 831.32 microg x m(-3) for Tianjin and 582.82 microg x m(-3) for Zhangjiakou during the dust storm episodes, respectively. Water-soluble ions (Na+, NH4+, Ca2+, K+, F-, Cl-, NO3-, SO4(2-)), organic carbon (OC) and elemental carbon (EC) were major aerosol components during the dust storm episodes, and their concentrations were higher than non-dust storm days. In addition, dust storm caused increases in NO3-, SO4(2-) and enrichment of secondary organic carbon (SOC) concentration relative to OC, suggesting that chemical reaction processes involving gas-particle conversion occurred during the long-distance transport of aerosol particles.

  6. Concentration and distribution of platinum group elements (Pt, Pd, Rh) in airborne particulate matter in Frankfurt am Main, Germany.

    PubMed

    Zereini, Fathi; Alt, Friedrich; Messerschmidt, Jürge; von Bohlen, Alex; Liebl, Karlheinz; Püttmann, Wilhelm

    2004-03-15

    The concentrations and distribution of platinum group elements (Pt, Pd, Rh) in airborne particulate matter were studied in a period of one year from August 2001 to July 2002 in urban and in nonurban areas. Airborne dust samples were collected as a total amount (particles with an aerodynamic diameter <22 microm) and classified using an eight-stage Andersen impactor (<10 microm) at three locations with different traffic density roads in the Frankfurt am Main and nonurban areas. Sampling at the three locations was performed simultaneously for total airborne dust and fractionated airborne dust. Pd was determined by total reflection X-ray fluorescence after Hg coprecipitation. Pt and Rh were analyzed by adsorptive striping voltammetry after HPA digestion. The results show that the PGE concentrations in airborne samples depend on the traffic density. The highest PGE concentrations in air were found in the vicinity of major roads with heavy traffic, and the lowest ones were found in the nonurban area. The presence of PGE at the sampling station relatively free of traffic in a nonurban area hints to a transport of some of the emitted PGE from the city to this station by wind. At all three sampling locations, a heterogeneous distribution of the Pd, Pt, and Rh concentrations during the sampling year can be observed. The sum of PGE concentrations in total airborne dust is comparable with the sum of impactor samples. However, the concentration of Pt and Rh in total airborne dust (<22 microm) is on average higher than in impactor samples (<10 microm). On the contrary, Pd concentration is higher in impactor samples in most cases. The airborne PGE distribution is dominated by Pt, followed by Pd and Rh. The impactor samples are dominated by Pd, followed by Pt and Rh. This fact indicates that palladium occurs mainly in relatively fine airborne particles. The main fraction of PGE is found on average in particle sizes between 1.1 and 4.7 microm. Knowledge of the size distribution of

  7. Deposition Rates and Characterization of Arabian Mineral Dust

    NASA Astrophysics Data System (ADS)

    Puthan Purakkal, J.; Stenchikov, G. L.; Engelbrecht, J. P.

    2015-12-01

    Airborne mineral dust directly and indirectly impacts on global climate, continental and marine biochemistry, human and animal health, agriculture, equipment, and visibility. Annual global dust emissions are poorly known with estimates differing by a factor of at least two. Local dust emission and deposition rates are even less quantified. Dust deposition rate is a key parameter, which helps to constrain the modeled dust budget of the atmosphere. However, dust deposition remains poorly known, due to the limited number of reliable measurements. Simulations and satellite observations suggest that coastal dusts contribute substantially to the total deposition flux into the Red Sea. Starting December 2014, deposition samplers, both the "frisbee" type, and passive samplers for individual particle scanning electron microscopy were deployed at King Abdullah University of Science and Technology (KAUST), along the Red Sea in Saudi Arabia. Sampling periods of one month were adopted. The deposition rates range from 3 g m-2 month-1 for fair weather conditions to 23 g m-2 month-1 for high dust events. The X-ray diffraction (XRD) analyses of deposited dust samples show mineralogical compositions different from any of the parent soils, the former consisting mainly of gypsum, calcite, and smaller amounts of albite, montmorillonite, chlorite, quartz and biotite. The deposited dust samples on the other hand contain more gypsum and less quartz than the previously collected soil samples. This presentation discusses the results from XRD, chemical analysis and SEM-based individual particle analysis of the soils and the deposited dust samples. The monthly dust accumulation rates and their seasonal and spatial variability are compared with the regional model predictions. Data from this study provide an observational basis for validating the regional dust mass balance along the Arabian Red Sea coastal plain.

  8. Integration for Airborne Dust Prediction Systems and Vegetation Phenology to Track Pollen for Asthma Alerts in Public Health Decision Support Systems

    NASA Technical Reports Server (NTRS)

    Luvall, J. C.; Sprigg, W. A.; Nickovic, S.; Huete, A.; Budge, A.; Flowers, L.

    2008-01-01

    The objective of the program is to assess the feasibility of combining a dust transport model with MODIS derived phenology to study pollen transport for integration with a public health decision support system. The use of pollen information has specifically be identified as a critical need by the New Mexico State Health department for inclusion in the Environmental Public Health Tracking (EPHT) program. Material and methods: Pollen can be transported great distances. Local observations of plan phenology may be consistent with the timing and source of pollen collected by pollen sampling instruments. The Dust REgional Atmospheric Model (DREAM) is an integrated modeling system designed to accurately describe the dust cycle in the atmosphere. The dust modules of the entire system incorporate the state of the art parameterization of all the major phases of the atmospheric dust life such as production, diffusion, advection, and removal. These modules also include effects of the particles size distribution on aerosol dispersion. The model was modified to use pollen sources instead of dust. Pollen release was estimated based on satellite-derived phenology of key plan species and vegetation communities. The MODIS surface reflectance product (MOD09) provided information on the start of the plant growing season, growth stage, and pollen release. The resulting deterministic model is useful for predicting and simulating pollen emission and downwind concentration to study details of phenology and meteorology and their dependencies. The proposed linkage in this project provided critical information on the location timing and modeled transport of pollen directly to the EPHT> This information is useful to support the centers for disease control and prevention (CDC)'s National EPHT and the state of New Mexico environmental public health decision support for asthma and allergies alerts.

  9. An assessment of the surface longwave direct radiative effect of airborne dust in Zhangye, China, during the Asian Monsoon Years field experiment (2008)

    NASA Astrophysics Data System (ADS)

    Hansell, Richard A.; Tsay, Si-Chee; Hsu, N. Christina; Ji, Qiang; Bell, Shaun W.; Holben, Brent N.; Welton, Ellsworth J.; Roush, Ted L.; Zhang, W.; Huang, J.; Li, Zhanqing; Chen, H.

    2012-08-01

    In April-June 2008, NASA Goddard's ground-based mobile laboratories (SMART-COMMIT) were deployed to Zhangye China (39.0°N; 101°W) to support the Asian Monsoon Years field experiment and the East Asian Study of Tropospheric Aerosols and Impact on Regional Climate. One of the primary objectives at Zhangye, a semi-arid region located between the Taklimakan and Gobi Deserts, was to capture and characterize dust aerosols near the source and to quantify their direct radiative effects (DRE). A regional dust optical model was constructed by combining previously measured soil mineralogy data at Zhangye with COMMIT's particle microphysical measurements. During a 2-week period of heightened dust activity, retrieved longwave (LW) aerosol optical thickness (τ) from SMART's Atmospheric Emitted Radiance Interferometer was used in the Fu-Liou radiative transfer model to derive LW instantaneous DRE (DRELW) at the surface, top of atmosphere, and heating rate profiles for cloud-free conditions. Conservatively, surface instantaneous DRELW and LW forcing efficiency range from about 2-20 Wm-2 and 31-35 Wm-2τ-1 (0 ≤ τ ≤ 0.83), respectively. The significance of DRELWrelative to its shortwave counterpart was estimated to be between 51 and 58%, but of opposite sign, partly compensating shortwave surface cooling. Compared to Saharan dust observed during the NAMMA-2006 field experiment at Cape Verde, dust LW forcing efficiency for this study was found to be a factor of two larger stemming from differences in environmental and surface conditions, aerosol absorption, and Zhangye's close proximity to major desert sources. Relative to observed and modeled ranges in surface DRELW for clouds (˜30-80 Wm-2) and greenhouse gases (˜2 Wm-2), this study's upper range in DRELW represents a significant perturbation to the climate system with important implications for better understanding regional changes in surface temperatures and moisture budgets.

  10. Airborne Measurements of Nitric Oxide, Nitrogen Dioxide, Ozone, and Total Reactive Nitrogen During the NASA Global Tropospheric Experiment

    NASA Technical Reports Server (NTRS)

    Carroll, Mary Anne

    2000-01-01

    Fabrication of the University of Michigan Multichannel Chemiluminescence Instrument (UMMCI) was completed in early 1996 and the instrument participated in test flights on the NASA P3B at Wallops Island prior to integration and deployment for the PEM- Tropics A Mission. The UMMCI consists of 4 channels for simultaneous measurements of ozone and NO with the option for measurements of NO2 and NOy (total reactive nitrogen) when converters are placed upstream of the NO channels. Each NO channel consists of a zeroing volume and reaction vessel, while the ozone channel consists of an ozone catalyst (or scrubber) trap that is not in line with the reaction vessel. The detectors in all for channels are Hamamatsu photomultiplier tubes, which are followed by pulse amplifier discriminators on the NO channels and an electrometer on the ozone channel. Schematics of the Detector Module and NOx/03 Probe Insert and Diagrams of the Control and Data System, the Power and Ground System, the Gas Flow System, and the Calibration System Flow are attached. Intercomparisons were conducted with G. Gregory, NASA/Langley, during the test flights (following prior calibration of the ozone generator/calibrators at the Wallops Long-Path Absorption facility). Initial test results appeared to be reasonable, and instrument characterization studies proceeded for the ozone channel and the 3 NO channels until deployment for integration for the PEM-Tropics Mission. Ozone data was obtained for Flights #4, and 6-2 1, and finalized data was submitted to the PEM-Tropics Data Archive and to the Science Team during the April 1997 Data Workshop. Although it initially appeared that the instrument sensitivity varied, subsequent tests showed that this was the fault of a leak in the ozone calibrator. In fact; the instrument sensitivity has not been observed to vary in a large number of tests over the years since the PEM-Tropics mission. We have, therefore, a very high degree of confidence in the O3 data that we

  11. Dust Measurements in Tokamaks

    SciTech Connect

    Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M

    2008-04-23

    Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 {micro}m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

  12. Modeling of dust deposition in central Asia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The deposition of dust particles has a significant influence on the global bio-geochemical cycle. Currently, the lack of spatiotemporal data creates great uncertainty in estimating the global dust budget. To improve our understanding of the fate, transport and cycling of airborne dust, there is a ne...

  13. Characterizing Dust from Cutting Corian®, a Solid-Surface Composite Material, in a Laboratory Testing System.

    PubMed

    Qi, Chaolong; Echt, Alan; Murata, Taichi K

    2016-06-01

    We conducted a laboratory test to characterize dust from cutting Corian(®), a solid-surface composite material, with a circular saw. Air samples were collected using filters and direct-reading instruments in an automatic laboratory testing system. The average mass concentrations of the total and respirable dusts from the filter samples were 4.78±0.01 and 1.52±0.01mg cm(-3), respectively, suggesting about 31.8% mass of the airborne dust from cutting Corian(®) is respirable. Analysis of the metal elements on the filter samples reveals that aluminum hydroxide is likely the dominant component of the airborne dust from cutting Corian(®), with the total airborne and respirable dusts containing 86.0±6.6 and 82.2±4.1% aluminum hydroxide, respectively. The results from the direct-reading instruments confirm that the airborne dust generated from cutting Corian(®) were mainly from the cutting process with very few particles released from the running circular saw alone. The number-based size distribution of the dusts from cutting Corian(®) had a peak for fine particles at 1.05 µm with an average total concentration of 871.9 particles cm(-3), and another peak for ultrafine particles at 11.8nm with an average total concentration of 1.19×10(6) particles cm(-3) The small size and high concentration of the ultrafine particles suggest additional investigation is needed to study their chemical composition and possible contribution to pulmonary effect.

  14. 30 CFR 33.32 - Determination of dust concentration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.32 Determination of dust concentration. (a) Concentrations of airborne dust... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Determination of dust concentration....

  15. 30 CFR 33.32 - Determination of dust concentration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Determination of dust concentration. 33.32... MINES Test Requirements § 33.32 Determination of dust concentration. (a) Concentrations of airborne dust... microscopic technique shall be employed in determining concentrations of dust in terms of millions...

  16. 30 CFR 33.32 - Determination of dust concentration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Determination of dust concentration. 33.32... MINES Test Requirements § 33.32 Determination of dust concentration. (a) Concentrations of airborne dust... microscopic technique shall be employed in determining concentrations of dust in terms of millions...

  17. 30 CFR 33.32 - Determination of dust concentration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Determination of dust concentration. 33.32... MINES Test Requirements § 33.32 Determination of dust concentration. (a) Concentrations of airborne dust... microscopic technique shall be employed in determining concentrations of dust in terms of millions...

  18. Some stars are totally metal: a new mechanism driving dust across star-forming clouds, and consequences for planets, stars, and galaxies

    SciTech Connect

    Hopkins, Philip F.

    2014-12-10

    Dust grains in neutral gas behave as aerodynamic particles, so they can develop large local density fluctuations entirely independent of gas density fluctuations. Specifically, gas turbulence can drive order-of-magnitude 'resonant' fluctuations in the dust density on scales where the gas stopping/drag timescale is comparable to the turbulent eddy turnover time. Here we show that for large grains (size ≳ 0.1 μm, containing most grain mass) in sufficiently large molecular clouds (radii ≳ 1-10 pc, masses ≳ 10{sup 4} M {sub ☉}), this scale becomes larger than the characteristic sizes of prestellar cores (the sonic length), so large fluctuations in the dust-to-gas ratio are imprinted on cores. As a result, star clusters and protostellar disks formed in large clouds should exhibit significant abundance spreads in the elements preferentially found in large grains (C, O). This naturally predicts populations of carbon-enhanced stars, certain highly unusual stellar populations observed in nearby open clusters, and may explain the 'UV upturn' in early-type galaxies. It will also dramatically change planet formation in the resulting protostellar disks, by preferentially 'seeding' disks with an enhancement in large carbonaceous or silicate grains. The relevant threshold for this behavior scales simply with cloud densities and temperatures, making straightforward predictions for clusters in starbursts and high-redshift galaxies. Because of the selective sorting by size, this process is not necessarily visible in extinction mapping. We also predict the shape of the abundance distribution—when these fluctuations occur, a small fraction of the cores may actually be seeded with abundances Z ∼ 100 (Z) such that they are almost 'totally metal' (Z ∼ 1)! Assuming the cores collapse, these totally metal stars would be rare (1 in ∼10{sup 4} in clusters where this occurs), but represent a fundamentally new stellar evolution channel.

  19. Towards the Development of a Low Cost Airborne Sensing System to Monitor Dust Particles after Blasting at Open-Pit Mine Sites.

    PubMed

    Alvarado, Miguel; Gonzalez, Felipe; Fletcher, Andrew; Doshi, Ashray

    2015-01-01

    Blasting is an integral part of large-scale open cut mining that often occurs in close proximity to population centers and often results in the emission of particulate material and gases potentially hazardous to health. Current air quality monitoring methods rely on limited numbers of fixed sampling locations to validate a complex fluid environment and collect sufficient data to confirm model effectiveness. This paper describes the development of a methodology to address the need of a more precise approach that is capable of characterizing blasting plumes in near-real time. The integration of the system required the modification and integration of an opto-electrical dust sensor, SHARP GP2Y10, into a small fixed-wing and multi-rotor copter, resulting in the collection of data streamed during flight. The paper also describes the calibration of the optical sensor with an industry grade dust-monitoring device, Dusttrak 8520, demonstrating a high correlation between them, with correlation coefficients (R(2)) greater than 0.9. The laboratory and field tests demonstrate the feasibility of coupling the sensor with the UAVs. However, further work must be done in the areas of sensor selection and calibration as well as flight planning. PMID:26274959

  20. Relations Between Cloud Condensation Nuclei And Aerosol Optical Properties Relevant to Remote Sensing: Airborne Measurements in Biomass Burning, Pollution and Dust Aerosol Over North America

    NASA Astrophysics Data System (ADS)

    Shinozuka, Y.; Clarke, A.; Howell, S.; Kapustin, V.; McNaughton, C.; Zhou, J.; Decarlo, P.; Jimenez, J.; Roberts, G.; Tomlinson, J.; Collins, D.

    2008-12-01

    Remote sensing of the concentration of cloud condensation nuclei (CCN) would help investigate the indirect effect of tropospheric aerosols on clouds and climate. In order to assess its feasibility, this paper evaluates the spectral-based retrieval technique for aerosol number and seeks one for aerosol solubility, using in-situ aircraft measurements of aerosol size distribution, chemical composition, hygroscopicity, CCN activity and optical properties. Our statistical analysis reveals that the CCN concentration over Mexico can be optically determined to a relative error of <20%, smaller than that for the mainland US and the surrounding oceans (~a factor of 2). Mexico's advantage is four-fold. Firstly, many particles originating from the lightly regulated industrial combustion and biomass burning are large enough to significantly affect light extinction, elevating the correlation between extinction and CCN number in absence of substantial dust. Secondly, the generally low ambient humidity near the major aerosol sources limits the error in the estimated response of particle extinction to humidity changes. Thirdly, because many CCN contain black carbon, light absorption also provides a measure of the CCN concentration. Fourthly, the organic fraction of volatile mass of submicron particles (OMF) is anti-correlated with the wavelength dependence of extinction due to preferential anion uptake by coarse dust, which provides a potential tool for remote-sensing OMF and the particle solubility.

  1. Towards the Development of a Low Cost Airborne Sensing System to Monitor Dust Particles after Blasting at Open-Pit Mine Sites

    PubMed Central

    Alvarado, Miguel; Gonzalez, Felipe; Fletcher, Andrew; Doshi, Ashray

    2015-01-01

    Blasting is an integral part of large-scale open cut mining that often occurs in close proximity to population centers and often results in the emission of particulate material and gases potentially hazardous to health. Current air quality monitoring methods rely on limited numbers of fixed sampling locations to validate a complex fluid environment and collect sufficient data to confirm model effectiveness. This paper describes the development of a methodology to address the need of a more precise approach that is capable of characterizing blasting plumes in near-real time. The integration of the system required the modification and integration of an opto-electrical dust sensor, SHARP GP2Y10, into a small fixed-wing and multi-rotor copter, resulting in the collection of data streamed during flight. The paper also describes the calibration of the optical sensor with an industry grade dust-monitoring device, Dusttrak 8520, demonstrating a high correlation between them, with correlation coefficients (R2) greater than 0.9. The laboratory and field tests demonstrate the feasibility of coupling the sensor with the UAVs. However, further work must be done in the areas of sensor selection and calibration as well as flight planning. PMID:26274959

  2. Towards the Development of a Low Cost Airborne Sensing System to Monitor Dust Particles after Blasting at Open-Pit Mine Sites.

    PubMed

    Alvarado, Miguel; Gonzalez, Felipe; Fletcher, Andrew; Doshi, Ashray

    2015-01-01

    Blasting is an integral part of large-scale open cut mining that often occurs in close proximity to population centers and often results in the emission of particulate material and gases potentially hazardous to health. Current air quality monitoring methods rely on limited numbers of fixed sampling locations to validate a complex fluid environment and collect sufficient data to confirm model effectiveness. This paper describes the development of a methodology to address the need of a more precise approach that is capable of characterizing blasting plumes in near-real time. The integration of the system required the modification and integration of an opto-electrical dust sensor, SHARP GP2Y10, into a small fixed-wing and multi-rotor copter, resulting in the collection of data streamed during flight. The paper also describes the calibration of the optical sensor with an industry grade dust-monitoring device, Dusttrak 8520, demonstrating a high correlation between them, with correlation coefficients (R(2)) greater than 0.9. The laboratory and field tests demonstrate the feasibility of coupling the sensor with the UAVs. However, further work must be done in the areas of sensor selection and calibration as well as flight planning.

  3. The Effect of Dust Storm on the Microbial Quality of Ambient Air in Sanandaj: A City Located in the West of Iran

    PubMed Central

    Nourmoradi, Heshmatollah; Moradnejadi, Kambiz; Moghadam, Fazel Mohammadi; Khosravi, Behdad; Hemati, Lida; Khoshniyat, Ramin; Kazembeigi, Farogh

    2015-01-01

    Background and Aims: The presence of pathogenic microorganisms in the dust storm can cause diseases such as Asthma, Pneumonia, and respiratory infections. The aim of this study was to determine the relationship between air-borne particles with airborne microorganisms in normal and dusty days in Sanandaj, a city located in the west of Iran. Materials and Methods: Air sampling was conducted during the normal and dusty days through Andersen single-stage impactor (28.3 L/min) for 2.5 min. Air particles concentration (PM10) was measured daily and microbial sampling was also conducted on every six days and on the dusty days. Finally, the data was analyzed by SPSS-16 (ANOVA and paired T-tests). Results: The concentration of airborne microorganisms (bacteria and fungi) was increased by an increase of the airborne particles. Particles concentration in May, June and July (twice per month) was more than of the standard value. The predominant species of bacteria and fungi during the occurrence of Dust storm was Bacillus spp. (56.2% of total bacteria) and Mycosporium spp. (28.6% of total fungi), respectively. Discussion and Conclusion: The results showed that the number of airborne microorganisms (bacteria and fungi) increased during the dust storm. Therefore, the microorganisms in the dust storm can cause biological harmful effects on human health. PMID:26153211

  4. Effect of electrostatic space charge on reduction of airborne transmission of Salmonella and other bacteria in broiler breeders in production and their progeny.

    PubMed

    Richardson, L J; Hofacre, C L; Mitchell, B W; Wilson, J L

    2003-01-01

    Salmonella in birds is a concern because of the human foodborne illness associated with the consumption of poultry meat and eggs. One of the methods of transmission of Salmonella within a flock can be by the air. Therefore, we used reduction of transmission of Salmonella to monitor the effectiveness of the electrostatic space charge system (ESCS). During the average broiler breeder laying cycle of 40 wk, a large amount of dust becomes airborne and accumulates on walls, ceiling, and equipment. Many microorganisms adhere to these dust particles, making dust an excellent vector for horizontal disease transmission between birds. We used two environmentally controlled rooms containing commercial broiler breeders to evaluate the effectiveness of an ESCS that produced a strong negative electrostatic charge to reduce airborne dust and, subsequently, microorganism levels. The ESCS caused the dust to become negatively charged, therefore moving to the grounded floor in the treatment room. The use of the ESCS resulted in a significant reduction (P < 0.0001, 61% reduction) in airborne dust concentration levels, which resulted in a significant reduction (P < 0.0001, 76% reduction) in total airborne bacteria and gram-negative bacteria (48% reduction) in the treatment room. Significant reductions (P < 0.05) of gram-negative bacteria (63% reduction) on the egg collection belts were also recorded in the treatment room, which resulted in a significant reduction (P < 0.0001) of gram-negative bacteria (28% reduction) on the eggshell surface. The ESCS treatment resulted in fewer Salmonella enteritidis-positive hens and their progeny from the treatment room due to reductions of dust and airborne bacteria. In addition, this significant reduction in bacteria on the eggshell surface should result in less bacteria in the day-old chicks, therefore better early chick livability. There was no significant difference (P > 0.05) in egg production, male or female body weights, mortality, or

  5. Dust, Climate, and Human Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2003-01-01

    Air pollution from both natural and anthropogenic causes is considered to be one of the most serious world-wide environment-related health problems, and is expected to become worse with changes in the global climate. Dust storms from the atmospheric transport of desert soil dust that has been lifted and carried by the winds - often over significant distances - have become an increasingly important emerging air quality issue for many populations. Recent studies have shown that the dust storms can cause significant health impacts from the dust itself as well as the accompanying pollutants, pesticides, metals, salt, plant debris, and other inorganic and organic materials, including viable microorganisms (bacteria, viruses and fungi). For example, thousands of tons of Asian desert sediments, some containing pesticides and herbicides from farming regions, are commonly transported into the Arctic during dust storm events. These chemicals have been identified in animal and human tissues among Arctic indigenous populations. Millions of tons of airborne desert dust are being tracked by satellite imagery, which clearly shows the magnitude as well as the temporal and spatial variability of dust storms across the "dust belt" regions of North Africa, the Middle East, and China. Ths paper summarizes the most recent findings on the effects of airborne desert dust on human health as well as potential climate influences on dust and health.

  6. Dust, Climate, and Human Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2003-01-01

    Air pollution from both natural and anthropogenic causes is considered to be one of the most serious world-wide environment-related health problems, and is expected to become worse with changes in the global climate. Dust storms from the atmospheric transport of desert soil dust that has been lifted and carried by the winds - often over significant distances - have become an increasingly important emerging air quality issue for many populations. Recent studies have shown that the dust storms can cause significant health impacts from the dust itself as well as the accompanying pollutants, pesticides, metals, salt, plant debris, and other inorganic and organic materials, including viable microorganisms (bacteria, viruses and fungi). For example, thousands of tons of Asian desert sediments, some containing pesticides and herbicides from farming regions, are commonly transported into the Arctic during dust storm events. These chemicals have been identified in animal and human tissues among Arctic indigenous populations. Millions of tons of airborne desert dust are being tracked by satellite imagery, which clearly shows the magnitude as well as the temporal and spatial variability of dust storms across the "dust belt" regions of North Africa, the Middle East, and China. This paper summarizes the most recent findings on the effects of airborne desert dust on human health as well as potential climate influences on dust and health.

  7. Dust, Climate, and Human Health

    NASA Astrophysics Data System (ADS)

    Maynard, N. G.

    2003-12-01

    Air pollution from both natural and anthropogenic causes is considered to be one of the most serious world-wide environment-related health problems, and is expected to become worse with changes in the global climate. Dust storms from the atmospheric transport of desert soil dust that has been lifted and carried by the winds - often over significant distances - have become an increasingly important emerging air quality issue for many populations. Recent studies have shown that the dust storms can cause significant health impacts from the dust itself as well as the accompanying pollutants, pesticides, metals, salt, plant debris, and other inorganic and organic materials, including viable microorganisms (bacteria, viruses and fungi). For example, thousands of tons of Asian desert sediments, some containing pesticides and herbicides from farming regions, are commonly transported into the Arctic during dust storm events. These chemicals have been identified in animal and human tissues among Arctic indigenous populations. Millions of tons of airborne desert dust are being tracked by satellite imagery, which clearly shows the magnitude as well as the temporal and spatial variability of dust storms across the "dust belt" regions of North Africa, the Middle East, and China. This paper summarizes the most recent findings on the effects of airborne desert dust on human health as well as potential climate influences on dust and health

  8. Recovery of Atmospheric Water Vapor Total Column Abundance from Imaging Spectrometer Data Around 940 nm - Sensitivity Analysis and Application to Airborne Visible/Infrared Imaging Spectrometer (AVIRI

    NASA Technical Reports Server (NTRS)

    Carrere, V.; Conel, J. E.

    1993-01-01

    Twosimple techniques to retrieve path precipitable water fromthe Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) high spectral resolution radiance data (Continuum Interpolated Band Ratio, CIBR, and Narrow/Wide Ratio, N/W), using the 940 nm water absorption band, are compared.

  9. Investigation of the effect of atmospheric dust on the determination of total ozone from the earth's ultraviolet reflectivity measurements, 2

    NASA Technical Reports Server (NTRS)

    Dave, J. V.

    1976-01-01

    Results of a detailed analysis of the simulated measurements for the BUV (Nimbus-4) configuration are described by using a total-ozone estimation procedure. A set of recommendations are discussed for increasing the accuracy and confidence level of the total ozone values estimated from the measurements of the earth's ultraviolet reflectivity at five different wavelengths (BUV configuration). A tentative procedure is also considered for the estimation of total ozone from measurements of reflectivity at six different wavelengths specified in the SBUV/TOMS (Nimbus-G) configuration.

  10. Airborne Measurements of Coarse Mode Aerosol Composition and Abundance

    NASA Astrophysics Data System (ADS)

    Froyd, K. D.; Murphy, D. M.; Brock, C. A.; Ziemba, L. D.; Anderson, B. E.; Wilson, J. C.

    2015-12-01

    Coarse aerosol particles impact the earth's radiative balance by direct scattering and absorption of light and by promoting cloud formation. Modeling studies suggest that coarse mode mineral dust and sea salt aerosol are the dominant contributors to aerosol optical depth throughout much of the globe. Lab and field studies indicate that larger aerosol particles tend to be more efficient ice nuclei, and recent airborne measurements confirm the dominant role of mineral dust on cirrus cloud formation. However, our ability to simulate coarse mode particle abundance in large scale models is limited by a lack of validating measurements above the earth's surface. We present airborne measurements of coarse mode aerosol abundance and composition over several mid-latitude, sub-tropical, and tropical regions from the boundary layer to the stratosphere. In the free troposphere the coarse mode constitutes 10-50% of the total particulate mass over a wide range of environments. Above North America mineral dust typically dominates the coarse mode, but biomass burning particles and sea salt also contribute. In remote environments coarse mode aerosol mainly consists of internally mixed sulfate-organic particles. Both continental and marine convection can enhance coarse aerosol mass through direct lofting of primary particles and by secondary accumulation of aerosol material through cloud processing.

  11. Size distributions of mineral aerosols and dust emission flux observed over Horqin Sandy Land area in northern China

    NASA Astrophysics Data System (ADS)

    Li, X.; Zhang, H. S.

    2013-01-01

    Size distribution of mineral aerosols is of primary importance in determining their residence time in atmosphere, transport patterns, removal mechanisms as well as their effects on climate and human health. This study aims to obtain dust particle size distribution and size-resolved dust emission flux under different weather conditions over a sandy land area in northern China (Horqin Sandy Land, Inner Mongolia), using the observational data from Horqin sandstorm monitoring station in the spring of 2010 and 2012. Dust (PM20) mass concentration was measured by a 10-stage quartz crystal microbalance (QCM) cascade impactor. The statistical results indicate that finer dust particles (r ≤ 1.0 μm) take a large proportion of all PM20 concentration under clear-day conditions, while coarser dust particles (r ≥ 2.5 μm) concentration increased under dust-day conditions, with the peak occurring between 4-7 μm. The dust particle size distributions during the pre-dust-emission and dust-emission periods of a dust event on 7 April 2012 have similar features to the statistical results. During the dust event, the magnitude of dust emission flux of all sizes increased about one or two orders (0.1-10 μg m-2 s-1) as u* increase from 0.54 to 1.29 m s-1. The maximum total F value was about 43.0 μg m-2 s-1 and the maximum size-resolved F(Ddi) is 12.3 μg m-2 s-1 in 0.3-0.45 μm size bin when u* is 1.29 m s-1. Dust advection has effects on airborne dust size distribution, making the proportion of dust particles of different sizes more uniform, as observed in a non-local dust event on 19 April 2012.

  12. Airborne Transparencies.

    ERIC Educational Resources Information Center

    Horne, Lois Thommason

    1984-01-01

    Starting from a science project on flight, art students discussed and investigated various means of moving in space. Then they made acetate illustrations which could be used as transparencies. The projection phenomenon made the illustrations look airborne. (CS)

  13. Dynamic Dust Accumulation and Dust Removal Observed on the Mars Exploration Rover Magnets

    NASA Technical Reports Server (NTRS)

    Bertelsen, P.; Bell, J. F., III; Goetz, W.; Gunnlaugsson, H. P.; Herkenhoff, K. E.; Hviid, S. F.; Johnson, J. R.; Kinch, K. M.; Knudsen, J. M.; Madsen, M. B.

    2005-01-01

    The Mars Exploration Rovers each carry a set of Magnetic Properties Experiments designed to investigate the properties of the airborne dust in the Martian atmosphere. It is a preferred interpretation of previous experiments that the airborne dust in the Martian atmosphere is primarily composed by composite silicate particles containing one or more highly magnetic minerals as a minor constituent. The ultimate goal of the magnetic properties experiments on the Mars Exploration Rover mission is to provide some information/ constraints on whether the dust is formed by volcanic, meteoritic, aqueous, or other processes. The first problem is to identify the magnetic mineral(s) in the airborne dust on Mars. While the overall results of the magnetic properties experiments are presented in, this abstract will focus on dust deposition and dust removal on some of the magnets.

  14. Investigation of the effect of atmospheric dust on the determination of total ozone from the earth's ultraviolet reflectivity measurements

    NASA Technical Reports Server (NTRS)

    Dave, J. V.

    1977-01-01

    Results are presented on the effect of atmospheric aerosols on the value of total ozone, in an atmospheric column of the terrestrial atmosphere, estimated from the simulated measurements of the ultraviolet radiation back scattered by the earth atmosphere models. Simulated measurements were used in five (configuration of the BUV experiment of Nimbus-4 satellite), and in six (configuration of the TOMS section of the SBUV/TOMS experiment on Nimbus-G) narrow spectral regions in the ultraviolet part of the spectrum.

  15. Conveyor dust control

    SciTech Connect

    Goldbeck, L.

    1999-11-01

    In the past, three different approaches have been used to control dust arising at conveyor load zones. They are: Dust Containment consists of those mechanical systems employed to keep material inside the transfer point with the main material body. Dust Suppression systems increase the mass of suspended dust particles, allowing them to fall from the air stream. Dust Collection is the mechanical capture and return of airborne material after it becomes airborne from the main material body. Previously, these three approaches have always been seen as separate entities. They were offered by separate organizations competing in the marketplace. The three technologies vied for their individual piece of the rock, at the expense of the other technologies (and often at the expense of overall success). There have been considerable amounts of I`m better selling, as well as finger pointing at the other systems when problems arose. Each system claimed its own technology was the best, providing the most effective, most cost-efficient, most maintenance-free solution to fugitive material.

  16. Exposure to wood dust and heavy metals in workers using CCA pressure-treated wood.

    PubMed

    Decker, Paul; Cohen, Beverly; Butala, John H; Gordon, Terry

    2002-01-01

    Chemical pesticide treatment enables relatively nonresistant woods to be used in outdoor construction projects. The most prevalent procedure used to protect these woods is pressure treatment with chromium, copper, and arsenic (CCA). This pilot study examined the airborne concentration and particle size distribution of wood particles, chromium, copper, and arsenic at both outdoor (measured over the whole work day) and indoor (measured during the performance of specific tasks) work sites. At the outdoor residential deck construction sites, the arithmetic mean total dust concentration, measured using personal filter cassette samplers, was 0.57 mg/m3. The mass median aerodynamic diameter (da) of the outdoor wood dust was greater than 20 microm. Indoor wood dust concentrations were significantly greater than those measured outdoor and were job category-dependent. The highest mean breathing zone dust concentration, 49.0 mg/m3, was measured at the indoor sanding operation. Personal impactor sampling demonstrated that the mean total airborne concentration of arsenic, but not chromium or copper, was consistently above recommended occupational exposure levels at the indoor work site, and occasionally at the outdoor work sites. At the indoor sanding operation, the mean total chromium, copper, and arsenic concentrations were 345, 170, and 342 microg/m3, respectively. Thus, significant exposure to airborne heavy metals can occur as a result of indoor and outdoor exposure to CCA pressure-treated wood dust. Therefore, current standards for wood dust may not adequately protect workers from the heavy metals commonly used in CCA pressure-treated wood.

  17. Resuspension of particulate matter and PAHs from street dust

    NASA Astrophysics Data System (ADS)

    Martuzevicius, D.; Kliucininkas, L.; Prasauskas, T.; Krugly, E.; Kauneliene, V.; Strandberg, B.

    2011-01-01

    Winter street sanding activities in northern countries are often associated with elevated pollution by particulate matter. There are indications that street dust may act as a source of particle-bound PAHs. However, very few studies have addressed the resuspension potential of PAHs from street dust. The purpose of this study was to quantitatively assess emissions of particulate matter and PAHs from street dust by laboratory-scale simulation of particle resuspension. Increases in air velocity caused proportional increases in air-borne PM 2.5, PM 10 and PM total concentrations, while the concentrations of PAHs associated with resuspended particles did not show clear statistically significant dependence on air velocity. A substantial difference in particle and PAH resuspension was observed between dust from the city center street and dust from the connecting street. The data obtained in the present study indicate that street dust may be a significant source not only of PMs but also of particle-bound PAHs in ambient air.

  18. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  19. Improve dust capture on your surface drill

    SciTech Connect

    Page, S.J.; Listak, J.M.; Reed, R.

    2008-09-15

    Researchers have developed a model to describe airborne respirable dust (ARD) generation on surface coal mine drills. By measuring a few basic parameters and using a graph, a drill operator or engineer can estimate the relative severity of drill dust emissions as well as how much of a reduction in ARD can be obtained by changing any given parameter. 4 refs., 2 figs.

  20. Impacts of Asian dust events on atmospheric fungal communities

    NASA Astrophysics Data System (ADS)

    Jeon, Eun Mi; Kim, Yong Pyo; Jeong, Kweon; Kim, Ik Soo; Eom, Suk Won; Choi, Young Zoo; Ka, Jong-Ok

    2013-12-01

    The composition of atmospheric fungi in Seoul during Asian dust events were assessed by culturing and by molecular methods such as mold specific quantitative PCR (MSQPCR) and internal transcribed spacer cloning (ITS cloning). Culturable fungal concentrations in the air were monitored from May 2008 to July 2011 and 3 pairs of ITS clone libraries, one during Asian dust (AD) day and the other during the adjacent non Asian dust (NAD) day for each pair, were constructed after direct DNA extraction from total suspended particles (TSP) samples. In addition, six aeroallergenic fungi in the atmosphere were also assessed by MSQPCR from October, 2009 to November, 2011. The levels of the airborne culturable fungal concentrations during AD days was significantly higher than that of NAD days (P < 0.005). In addition, the correlation of culturable fungal concentrations with particulate matters equal to or less than 10 μm in aerodynamic diameter (PM10) concentrations was observed to be high (0.775) for the AD days while correlation coefficients of PM10 as well as other particulate parameters with airborne fungal concentrations were significantly negative for the NAD days during intensive monitoring periods (May to June, 2008). It was found that during AD days several airborne allergenic fungal levels measured with MSQPCR increased up to 5-12 times depending on the species. Comparison of AD vs. NAD clones showed significant differences (P < 0.05) in all three cases using libshuff. In addition, high proportions of uncultured soil fungus isolated from semi-arid regions were observed only in AD clone libraries. Thus, it was concluded that AD impacts not only airborne fungal concentrations but also fungal communities.

  1. Reducing Coal Dust With Water Jets

    NASA Technical Reports Server (NTRS)

    Gangal, M. D.; Lewis, E. V.

    1985-01-01

    Jets also cool and clean cutting equipment. Modular pick-and-bucket miner suffers from disadvantage: Creates large quantities of potentially explosive coal dust. Dust clogs drive chain and other parts and must be removed by hand. Picks and bucket lips become overheated by friction and be resharpened or replaced frequently. Addition of oscillating and rotating water jets to pick-and-bucket machine keeps down dust, cools cutting edges, and flushes machine. Rotating jets wash dust away from drive chain. Oscillating jets cool cutting surfaces. Both types of jet wet airborne coal dust; it precipitates.

  2. Airborne Imagery

    NASA Technical Reports Server (NTRS)

    1983-01-01

    ATM (Airborne Thematic Mapper) was developed for NSTL (National Space Technology Companies) by Daedalus Company. It offers expanded capabilities for timely, accurate and cost effective identification of areas with prospecting potential. A related system is TIMS, Thermal Infrared Multispectral Scanner. Originating from Landsat 4, it is also used for agricultural studies, etc.

  3. Structure, inter-annual recurrence, and global-scale connectivity of airborne microbial communities.

    PubMed

    Barberán, Albert; Henley, Jessica; Fierer, Noah; Casamayor, Emilio O

    2014-07-15

    Dust coming from the large deserts on Earth, such as the Sahara, can travel long distances and be dispersed over thousands of square kilometers. Remote dust deposition rates are increasing as a consequence of global change and may represent a mechanism for intercontinental microbial dispersal. Remote oligotrophic alpine lakes are particularly sensitive to dust inputs and can serve as sentinels of airborne microbial transport and the ecological consequences of accelerated intercontinental microbial migration. In this study, we applied high-throughput sequencing techniques (16S rRNA amplicon pyrosequencing) to characterize the microbial communities of atmospheric deposition collected in the Central Pyrenees (NE Spain) along three years. Additionally, bacteria from soils in Mauritania and from the air-water interface of high altitude Pyrenean lakes were also examined. Communities in aerosol deposition varied in time with a strong seasonal component of interannual similarity. Communities from the same season tended to resemble more each other than those from different seasons. Samples from disparate dates, in turn, slightly tended to have more dissimilar microbial assemblages (i.e., temporal distance decay), overall suggesting that atmospheric deposition may influence sink habitats in a temporally predictable manner. The three habitats examined (soil, deposition, and air-water interface) harbored distinct microbial communities, although airborne samples collected in the Pyrenees during Saharan dust outbreaks were closer to Mauritian soil samples than those collected during no Saharan dust episodes. The three habitats shared c.a. 1.4% of the total number of microbial sequences in the dataset. Such successful immigrants were spread in different bacterial classes. Overall, this study suggests that local and regional features may generate global trends in the dynamics and distribution of airborne microbial assemblages, and that the diversity of viable cells in the high

  4. Saharan Dust over Senegal

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Airborne African dust regularly reaches northeastern South America and the Caribbean. Westward dust transport from the Sahara across the central Atlantic has been a common occurrence this spring, with major events visible in both satellite images and photographs. Cap Vert, the westernmost point of Senegal, is dimly visible beneath the dust mass (center); the Arquipelago dos Bijagos in Guinea Bissau lies opposite the mouth of the sediment-laden Rio Corubal. This photo (ISS004-E-12080) was taken by the crew of the International Space Station on May 18, 2002, using a digital camera with a 35-mm lens. Image provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  5. Living on the Lunar Surface: Determining the Health Effects of Exposure to Respirable Lunar Dusts

    NASA Astrophysics Data System (ADS)

    Khan-Mayberry, N. N.

    2008-07-01

    NASA formed the Lunar Airborne Dust Toxicity Advisory Group (LADTAG) to determine the toxicological effects of lunar dust. This interdisciplinary group is comprised of leading experts in space toxicology, lunar geology, space medicine and biomedical research.

  6. Hebes Chasma Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches are located in Hebes Chasma.

    Image information: VIS instrument. Latitude -1.4, Longitude 286.6 East (73.4 West). 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Airborne asbestos in buildings.

    PubMed

    Lee, R J; Van Orden, D R

    2008-03-01

    The concentration of airborne asbestos in buildings nationwide is reported in this study. A total of 3978 indoor samples from 752 buildings, representing nearly 32 man-years of sampling, have been analyzed by transmission electron microscopy. The buildings that were surveyed were the subject of litigation related to suits alleging the general building occupants were exposed to a potential health hazard as a result the presence of asbestos-containing materials (ACM). The average concentration of all airborne asbestos structures was 0.01structures/ml (s/ml) and the average concentration of airborne asbestos > or = 5microm long was 0.00012fibers/ml (f/ml). For all samples, 99.9% of the samples were <0.01 f/ml for fibers longer than 5microm; no building averaged above 0.004f/ml for fibers longer than 5microm. No asbestos was detected in 27% of the buildings and in 90% of the buildings no asbestos was detected that would have been seen optically (> or = 5microm long and > or = 0.25microm wide). Background outdoor concentrations have been reported at 0.0003f/ml > or = 5microm. These results indicate that in-place ACM does not result in elevated airborne asbestos in building atmospheres approaching regulatory levels and that it does not result in a significantly increased risk to building occupants.

  8. Simulation of the Radiative Impact of High Dust Loading during a Dust Storm in March 2012

    NASA Astrophysics Data System (ADS)

    Puthan Purakkal, J.; Kalenderski, S.; Stenchikov, G. L.

    2013-12-01

    We investigated a severe dust storm that developed over vast areas of the Middle East on 18-19 March 2012 and affected Saudi Arabia, Sudan, Egypt, Jordan, United Arab Emirates, Bahrain, Qatar, Oman, Kuwait, Iraq, Iran, Israel, and Pakistan. The visible aerosol optical depth recorded by the AERONET station on the KAUST campus (22.30o N 39.10o E) during the storm reached 4.5, exceeding the average level by an order of magnitude. To quantify the effects of the dust on atmospheric radiation and dynamics, we analyzed available ground-based and satellite observations and conducted numerical simulations using a fully coupled meteorology-chemistry-aerosol model (WRF-Chem). The model was able to reproduce the spatial and temporal patterns of the aerosol optical depths (AOD) observed by airborne and ground-based instruments. The major dust sources included river valleys of lower Tigris and Euphrates in Iraq, desert areas in Kuwait, Iran, United Arab Emirates, central Arabia including Rub' al Khali, An Nafud, and Ad Dahna, as well as the Red Sea coast of the Arabian Peninsula. The total amount of dust generated across the entire domain during the period of the simulation reached 93.76 Mt; 73.04 Mt of dust was deposited within the domain; 6.56 Mt of dust sunk in the adjacent sea waters, including 1.20 Mt that sedimented into the Red Sea. The model predicted a well-mixed boundary layer expanding up to 3.5 km in the afternoon. Some dust plumes were seen above the Planetary Boundary layer. In our simulations, mineral dust heated the lower atmosphere with a maximum heating rate of 9 K/day. The dust storm reduced the downwelling shortwave radiation at the surface to a maximum daily average value of -134 Wm-2 and the daily averaged long-wave forcing at the surface increased to 43 Wm-2. The combined short-wave cooling and long-wave warming effects of dust aerosols caused significant reduction in the surface air temperature -6.7 K at 1200 UTC on 19 March 2013.

  9. Source Identification Of Airborne Antimony On The Basis Of The Field Monitoring And The Source Profiling

    NASA Astrophysics Data System (ADS)

    Iijima, A.; Sato, K.; Fujitani, Y.; Fujimori, E.; Tanabe, K.; Ohara, T.; Shimoda, M.; Kozawa, K.; Furuta, N.

    2008-12-01

    mechanical abrasion of automotive brake pads. The peak of the mass-based particle size distribution of brake abrasion dust was found in a diameter of 2-3 μm. From the morphological viewpoints, shape of brake abrasion dust particle was typically edge- shaped, and high concentrated Sb and sulfur were simultaneously detected in a brake abrasion dust particle because Sb2S3 is used as a solid lubricant for automotive brake pad. Indeed, at the roadside site, total concentration of airborne Sb was twice as much as that observed at residential site. Moreover, the most concentrated Sb was found in a diameter of 2.1-3.6 μm for the roadside APM. Furthermore, in the collected particles with this size range, we found a number of particles of which morphological profiles were similar to those of the brake abrasion dust. Consequently, an automotive brake abrasion dust is expected as the predominant source of airborne Sb in the roadside atmosphere.

  10. Mineralogical analysis of attic dust samples for contamination source identification in an industrial area, Ajka, Hungary

    NASA Astrophysics Data System (ADS)

    Völgyesi, Péter; Jordan, Gyozo; Gosar, Mateja; Szabó, Csaba; Miler, Miloš; Kónya, Péter; Bartha, András

    2013-04-01

    The post-war centrally directed economy forced massive heavy industry in Hungary, producing huge amount of wastes and pollution. Long-term airborne emissions from mining, coal-fired power plants and alumina industry have left the legacy of widely distributed contamination around industrial areas and nearby settlements in the Ajka region. Recent research suggests that significant amount of airborne pollutants, deposited in the urban environment, can be efficiently studied by attic dust analysis. The sampling strategy followed a grid-based stratified random sampling design and 30 samples were collected in 27 houses (at least 30 years old) in a 8x8 grid of the 64 km2 project area. In order to determine the pollution potential of attic dust samples, geochemical and mineralogical analyses were performed. The main aim of the mineralogical analyses was to study the phase composition of the dust particles and to identify potential anthropogenic sources. The total concentrations of the toxic elements (As, Pb, Cd, Cu, Ni and Zn) were measured with ICP-OES and mercury content was analyzed with atomic absorption spectrometry. Phase analyses of the samples were carried out by the means of scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) and X-Ray diffraction (XRD) methods. Laser particle size analyzer was used to measure the grain size of attic dust particles. Results showed that the studied attic dust in the Ajka urban area was contaminated mostly by Hg, Pb and Zn with contents ranging between 0.1-2 ppm, 42.5-881 ppm and 90.2-954 ppm, respectively. However, the study of extreme data values (statistical outliers) has shown that at certain points airborne dust can be extremely contaminated also with Cd (0.4-11.7 ppm). The size of the attic dust particles varied between 0.2 and 113 µm. Based on the SEM/EDS and XRD analysis, the most frequently identified mineralogical phases were quartz, calcite, gypsum and Fe- and Al-bearing phases. Fe

  11. Dust storm off Western Africa

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The impacts of Saharan dust storms reach far beyond Africa. Wind-swept deserts spill airborne dust particles out over the Atlantic Ocean where they can enter trade winds bound for Central and North America and the Caribbean. This Moderate Resolution Imaging Spectroradiometer (MODIS) image shows a dust storm casting an opaque cloud of cloud across the Canary Islands and the Atlantic Ocean west of Africa on June 30, 2002. In general it takes between 5 and 7 days for such an event to cross the Atlantic. The dust has been shown to introduce foreign bacteria and fungi that have damaged reef ecosystems and have even been hypothesized as a cause of increasing occurrences of respiratory complaints in places like Florida, where the amount of Saharan dust reaching the state has been increasing over the past 25 years.

  12. Imaging-based dust sensors: equipment and methods

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Greco, Sonia

    2004-05-01

    Dust detection and control in real time, represent one of the most challenging problem in all those environments where fine and ultrafine airborne particulate solids products are present. The presence of such products can be linked to several factors, often directly related and influenced by the working-production actions performed. Independently from the causes generating dust, airborne contaminants are an occupational problem of increasing interest as they are related to a wide number of diseases. In particular, airborne dusts are well known to be associated with several classical occupational lung diseases, such as the pneumoconiosis, especially at high levels of exposure. Nowadays there is also an increasing interest in other dust related diseases, from the most serious as cancer and asthma, to those related with allergies or irritation and other illnesses, also occurring at lower levels of exposure. Among the different critical factors influencing health risk for airborne dust exposure, mainly four have to be considered, that is: i) nature of the dust resulting from working in terms of presence of specific poisoning material, i.e. free silica, and morphological and morphometrical attributes of particulates constituting airborne dust; ii) size of the particles, iii) duration of exposure time and, finally, iv) airborne dust concentration in the breathing zone where the worker performs his activity. A correct dust detection is not easy, especially if some of the previous mentioned factors, have to be detected and quantified in real time in order to define specific "on-line" control actions aimed to reduce the level of the exposure to dust of the workers, as for example: i) modification of aspirating devices operating condition, change of filtering cleaning sequence, etc. . The more severe are the environmental conditions, in terms of dust presence (in quantity and quality) more difficult is to utilize efficient sampling devices. Detection devices, in fact, tend

  13. Exposure to inhalable flour dust in Canadian flour mills.

    PubMed

    Karpinski, Eva A

    2003-12-01

    In 1999, the American Conference of Governmental Industrial Hygienists (ACGIH(R)) proposed a Threshold Limit Value (TLV(R)) of 0.5 mg/m(3) for flour dust with a sensitization notation. The Labour Program of the Department of Human Resources Development Canada (HRDC), following notice of the intention to set a TLV, conducted a study of the levels of exposure to flour dust in flour mills across Canada to verify existing conditions, as well as to decide whether to adopt the proposed TLV or reference some other value. As part of the study, a relationship between flour dust concentrations obtained by using Institute of Occupational Medicine (IOM) samplers and closed-face 37-mm cassettes was examined and the literature on the health effects of exposure to flour dust was reviewed. A total of 104 millers, packers, sweepers, bakery mix operators, and others (mixed tasks) from 14 flour mills were sampled over an 8-hour work shift using IOM samplers. The results indicate that 101 employees (97.1%) were exposed to levels exceeding 0.5 mg/m(3), 66 employees (67.3%) to levels exceeding 5 mg/m(3), and 44 employees (42.3%) to levels exceeding 10 mg/m(3). For comparison purposes, flour dust measurements were also taken in a highly automated flour mill using state-of-the-art technology. The results suggest that even with the most up-to-date technology and proper cleaning operations in place, the flour milling industry may not be able to reduce the flour dust levels to below the TLV of 0.5 mg/m(3). According to the measurements of inhalable and total dust concentrations, the IOM sampler appears to be a more efficient collector of inhalable airborne particles up to 100 microm than the closed-face 37-mm cassette.

  14. Dust exposure in Finnish foundries.

    PubMed

    Siltanen, E; Koponen, M; Kokko, A; Engström, B; Reponen, J

    1976-01-01

    Dust measurements were made in 51 iron, 9 steel, and 8 nonferrous foundries, at which 4,316 foundrymen were working. The sampling lasted at least two entire shifts or work days continuously during various operations in each foundry. The dust samples were collected at fixed sites or in the breathing zones of the workers. The mass concentration was determined by weighing and the respirable dust fraction was separated by liquid sedimentation. The free silica content was determined by X-ray diffraction. In the study a total of 3,188 samples were collected in the foundries and 6,505 determinations were made in the laboratory. The results indicated a definite difference in the dust exposure during various operations. The highest dust exposures were found during furnace, cupola, and pouring ladle repair. During cleaning work, sand mixing, and shake-out operations excessive silica dust concentrations were also measured. The lowest dust concentrations were measured during melting and pouring operations. Moderate dust concentrations were measured during coremaking and molding operations. The results obtained during the same operations of iron and steel foundries were similar. The distribution of the workers into various exposure categories, the content of respirable dust and quartz, the correlation between respirable dust and total dust, and the correlation between respirable silica and total dust concentrations are discussed. Observations concerning dust suppression and control methods are briefly considered.

  15. Direct Characterization of Airborne Particles Associated with Arsenic-rich Mine Tailings: Particle Size Mineralogy and Texture

    SciTech Connect

    M Corriveau; H Jamieson; M Parsons; J Campbell; A Lanzirotti

    2011-12-31

    Windblown and vehicle-raised dust from unvegetated mine tailings can be a human health risk. Airborne particles from As-rich abandoned Au mine tailings from Nova Scotia, Canada have been characterized in terms of particle size, As concentration, As oxidation state, mineral species and texture. Samples were collected in seven aerodynamically fractionated size ranges (0.5-16 {micro}m) using a cascade impactor deployed at three tailings fields. All three sites are used for recreational activities and off-road vehicles were racing on the tailings at two mines during sample collection. Total concentrations of As in the <8 {micro}m fraction varied from 65 to 1040 ng/m{sup 3} of air as measured by proton-induced X-ray emission (PIXE) analysis. The same samples were analysed by synchrotron-based microfocused X-ray absorption near-edge spectroscopy ({micro}XANES) and X-ray diffraction ({micro}XRD) and found to contain multiple As-bearing mineral species, including Fe-As weathering products. The As species present in the dust were similar to those observed in the near-surface tailings. The action of vehicles on the tailings surface may disaggregate material cemented with Fe arsenate and contribute additional fine-grained As-rich particles to airborne dust. Results from this study can be used to help assess the potential human health risks associated with exposure to airborne particles from mine tailings.

  16. Airborne exposures and risk of gastric cancer: a prospective cohort study.

    PubMed

    Sjödahl, Krister; Jansson, Catarina; Bergdahl, Ingvar A; Adami, Johanna; Boffetta, Paolo; Lagergren, Jesper

    2007-05-01

    There is an unexplained male predominance among patients with gastric cancer, and many carcinogens are found in male-dominated dusty occupations. However, the relation between occupational exposures and risk of gastric cancer remains unclear. To investigate whether airborne occupational exposures might influence the risk of noncardia gastric cancer, we used a large, prospective cohort study of male Swedish construction workers. These workers were, during the period 1971-1993, regularly invited to health examinations by a nationwide occupational health service organization. Data on job titles and other variables were collected through self-administered questionnaires and forms completed by the health organization's staff. Industrial hygienists assessed 12 specific airborne occupational exposures for 200 job titles. Gastric cancer, death or emigration occurring during follow-up in 1971-2002 were identified by linkage to the Swedish registers of Cancer, Causes of Death and Total Population, respectively. Incidence rate ratios (IRR) and 95% confidence intervals (CI), adjusted for attained age, tobacco smoking, calendar period and body mass, were derived from Cox regression. Among 256,357 cohort members, contributing 5,378,012 person-years at risk, 948 noncardia gastric cancers were identified. Increased risk of this tumor was found among workers exposed to cement dust (IRR 1.5 [95% CI 1.1-2.1]), quartz dust (IRR 1.3 [95% CI 1.0-1.7]) and diesel exhaust (IRR 1.4 [95% CI 1.1-1.9]). Dose-response relations were observed for these exposures. No consistent positive associations were found regarding exposure to asbestos, asphalt fumes, concrete dust, epoxy resins, isocyanates, metal fumes, mineral fibers, organic solvents or wood dust. In conclusion, this study provides some support to the hypothesis that specific airborne exposures increase the risk of noncardia gastric cancer. PMID:17266028

  17. Airborne exposures and risk of gastric cancer: a prospective cohort study.

    PubMed

    Sjödahl, Krister; Jansson, Catarina; Bergdahl, Ingvar A; Adami, Johanna; Boffetta, Paolo; Lagergren, Jesper

    2007-05-01

    There is an unexplained male predominance among patients with gastric cancer, and many carcinogens are found in male-dominated dusty occupations. However, the relation between occupational exposures and risk of gastric cancer remains unclear. To investigate whether airborne occupational exposures might influence the risk of noncardia gastric cancer, we used a large, prospective cohort study of male Swedish construction workers. These workers were, during the period 1971-1993, regularly invited to health examinations by a nationwide occupational health service organization. Data on job titles and other variables were collected through self-administered questionnaires and forms completed by the health organization's staff. Industrial hygienists assessed 12 specific airborne occupational exposures for 200 job titles. Gastric cancer, death or emigration occurring during follow-up in 1971-2002 were identified by linkage to the Swedish registers of Cancer, Causes of Death and Total Population, respectively. Incidence rate ratios (IRR) and 95% confidence intervals (CI), adjusted for attained age, tobacco smoking, calendar period and body mass, were derived from Cox regression. Among 256,357 cohort members, contributing 5,378,012 person-years at risk, 948 noncardia gastric cancers were identified. Increased risk of this tumor was found among workers exposed to cement dust (IRR 1.5 [95% CI 1.1-2.1]), quartz dust (IRR 1.3 [95% CI 1.0-1.7]) and diesel exhaust (IRR 1.4 [95% CI 1.1-1.9]). Dose-response relations were observed for these exposures. No consistent positive associations were found regarding exposure to asbestos, asphalt fumes, concrete dust, epoxy resins, isocyanates, metal fumes, mineral fibers, organic solvents or wood dust. In conclusion, this study provides some support to the hypothesis that specific airborne exposures increase the risk of noncardia gastric cancer.

  18. Long-range-transported Saharan dust in the Caribbean - an electron microscopy perspective of aerosol composition and modification

    NASA Astrophysics Data System (ADS)

    Kandler, Konrad; Hartmann, Markus; Ebert, Martin; Weinbruch, Stephan; Weinzierl, Bernadett; Walser, Adrian; Sauer, Daniel; Wadinga Fomba, Khanneh

    2015-04-01

    From June to July in 2013, the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) was performed in the Caribbean. Airborne aerosol sampling was performed onboard the DLR Falcon aircraft in altitudes between 300 m and 5500 m. Ground-based samples were collected at Ragged Point (Barbados, 13.165 °N, 59.432 °W) and at the Cape Verde Atmospheric Observatory (Sao Vicente, 16.864 °N, 24.868 °W). Different types of impactors and sedimentation samplers were used to collect particles between 0.1 µm and 4 µm (airborne) and between 0.1 µm and 100 µm (ground-based). Particles were analyzed by scanning electron microscopy with attached energy-dispersive X-ray analysis, yielding information on particle size, particle shape and chemical composition for elements heavier than nitrogen. A particle size correction was applied to the chemical data to yield better quantification. A total of approximately 100,000 particles were analyzed. For particles larger than 0.7 µm, the aerosol in the Caribbean during the campaign was a mixture of mineral dust, sea-salt at different aging states, and sulfate. Inside the Saharan dust plume - outside the marine boundary layer (MBL) - the aerosol is absolutely dominated by mineral dust. Inside the upper MBL, sea-salt exists as minor component in the aerosol for particles smaller than 2 µm in diameter, larger ones are practically dust only. When crossing the Soufriere Hills volcano plume with the aircraft, an extremely high abundance of small sulfate particles could be observed. At Ragged Point, in contrast to the airborne measurements, aerosol is frequently dominated by sea-salt particles. Dust relative abundance at Ragged Point has a maximum between 5 µm and 10 µm particles diameter; at larger sizes, sea-salt again prevails due to the sea-spray influence. A significant number of dust particles larger than 20 µm was encountered. The dust component in the Caribbean - airborne as well as ground

  19. Desert Dust Properties, Modelling, and Monitoring

    NASA Technical Reports Server (NTRS)

    Kaskaoutis, Dimitris G.; Kahn, Ralph A.; Gupta, Pawan; Jayaraman, Achuthan; Bartzokas, Aristides

    2013-01-01

    This paper is just the three-page introduction to a Special Issue of Advances in Meteorology focusing on desert dust. It provides a paragraph each on 13 accepted papers, most relating to the used of satellite data to assess attributes or distribution of airborne desert dust. As guest Associate Editors of this issue, we organized the papers into a systematic whole, beginning with large-scale transport and seasonal behavior, then to regional dust transport, transport history, and climate impacts, first in the Mediterranean region, then India and central Asia, and finally focusing on transport model assessment and the use of lidar as a technique to constrain dust spatial-temporal distribution.

  20. Fungal types and concentrations from settled dust in normal residences.

    PubMed

    Hicks, Jeffrey B; Lu, Elizabeth T; De Guzman, Rachel; Weingart, Michal

    2005-10-01

    Analysis of settled dust collected from carpeting and furnishings is occasionally used by investigators to determine whether an environment contains unusual fungi. Little information is available concerning the types and concentrations of culturable fungi present on textile surfaces in normal residential settings not affected by unusual mold reservoirs, such as from fungal growth sites within the built environment. This study presents the results of the collection and analysis of surface dust from 26 residential environments that were prescreened by interview, physical inspection, and air sampling to limit the surface dust collection to structures in which there was no history of water intrusion, flooding, plumbing leaks, signs of mold growth, or evidence of unusual airborne fungal spore types or concentrations. In those structures found to have no history or indications of water events or unusual fungi, surface dust was vacuumed from prescribed horizontal areas on carpet and textile-covered furnishings. These samples were then subjected to fungal culture, from which viable colonies were enumerated and identified. Based on the study results, it does not appear reasonable that the frequently quoted total fungi concentration exceeding 10(5) CFU/g is definitive evidence that a residential surface is contaminated with unusual amounts of culturable fungi. Collocated samples collected from eight side-by-side carpets sections revealed poor reproducibility. While settled dust sampling may be appropriate for determining the fungal status of a localized area, or as a gross screening tool, using settled dust results alone to establish the presence of unusual fungal types or concentrations within a structure appears to be inappropriate, and using settled dust results with other investigative methods, such as visual observations and air sampling, requires cautious interpretation.

  1. SPM and fungal spores in the ambient air of west Korea during the Asian dust (Yellow sand) period

    NASA Astrophysics Data System (ADS)

    Yeo, Hwan-Goo; Kim, Jong-Ho

    The relationship between suspended particulate matter (SPM) and fungal spore was investigated in Seosan, a rural county along the west coast of Korea, in the spring of 2000. SPM concentrations in the air were 199.8 μg m -3 in the first Asian dust period (23-24 March), 249.4 μg m -3 in the second Asian dust period (7-9 April) and 98.9 μg m -3 in the non-Asian dust period (12-16 May), respectively. The majority of the total SPM were composed of coarse particles sized about 5 μm during the two Asian dust periods. Four molds genera grown from airborne fungal spores were identified in colonies grown from SPM samples taken during the Asian dust periods. All the genera found, Fusarium, Aspergillus, Penicillium and Basipetospora, are hyphomycetes in the division Deuteromycota. Morphologically, more diversified mycelia of hyphomycetes were grown on the sample captured from 1.1 to 2.1 μm sized SPM than on the other sized samples gathered in the dust periods. On the other hand, no mold was observed on the sample of 1.1-2.1 μm sized SPM in the non-Asian dust period. From these results, it seems evident that several sorts of fine sized fungal spores were suspended in the atmospheric environment of this study area during Asian dust periods.

  2. The Continuous Monitoring of Desert Dust using an Infrared-based Dust Detection and Retrieval Method

    NASA Technical Reports Server (NTRS)

    Duda, David P.; Minnis, Patrick; Trepte, Qing; Sun-Mack, Sunny

    2006-01-01

    Airborne dust and sand are significant aerosol sources that can impact the atmospheric and surface radiation budgets. Because airborne dust affects visibility and air quality, it is desirable to monitor the location and concentrations of this aerosol for transportation and public health. Although aerosol retrievals have been derived for many years using visible and near-infrared reflectance measurements from satellites, the detection and quantification of dust from these channels is problematic over bright surfaces, or when dust concentrations are large. In addition, aerosol retrievals from polar orbiting satellites lack the ability to monitor the progression and sources of dust storms. As a complement to current aerosol dust retrieval algorithms, multi-spectral thermal infrared (8-12 micron) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Meteosat-8 Spinning Enhanced Visible and Infrared Imager (SEVIRI) are used in the development of a prototype dust detection method and dust property retrieval that can monitor the progress of Saharan dust fields continuously, both night and day. The dust detection method is incorporated into the processing of CERES (Clouds and the Earth s Radiant Energy System) aerosol retrievals to produce dust property retrievals. Both MODIS (from Terra and Aqua) and SEVERI data are used to develop the method.

  3. 30 CFR 33.4 - Types of dust collectors for which certificates of approval may be granted.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions § 33.4 Types of dust collectors for which... specifically to prevent dissemination of airborne dust generated by drilling into coal-mine rock strata...

  4. 30 CFR 33.4 - Types of dust collectors for which certificates of approval may be granted.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions § 33.4 Types of dust collectors for which... specifically to prevent dissemination of airborne dust generated by drilling into coal-mine rock strata...

  5. 30 CFR 33.4 - Types of dust collectors for which certificates of approval may be granted.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions § 33.4 Types of dust collectors for which... specifically to prevent dissemination of airborne dust generated by drilling into coal-mine rock strata...

  6. 30 CFR 33.4 - Types of dust collectors for which certificates of approval may be granted.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions § 33.4 Types of dust collectors for which... specifically to prevent dissemination of airborne dust generated by drilling into coal-mine rock strata...

  7. Dust measurements in tokamaks (invited)

    SciTech Connect

    Rudakov, D. L.; Yu, J. H.; Boedo, J. A.; Hollmann, E. M.; Krasheninnikov, S. I.; Moyer, R. A.; Muller, S. H.; Pigarov, A. Yu.; Rosenberg, M.; Smirnov, R. D.; West, W. P.; Boivin, R. L.; Bray, B. D.; Brooks, N. H.; Hyatt, A. W.; Wong, C. P. C.; Roquemore, A. L.; Skinner, C. H.; Solomon, W. M.; Ratynskaia, S.

    2008-10-15

    Dust production and accumulation present potential safety and operational issues for the ITER. Dust diagnostics can be divided into two groups: diagnostics of dust on surfaces and diagnostics of dust in plasma. Diagnostics from both groups are employed in contemporary tokamaks; new diagnostics suitable for ITER are also being developed and tested. Dust accumulation in ITER is likely to occur in hidden areas, e.g., between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In the DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering is able to resolve particles between 0.16 and 1.6 {mu}m in diameter; using these data the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in two-dimension with a single camera or three-dimension using multiple cameras, but determination of particle size is challenging. In order to calibrate diagnostics and benchmark dust dynamics modeling, precharacterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase in carbon line (CI, CII, C{sub 2} dimer) and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

  8. Mechanical intervention for reducing dust concentration in traditional rice mills.

    PubMed

    Pranav, Prabhanjan K; Biswas, Mrinmoy

    2016-08-01

    A huge number of workers are employed in traditional rice mills where they are potentially exposed to dust. In this study a dust collection system was developed to capture the airborne dust in the rice mill. The feeding and sieving section of the mill was identified as major dust creating zone. The dust was captured by creating suitable air stream at feeding and sieving sections of the mill and collected in cyclone dust collector. The air stream was created by blower which was selected on the basis to get minimum air speed of 0.5 m/s in the working zones of workers. It was observed that the developed system is successfully collects the significant amount of dust and able to reduce the dust concentration up to 58%. Further, the respirable dust concentration reduced to below 5 mg/m(3) throughout the mill which is within the recommended limit of dust exposure.

  9. Mechanical intervention for reducing dust concentration in traditional rice mills

    PubMed Central

    PRANAV, Prabhanjan K.; BISWAS, Mrinmoy

    2016-01-01

    A huge number of workers are employed in traditional rice mills where they are potentially exposed to dust. In this study a dust collection system was developed to capture the airborne dust in the rice mill. The feeding and sieving section of the mill was identified as major dust creating zone. The dust was captured by creating suitable air stream at feeding and sieving sections of the mill and collected in cyclone dust collector. The air stream was created by blower which was selected on the basis to get minimum air speed of 0.5 m/s in the working zones of workers. It was observed that the developed system is successfully collects the significant amount of dust and able to reduce the dust concentration up to 58%. Further, the respirable dust concentration reduced to below 5 mg/m3 throughout the mill which is within the recommended limit of dust exposure. PMID:26829976

  10. Atmospheric dust and acid rain

    SciTech Connect

    Hedin, L.O.; Likens, G.E.

    1996-12-01

    Why is acid rain still an environmental problem in Europe and North America despite antipollution reforms? The answer really is blowing in the wind: atmospheric dust. These airborne particles can help neutralize the acids falling on forests, but dust levels are unusually low these days. In the air dust particles can neutralize acid rain. What can we do about acid rain and atmospheric dust? Suggestions range from the improbable to the feasible. One reasonable suggestion is to reduce emissions of acidic pollutants to levels that can be buffered by natural quantities of basic compounds in the atmosphere; such a goal would mean continued reductions in sulfur dioxide and nitrogen oxides, perhaps even greater than those prescribed in the 1990 Amendments to the Clean Air Act in the U.S. 5 figs.

  11. How much dust does Enceladus eject?

    NASA Astrophysics Data System (ADS)

    Kempf, Sascha; Srama, Ralf; Postberg, Frank; Schmidt, Juergen

    2016-07-01

    There is an ongoing argument how much dust per second the ice volcanoes on Saturn's ice moon eject. By adjusting their plume model to the dust flux measured by the Cassini dust detector during the close Enceladus flyby in 2005, Schmidt et al. (2008) obtained a total dust production rate in the plumes of about

  12. How much dust does Enceladus eject?

    NASA Astrophysics Data System (ADS)

    Kempf, Sascha; Southworth, Benjamin; Schmidt, Juergen; Srama, Ralf; Postberg, Frank

    2016-04-01

    There is an ongoing argument how much dust per second the ice volcanoes on Saturn's ice moon eject. By adjusting their plume model to the dust flux measured by the Cassini dust detector during the close Enceladus flyby in 2005, Schmidt et al. (2008) obtained a total dust production rate in the plumes of about

  13. Dust Detector

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.

    2001-01-01

    We discuss a recent sounding rocket experiment which found charged dust in the Earth's tropical mesosphere. The dust detector was designed to measure small (5000 - 10000 amu.) charged dust particles, most likely of meteoric origin. A 5 km thick layer of positively charged dust was found at an altitude of 90 km, in the vicinity of an observed sporadic sodium layer and sporadic E layer. The observed dust was positively charged in the bulk of the dust layer, but was negatively charged near the bottom.

  14. Long-Term Exposure to Silica Dust and Risk of Total and Cause-Specific Mortality in Chinese Workers: A Cohort Study

    PubMed Central

    Chen, Weihong; Liu, Yuewei; Wang, Haijiao; Hnizdo, Eva; Sun, Yi; Su, Liangping; Zhang, Xiaokang; Weng, Shaofan; Bochmann, Frank; Hearl, Frank J.; Chen, Jingqiong; Wu, Tangchun

    2012-01-01

    Background Human exposure to silica dust is very common in both working and living environments. However, the potential long-term health effects have not been well established across different exposure situations. Methods and Findings We studied 74,040 workers who worked at 29 metal mines and pottery factories in China for 1 y or more between January 1, 1960, and December 31, 1974, with follow-up until December 31, 2003 (median follow-up of 33 y). We estimated the cumulative silica dust exposure (CDE) for each worker by linking work history to a job–exposure matrix. We calculated standardized mortality ratios for underlying causes of death based on Chinese national mortality rates. Hazard ratios (HRs) for selected causes of death associated with CDE were estimated using the Cox proportional hazards model. The population attributable risks were estimated based on the prevalence of workers with silica dust exposure and HRs. The number of deaths attributable to silica dust exposure among Chinese workers was then calculated using the population attributable risk and the national mortality rate. We observed 19,516 deaths during 2,306,428 person-years of follow-up. Mortality from all causes was higher among workers exposed to silica dust than among non-exposed workers (993 versus 551 per 100,000 person-years). We observed significant positive exposure–response relationships between CDE (measured in milligrams/cubic meter–years, i.e., the sum of silica dust concentrations multiplied by the years of silica exposure) and mortality from all causes (HR 1.026, 95% confidence interval 1.023–1.029), respiratory diseases (1.069, 1.064–1.074), respiratory tuberculosis (1.065, 1.059–1.071), and cardiovascular disease (1.031, 1.025–1.036). Significantly elevated standardized mortality ratios were observed for all causes (1.06, 95% confidence interval 1.01–1.11), ischemic heart disease (1.65, 1.35–1.99), and pneumoconiosis (11.01, 7.67–14.95) among workers exposed

  15. The Lunar Environment: Determining the Health Effects of Exposure to Moon Dusts

    NASA Technical Reports Server (NTRS)

    Khan-Mayberry, Noreen

    2007-01-01

    The moon's surface is covered with a thin layer of fine, charged, reactive dust capable of layer of fine, charged, reactive dust capable of capable of entering habitats and vehicle compartments, where it can result in crewmember health problems. NASA formed the Lunar Airborne Dust Toxicity Advisory Group (LADTAG) to study the effects of exposure to Lunar Dust on human health. To date, no scientifically defensible toxicological studies have been performed on lunar dusts, specifically the determination of exposure limits and their affect on human health. The multi-center LADTAG (Lunar Airborne Dust Toxicology center LADTAG (Lunar Airborne Dust Toxicology Advisory Group) was formed in response to the Office of the Chief Health and Medical Office s (OCHMO) request to develop recommendations for defining risk (OCHMO) request to develop recommendations for defining risk defining risk criteria for human lunar dust exposure.

  16. Fingerprints in the Dust

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These MISR nadir-camera images of eastern China compare a somewhat hazy summer view from July 9, 2000 (left) with a spectacularly dusty spring view from April 7, 2001 (middle). The left-hand and middle images are from Terra orbits 2967 and 6928, respectively, and extend from central Manchuria near the top to portions of North and South Korea at the bottom. They are approximately 380 kilometers in width.

    Asia's desert areas are prone to soil erosion, as underground water tables are lowered by prolonged drought and by industrial and agricultural water use. Heavy winds blowing eastward across the arid and sparsely vegetated surfaces of Mongolia and western China pick up large quantities of yellow dust. Airborne dust clouds from the April 2001 storm blew across the Pacific Ocean and were carried as far as North America. The minerals transported in this manner are believed to provide nutrients for both oceanic and land ecosystems.

    According to the Xinhua News Agency in China, nearly one million tons of Gobi Desert dust blow into Beijing each year. During a similar dust outbreak last year, the Associated Press reported that the visibility in Beijing had been reduced the point where buildings were barely visible across city streets, and airline schedules were significantly disrupted. The dust has also been implicated in adverse health effects such as respiratory discomfort and eye irritation.

    The image on the right is a higher resolution MISR nadir-camera view of a portion of the April 7, 2001 dust cloud. It covers an area roughly 250 kilometers wide by 470 kilometers high. When viewed at full magnification, a number of atmospheric wave features, like the ridges and valleys of a fingerprint, are apparent. These are probably induced by surface topography, which can disturb the wind flow. A few small cumulus clouds are also visible, and are casting shadows on the thick lower dust layer.

    Analyses of images such as these constitute one phase of MISR

  17. Assessing inhalation exposure from airborne soil contaminants

    SciTech Connect

    Shinn, J.H.

    1998-04-01

    A method of estimation of inhalation exposure to airborne soil contaminants is presented. this method is derived from studies of airborne soil particles with radioactive tags. The concentration of contaminants in air (g/m{sup 3}) can be derived from the product of M, the suspended respirable dust mass concentration (g/m{sup 3}), S, the concentration of contaminant in the soil (g/g), and E{sub f}, an enhancement factor. Typical measurement methods and values of M, and E{sub f} are given along with highlights of experiences with this method.

  18. Deriving an atmospheric budget of total organic bromine using airborne in-situ measurements of brominated hydrocarbons in the Western Pacific during SHIVA

    NASA Astrophysics Data System (ADS)

    Sala, Stephan; Bönisch, Harald; Keber, Timo; Oram, Dave; Mills, Graham; Engel, Andreas

    2014-05-01

    Halogenated hydrocarbons play a major role as precursors for stratospheric ozone depletion. Released from the surface in the troposphere, the halocarbons reach the stratosphere via transport through the tropical tropopause layer. The contribution of the so called very short lived species (VSLS), having atmospheric lifetimes of less than half a year as sources gases for stratospheric bromine is significant. Source gas observations of long-lived bromine compounds and VSLS have so far not been able to explain the amount of bromine derived in the stratosphere from observations of BrO and modeling of the ratio of BrO to total bromine. Due to the short lifetimes and the high atmospheric variability, the representativeness of the available observations of VSLS source gases remains unclear, as these may vary with region and display seasonal variability. During the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) project an extensive dataset with over 700 samples of ambient air of all halogen species relevant for the atmospheric budget of total organic bromine (long lived halocarbons: H-1301, H-1211, H-1202, H-2402 and CH3Br, very short lived substances: CHBr3, CH2Br2, CHBr2Cl, CHBrCl2 and CHBrCl) have been collected from onboard the FALCON aircraft in the West Pacific region. Measurements were performed with the newly developed fully-automated in-situ instrument GHOST-MS (Gas chromatograph for the Observation of Tracers - coupled with a Mass Spectrometer) by the Goethe University of Frankfurt and with the onboard whole-air sampler WASP with subsequent ground based state-of-the-art GC/MS analysis by the University of East Anglia. We will present the datasets, compare these to other observation, derive a bromine budget for the West Pacific and derive an estimate of the amount of bromine from VSLS reaching the stratosphere. Using the mean mixing ratios in the upper troposphere of the halocarbons mentioned above, the calculated budget of the total organic

  19. Characterisation of airborne particles collected within and proximal to an opencast coalmine: South Wales, U.K.

    PubMed

    Jones, Tim; Blackmore, Pete; Leach, Matt; Bérubé, Kelly; Sexton, Keith; Richards, Roy

    2002-05-01

    Airborne particulate matter has been collected from within, and proximal to, an opencast coal mine in south Wales. This work forms the first part of a three year project to collect and characterise, then determine the possible toxicology of airborne particles in the south Wales region. High-resolution Field Emission SEM has shown that the coal mine dusts consist largely of an assemblage of mineral grains and vehicle exhaust particles. SEM-EDX has shown that the mineralogical make-up of the PM10 is complex, heterogeneous, and constantly changing. These findings are supported by analytical TEM-EPXMA. However, patterns can be determined relating the mineralogical composition of the airborne particles to collection locations and mining activities within the opencast. At our study opencast, Park Slip West, quartz, which has known health effects, never exceeded 30% of the total collection mass, and average levels were much less. Vehicle exhaust emissions was the largest source in terms of particle numbers. The mass of airborne particulate matter within the pit averaged approximately twice that of outside the pit: importantly however, this higher mass was due to relatively large, and non-respirable, mineral grains. This study demonstrates that the physicochemical and mineralogical characterisation of airborne particles from mining and quarrying is essential to quantify the respirable fraction, and to identify potentially hazardous components within the PM10. PMID:12004982

  20. Characterisation of airborne particles collected within and proximal to an opencast coalmine: South Wales, U.K.

    PubMed

    Jones, Tim; Blackmore, Pete; Leach, Matt; Bérubé, Kelly; Sexton, Keith; Richards, Roy

    2002-05-01

    Airborne particulate matter has been collected from within, and proximal to, an opencast coal mine in south Wales. This work forms the first part of a three year project to collect and characterise, then determine the possible toxicology of airborne particles in the south Wales region. High-resolution Field Emission SEM has shown that the coal mine dusts consist largely of an assemblage of mineral grains and vehicle exhaust particles. SEM-EDX has shown that the mineralogical make-up of the PM10 is complex, heterogeneous, and constantly changing. These findings are supported by analytical TEM-EPXMA. However, patterns can be determined relating the mineralogical composition of the airborne particles to collection locations and mining activities within the opencast. At our study opencast, Park Slip West, quartz, which has known health effects, never exceeded 30% of the total collection mass, and average levels were much less. Vehicle exhaust emissions was the largest source in terms of particle numbers. The mass of airborne particulate matter within the pit averaged approximately twice that of outside the pit: importantly however, this higher mass was due to relatively large, and non-respirable, mineral grains. This study demonstrates that the physicochemical and mineralogical characterisation of airborne particles from mining and quarrying is essential to quantify the respirable fraction, and to identify potentially hazardous components within the PM10.

  1. House dust in seven Danish offices

    NASA Astrophysics Data System (ADS)

    Mølhave, L.; Schneider, T.; Kjærgaard, S. K.; Larsen, L.; Norn, S.; Jørgensen, O.

    Floor dust from Danish offices was collected and analyzed. The dust was to be used in an exposure experiment. The dust was analyzed to show the composition of the dust which can be a source of airborne dust indoors. About 11 kg of dust from vacuum cleaner bags from seven Danish office buildings with about 1047 occupants (12 751 m 2) was processed according to a standardized procedure yielding 5.5 kg of processed bulk dust. The bulk dust contained 130.000-160.000 CFU g -1 microorganisms and 71.000-90.000 CFU g -1 microfungi. The content of culturable microfungi was 65-123 CFU 30 g -1 dust. The content of endotoxins ranged from 5.06-7.24 EU g -1 (1.45 ng g -1 to 1.01 ng g -1). Allergens (ng g -1) were from 147-159 (Mite), 395-746 (dog) and 103-330 (cat). The macro molecular organic compounds (the MOD-content) varied from 7.8-9.8 mg g -1. The threshold of release of histamine from basophil leukocytes provoked by the bulk dust was between 0.3 and 1.0 mg ml -1. The water content was 2% (WGT) and the organic fraction 33%. 6.5-5.9% (dry) was water soluble. The fiber content was less than 0.2-1.5% (WGT) and the desorbable VOCs was 176-319 μg g -1. Most of the VOC were aldehydes. However, softeners for plastic (DBP and DEHP) were present. The chemical composition includes human and animal skin fragments, paper fibers, glass wool, wood and textilefibers and inorganic and metal particles. The sizes ranged from 0.001-1 mm and the average specific density was 1.0 g m -3. The bulk dust was resuspended and injected into an exposure chamber. The airborne dust was sampled and analyzed to illustrate the exposures that can result from sedimented dirt and dust. The airborne dust resulting from the bulk dust reached concentrations ranging from 0.26-0.75 mg m -3 in average contained 300-170 CFU m -3. The organic fraction was from 55-70% and the water content about 2.5% (WGT). The content of the dust was compared to the similar results reported in the literature and its toxic potency is

  2. Tikhonravov Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches are located within a small crater inside Tikhonravov Crater.

    Image information: VIS instrument. Latitude 12.6, Longitude 37.1 East (322.9 West). 36 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches are located in a small canyon within a crater rim northeast of Naktong Vallis.

    Image information: VIS instrument. Latitude 7.1, Longitude 34.7 East (325.3 West). 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Lycus Sulci Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches occur on the slopes of Lycus Sulci near Olympus Mons.

    Image information: VIS instrument. Latitude 28.1, Longitude 220.4 East (139.6 West). 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    This region of dust avalanches is located in and around a crater to the west of yesterday's image.

    Image information: VIS instrument. Latitude 14.7, Longitude 32.7 East (327.3 West). 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. Modeling for Airborne Contamination

    SciTech Connect

    F.R. Faillace; Y. Yuan

    2000-08-31

    The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of sufficient thickness to simulate the drift

  7. Fennec dust forecast intercomparison over the Sahara in June 2011

    NASA Astrophysics Data System (ADS)

    Chaboureau, Jean-Pierre; Flamant, Cyrille; Dauhut, Thibaut; Kocha, Cécile; Lafore, Jean-Philippe; Lavaysse, Chistophe; Marnas, Fabien; Mokhtari, Mohamed; Pelon, Jacques; Reinares Martínez, Irene; Schepanski, Kerstin; Tulet, Pierre

    2016-06-01

    In the framework of the Fennec international programme, a field campaign was conducted in June 2011 over the western Sahara. It led to the first observational data set ever obtained that documents the dynamics, thermodynamics and composition of the Saharan atmospheric boundary layer (SABL) under the influence of the heat low. In support to the aircraft operation, four dust forecasts were run daily at low and high resolutions with convection-parameterizing and convection-permitting models, respectively. The unique airborne and ground-based data sets allowed the first ever intercomparison of dust forecasts over the western Sahara. At monthly scale, large aerosol optical depths (AODs) were forecast over the Sahara, a feature observed by satellite retrievals but with different magnitudes. The AOD intensity was correctly predicted by the high-resolution models, while it was underestimated by the low-resolution models. This was partly because of the generation of strong near-surface wind associated with thunderstorm-related density currents that could only be reproduced by models representing convection explicitly. Such models yield emissions mainly in the afternoon that dominate the total emission over the western fringes of the Adrar des Iforas and the Aïr Mountains in the high-resolution forecasts. Over the western Sahara, where the harmattan contributes up to 80 % of dust emission, all the models were successful in forecasting the deep well-mixed SABL. Some of them, however, missed the large near-surface dust concentration generated by density currents and low-level winds. This feature, observed repeatedly by the airborne lidar, was partly forecast by one high-resolution model only.

  8. Dust Storm

    Atmospheric Science Data Center

    2013-04-16

    article title:  Massive Dust Storm over Australia     View ... at JPL September 22, 2009 - Massive dust storm over Australia. project:  MISR category:  ... Sep 22, 2009 Images:  Dust Storm location:  Australia and New Zealand ...

  9. Deriving an atmospheric budget of total organic bromine using airborne in-situ measurements of brominated hydrocarbons in the Western Pacific during SHIVA.

    NASA Astrophysics Data System (ADS)

    Sala, Stephan; Bönisch, Harald; Keber, Timo; Engel, Andreas

    2013-04-01

    Halogenated hydrocarbons play a major role as precursors for stratospheric ozone depletion. Released from the surface in the troposphere, the halocarbons reach the stratosphere via transport through the tropical tropopause layer. Measurements of stratospheric BrO indicate an existing gap between the abundance of long lived brominated halocarbons, such as Halons and methyl bromide (CH3Br), and the abundance of inorganic bromine in the stratosphere. Recently, it has been realized that in addition to these long-lived substances so called very short-lived substances (VSLS) can also contribute significantly to the stratospheric halogen loading. The VSLS have lifetimes less than half a year and are predominantly emitted from climate-sensitive natural sources, e.g. marine macro-algae. A main source region for those emissions is the Western Pacific where sea surface temperatures are high and air masses from the surface can be transported rapidly into the TTL (Tropical Tropopause Layer) by deep convective systems. In this work, we present results derived by our measurement data from the field campaign which was part of the SHIVA (Stratospheric Halogens in a Varying Atmosphere) Project. One aspect of this campaign, which took place in November and December 2011, was the deployment of the German research aircraft "Falcon" in the Western Pacific at Miri in Malaysia. From there we performed sixteen local flights in total; these flights covered a spatial range from the boundary layer up to 11km altitude around the area of Borneo. Our contribution to the campaign was the deployment of a newly developed GC/MS system operated in negative chemical ionization mode for the fast analysis of halogenated hydrocarbons in ambient air onboard the aircraft. The long lived halocarbons H1301, H1211, H1202, H2402 as well as CH3Br and the very short lived substances CHBr3, CH2Br2, CHBr2Cl, CHBrCl2 and CHBrCl were be analyzed with the instrument. We derive a detailed budget of total organic

  10. Status and Future of Dust Storm Forecasting

    NASA Astrophysics Data System (ADS)

    Westphal, D. L.

    2002-12-01

    In recent years, increased attention has been given to the large amounts of airborne dust derived from the deserts and desertified areas of the world and transported over scales ranging from local to global. This dust can have positive and negative impacts on human activities and the environment, including modifying cloud formation, fertilizing the ocean, degrading air quality, reducing visibility, transporting pathogens, and inducing respiratory problems. The atmospheric radiative forcing by the dust has implications for global climate change and presently is one of the largest unknowns in climate models. These uncertainties have lead to much of the funding for research into the sources, properties, and fate of atmospheric dust. As a result of advances in numerical weather prediction over the past decades and the recent climate research, we are now in a position to produce operational dust storm forecasts. International organizations and national agencies are developing programs for dust forecasting. The approaches and applications of dust detection and forecasting are as varied as the nations that are developing the models. The basic components of a dust forecasting system include atmospheric forcing, dust production, and dust microphysics. The forecasting applications include air and auto traffic safety, shipping, health, national security, climate and weather. This presentation will summarize the methods of dust storm forecasting and illustrate the various applications. The major remaining uncertainties (e.g. sources and initialization) will be discussed as well as approaches for solving those problems.

  11. Planetary Dust: Cross-Functional Considerations

    NASA Technical Reports Server (NTRS)

    Wagner, Sandra

    2006-01-01

    Apollo astronauts learned first hand how problems with dust impact lunar surface missions. After three days, lunar dust contaminating on EVA suit bearings led to such great difficulty in movement that another EVA would not have been possible. Dust clinging to EVA suits was transported into the Lunar Module. During the return trip to Earth, when microgravity was reestablished, the dust became airborne and floated through the cabin. Crews inhaled the dust and it irritated their eyes. Some mechanical systems aboard the spacecraft were damaged due to dust contamination. Study results obtained by Robotic Martian missions indicate that Martian surface soil is oxidative and reactive. Exposures to the reactive Martian dust will pose an even greater concern to the crew health and the integrity of the mechanical systems. As NASA embarks on planetary surface missions to support its Exploration Vision, the effects of these extraterrestrial dusts must be well understood and systems must be designed to operate reliably and protect the crew in the dusty environments of the Moon and Mars. The AIM Dust Assessment Team was tasked to identify systems that will be affected by the respective dust, how they will be affected, associated risks of dust exposure, requirements that will need to be developed, identified knowledge gaps, and recommended scientific measurements to obtain information needed to develop requirements, and design and manufacture the surface systems that will support crew habitation in the lunar and Martian outposts.

  12. Impact and monitoring of dust storms in Taklimakan desert

    NASA Astrophysics Data System (ADS)

    Feng, G. G.; Li, X.; Zheng, Z.

    2012-12-01

    The Taklimakan is China's largest, driest, and warmest desert in total area of 338000km^2 with perimeter of 436 km, it is also known as one of the world's largest shifting-sand deserts. Fully 85 percent of the total area consists of mobile, crescent-shaped sand dunes and are virtually devoid of vegetation. The abundant sand provides material for frequent intense dust storms. The Taklimakan desert fills the expansive Tarim Basin between the Kunlun Mountains and the Tibet Plateau to the south and the Tian Shan Mountains to the north. The Tarim River flows across the basin from west-to-east. In these places, the oases created by fresh surface water support agriculture. Studies outside Xinjiang indicated that 80% dust source of storms was from farmland. Dust storms in the Tarim Basin occur for 20 to 59 days, mainly in spring every year. However, little effort was taken to investigate soil wind erosion and dust emission around the desert. Quantitative understanding of individual dust events in the arid Taklimakan desert, for example, the dust emission rates and the long-range transport, are still incomplete. Therefore, the dust events were observed through routine satellite sensors, lidar instruments, airborne samplers, and surface-based aerosol monitors. Soil wind erosion and suspended particulates emission of four major dust storms from the desert and the typical oasis farmlands at the north rim of the desert were measured using creep sampler, BSNE and TSP at eight heights in 2012. In addition, Aqua satellite AOD data, the NAAPS Global Aeosol model, the CALIPSO satellite products, EPA's AirNow AQI of PM2.5 and HYSPLIT Back Trajectory model were applied to analyze dust transport across the Pacific. Four significant dust storms were observed at the north rim of Taklimakan desert in the spring, 2012. During those events, predominant wind direction ranged from 296 to 334°, wind speed over 7 m/s at 2 m lasted for 471-1074 min, gust wind speed ranged from 11-18m/s. It was

  13. Dust exposure in indoor climbing halls.

    PubMed

    Weinbruch, Stephan; Dirsch, Thomas; Ebert, Martin; Hofmann, Heiko; Kandler, Konrad

    2008-05-01

    The use of hydrated magnesium carbonate hydroxide (magnesia alba) for drying the hands is a strong source for particulate matter in indoor climbing halls. Particle mass concentrations (PM10, PM2.5 and PM1) were measured with an optical particle counter in 9 indoor climbing halls and in 5 sports halls. Mean values for PM10 in indoor climbing halls are generally on the order of 200-500 microg m(-3). For periods of high activity, which last for several hours, PM10 values between 1000 and 4000 microg m(-3) were observed. PM(2.5) is on the order of 30-100 microg m(-3) and reaches values up to 500 microg m(-3), if many users are present. In sports halls, the mass concentrations are usually much lower (PM10 < 100 microg m(-3), PM2.5 < or = 20 microg m(-3)). However, for apparatus gymnastics (a sport in which magnesia alba is also used) similar dust concentrations as for indoor climbing were observed. The size distribution and the total particle number concentration (3.7 nm-10 microm electrical mobility diameter) were determined in one climbing hall by an electrical aerosol spectrometer. The highest number concentrations were between 8000 and 12 000 cm(-3), indicating that the use of magnesia alba is no strong source for ultrafine particles. Scanning electron microscopy and energy-dispersive X-ray microanalysis revealed that virtually all particles are hydrated magnesium carbonate hydroxide. In-situ experiments in an environmental scanning electron microscope showed that the particles do not dissolve at relative humidities up to 100%. Thus, it is concluded that solid particles of magnesia alba are airborne and have the potential to deposit in the human respiratory tract. The particle mass concentrations in indoor climbing halls are much higher than those reported for schools and reach, in many cases, levels which are observed for industrial occupations. The observed dust concentrations are below the current occupational exposure limits in Germany of 3 and 10 mg m(-3) for

  14. Evaluation of a low-cost electrostatic dust fall collector for indoor air endotoxin exposure assessment.

    PubMed

    Noss, Ilka; Wouters, Inge M; Visser, Maaike; Heederik, Dick J J; Thorne, Peter S; Brunekreef, Bert; Doekes, Gert

    2008-09-01

    Exposure to endotoxin in home environments has become a key issue in asthma and allergy research. Most studies have analyzed floor or mattress dust endotoxin, but its validity as a proxy for airborne exposure is unknown, while active airborne dust sampling is not feasible in large-scale population studies because of logistic and financial limitations. We therefore developed and evaluated a simple passive airborne dust collection method for airborne endotoxin exposure assessment. We explored an electrostatic dust fall collector (EDC), consisting of a 42- by 29.6-cm-sized folder with four electrostatic cloths exposed to the air. The EDC was tested during two 14-day periods in seven nonfarm and nine farm homes and in farm stables. In parallel, active airborne dust sampling was performed with Harvard impactors and floor dust collected by vacuuming, using nylon sampling socks. The endotoxin levels could be measured in all EDC cloth extracts. The levels (in EU/m(2)) between EDCs used simultaneously or in different sampling periods in the same home correlated strongly (r > 0.8). EDC endotoxin also correlated moderately to strongly (r = 0.6 to 0.8) with the endotoxin measured by active airborne dust sampling and living room floor dust sampling and-in farm homes-with the endotoxin captured by the EDC in stables. In contrast, endotoxin levels measured by floor dust sampling showed only a poor correlation with the levels measured by active airborne dust sampling. We therefore conclude that measuring endotoxin levels with the EDC is a valid measure of average airborne endotoxin exposure, while reproducibility over time is at least equivalent to that of reservoir dust analyses.

  15. The global transport of dust

    USGS Publications Warehouse

    Griffin, Dale W.; Kellogg, C.A.; Garrison, V.H.; Shinn, E.A.

    2002-01-01

    By some estimates as much as two billion metric tons of dust are lifted into the Earth's atmosphere every year. Most of this dust is stirred up by storms, the more dramatic of which are aptly named dust storms. But more than mere dirt is carried aloft. Drifting with the suspended dust particles are soil pollutants such as herbicides and pesticides and a significant number of microorganisms-bacteria, viruses and fungi. We can gain some appreciation of how much microbial life is actually floating in our atmosphere by performing a quick calculation. There are typically about one million bacteria per gram of soil, but let's be conservative and suppose there are only 10,000 bacteria per gram of airborne sediment. Assuming a modest one billion metric tons of sediment in the atmosphere, these numbers translate into a quintillion (1018) sediment-borne bacteria moving around the planet each year-enough to form a microbial bridge between Earth and Jupiter. Here we consider what we've learned about the airborne transport of sediment across the globe, and review some of the remarkable studies in this reemerging field that had it origins more than 100 years ago.

  16. Protoplanetary Dust

    NASA Astrophysics Data System (ADS)

    Apai, Dániel; Lauretta, Dante S.

    2010-01-01

    Preface; 1. Planet formation and protoplanetary dust Daniel Apai and Dante Lauretta; 2. The origins of protoplanetary dust and the formation of accretion disks Hans-Peter Gail and Peter Hope; 3. Evolution of protoplanetary disk structures Fred Ciesla and Cornelius P. Dullemond; 4. Chemical and isotopic evolution of the solar nebula and protoplanetary disks Dmitry Semenov, Subrata Chakraborty and Mark Thiemens; 5. Laboratory studies of simple dust analogs in astrophysical environments John R. Brucato and Joseph A. Nuth III; 6. Dust composition in protoplanetaty dust Michiel Min and George Flynn; 7. Dust particle size evolution Klaus M. Pontoppidan and Adrian J. Brearly; 8. Thermal processing in protoplanetary nebulae Daniel Apai, Harold C. Connolly Jr. and Dante S. Lauretta; 9. The clearing of protoplanetary disks and of the protosolar nebula Ilaira Pascucci and Shogo Tachibana; 10. Accretion of planetesimals and the formation of rocky planets John E. Chambers, David O'Brien and Andrew M. Davis; Appendixes; Glossary; Index.

  17. Protoplanetary Dust

    NASA Astrophysics Data System (ADS)

    Apai, D.´niel; Lauretta, Dante S.

    2014-02-01

    Preface; 1. Planet formation and protoplanetary dust Daniel Apai and Dante Lauretta; 2. The origins of protoplanetary dust and the formation of accretion disks Hans-Peter Gail and Peter Hope; 3. Evolution of protoplanetary disk structures Fred Ciesla and Cornelius P. Dullemond; 4. Chemical and isotopic evolution of the solar nebula and protoplanetary disks Dmitry Semenov, Subrata Chakraborty and Mark Thiemens; 5. Laboratory studies of simple dust analogs in astrophysical environments John R. Brucato and Joseph A. Nuth III; 6. Dust composition in protoplanetaty dust Michiel Min and George Flynn; 7. Dust particle size evolution Klaus M. Pontoppidan and Adrian J. Brearly; 8. Thermal processing in protoplanetary nebulae Daniel Apai, Harold C. Connolly Jr. and Dante S. Lauretta; 9. The clearing of protoplanetary disks and of the protosolar nebula Ilaira Pascucci and Shogo Tachibana; 10. Accretion of planetesimals and the formation of rocky planets John E. Chambers, David O'Brien and Andrew M. Davis; Appendixes; Glossary; Index.

  18. Remote Sensing of Mineral Dust Sources (Invited)

    NASA Astrophysics Data System (ADS)

    Sprigg, W. A.; Morain, S. A.

    2009-12-01

    Thirty-four percent of Earth's land surface is arid, home to two billion people routinely exposed to airborne dust and increased risk of cardiovascular and respiratory disease. The NASA-supported Public Health Applications in Remote Sensing project has improved the process of simulating and predicting when and where dust storms will occur and the consequent particulate air quality. Partnerships with state public health offices test model products for epidemiological and health surveillance applications. The key to significant improvement in simulations, forecasts and their use has been identifying and monitoring mineral dust sources via satellite based sensors.

  19. Intergalactic Dust

    NASA Astrophysics Data System (ADS)

    Li, A.

    2002-12-01

    We study the composition and sizes of intergalactic dust based on the expulsion of interstellar dust from the galactic disk. Interstellar grains in the Galactic disk are modelled as a mixture of amorphous silicate dust and carbonaceous dust consisting of polycyclic aromatic hydrocarbon (PAH) molecules and larger graphitic grains (Li & Draine 2001) with size distributions like those of the Milky Way dust (Weingartner & Draine 2001). We model their dynamic evolution in terms of the collective effects caused by (1) radiative acceleration, (2) gravitational attraction, (3) gas drag, (4) thermal sputtering, and (5) Lorenz force from the galactic magnetic field (Ferrara et al. 1991). Radiation pressure from the stellar disk exerts an upward force on dust grains and may ultimately expel them out of the entire galaxy. Gravitational force from the stellar, dust and gas disk as well as the dark matter halo exerts a downward force. Thermal sputtering erodes all grains to some degree but more efficiently destroys small grains. This, together with the fact that (1) very small grains (with small radiation pressure efficiencies) are not well coupled to starlight; (2) for large grains the radiative force to the gravitational force is approximately inversely proportional to grain size, acts as a size ``filter'' for dust leaking into the intergalactic space. Since the radiation pressure efficiency and the grain destruction rate are sensitive to dust composition, the relative importance of carbon dust compared to silicate dust expelled into the intergalactic space differs from that in the galactic plane. We derive the size distributions of both silicate and carbonaceous dust finally getting into the intergalactic space and obtain an intergalactic extinction curve. The predicted intergalactic infrared emission spectrum is calculated. References: Ferrara, A., Ferrini, F., Franco, J., & Barsella, B. 1991, ApJ, 381, 137 Li, A., & Draine, B.T. 2001, ApJ, 554, 778 Weingartner, J

  20. Occupational exposure to airborne asbestos from phenolic molding material (Bakelite) during sanding, drilling, and related activities.

    PubMed

    Mowat, Fionna; Bono, Michael; Lee, R J; Tamburello, Susan; Paustenbach, Dennis

    2005-10-01

    In this study, a historical phenolic (Bakelite) molding material, BMMA-5353, was tested to determine the airborne concentrations of asbestos fibers released during four different activities (sawing, sanding, drilling, and cleanup of dust generated from these activities). Each activity was performed for 30 min, often in triplicate. The primary objective for testing BMMA-5353 was to quantitatively determine the airborne concentration of asbestos fibers, if any, in the breathing zone of workers. Uses of this product typically did not include sawing or sanding, but it may have been drilled occasionally. For this reason, only small quantities were sawed, sanded, and drilled in this simulation study. Personal (n = 40), area (n = 80), and background/clearance (n = 88) air samples were collected during each activity and analyzed for total fiber concentrations using phase contrast microscopy (PCM) and, for asbestos fiber counts, transmission electron microscopy (TEM). The raw PCM-total fiber concentrations were adjusted based on TEM analyses that reported the fraction of asbestos fibers, to derive a PCM-asbestos concentration that would enable calculation of an 8-hour time-weighted average (TWA). The estimated 8-hour TWAs ranged from 0.006 to 0.08 fibers per cubic centimeter using a variety of worker exposure scenarios. Therefore, assuming an exposure scenario in which a worker uses power tools to cut and sand products molded from BMMA-5353 and similar products in the manner evaluated in this study, airborne asbestos concentrations should not exceed current or historical occupational exposure limits.

  1. Atmospheric aging of dust ice nucleating particles - a combined laboratory and field approach

    NASA Astrophysics Data System (ADS)

    Boose, Yvonne; Rodríguez, Sergio; García, M. Isabel; Linke, Claudia; Schnaiter, Martin; Zipori, Assaf; Crawford, Ian; Lohmann, Ulrike; Kanji, Zamin A.; Sierau, Berko

    2016-04-01

    We present INP data measured in-situ at two mostly free tropospheric locations: the High Altitude Research Station Jungfraujoch (JFJ) in the Swiss Alps, located at 3580 m above sea level (asl) and the Izaña observatory on Tenerife, off the West African shore (2373 m asl). INP concentrations were measured online with the Portable Ice Nucleation Chamber, PINC, at the Jungfraujoch in the winters of 2012, 2013 and 2014 and at Izaña in the summers of 2013 and 2014. Each measurement period lasted between 2 to 6 weeks. During summer, Izaña is frequently within the Saharan Air Layer and thus often exposed to Saharan dust events. Saharan dust also reaches the Jungfraujoch mainly during spring. For offline ice nucleation analysis in the laboratory under similar thermodynamic conditions, airborne dust was collected a) at Izaña with a cyclone directly from the air and b) collected from the surface of the Aletsch glacier close to the JFJ after deposition. Supporting measurements of aerosol particle size distributions and fluorescence were conducted at both locations, as well as cloud water isotope analysis at the Jungfraujoch and aerosol chemistry at Izaña. For both locations the origin of the INPs was investigated with a focus on dust and biological particles using back trajectories and chemical signature. Results show that dust aerosol is the dominant INP type at both locations at a temperature of 241 K. In addition to Saharan dust, also more local, basaltic dust is found at the Jungfraujoch. Biological particles are not observed to play a role for ice nucleation in clouds during winter at Jungfraujoch but are enriched in INP compared to the total aerosol at Izaña also during dust events. The comparison of the laboratory and the field measurements at Izaña indicates a good reproducibility of the field data by the collected dust samples. Field and laboratory data of the dust samples from both locations show that the dust arriving at JFJ is less ice nucleation active

  2. Rocket dust storms and detached dust layers in the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Spiga, Aymeric; Faure, Julien; Madeleine, Jean-Baptiste; Määttänen, Anni; Forget, François

    2013-04-01

    Airborne dust is the main climatic agent in the Martian environment. Local dust storms play a key role in the dust cycle; yet their life cycle is poorly known. Here we use mesoscale modeling that includes the transport of radiatively active dust to predict the evolution of a local dust storm monitored by OMEGA on board Mars Express. We show that the evolution of this dust storm is governed by deep convective motions. The supply of convective energy is provided by the absorption of incoming sunlight by dust particles, rather than by latent heating as in moist convection on Earth. We propose to use the terminology "rocket dust storm," or conio-cumulonimbus, to describe those storms in which rapid and efficient vertical transport takes place, injecting dust particles at high altitudes in the Martian troposphere (30-50 km). Combined to horizontal transport by large-scale winds, rocket dust storms produce detached layers of dust reminiscent of those observed with Mars Global Surveyor and Mars Reconnaissance Orbiter. Since nighttime sedimentation is less efficient than daytime convective transport, and the detached dust layers can convect during the daytime, these layers can be stable for several days. The peak activity of rocket dust storms is expected in low-latitude regions at clear seasons (late northern winter to late northern summer), which accounts for the high-altitude tropical dust maxima unveiled by Mars Climate Sounder. Dust-driven deep convection has strong implications for the Martian dust cycle, thermal structure, atmospheric dynamics, cloud microphysics, chemistry, and robotic and human exploration.

  3. Interactions Between Mineral Dust, Climate, and Ocean Ecosystems

    NASA Technical Reports Server (NTRS)

    Gasso, Santiago; Grassian, Vicki H.; Miller, Ron L.

    2010-01-01

    Over the past decade, technological improvements in the chemical and physical characterization of dust have provided insights into a number of phenomena that were previously unknown or poorly understood. In addition, models are now incorporating a wider range of physical processes, which will allow us to better quantify the climatic and ecological impacts of dust. For example, some models include the effect of dust on oceanic photosynthesis and thus on atmospheric CO 2 (Friedlingstein et al. 2006). The impact of long-range dust transport, with its multiple forcings and feedbacks, is a relatively new and complex area of research, where input from several disciplines is needed. So far, many of these effects have only been parameterized in models in very simple terms. For example, the representation of dust sources remains a major uncertainty in dust modeling and estimates of the global mass of airborne dust. This is a problem where Earth scientists could make an important contribution, by working with climate scientists to determine the type of environments in which easily erodible soil particles might have accumulated over time. Geologists could also help to identify the predominant mineralogical composition of dust sources, which is crucial for calculating the radiative and chemical effects of dust but is currently known for only a few regions. Understanding how climate and geological processes control source extent and characterizing the mineral content of airborne dust are two of the fascinating challenges in future dust research.

  4. Dust Storm

    Atmospheric Science Data Center

    2013-04-16

    ... April 11, 2004 (top panels) contrast strongly with the dust storm that swept across Iraq and Saudi Arabia on May 13, 2004 (bottom panels). ... Apr 11 and May 13, 2004 Images:  Dust Storm location:  Middle East thumbnail:  ...

  5. The Fate of Saharan Dust Across the Atlantic and Implications for a Central American Dust Barrier

    NASA Technical Reports Server (NTRS)

    Nowottnick, E.; Colarco, P.; da Silva, A.; Hlavka, D.; McGill, M.

    2011-01-01

    Saharan dust was observed over the Caribbean basin during the summer 2007 NASA Tropical Composition, Cloud, and Climate Coupling (TC4) field experiment. Airborne Cloud Physics Lidar (CPL) and satellite observations from MODIS suggest a barrier to dust transport across Central America into the eastern Pacific. We use the NASA GEOS-5 atmospheric transport model with online aerosol tracers to perform simulations of the TC4 time period in order to understand the nature of this barrier. Our simulations are driven by the Modem Era Retrospective-Analysis for Research and Applications (MERRA) meteorological analyses. We evaluate our baseline simulated dust distributions using MODIS and CALIOP satellite and ground-based AERONET sun photometer observations. GEOS-5 reproduces the observed location, magnitude, and timing of major dust events, but our baseline simulation does not develop as strong a barrier to dust transport across Central America as observations suggest. Analysis of the dust transport dynamics and lost processes suggest that while both mechanisms play a role in defining the dust transport barrier, loss processes by wet removal of dust are about twice as important as transport. Sensitivity analyses with our model showed that the dust barrier would not exist without convective scavenging over the Caribbean. The best agreement between our model and the observations was obtained when dust wet removal was parameterized to be more aggressive, treating the dust as we do hydrophilic aerosols.

  6. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  7. The Beginnings of Airborne Astronomy, 1920 - 1930: an Historical Narrative

    NASA Technical Reports Server (NTRS)

    Craine, E. R.

    1984-01-01

    The emergence of airborne astronomy in the early twentieth century is recounted. The aerial expedition to observe the solar eclipse on September 10, 1923, is described. Observation of the total solar eclipse of January 24, 1925, is discussed. The Honey Lake aerial expedition to study the solar eclipse of April 28, 1930, is also described. Four major accomplishments in airborne astronomy during the period 1920 to 1930 are listed. Airborne expeditions were undertaken at every logical opportunity, starting a continuous sequence of airborne astronomical expeditions which was to remain unbroken, except by World War II, to the present day. Although the scientific returns of the first ten years were modest, they did exist. Interest in, and support for, airborne astronomy was generated not only among astronomers but also among the public. Albert Stevens, arguably the true father of airborne astronomy, was to become interested in applying his considerable skill and experience to the airborne acquisition of astronomical data.

  8. Validating MODIS above-cloud aerosol optical depth retrieved from "color ratio" algorithm using direct measurements made by NASA's airborne AATS and 4STAR sensors

    NASA Astrophysics Data System (ADS)

    Jethva, Hiren; Torres, Omar; Remer, Lorraine; Redemann, Jens; Livingston, John; Dunagan, Stephen; Shinozuka, Yohei; Kacenelenbogen, Meloe; Segal Rosenheimer, Michal; Spurr, Rob

    2016-10-01

    We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the "color ratio" method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASA's airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) sensors. A thorough search of the airborne database collection revealed a total of five significant events in which an airborne sun photometer, coincident with the MODIS overpass, observed partially absorbing aerosols emitted from agricultural biomass burning, dust, and wildfires over a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS 2013 campaigns, respectively. The co-located satellite-airborne matchups revealed a good agreement (root-mean-square difference < 0.1), with most matchups falling within the estimated uncertainties associated the MODIS retrievals (about -10 to +50 %). The co-retrieved cloud optical depth was comparable to that of the MODIS operational cloud product for ACE-ASIA and SEAC4RS, however, higher by 30-50 % for the SAFARI-2000 case study. The reason for this discrepancy could be attributed to the distinct aerosol optical properties encountered during respective campaigns. A brief discussion on the sources of uncertainty in the satellite-based ACAOD retrieval and co-location procedure is presented. Field experiments dedicated to making direct measurements of aerosols above cloud are needed for the extensive validation of satellite-based retrievals.

  9. Characterization of airborne particulates in Bangkok urban area by neutron activation analysis.

    PubMed

    Nouchpramool, S; Sumitra, T; Leenanuphunt, V

    1999-01-01

    Samples of airborne particulates were collected in a residential area and in an area near a busy highway in Bangkok during the period from January 1997 to May 1998. A stacked filter system was used for the former site and a Partisol 2000 was used for the latter site. Both 2.5 microns and 10-micron particulates were collected every week. The total suspended particulate matters were also collected at the latter site. The samples were analyzed by neutron activation analysis utilizing neutron flux from a 2-MW TRIGA MARK III research reactor. The elements most frequently detected in the airborne particulates were Al, As, Br, Ca, Ce, Cl, Co, Cr, Cs, Fe, I, K, La, Mg, Mn, Na, Rb, Sb, Sc, Sm, Th, Ti, V, and Zn. The enrichment factor and factor analysis were used to investigate trends, sources, and origin of the atmospheric aerosols. Anthropogenic elements in road dust, construction dust, motor vehicles emission, and other combustion components were identified. A comparative study of data between both sites was performed and it was found that the mass concentration in the area close to the highway was about three times higher than in the residential area. PMID:10676491

  10. Improving plant competitiveness through conveyor dust control technologies

    SciTech Connect

    Goldbeck, L.J.

    1997-09-01

    In the past, three different approaches--containment, suppression, and collection--have been used to control dust arising at conveyor load zones. Dust containment consists of those mechanical systems employed to keep material inside the transfer point with the main material body. Dust suppression systems increase the mass of suspended dust particles, allowing them to fall from the airstream. Dust collection is the mechanical capture and return of airborne material after it becomes airborne from the main material body. Previously, these three approaches have always been seen as separate entities, offered by separate organizations competing in the marketplace. Each system claimed its own technology was the best solution, providing the most effective, most cost-efficient, most maintenance-free answer to fugitive material. These three technologies are evaluated.

  11. Dust emissions in cattle feedlots.

    PubMed

    Sweeten, J B; Parnell, C B; Etheredge, R S; Osborne, D

    1988-11-01

    Dust emissions were measured at three Texas cattle feedlots on 15 occasions in 1987 to determine concentrations of total suspended particulate matter (TSP) and dust with 10 microns or less aerodynamic particle size (PM-10). Net feedlot dust concentrations (downwind minus upwind) ranged from 15.7 to 1,700.1 micrograms per m3 and averaged 412.4 +/- 271.2 micrograms per m3, which is about 37 per cent less than was determined in feedlot dust research in California approximately 17 years earlier. Upwind concentrations averaged 22 per cent of the downwind concentrations. Feedlot dust concentrations were generally highest in early evening and lowest in early morning. Using the Wedding and Andersen-321A PM-10 samplers, the PM-10 dust concentrations were 19 and 40 per cent, respectively, of mean TSP concentrations in direct comparisons. There was good correlation between PM-10 and TSP concentrations. Although dust concentrations decreased with increasing moisture, the correlation coefficients were relatively low. Odor intensity appeared to increase with decreasing net dust concentrations, perhaps due to moisture influences. Mean particle sizes of feedlot dust were 8.5 to 12.2 microns on a particle volume basis and 2.5 to 3.4 microns on a population basis. Respirable dust (below 2 microns) represented only 2.0 to 4.4 per cent of total dust on a particle volume basis. Under conditions of these experiments, the feedlots often exceeded both state and federal (U.S. Environmental Protection Agency) standards for TSP concentrations and for PM-10 concentrations measured using the Andersen-321A sampler. However, feedlots were below the new U.S. Environmental Protection Agency standards when the Wedding PM-10 sampler was used for measuring dust emissions.

  12. The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Zhuang, Guoshun; Sun, Yele; An, Zhisheng

    A 4-year campaign from 2001 to 2004 monitoring PM 2.5 and TSP in the spring season in urban Beijing, China was performed to study the variation of characteristics and the different formation mechanisms of aerosols in dust, haze, and clear days. A total of 315 aerosol samples were collected and used in this study. The aerosols were more basic in dust days and more acidic in haze days. The ions presented in the order of SO42->Ca 2+≫ NO3->Cl -> NH4+>Na + in dust days, and of SO42-> NO3-> NH4+≫Cl ->Ca 2+>K + in haze days. Ions has been classified into three groups, "Na +, Mg 2+, Ca 2+", "K +, SO42-, Cl -", and " NO3-, NH4+", representing crust, pollution-crust, and pollution species, respectively. Crust and pollution ions were the main ion fractions in dust and haze days, respectively. The variation of Ca 2+/Al showed that the increase of dust in dust and haze days was from soil and construction, respectively. "CaCO 3, CaSO 4, and (NH 4) 2SO 4" and "(NH 4) 2SO 4, NH 4NO 3, and Ca(NO 3) 2" were the major species in dust and haze days, respectively. The formation of CaSO 4 on airborne soil particles and the formation of (NH 4) 2SO 4 and NH 4NO 3 were the predominant pathways of sulfate and nitrate formations in dust and haze days, respectively. Sulfate might be mainly formed through heterogeneous reactions in the aqueous surface layer on the pre-existing particles, while nitrate mainly through homogeneous gas-phase reactions in the spring season in Beijing. The formation of sulfate and nitrate was accelerated in dust and haze days.

  13. Environmental dust exposure as a factor contributing to an increase in Escherichia coli O157 and Salmonella populations on cattle hides in feedyards.

    PubMed

    Miller, M F; Loneragan, G H; Harris, D D; Adams, K D; Brooks, J C; Brashears, M M

    2008-10-01

    A study was conducted to determine the impact of exposure to dust in the cattle load-out area in feedyards on pathogen contamination of cattle hides. A total of 250 cattle hides were sampled during summer and fall months, which are associated with elevated prevalence of Escherichia coli O157 in West Texas. Animals were removed from their home pens and restrained in a chute and sampled prior to exposure to dust generated as a result of a simulated loading exercise. The cattle hides were sampled again after exposure to the loading dust to determine total numbers of pathogens on cattle hides on leaving their home pen (before loading) and on cattle hides after exposure to the dust in the loading area. Air and dirt samples from the home pens and the cattle load-out area were also collected. The presence of E. coli O157 and Salmonella was determined in all the samples, and when a positive sample was identified, the total numbers of these bacteria present were enumerated. The total numbers of pathogens increased after dust exposure; Salmonella counts increased from 1.09 log most probable number (MPN)/cm2 to 1.74 log MPN/cm2 after exposure, and E. coli O157 counts increased from 0.80 to 2.35 log MPN/cm2 after sampling. E. coli O157 and Salmonella were recovered from the air samples during dust generation at 6.66 and 11.1%, respectively. Salmonella and E. coli O157 prevalence was not changed and was not associated with the exposure to the dust. Results indicate airborne dust generated as a result of cattle movement and loading could be an important determining factor in total numbers of pathogens recovered on cattle hides.

  14. Dust climatology of the western United States

    SciTech Connect

    Changery, M.J.

    1983-04-01

    Beginning and ending times of dust-caused visibility values were extracted from original records for approximately 180 stations in the western US for the general period of record 1948 to 1977. Maps are presented depicting the annual total number of hours with visibility below specified values, annual number of dust episodes, dust episode durations, season of occurrence, and probability of thunderstorm-inducement.

  15. [Occupational exposure to airborne fungi and bacteria in a household recycled container sorting plant ].

    PubMed

    Solans, Xavier; Alonso, Rosa María; Constans, Angelina; Mansilla, Alfonso

    2007-06-01

    Several studies have showed an association between the work in waste treatment plants and occupational health problems such as irritation of skin, eyes and mucous membranes, pulmonary diseases, gastrointestinal problems and symptoms of organic dust toxic syndrome (ODTS). These symptoms have been related to bioaerosol exposure. The aim of this study was to investigate the occupational exposure to biological agents in a plant sorting source-separated packages (plastics materials, ferric and non-ferric metals) household waste. Airborne samples were collected with M Air T Millipore sampler. The concentration of total fungi and bacteria and gram-negative bacteria were determined and the most abundant genera were identified. The results shown that the predominant airborne microorganisms were fungi, with counts greater than 12,000 cfu/m(3) and gram-negative bacteria, with a environmental concentration between 1,395 and 5,280 cfu/m(3). In both cases, these concentrations were higher than levels obtained outside of the sorting plant. Among the fungi, the predominant genera were Penicillium and Cladosporium, whereas the predominant genera of gram-negative bacteria were Escherichia, Enterobacter, Klebsiella and Serratia. The present study shows that the workers at sorting source-separated packages (plastics materials, ferric and non-ferric metals) domestic waste plant may be exposed to airborne biological agents, especially fungi and gram-negative bacteria.

  16. [Occupational exposure to airborne fungi and bacteria in a household recycled container sorting plant ].

    PubMed

    Solans, Xavier; Alonso, Rosa María; Constans, Angelina; Mansilla, Alfonso

    2007-06-01

    Several studies have showed an association between the work in waste treatment plants and occupational health problems such as irritation of skin, eyes and mucous membranes, pulmonary diseases, gastrointestinal problems and symptoms of organic dust toxic syndrome (ODTS). These symptoms have been related to bioaerosol exposure. The aim of this study was to investigate the occupational exposure to biological agents in a plant sorting source-separated packages (plastics materials, ferric and non-ferric metals) household waste. Airborne samples were collected with M Air T Millipore sampler. The concentration of total fungi and bacteria and gram-negative bacteria were determined and the most abundant genera were identified. The results shown that the predominant airborne microorganisms were fungi, with counts greater than 12,000 cfu/m(3) and gram-negative bacteria, with a environmental concentration between 1,395 and 5,280 cfu/m(3). In both cases, these concentrations were higher than levels obtained outside of the sorting plant. Among the fungi, the predominant genera were Penicillium and Cladosporium, whereas the predominant genera of gram-negative bacteria were Escherichia, Enterobacter, Klebsiella and Serratia. The present study shows that the workers at sorting source-separated packages (plastics materials, ferric and non-ferric metals) domestic waste plant may be exposed to airborne biological agents, especially fungi and gram-negative bacteria. PMID:17604432

  17. Dust properties of NGC 2076

    NASA Astrophysics Data System (ADS)

    Sahu, D. K.; Pandey, S. K.; Kembhavi, Ajit

    1998-05-01

    We present multiband CCD surface photometry of NGC 2076, an early-type galaxy with a broad dust lane. We investigate the wavelength dependence of the dust extinction and derive the apparent extinction law. The extinction varies linearly with inverse wavelength with a ratio of total to selective extinction R_V = 2.70+/-0.28. The smaller value of R_V relative to the Galactic value implies that the size of `large' dust grains, responsible for extinction, is smaller than that in our Galaxy. We calculate the dust mass from total extinction, as well as from the color excess. We use IRAS data on FIR emission to determine the dust temperature, star formation rate and star formation efficiency. Based on observations taken from VBO, Kavalur, India

  18. Sahara Dust

    Atmospheric Science Data Center

    2013-04-15

    article title:  Casting Light and Shadows on a Saharan Dust Storm   ... CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed by NASA's Goddard Space Flight Center, ...

  19. Estimation of the contributions of brake dust, tire wear, and resuspension to nonexhaust traffic particles derived from atmospheric measurements.

    PubMed

    Harrison, Roy M; Jones, Alan M; Gietl, Johanna; Yin, Jianxin; Green, David C

    2012-06-19

    Size-fractionated samples of airborne particulate matter have been collected in a number of campaigns at Marylebone Road, London and simultaneously at background sites either in Regents Park or at North Kensington. Analysis of these samples has enabled size distributions of total mass and of a number of elements to be determined, and roadside increments attributable to nonexhaust emissions arising from traffic activity have been calculated. Taking a novel approach, the combined use of size distribution information and tracer elements has allowed the separate estimation of the contributions of brake dust, tire dust, and resuspension to particle mass in the range 0.9-11.5 μm aerodynamic diameter and mean contributions (± s.e.) at the Marylebone Road sampling site are estimated as resuspended dust 38.1 ± 9.7%, brake dust 55.3 ± 7.0%, and tire dust 10.7 ± 2.3%, (accounting for a total of 104.1% of coarse particle mass in the traffic increment above background).

  20. Airborne Gamma-Spectrometry in Switzerland

    SciTech Connect

    Butterweck, Gernot; Bucher, Benno; Rybach, Ladislaus

    2008-08-07

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of {sup 137}Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  1. Downscaling of Airborne Wind Energy Systems

    NASA Astrophysics Data System (ADS)

    Fechner, Uwe; Schmehl, Roland

    2016-09-01

    Airborne wind energy systems provide a novel solution to harvest wind energy from altitudes that cannot be reached by wind turbines with a similar nominal generator power. The use of a lightweight but strong tether in place of an expensive tower provides an additional cost advantage, next to the higher capacity factor and much lower total mass. This paper investigates the scaling effects of airborne wind energy systems. The energy yield of airborne wind energy systems, that work in pumping mode of operation is at least ten times higher than the energy yield of conventional solar systems. For airborne wind energy systems the yield is defined per square meter wing area. In this paper the dependency of the energy yield on the nominal generator power for systems in the range of 1 kW to 1 MW is investigated. For the onshore location Cabauw, The Netherlands, it is shown, that a generator of just 1.4 kW nominal power and a total system mass of less than 30 kg has the theoretical potential to harvest energy at only twice the price per kWh of large scale airborne wind energy systems. This would make airborne wind energy systems a very attractive choice for small scale remote and mobile applications as soon as the remaining challenges for commercialization are solved.

  2. Global potential of dust devil occurrence

    NASA Astrophysics Data System (ADS)

    Jemmett-Smith, Bradley; Marsham, John; Knippertz, Peter; Gilkeson, Carl

    2014-05-01

    Mineral dust is a key constituent in the climate system. Airborne mineral dust forms the largest component of the global aerosol budget by mass and subsequently affects climate, weather and biogeochemical processes. There remains large uncertainty in the quantitative estimates of the dust cycle. Dry boundary-layer convection serves as an effective mechanism for dust uplift, typically through a combination of rotating dust devils and non-rotating larger and longer-lived convective plumes. These microscale dry-convective processes occur over length scales of several hundred metres or less. They are difficult to observe and model, and therefore their contribution to the global dust budget is highly uncertain. Using an analytical approach to extrapolate limited observations, Koch and Renno (2006) suggest that dust devils and plumes could contribute as much as 35%. Here, we use a new method for quantifying the potential of dust devil occurrence to provide an alternative perspective on this estimate. Observations have shown that dust devil and convective plume occurrence is favoured in hot arid regions under relatively weak background winds, large ground-to-air temperature gradients and deep dry convection. By applying such known constraints to operational analyses from the European Centre for Medium Range Weather Forecasts (ECMWF), we provide, to the best of the authors' knowledge, the first hourly estimates of dust devil occurrence including an analysis of sensitivity to chosen threshold uplift. The results show the expected diurnal variation and allow an examination of the seasonal cycle and day-to-day variations in the conditions required for dust devil formation. They confirm that desert regions are expected to have by far the highest frequency of dry convective vortices, with winds capable of dust uplift. This approach is used to test the findings of Koch and Renno (2006). Koch J., Renno N. (2006). The role of convective plumes and vortices on the global aerosol

  3. Exposure to airborne allergens: a review of sampling methods.

    PubMed

    Renström, Anne

    2002-10-01

    A number of methods are used to assess exposure to high-molecular weight allergens. In the occupational setting, airborne dust is often collected on filters using pumps, the filters are eluted and allergen content in the eluate analysed using immunoassays. Collecting inhalable dust using person-carried pumps may be considered the gold standard. Other allergen sampling methods are available. Recently, a method that collects nasally inhaled dust on adhesive surfaces within nasal samplers has been developed. Allergen content can be analysed in eluates using sensitive enzyme immunoassays, or allergen-bearing particles can be immunostained using antibodies, and studied under the microscope. Settling airborne dust can be collected in petri dishes, a cheap and simple method that has been utilised in large-scale exposure studies. Collection of reservoir dust from surfaces using vacuum cleaners with a dust collector is commonly used to measure pet or mite allergens in homes. The sampling methods differ in properties and relevance to personal allergen exposure. Since methods for all steps from sampling to analysis differ between laboratories, determining occupational exposure limits for protein allergens is today unfeasible. A general standardisation of methods is needed.

  4. Considerations when collecting coal dust

    SciTech Connect

    Olechiw, W.J.

    1995-12-31

    There are several applications in the handling of coal in which capturing coal dust is important. They are in pulverizing operations at belt conveyor transfer points and pneumatic conveying receivers. In each case the processing and handling of coal generates considerable dust which is suspended in the air. Health and safety, environmental considerations and good housekeeping practices dictate that the suspended coal dust be captured, contained and transferred for re-use or disposal. It is no longer acceptable practice to expose operating personnel to breathing dust (OSSA regulations). In addition particulate emissions are being more closely regulated both in total mass and particle size (PM-10 legislation). In general dusty environments reduce the efficiency of operating equipment by fouling bearings and rollers, increasing friction, clogging air filters and increasing wear and tear on equipment and energy costs. Of paramount concern is the fact that spontaneous combustion can occur where coal dust accumulates on horizontal surfaces.

  5. The Efficiency of Biofilters at Mitigating Airborne MRSA from a Swine Nursery.

    PubMed

    Ferguson, D D; Smith, T C; Donham, K J; Hoff, S J

    2015-10-01

    Our prior studies have been in agreement with other researchers in detecting airborne methicillin-resistant Staphylococcus aureus (MRSA) inside and downwind of a swine housing facility. MRSA emitted in the exhaust air of swine facilities creates a potential risk of transmission of these organisms to people in the general area of these facilities as well as to other animals. This study investigated a possible means of reducing those risks. We investigated the efficiency of biofilters to remove MRSA from the exhaust air of a swine building. Two types of biofilter media (hardwood chips and western red cedar shredded bark) were evaluated. Efficiency was measured by assessing both viable MRSA (viable cascade impactor) and dust particles (optical particle courter) in the pre-filtered and post-filtered air of a functioning swine production facility. Our study revealed that hardwood chips were respectively 92% and 88% efficient in removing viable MRSA and total dust particles. Western red cedar was 95% efficient in removing viable MRSA and 86% efficient in removing dust particles. Our findings suggest that biofilters can be used as effective engineering controls to mitigate the transmission of aerosolized MRSA in the exhaust air of enclosed swine housing facilities.

  6. Assessment of Occupational Exposure to Dust and Crystalline Silica in Foundries

    PubMed Central

    Omidianidost, Ali; Azari, Mansour R.; Golbabaei, Farideh

    2015-01-01

    Background: The term “crystalline silica” refers to crystallized form of SiO2 and quartz, as the most abundant compound on the earth’s crust; it is capable of causing silicosis and lung cancer upon inhaling large doses in the course of occupational exposure. The aim of this study was to assess occupational exposure to dust and crystalline silica in foundries in Pakdasht, Iran. Materials and Methods: In this study, airborne dust samples were collected on PVC filters (37 mm diameter, 0.8 mm pore size), by using a sampling pump and open face cyclone at a flow rate of 2.2 l/min for a maximum volume of 800 liters. For determining crystalline silica spectrometry was used according to the National Institute of Occupational Safety and Health (NIOSH) method No. 7601 for analysis of samples. Results: Results showed that crystalline silica concentration was higher than NIOSH and the American Conference of Government Industrial Hygienist (ACGIH) allowed extent (0.025 mg/m3). Concentration of crystalline silica was 0.02–0.1 mg/m3. Total dust concentration average was higher than the allowed extent by Permissible Exposure Limit (PEL) of the Occupational Safety and Health Administration (OSHA). Conclusion: It is essential to take necessary measures to control crystalline silica dust regarding the fact that 50% of workers are exposed to higher than the allowed extent. PMID:26858767

  7. Spectral absorption coefficients and imaginary parts of refractive indices of Saharan dust during SAMUM-1

    NASA Astrophysics Data System (ADS)

    Müller, T.; Schladitz, A.; Massling, A.; Kaaden, N.; Kandler, K.; Wiedensohler, A.

    2009-02-01

    ABSTRACT During the SAMUM-1 experiment, absorption coefficients and imaginary parts of refractive indices of mineral dust particles were investigated in southern Morocco. Main absorbing constituents of airborne samples were identified to be iron oxide and soot. Spectral absorption coefficients were measured using a spectral optical absorption photometer (SOAP) in the wavelength range from 300 to 800 nm with a resolution of 50 nm. A new method that accounts for a loading-dependent correction of fibre filter based absorption photometers, was developed. The imaginary part of the refractive index was determined using Mie calculations from 350 to 800 nm. The spectral absorption coefficient allowed a separation between dust and soot absorption. A correlation analysis showed that the dust absorption coefficient is correlated (R2 up to 0.55) with the particle number concentration for particle diameters larger than 0.5 μm, whereas the coefficient of determination R2 for smaller particles is below 0.1. Refractive indices were derived for both the total aerosol and a dust aerosol that was corrected for soot absorption. Average imaginary parts of refractive indices of the entire aerosol are 7.4 × 10-3, 3.4 × 10-3 and 2.0 × 10-3 at wavelengths of 450, 550 and 650 nm. After a correction for the soot absorption, imaginary parts of refractive indices are 5.1 × 10-3, 1.6 × 10-3 and 4.5 × 10-4.

  8. Understanding mineral dusts from the Middle East

    NASA Astrophysics Data System (ADS)

    Engelbrecht, J. P.; McDonald, E.; Gillies, J. A.; Jayanty, J.; Casuccio, G.; Gertler, A.

    2012-12-01

    The purpose of the program was to provide scientifically founded information on the chemical and physical properties of airborne mineral dust collected during a period of approximately one year, largely in 2006, at Djibouti, Afghanistan (Bagram, Khowst), Qatar, United Arab Emirates, Iraq (Balad, Baghdad, Tallil, Tikrit, Taji, Al Asad), and Kuwait (Northern, Central, Coastal, and Southern regions). To fully understand mineral dusts, their chemical and physical properties as well as mineralogical interrelationships were accurately established. Three collocated low volume particulate samplers, one each for the total suspended (TSP), less than 10 μm in aerodynamic diameter (PM10), and less than 2.5 μm in aerodynamic diameter (PM2.5) particulate matter were deployed at each of the 15 sites, operating on a "1 in 6 day" sampling schedule. A total of 3,136 filter samples were collected on a 1-in-6 day schedule, along with one-time bulk soil samples, at each of the 15 sites. Sample media included Teflon® membrane and quartz fiber filters for chemical analysis (71 species), and Nuclepore® filters for individual particle analysis by Scanning Electron Microscopy (SEM). The provisional study of the data revealed three broad air pollution sources: geological dust, smoke from burn pits, and until now unidentified lead-zinc smelters and battery-processing facilities. SEM results and secondary electron imagery show that quartz and other silicate minerals and, to a lesser extent, dolomite and calcite particles are coated by a thin Si-Al-Mg layer, probably the clay minerals palygorskite and/or montmorillonite/illite. Positive Matrix Factorization (PMF) was performed on aerosol samples collected at six military sites in Iraq (Balad, Baghdad, Tallil, Tikrit, Taji, and Al Asad). PMF results reflect chemical differences amongst sources impacting at individual sites, further complicated by the regional geomorphology and meteorology. Sampling sites are seldom impacted by one source at

  9. Extinction-to-Backscatter Ratios of Saharan Dust Layers Derived from In-Situ Measurements and CALIPSO Overflights During NAMMA

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Liu, Zhaoyan; Vaughan, Mark A.; Hu, Yongxiang; Ismail, Syed; Powell, Kathleen A.; Winker, David M.; Trepte, Charles R.; Anderson, Bruce E.

    2010-01-01

    We determine the aerosol extinction-to-backscatter (Sa) ratios of dust using airborne in-situ measurements of microphysical properties, and CALIPSO observations during the NASA African Monsoon Multidisciplinary Analyses (NAMMA). The NAMMA field experiment was conducted from Sal, Cape Verde during Aug-Sept 2006. Using CALIPSO measurements of the attenuated backscatter of lofted Saharan dust layers, we apply the transmittance technique to estimate dust Sa ratios at 532 nm and a 2-color method to determine the corresponding 1064 nm Sa. Using this method, we found dust Sa ratios of 39.8 plus or minus 1.4 sr and 51.8 plus or minus 3.6 sr at 532 nm and 1064 nm, respectively. Secondly, Sa ratios at both wavelengths is independently calculated using size distributions measured aboard the NASA DC-8 and estimates of Saharan dust complex refractive indices applied in a T-Matrix scheme. We found Sa ratios of 39.1 plus or minus 3.5 sr and 50.0 plus or minus 4 sr at 532 nm and 1064 nm, respectively, using the T-Matrix calculations applied to measured size spectra. Finally, in situ measurements of the total scattering (550 nm) and absorption coefficients (532 nm) are used to generate an extinction profile that is used to constrain the CALIPSO 532 nm extinction profile.

  10. Flying Through Dust From Asteroids

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    Explorer mission.From LDEXs measurements of the dust distribution around the Moon, Szalay and Hornyi next calculate how this distribution would change for different grain sizes if the body were instead much smaller i.e., a 10-km asteroid instead of the 1700-km Moon.Optimizing the Geometry for an EncounterThe authors find that the dust ejected from asteroids is distributed in an asymmetric shape around the body, with higher dust densities on the side of the asteroid facing its direction of travel. This is because meteoroid impacts arent isotropic: meteoroid showers tend to be directional, and amajority of meteoroids impact the asteroid from this apex side.Total number of impacts per square meter and predicted dust density for a family of potential trajectories for spacecraft flybys of a 10-km asteroid. [Szalay Hornyi 2016]Szalay and Hornyi therefore conclude that dust-analyzing missions would collect many times more dust impacts by transiting the apex side of the body. The authors evaluate a family of trajectories for a transiting spacecraft to determine the density of dust that the spacecraft will encounter and the impact rates expected from the dust particles.This information can help optimize the encounter geometry of a future mission to maximize the science return while minimizing the hazard due to dust impacts.CitationJamey R. Szalay and Mihly Hornyi 2016 ApJL 830 L29. doi:10.3847/2041-8205/830/2/L29

  11. Modeling Dust in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Aniano Porcile, Gonzalo Jorge

    , (3) distribution of starlight intensities heating the dust, (4) total infrared (IR) luminosity emitted by the dust, and (5) IR luminosity originating in regions with high starlight intensity. We obtain maps for the dust properties, which trace the structure of the galaxies. The dust models successfully reproduce the observed global and resolved spectral energy distributions (SEDs). We find no evidence for significant masses of cold dust (T < 12K). For two galaxies studied in detail (NGC628 and NGC6946) the derived dust maps correlates extremely well with independent observations of emission in the HI 21cm line and CO1 - 0 line. The derived dust/gas mass ratio are in excellent agreement with dust/gas ratios infered from other lines of evidence.

  12. Airborne GLM Simulator (FEGS)

    NASA Astrophysics Data System (ADS)

    Quick, M.; Blakeslee, R. J.; Christian, H. J., Jr.; Stewart, M. F.; Podgorny, S.; Corredor, D.

    2015-12-01

    Real time lightning observations have proven to be useful for advanced warning and now-casting of severe weather events. In anticipation of the launch of the Geostationary Lightning Mapper (GLM) onboard GOES-R that will provide continuous real time observations of total (both cloud and ground) lightning, the Fly's Eye GLM Simulator (FEGS) is in production. FEGS is an airborne instrument designed to provide cal/val measurements for GLM from high altitude aircraft. It consists of a 5 x 5 array of telescopes each with a narrow passband filter to isolate the 777.4 nm neutral oxygen emission triplet radiated by lightning. The telescopes will measure the optical radiance emitted by lightning that is transmitted through the cloud top with a temporal resolution of 10 μs. When integrated on the NASA ER-2 aircraft, the FEGS array with its 90° field-of-view will observe a cloud top area nearly equal to a single GLM pixel. This design will allow FEGS to determine the temporal and spatial variation of light that contributes to a GLM event detection. In addition to the primary telescope array, the instrument includes 5 supplementary optical channels that observe alternate spectral emission features and will enable the use of FEGS for interesting lightning physics applications. Here we present an up-to-date summary of the project and a description of its scientific applications.

  13. Retrospective exposure assessment to airborne asbestos among power industry workers

    PubMed Central

    2010-01-01

    Background A method of individually assessing former exposure to asbestos fibres is a precondition of risk-differentiated health surveillance. The main aims of our study were to assess former levels of airborne asbestos exposure in the power industry in Germany and to propose a basic strategy for health surveillance and the early detection of asbestos related diseases. Methods Between March 2002 and the end of 2006, we conducted a retrospective questionnaire based survey of occupational tasks and exposures with airborne asbestos fibres in a cohort of 8632 formerly asbestos exposed power industry workers. The data on exposure and occupation were entered into a specially designed computer programme, based on ambient monitoring of airborne asbestos fibre concentrations. The cumulative asbestos exposure was expressed as the product of the eight-hour time weighted average and the total duration of exposure in fibre years (fibres/cubic centimetre-years). Results Data of 7775 (90% of the total) participants working in installations for power generation, power distribution or gas supply could be evaluated. The power generation group (n = 5284) had a mean age of 56 years, were exposed for 20 years and had an average cumulative asbestos exposure of 42 fibre years. The occupational group of "metalworkers" (n = 1600) had the highest mean value of 79 fibre years. The corresponding results for the power distribution group (n = 2491) were a mean age of 45 years, a mean exposure duration of 12 years and an average cumulative asbestos exposure of only 2.5 fibre years. The gas supply workers (n = 512) had a mean age of 54 years and a mean duration of exposure of 15 years. Conclusions While the surveyed cohort as a whole was heavily exposed to asbestos dust, the power distribution group had a mean cumulative exposure of only 6% of that found in the power generation group. Based on the presented data, risk-differentiated disease surveillance focusing on metalworkers and electricians

  14. Exposure to mineral sands dust particles

    NASA Astrophysics Data System (ADS)

    Dias da Cunha, K.; Barros Leite, C. V.; Zays, Z.

    2004-06-01

    The aim of this study is to characterize the airborne particles in a Brazilian region with high concentration of mineral sands (Buena village). In this study proton induced X-ray emission (PIXE), plasma desorption mass spectrometry and alpha spectrometry were used for analyses of airborne particles. The analyses of aerosol samples and lichen samples show that the inhabitants of the Buena village are exposed to airborne particles in the fine fraction of aerosols. The main anthropogenic sources of particles are the mineral sands processing plant and truck traffic, and natural sources as the sea, soil and the swamp. The results from the lichen samples show that at least during the last 15 years the inhabitants of the village have been exposed to monazite particles. The results from aerosols and lichens samples also suggested that the swamp is a source of 226Ra and 210Pb bearing particles besides the monazite dust.

  15. Airborne biological particles and electric fields

    NASA Astrophysics Data System (ADS)

    Benninghoff, William S.; Benninghoff, Anne S.

    1982-01-01

    In November and December 1977 at McMurdo Station in Antarctica we investigated the kinds, numbers, and deposition of airborne particles larger than 2 μm while measuring electric field gradient at 2.5 m above the ground. Elementary collecting devices were used: Staplex Hi-Volume and Roto-rod samplers, Tauber (static sedimentation) traps, petrolatum-coated microscope slides, and snow (melted and filtered). The electric fields were measured by a rotating dipole (Stanford Radioscience Laboratory field mill number 2). During periods of blowing snow and dust the electric field gradient was + 500 to + 2500 V/m, and Tauber traps with grounded covers collected 2 or more times as much snow and dust as the ones with ungrounded covers. During falling snow the electric field gradient was -1000 to -1500 V/m, and the ungrounded traps collected almost twice as much snow and dust as those grounded. These observations suggest that under the prevailing weather conditions in polar regions the probable net effect is deposition of greater quantities of dust, including diaspores and minute organisms, on wet, grounded surfaces. This hypothesis needs examination for its use in explanation of biological distribution patterns.

  16. Efficiency of dust sampling inlets in calm air.

    PubMed

    Breslin, J A; Stein, R L

    1975-08-01

    Measurement of airborne dust concentrations usually involves drawing a sample of the dust-laden air into the measuring instrument through an inlet. Even if the surrounding air is calm, theoretical calculations predict that large particles may not be sampled accurately due to the combined effects of gravity and inertia on the particles near the sampling inlet. Tests were conducted to determine the conditions of particle size, inlet radius, and flow rare necessary for accurate dust sampling. A coal-dust aerosol was sampled simultaneously through inlets of different diameters at the same volume flow-rate and collected on filters. The dust was removed from the filters and the particles were counted and sized with a Coulter counter. Results showed that published criteria for inlet conditions for correct sampling are overly restrictive and that respirable-size particles are sampled correctly in the normal range or operation of most dust sampling instruments. PMID:1227283

  17. Rocket dust storms and detached layers in the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Spiga, A.; Faure, J.; Madeleine, J.; Maattanen, A. E.; Forget, F.

    2012-12-01

    Airborne dust is the main climatic agent in the Martian environment. Local dust storms play a key role in the dust cycle; yet their life cycle is poorly known. Here we use mesoscale modeling with radiatively-active transported dust to predict the evolution of a local dust storm monitored by OMEGA onboard Mars Express. We show that the evolution of this dust storm is governed by deep convective motions. The supply of convective energy is provided by the absorption of incoming sunlight by dust particles, in lieu of latent heating in moist convection on Earth. We propose to use the terminology "rocket dust storm", or conio-cumulonimbus, to describe those storms in which rapid and efficient vertical transport takes place, injecting dust particles at high altitudes in the Martian troposphere (30 to 50 km). Combined to horizontal transport by large-scale winds, rocket dust storms form detached layers of dust reminiscent of those observed with instruments onboard Mars Global Surveyor and Mars Reconnaissance Orbiter. Detached layers are stable over several days owing to nighttime sedimentation being unable to counteract daytime convective transport, and to the resupply of convective energy at sunrise. The peak activity of rocket dust storms is expected in low-latitude regions at clear season, which accounts for the high-altitude tropical dust maximum unveiled by Mars Climate Sounder. Our findings on dust-driven deep convection have strong implications for the Martian dust cycle, thermal structure, atmospheric dynamics, cloud microphysics, chemistry, and robotic and human exploration.ensity-scaled dust optical depth at local times 1400 1600 and 1800 (lat 2.5°S, Ls 135°) hortwave heating rate at local time 1500 and latitude 2.5°S.

  18. Dust production in supernovae and AGB stars

    NASA Astrophysics Data System (ADS)

    Matsuura, Mikako

    2015-08-01

    In the last decade, the role of supernovae on dust has changed; it has been long proposed that supernovae are dust destroyers, but now recent observations show that core-collapse supernovae can become dust factories. Theoretical models of dust evolution in galaxies have predicted that core-collapse supernovae can be an important source of dust in galaxies, if these supernovae can form a significant mass of dust (0.1-1 solar masses). The Herschel Space Observatory and ALMA detected dust in the ejecta of Supernova 1987A. They revealed an estimated 0.5 solar masses of dust. Herschel also found nearly 0.1 solar masses of dust in historical supernovae remnants, namely Cassiopeia A and the Crab Nebula. If dust grains can survive future interaction with the supernova winds and ambient interstellar medium, core-collapse supernovae can be an important source of dust in the interstellar media of galaxies. We further discuss the total dust mass injected by AGB stars and SNe into the interstellar medium of the Magellanic Clouds.

  19. Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations

    NASA Astrophysics Data System (ADS)

    Ryder, C. L.; McQuaid, J. B.; Flamant, C.; Washington, R.; Brindley, H. E.; Highwood, E. J.; Marsham, J. H.; Parker, D. J.; Todd, M. C.; Banks, J. R.; Brooke, J. K.; Engelstaedter, S.; Estellés, V.; Formenti, P.; Garcia-Carreras, L.; Kocha, C.; Marenco, F.; Rosenberg, P.; Sodemann, H.; Allen, C. J. T.; Bourdon, A.; Bart, M.; Cavazos-Guerra, C.; Chevaillier, S.; Crosier, J.; Darbyshire, E.; Dean, A. R.; Dorsey, J. R.; Kent, J.; O'Sullivan, D.; Schepanski, K.; Szpek, K.; Woolley, A.

    2015-01-01

    The Fennec climate program aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE Falcon 20 is described, with specific focus on instrumentation specially developed and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include: (1) the first airborne measurement of dust particles sized up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in-situ observations of processes in SABL clouds showing dust acting as CCN and IN at -15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold-pool (haboob) issued from deep convection over the Atlas, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area measurements suggest coarser particles provide a route for ozone depletion, (9) discrepancies between airborne coarse mode size distributions and AERONET sunphotometer retrievals under

  20. Mars Airborne Prospecting Spectrometer

    NASA Astrophysics Data System (ADS)

    Steinkraus, J. M.; Wright, M. W.; Rheingans, B. E.; Steinkraus, D. E.; George, W. P.; Aljabri, A.; Hall, J. L.; Scott, D. C.

    2012-06-01

    One novel approach towards addressing the need for innovative instrumentation and investigation approaches is the integration of a suite of four spectrometer systems to form the Mars Airborne Prospecting Spectrometers (MAPS) for prospecting on Mars.

  1. Physical/chemical and microbiological analyses of dusts at a resource recover plant.

    PubMed

    Duckett, E J; Wagner, J; Welker, R; Rogers, B; Usdin, V

    1980-12-01

    Airborne dusts at a resource recovery pilot plant were sampled and analyzed to determine physical, chemical and microbiological characteristics. The sampling device was a multi-stage impactor equipped with a pre-collector. Dusts are primarily fibrous organic materials, predominantly of nonrespirable size. Microbiological aerosol concentrations are reported and discussed.

  2. A DUST-SETTLING CHAMBER FOR SAMPLING-INSTRUMENT COMPARISON STUDIES

    EPA Science Inventory

    Introduction: Few methods exist that can evenly and reproducibly deposit dusts onto surfaces for surface-sampling methodological studies. A dust-deposition chamber was designed for that purpose.

    Methods: A 1-m3 Rochester-type chamber was modified to produce high airborne d...

  3. Simultaneous gas-phase and total water detection for airborne applications with a multi-channel TDL spectrometer at 1.4 μm and 2.6 μm

    NASA Astrophysics Data System (ADS)

    Buchholz, Bernhard; Afchine, Armin; Klein, Alexander; Barthel, Jochen; Kallweit, Sören; Klostermann, Tim; Krämer, Martina; Schiller, Cornelius; Ebert, Volker

    2013-04-01

    Water vapor measurements especially within clouds are difficult, in particular due to numerous instrument-specific limitations in precision, time resolution and accuracy. Notably the quantification of the ice and gas-phase water content in cirrus clouds, which play an important role in the global climate system, require new high-speed hygrometers concepts which are capable of resolving large water vapor gradients. Previously we demonstrated a stationary concept of a Tunable Diode Laser Absorption Spectroscopy (TDLAS)-based quantification of the ice/liquid water by independent, but simultaneous measurements of A) the gas-phase water in an open-path configuration (optical-path 125 m) and B) the total water in an extractive version with a closed cell (30 m path) after evaporating the condensed water [1]. In this case we used laboratory TDLAS instrumentation in combination with a long absorption paths and applied those to the AIDA cloud camber [2]. Recently we developed an advanced, miniature version of the concept, suitable for mobile field applications and in particular for use on aircrafts. First tests of our new, fiber-coupled open-path TDLAS cell [3] for airborne applications were combined with the experiences of our extractive SEALDH instruments [4] and led to a new, multi-channel, "multi-phase TDL-hygrometer" called "HAI" ("Hygrometer for Atmospheric Investigations"). HAI, which is explicitly designed for the new German HALO (High Altitude and Long Range Research Aircraft) airplane, provides a similar, but improved functionality like the stationary, multi-phase TDLAS developed for AIDA. However HAI comes in a much more compact, six height units, 30 kg, electronics rack for the main unit and with a new, completely fiber-coupled, compact, 21 kg, dual-wavelength open-path TDL-cell which is placed in the aircraft's skin. HAI is much more complex and versatile than the AIDA precursor and can be seen as comprised of four TDL-spectrometers, as it simultaneously

  4. Transport of Alaskan Dust into the Gulf of Alaska and Comparison with Similar High-Latitude Dust Environments

    NASA Technical Reports Server (NTRS)

    Crusium, John; Levy, Rob; Wang, Jun; Campbell, Rob; Schroth, Andrew W.

    2012-01-01

    Transport of Alaskan dust into the Gulf of Alaska and comparison with similar high-latitude dust environments. An airborne flux of the micronutrient iron, derived from dust originating from coastal regions may be an important contributor of iron to the Gulf of Alaska's (GoA) oligotrophic waters. Dust blowing off glacier termini and dry riverbeds is a recurring phenomenon in Alaska, usually occurring in the autumn. Since previous studies assumed that dust originating in the deserts of Asia was the largest source of . airborne iron to the GoA, the budget of aeolian deposition of iron needs to be reassessed. Since late 20 I 0, our group has been monitoring dust activity using satellites over the Copper River Delta (CRD) where the most vigorous dust plumes have been observed. Since 2011, sample aerosol concentration and their composition are being collected at Middleton Island (100km off shore of CRD). This presentation will show a summary of the ongoing dust observations and compare with other similar environments (Patagonia, Iceland) by showing case studies. Common features will be highlighted

  5. Evaluating vehicle re-entrained road dust and its potential to deposit to Lake Tahoe: a bottom-up inventory approach.

    PubMed

    Zhu, Dongzi; Kuhns, Hampden D; Gillies, John A; Gertler, Alan W

    2014-01-01

    Identifying hotspot areas impacted by emissions of dust from roadways is an essential step for mitigation. This paper develops a detailed road dust PM₁₀ emission inventory using a bottom-up approach and evaluates the potential for the dust to deposit to Lake Tahoe where it can affect water clarity. Previous studies of estimates of quantities of atmospheric deposition of fine sediment particles ("FSP", <16 μm in diameter) to the lake were questioned due to low confidence in the results and insufficient data. A bottom-up approach that integrates measured road dust emission factors, five years of meteorological data, a traffic demand model and GIS analysis was used to estimate the near field deposition of airborne particulate matter <16 μm, and assess the relationship between trip location and the potential magnitude of this source of atmospheric deposition to the lake. Approximately ~20 Mg year(-1) of PM₁₀ and ~36 Mg year(-1) Total Suspended Particulate (TSP) from roadway emissions of dust are estimated to reach the lake. We estimate that the atmospheric dry deposition of particles to the lake attributable to vehicle travel on paved roads is approximately 0.6% of the Total Maximum Daily Loadings (TMDL) of FSP that the lake can receive and still meet water quality standards.

  6. Sensitivities of five alpha continuous air monitors for detection of airborne sup 239 Pu

    SciTech Connect

    McIsaac, C.V.; Amaro, C.R.

    1992-07-01

    Results of measurements of the sensitivities of five alpha continuous air monitors (CAMs) for detection of airborne {sup 239}Pu are presented. Four commercially available alpha CAMs (Kurz model 8311, Merlin Gerin Edgar, RADeCO model 452, and Victoreen model 758) and a prototype alpha CAM currently in use at Argonne National Laboratory- West (ANL-W) were tested sampling natural ambient air and laboratory-generated atmospheres laden with either blank dust or dust containing nCi/g concentrations of {sup 239}Pu. Cumulative alpha spectra were stored at 30 or 60 minute intervals during each sampling and were subsequently analyzed using three different commonly used alpha spectrum analysis algorithms. The effect of airborne dust concentration and sample filter porosity on detector resolution and sensitivity for airborne {sup 239}Pu are described.

  7. Sensitivities of five alpha continuous air monitors for detection of airborne {sup 239}Pu

    SciTech Connect

    McIsaac, C.V.; Amaro, C.R.

    1992-07-01

    Results of measurements of the sensitivities of five alpha continuous air monitors (CAMs) for detection of airborne {sup 239}Pu are presented. Four commercially available alpha CAMs (Kurz model 8311, Merlin Gerin Edgar, RADeCO model 452, and Victoreen model 758) and a prototype alpha CAM currently in use at Argonne National Laboratory- West (ANL-W) were tested sampling natural ambient air and laboratory-generated atmospheres laden with either blank dust or dust containing nCi/g concentrations of {sup 239}Pu. Cumulative alpha spectra were stored at 30 or 60 minute intervals during each sampling and were subsequently analyzed using three different commonly used alpha spectrum analysis algorithms. The effect of airborne dust concentration and sample filter porosity on detector resolution and sensitivity for airborne {sup 239}Pu are described.

  8. Column Closure Studies of Lower Tropospheric Aerosol and Water Vapor During ACE-Asia Using Airborne Sunphotometer, Airborne In-Situ and Ship-Based Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Hegg, A.; Wang, J.; Bates, D.; Redemann, J.; Russells, P. B.; Livingston, J. M.; Jonsson, H. H.; Welton, E. J.; Seinfield, J. H.

    2003-01-01

    We assess the consistency (closure) between solar beam attenuation by aerosols and water vapor measured by airborne sunphotometry and derived from airborne in-situ, and ship-based lidar measurements during the April 2001 Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). The airborne data presented here were obtained aboard the Twin Otter aircraft. Comparing aerosol extinction o(550 nm) from four different techniques shows good agreement for the vertical distribution of aerosol layers. However, the level of agreement in absolute magnitude of the derived aerosol extinction varied among the aerosol layers sampled. The sigma(550 nm) computed from airborne in-situ size distribution and composition measurements shows good agreement with airborne sunphotometry in the marine boundary layer but is considerably lower in layers dominated by dust if the particles are assumed to be spherical. The sigma(550 nm) from airborne in-situ scattering and absorption measurements are about approx. 13% lower than those obtained from airborne sunphotometry during 14 vertical profiles. Combining lidar and the airborne sunphotometer measurements reveals the prevalence of dust layers at altitudes up to 10 km with layer aerosol optical depth (from 3.5 to 10 km altitude) of approx. 0.1 to 0.2 (500 nm) and extinction-to-backscatter ratios of 59-71 sr (523 nm). The airborne sunphotometer aboard the Twin Otter reveals a relatively dry atmosphere during ACE- Asia with all water vapor columns less than 1.5 cm and water vapor densities w less than 12 g/cu m. Comparing layer water vapor amounts and w from the airborne sunphotometer to the same quantities measured with aircraft in-situ sensors leads to a high correlation (r(sup 3)=0.96) but the sunphotometer tends to underestimate w by 7%.

  9. Escaping the regulatory dust bowl: fugitive dust and the Clean Air Act

    SciTech Connect

    Probst, G.L.; Becker, R.E. Jr.

    1982-01-01

    The Environmental Protection Agency's (EPA's) regulatory program, as it relates to particulates, is overly complicated. In attempting to accommodate statutory language insensitive to particulate differences, after becoming aware of the varying effects of different-sized particles, EPA has developed an unworkable program. Although agricultural, recreational, transportation, and industrial activities contribute to the airborne dust (or, in the Clean Air Act vernacular, fugitive dust), this article focuses on mining activities. Surface mining inevitably stirs up considerable fugitive dust, and a description of mining activities in arid conditions, and how they fit in with a developing regulatory program, reveals a story of a national program that fails to provide for rational policy and regional flexibility. The article also recommends some regulatory and statutory solutions that could relatively easily correct EPA's fugitive dust program.

  10. Assessment of Iceland as a dust source

    NASA Astrophysics Data System (ADS)

    Arnalds, Ólafur; Ólafsson, Haraldur; Dagsson-Waldhauserova, Pavla

    2016-04-01

    Iceland has extremely active dust sources that result in large-scale emissions and deposition on land and at sea. The dust has a volcanogenic origin of basaltic composition with about 10% Fe content. We used two independent methods to quantify dust emission from Iceland and dust deposition at sea. Firstly, the aerial extent (map) of deposition on land was extended to ocean areas around Iceland. Secondly, surveys of the number of dust events over the past decades and calculations of emissions and sea deposition for the dust storms were made. The results show that total emissions range from 30.5 (dust-event-based calculation) to 40.1 million t yr

  11. Heavy metal speciation in various grain sizes of industrially contaminated street dust using multivariate statistical analysis.

    PubMed

    Yıldırım, Gülşen; Tokalıoğlu, Şerife

    2016-02-01

    A total of 36 street dust samples were collected from the streets of the Organised Industrial District in Kayseri, Turkey. This region includes a total of 818 work places in various industrial areas. The modified BCR (the European Community Bureau of Reference) sequential extraction procedure was applied to evaluate the mobility and bioavailability of trace elements (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in street dusts of the study area. The BCR was classified into three steps: water/acid soluble fraction, reducible and oxidisable fraction. The remaining residue was dissolved by using aqua regia. The concentrations of the metals in street dust samples were determined by flame atomic absorption spectrometry. Also the effect of the different grain sizes (<38µm, 38-53µm and 53-74µm) of the 36 street dust samples on the mobility of the metals was investigated using the modified BCR procedure. The mobility sequence based on the sum of the first three phases (for <74µm grain size) was: Cd (71.3)>Cu (48.9)>Pb (42.8)=Cr (42.1)>Ni (41.4)>Zn (40.9)>Co (36.6)=Mn (36.3)>Fe (3.1). No significant difference was observed among metal partitioning for the three particle sizes. Correlation, principal component and cluster analysis were applied to identify probable natural and anthropogenic sources in the region. The principal component analysis results showed that this industrial district was influenced by traffic, industrial activities, air-borne emissions and natural sources. The accuracy of the results was checked by analysis of both the BCR-701 certified reference material and by recovery studies in street dust samples. PMID:26595510

  12. Heavy metal speciation in various grain sizes of industrially contaminated street dust using multivariate statistical analysis.

    PubMed

    Yıldırım, Gülşen; Tokalıoğlu, Şerife

    2016-02-01

    A total of 36 street dust samples were collected from the streets of the Organised Industrial District in Kayseri, Turkey. This region includes a total of 818 work places in various industrial areas. The modified BCR (the European Community Bureau of Reference) sequential extraction procedure was applied to evaluate the mobility and bioavailability of trace elements (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in street dusts of the study area. The BCR was classified into three steps: water/acid soluble fraction, reducible and oxidisable fraction. The remaining residue was dissolved by using aqua regia. The concentrations of the metals in street dust samples were determined by flame atomic absorption spectrometry. Also the effect of the different grain sizes (<38µm, 38-53µm and 53-74µm) of the 36 street dust samples on the mobility of the metals was investigated using the modified BCR procedure. The mobility sequence based on the sum of the first three phases (for <74µm grain size) was: Cd (71.3)>Cu (48.9)>Pb (42.8)=Cr (42.1)>Ni (41.4)>Zn (40.9)>Co (36.6)=Mn (36.3)>Fe (3.1). No significant difference was observed among metal partitioning for the three particle sizes. Correlation, principal component and cluster analysis were applied to identify probable natural and anthropogenic sources in the region. The principal component analysis results showed that this industrial district was influenced by traffic, industrial activities, air-borne emissions and natural sources. The accuracy of the results was checked by analysis of both the BCR-701 certified reference material and by recovery studies in street dust samples.

  13. The role of endotoxin in grain dust-induced lung disease.

    PubMed

    Schwartz, D A; Thorne, P S; Yagla, S J; Burmeister, L F; Olenchock, S A; Watt, J L; Quinn, T J

    1995-08-01

    To identify the role of endotoxin in grain dust-induced lung disease, we conducted a population-based, cross-sectional investigation among grain handlers and postal workers. The study subjects were selected by randomly sampling all grain facilities and post offices within 100 miles of Iowa City. Our study population consisted of 410 grain workers and 201 postal workers. Grain workers were found to be exposed to higher concentrations of airborne dust (p = 0.0001) and endotoxin (p = 0.0001) when compared with postal workers. Grain workers had a significantly higher prevalence of work-related (cough, phlegm, wheezing, chest tightness, and dyspnea) and chronic (usual cough or phlegm production) respiratory symptoms than postal workers. Moreover, after controlling for age, gender, and cigarette smoking status, work-related respiratory symptoms were strongly associated with the concentration of endotoxin in the bioaerosol in the work setting. The concentration of total dust in the bioaerosol was marginally related to these respiratory problems. After controlling for age, gender, and cigarette smoking status, grain workers were found to have reduced spirometric measures of airflow (FEV1, FEV1/FVC, and FEF25-75) and enhanced airway reactivity to inhaled histamine when compared with postal workers. Although the total dust concentration in the work environment appeared to have little effect on these measures of airflow obstruction, higher concentrations of endotoxin in the bioaerosol were associated with diminished measures of airflow and enhanced bronchial reactivity. Our results indicate that the concentration of endotoxin in the bioaerosol may be particularly important in the development of grain dust-induced lung disease. PMID:7633714

  14. Airborne Endotoxin from Indoor and Outdoor Environments:Effect of Sample Dilution on the Kinetic Limulus Amebocyte Lysate (LAL) Assay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Airborne endotoxin in occupational environments are a potential respiratory hazard to individuals. In this study, total and inhalable airborne endotoxin samples were collected via filtration from inside animal housing units and downwind from agricultural production sites and a wastewater treatment ...

  15. Dust ablation in Pluto's atmosphere

    NASA Astrophysics Data System (ADS)

    Horanyi, Mihaly; Poppe, Andrew; Sternovsky, Zoltan

    2016-04-01

    Based on measurements by dust detectors onboard the Pioneer 10/11 and New Horizons spacecraft the total production rate of dust particles born in the Edgeworth Kuiper Belt (EKB) has been be estimated to be on the order of 5 ṡ 103 kg/s in the approximate size range of 1 - 10 μm. Dust particles are produced by collisions between EKB objects and their bombardment by both interplanetary and interstellar dust particles. Dust particles of EKB origin, in general, migrate towards the Sun due to Poynting-Robertson drag but their distributions are further sculpted by mean-motion resonances as they first approach the orbit of Neptune and later the other planets, as well as mutual collisions. Subsequently, Jupiter will eject the vast majority of them before they reach the inner solar system. The expected mass influx into Pluto atmosphere is on the order of 200 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that volatile rich particles can fully sublimate due to drag heating and deposit their mass in narrow layers. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles by comparing the altitude of the deposition layers to the observed haze layers.

  16. Dust Spectroscopy and the Nature of Grains

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.

    2006-01-01

    Ground-based, air-borne and space-based, infrared spectra of a wide variety of objects have revealed prominent absorption and emission features due to large molecules and small dust grains. Analysis of this data reveals a highly diverse interstellar and circumstellar grain inventory, including both amorphous materials and highly crystalline compounds (silicates and carbon). This diversity points towards a wide range of physical and chemical birthsites as well as a complex processing of these grains in the interstellar medium. In this talk, I will review the dust inventory contrasting and comparing both the interstellar and circumstellar reservoirs. The focus will be on the processes that play a role in the lifecycle of dust in the interstellar medium.

  17. The infrared spectrum of the Galactic center and the composition of interstellar dust.

    PubMed

    Tielens, A G; Wooden, D H; Allamandola, L J; Bregman, J; Witteborn, F C

    1996-04-10

    We have obtained 5-8 micrometers spectra of the Galactic center from the Kuiper Airborne Observatory at resolving powers of approximately 50, approximately 150, and approximately 300. These spectra show absorption features at 5.5, 5.8, 6.1, and 6.8 micrometers. Together with previously observed features in the 3 micrometers region, these features are compared with laboratory spectra of candidate materials. The 3.0 and 6.1 micrometers features are due to the OH stretching and bending variations of H2O and are well fitted by water of hydration in silicates (e.g., talc). The 3.0 micrometer band is equally well fitted by ice mixtures containing 30% H2O, but such mixtures do not provide a good fit to the observed 6.1 micrometer band. The 3.4 and 6.8 micrometers features are identified with the CH stretching and deformation modes in CH2 and CH3 groups in saturated aliphatic hydrocarbons. The 6.1 micrometer band shows a short wavelength shoulder centered on 5.8 micrometer, attributed to carbonyl (C double bond O) groups in this interstellar hydrocarbon dust component. Finally, the narrow 5.5 micrometer feature is also attributed to carbonyl groups, but in the form of metal carbonyls [e.g., Fe(CO)4]. We have derived column densities and abundances along the line of sight toward the Galactic center for the various identified dust components. This analysis shows that hydrocarbon grains contain only 0.08 of the elemental abundance of C and contribute only a relatively minor fraction (0.1) of the total dust volume. Most of the interstellar dust volume is made up of silicates (approximately 0.6). Small graphite grains, responsible for the 2200 angstroms bump, account for 0.07 of the total dust volume. The remaining one-quarter of the interstellar dust volume consists of a material(s) without strong IR absorption features. Likely candidates include large graphite grains, diamonds, or amorphous carbon grains, which all have weak or no IR active modes. Finally, various models for

  18. Characterization of dust emission from alluvial sediments using aircraft observations and modeling

    NASA Astrophysics Data System (ADS)

    Schepanski, K.; Flamant, C.; Chaboureau, J.; Kocha, C.; Banks, J.; Brindley, H. E.; Lavaysse, C.; Marnas, F.; Pelon, J.; Tulet, P.

    2013-12-01

    Recent studies using satellite observations show that numerous dust sources are located in the foothills of arid and semi-arid mountain regions such as over North Africa. Alluvial sediments deposited on the valley bottoms and flood plains are very prone to wind erosion and frequently serve as dust source. High surface wind speeds related to the break-down of the nocturnal low-level jet (LLJ) during the morning hours are identified as a frequent driving mechanism for dust uplift. We investigate dust emission from alluvial dust sources located within the upland region in northern Mauritania and discuss the impact of valleys with regard to their role as dust source. Measures for local atmospheric dust burden were retrieved from airborne observations, MSG SEVIR dust AOD fields and MesoNH model simulations, and analyzed in order to provide complementary information on dust source activation and local dust transport at different horizontal scales. Vertical distribution of atmospheric mineral dust was obtained from the LNG backscatter lidar system flying aboard the French Falcon-20 aircraft. Lidar extinction coefficients were compared to topography, aerial photographs, and dust AOD fields to confirm the relevance of alluvial sediments at the valley bottoms as dust source. The observed dust emission event was further evaluated using the regional model MesoNH. A sensitivity study on the impact of the horizontal grid spacing highlights the importance of the spatial resolution on simulated dust loadings. The results further illustrate the importance of an explicit representation of alluvial dust sources in such models to better capture the spatial-temporal distribution of airborne dust concentrations.

  19. Modeling Respiratory Toxicity of Authentic Lunar Dust

    NASA Technical Reports Server (NTRS)

    Santana, Patricia A.; James, John T.; Lam, Chiu-Wing

    2010-01-01

    The lunar expeditions of the Apollo operations from the 60 s and early 70 s have generated awareness about lunar dust exposures and their implication towards future lunar explorations. Critical analyses on the reports from the Apollo crew members suggest that lunar dust is a mild respiratory and ocular irritant. Currently, NASA s space toxicology group is functioning with the Lunar Airborne Dust Toxicity Assessment Group (LADTAG) and the National Institute for Occupational Safety and Health (NIOSH) to investigate and examine toxic effects to the respiratory system of rats in order to establish permissible exposure levels (PELs) for human exposure to lunar dust. In collaboration with the space toxicology group, LADTAG and NIOSH the goal of the present research is to analyze dose-response curves from rat exposures seven and twenty-eight days after intrapharyngeal instillations, and model the response using BenchMark Dose Software (BMDS) from the Environmental Protection Agency (EPA). Via this analysis, the relative toxicities of three types of Apollo 14 lunar dust samples and two control dust samples, titanium dioxide (TiO2) and quartz will be determined. This will be executed for several toxicity endpoints such as cell counts and biochemical markers in bronchoaveolar lavage fluid (BALF) harvested from the rats.

  20. Wind tunnel and field calibration of six aeolian dust samplers

    NASA Astrophysics Data System (ADS)

    Goossens, Dirk; Offer, Zvi Y.

    The efficiency of six aeolian dust samplers was tested via wind tunnel experiments and field measurements. In the wind tunnel, four samplers designed to measure the horizontal dust flux and one sampler designed to measure the vertical dust flux (in the downward direction, i.e., deposition) were calibrated against an isokinetic reference sampler. The horizontal dust flux samplers were: the big spring number eight sampler (BSNE), the modified Wilson and Cooke sampler (MWAC), the suspended sediment trap (SUSTRA), and the wedge dust flux gauge (WDFG). Vertical deposition flux was measured using a marble dust collector (MDCO). A modified Sartorius SM 16711 dust sampler with adjustable flow rate (SARTORIUS) was used as isokinetic reference sampler. In the field experiments, the WDFG was replaced by a Sierra ultra high volume dust sampler (SIERRA). Wind tunnel calibrations were carried out at five wind velocities ranging from 1 to 5 m s -1. Field calibrations were conducted during seven periods of two weeks each. The most efficient samplers are the MWAC and the SIERRA, followed by the BSNE and the SUSTRA. The WDFG is more effective than the BSNE at velocities below 3 m s -1, but its efficiency drops quickly at higher wind speeds. The most recommendable sampler for field measurements is the BSNE, because its efficiency varies only very slightly with wind speed. In the absence of horizontal flux samplers, the MDCO collector can be used as an alternative to assess horizontal dust flux and airborne dust concentration provided the appropriate calibrations are made.

  1. Simulated airborne particle size distributions over Greenland during Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Unnerstad, Lars; Hansson, Margareta

    Polar ice cores indicate that the deposition of dust from the atmosphere was strongly enhanced during Last Glacial Maximum (LGM). The concentration of dust in the ice sheets and in the overlaying atmosphere are not proportional to each other but are dependent, among other things, on the relative magnitudes of dry and wet deposition which change with climate. Observed dust particle size distributions in the Greenland ice sheet are shifted toward larger particles during LGM. By applying common theories for particle removal processes we show that the airborne particle size distributions over Greenland probably remained the same in the two different climates. This leads to the conclusion that the airborne dust concentration was even higher during LGM than indicated by the enhancement in deposition flux. We suggest a LGM/pre-industrial current climate aerosol ratio (including the soluble fraction) over Greenland of about 90-125 by mass and 75-100 by number.

  2. Pulmonary Toxicity Studies of Lunar Dusts in Rodents

    NASA Technical Reports Server (NTRS)

    Lam, Chiu-wing; James, John T.; Taylor, Larry

    2008-01-01

    NASA will build an outpost on the lunar surface for long-duration human habitation and research. The surface of the Moon is covered by a layer of fine, reactive dust, and the living quarters in the lunar outpost are expected to be contaminated by lunar dust. NASA established the Lunar Airborne Dust Toxicity Advisory Group (LADTAG) to evaluate the risk of exposure to the dust and to establish safe exposure limits for astronauts working in the lunar habitat. Because the toxicity of lunar dust is not known, LADTAG has recommended investigating its toxicity in the lungs of laboratory animals. After receiving this recommendation, NASA directed the JSC Toxicology Laboratory to determine the pulmonary toxicity of lunar dust in exposed rodents. The rodent pulmonary toxicity studies proposed here are the same as those proposed by the LADTAG. Studies of the pulmonary toxicity of a dust are generally done first in rodents by intratracheal instillation (ITI). This toxicity screening test is then followed by an inhalation study, which requires much more of the test dust and is labor intensive. We succeeded in completing an ITI study on JSC-1 lunar dust simulant in mice (Lam et al., Inhalation Toxicology 14:901-916, 2002, and Inhalation Toxicology 14: 917-928, 2002), and have conducted a pilot ITI study to examine the acute toxicity of an Apollo lunar (highland) dust sample. Preliminary results obtained by examining lung lavage fluid from dust-treated mice show that lunar dust was somewhat toxic (more toxic than TiO2, but less than quartz dust). More extensive studies have been planned to further examine lung lavage fluid for biomarkers of toxicity and lung tissues for histopathological lesions in rodents exposed to aged and activated lunar dust samples. In these studies, reference dusts (TiO2 and quartz) of known toxicities and have industrial exposure limits will be studied in parallel so the relative toxicity of lunar dust can be determined. The ITI results will also be

  3. Exposure level and distribution characteristics of airborne bacteria and fungi in Seoul metropolitan subway stations.

    PubMed

    Kim, Ki Youn; Kim, Yoon Shin; Kim, Daekeun; Kim, Hyeon Tae

    2011-01-01

    The exposure level and distribution characteristics of airborne bacteria and fungi were assessed in the workers' activity areas (station office, bedroom, ticket office and driver's seat) and passengers' activity areas (station precinct, inside the passenger carriage, and platform) of the Seoul metropolitan subway. Among investigated areas, the levels of airborne bacteria and fungi in the workers' bedroom and station precincts were relatively high. No significant difference was found in the concentration of airborne bacteria and fungi between the underground and above ground activity areas of the subway. The genera identified in all subway activity areas with a 5% or greater detection rate were Staphylococcus, Micrococcus, Bacillus and Corynebacterium for airborne bacteria and Penicillium, Cladosporium, Chrysosporium, Aspergillus for airborne fungi. Staphylococcus and Micrococcus comprised over 50% of the total airborne bacteria and Penicillium and Cladosporium comprised over 60% of the total airborne fungi, thus these four genera are the predominant genera in the subway station. PMID:21173524

  4. Pulmonary Toxicity Studies of Lunar Dusts in Rodents

    NASA Technical Reports Server (NTRS)

    Lam, C.-W.; James, J. T.; Taylor, L.; Zeidler-Erdely, P. C.; Castranova, V.

    2009-01-01

    NASA will build an outpost on the Moon for prolonged human habitation and research. The lunar surface is covered by a layer of fine, reactive dust. Astronauts on the Moon will go in and out of the base for various activities, and will inevitably bring some dust into the living quarters. Depressurizing the airlock so that astronauts can exit for outdoor activities could also bring dust inside the airlock to the habitable area. Concerned about the potential health effects on astronauts exposed to airborne lunar dust, NASA directed the JSC Toxicology Laboratory to determine the pulmonary toxicity of lunar dust. The toxicity data also will be needed by toxicologists to establish safe exposure limits for astronauts residing in the lunar habitat and by environmental engineers to design an appropriate dust mitigation strategy. We conducted a study to examine biomarkers of toxicity (inflammation and cytotoxicity) in lung lavage fluids from mice intrapharyngeally instilled with lunar dust samples; we also collected lung tissue from the mice for histopathological examination 3 months after the dust instillation. Reference dusts (TiO2 and quartz) having known toxicities and industrial exposure limits were studied in parallel with lunar dust so that the relative toxicity of lunar dust can be determined. A 6-month histopathology study has been planned. These instillation experiments will be followed by inhalation studies, which are more labor intensive and technologically difficult. The animal inhalation studies will be conducted first with an appropriate lunar dust simulant to ensure that the exposure techniques to be used with actual lunar dust will be successful. The results of these studies collectively will reveal the toxicological risk of exposures and enable us to establish exposure limits on lunar dust for astronauts living in the lunar habitat.

  5. Airborne data acquisition techniques

    SciTech Connect

    Arro, A.A.

    1980-01-01

    The introduction of standards on acceptable procedures for assessing building heat loss has created a dilemma for the contractor performing airborne thermographic surveys. These standards impose specifications on instrumentation, data acquisition, recording, interpretation, and presentation. Under the standard, the contractor has both the obligation of compliance and the requirement of offering his services at a reasonable price. This paper discusses the various aspects of data acquisition for airborne thermographic surveys and various techniques to reduce the costs of this operation. These techniques include the calculation of flight parameters for economical data acquisition, the selection and use of maps for mission planning, and the use of meteorological forecasts for flight scheduling and the actual execution of the mission. The proper consideration of these factors will result in a cost effective data acquisition and will place the contractor in a very competitive position in offering airborne thermographic survey services.

  6. Short-term variability of mineral dust, metals and carbon emission from road dust resuspension

    NASA Astrophysics Data System (ADS)

    Amato, Fulvio; Schaap, Martijn; Denier van der Gon, Hugo A. C.; Pandolfi, Marco; Alastuey, Andrés; Keuken, Menno; Querol, Xavier

    2013-08-01

    Particulate matter (PM) pollution in cities has severe impact on morbidity and mortality of their population. In these cities, road dust resuspension contributes largely to PM and airborne heavy metals concentrations. However, the short-term variation of emission through resuspension is not well described in the air quality models, hampering a reliable description of air pollution and related health effects. In this study we experimentally show that the emission strength of resuspension varies widely among road dust components/sources. Our results offer the first experimental evidence of different emission rates for mineral dust, heavy metals and carbon fractions due to traffic-induced resuspension. Also, the same component (or source) recovers differently in a road in Barcelona (Spain) and a road in Utrecht (The Netherlands). This finding has important implications on atmospheric pollution modelling, mostly for mineral dust, heavy metals and carbon species. After rain events, recoveries were generally faster in Barcelona rather than in Utrecht. The largest difference was found for the mineral dust (Al, Si, Ca). Tyre wear particles (organic carbon and zinc) recovered faster than other road dust particles in both cities. The source apportionment of road dust mass provides useful information for air quality management.

  7. Canyon Dust

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03682 Canyon Dust

    These dust slides are located on the wall of Thithonium Chasma.

    Image information: VIS instrument. Latitude -4.1N, Longitude 275.7E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. Dust Slides

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03677 Linear Clouds

    Dust slides are common in the dust covered region called Lycus Sulci. A large fracture is also visible in this image.

    Image information: VIS instrument. Latitude 28.1N, Longitude 226.3E. 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Dust agglomeration

    NASA Technical Reports Server (NTRS)

    2000-01-01

    John Marshall, an investigator at Ames Research Center and a principal investigator in the microgravity fluid physics program, is studying the adhesion and cohesion of particles in order to shed light on how granular systems behave. These systems include everything from giant dust clouds that form planets to tiny compressed pellets, such as the ones you swallow as tablets. This knowledge should help us control the grains, dust, and powders that we encounter or use on a daily basis. Marshall investigated electrostatic charge in microgravity on the first and second U.S. Microgravity Laboratory shuttle missions to see how grains aggregate, or stick together. With gravity's effects eliminated on orbit, Marshall found that the grains of sand that behaved ever so freely on Earth now behaved like flour. They would just glom together in clumps and were quite difficult to disperse. That led to an understanding of the prevalence of the electrostatic forces. The granules wanted to aggregate as little chains, like little hairs, and stack end to end. Some of the chains had 20 or 30 grains. This phenomenon indicated that another force, what Marshall believes to be an electrostatic dipole, was at work.(The diagram on the right emphasizes the aggregating particles in the photo on the left, taken during the USML-2 mission in 1995.)

  10. Identifying errors in dust models from data assimilation

    NASA Astrophysics Data System (ADS)

    Pope, R. J.; Marsham, J. H.; Knippertz, P.; Brooks, M. E.; Roberts, A. J.

    2016-09-01

    Airborne mineral dust is an important component of the Earth system and is increasingly predicted prognostically in weather and climate models. The recent development of data assimilation for remotely sensed aerosol optical depths (AODs) into models offers a new opportunity to better understand the characteristics and sources of model error. Here we examine assimilation increments from Moderate Resolution Imaging Spectroradiometer AODs over northern Africa in the Met Office global forecast model. The model underpredicts (overpredicts) dust in light (strong) winds, consistent with (submesoscale) mesoscale processes lifting dust in reality but being missed by the model. Dust is overpredicted in the Sahara and underpredicted in the Sahel. Using observations of lighting and rain, we show that haboobs (cold pool outflows from moist convection) are an important dust source in reality but are badly handled by the model's convection scheme. The approach shows promise to serve as a useful framework for future model development.

  11. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  12. Airborne rain mapping radar

    NASA Technical Reports Server (NTRS)

    Wilson, W. J.; Parks, G. S.; Li, F. K.; Im, K. E.; Howard, R. J.

    1988-01-01

    An airborne scanning radar system for remote rain mapping is described. The airborne rain mapping radar is composed of two radar frequency channels at 13.8 and 24.1 GHz. The radar is proposed to scan its antenna beam over + or - 20 deg from the antenna boresight; have a swath width of 7 km; a horizontal spatial resolution at nadir of about 500 m; and a range resolution of 120 m. The radar is designed to be applicable for retrieving rainfall rates from 0.1-60 mm/hr at the earth's surface, and for measuring linear polarization signatures and raindrop's fall velocity.

  13. Interstellar Dust: Contributed Papers

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M. (Editor); Allamandola, Louis J. (Editor)

    1989-01-01

    A coherent picture of the dust composition and its physical characteristics in the various phases of the interstellar medium was the central theme. Topics addressed included: dust in diffuse interstellar medium; overidentified infrared emission features; dust in dense clouds; dust in galaxies; optical properties of dust grains; interstellar dust models; interstellar dust and the solar system; dust formation and destruction; UV, visible, and IR observations of interstellar extinction; and quantum-statistical calculations of IR emission from highly vibrationally excited polycyclic aromatic hydrocarbon (PAH) molecules.

  14. NASA Airborne Lidar July 1991

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar July 1991 Data from the 1991 NASA Langley Airborne Lidar flights following the eruption of Pinatubo in July ... and Osborn [1992a, 1992b]. Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  15. NASA Airborne Lidar May 1992

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar May 1992 An airborne Nd:YAG (532 nm) lidar was operated by the NASA Langley Research Center about a year following the June 1991 eruption of ... Osborn [1992a, 1992b].  Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  16. Exposure to airborne microorganisms and endotoxin in herb processing plants.

    PubMed

    Dutkiewicz, J; Krysińska-Traczyk, E; Skórska, C; Sitkowska, J; Prazmo, Z; Golec, M

    2001-01-01

    Microbiological air sampling was performed in two herb processing plants located in eastern Poland. Air samples for determination of the levels of bacteria, fungi, dust and endotoxin were collected at 14 sites during cleaning, cutting, grinding, sieving, sorting and packing of 11 kinds of herbs (nettle, caraway, birch, celandine, marjoram, mint, peppermint, sage, St. John's wort, calamus, yarrow), used for production of medications, cosmetics and spices. It was found that processing of herbs was associated with a very high pollution of the air with bacteria, fungi, dust and endotoxin. The numbers of microorganisms (bacteria and fungi) in the air of herb processing plants ranged within 40.6-627.4 x 10(3) cfu/m3 (mean +/- S.D = 231.4 +/- 181.0 x 10(3) cfu/m3). The greatest concentrations were noted at the initial stages of production cycle, during cleaning, cutting and grinding of herbs. The numbers of airborne microorganisms were also significantly (p<0.0001) related to the kind of processed herb, being the greatest at processing marjoram, nettle, yarrow and mint. The values of the respirable fraction of airborne microflora in the examined facilities varied within a fairly wide range and were between 14.7-67.7%. The dominant microorganisms in the air of herb processing plants were mesophilic bacteria, among which endospore-forming bacilli (Bacillus spp.) and actinomycetes of the species Streptomyces albus were most numerous. Among Gram-negative bacteria, the most common was endotoxin-producing species Alcaligenes faecalis. Altogether, 37 species or genera of bacteria and 23 species or genera of fungi were identified in the air of herb processing plants, of these, 11 and 10 species or genera respectively were reported as having allergenic and/or immunotoxic properties. The concentrations of dust and bacterial endotoxin in the air of herb processing plants were large with extremely high levels at some sampling sites. The concentrations of airborne dust ranged within 3

  17. Exposure to airborne microorganisms and endotoxin in herb processing plants.

    PubMed

    Dutkiewicz, J; Krysińska-Traczyk, E; Skórska, C; Sitkowska, J; Prazmo, Z; Golec, M

    2001-01-01

    Microbiological air sampling was performed in two herb processing plants located in eastern Poland. Air samples for determination of the levels of bacteria, fungi, dust and endotoxin were collected at 14 sites during cleaning, cutting, grinding, sieving, sorting and packing of 11 kinds of herbs (nettle, caraway, birch, celandine, marjoram, mint, peppermint, sage, St. John's wort, calamus, yarrow), used for production of medications, cosmetics and spices. It was found that processing of herbs was associated with a very high pollution of the air with bacteria, fungi, dust and endotoxin. The numbers of microorganisms (bacteria and fungi) in the air of herb processing plants ranged within 40.6-627.4 x 10(3) cfu/m3 (mean +/- S.D = 231.4 +/- 181.0 x 10(3) cfu/m3). The greatest concentrations were noted at the initial stages of production cycle, during cleaning, cutting and grinding of herbs. The numbers of airborne microorganisms were also significantly (p<0.0001) related to the kind of processed herb, being the greatest at processing marjoram, nettle, yarrow and mint. The values of the respirable fraction of airborne microflora in the examined facilities varied within a fairly wide range and were between 14.7-67.7%. The dominant microorganisms in the air of herb processing plants were mesophilic bacteria, among which endospore-forming bacilli (Bacillus spp.) and actinomycetes of the species Streptomyces albus were most numerous. Among Gram-negative bacteria, the most common was endotoxin-producing species Alcaligenes faecalis. Altogether, 37 species or genera of bacteria and 23 species or genera of fungi were identified in the air of herb processing plants, of these, 11 and 10 species or genera respectively were reported as having allergenic and/or immunotoxic properties. The concentrations of dust and bacterial endotoxin in the air of herb processing plants were large with extremely high levels at some sampling sites. The concentrations of airborne dust ranged within 3

  18. Airborne Fraunhofer Line Discriminator

    NASA Technical Reports Server (NTRS)

    Gabriel, F. C.; Markle, D. A.

    1969-01-01

    Airborne Fraunhofer Line Discriminator enables prospecting for fluorescent materials, hydrography with fluorescent dyes, and plant studies based on fluorescence of chlorophyll. Optical unit design is the coincidence of Fraunhofer lines in the solar spectrum occurring at the characteristic wavelengths of some fluorescent materials.

  19. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  20. Metal dusting

    SciTech Connect

    Edited by K. Natesan

    2004-01-01

    This workshop was held soon after the September 11th incident under a climate of sorrow and uncertainty among the people of the world, in particular the Workshop participants and their host organizations. With considerable help from the partiicpants, the Workshop was conducted as planed and we had excellent participation in spite of the circumstances. A good fraction of the attendees in the Workshop were from abroad and from several industries, indicating the importance and relevance of the subject for the chemical process industry. Degradation of structural metallic alloys by metal dusting has been an issue for over 40 years in the chemical, petrochemical, syngas, and iron ore reduction plants. However, the fundamental scientific reasons for the degradation of complex alloys in high carbon activity environments are not clear. one of the major parameters of importance is the variation in gas chemistry in both the laboratory experiments and in the plant-service environments. the industry has questioned the applicability of the laboratory test data, obtained in low steam environments, in assessment and life prediction for the materials in plant service where the environments contain 25-35% steam. Several other variables such as system pressure, gas flow velocity, incubation time, alloy chemistry, surface finish, and weldments, were also identified in the literature as to having an effect on the initiatino and propagation of metal dusting attack. It is the purpose of this Workshop to establish a forum in which the researchers from scientific and industrial laboratories, alloy manufacturers, end users, and research and development sponsors can exchange information, discuss different points of view, prioritize the issues, and to elaborate on the trends in industry for the future. We believe that we accomplished these goals successfully and sincerely thank the participants for their contributions.

  1. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  2. Dust devil vortices seen by the Mars Pathfinder camera

    USGS Publications Warehouse

    Metzger, S.M.; Carr, J.R.; Johnson, J. R.; Parker, T.J.; Lemmon, M.T.

    1999-01-01

    Discovery of dust devil vortices in Mars Pathfinder (MPF) images reveals a dust entrainment mechanism at work on Mars. Scattering of visible light by dust in the Martian atmosphere creates a pronounced haze, preventing conventional image processing from displaying dust plumes. Spectral differencing techniques have enhanced five localized dust plumes from the general haze in images acquired near midday, which we determine to be dust devils. Processing of 440 nm images highlights dust devils as distinct occultation features against the horizon. The dust devils are interpreted to be 14-79 m wide, 46-350 m tall, travel at 0.5-4.6 m/s, with dust loading of 7E-5 kg m-3, relative to the general haze of 9E-8 kg m-3, and total particulate transport of 2.2 - 700 kg. The vortices match predictions from terrestrial analog studies. Copyright 1999 by the American Geophysical Union.

  3. Dust Complex onboard the ExoMars-2018 lander for investigations of Martian dust dynamics

    NASA Astrophysics Data System (ADS)

    Zakharov, Alexander; Horanyi, Mihaly; Afonin, Valeri; Esposito, Francesca; Seran, Elena; Gotlib, Vladimir; Koepke, Mark; Kuznetsov, Ilya; Lyash, Andrey; Dolnikov, Gennady

    The load of suspended dust in the Martian atmosphere varies dramatically but never drops entirely to zero. Effects of airborne dust contribute to the dynamic and thermodynamic evolution of the atmosphere and its large-scale circulation processes on diurnal, seasonal and annual time-scales. Suspended dust plays a key role in determining the present climate of Mars and probably influenced the past climatic conditions and surface evolution. Atmosphere dust and windblown dust are responsible for erosion, redistribution of dust on the surface, and surface weathering. The mechanisms for dust entrainment in the atmosphere are not completely understood, as the current data available so far do not allow us to identify the efficiency of the various processes. Dust-grain transport on the surface of Mars has never been directly measured despite great interest in and high scientific and technological ramifications of the associated phenomena. This paper describes planned, future investigations of the Martian dust environment made possible by the proposed scientific payload “Dust Complex” (DC) of the ExoMars-2018 mission’s landing platform. DC is a suite of four sensors devoted to the study of Aeolian processes on Mars with a primary aim of monitoring the diurnal, seasonal, and annual dust-environment cycles by Martian-ground-based measurements of dust flux in situ, i.e., in the near-surface atmosphere of Mars. This suite includes 1) an Impact Sensor, for the measurement of the sand-grain dynamics and electrostatics, 2) a particle-counter sensor, MicroMED, for the measurement of airborne dust size distribution and number density, 3) an Electric Probe, for the measurement of the ambient electric field, and 4) a radiofrequency antenna. Besides outlining design details of DC and the characterisation of its capabilities, this presentation reviews various dust effects and dust phenomena that are anticipated to occur in the near-surface environment on Mars and that are possible

  4. Photoreactivation in Airborne Mycobacterium parafortuitum

    PubMed Central

    Peccia, Jordan; Hernandez, Mark

    2001-01-01

    Photoreactivation was observed in airborne Mycobacterium parafortuitum exposed concurrently to UV radiation (254 nm) and visible light. Photoreactivation rates of airborne cells increased with increasing relative humidity (RH) and decreased with increasing UV dose. Under a constant UV dose with visible light absent, the UV inactivation rate of airborne M. parafortuitum cells decreased by a factor of 4 as RH increased from 40 to 95%; however, under identical conditions with visible light present, the UV inactivation rate of airborne cells decreased only by a factor of 2. When irradiated in the absence of visible light, cellular cyclobutane thymine dimer content of UV-irradiated airborne M. parafortuitum and Serratia marcescens increased in response to RH increases. Results suggest that, unlike in waterborne bacteria, cyclobutane thymine dimers are not the most significant form of UV-induced DNA damage incurred by airborne bacteria and that the distribution of DNA photoproducts incorporated into UV-irradiated airborne cells is a function of RH. PMID:11526027

  5. Using NASA EOS in the Arabian and Saharan Deserts to Examine Dust Particle Size and Spectral Signature of Aerosols

    NASA Astrophysics Data System (ADS)

    Brenton, J. C.; Keeton, T.; Barrick, B.; Cowart, K.; Cooksey, K.; Florence, V.; Herdy, C.; Luvall, J. C.; Vasquez, S.

    2012-12-01

    Exposure to high concentrations of airborne particulate matter can have adverse effects on the human respiratory system. Ground-based studies conducted in Iraq have revealed the presence of potential human pathogens in airborne dust. According to the Environmental Protection Agency (EPA), airborne particulate matter below 2.5μm (PM2.5) can cause long-term damage to the human respiratory system. Given the relatively high incidence of new-onset respiratory disorders experienced by US service members deployed to Iraq, this research offers a new glimpse into how satellite remote sensing can be applied to questions related to human health. NASA's Earth Observing System (EOS) can be used to determine spectral characteristics of dust particles, the depth of dust plumes, as well as dust particle sizes. Comparing dust particle size from the Sahara and Arabian Deserts gives insight into the composition and atmospheric transport characteristics of dust from each desert. With the use of NASA SeaWiFS DeepBlue Aerosol, dust particle sizes were estimated using Angström exponent. Brightness Temperature Difference (BTD) equation was used to determine the distribution of particle sizes, the area of the dust storm, and whether silicate minerals were present in the dust. The Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra satellite was utilized in calculating BTD. Minimal research has been conducted on the spectral characteristics of airborne dust in the Arabian and Sahara Deserts. Mineral composition of a dust storm that occurred 17 April 2008 near Baghdad was determined using imaging spectrometer data from the Jet Propulsion Laboratory Spectral Library and EO-1 Hyperion data. Mineralogy of this dust storm was subsequently compared to that of a dust storm that occurred over the Bodélé Depression in the Sahara Desert on 7 June 2003.

  6. Radiative feedback of dust aerosols on the East Asian dust storms

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Zhang, Xiaoye; Gong, Sunling; Chen, Yong; Shi, Guangyu; Li, Wei

    2010-12-01

    A new radiative parameterization scheme of dust aerosol has been developed within a mesoscale dust storm (DS) forecasting model to study the direct radiation of dust aerosol by incorporating both online forecasted dust concentrations and the updated dust reflective index. The radiation-induced temperature variations are fed back online to the model dynamics, resulting in two-way interactions between meteorology and dust aerosols. For a typical DS of 16-18 April 2006 in East Asia, the study shows that the strong extinction by dust leads to significant changes in the radiation flux from surface to the top of atmosphere, which tends to decrease the air temperature in the lower dust aerosol layers but to increase the air temperature in the upper dust aerosol layers. Consequently, variations of 3-D temperature fields reduce the cold air in the upper atmosphere, increase the sea level air pressure, decrease surface wind velocity, and eventually weaken the Mongolian cyclones owing to the blocking effects. These changes, in return, have impacts on the emission, transport, and deposition processes of DS. The interactively simulated total dust emission from the ground is reduced by over 50%, and the 72-hour averaged optical depth of dust aerosols declines by about 33% compared to the one-way model without dust direct radiative feedback, which indicates strong negative feedback effects. The findings of this study also suggest that online calculation of dust direct radiative effects in a mesoscale dust prediction model may lead to an improvement in the prediction of meteorological elements such as temperature, wind, and pressure during the dust events owing to its improved calculation accuracy of regional radiation budgets.

  7. Exposure to grain dust in Great Britain.

    PubMed

    Spankie, Sally; Cherrie, John W

    2012-01-01

    Airborne grain dust is a complex mixture of fragments of organic material from grain, plus mineral matter from soil, and possible insect, fungal, or bacterial contamination or their toxic products, such as endotoxin. In the 1990s, grain workers in Britain were frequently exposed to inhalable dust >10 mg.m(-3) (8 h), with particularly high exposures being found at terminals where grain was imported or exported and in drying operations (personal exposure typically approximately 20 mg.m(-3)). Since then, the industry has made substantial progress in improving the control of airborne dust through better-designed processes, increased automation, and an improved focus on product quality. We have used information from the published scientific literature and a small survey of industry representatives to estimate current exposure levels. These data suggest that current long-term exposure to inhalable dust for most workers is on average less than approximately 3 mg.m(-3), with perhaps 15-20% of individual personal exposures being >10 mg.m(-3). There are no published data from Britain on short-term exposure during cleaning and other tasks. We have estimated average levels for a range of tasks and judge that the highest levels, for example during some cleaning activities and certain process tasks such as loading and packing, are probably approximately10 mg.m(-3). Endotoxin levels were judged likely to be <10⁴ EU m(-3) throughout the industry provided inhalable dust levels are <10 mg.m(-3). There are no published exposure data on mycotoxin, respirable crystalline silica, and mite contamination but these are not considered to present widespread problems in the British industry. Further research should be carried out to confirm these findings.

  8. Dust feed mechanism

    DOEpatents

    Milliman, Edward M.

    1984-01-01

    The invention is a dust feed device for delivery of a uniform supply of dust for long periods of time to an aerosolizing means for production of a dust suspension. The device utilizes at least two tandem containers having spiral brushes within the containers which transport the dust from a supply to the aerosolizer means.

  9. Detection of anthropogenic dust using CALIPSO lidar measurements

    NASA Astrophysics Data System (ADS)

    Huang, J. P.; Liu, J. J.; Chen, B.; Nasiri, S. L.

    2015-10-01

    Anthropogenic dusts are those produced by human activities on disturbed soils, which are mainly cropland, pastureland, and urbanized regions, and are a subset of the total dust load which includes natural sources from desert regions. Our knowledge of anthropogenic dusts is still very limited due to a lack of data. To understand the contribution of anthropogenic dust to the total global dust load, it is important to identify it apart from total dust. In this study, a new technique for distinguishing anthropogenic dust from natural dust is proposed by using Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) dust and planetary boundary layer (PBL) height retrievals along with a land use data set. Using this technique, the global distribution of dust is analyzed and the relative contribution of anthropogenic and natural dust sources to regional and global emissions are estimated. Results reveal that local anthropogenic dust aerosol due to human activity, such as agriculture, industrial activity, transportation, and overgrazing, accounts for about 25 % of the global continental dust load. Of these anthropogenic dust aerosols, more than 53 % come from semi-arid and semi-wet regions. Annual mean anthropogenic dust column burden (DCB) values range from 0.42 g m-2, with a maximum in India, to 0.12 g m-2, with a minimum in North America. A better understanding of anthropogenic dust emission will enable us to focus on human activities in these critical regions and with such knowledge we will be more able to improve global dust models and to explore the effects of anthropogenic emission on radiative forcing, climate change, and air quality in the future.

  10. Detection of anthropogenic dust using CALIPSO lidar measurements

    NASA Astrophysics Data System (ADS)

    Huang, J.; Liu, J.; Chen, B.; Nasiri, S. L.

    2015-04-01

    Anthropogenic dusts are those produced by human activities on disturbed soils, which are mainly cropland, pasture, and urbanized regions and are a subset of the total dust load which includes natural sources from desert regions. Our knowledge of anthropogenic dusts is still very limited due to a lack of data on source distribution and magnitude, and on their effect on radiative forcing which may be comparable to other anthropogenic aerosols. To understand the contribution of anthropogenic dust to the total global dust load and its effect on radiative transfer and climate, it is important to identify them from total dust. In this study, a new technique for distinguishing anthropogenic dust from natural dust is proposed by using Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) dust and planetary boundary layer (PBL) height retrievals along with a land use dataset. Using this technique, the global distribution of dust is analyzed and the relative contribution of anthropogenic and natural dust sources to regional and global emissions are estimated. Results reveal that local anthropogenic dust aerosol due to human activity, such as agriculture, industrial activity, transportation, and overgrazing, accounts for about 25% of the global continental dust load. Of these anthropogenic dust aerosols, more than 53% come from semi-arid and semi-wet regions. Annual mean anthropogenic dust column burden (DCB) values range from 0.42 g m-2 with a maximum in India to 0.12 g m-2 with a minimum in North America. A better understanding of anthropogenic dust emission will enable us to focus on human activities in these critical regions and with such knowledge we will be better able to improve global dust models and to explore the effects of anthropogenic emission on radiative forcing, climate change and air quality in the future.

  11. The Sandia Airborne Computer (SANDAC)

    SciTech Connect

    Nava, E.J.

    1992-06-01

    The Sandia Airborne Computer (SANDAC) is a small, modular, high performance, multiprocessor computer originally designed for aerospace applications. It can use a combination of Motorola 68020 and 68040 based processor modules along with AT&T DSP32C based signal processing modules. The system is designed to use up to 15 processors in almost any combination and a complete system can include up to 20 modules. Depending on the mix of processors, total computational throughput can range from 2.5 to greater than 225 Million Instructions Per Second (MIPS). The system is designed so that processors can access all resources in the machine and the inter-processor communication details are completely transparent to the software. In addition to processors, the system includes input/output, memory, and special function modules. Because of its ease of use, small size, durability, and configuration flexibility, SANDAC has been used on applications ranging from missile navigation, guidance, and control systems to medical imaging systems.

  12. PERSPECTIVE: Dust, fertilization and sources

    NASA Astrophysics Data System (ADS)

    Remer, Lorraine A.

    2006-11-01

    between a model and observations J. Geophys. Res. 111 D06207 (doi:10.1029/2005JD005791) [5] Ginoux P et al 2001 Sources and distribution of dust aerosol simulated with the GOCART model J. Geophys. Res. 106 20255-74 (doi:10.1029/2000JD000053) [6] Prospero J M, Ginoux P, Torres O, Nicholson S E and Gill T E 2002 Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product Rev. Geophys. 40 (1) 1002 (doi:10.1029/2000RG000095) [7] Koren I, Kaufman Y J, Washington R, Todd M C, Rudich Y, Martins J V and Rosenfeld D 2006 The Bodélé depression: a single spot in the Sahara that provides most of the mineral dust to the Amazon forest Environ. Res Lett. 1 014005 (doi:10.1088/1748-9326/1/1/014005) Photo of Lorraine A Remer Lorraine A Remer received a BS degree in atmospheric science from the University of California, Davis, in 1980, an MS degree in oceanography from the Scripps Institution of Oceanography, University of California, San Diego, in 1983, and a PhD degree, also in atmospheric science from the University of California, Davis, in 1991. She became involved with the MODIS retrievals of atmospheric aerosols in 1991, first as a Research Scientist with Science Systems and Applications, Inc., and subsequently with the National Aeronautics and Space Administration, which she joined in 1998. She is an Associate Member of the MODIS Science Team and a Member of the Global Aerosol Climatology Project Science Team.

  13. Aerosol-radiation-cloud and precipitation processes during dust events (Invited)

    NASA Astrophysics Data System (ADS)

    Kallos, G. B.; Solomos, S.; Kushta, J.; Mitsakou, C.; Athanasiadis, P.; Spyrou, C.; Tremback, C.

    2010-12-01

    In places like the Mediterranean region where anthropogenic aerosols coexist with desert dust the aerosol-radiation-cloud processes are rather complicated. The mixture of different age of air pollutants of anthropogenic origin with Saharan dust and sea salt may lead to the formation of other particles with different characteristics. The mixture of the aerosols and gases from anthropogenic and natural origin (desert dust and sea salt) results in the formation of new types of PM with different physico-chemical properties and especially hygroscopicity (e.g. inside clouds or within the marine boundary layer) through heterogeneous processes. The new particle formation has different characteristics and therefore they have different impacts on cloud formation and precipitation. In an attempt to better understand links and feedbacks between air pollution and climate the new Integrated Community Limited Area Modeling System - ICLAMS has been developed. ICLAMS is an enhanced version of RAMS.v6 modeling system. It includes sub-models for the dust and sea salt cycles, gas and aqueous phase chemistry, gas to particle conversion and heterogeneous chemistry processes. All these processes are directly coupled with meteorology. RAMS has an explicit cloud microphysical scheme with eight categories of hydrometeors. The cloud droplets spectrum is explicitly calculated from model meteorology and prognostic CCN and IN properties (total number concentration, size distribution properties and chemical composition). Sulphate coated dust particles are efficient CCN because of their increased hygroscopicity while uncoated dust particles are efficient IN. The photochemical processes are directly linked to the RAMS radiative transfer scheme, which in the new model is RRTM. Absorption of short wave solar radiation from airborne dust leads to heating of the dust layer which can also affect the cloud processes. Mid and low tropospheric warming by dust is one of the new features that the model can

  14. Four Interstellar Dust Candidates from the Stardust Interstellar Dust Collector

    NASA Technical Reports Server (NTRS)

    Westphal, A. J.; Allen, C.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; Butterworth, A. L.; Cloetens, P.; Davis, A. M.; Floss, C.; Flynn, G. J.; Fougeray, P.; Frank, D.; Gainsforth, Z.; Grun, E.; Heck, P. R.; Jillier, J. K.; Hoppe, P.; Howard, L.; Hudson, B.; Huss, G. R.

    2011-01-01

    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approx. 0.1 sq m in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 sq m/day. The Stardust Interstellar Preliminary Examination (ISPE) is a consortium-based project to characterize the collection using nondestructive techniques. The goals and restrictions of the ISPE are described . A summary of analytical techniques is described.

  15. Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Crater wall dust avalanches in southern Arabia Terra.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 10.3, Longitude 24.5 East (335.5 West). 19 meter/pixel resolution.

  16. Dust particle dynamics in atmospheric dust devils

    NASA Astrophysics Data System (ADS)

    Izvekova, Yulia; Popel, Sergey

    2016-04-01

    Dust particle dynamics is modeled in the Dust Devils (DDs). DD is a strong, well-formed, and relatively long-lived whirlwind, ranging from small (half a meter wide and a few meters tall) to large (more than 100 meters wide and more than 1000 meters tall) in Earth's atmosphere. We develop methods for the description of dust particle charging in DDs, discuss the ionization processes in DDs, and model charged dust particle motion. Our conclusions are consistent with the fact that DD can lift a big amount of dust from the surface of a planet into its atmosphere. On the basis of the model we perform calculations and show that DDs are important mechanism for dust uplift in the atmospheres of Earth and Mars. Influence of DD electric field on dynamics of dust particles is investigated. It is shown that influence of the electric field on dust particles trajectories is significant near the ground. At some altitude (more then a quarter of the height of DD) influence of the electric field on dust particles trajectories is negligible. For the calculation of the dynamics of dust electric field can be approximated by effective dipole located at a half of the height of DD. This work was supported by the Russian Federation Presidential Program for State Support of Young Scientists (project no. MK-6935.2015.2).

  17. Comparison of airborne and surface particulate size distributions in specific Hanford Nuclear Facilities

    SciTech Connect

    Ottley, D.B.

    1995-05-01

    Settled dust from nuclear operations may be contaminated with radionuclides and become resuspended and subsequently breathed. This is the predominate radionuclide inhalation hazard scenario in nuclear facilities that have been deactivated and no longer have liquid in their process systems that may become directly airborne in accident situations. Comparisons were made between indoor ambient airborne particulate size distribution and that of resuspended dust that could become contaminated and subsequently airborne during decommissioning operations at selected nuclear facilities on the Hanford Site. Results indicate that only 5% of the particles, by count, above the breathing zone are greater than ten (10) {mu}m in size and that the particulates that could be resuspended into the breathing zone had a mean aerodynamic equivalent diameter of four (4) {mu}m or less.

  18. [Air-borne disease].

    PubMed

    Lameiro Vilariño, Carmen; del Campo Pérez, Victor M; Alonso Bürger, Susana; Felpeto Nodar, Irene; Guimarey Pérez, Rosa; Pérez Alvarellos, Alberto

    2003-11-01

    Respiratory protection is a factor which worries nursing professionals who take care of patients susceptible of transmitting microorganisms through the air more as every day passes. This type of protection covers the use of surgical or hygienic masks against the transmission of infection by airborne drops to the use of highly effective masks or respirators against the transmission of airborne diseases such as tuberculosis or SARS, a recently discovered disease. The adequate choice of this protective device and its correct use are fundamental in order to have an effective protection for exposed personnel. The authors summarize the main protective respiratory devices used by health workers, their characteristics and degree of effectiveness, as well as the circumstances under which each device is indicated for use. PMID:14705591

  19. Global Dust Budgets of the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Matsuura, Mikako

    2013-03-01

    Within galaxies, gas and dust are constantly exchanged between stars and the interstellar medium (ISM). The life-cycle of gas and dust is the key to the evolution of galaxies. Despite its importance, it is has been very difficult to trace the life-cycle of gas and dust via observations. The Spitzer Space Telescope and Herschel Space Observatory have provided a great opportunity to study the life-cycle of the gas and dust in very nearby galaxies, the Magellanic Clouds. AGB stars are more important contributors to the dust budget in the Large Magellanic Cloud (LMC), while in the Small Magellanic Cloud (SMC), SNe are dominant. However, it seems that the current estimates of the total dust production from AGB stars is insufficient to account for dust present in the ISM. Other dust sources are needed, and supernovae are promising sources. Alternatively the time scale of dust lifetime itself needs some revisions, potentially because they could be unevenly distributed in the ISM or clumps.

  20. MLS airborne antenna research

    NASA Technical Reports Server (NTRS)

    Yu, C. L.; Burnside, W. D.

    1975-01-01

    The geometrical theory of diffraction was used to analyze the elevation plane pattern of on-aircraft antennas. The radiation patterns for basic elements (infinitesimal dipole, circumferential and axial slot) mounted on fuselage of various aircrafts with or without radome included were calculated and compared well with experimental results. Error phase plots were also presented. The effects of radiation patterns and error phase plots on the polarization selection for the MLS airborne antenna are discussed.

  1. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  2. Mutagenicity of airborne particles.

    PubMed

    Chrisp, C E; Fisher, G L

    1980-09-01

    The physical and chemical properties of airborne particles are important for the interpretation of their potential biologic significance as genotoxic hazards. For polydisperse particle size distributions, the smallest, most respirable particles are generally the most mutagenic. Particulate collection for testing purposes should be designed to reduce artifact formation and allow condensation of mutagenic compounds. Other critical factors such as UV irradiation, wind direction, chemical reactivity, humidity, sample storage, and temperature of combustion are important. Application of chemical extraction methods and subsequent class fractionation techniques influence the observed mutagenic activity. Particles from urban air, coal fly ash, automobile and diesel exhaust, agricultural burning and welding fumes contain primarily direct-acting mutagens. Cigarette smoke condensate, smoke from charred meat and protein pyrolysates, kerosene soot and cigarette smoke condensates contain primarily mutagens which require metabolic activation. Fractionation coupled with mutagenicity testing indicates that the most potent mutagens are found in the acidic fractions of urban air, coal fly ash, and automobile diesel exhaust, whereas mutagens in rice straw smoke and cigarette smoke condensate are found primarily in the basic fractions. The interaction of the many chemical compounds in complex mixtures from airborne particles is likely to be important in determining mutagenic or comutagenic potentials. Because the mode of exposure is generally frequent and prolonged, the presence of tumor-promoting agents in complex mixtures may be a major factor in evaluation of the carcinogenic potential of airborne particles.

  3. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  4. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  5. [The preparation and characterization of fine dusts carried out in the Clinica del Lavoro di Milano in support of experimental studies].

    PubMed

    Occella, E; Maddalon, G; Peruzzo, G F; Foà, V

    1999-01-01

    This paper aims to illustrate the conditions selected at the Clinica del Lavoro of the University of Milan to prepare and analyze a large number of fine dust samples produced over a period of about 50 years, that were initially used for studies within the Clinic performed in its own facilities, and since 1956 were sent to other Italian and overseas laboratories (Luxembourg, UK, Germany, Norway, Sweden, South Korea, USA). The total quantity of material distributed (with maximum size 7-10 microns) was about 2 kg and consisted of the following mineral and artificial compounds: quartz, HF-treated quartz, tridymite, HF-treated tridymite, cristobalite, chromite, anthracite, quartz sand for foundry moulds, sand from the Lybian desert, vitreous silica, pumice, cement, as well small quantities of metallic oxides, organic resins, chrysotile, crocidolite, fibres (vitreous, cotton and polyamidic). About half of the entire quantity of dusts produced consisted of partially HF-treated tridymite. Initially, research on the etiology of silicosis used quartz dust samples, simply sieved or ventilated (consisting of classes finer than 0.04 mm, containing a 15-20% respirable fraction). From 1956 to 1960 the dusts were produced by manual grinding in an agate mortar, below about 10 microns, starting from quartz from Quincinetto (near Ivrea, Province of Turin), containing about 99.5% quartz: particle size and composition were checked using an optical-petrographic technique, with identification of the free and total silica content. Subsequently, the dusts used for biological research were obtained by grinding coarse material with a cast iron pestle and planetary mills, agate and corundum jars. The grinding products were sized by means of centrifugal classification, using the selector developed by N. Zurlo, ensuring control of dust size both optically and by means of wet levigators and hydraulic classifiers (in cooperation with the Institute of Mines of Turin Polytechnic School). After 1990

  6. Metals in dust fractions emitted at mechanical workstations.

    PubMed

    Kondej, Dorota; Gawęda, Ewa

    2012-01-01

    Workers at metal machining workstations are exposed to airborne dust particles containing metals and their compounds. Their harmful impact on the workers' health depends on both their chemical composition and their distribution. The aim of this study was to determine the content of metals in dust fractions emitted in the process of mechanical machining of products made of brass, steel and cast iron. Samples taken during grinding, turning and drilling were tested. The concentration of metals in dust fractions was determined with atomic absorption spectrometry. The content of iron, manganese, chromium, zinc, lead, copper and nickel in the dust fractions was highly differentiated depending on the size of the particles, the material and the processes used.

  7. Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients.

    PubMed

    Esselborn, Michael; Wirth, Martin; Fix, Andreas; Tesche, Matthias; Ehret, Gerhard

    2008-01-20

    An airborne high spectral resolution lidar (HSRL) based on an iodine absorption filter and a high-power frequency-doubled Nd:YAG laser has been developed to measure backscatter and extinction coefficients of aerosols and clouds. The instrument was operated aboard the Falcon 20 research aircraft of the German Aerospace Center (DLR) during the Saharan Mineral Dust Experiment in May-June 2006 to measure optical properties of Saharan dust. A detailed description of the lidar system, the analysis of its data products, and measurements of backscatter and extinction coefficients of Saharan dust are presented. The system errors are discussed and airborne HSRL results are compared to ground-based Raman lidar and sunphotometer measurements.

  8. Airborne Measurements of Aerosol Size Distributions During PACDEX

    NASA Astrophysics Data System (ADS)

    Rogers, D. C.; Gandrud, B.; Campos, T.; Kok, G.; Stith, J.

    2007-12-01

    The Pacific Dust Experiment (PACDEX) is an airborne project that attempts to characterize the indirect aerosol effect by tracing plumes of dust and pollution across the Pacific Ocean. This project occurred during April-May 2007 and used the NSF/NCAR HIAPER research aircraft. When a period of strong generation of dust particles and pollution was detected by ground-based and satellite sensors, then the aircraft was launched from Colorado to Alaska, Hawaii, and Japan. Its mission was to intercept and track these plumes from Asia, across the Pacific Ocean, and ultimately to the edges of North America. For more description, see the abstract by Stith and Ramanathan (this conference) and other companion papers on PACDEX. The HIAPER aircraft carried a wide variety of sensors for measuring aerosols, cloud particles, trace gases, and radiation. Sampling was made in several weather regimes, including clean "background" air, dust and pollution plumes, and regions with cloud systems. Altitude ranges extended from 100 m above the ocean to 13.4 km. This paper reports on aerosol measurements made with a new Ultra-High Sensitivity Aerosol Spectrometer (UHSAS), a Radial Differential Mobility Analyzer (RDMA), a water-based CN counter, and a Cloud Droplet Probe (CDP). These cover the size range 10 nm to 10 um diameter. In clear air, dust was detected with the UHSAS and CDP. Polluted air was identified with high concentrations of carbon monoxide, ozone, and CN. Aerosol size distributions will be presented, along with data to define the context of weather regimes.

  9. Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States

    PubMed Central

    Prospero, Joseph M.

    1999-01-01

    Soil dust is a major constituent of airborne particles in the global atmosphere. Dust plumes frequently cover huge areas of the earth; they are one of the most prominent and commonly visible features in satellite imagery. Dust is believed to play a role in many biogeochemical processes, but the importance of dust in these processes is not well understood because of the dearth of information about the global distribution of dust and its physical, chemical, and mineralogical properties. This paper describes some features of the large-scale distribution of dust and identifies some of the geological characteristics of important source areas. The transport of dust from North Africa is presented as an example of possible long-range dust effects, and the impact of African dust on environmental processes in the western North Atlantic and the southeastern United States is assessed. Dust transported over long distances usually has a mass median diameter <10 μm. Small wind-borne soil particles show signs of extensive weathering; consequently, the physical and chemical properties of the particles will greatly depend on the weathering history in the source region and on the subsequent modifications that occur during transit in the atmosphere (typically a period of a week or more). To fully understand the role of dust in the environment and in human health, mineralogists will have to work closely with scientists in other disciplines to characterize the properties of mineral particles as an ensemble and as individual particles especially with regard to surface characteristics. PMID:10097049

  10. Long-Range Transport of Mineral Dust in the Global Atmosphere: Impact of African Dust on the Environment of the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Prospero, Joseph M.

    1999-03-01

    Soil dust is a major constituent of airborne particles in the global atmosphere. Dust plumes frequently cover huge areas of the earth; they are one of the most prominent and commonly visible features in satellite imagery. Dust is believed to play a role in many biogeochemical processes, but the importance of dust in these processes is not well understood because of the dearth of information about the global distribution of dust and its physical, chemical, and mineralogical properties. This paper describes some features of the large-scale distribution of dust and identifies some of the geological characteristics of important source areas. The transport of dust from North Africa is presented as an example of possible long-range dust effects, and the impact of African dust on environmental processes in the western North Atlantic and the southeastern United States is assessed. Dust transported over long distances usually has a mass median diameter <10 μ m Small wind-borne soil particles show signs of extensive weathering; consequently, the physical and chemical properties of the particles will greatly depend on the weathering history in the source region and on the subsequent modifications that occur during transit in the atmosphere (typically a period of a week or more). To fully understand the role of dust in the environment and in human health, mineralogists will have to work closely with scientists in other disciplines to characterize the properties of mineral particles as an ensemble and as individual particles especially with regard to surface characteristics.

  11. Arabian Red Sea coastal soils as potential mineral dust sources

    NASA Astrophysics Data System (ADS)

    Jish Prakash, P.; Stenchikov, Georgiy; Tao, Weichun; Yapici, Tahir; Warsama, Bashir; Engelbrecht, Johann P.

    2016-09-01

    Both Moderate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) satellite observations suggest that the narrow heterogeneous Red Sea coastal region is a frequent source of airborne dust that, because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content and particle size distributions. Airborne dust inevitably carries the mineralogical and chemical signature of a parent soil. The existing soil databases are too coarse to resolve the small but important coastal region. The purpose of this study is to better characterize the mineralogical, chemical and physical properties of soils from the Arabian Red Sea coastal plain, which in turn will help to improve assessment of dust effects on the Red Sea, land environmental systems and urban centers. Thirteen surface soils from the hot-spot areas of windblown mineral dust along the Red Sea coastal plain were sampled for analysis. Analytical methods included optical microscopy, X-ray diffraction (XRD), inductively coupled plasma optical emission spectrometry (ICP-OES), ion chromatography (IC), scanning electron microscopy (SEM) and laser particle size analysis (LPSA). We found that the Red Sea coastal soils contain major components of quartz and feldspar, as well as lesser but variable amounts of amphibole, pyroxene, carbonate, clays and micas, with traces of gypsum, halite, chlorite, epidote and oxides. The range of minerals in the soil samples was ascribed to the variety of igneous and metamorphic provenance rocks of the Arabian Shield forming the escarpment to the east of the Red Sea coastal plain. The analysis revealed that the samples contain compounds of nitrogen, phosphorus and iron that are essential nutrients to marine life. The analytical results from this study will provide a valuable input into dust emission models used in climate

  12. Sources, solubility, and acid processing of aerosol iron and phosphorous over the South China Sea: East Asian dust and pollution outflows vs. Southeast Asian biomass burning

    NASA Astrophysics Data System (ADS)

    Hsu, S.-C.; Gong, G.-C.; Shiah, F.-K.; Hung, C.-C.; Kao, S.-J.; Zhang, R.; Chen, W.-N.; Chen, C.-C.; Chou, C. C.-K.; Lin, Y.-C.; Lin, F.-J.; Lin, S.-H.

    2014-08-01

    Iron and phosphorous are essential to marine microorganisms in vast regions in oceans worldwide. Atmospheric inputs are important allochthonous sources of Fe and P. The variability in airborne Fe deposition is hypothesized to serve an important function in previous glacial-interglacial cycles, contributing to the variability in atmospheric CO2 and ultimately the climate. Understanding the mechanisms underlying the mobilization of airborne Fe and P from insoluble to soluble forms is critical to evaluate the biogeochemical effects of these elements. In this study, we present a robust power-law correlation between fractional Fe solubility and non-sea-salt-sulfate / Total-Fe (nss-sulfate / FeT) molar ratio independent of distinct sources of airborne Fe of natural and/or anthropogenic origins over the South China Sea. This area receives Asian dust and pollution outflows and Southeast Asian biomass burning. This correlation is also valid for nitrate and total acids, demonstrating the significance of acid processing in enhancing Fe mobilization. Such correlations are also found for P, yet source dependent. These relationships serve as straightforward parameters that can be directly incorporated into available atmosphere-ocean coupling models that facilitate the assessment of Fe and P fertilization effects. Although biomass burning activity may supply Fe to the bioavailable Fe pool, pyrogenic soils are possibly the main contributors, not the burned plants. This finding warrants a multidisciplinary investigation that integrates atmospheric observations with the resulting biogeochemistry in the South China Sea, which is influenced by atmospheric forcings and nutrient dynamics with monsoons.

  13. Tracing geogenic and anthropogenic sources in urban dusts: Insights from lead isotopes

    NASA Astrophysics Data System (ADS)

    Del Rio-Salas, R.; Ruiz, J.; De la O-Villanueva, M.; Valencia-Moreno, M.; Moreno-Rodríguez, V.; Gómez-Alvarez, A.; Grijalva, T.; Mendivil, H.; Paz-Moreno, F.; Meza-Figueroa, D.

    2012-12-01

    Tracing the source of metals in the environment is critical to understanding their pollution level and fate. Geologic materials are an important source of airborne particulate matter, but the contribution of contaminated soil to concentrations of Pb in airborne dust is not yet widely documented. To examine the potential significance of this mechanism, surface soil samples were collected, as well as wind-transported dust trapped at 1 and 2 m height at seven different locations including residential, industrial, high-traffic and rural sites. Samples of dust deposited on roofs from 24 schools were also obtained and analyzed for Pb isotope ratios. Spatial distribution of Pb of airborne and sedimented dust suggests a process dominated by re-suspension/sedimentation, which was controlled by erosion, traffic and topography of the urban area. Anthropogenic lead input in the city grades outward the urban zone toward geogenic values. Our results shows that Pb-isotopic signatures of leaded gasoline are imprinted in dust sedimented on roofs. Considering that leaded-gasoline has not been in use in Mexico since two decades ago, this signature shows not only a Pb-legacy in soil, but also a re-suspension process affecting air column below 3 m in height. The combination of the 207Pb/206Pb data of the surrounding rocks and urban dust, reveal three well-defined zones with remarkable anthropogenic influence, which correspond to the oldest urban sectors. This work highlights the importance of spatial characterization of metals in particles suspended below a height of 3 m of the airborne column, a fact that should be considered to identify exposure paths to humans and the potential risks. Lead isotope signatures allowed the identification of geogenic and anthropogenic emission sources for dust, a matter that deserves consideration in the efforts to control airborne metal emissions.

  14. Pantoea agglomerans: a mysterious bacterium of evil and good. Part II--Deleterious effects: Dust-borne endotoxins and allergens--focus on grain dust, other agricultural dusts and wood dust.

    PubMed

    Dutkiewicz, Jacek; Mackiewicz, Barbara; Lemieszek, Marta Kinga; Golec, Marcin; Skórska, Czesława; Góra-Florek, Anna; Milanowski, Janusz

    2016-01-01

    Pantoea agglomerans, a Gram-negative bacterium developing in a variety of plants as epiphyte or endophyte is particularly common in grain and grain dust, and has been identified by an interdisciplinary group from Lublin, eastern Poland, as a causative agent of work-related diseases associated with exposure to grain dust and other agricultural dusts. The concentration of P. agglomerans in grain as well as in the settled grain and flour dust was found to be high, ranging from 10(4)-10(8) CFU/g, while in the air polluted with grain or flour dust it ranged from 10(3)-10(5) CFU/m(3) and formed 73.2-96% of the total airborne Gram-negative bacteria. The concentration of P. agglomerans was also relatively high in the air of the facilities processing herbs and other plant materials, while it was lower in animal farms and in wood processing facilities. Pantoea agglomerans produces a biologically-potent endotoxin (cell wall lipopolysaccharide, LPS). The significant part of this endotoxin occurs in dusts in the form of virus-sized globular nanoparticles measuring 10-50 nm that could be described as the 'endotoxin super-macromolecules'. A highly significant relationship was found (R=0.804, P=0.000927) between the concentration of the viable P. agglomerans in the air of various agricultural and wood industry settings and the concentration of bacterial endotoxin in the air, as assessed by the Limulus test. Although this result may be interfered by the presence of endotoxin produced by other Gram-negative species, it unequivocally suggests the primary role of the P. agglomerans endotoxin as an adverse agent in the agricultural working environment, causing toxic pneumonitis (ODTS). Numerous experiments by the inhalation exposure of animals to various extracts of P. agglomerans strains isolated from grain dust, including endotoxin isolated with trichloroacetic acid (LPS-TCA), endotoxin nanoparticles isolated in sucrose gradient (VECN), and mixture of proteins and endotoxin obtained

  15. Pantoea agglomerans: a mysterious bacterium of evil and good. Part II--Deleterious effects: Dust-borne endotoxins and allergens--focus on grain dust, other agricultural dusts and wood dust.

    PubMed

    Dutkiewicz, Jacek; Mackiewicz, Barbara; Lemieszek, Marta Kinga; Golec, Marcin; Skórska, Czesława; Góra-Florek, Anna; Milanowski, Janusz

    2016-01-01

    Pantoea agglomerans, a Gram-negative bacterium developing in a variety of plants as epiphyte or endophyte is particularly common in grain and grain dust, and has been identified by an interdisciplinary group from Lublin, eastern Poland, as a causative agent of work-related diseases associated with exposure to grain dust and other agricultural dusts. The concentration of P. agglomerans in grain as well as in the settled grain and flour dust was found to be high, ranging from 10(4)-10(8) CFU/g, while in the air polluted with grain or flour dust it ranged from 10(3)-10(5) CFU/m(3) and formed 73.2-96% of the total airborne Gram-negative bacteria. The concentration of P. agglomerans was also relatively high in the air of the facilities processing herbs and other plant materials, while it was lower in animal farms and in wood processing facilities. Pantoea agglomerans produces a biologically-potent endotoxin (cell wall lipopolysaccharide, LPS). The significant part of this endotoxin occurs in dusts in the form of virus-sized globular nanoparticles measuring 10-50 nm that could be described as the 'endotoxin super-macromolecules'. A highly significant relationship was found (R=0.804, P=0.000927) between the concentration of the viable P. agglomerans in the air of various agricultural and wood industry settings and the concentration of bacterial endotoxin in the air, as assessed by the Limulus test. Although this result may be interfered by the presence of endotoxin produced by other Gram-negative species, it unequivocally suggests the primary role of the P. agglomerans endotoxin as an adverse agent in the agricultural working environment, causing toxic pneumonitis (ODTS). Numerous experiments by the inhalation exposure of animals to various extracts of P. agglomerans strains isolated from grain dust, including endotoxin isolated with trichloroacetic acid (LPS-TCA), endotoxin nanoparticles isolated in sucrose gradient (VECN), and mixture of proteins and endotoxin obtained

  16. Microbial Contents of Vacuum Cleaner Bag Dust and Emitted Bioaerosols and Their Implications for Human Exposure Indoors

    PubMed Central

    Veillette, Marc; Knibbs, Luke D.; Pelletier, Ariane; Charlebois, Remi; Blais Lecours, Pascale; He, Congrong; Morawska, Lidia

    2013-01-01

    Vacuum cleaners can release large concentrations of particles, both in their exhaust air and from resuspension of settled dust. However, the size, variability, and microbial diversity of these emissions are unknown, despite evidence to suggest they may contribute to allergic responses and infection transmission indoors. This study aimed to evaluate bioaerosol emission from various vacuum cleaners. We sampled the air in an experimental flow tunnel where vacuum cleaners were run, and their airborne emissions were sampled with closed-face cassettes. Dust samples were also collected from the dust bag. Total bacteria, total archaea, Penicillium/Aspergillus, and total Clostridium cluster 1 were quantified with specific quantitative PCR protocols, and emission rates were calculated. Clostridium botulinum and antibiotic resistance genes were detected in each sample using endpoint PCR. Bacterial diversity was also analyzed using denaturing gradient gel electrophoresis (DGGE), image analysis, and band sequencing. We demonstrated that emission of bacteria and molds (Penicillium/Aspergillus) can reach values as high as 1E5 cell equivalents/min and that those emissions are not related to each other. The bag dust bacterial and mold content was also consistent across the vacuums we assessed, reaching up to 1E7 bacterial or mold cell equivalents/g. Antibiotic resistance genes were detected in several samples. No archaea or C. botulinum was detected in any air samples. Diversity analyses showed that most bacteria are from human sources, in keeping with other recent results. These results highlight the potential capability of vacuum cleaners to disseminate appreciable quantities of molds and human-associated bacteria indoors and their role as a source of exposure to bioaerosols. PMID:23934489

  17. Microbial contents of vacuum cleaner bag dust and emitted bioaerosols and their implications for human exposure indoors.

    PubMed

    Veillette, Marc; Knibbs, Luke D; Pelletier, Ariane; Charlebois, Remi; Blais Lecours, Pascale; He, Congrong; Morawska, Lidia; Duchaine, Caroline

    2013-10-01

    Vacuum cleaners can release large concentrations of particles, both in their exhaust air and from resuspension of settled dust. However, the size, variability, and microbial diversity of these emissions are unknown, despite evidence to suggest they may contribute to allergic responses and infection transmission indoors. This study aimed to evaluate bioaerosol emission from various vacuum cleaners. We sampled the air in an experimental flow tunnel where vacuum cleaners were run, and their airborne emissions were sampled with closed-face cassettes. Dust samples were also collected from the dust bag. Total bacteria, total archaea, Penicillium/Aspergillus, and total Clostridium cluster 1 were quantified with specific quantitative PCR protocols, and emission rates were calculated. Clostridium botulinum and antibiotic resistance genes were detected in each sample using endpoint PCR. Bacterial diversity was also analyzed using denaturing gradient gel electrophoresis (DGGE), image analysis, and band sequencing. We demonstrated that emission of bacteria and molds (Penicillium/Aspergillus) can reach values as high as 1E5 cell equivalents/min and that those emissions are not related to each other. The bag dust bacterial and mold content was also consistent across the vacuums we assessed, reaching up to 1E7 bacterial or mold cell equivalents/g. Antibiotic resistance genes were detected in several samples. No archaea or C. botulinum was detected in any air samples. Diversity analyses showed that most bacteria are from human sources, in keeping with other recent results. These results highlight the potential capability of vacuum cleaners to disseminate appreciable quantities of molds and human-associated bacteria indoors and their role as a source of exposure to bioaerosols.

  18. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    PHARUS (phased array universal SAR) is an airborne SAR concept which is being developed in the Netherlands. The PHARUS system differs from other airborne SARs by the use of a phased array antenna, which provides both for the flexibility in the design as well as for a compact, light-weight instrument that can be carried on small aircraft. The concept allows for the construction of airborne SAR systems on a common generic basis but tailored to specific user needs and can be seen as a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna. The whole approach is aimed at providing an economic and yet technically sophisticated solution to remote sensing or surveying needs of a specific user. The solid state phased array antenna consists of a collection of radiating patches; the design flexibility for a large part resides in the freedom to choose the number of patches, and thereby the essential radar performance parameters such as resolution and swath width. Another consequence of the use of the phased array antenna is the system's compactness and the possibility to rigidly mount it on a small aircraft. The use of small aircraft of course considerably improves the cost/benefit ratio of the use of airborne SAR. Flight altitude of the system is flexible between about 7,000 and 40,000 feet, giving much operational freedom within the meteo and airspace control limits. In the PHARUS concept the airborne segment is complemented by a ground segment, which consists of a SAR processor, possibly extended by a matching image processing package. (A quick look image is available in real-time on board the aircraft.) The SAR processor is UNIX based and runs on easily available hardware (SUN station). Although the additional image processing software is available, the SAR processing software is nevertheless designed to be able to interface with commercially available image processing software, as well as being able

  19. How much dust does Enceladus eject?

    NASA Astrophysics Data System (ADS)

    Kempf, Sascha; Horanyi, Mihaly; Schmidt, Jürgen; Southworth, Ben

    2015-04-01

    There is an ongoing argument how much dust per second the ice volcanoes on Saturn's ice moon Enceladus eject. By adjusting their plume model to the dust flux measured by the Cassini dust detector during the close Enceladus flyby in 2005, as well as to the plume brightness in Cassini imaging, Schmidt et al. (2008) obtained a total dust production rate in the plumes of about 5 kg/s. On the other hand, Ingersoll and Ewald (2011) derived a dust production rate of 51 kg/s from photometry of very high phase-angle images of the plume, a method that is sensitive also to particles in the size range of microns and larger. Knowledge of the production rate is essential for estimating the dust to gas mass ratio, which in turn is an important constraint for finding the plume source mechanism. Here we report on numerical simulations of the Enceladus dust plume. We run a large number of dynamical simulations including gravity and Lorentz force to investigate the earliest phase of the ring particle life span. The magnetic field in the vicinity of Enceladus is based on the model by Simon et al. (2012). The evolution of the electrostatic charge carried by the initially uncharged grains is treated self-consistently. Our numerical simulations reproduce dust measurements by the Cassini Cosmic Dust Analyzer (CDA) during Cassini plume traversals as well as the snowfall pattern derived from ISS observations of the Enceladus surface (Schenk et al, 2011, EPSC abstract). Based on our simulation results we are able to draw conclusions about the dust production rate as well as wether the Enceladus dust plume constitutes a dusty plasma.

  20. Allergies, asthma, and dust

    MedlinePlus

    ... much dust. Dust particles collect in fabrics and carpets. If you can, get rid of fabric or ... are covered in cloth. Replace wall-to-wall carpet with wood or other hard flooring. Since mattresses, ...

  1. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  2. Chemical speciation, human health risk assessment and pollution level of selected heavy metals in urban street dust of Shiraz, Iran

    NASA Astrophysics Data System (ADS)

    Keshavarzi, Behnam; Tazarvi, Zahra; Rajabzadeh, Mohammad Ali; Najmeddin, Ali

    2015-10-01

    The distribution, pollution level, sources and health risk of Hg, As, Cd, Cu, Cr, Ni, Mn, Fe, Pb, Sb and Zn in urban street dust were investigated. X-ray diffraction analysis of dust samples shows that the mineralogy of airborne dusts is dominated by calcite, dolomite and quartz. The total concentration of trace elements across the sampling sites ranged from 36.8 to 234.3 mg kg-1 for Pb, 0.004-4.504 mg kg-1 for Hg, 160.9-778.3 mg kg-1 for Zn, 245-652 mg kg-1 for Mn, 39.4-117.9 mg kg-1 for Ni, 31.6-105.9 mg kg-1 for Cr, 49.8-232.5 mg kg-1 for Cu, 5.3-8.6 mg kg-1 for As, 0.31-0.85 mg kg-1 for Cd, 0.76-9.45 mg kg-1 for Sb, and 16,300-24,900 mg kg-1 for Fe. The enrichment factor results reveal the following order: Cu > Hg > Sb > Zn > Pb > Ni > Cr > As > Mn > Cd > Fe. Among the measured elements, the highest mobility factor belongs to Pb (79.2%), Hg (74.6%), Zn (64.1%) and Mn (56.4%). According to the calculated Hazard Quotient (HQ) and Hazard Index (HI), special attention should be paid to Hg, Pb, Zn, and Mn in the street dusts of Shiraz. Multivariate statistics indicate that traffic, natural soil particles and industrial activities are likely to be the main sources of heavy metals in Shiraz street dusts.

  3. Lipid biomarker analysis for the quantitative analysis of airborne microorganisms

    SciTech Connect

    Macnaughton, S.J.; Jenkins, T.L.; Cormier, M.R.

    1997-08-01

    There is an ever increasing concern regarding the presence of airborne microbial contaminants within indoor air environments. Exposure to such biocontaminants can give rise to large numbers of different health effects including infectious diseases, allergenic responses and respiratory problems, Biocontaminants typically round in indoor air environments include bacteria, fungi, algae, protozoa and dust mites. Mycotoxins, endotoxins, pollens and residues of organisms are also known to cause adverse health effects. A quantitative detection/identification technique independent of culturability that assays both culturable and non culturable biomass including endotoxin is critical in defining risks from indoor air biocontamination. Traditionally, methods employed for the monitoring of microorganism numbers in indoor air environments involve classical culture based techniques and/or direct microscopic counting. It has been repeatedly documented that viable microorganism counts only account for between 0.1-10% of the total community detectable by direct counting. The classic viable microbiologic approach doe`s not provide accurate estimates of microbial fragments or other indoor air components that can act as antigens and induce or potentiate allergic responses. Although bioaerosol samplers are designed to damage the microbes as little as possible, microbial stress has been shown to result from air sampling, aerosolization and microbial collection. Higher collection efficiency results in greater cell damage while less cell damage often results in lower collection efficiency. Filtration can collect particulates at almost 100% efficiency, but captured microorganisms may become dehydrated and damaged resulting in non-culturability, however, the lipid biomarker assays described herein do not rely on cell culture. Lipids are components that are universally distributed throughout cells providing a means to assess independent of culturability.

  4. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown.

  5. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  6. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown. PMID:23406937

  7. The properties of the Lunar dust exosphere

    NASA Astrophysics Data System (ADS)

    Kempf, S.; Gruen, E.; Horanyi, M.; Srama, R.; Szalay, J.; Sternovsky, Z.

    2014-12-01

    During close flybys of the Galileo spacecraft on the Jovian moon Ganymede, the onboard dust detector discovered that the moon is wrapped in a faint dust cloud. The generation of these dust clouds is a general phenomenon - all airless bodies in the solar system are expected to maintain a dusty, surface bound exosphere due to the continual bombardment by micrometeoroids of interplanetary or even interstellar origin. The Galilean moons Europa and Callisto were found to have dust atmospheres as well. The Cassini dust detector CDA provided some evidence for dust exospheres around Saturn's ice moons Enceladus and Rhea, and even Pluto and its moon Charon were proposed to have a dust exosphere. Impacts of fast interplanetary meteoroids with the satellites' surfaces produce ejecta particles populate tenuous clouds around the moons. This process is very efficient: a typical interplanetary 10-8 kg micrometeoroid impacting the Earth' Moon produces a large number of dust particles, whose total mass is about 650 times that of the impactor. The ejecta particles move on bound trajectories, most of which have lower initial speeds than the moon's escape velocity and re-collide with the surface. Particles ejected fast enough to escape from the moon's gravity may form tenuous dust rings such as Jupiter's gossamer rings. The Lunar Dust EXperiment (LDEX) on the Lunar Atmosphere and Dust Environment Explorer (LADEE) is the first instrument flown in the vicinity of the Moon, which is sufficiently sensitive to observe the lunar dust exosphere. The spacecraft was launched in September 2013 and operated about the Moon on a low altitude orbit between October 2013 and April 2014. The collected data set is larger than any other existing observation of a dust exospheres by orders of magnitudes and deepened our insight into the physics of this important phenomenon. This talk will report about first insights into the dynamical properties of the Lunar dust exosphere based on a in-depth analysis of

  8. Niamey Dust Observations

    DOE Data Explorer

    Flynn, Connor

    2008-10-01

    Niamey aerosol are composed of two main components: dust due to the proximity of the Sahara Desert, and soot from local and regional biomass burning. The purpose of this data product is to identify when the local conditions are dominated by the dust component so that the properties of the dust events can be further studied.

  9. Middle East Dust

    Atmospheric Science Data Center

    2013-04-16

    ... (nadir) camera. Here only some of the dust over eastern Syria and southeastern Turkey can be discerned. The dust is much more obvious ... October 18, 2002 - A large dust plume extends across Syria and Turkey. project:  MISR category:  ...

  10. China Dust and Sand

    Atmospheric Science Data Center

    2013-04-16

    ... article title:  Dust and Sand Sweep Over Northeast China     View Larger Image ... these views of the dust and sand that swept over northeast China on March 10, 2004. Information on the height of the dust and an ...

  11. Dust in the Universe

    ERIC Educational Resources Information Center

    Hemenway, Mary Kay; Armosky, Brad J.

    2004-01-01

    Space is seeming less and less like empty space as new discoveries and reexaminations fill in the gaps. And, ingenuity and technology, like the Spitzer Space Telescope, is allowing examination of the far reaches of the Milky Way and beyond. Even dust is getting its due, but not the dust everyone is familiar with. People seldom consider the dust in…

  12. Effect of mixed dust on sinter properties

    SciTech Connect

    Cho, Y.H.; Moon, S.M.; Jhung, S.S.

    1996-12-31

    In recent years low grade ion ores such as limonite and dusts containing iron oxides are being increasingly used in the sintering process. The regulations for pollution control are being more severely strengthened year by year, therefore, companies are facing the important issue of producing high quality sinters using low grade iron ores with the least environmental contamination. 250 thousand tons of mixed dust corresponding to 25% of the annual total dusts generated at Pohang steel works are being reused in sinter plants. The dusts collected by DL-sinter machine, LD-converter, BF-ore bin and incinerator are transported to the open yard for drying. They are mixed according to the relatively constant ratio produced by the above dust source and added to the mixed raw materials for sintering. The added quantity of mixed dust was so small (average 1.8 wt.%) compared with the total raw mix that the authors had little interest and no research result has yet been achieved. In this research, therefore, under the similar conditions to the actual operation in the sinter plant, sintering pot tests were carried out while changing the added quantity of mixed dust. The physical and chemical properties of the sample sinter were investigated and the results are presented in this report.

  13. Investigating the Effects of Water Ice Cloud Radiative Forcing on the Predicted Patterns and Strength of Dust Lifting on Mars

    NASA Astrophysics Data System (ADS)

    Kahre, Melinda A.; Hollingsworth, Jeffery L.; Haberle, Robert M.

    2014-11-01

    The dust cycle is critical for the current Mars climate system because airborne dust significantly influences the thermal and dynamical structure of the atmosphere. The atmospheric dust loading varies with season and exhibits variability on a range of spatial and temporal scales. Until recently, interactive dust cycle modeling studies that include the lifting, transport, and sedimentation of radiatively active dust have not included the formation or radiative effects of water ice clouds. While the simulated patterns of dust lifting and global dust loading from these investigations of the dust cycle in isolation reproduce some characteristics of the observed dust cycle, there are also marked differences between the predictions and the observations. Water ice clouds can influence when, where, and how much dust is lifted from the surface by altering the thermal structure of the atmosphere and the character and strength of the general circulation. Using an updated version of the NASA Ames Mars Global Climate Model (GCM), we show that including water ice cloud formation and their radiative effects affect the magnitude and spatial extent of dust lifting, particularly in the northern hemisphere during the pre- and post- winter solstitial seasons. Feedbacks between dust lifting, cloud formation, circulation intensification and further dust lifting are isolated and shown to be important for improving the behavior of the simulated dust cycle.

  14. An investigation on factors influencing dust accumulation on CSP mirrors

    NASA Astrophysics Data System (ADS)

    Pennetta, S.; Yu, S.; Borghesani, P.; Cholette, M.; Barry, John; Guan, Z.

    2016-05-01

    The profitability of a CSP plant is highly affected by the efficiency of the solar field: it is essential to maintain mirrors' reflectivity at high level to avoid thermal power loss. Dust fouling is the main cause of reflectivity loss and cleaning of mirrors is a crucial activity to restore economical level of reflectivity. However, the high cost of cleaning operations requires the study and identification of a balanced plan for the dust removal. The dust generation and transport to the plant site is the first mechanism that needs to be modelled to identify the optimal schedule for cleaning operations and it is highly dependent on weather conditions. Several studies have suggested a dependency of reflectors performance with humidity level, frequency of rainfalls, wind and mirrors' tilting angle, however rarely quantitative correlation studies have been performed to validate these hypotheses. The aim of this research is to provide an in-depth insight on interaction between the main parameters and airborne dust concentration, providing quantitative information for the development of future mirror dusting models. Outcomes evidence the crucial role of high winds responsible of dust concentration in conjunction with higher wind direction frequencies in the range 60-120°. Actually, in this scenario a perfectly monotonic increase of dust accumulation in the air has been observed with high correspondence of wind direction. A very low effect is provided by the ambient temperature as the contribution of the barometric pressure.

  15. Dust and Planetary Rings

    NASA Astrophysics Data System (ADS)

    Siddiqui, Muddassir

    ABSTRACT Space is not empty it has comic radiations (CMBR), dust etc. Cosmic dust is that type of dust which is composed of particles in space which vary from few molecules to 0.1micro metres in size. This type of dust is made up of heavier atoms born in the heart of stars and supernova. Mainly it contains dust grains and when these dust grains starts compacting then it turns to dense clouds, planetary ring dust and circumstellar dust. Dust grains are mainly silicate particles. Dust plays a major role in our solar system, for example in zodiacal light, Saturn's B ring spokes, planetary rings at Jovian planets and comets. Observations and measurements of cosmic dust in different regions of universe provide an important insight into the Universe's recycling processes. Astronomers consider dust in its most recycled state. Cosmic dust have radiative properties by which they can be detected. Cosmic dusts are classified as intergalactic dusts, interstellar dusts and planetary rings. A planetary ring is a ring of cosmic dust and other small particles orbiting around a planet in flat disc shape. All of the Jovian planets in our solar system have rings. But the most notable one is the Saturn's ring which is the brightest one. In March 2008 a report suggested that the Saturn's moon Rhea may have its own tenuous ring system. The ring swirling around Saturn consists of chunks of ice and dust. Most rings were thought to be unstable and to dissipate over course of tens or hundreds of millions of years but it now appears that Saturn's rings might be older than that. The dust particles in the ring collide with each other and are subjected to forces other than gravity of its own planet. Such collisions and extra forces tend to spread out the rings. Pluto is not known to have any ring system but some Astronomers believe that New Horizons probe might find a ring system when it visits in 2015.It is also predicted that Phobos, a moon of Mars will break up and form into a planetary ring

  16. Observations of Particle Organic Nitrate from Airborne and Ground Platforms in North America: Insights into Vertical and Geographical Distributions, Gas/Particle Partitioning, Losses, and Contributions to Total Particle Nitrate.

    NASA Astrophysics Data System (ADS)

    Day, D. A.; Campuzano Jost, P.; Palm, B. B.; Hu, W.; Nault, B.; Wooldridge, P. J.; Cohen, R. C.; Docherty, K. S.; Wagner, N. L.; Jimenez, J. L.

    2015-12-01

    Organic nitrate formation in the atmosphere represents a sink of NOx and a termination of the HOx/NOx­ O3-formation cycles, can act as a NOx reservoir transporting reactive nitrogen, and contributes to secondary organic aerosol (SOA) formation. However, particle organic nitrates (pRONO2) are rarely measured and thus poorly understood. We use measurements of pRONO2 and total (gas+particle) organic nitrate (totRONO2), OA, and ammonium nitrate from the DC3 and SEAC4RS aircraft and several ground campaigns to investigate vertical and geographical distributions, gas/particle partitioning, losses, and contributions to total particle nitrate (pTotNO3). Quantification with aerosol mass spectrometry is evaluated. The fraction of pTotNO3 that is pRONO2 shows a steep inverse relationship with pTotNO3, approaching 100% at low pTotNO3, primarily at rural and remote locations. pRONO2 was typically 10-30% of totRONO2 with little vertical gradient in gas/particle partitioning from the boundary layer (BL) to the upper troposphere (UT). However, pRONO2 and totRONO2 concentrations show strong vertical gradients, with a steep decrease from the top of the BL up through the residual layer. pRONO2 contribution to OA shows a moderate increase with lower OA loadings in the BL and free troposphere (~2-3% by mass of nitrate group) with higher contributions at the lowest OA (5-8%), mostly observed in the UT. In the BL, RONO2 gas/particle partitioning shows a trend with temperature, with higher particle fraction at lower temperatures, as expected from partitioning theory. However, the temperature trend is much weaker than for single compound partitioning, which may be due to a broad mixture of species. Little to no dependence of pRONO­2/OA on RH or estimated particle water was observed in the BL, suggesting that losses of pRONO2 species due to hydrolysis are too rapid to observe in this dataset and there may be a substantial fraction of pRONO2 species that are not prone to rapid hydrolysis.

  17. Modeling the Acceleration Process of Dust in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Jia, Y. D.; Lai, H.; Russell, C. T.; Wei, H.

    2015-12-01

    In previous studies we have identified structures created by nano-dust in the solar wind, and we have observed the expected draping and diverting signatures of such structures using well-spaced multi-spacecraft observations. In this study, we reproduce such an interaction event with our multi-fluid MHD model, modeling the dust particles as a fluid. When the number density of dust particles is comparable to the solar wind ions, a significant draping in the IMF is created, with amplitude larger than the ambient fluctuations. We note that such a density is well above several nano dust particles per Debye sphere and a dusty fluid is appropriate for modeling the dust-solar wind interaction. We assume a spherical cloud of dust travelling with 90% solar wind speed. In addition to reproducing the IMF response to the nano-dust at the end-stage of dust acceleration, we model the entire process of such acceleration in the gravity field of the inner heliosphere. It takes hours for the smallest dust with 3000 amu per proton charge to reach the solar wind speed. We find the dust cloud stretched along the solar wind flow. Such stretching enhances the draping of IMF, compared to the spherical cloud we used in an earlier stage of this study. This model will be further used to examine magnetic perturbations at an earlier stage of dust cloud acceleration, and then determine the size, density, and total mass of dust cloud, as well as its creation and acceleration.

  18. Treated and untreated rock dust: Quartz content and physical characterization.

    PubMed

    Soo, Jhy-Charm; Lee, Taekhee; Chisholm, William P; Farcas, Daniel; Schwegler-Berry, Diane; Harper, Martin

    2016-11-01

    Rock dusting is used to prevent secondary explosions in coal mines, but inhalation of rock dusts can be hazardous if the crystalline silica (e.g., quartz) content in the respirable fraction is high. The objective of this study is to assess the quartz content and physical characteristics of four selected rock dusts, consisting of limestone or marble in both treated (such as treatment with stearic acid or stearates) and untreated forms. Four selected rock dusts (an untreated and treated limestone and an untreated and treated marble) were aerosolized in an aerosol chamber. Respirable size-selective sampling was conducted along with particle size-segregated sampling using a Micro-Orifice Uniform Deposit Impactor. Fourier Transform Infrared spectroscopy and scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) analyses were used to determine quartz mass and particle morphology, respectively. Quartz percentage in the respirable dust fraction of untreated and treated forms of the limestone dust was significantly higher than in bulk samples, but since the bulk percentage was low the enrichment factor would not have resulted in any major change to conclusions regarding the contribution of respirable rock dust to the overall airborne quartz concentration. The quartz percentage in the marble dust (untreated and treated) was very low and the respirable fractions showed no enrichment. The spectra from SEM-EDX analysis for all materials were predominantly from calcium carbonate, clay, and gypsum particles. No free quartz particles were observed. The four rock dusts used in this study are representative of those presented for use in rock dusting, but the conclusions may not be applicable to all available materials.

  19. Treated and untreated rock dust: Quartz content and physical characterization.

    PubMed

    Soo, Jhy-Charm; Lee, Taekhee; Chisholm, William P; Farcas, Daniel; Schwegler-Berry, Diane; Harper, Martin

    2016-11-01

    Rock dusting is used to prevent secondary explosions in coal mines, but inhalation of rock dusts can be hazardous if the crystalline silica (e.g., quartz) content in the respirable fraction is high. The objective of this study is to assess the quartz content and physical characteristics of four selected rock dusts, consisting of limestone or marble in both treated (such as treatment with stearic acid or stearates) and untreated forms. Four selected rock dusts (an untreated and treated limestone and an untreated and treated marble) were aerosolized in an aerosol chamber. Respirable size-selective sampling was conducted along with particle size-segregated sampling using a Micro-Orifice Uniform Deposit Impactor. Fourier Transform Infrared spectroscopy and scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) analyses were used to determine quartz mass and particle morphology, respectively. Quartz percentage in the respirable dust fraction of untreated and treated forms of the limestone dust was significantly higher than in bulk samples, but since the bulk percentage was low the enrichment factor would not have resulted in any major change to conclusions regarding the contribution of respirable rock dust to the overall airborne quartz concentration. The quartz percentage in the marble dust (untreated and treated) was very low and the respirable fractions showed no enrichment. The spectra from SEM-EDX analysis for all materials were predominantly from calcium carbonate, clay, and gypsum particles. No free quartz particles were observed. The four rock dusts used in this study are representative of those presented for use in rock dusting, but the conclusions may not be applicable to all available materials. PMID:27314444

  20. Treated and Untreated Rock Dust: Quartz Content and Physical Characterization

    PubMed Central

    Soo, Jhy-Charm; Lee, Taekhee; Chisholm, William P.; Farcas, Daniel; Schwegler-Berry, Diane; Harper, Martin

    2016-01-01

    SUMMARY Rock dusting is used to prevent secondary explosions in coal mines, but inhalation of rock dusts can be hazardous if the crystalline silica (e.g., quartz) content in the respirable fraction is high. The objective of this study is to assess the quartz content and physical characteristics of four selected rock dusts, consisting of limestone or marble in both treated (such as treatment with stearic acid or stearates) and untreated forms. Four selected rock dusts (an untreated and treated limestone and an untreated and treated marble) were aerosolized in an aerosol chamber. Respirable size-selective sampling was conducted along with particle size-segregated sampling using a Micro-Orifice Uniform Deposit Impactor. Fourier Transform Infrared spectroscopy and scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) analyses were used to determine quartz mass and particle morphology, respectively. Quartz percentage in the respirable dust fraction of untreated and treated forms of the limestone dust was significantly higher than in bulk samples, but since the bulk percentage was low the enrichment factor would not have resulted in any major change to conclusions regarding the contribution of respirable rock dust to the overall airborne quartz concentration. The quartz percentage in the marble dust (untreated and treated) was very low and the respirable fractions showed no enrichment. The spectra from SEM-EDX analysis for all materials were predominantly from calcium carbonate, clay, and gypsum particles. No free quartz particles were observed. The four rock dusts used in this study are representative of those presented for use in rock dusting, but the conclusions may not be applicable to all available materials. PMID:27314444

  1. An evidential example of airborne bacteria in a crowded, underground public concourse in Tokyo

    NASA Astrophysics Data System (ADS)

    Seino, Kaoruko; Takano, Takehito; Nakamura, Keiko; Watanabe, Masafumi

    2005-01-01

    We examined airborne bacteria in an underground concourse in Tokyo and investigated conditions that influenced bacterial counts. Airborne bacteria were collected by using an impactor sampler. Colonies on plate count agar (PCA) and Columbia colistin-nalidixic acid agar with 5% sheep blood (CNA agar) were enumerated. The range, geometric mean, and 95% CI of the bacterial counts (CFU m-3) on PCA and CNA agar were 150-1380, 456, 382-550 and 50-990, 237, 182-309, respectively. Bacterial counts on PCA significantly correlated with number of the pedestrians (r=0.89), relative humidity (r=0.70) and airborne dust (PM5.0) (r=0.73). Results of a multiple regression indicated independent positive association between the number of pedestrians and bacterial counts on PCA (p<0.01) after excluding the influence of relative humidity and airborne dust. Similar results were obtained with the statistical analysis for the counts of bacteria on CNA agar. Gram-positive cocci were dominant on PCA and CNA agar. Staphylococcus epidermidis and Micrococcus spp. were dominant among the 11 genera and 19 species identified in the present study. Considering the pattern of identified species and the significant independent association between number of pedestrians and bacterial counts, airborne bacteria in a crowded underground concourse were mostly originated from the pedestrians who were walking in the underground concourse. This study gave an evidential example of bacterial conditions in the air of an underground crowded public space in Tokyo.

  2. The characterization of airborne occupational safety and health hazards in selected small businesses; manufacturing wood pallets.

    PubMed

    Malkin, Robert; Lentz, Thomas J; Topmiller, Jennifer; Hudock, Stephen D; Niemeier, Richard W

    2006-01-01

    Researchers from the National Institute for Occupational Safety and Health (NIOSH) investigated occupational safety and health concerns in the small business wood pallet manufacturing industry because of an injury rate (2000) 226% greater than that for general industry. NIOSH investigators conducted walk-through evaluations at seven wood pallet manufacturing companies, and returned to four of them to take environmental measurements. Carbon monoxide (CO) levels, noise levels, and total particulate were measured, ergonomic observations made, and occupational safety practices analyzed at each of the four facilities where measurements were taken. The focus of this study is the evaluation of airborne particulate and carbon monoxide exposures for the purpose of determining areas of potentially high exposures. This knowledge can guide the plant owner or health professional to determine whether further measurements are necessary and where they might be needed. Safety factors and physical stressors (noise and ergonomic stressors) were described in a previously published companion paper. Although we did not take 8 h samples, we did find certain exposures that were potentially of concern to the small business owner. The main findings of this investigation were as follows: 1) CO levels in three plants, for the time periods measured, were less than the OSHA permissible exposure limit (PEL) of 50 parts per million (ppm) for an 8-h TWA. Three measurements, all from one plant, were due to a older and defective forklift and were above 50 ppm. 2) Total dust measures ranged from 0.86 to 1.67 mg/m3, taken adjacent to an operating machine cutting hardwood and measured up to 6 min. The American Conference of Governmental Industrial Hygienists (ACGIH) guideline for hardwood dust is 1.0 mg/m3, again for an 8-h TWA. PMID:16610535

  3. SHAPING THE DUST MASS-STAR-FORMATION RATE RELATION

    SciTech Connect

    Hjorth, Jens; Gall, Christa; Michałowski, Michał J. E-mail: cgall@phys.au.dk

    2014-02-20

    There is a remarkably tight relation between the observationally inferred dust masses and star-formation rates (SFRs) of Sloan Digital Sky Survey galaxies, M {sub dust} ∝ SFR{sup 1.11}. Here we extend the M {sub dust}-SFR relation to the high end and show that it bends over at very large SFRs (i.e., dust masses are lower than predicted for a given SFR). We identify several distinct evolutionary processes in the diagram: (1) a star-bursting phase in which dust builds up rapidly at early times. The maximum attainable dust mass in this process is the cause of the bend-over of the relation. A high dust-formation efficiency, a bottom-light initial mass function, and negligible supernova shock dust destruction are required to produce sufficiently high dust masses. (2) A quiescent star-forming phase in which the subsequent parallel decline in dust mass and SFR gives rise to the M {sub dust}-SFR relation, through astration and dust destruction. The dust-to-gas ratio is approximately constant along the relation. We show that the power-law slope of the M {sub dust}-SFR relation is inversely proportional to the global Schmidt-Kennicutt law exponent (i.e., ∼0.9) in simple chemical evolution models. (3) A quenching phase which causes star formation to drop while the dust mass stays roughly constant or drops proportionally. Combined with merging, these processes, as well as the range in total baryonic mass, give rise to a complex population of the diagram which adds significant scatter to the original M {sub dust}-SFR relation. (4) At very high redshifts, a population of galaxies located significantly below the local relation is predicted.

  4. Airborne Infrared Spectrograph for Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Golub, L.; Cheimets, P.; DeLuca, E. E.; Samra, J.; Judge, P. G.

    2015-12-01

    Direct measurements of the coronal magnetic field have significant potential to enhance our understanding of coronal dynamics, and improve forecasting models. Of particular interest are observations of coronal field lines in the Transition Corona, the transitional region between closed and open flux systems, providing important information on eruptive instabilities and on the origin of the slow solar wind. While current instruments routinely observe the photospheric and chromospheric magnetic fields, the proposed airborne spectrometer will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. The targeted lines are five forbidden magnetic dipole transitions between 1.4 and 4 um. The airborne system will consist of a telescope, grating spectrometer and pointing/stabilization system to be flown on the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) during the 21 August 2017 total solar eclipse. We will discuss the scientific objectives of the 2017 flight, describe details of the instrument design, and present the observing program for the eclipse.

  5. Aerosol classification by airborne high spectral resolution lidar observations

    NASA Astrophysics Data System (ADS)

    Groß, S.; Esselborn, M.; Weinzierl, B.; Wirth, M.; Fix, A.; Petzold, A.

    2013-03-01

    During four aircraft field experiments with the DLR research aircraft Falcon in 1998 (LACE), 2006 (SAMUM-1) and 2008 (SAMUM-2 and EUCAARI), airborne High Spectral Resolution Lidar (HSRL) and in situ measurements of aerosol microphysical and optical properties were performed. Altogether, the properties of six different aerosol types and aerosol mixtures - Saharan mineral dust, Saharan dust mixtures, Canadian biomass burning aerosol, African biomass burning mixture, anthropogenic pollution aerosol, and marine aerosol have been studied. On the basis of this extensive HSRL data set, we present an aerosol classification scheme which is also capable to identify mixtures of different aerosol types. We calculated mixing lines that allowed us to determine the contributing aerosol types. The aerosol classification scheme was supported by backward trajectory analysis and validated with in-situ measurements. Our results demonstrate that the developed aerosol mask is capable to identify complex stratifications with different aerosol types throughout the atmosphere.

  6. Aerosol classification by airborne high spectral resolution lidar observations

    NASA Astrophysics Data System (ADS)

    Groß, S.; Esselborn, M.; Weinzierl, B.; Wirth, M.; Fix, A.; Petzold, A.

    2012-10-01

    During four aircraft field experiments with the DLR research aircraft Falcon in 1998 (LACE), 2006 (SAMUM-1) and 2008 (SAMUM-2 and EUCAARI), airborne High Spectral Resolution Lidar (HSRL) and in situ measurements of aerosol microphysical and optical properties were performed. Altogether, the properties of six different aerosol types and aerosol mixtures - Saharan mineral dust, Saharan dust mixtures, Canadian biomass burning aerosol, African biomass burning aerosol, anthropogenic pollution aerosol, and marine aerosol have been studied. On the basis of this extensive HSRL data set, we present an aerosol classification scheme which is also capable to identify mixtures of different aerosol types. We calculated mixing lines that allowed us to determine the contributing aerosol types. The aerosol classification scheme was validated with in-situ measurements and backward trajectory analyses. Our results demonstrate that the developed aerosol mask is capable to identify complex stratifications with different aerosol types throughout the atmosphere.

  7. Distribution of airborne particles from multi-emission source.

    PubMed

    Kemppainen, Sari; Tervahattu, Heikki; Kikuchi, Ryunosuke

    2003-06-01

    The purpose of this work was to study the distribution of airborne particles in the surroundings of an iron and steel factory in southern Finland. Several sources of particulate emissions are lying side by side, causing heavy dust loading to the environment. This complicated multi-pollutant situation was studied mainly by SEM/EDX methodology. Particles accumulated on Scots pine bark were identified and quantitatively measured according to their element content, size and shape. As a result, distribution maps of particulate elements were drawn and the amount of different particle types along the study lines was plotted. Particulate emissions from the industrial or energy production processes were not the main dust source. Most emissions were produced from the clinker crusher. Numerous stockpiles of the industrial wastes and raw materials also gave rise to particulate emissions as a result of wind erosion. It was concluded that SEM/EDX methodology is a useful tool for studying the distribution of particulate pollutants.

  8. Increase in African dust flux at the onset of commercial agriculture in the Sahel region.

    PubMed

    Mulitza, Stefan; Heslop, David; Pittauerova, Daniela; Fischer, Helmut W; Meyer, Inka; Stuut, Jan-Berend; Zabel, Matthias; Mollenhauer, Gesine; Collins, James A; Kuhnert, Henning; Schulz, Michael

    2010-07-01

    The Sahara Desert is the largest source of mineral dust in the world. Emissions of African dust increased sharply in the early 1970s (ref. 2), a change that has been attributed mainly to drought in the Sahara/Sahel region caused by changes in the global distribution of sea surface temperature. The human contribution to land degradation and dust mobilization in this region remains poorly understood, owing to the paucity of data that would allow the identification of long-term trends in desertification. Direct measurements of airborne African dust concentrations only became available in the mid-1960s from a station on Barbados and subsequently from satellite imagery since the late 1970s: they do not cover the onset of commercial agriculture in the Sahel region approximately 170 years ago. Here we construct a 3,200-year record of dust deposition off northwest Africa by investigating the chemistry and grain-size distribution of terrigenous sediments deposited at a marine site located directly under the West African dust plume. With the help of our dust record and a proxy record for West African precipitation we find that, on the century scale, dust deposition is related to precipitation in tropical West Africa until the seventeenth century. At the beginning of the nineteenth century, a sharp increase in dust deposition parallels the advent of commercial agriculture in the Sahel region. Our findings suggest that human-induced dust emissions from the Sahel region have contributed to the atmospheric dust load for about 200 years.

  9. An Assessment of Dust Effects on Planetary Surface Systems to Support Exploration Requirements

    NASA Technical Reports Server (NTRS)

    Wagner, Sandy

    2004-01-01

    Apollo astronauts learned first hand how problems with dust impact lunar surface missions. After three days, lunar dust contamination on EVA suit bearings led to such great difficulty in movement that another EVA would not have been possible. Dust clinging to EVA suits was transported into the Lunar Module. During the return trip to Earth, when micro gravity was reestablished, the dust became airborne and floated through the cabin. Crews inhaled the dust and it irritated their eyes. Some mechanical systems aboard the spacecraft were damaged due to dust contamination. Study results obtained by Robotic Martian missions indicate that Martian surface soil is oxidative and reactive. Exposures to the reactive Martian dust will pose an even greater concern to the crew health and the integrity of the mechanical systems. As NASA embarks on planetary surface missions to support its Exploration Vision, the effects of these extraterrestrial dusts must be well understood and systems must be designed to operate reliably and protect the crew in the dusty environments of the Moon and Mars. The AIM Dust Assessment Team was tasked to identify systems that will be affected by the respective dust, how they will be affected, associated risks of dust exposure, requirements that will need to be developed, identified knowledge gaps, and recommended scientific measurements to obtain information needed to develop requirements, and design and manufacture the surface systems that will support crew habitation in the lunar and Martian outposts.

  10. Dust Ablation in Pluto's Atmosphere

    NASA Astrophysics Data System (ADS)

    Horanyi, M.; Poppe, A. R.; Sternovsky, Z.

    2015-12-01

    Based on measurements by in situ dust detectors onboard the Pioneer and New Horizon spacecraft the total production rate of dust particles born in the Kuiper belt can be estimated to be on the order of 5 x 10 ^3 kg/s in the approximate size range of 1 - 10 micron. These particles slowly migrate inward due to Poynting - Robertson drag and their spatial distribution is shaped by mean motion resonances with the gas giant planets in the outer solar system. The expected mass influx into Pluto's atmosphere is on the order of 50 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that, if the particles are rich in volatiles, they can fully sublimate due to drag heating and deposit their mass in a narrow layer. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles, as well as on our newly developed models of Pluto's atmosphere that can be learned by matching the altitude where haze layers could be formed.

  11. Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations

    NASA Astrophysics Data System (ADS)

    Ryder, C. L.; McQuaid, J. B.; Flamant, C.; Rosenberg, P. D.; Washington, R.; Brindley, H. E.; Highwood, E. J.; Marsham, J. H.; Parker, D. J.; Todd, M. C.; Banks, J. R.; Brooke, J. K.; Engelstaedter, S.; Estelles, V.; Formenti, P.; Garcia-Carreras, L.; Kocha, C.; Marenco, F.; Sodemann, H.; Allen, C. J. T.; Bourdon, A.; Bart, M.; Cavazos-Guerra, C.; Chevaillier, S.; Crosier, J.; Darbyshire, E.; Dean, A. R.; Dorsey, J. R.; Kent, J.; O'Sullivan, D.; Schepanski, K.; Szpek, K.; Trembath, J.; Woolley, A.

    2015-07-01

    The Fennec climate programme aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE (Service des Avions Français Instrumentés pour la Recherche en Environnement) Falcon 20 is described, with specific focus on instrumentation specially developed for and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include (1) the first airborne measurement of dust particles sizes of up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI (Spinning Enhanced Visible Infra-Red Imager) satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in situ observations of processes in SABL clouds showing dust acting as cloud condensation nuclei (CCN) and ice nuclei (IN) at -15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold pool (haboob) issued from deep convection over the Atlas Mountains, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area

  12. Mineral dust transport in the Arctic modelled with FLEXPART

    NASA Astrophysics Data System (ADS)

    Groot Zwaaftink, Christine; Grythe, Henrik; Stohl, Andreas

    2016-04-01

    Aeolian transport of mineral dust is suggested to play an important role in many processes. For instance, mineral aerosols affect the radiation balance of the atmosphere, and mineral deposits influence ice sheet mass balances and terrestrial and ocean ecosystems. While many efforts have been done to model global dust transport, relatively little attention has been given to mineral dust in the Arctic. Even though this region is more remote from the world's major dust sources and dust concentrations may be lower than elsewhere, effects of mineral dust on for instance the radiation balance can be highly relevant. Furthermore, there are substantial local sources of dust in or close to the Arctic (e.g., in Iceland), whose impact on Arctic dust concentrations has not been studied in detail. We therefore aim to estimate contributions of different source regions to mineral dust in the Arctic. We have developed a dust mobilization routine in combination with the Lagrangian dispersion model FLEXPART to make such estimates. The lack of details on soil properties in many areas requires a simple routine for global simulations. However, we have paid special attention to the dust sources on Iceland. The mobilization routine does account for topography, snow cover and soil moisture effects, in addition to meteorological parameters. FLEXPART, driven with operational meteorological data from European Centre for Medium-Range Weather Forecasts, was used to do a three-year global dust simulation for the years 2010 to 2012. We assess the model performance in terms of surface concentration and deposition at several locations spread over the globe. We will discuss how deposition and dust load patterns in the Arctic change throughout seasons based on the source of the dust. Important source regions for mineral dust found in the Arctic are not only the major desert areas, such as the Sahara, but also local bare-soil regions. From our model results, it appears that total dust load in the

  13. THE DUST BUDGET OF THE SMALL MAGELLANIC CLOUD: ARE ASYMPTOTIC GIANT BRANCH STARS THE PRIMARY DUST SOURCE AT LOW METALLICITY?

    SciTech Connect

    Boyer, M. L.; Gordon, K. D.; Meixner, M.; Sargent, B. A.; Srinivasan, S.; Riebel, D.; McDonald, I.; Van Loon, J. Th.; Clayton, G. C.; Sloan, G. C.

    2012-03-20

    We estimate the total dust input from the cool evolved stars in the Small Magellanic Cloud, using the 8 {mu}m excess emission as a proxy for the dust-production rate (DPR). We find that asymptotic giant branch (AGB) and red supergiant (RSG) stars produce (8.6-9.5) Multiplication-Sign 10{sup -7} M{sub Sun} yr{sup -1} of dust, depending on the fraction of far-infrared sources that belong to the evolved star population (with 10%-50% uncertainty in individual DPRs). RSGs contribute the least (<4%), while carbon-rich AGB stars (especially the so-called extreme AGB stars) account for 87%-89% of the total dust input from cool evolved stars. We also estimate the dust input from hot stars and supernovae (SNe), and find that if SNe produce 10{sup -3} M{sub Sun} of dust each, then the total SN dust input and AGB input are roughly equivalent. We consider several scenarios of SN dust production and destruction and find that the interstellar medium (ISM) dust can be accounted for solely by stellar sources if all SNe produce dust in the quantities seen around the dustiest examples and if most SNe explode in dense regions where much of the ISM dust is shielded from the shocks. We find that AGB stars contribute only 2.1% of the ISM dust. Without a net positive contribution from SNe to the dust budget, this suggests that dust must grow in the ISM or be formed by another unknown mechanism.

  14. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  15. AIRBORNE RADIATION DETECTOR

    DOEpatents

    Cartmell, T.R.; Gifford, J.F.

    1959-08-01

    An ionization chamber used for measuring the radioactivity of dust present in atmospheric air is described. More particularly. the patent describes a device comprising two concentric open ended, electrically connected cylinders between which is disposed a wire electrcde. A heating source is disposed inside of the cylinder to circulate air through the space between the two cylinders by convective flow. A high voltage electric field between the wire electrcde of the electrically connected cylinder will cause ionization of the air as it passes therethrough.

  16. AIRBORNE-CONTACT DERMATITIS OF NON-PLANT ORIGIN: AN OVERVIEW

    PubMed Central

    Ghosh, Sanjay

    2011-01-01

    Airborne-contact dermatitis (ABCD) represents a unique type of contact dermatitis originating from dust, sprays, pollens or volatile chemicals by airborne fumes or particles without directly touching the allergen. ABCD in Indian patients has been attributed exclusively by pollens of the plants like Parthenium hysterophorus, etc., but in recent years the above scenario has been changing rapidly in urban and semiurban perspective especially in developing countries. ABCD has been reported worldwide due to various type of nonplant allergens and their clinical feature are sometimes distinctive. Preventive aspect has been attempted by introduction of different chemicals of less allergic potential. PMID:22345776

  17. Characterisation of airborne particulate pollution in the Cu smelter and former mining town of Karabash, South Ural Mountains of Russia.

    PubMed

    Williamson, B J; Udachin, V; Purvis, O W; Spiro, B; Cressey, G; Jones, G C

    2004-11-01

    Airborne total suspended particulates (TSP), dusts from smelter blast furnace and converter stacks, and filtrates of snow melt waters have been characterised in the Cu smelter and former mining town of Karabash, Russia. TSP was collected at sites up- and downwind of the smelter and large waste and tailings dumps (Oct. 2000 and July 2001). Methods for particle size, mineralogical and elemental determinations have been tested and described, and a new PSD-MicroSOURCE XRD technique developed for the mineralogical analysis of microsamples on filter substrates. TSP in downwind samples has a mean equivalent spherical diameter of 0.5 microm (s.d. = 0.2) and was found to be 100% respirable. The main element of human health/environmental concern, above Russian maximum permitted levels (1 microg m(-3), average over any time period), was Pb which was measured at 16-30 microg m(-3) in downwind samples. Individual particulates mainly consisted of complex mixtures of anglesite (PbSO4), Zn2SnO4 and poorly ordered Zn sulphates. From experimental and theoretical considerations, a high proportion of contained Pb, Zn, Cd and As in this material is considered to be in a readily bioavailable form. Chemical and mineralogical differences between the TSP, stack dusts and snow samples are discussed, as well as the implications for human and regional environmental health.

  18. Characterisation of airborne particulate pollution in the Cu smelter and former mining town of Karabash, South Ural Mountains of Russia.

    PubMed

    Williamson, B J; Udachin, V; Purvis, O W; Spiro, B; Cressey, G; Jones, G C

    2004-11-01

    Airborne total suspended particulates (TSP), dusts from smelter blast furnace and converter stacks, and filtrates of snow melt waters have been characterised in the Cu smelter and former mining town of Karabash, Russia. TSP was collected at sites up- and downwind of the smelter and large waste and tailings dumps (Oct. 2000 and July 2001). Methods for particle size, mineralogical and elemental determinations have been tested and described, and a new PSD-MicroSOURCE XRD technique developed for the mineralogical analysis of microsamples on filter substrates. TSP in downwind samples has a mean equivalent spherical diameter of 0.5 microm (s.d. = 0.2) and was found to be 100% respirable. The main element of human health/environmental concern, above Russian maximum permitted levels (1 microg m(-3), average over any time period), was Pb which was measured at 16-30 microg m(-3) in downwind samples. Individual particulates mainly consisted of complex mixtures of anglesite (PbSO4), Zn2SnO4 and poorly ordered Zn sulphates. From experimental and theoretical considerations, a high proportion of contained Pb, Zn, Cd and As in this material is considered to be in a readily bioavailable form. Chemical and mineralogical differences between the TSP, stack dusts and snow samples are discussed, as well as the implications for human and regional environmental health. PMID:15473539

  19. Performance Basis for Airborne Separation

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    2008-01-01

    Emerging applications of Airborne Separation Assistance System (ASAS) technologies make possible new and powerful methods in Air Traffic Management (ATM) that may significantly improve the system-level performance of operations in the future ATM system. These applications typically involve the aircraft managing certain components of its Four Dimensional (4D) trajectory within the degrees of freedom defined by a set of operational constraints negotiated with the Air Navigation Service Provider. It is hypothesized that reliable individual performance by many aircraft will translate into higher total system-level performance. To actually realize this improvement, the new capabilities must be attracted to high demand and complexity regions where high ATM performance is critical. Operational approval for use in such environments will require participating aircraft to be certified to rigorous and appropriate performance standards. Currently, no formal basis exists for defining these standards. This paper provides a context for defining the performance basis for 4D-ASAS operations. The trajectory constraints to be met by the aircraft are defined, categorized, and assessed for performance requirements. A proposed extension of the existing Required Navigation Performance (RNP) construct into a dynamic standard (Dynamic RNP) is outlined. Sample data is presented from an ongoing high-fidelity batch simulation series that is characterizing the performance of an advanced 4D-ASAS application. Data of this type will contribute to the evaluation and validation of the proposed performance basis.

  20. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  1. A literature review of concentrations and size distributions of ambient airborne Pb-containing particulate matter

    NASA Astrophysics Data System (ADS)

    Cho, Seung-Hyun; Richmond-Bryant, Jennifer; Thornburg, Jonathan; Portzer, Jeff; Vanderpool, Robert; Cavender, Kevin; Rice, Joann

    2011-09-01

    The final 2008 lead (Pb) national ambient air quality standards (NAAQS) revision maintains Pb in total suspended particulate matter as the indicator. However, the final rule permits the use of low-volume PM 10 (particulate matter sampled with a 50% cut-point of 10 μm) Federal Reference Method (FRM) monitors in lieu of total suspended particulate (TSP) monitors for some non-source-oriented monitoring. PM 10 FRM monitors are known to provide more reliable concentration measurements than TSP samplers because they are omni-directional samplers and so are not biased by wind conditions. However, by design they exclude the upper tail of the particle size distribution. Hence, each monitor produces uncertainties about measured concentrations of Pb-bearing PM. Uncertainties in reported Pb data are also related to spatiotemporal variation of the concentration and size distribution of Pb-bearing PM. Therefore, a comprehensive literature review was performed to summarize the current knowledge regarding the concentration and size distribution of Pb particles in the atmosphere. The objectives of this review were to compile data that could shed light on these uncertainties, to provide insights useful during future Pb NAAQS reviews, and to identify areas where more research is needed. Results of this review indicated that Pb size distribution data are relatively limited and often outdated. Thirty-nine articles were found to have sufficiently detailed information regarding airborne Pb concentrations, study location, sample collection methods, and analytical techniques; only 16 of those papers reported Pb concentration data for multiple size fractions. For the most part, U.S. and European studies from the last forty years illustrate that the largest mode of the size distribution of airborne particle-bound Pb has shifted to larger sizes while airborne Pb concentrations have decreased in urban areas. This shift occurred as tetraethyl Pb additives in gasoline were phased out and

  2. Effect of deployment time on endotoxin and allergen exposure assessment using electrostatic dust collectors.

    PubMed

    Kilburg-Basnyat, Brita; Metwali, Nervana; Thorne, Peter S

    2015-01-01

    The electrostatic dust collector (EDC) is a passive dust sampling device for exposure assessment of airborne endotoxin and possibly allergens. EDCs consist of a non-conducting plastic folder holding two or four electrostatic cloths of defined area. The sampling time needed to achieve detectable and reproducible loading for bioaerosols has not been systematically evaluated. Thus, in 15 Iowa farm homes EDCs were deployed for 7-, 14-, and 28-day sampling periods to determine if endotoxin and allergens could be quantified and if loading rates were uniform over time, i.e. if loads doubled from 7 to 14 days or 14 to 28 days and quadrupled from 7 to 28 days. Loadings between left and right paired EDC cloths were not significantly different and were highly correlated for endotoxin, total protein, and cat (Fel d1), dog (Can f1), and mouse (Mus m1) allergens (P < 0.001). EDCs performed especially well for endotoxin sampling with close agreement between paired samples (Pearson r = 0.96, P < 0.001). Endotoxin loading of the EDCs doubled from 7- to 14-day deployments as hypothesized although the loading rate decreased from 14 to 28 days of sampling with only a 1.38-fold increase. Allergen exposure assessment using EDCs was overall less satisfactory. Although there was reasonable agreement between paired samples, only exposures to cat, dog, and mouse allergens were reliable and these only at the longer deployment times.

  3. Effect of Deployment Time on Endotoxin and Allergen Exposure Assessment Using Electrostatic Dust Collectors

    PubMed Central

    Kilburg-Basnyat, Brita; Metwali, Nervana; Thorne, Peter S.

    2015-01-01

    The electrostatic dust collector (EDC) is a passive dust sampling device for exposure assessment of airborne endotoxin and possibly allergens. EDCs consist of a non-conducting plastic folder holding two or four electrostatic cloths of defined area. The sampling time needed to achieve detectable and reproducible loading for bioaerosols has not been systematically evaluated. Thus, in 15 Iowa farm homes EDCs were deployed for 7-, 14-, and 28-day sampling periods to determine if endotoxin and allergens could be quantified and if loading rates were uniform over time, i.e. if loads doubled from 7 to 14 days or 14 to 28 days and quadrupled from 7 to 28 days. Loadings between left and right paired EDC cloths were not significantly different and were highly correlated for endotoxin, total protein, and cat (Fel d1), dog (Can f1), and mouse (Mus m1) allergens (P < 0.001). EDCs performed especially well for endotoxin sampling with close agreement between paired samples (Pearson r = 0.96, P < 0.001). Endotoxin loading of the EDCs doubled from 7- to 14-day deployments as hypothesized although the loading rate decreased from 14 to 28 days of sampling with only a 1.38-fold increase. Allergen exposure assessment using EDCs was overall less satisfactory. Although there was reasonable agreement between paired samples, only exposures to cat, dog, and mouse allergens were reliable and these only at the longer deployment times. PMID:25187036

  4. Estimation of individual dust exposure by magnetopneumography in stainless steel production.

    PubMed

    Huvinen, M; Oksanen, L; Kalliomäki, K; Kalliomäki, P L; Moilanen, M

    1997-06-20

    The objectives of the study were to measure the magnetic dust lung burden of workers in stainless steel production by magnetopneumography (MPG) and to investigate the relationship of the results with air-borne concentrations of dust, total and hexavalent chromium as well as urinary excretion of chromium. There were 128 workers from the chromite mine, sintering plant, ferrochrome smelter, stainless steel smelting shop, cold rolling mill and welding shop in the exposed groups and five persons from the office staff in the control group. The remanent magnetic field (RMF) in the lungs was slightly elevated among workers in the ferrochromium and steel smelting shops; the levels were, however, lower than those reported for welders earlier and those observed in the welding/repair shop. Workers in the mine, concentrator and sintering plants and in the cold rolling mill exhibited remanent magnetic fields comparable to the referents. There was a relationship between the RMF and the actual urinary chromium concentration. Miners and concentrator and sintering plant workers showed retarded relaxation rate (ReR) of the remanent magnetic field. However, the RMF of the first two of these groups were low (< 0.1 nT) and this made it difficult to measure the ReR accurately. The duration of exposure correlated weakly but significantly with the relaxation rate, while smoking was not related to it.

  5. Health risk assessment of exposure to polybrominated diphenyl ethers (PBDEs) contained in residential air particulate and dust in Guangzhou and Hong Kong

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zheng, Jinshu; Chan, Chuen-Yu; Huang, Min-juan; Cheung, Kwai Chung; Wong, Ming Hung

    2014-06-01

    Polybrominated diphenyl ethers (PBDEs) were measured in air particulate PM2.5 (less than 2.5 μm), TSP (Total Suspend Particle) and dust samples from different households of two major urban centers of Pearl River Delta (PRD). ∑PBDEs in PM2.5 of households in Guangzhou (GZ) (52.9-2.03 × 103 pg m-3 mean 239 pg m-3) were significantly higher than Hong Kong (HK) (0.25-160 pg m-3, mean 43.8 pg m-3). Higher ∑PBDEs occurred in indoor TSP, ranging between 117 and 1.14 × 103 pg m-3, with a median of 333 pg m-3. BDE-209 was the largest contributor to PBDEs contained in household dust, PM2.5 and TSP samples of GZ. Among the particles in household environment, PM2.5 accumulated the highest PBDEs, especially BDE-209. The constant Cparticle/Cdust values suggested that sorption is the dominant mechanism through which PBDEs are associated with settled dust and airborne particles. PBDEs were fairly uniform from urban sites to suburban sites, indicating the predominant indoor sources of PBDEs. Compared with indoor PM2.5, indoor dust ingestion made an important contribution of particle associated PBDEs exposure for adults (25 years old) and toddlers (1-2 years old). Non-dietary exposure dominated total PBDEs exposure, accounting for 91.8-99.0% exposure dose for toddlers and 45.1-82.2% for adults. Dust ingestion (69.3-96.1%) was the predominant PBDEs exposure route for toddlers.

  6. Personal exposures to airborne metals in London taxi drivers and office workers in 1995 and 1996.

    PubMed

    Pfeifer, G D; Harrison, R M; Lynam, D R

    1999-09-01

    In 1995, a petroleum marketer introduced a diesel fuel additive in the UK containing Mn as MMT (methylcyclopentadienyl manganese tricarbonyl). A small study of personal exposures to airborne Mn in London was conducted before and after introduction of the additive to identify any major impact of the additive on exposures. In 1995, personal exposures to Mn were measured in two groups, taxi drivers and office workers (10 subjects per group) for two consecutive 7-day periods. A similar study was carried out in 1996 to determine if exposures had changed. Samples were also analyzed for Ca, Al, Mg and Pb. In 1996, exposures to aerosol mass as total suspended particulates (TSP) and PM2.5 were measured in addition to the metals. Manganese exposures in this cohort did not increase as a result of introduction of the additive. However, a significant source of Mn exposure was discovered during the conduct of these tests. The mean exposure to Mn was higher among the office workers in both years than that of the taxi drivers. This was due to the fact that approximately half of the office workers commuted via the underground railway system where airborne dust and metal concentrations are significantly elevated over those in the general environment. Similar results have been noted in other cities having underground rail systems. Exposure to Mn, Pb, Ca, and Mg were not significantly different between the 2 years. Taxi drivers had higher exposures than office workers to Mg and Pb in both years. Commuting via the underground also had a significant impact on exposures to TSP, PM2.5, Al, and Ca, but had little effect on exposures to Mg. The aerosol in the underground was particularly enriched in Mn, approximately 10-fold, when compared to the aerosol in the general environment. There are several possible sources for this Mn, including mechanical wear of the steel wheels on the steel rais, vaporization of metal from sparking of the third rail, or brake wear. PMID:10535124

  7. SPITZER OBSERVATIONS OF COLD DUST GALAXIES

    SciTech Connect

    Willmer, C. N. A.; Rieke, G. H.; Hinz, J. L.; Engelbracht, C. W.; Le Floc'h, Emeric; Marcillac, Delphine; Gordon, K. D.

    2009-07-15

    We combine new Spitzer Space Telescope observations in the mid-infrared and far-infrared (FIR) with SCUBA 850 {mu}m observations to improve the measurement of dust temperatures, masses, and luminosities for 11 galaxies of the SCUBA Local Universe Galaxy Survey. By fitting dust models we measure typical dust masses of 10{sup 7.9} M {sub sun} and dust luminosities of {approx}10{sup 10} L {sub sun}, for galaxies with modest star formation rates. The data presented in this paper combined with previous observations show that cold dust is present in all types of spiral galaxies and is a major contributor to their total luminosity. Because of the lower dust temperature of the SCUBA sources measured in this paper, they have flatter FIR {nu}F{sub {nu}}(160 {mu}m)/{nu}F{sub {nu}}(850 {mu}m) slopes than the larger Spitzer Infrared Nearby Galaxies Survey (SINGS), the sample that provides the best measurements of the dust properties of galaxies in the nearby universe. The new data presented here added to SINGS extend the parameter space that is well covered by local galaxies, providing a comprehensive set of templates that can be used to interpret the observations of nearby and distant galaxies.

  8. The dissolution of natural and artificial dusts in glutamic acid

    NASA Astrophysics Data System (ADS)

    Ling, Zhang; Faqin, Dong; Xiaochun, He

    2015-06-01

    This article describes the characteristics of natural dusts, industrial dusts, and artificial dusts, such as mineral phases, chemical components, morphological observation and size. Quartz and calcite are the main phases of natural dusts and industrial dusts with high SiO2 and CaO and low K2O and Na2O in the chemical composition. The dissolution and electrochemical action of dusts in glutamic acid liquor at the simulated human body temperature (37 °C) in 32 h was investigated. The potential harm that the dust could lead to in body glutamic acid acidic environment, namely biological activity, is of great importance for revealing the human toxicological mechanism. The changes of pH values and electric conductivity of suspension of those dusts were similar, increased slowly in the first 8 h, and then the pH values increased rapidly. The total amount of dissolved ions of K, Ca, Na, and Mg was 35.4 to 429 mg/kg, particularly Ca was maximal of 20 to 334 mg/kg. The total amount of dissolved ions of Fe, Zn, Mn, Pb, and Ba was 0.18 to 5.59 mg/kg and in Al and Si was 3.0 to 21.7 mg/kg. The relative solubility order of dusts in glutamic acid is wollastonite > serpentine > sepiolite, the cement plant industrial dusts > natural dusts > power plant industrial dusts. The wollastonite and cement plant industrial dusts have the highest solubility, which also have high content of CaO; this shows that there are a poorer corrosion-resisting ability and lower bio-resistibility. Sepiolite and power plant industrial dusts have lowest solubility, which also have high content of SiO2; this shows that there are a higher corrosion-resisting ability and stronger bio-resistibility.

  9. Dust storms and their impact on ocean and human health: dust in Earth's atmosphere

    USGS Publications Warehouse

    Griffin, Dale W.; Kellog, Christina A.

    2004-01-01

    Satellite imagery has greatly influenced our understanding of dust activity on a global scale. A number of different satellites such as NASA's Earth-Probe Total Ozone Mapping Spectrometer (TOMS) and Se-viewing Field-of-view Sensor (SeaWiFS) acquire daily global-scale data used to produce imagery for monitoring dust storm formation and movement. This global-scale imagery has documented the frequent transmission of dust storm-derived soils through Earth's atmosphere and the magnitude of many of these events. While various research projects have been undertaken to understand this normal planetary process, little has been done to address its impact on ocean and human health. This review will address the ability of dust storms to influence marine microbial population densities and transport of soil-associated toxins and pathogenic microorganisms to marine environments. The implications of dust on ocean and human health in this emerging scientific field will be discussed.

  10. Pulmonary Toxicity Studies of Lunar Dust in Rodents

    NASA Technical Reports Server (NTRS)

    Lam, Chiu-Wing; James, John T.

    2012-01-01

    NASA has been contemplating returning astronauts to the moon for long-duration habitation and research and using it as a stepping-stone to Mars. Other spacefaring nations are planning to send humans to the moon for the first time. The surface of the moon is covered by a layer of fine dust. Fine terrestrial dusts, if inhaled, are known to pose a health risk to humans. Some Apollo crews briefly exposed to moon dust that adhered to spacesuits and became airborne in the Lunar Module reported eye and throat irritation. The habitable area of any lunar landing vehicle or outpost would inevitably become contaminated with lunar dust. To assess the health risks of exposure of humans to airborne lunar dust, we evaluated the toxicity of Apollo 14 moon dust in animal lungs. Studies of the pulmonary toxicity of a dust are generally first done by intratracheal instillation (ITI) of aqueous suspensions of the test dust into the lungs of rodents. If a test dust is irritating or cytotoxic to the lungs, the alveolar macrophages, after phagocytizing the dust particles, will release cellular messengers to recruit white blood cells (WBCs) and to induce dilation of blood capillary walls to make them porous, allowing the WBCs to gain access to the alveolar space. The dilation of capillary walls also allows serum proteins and water entering the lung. Besides altering capillary integrity, a toxic dust can also directly kill the cells that come into contact with it or ingest it, after which the dead cells would release their contents, including lactate dehydrogenase (a common enzyme marker of cell death or tissue damage). In the treated animals, we lavaged the lungs 1 and 4 weeks after the dust instillation and measured the concentrations of these biomarkers of toxicity in the bronchioalveolar lavage fluids to determine the toxicity of the dust. To assess whether the inflammation and cellular injury observed in the biomarker study would lead to persistent or progressive histopathological

  11. Assessment of suspended dust from pipe rattling operations

    NASA Astrophysics Data System (ADS)

    Park, Ju-Myon

    Six types of aerosol samplers were evaluated experimentally in a test chamber with polydisperse fly ash. The Andersen sampler overestimates the mass of small particles due to particle bounce between stages and therefore provides a conservative estimate of respirable particulate mass and thoracic particulate mass. The TSP sampler provides an unbiased estimate of total particulate mass. TSP/CCM provides no information below ESD 2 mum and therefore underestimates respirable particulate mass. The PM10 sampler provides a reasonable estimate of the thoracic particulate fraction. The RespiCon sampler provides an unbiased estimate of respirable, thoracic, and inhalable fractions. DustTrak and SidePak monitors provide relative particle concentrations instead of absolute concentrations because it could not be calibrated for absolute particle concentrations with varying particle shape, composition, and density. Six sampler technologies were used to evaluate airborne dust concentrations released from oilfield pipe rattling operations. The task sampled was the removal of scale deposited on the inner wall of the pipe before it was removed from service in a producing well. The measured mass concentrations of the aerosol samplers show that a Gaussian plume model is applicable to the data of pipe rattling operations for finding an attainment area. It is estimated that workers who remain within 1 m of the machine centerline and directly downwind have an 8-hour TWA exposure opportunity of (13.3 +/- 9.7) mg/m3 for the Mud Lake pipe scale and (11.4 +/- 9.7) mg/m3 for the Lake Sand pipe scale at 95% confidence. At distances more than 4 m downwind from the machine centerline, dust concentrations are below the TWA-TLV of 10 mg/m3 for the worker in both scales. At positions crosswind or upwind from the machine centerline there is no measurable exposure. Available data suggest that the attainment area for the public starts at about 9 m downwind from the machine centerline in both scales, as

  12. Atmospheric microbiology in the northern Caribbean during African dust events

    USGS Publications Warehouse

    Griffin, Dale W.; Kellogg, C.A.; Garrison, V.H.; Lisle, J.T.; Borden, T.C.; Shinn, E.A.

    2003-01-01

    Between July 2000 and August 2001 forty-three air samples were collected in the northern Caribbean: Twenty-six in the US Virgin Islands, and 17 samples aboard ship during two 1-week cruises. Samples were collected during African dust events and non-dust conditions and screened for the presence of culturable bacteria and fungi. A total of 3,652 liters of air were collected during non-dust conditions, with 19 bacteria and 28 fungi being recovered. During dust conditions a total of 2,369 liters of air were screened resulting in the recovery of 171 bacteria and 76 fungi. A statistically significant difference was found between the two data sets. These results support previous African dust research and further demonstrate that dust particles can serve as a vessel for the global dispersion of bacteria and fungi. Dustborne microorganisms may play a significant role in the ecology and health of downwind ecosystems.

  13. DUST FORMATION IN MACRONOVAE

    SciTech Connect

    Takami, Hajime; Ioka, Kunihito; Nozawa, Takaya E-mail: kunihito.ioka@kek.jp

    2014-07-01

    We examine dust formation in macronovae (as known as kilonovae), which are the bright ejecta of neutron star binary mergers and one of the leading sites of r-process nucleosynthesis. In light of information about the first macronova candidate associated with GRB 130603B, we find that dust grains of r-process elements have difficulty forming because of the low number density of the r-process atoms, while carbon or elements lighter than iron can condense into dust if they are abundant. Dust grains absorb emission from ejecta with an opacity even greater than that of the r-process elements, and re-emit photons at infrared wavelengths. Such dust emission can potentially account for macronovae without r-process nucleosynthesis as an alternative model. This dust scenario predicts a spectrum with fewer features than the r-process model and day-scale optical-to-ultraviolet emission.

  14. Influence of Asian Dust Particles on Immune Adjuvant Effects and Airway Inflammation in Asthma Model Mice

    PubMed Central

    Kurai, Jun; Watanabe, Masanari; Tomita, Katsuyuki; Yamasaki, Hiroyuki Sano Akira; Shimizu, Eiji

    2014-01-01

    Objective An Asian dust storm (ADS) contains airborne particles that affect conditions such as asthma, but the mechanism of exacerbation is unclear. The objective of this study was to compare immune adjuvant effects and airway inflammation induced by airborne particles collected on ADS days and the original ADS soil (CJ-1 soil) in asthma model mice. Methods Airborne particles were collected on ADS days in western Japan. NC/Nga mice were co-sensitized by intranasal instillation with ADS airborne particles and/or Dermatophagoides farinae (Df), and with CJ-1 soil and/or Df for 5 consecutive days. Df-sensitized mice were stimulated with Df challenge intranasally at 7 days after the last Df sensitization. At 24 hours after challenge, serum allergen specific antibody, differential leukocyte count and inflammatory cytokines in bronchoalveolar lavage fluid (BALF) were measured, and airway inflammation was examined histopathologically. Results Co-sensitization with ADS airborne particles and Df increased the neutrophil and eosinophil counts in BALF. Augmentation of airway inflammation was also observed in peribronchiolar and perivascular lung areas. Df-specific serum IgE was significantly elevated by ADS airborne particles, but not by CJ-1 soil. Levels of interleukin (IL)-5, IL-13, IL-6, and macrophage inflammatory protein-2 were higher in BALF in mice treated with ADS airborne particles. Conclusion These results suggest that substances attached to ADS airborne particles that are not in the original ADS soil may play important roles in immune adjuvant effects and airway inflammation. PMID:25386753

  15. Saharan Dust Effects on Human Health: A Challenge for Cuba's Researchers.

    PubMed

    Venero-Fernández, Silvia J

    2016-07-01

    WHO considers the effects of air pollution one of the most pressing global health priorities. Several years ago, scientists began noting a link between Saharan dust (a meteorological phenomenon that diminishes air quality as it spreads over the globe) and some diseases, but the few studies to date have been inconsistent. Cuba has the human and material resources to study the association between Saharan dust and health. It is important to encourage creation of multidisciplinary research teams to do so. KEYWORDS Health, airborne particulate matter, dust, air pollutants, environmental health, climate, Cuba. PMID:27510936

  16. Interstellar Dust Models

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2004-01-01

    A viable interstellar dust model - characterized by the composition, morphology, and size distribution of the dust grains and by the abundance of the different elements locked up in the dust - should fit all observational constraints arising primarily from the interactions of the dust with incident radiation or the ambient gas. As a minimum, these should include the average interstellar extinction, the infrared emission from the diffuse interstellar medium (ISM), and the observed interstellar abundances of the various refractory elements. The last constraint has been largely ignored, resulting in dust models that require more elements to be in the dust phase than available in the ISM. In this talk I will describe the most recent advances towards the construction of a comprehensive dust model made by Zubko, Dwek, and Arendt, who, for the first time, included the interstellar abundances as explicit constraints in the construction of interstellar dust models. The results showed the existence of many distinct models that satisfy the basic set of observational constraints, including bare spherical silicate and graphite particles, PAHs, as well as spherical composite particles containing silicate, organic refractories, water ice, and voids. Recently, a new interstellar dust constituent has emerged, consisting of metallic needles. These needles constitute a very small fraction of the interstellar dust abundance, and their existence is primarily manifested in the 4 to 8 micron wavelength region, where they dominate the interstellar extinction. Preliminary studies show that these models may be distinguished by their X-ray halos, which are produced primarily by small angle scattering off large dust particles along the line of sight to bright X-ray sources, and probe dust properties largely inaccessible at other wavelengths.

  17. On dust emissions from the jovian system

    NASA Technical Reports Server (NTRS)

    Zook, H. A.; Gruen, E.; Baguhl, M.; Balogh, A.; Bame, S. J.; Fechtig, H.; Forsyth, R.; Hanner, M. S.; Horanyi, M.; Kissel, J.

    1993-01-01

    As described by Gruen et al., the dust impact detector on the Ulysses spacecraft detected a totally unexpected series of dust streams in the outer solar system near the orbit of Jupiter. Five considerations lead us to believe that the dust streams emanate from the jovian system itself: the dust streams only occur within about 1 AU of the jovian system, with the strongest stream being the one closest to Jupiter (about 550 R(sub J) away); the direction from which they arrive is never far from the line-of-sight direction to Jupiter; the time period between streams is about 28 (+/- 3) days; the impact velocities are very high--mostly around 40 km/s; and we can think of no cometary, asteroidal, or interstellar source that could give rise to the above four phenomena (such streams have never before been detected).

  18. Modeling of asteroidal dust production rates

    NASA Technical Reports Server (NTRS)

    Durda, Daniel D.; Dermott, Stanley F.; Gustafson, Bo A. S.

    1992-01-01

    The production rate of dust associated with the prominent Hirayama asteroid families and the background asteroidal population are modeled with the intent of using the families as a calibrator of mainbelt dust production. However, the dust production rates of asteroid families may be highly stochastic; there is probably more than an order of magnitude variation in the total area of dust associated with a family. Over 4.5 x 10(exp 9) years of collisional evolution, the volume (mass) of a family is ground down by an order of magnitude, suggesting a similar loss from the entire mainbelt population. Our collisional models show that the number of meteoroids deliverable to Earth also varies stochastically, but only by a factor of 2 to 3.

  19. Airborne Electro-Optical Sensor Simulation System. Final Report.

    ERIC Educational Resources Information Center

    Hayworth, Don

    The total system capability, including all the special purpose and general purpose hardware comprising the Airborne Electro-Optical Sensor Simulation (AEOSS) System, is described. The functional relationship between hardware portions is described together with interface to the software portion of the computer image generation. Supporting rationale…

  20. Operational Dust Prediction

    NASA Technical Reports Server (NTRS)

    Benedetti, Angela; Baldasano, Jose M.; Basart, Sara; Benincasa, Francesco; Boucher, Olivier; Brooks, Malcolm E.; Chen, Jen-Ping; Colarco, Peter R.; Gong, Sunlin; Huneeus, Nicolas; Jones, Luke; Lu, Sarah; Menut, Laurent; Morcrette, Jean-Jacques; Mulcahy, Jane; Nickovic, Slobodan; Garcia-Pando, Carlos P.; Reid, Jeffrey S.; Sekiyama, Thomas T.; Tanaka, Taichu Y.; Terradellas, Enric; Westphal, Douglas L.; Zhang, Xiao-Ye; Zhou, Chun-Hong

    2014-01-01

    Over the last few years, numerical prediction of dust aerosol concentration has become prominent at several research and operational weather centres due to growing interest from diverse stakeholders, such as solar energy plant managers, health professionals, aviation and military authorities and policymakers. Dust prediction in numerical weather prediction-type models faces a number of challenges owing to the complexity of the system. At the centre of the problem is the vast range of scales required to fully account for all of the physical processes related to dust. Another limiting factor is the paucity of suitable dust observations available for model, evaluation and assimilation. This chapter discusses in detail numerical prediction of dust with examples from systems that are currently providing dust forecasts in near real-time or are part of international efforts to establish daily provision of dust forecasts based on multi-model ensembles. The various models are introduced and described along with an overview on the importance of dust prediction activities and a historical perspective. Assimilation and evaluation aspects in dust prediction are also discussed.

  1. Dust Devil Tracks

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 8 May 2002) The Science This image, centered near 50.0 S and 17.7 W displays dust devil tracks on the surface. Most of the lighter portions of the image likely have a thin veneer of dust settled on the surface. As a dust devil passes over the surface, it acts as a vacuum and picks up the dust, leaving the darker substrate exposed. In this image there is a general trend of many of the tracks running from east to west or west to east, indicating the general wind direction. There is often no general trend present in dust devil tracks seen in other images. The track patterns are quite ephemeral and can completely change or even disappear over the course of a few months. Dust devils are one of the mechanisms that Mars uses to constantly pump dust into the ubiquitously dusty atmosphere. This atmospheric dust is one of the main driving forces of the present Martian climate. The Story Vrrrrooooooooom. Think of a tornado, the cartoon Tasmanian devil, or any number of vacuum commercials that powerfully suck up swirls of dust and dirt. That's pretty much what it's like on the surface of Mars a lot of the time. Whirlpools of wind called

  2. Temperature of cometary dust

    NASA Astrophysics Data System (ADS)

    Henning, Th.; Weidlich, U.

    1988-05-01

    The variation of dust temperature with heliocentric distance for a comet is calculated using the optical constants of an astronomically important silicate. The silicate, described by Drane (1985), is assumed to be similar to cometary dust. The temperatures of cometary dust grains are determined by the energy balance between the absorbed sunlight and emitted thermal radiation, and equilibrium temperatures of dust grains for different radii and heliocentric distances are compared. Deviations between computed and observed temperatures are attributed to variations in the chemical composition of the ablated grains.

  3. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  4. Extinction-to-Backscatter Ratios of Saharan Dust Layers Derived from In-Situ Measurements and CALIPSO Overflights During NAMMA

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Liu, Zhaoyan; Vaughan, Mark A.; Thornhill, Kenneth L., II; Kittaka, Chieko; Ismail, Syed; Chen, Gao; Powell, Kathleen A.; Winker, David M.; Trepte, Charles R.; Trepte, Charles R.; Winstead, Edward L.; Anderson, Bruce E.

    2010-01-01

    We determine the extinction-to-backscatter (Sa) ratios of dust using (1) airborne in-situ measurements of microphysical properties, (2) modeling studies, and (3) the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) observations recorded during the NASA African Monsoon Multidisciplinary Analyses (NAMMA) field experiment conducted from Sal, Cape Verde during Aug-Sept 2006. Using CALIPSO measurements of the attenuated backscatter of lofted Saharan dust layers, we apply the transmittance technique to estimate dust Sa ratios at 532 nm and a 2-color method to determine the corresponding 1064 nm Sa. This method yielded dust Sa ratios of 39.8 plus or minus 1.4 sr and 51.8 plus or minus 3.6 sr at 532 nm and 1064 nm, respectively. Secondly, Sa at both wavelengths is independently calculated using size distributions measured aboard the NASA DC-8 and estimates of Saharan dust complex refractive indices applied in a T-Matrix scheme. We found Sa ratios of 39.1 plus or minus 3.5 sr and 50.0 plus or minus 4 sr at 532 nm and 1064 nm, respectively, using the T-Matrix calculations applied to measured size spectra. Finally, in situ measurements of the total scattering (550 nm) and absorption coefficients (532 nm) are used to generate an extinction profile that is used to constrain the CALIPSO 532 nm extinction profile and thus generate a stratified 532 nm Sa. This method yielded an Sa ratio at 532 nm of 35.7 sr in the dust layer and 25 sr in the marine boundary layer consistent with a predominantly seasalt aerosol near the ocean surface. Combinatorial simulations using noisy size spectra and refractive indices were used to estimate the mean and uncertainty (one standard deviation) of these Sa ratios. These simulations produced a mean (plus or minus uncertainty) of 39.4 (plus or minus 5.9) sr and 56.5 (plus or minus 16.5) sr at 532 nm and 1064 nm, respectively, corresponding to percent uncertainties of 15% and 29%. These results will provide a measurements

  5. Small airways involvement in coal mine dust lung disease.

    PubMed

    Long, Joshua; Stansbury, Robert C; Petsonk, Edward L

    2015-06-01

    Inhalation of coal mine dust results in a spectrum of symptoms, dysfunction, and pathological changes in the respiratory tract that collectively have been labeled coal mine dust lung disease. Recent reports from periodic health surveillance among underground and surface coal miners in the United States have demonstrated an increasing prevalence and severity of dust diseases, and have also documented that some miners experience rapid disease progression. The coal macule is an inflammatory lesion associated with deposited dust, and occurs in the region of the most distal conducting airways and proximal respiratory bronchioles. Inflammatory changes in the small airways have long been recognized as the signature lung pathology among coal miners. Human and laboratory studies have suggested oxidant injury, and increased recruitment and activity of macrophages play important roles in dust-induced lung injury. However, the functional importance of the small airway changes was debated for many years. We reviewed published literature that documents a pervasive occurrence of both physiologic and structural abnormalities in small airways among coal miners and other workers exposed to airborne particulates. There is increasing evidence supporting an important association of abnormalities in the small peripheral airways with the development of respiratory symptoms, deficits in spirometry values, and accelerated declines in ventilatory lung function. Pathologic changes associated with mineral dust deposition in the small airways may be of particular importance in contemporary miners with rapidly progressive respiratory impairment.

  6. Soil abrasion and eolian dust production: Implications for iron partitioning and solubility

    NASA Astrophysics Data System (ADS)

    Mackie, D. S.; Peat, J. M.; McTainsh, G. H.; Boyd, P. W.; Hunter, K. A.

    2006-12-01

    Eolian dust is a source of iron for phytoplankton in many ocean areas, and there are complex pathways of atmospheric processing from soil to ocean. Overlooked parts of the pathways are the impact of large (>10 μm) grains (including a role as proxies for the behavior of smaller grains) and the effect of multiple cycles of uplift and abrasion in the dust source region. Partitioning (readily released, acid-leachable and refractory) and dissolution rates of iron were determined for an artificial dust (produced by abrading an Australian soil), untreated soil, abraded soil (after production of the artificial dust), and a natural Australian eolian dust sample taken during a dust storm. Readily released iron is not created during abrasion, and therefore the amount of readily released iron in a dust or dust-derived soil depends on processing events since the dust or soil last experienced an abrasion event. Our study develops a method for the partitioning of iron within airborne dusts and appears to be the first to consider the effect of multiple uplift events on iron partitioning.

  7. Characterization of airborne bacteria at an underground subway station.

    PubMed

    Dybwad, Marius; Granum, Per Einar; Bruheim, Per; Blatny, Janet Martha

    2012-03-01

    The reliable detection of airborne biological threat agents depends on several factors, including the performance criteria of the detector and its operational environment. One step in improving the detector's performance is to increase our knowledge of the biological aerosol background in potential operational environments. Subway stations are enclosed public environments, which may be regarded as potential targets for incidents involving biological threat agents. In this study, the airborne bacterial community at a subway station in Norway was characterized (concentration level, diversity, and virulence- and survival-associated properties). In addition, a SASS 3100 high-volume air sampler and a matrix-assisted laser desorption ionization-time of flight mass spectrometry-based isolate screening procedure was used for these studies. The daytime level of airborne bacteria at the station was higher than the nighttime and outdoor levels, and the relative bacterial spore number was higher in outdoor air than at the station. The bacterial content, particle concentration, and size distribution were stable within each environment throughout the study (May to September 2010). The majority of the airborne bacteria belonged to the genera Bacillus, Micrococcus, and Staphylococcus, but a total of 37 different genera were identified in the air. These results suggest that anthropogenic sources are major contributors to airborne bacteria at subway stations and that such airborne communities could harbor virulence- and survival-associated properties of potential relevance for biological detection and surveillance, as well as for public health. Our findings also contribute to the development of realistic testing and evaluation schemes for biological detection/surveillance systems by providing information that can be used to mimic real-life operational airborne environments in controlled aerosol test chambers. PMID:22247150

  8. Characterization of Airborne Bacteria at an Underground Subway Station

    PubMed Central

    Dybwad, Marius; Granum, Per Einar; Bruheim, Per

    2012-01-01

    The reliable detection of airborne biological threat agents depends on several factors, including the performance criteria of the detector and its operational environment. One step in improving the detector's performance is to increase our knowledge of the biological aerosol background in potential operational environments. Subway stations are enclosed public environments, which may be regarded as potential targets for incidents involving biological threat agents. In this study, the airborne bacterial community at a subway station in Norway was characterized (concentration level, diversity, and virulence- and survival-associated properties). In addition, a SASS 3100 high-volume air sampler and a matrix-assisted laser desorption ionization–time of flight mass spectrometry-based isolate screening procedure was used for these studies. The daytime level of airborne bacteria at the station was higher than the nighttime and outdoor levels, and the relative bacterial spore number was higher in outdoor air than at the station. The bacterial content, particle concentration, and size distribution were stable within each environment throughout the study (May to September 2010). The majority of the airborne bacteria belonged to the genera Bacillus, Micrococcus, and Staphylococcus, but a total of 37 different genera were identified in the air. These results suggest that anthropogenic sources are major contributors to airborne bacteria at subway stations and that such airborne communities could harbor virulence- and survival-associated properties of potential relevance for biological detection and surveillance, as well as for public health. Our findings also contribute to the development of realistic testing and evaluation schemes for biological detection/surveillance systems by providing information that can be used to mimic real-life operational airborne environments in controlled aerosol test chambers. PMID:22247150

  9. Concentration and determinants of molds and allergens in indoor air and house dust of French dwellings.

    PubMed

    Dallongeville, Arnaud; Le Cann, Pierre; Zmirou-Navier, Denis; Chevrier, Cécile; Costet, Nathalie; Annesi-Maesano, Isabella; Blanchard, Olivier

    2015-12-01

    Molds and allergens are common indoor biocontaminants. The aims of this study were to assess the concentrations of common molds in indoor air and floor dust and the concentrations of house dust mite, cat and dog allergens in mattress dust in French dwellings, and to assess predictors of these concentrations. A sample of 150 houses in Brittany (western France) was investigated. Airborne Cladosporium and Penicillium were detected in more than 90% of the dwellings, Aspergillus in 46% and Alternaria in only 6% of the housings. Regarding floor dust samples, Cladosporium and Penicillium were detected in 92 and 80% of the housings respectively, Aspergillus in 49% and Alternaria in 14%. House dust mite allergens Der p1 and Der f1 were detected in 90% and 77% of the mattress dust samples respectively and Can f1 and Fel d1 in 37% and 89% of the homes. Airborne and dustborne mold concentrations, although not statistically correlated (except for Aspergillus) shared most of their predictors. Multivariate linear models for mold levels, explaining up to 62% of the variability, showed an influence of the season, of the age of the dwelling, of aeration habits, presence of pets, smoking, signals of dampness, temperature and relative humidity. Allergens in the dust of the mattress were strongly related to the presence of pets and cleaning practices of bedsheets, these factors accounting for 60% of the variability. This study highlights ubiquitous contamination by molds and underlines complex interaction between outdoor and indoor sources and factors. PMID:26094801

  10. Sources of airborne microorganisms in the built environment.

    PubMed

    Prussin, Aaron J; Marr, Linsey C

    2015-01-01

    Each day people are exposed to millions of bioaerosols, including whole microorganisms, which can have both beneficial and detrimental effects. The next chapter in understanding the airborne microbiome of the built environment is characterizing the various sources of airborne microorganisms and the relative contribution of each. We have identified the following eight major categories of sources of airborne bacteria, viruses, and fungi in the built environment: humans; pets; plants; plumbing systems; heating, ventilation, and air-conditioning systems; mold; dust resuspension; and the outdoor environment. Certain species are associated with certain sources, but the full potential of source characterization and source apportionment has not yet been realized. Ideally, future studies will quantify detailed emission rates of microorganisms from each source and will identify the relative contribution of each source to the indoor air microbiome. This information could then be used to probe fundamental relationships between specific sources and human health, to design interventions to improve building health and human health, or even to provide evidence for forensic investigations. PMID:26694197

  11. Solubility characterization of airborne uranium from a uranium recycling plant.

    PubMed

    Metzger, Robert; Cole, Leslie

    2004-07-01

    Solubility profiles of uranium dusts in a uranium recycling plant were determined by performing in vitro solubility tests on breathing zone air samples conducted in all process areas of the processing plant. The recycling plant produces high density shields, closed end tubes that are punched and formed from uranium sheet metal, and high-fired uranium oxide, which is used as a catalyst. The recycled uranium is cut and melted in a vacuum furnace, and part of the molten uranium is poured into molds for further processing. Air samples were taken in process areas under normal working conditions. The dissolution rate of the uranium in a simulant solution of extracellular airway lining fluid (Gamble's solution) was then determined over the next 28 d. Airborne uranium in the oxide section of the plant was found to be highly insoluble with 99% of the uranium having a dissolution half time in excess of 100 d. The solubility of the airborne uranium in other areas of the facility was only slightly more soluble with over 90% of the airborne uranium having dissolution half times in excess of 90 d.

  12. Sources of airborne microorganisms in the built environment.

    PubMed

    Prussin, Aaron J; Marr, Linsey C

    2015-12-22

    Each day people are exposed to millions of bioaerosols, including whole microorganisms, which can have both beneficial and detrimental effects. The next chapter in understanding the airborne microbiome of the built environment is characterizing the various sources of airborne microorganisms and the relative contribution of each. We have identified the following eight major categories of sources of airborne bacteria, viruses, and fungi in the built environment: humans; pets; plants; plumbing systems; heating, ventilation, and air-conditioning systems; mold; dust resuspension; and the outdoor environment. Certain species are associated with certain sources, but the full potential of source characterization and source apportionment has not yet been realized. Ideally, future studies will quantify detailed emission rates of microorganisms from each source and will identify the relative contribution of each source to the indoor air microbiome. This information could then be used to probe fundamental relationships between specific sources and human health, to design interventions to improve building health and human health, or even to provide evidence for forensic investigations.

  13. Concentrations, sources and geochemistry of airborne particulate matter at a major European airport.

    PubMed

    Amato, Fulvio; Moreno, Teresa; Pandolfi, Marco; Querol, Xavier; Alastuey, Andrés; Delgado, Ana; Pedrero, Manuel; Cots, Nuria

    2010-04-01

    Monitoring of aerosol particle concentrations (PM(10), PM(2.5), PM(1)) and chemical analysis (PM(10)) was undertaken at a major European airport (El Prat, Barcelona) for a whole month during autumn 2007. Concentrations of airborne PM at the airport were close to those at road traffic hotspots in the nearby Barcelona city, with means measuring 48 microg PM(10)/m(3), 21 microg PM(2.5)/m(3) and 17 microg PM(1)/m(3). Meteorological controls on PM at El Prat are identified as cleansing daytime sea breezes with abundant coarse salt particles, alternating with nocturnal land-sourced winds which channel air polluted by industry and traffic (PM(1)/PM(10) ratios > 0.5) SE down the Llobregat Valley. Chemical analyses of the PM(10) samples show that crustal PM is dominant (38% of PM(10)), followed by total carbon (OC + EC, 25%), secondary inorganic aerosols (SIA, 20%), and sea salt (6%). Local construction work for a new airport terminal was an important contributor to PM(10) crustal levels. Source apportionment modelling PCA-MLRA identifies five factors: industrial/traffic, crustal, sea salt, SIA, and K(+) likely derived from agricultural biomass burning. Whereas most of the atmospheric contamination concerning ambient air PM(10) levels at El Prat is not attributable directly to aircraft movement, levels of carbon are unusually high (especially organic carbon), as are metals possibly sourced from tyre detritus/smoke in runway dust (Ba, Zn, Mo) and from brake dust in ambient PM(10) (Cu, Sb), especially when the airport is at its most busy. We identify microflakes of aluminous alloys in ambient PM(10) filters derived from corroded fuselage and wings as an unequivocal and highly distinctive tracer for aircraft movement. PMID:20383366

  14. Quasar Dust Factories.

    NASA Astrophysics Data System (ADS)

    Marengo, Massimo; Elvis, Martin; Karovska, Margarita

    We show that quasars are naturally copious producers of dust, assuming only that the quasar broad emission lines (BELs) are produced by gas clouds that are part of an outflowing wind. These BEL clouds have large initial densities (ne ˜109 - 1011 cm-3) so that as they expand quasi-adiabatically they cool from an initial T = 104 K to a dust-capable T = 103 K, and reduce their pressures from ˜0.1 dyn cm-2 to ˜ 10-3 -10-5 dyn cm-2.. This places the expanded BEL clouds in the (T,P) dust forming regime of late-type giants extended atmospheres, both static and pulsing. The result applies whether the clouds have C/O abundance ratio greater or lower than 1. Photo-destruction of the grains by the quasar UV/X-ray continuum is not important, as the BEL clouds reach these conditions several parsecs from the quasar nucleus, well below the dust evaporation temperature. This result offers a new insight for the strong link between quasars and dust, and for the heavy obscuration around many quasars. It also introduces a new means of forming dust at early cosmological times, and a direct mechanism for the injection of such dust in the intergalactic medium. Since dust at high z is found only by observing quasars, our result allows far less dust to be present at early epochs, since dust only need be present where a quasar is, rather than the quasar illuminating pre-existing dust which would then need to be present in all galaxies at high z. See astro-ph/0202002 or ApJ 576, L107 (2002).

  15. Effect of proximity to a cattle feedlot on Escherichia coli O157:H7 contamination of leafy greens and evaluation of the potential for airborne transmission.

    PubMed

    Berry, Elaine D; Wells, James E; Bono, James L; Woodbury, Bryan L; Kalchayanand, Norasak; Norman, Keri N; Suslow, Trevor V; López-Velasco, Gabriela; Millner, Patricia D

    2015-02-01

    The impact of proximity to a beef cattle feedlot on Escherichia coli O157:H7 contamination of leafy greens was examined. In each of 2 years, leafy greens were planted in nine plots located 60, 120, and 180 m from a cattle feedlot (3 plots at each distance). Leafy greens (270) and feedlot manure samples (100) were collected six different times from June to September in each year. Both E. coli O157:H7 and total E. coli bacteria were recovered from leafy greens at all plot distances. E. coli O157:H7 was recovered from 3.5% of leafy green samples per plot at 60 m, which was higher (P < 0.05) than the 1.8% of positive samples per plot at 180 m, indicating a decrease in contamination as distance from the feedlot was increased. Although E. coli O157:H7 was not recovered from air samples at any distance, total E. coli was recovered from air samples at the feedlot edge and all plot distances, indicating that airborne transport of the pathogen can occur. Results suggest that risk for airborne transport of E. coli O157:H7 from cattle production is increased when cattle pen surfaces are very dry and when this situation is combined with cattle management or cattle behaviors that generate airborne dust. Current leafy green field distance guidelines of 120 m (400 feet) may not be adequate to limit the transmission of E. coli O157:H7 to produce crops planted near concentrated animal feeding operations. Additional research is needed to determine safe set-back distances between cattle feedlots and crop production that will reduce fresh produce contamination.

  16. Effect of Proximity to a Cattle Feedlot on Escherichia coli O157:H7 Contamination of Leafy Greens and Evaluation of the Potential for Airborne Transmission

    PubMed Central

    Wells, James E.; Bono, James L.; Woodbury, Bryan L.; Kalchayanand, Norasak; Norman, Keri N.; Suslow, Trevor V.; López-Velasco, Gabriela; Millner, Patricia D.

    2014-01-01

    The impact of proximity to a beef cattle feedlot on Escherichia coli O157:H7 contamination of leafy greens was examined. In each of 2 years, leafy greens were planted in nine plots located 60, 120, and 180 m from a cattle feedlot (3 plots at each distance). Leafy greens (270) and feedlot manure samples (100) were collected six different times from June to September in each year. Both E. coli O157:H7 and total E. coli bacteria were recovered from leafy greens at all plot distances. E. coli O157:H7 was recovered from 3.5% of leafy green samples per plot at 60 m, which was higher (P < 0.05) than the 1.8% of positive samples per plot at 180 m, indicating a decrease in contamination as distance from the feedlot was increased. Although E. coli O157:H7 was not recovered from air samples at any distance, total E. coli was recovered from air samples at the feedlot edge and all plot distances, indicating that airborne transport of the pathogen can occur. Results suggest that risk for airborne transport of E. coli O157:H7 from cattle production is increased when cattle pen surfaces are very dry and when this situation is combined with cattle management or cattle behaviors that generate airborne dust. Current leafy green field distance guidelines of 120 m (400 feet) may not be adequate to limit the transmission of E. coli O157:H7 to produce crops planted near concentrated animal feeding operations. Additional research is needed to determine safe set-back distances between cattle feedlots and crop production that will reduce fresh produce contamination. PMID:25452286

  17. Airborne Trace Gas Mapping During the GOSAT-COMEX Experiment

    NASA Astrophysics Data System (ADS)

    Tratt, D. M.; Leifer, I.; Buckland, K. N.; Johnson, P. D.; Van Damme, M.; Pierre-Francois, C.; Clarisse, L.

    2015-12-01

    The GOSAT-COMEX-IASI (Greenhouse gases Observing SATellite - CO2 and Methane EXperiment - Infrared Atmospheric Sounding Interferometer) experiment acquired data on 24-27 April 2015 with two aircraft, a mobile ground-based sampling suite, and the GOSAT and IASI platforms. Collections comprised the Kern Front and Kern River oil fields north of Bakersfield, Calif. and the Chino stockyard complex in the eastern Los Angeles Basin. The nested-grid experiment examined the convergence of multiple approaches to total trace gas flux estimation from the experimental area on multiple length-scales, which entailed the integrated analysis of ground-based, airborne, and space-based measurements. Airborne remote sensing was employed to map the spatial distribution of discrete emission sites - crucial information to understanding their relative aggregate contribution to the overall flux estimation. This contribution discusses the methodology in the context of the airborne GHG source mapping component of the GOSAT-COMEX experiment and its application to satellite validation.

  18. Pb, Sr and Nd isotopic composition and trace element characteristics of coarse airborne particles collected with passive samplers

    NASA Astrophysics Data System (ADS)

    Hoàng-Hòa, Thi Bich; Stille, Peter; Dietze, Volker; Guéguen, Florence; Perrone, Thierry; Gieré, Reto

    2015-09-01

    Passive samplers for collection of coarse airborne particulate matter have been installed in and around the coal-mining town of Cam Pha, Quang Ninh Province (Vietnam). Analysis of Pb, Sr, and Nd isotope ratios and of major and trace element distribution patterns in atmospheric particulates collected at three stations allowed for the identification of four important dust components: (1) coal dust from an open-pit mine and fly ash particles from a coal-fired power station, (2) diesel soot, (3) traffic dust from metal, tire and pavement abrasion, and (4) limestone-derived dust. Outside of the coal-mining area, traffic-derived dust defines the atmospheric baseline composition of the studied environment.

  19. Characteristics of airborne bacteria in Mumbai urban environment.

    PubMed

    Gangamma, S

    2014-08-01

    Components of biological origin constitute small but a significant proportion of the ambient airborne particulate matter (PM). However, their diversity and role in proinflammatory responses of PM are not well understood. The present study characterizes airborne bacterial species diversity in Mumbai City and elucidates the role of bacterial endotoxin in PM induced proinflammatory response in ex vivo. Airborne bacteria and endotoxin samples were collected during April-May 2010 in Mumbai using six stage microbial impactor and biosampler. The culturable bacterial species concentration was measured and factors influencing the composition were identified by principal component analysis (PCA). The biosampler samples were used to stimulate immune cells in whole blood assay. A total of 28 species belonging to 17 genera were identified. Gram positive and spore forming groups of bacteria dominated the airborne culturable bacterial concentration. The study indicated the dominance of spore forming and human or animal flora derived pathogenic/opportunistic bacteria in the ambient air environment. Pathogenic and opportunistic species of bacteria were also present in the samples. TNF-α induction by PM was reduced (35%) by polymyxin B pretreatment and this result was corroborated with the results of blocking endotoxin receptor cluster differentiation (CD14). The study highlights the importance of airborne biological particles and suggests need of further studies on biological characterization of ambient PM.

  20. Risk of Adverse Health and Performance Effects of Celestial Dust Exposure

    NASA Technical Reports Server (NTRS)

    Scully, Robert R.; Meyers, Valerie E.

    2015-01-01

    Crew members can be directly exposed to celestial dust in several ways. After crew members perform extravehicular activities (EVAs), they may introduce into the habitat dust that will have collected on spacesuits and boots. Cleaning of the suits between EVAs and changing of the Environmental Control Life Support System filters are other operations that could result in direct exposure to celestial dusts. In addition, if the spacesuits used in exploration missions abrade the skin, as current EVA suits have, then contact with these wounds would provide a source of exposure. Further, if celestial dusts gain access to a suit's interior, as was the case during the Apollo missions, the dust could serve as an additional source of abrasions or enhance suit-induced injuries. When a crew leaves the surface of a celestial body and returns to microgravity, the dust that is introduced into the return vehicle will "float," thus increasing the opportunity for ocular and respiratory injury. Because the features of the respirable fraction of lunar dusts indicate they could be toxic to humans, NASA conducted several studies utilizing lunar dust simulants and authentic lunar dust to determine the unique properties of lunar dust that affect physiology, assess the dermal and ocular irritancy of the dust, and establish a permissible exposure limit for episodic exposure to airborne lunar dust during missions that would involve no more than 6 months stay on the lunar surface. Studies, with authentic lunar soils from both highland (Apollo 16) and mare (Apollo17) regions demonstrated that the lunar soil is highly abrasive to a high fidelity model of human skin. Studies of lunar dust returned during the Apollo 14 mission from an area of the moon in which the soils were comprised of mineral constituents from both major geological regions (highlands and mares regions) demonstrated only minimal ocular irritancy, and pulmonary toxicity that was less than the highly toxic terrestrial crystalline

  1. The Nature of Interstellar Dust

    NASA Technical Reports Server (NTRS)

    Huss, G. R.

    2003-01-01

    The STARDUST mission is designed to collect dust the coma of comet Wild 2 and to collect interstellar dust on a second set of collectors. We have a reasonable idea of what to expect from the comet dust collection because the research community has been studying interplanetary dust particles for many years. It is less clear what we should expect from the interstellar dust. This presentation discusses what we might expect to find on the STARDUST interstellar dust collector.

  2. Dust fluxes and iron fertilization in Holocene and Last Glacial Maximum climates

    NASA Astrophysics Data System (ADS)

    Lambert, Fabrice; Tagliabue, Alessandro; Shaffer, Gary; Lamy, Frank; Winckler, Gisela; Farias, Laura; Gallardo, Laura; De Pol-Holz, Ricardo

    2015-07-01

    Mineral dust aerosols play a major role in present and past climates. To date, we rely on climate models for estimates of dust fluxes to calculate the impact of airborne micronutrients on biogeochemical cycles. Here we provide a new global dust flux data set for Holocene and Last Glacial Maximum (LGM) conditions based on observational data. A comparison with dust flux simulations highlights regional differences between observations and models. By forcing a biogeochemical model with our new data set and using this model's results to guide a millennial-scale Earth System Model simulation, we calculate the impact of enhanced glacial oceanic iron deposition on the LGM-Holocene carbon cycle. On centennial timescales, the higher LGM dust deposition results in a weak reduction of <10 ppm in atmospheric CO2 due to enhanced efficiency of the biological pump. This is followed by a further ~10 ppm reduction over millennial timescales due to greater carbon burial and carbonate compensation.

  3. Application of neutral electrolyzed water spray for reducing dust levels in a layer breeding house.

    PubMed

    Zheng, Weichao; Li, Baoming; Cao, Wei; Zhang, Guoqiang; Yang, Zhanyong

    2012-11-01

    Reducing airborne dust is an essential process for improving hen housing environment. Dust reduction effects of neutral electrolyzed water (pH 8.2) spray were investigated in a commercial tunnel-ventilated layer breeding house during production in northern China. A multipoint sampler was used to measure airborne dust concentration to study the dust reduction effects and distribution in the house. Compared with the control treatment (without spray), airborne dust level was reduced 34% in the 3 hr after spraying 216 mL m(-2) neutral electrolyzed water in the breeding house. The dust concentration was significantly higher during the periods of feed distribution (1.13 +/- 0.13 mg m(-3)) and artificial insemination (0.72 +/- 0.13 mg m(-3)) compared with after spray (0.47 +/- 0.09 mg m(-3)) and during lights-off period (0.29 +/- 0.08 mg m(-3)) in the three consecutive testing days (P <0.05). The experimental cage area was divided into four zones along the length of the house, with zone 1 nearest to the evaporative cooling pad and zone 4 nearest to the fans. The air temperature, relative humidity, airflow rate, and dust concentration were measured at the sampling points of the four zones in 3 consecutive days and mortality of the birds for the duration of a month were investigated. The results showed that the air temperature, airflow rate, dust concentration, and number of dead birds increase from zone 1 to zone 4 in the tunnel-ventilated layer breeding house. PMID:23210224

  4. Application of neutral electrolyzed water spray for reducing dust levels in a layer breeding house.

    PubMed

    Zheng, Weichao; Li, Baoming; Cao, Wei; Zhang, Guoqiang; Yang, Zhanyong

    2012-11-01

    Reducing airborne dust is an essential process for improving hen housing environment. Dust reduction effects of neutral electrolyzed water (pH 8.2) spray were investigated in a commercial tunnel-ventilated layer breeding house during production in northern China. A multipoint sampler was used to measure airborne dust concentration to study the dust reduction effects and distribution in the house. Compared with the control treatment (without spray), airborne dust level was reduced 34% in the 3 hr after spraying 216 mL m(-2) neutral electrolyzed water in the breeding house. The dust concentration was significantly higher during the periods of feed distribution (1.13 +/- 0.13 mg m(-3)) and artificial insemination (0.72 +/- 0.13 mg m(-3)) compared with after spray (0.47 +/- 0.09 mg m(-3)) and during lights-off period (0.29 +/- 0.08 mg m(-3)) in the three consecutive testing days (P <0.05). The experimental cage area was divided into four zones along the length of the house, with zone 1 nearest to the evaporative cooling pad and zone 4 nearest to the fans. The air temperature, relative humidity, airflow rate, and dust concentration were measured at the sampling points of the four zones in 3 consecutive days and mortality of the birds for the duration of a month were investigated. The results showed that the air temperature, airflow rate, dust concentration, and number of dead birds increase from zone 1 to zone 4 in the tunnel-ventilated layer breeding house.

  5. Dust devils on Mars.

    PubMed

    Thomas, P; Gierasch, P J

    1985-10-11

    Columnar, cone-shaped, and funnel-shaped clouds rising 1 to 6 kilometers above the surface of Mars have been identified in Viking Orbiter images. They are interpreted as dust devils, confirming predictions of their occurrence on Mars and giving evidence of a specific form of dust entrainment.