Science.gov

Sample records for airborne visible-infrared imaging

  1. Airborne Visible / Infrared Imaging Spectrometer AVIS: Design, Characterization and Calibration

    PubMed Central

    Oppelt, Natascha; Mauser, Wolfram

    2007-01-01

    The Airborne Visible / Infrared imaging Spectrometer AVIS is a hyperspectral imager designed for environmental monitoring purposes. The sensor, which was constructed entirely from commercially available components, has been successfully deployed during several experiments between 1999 and 2007. We describe the instrument design and present the results of laboratory characterization and calibration of the system's second generation, AVIS-2, which is currently being operated. The processing of the data is described and examples of remote sensing reflectance data are presented.

  2. Validation of Airborne Visible-Infrared Imaging Spectrometer Data at Ray Mine, AZ

    NASA Technical Reports Server (NTRS)

    Lang, H.; Baloga, S.

    1999-01-01

    We validate 1997 Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) reflectance spectra covering 0.4 meu - 2.4 meu from a stable, flat mineralogically characterized man-made target at Ray Mine, AZ, the site for an EPA/NASA assessment of the utility of remote sensing for monitoring acid drainage from an active open pit mine.

  3. First results from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Vane, Gregg

    1987-01-01

    After engineering flights aboard the NASA U-2 research aircraft in the winter of 1986 to 1987 and spring of 1987, extensive data collection across the United States was begun with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) in the summer of 1987 in support of a NASA data evaluation and technology assessment program. This paper presents some of the first results obtained from AVIRIS. Examples of spectral imagery acquired over Mountain View and Mono Lake, California, and the Cuprite Mining District in western Nevada are presented. Sensor performance and data quality are described, and in the final section of this paper, plans for the future are discussed.

  4. New calibration techniques for the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Chrien, Thomas G.; Green, Robert O.; Chovit, Chris; Eastwood, Mike; Faust, Jessica; Hajek, Pavel; Johnson, Howell; Novack, H. Ian; Sarture, Charles

    1995-01-01

    Recent laboratory calibrations of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) include new methods for the characterization of the geometric, spectral, temporal and radiometric properties of the sensor. New techniques are desired in order to: (1) increase measurement accuracy and precision, (2) minimize measurement time and expense, (3) prototype new field and inflight calibration systems, (4) resolve measurement ambiguities, and (5) add new measurement dimensions. One of the common features of these new methods is the use of the full data collection and processing power of the AVIRIS instrument and data facility. This allows the collection of large amounts of calibration data in a short period of time and is well suited to modular data analysis routines.

  5. Atmospheric water mapping with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), Mountain Pass, California

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Green, Robert O.; Carrere, Veronique; Margolis, Jack S.; Alley, Ronald E.; Vane, Gregg; Bruegge, Carol J.; Gary, Bruce L.

    1988-01-01

    Observations are given of the spatial variation of atmospheric precipitable water using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over a desert area in eastern California, derived using a band ratio method and the 940 nm atmospheric water band and 870 nm continuum radiances. The ratios yield total path water from curves of growth supplied by the LOWTRAN 7 atmospheric model. An independent validation of the AVIRIS-derived column abundance at a point is supplied by a spectral hygrometer calibrated with respect to radiosonde observations. Water values conform to topography and fall off with surface elevation. The edge of the water vapor boundary layer defined by topography is thought to have been recovered. The ratio method yields column abundance estimates of good precision and high spatial resolution.

  6. Evaluation of the airborne visible-infrared imaging spectrometer for mapping subtle lithological variation

    NASA Technical Reports Server (NTRS)

    Kruse, Fred A.

    1990-01-01

    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), flown aboard the NASA ER-2 aircraft in 1987 and 1989, used four linear arrays and four individual spectrometers to collect data simultaneously from the 224 bands in a scanned 614 pixel-wide swath perpendicular to the aircraft direction. The research had two goals. One was to evaluate the AVIRIS data. The other was to look at the subtle lithological variation at the two test sites to develop a better understanding of the regional geology and surficial processes. The geometric characteristics of the data, adequacy of the spatial resolution, and adequacy of the spectral sampling interval are evaluated. Geologic differences at the test sites were mapped. They included lithological variation caused by primary sedimentary layering, facies variation, and weathering; and subtle mineralogical differences caused by hydrothermal alterations of igneous and sedimentary rocks. The investigation used laboratory, field, and aircraft spectral measurements; known properties of geological materials; digital image processing and spectrum processing techniques; and field geologic data to evaluate the selected characteristics of the AVIRIS data.

  7. Evaluation of Airborne Visible/Infrared Imaging Spectrometer Data of the Mountain Pass, California carbonatite complex

    NASA Technical Reports Server (NTRS)

    Crowley, James; Rowan, Lawrence; Podwysocki, Melvin; Meyer, David

    1988-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data of the Mountain Pass, California carbonatite complex were examined to evaluate the AVIRIS instrument performance and to explore alternative methods of data calibration. Although signal-to-noise estimates derived from the data indicated that the A, B, and C spectrometers generally met the original instrument design objectives, the S/N performance of the D spectrometer was below expectations. Signal-to-noise values of 20 to 1 or lower were typical of the D spectrometer and several detectors in the D spectrometer array were shown to have poor electronic stability. The AVIRIS data also exhibited periodic noise, and were occasionally subject to abrupt dark current offsets. Despite these limitations, a number of mineral absorption bands, including CO3, Al-OH, and unusual rare earth element bands, were observed for mine areas near the main carbonatite body. To discern these bands, two different calibration procedures were applied to remove atmospheric and solar components from the remote sensing data. The two procedures, referred to as the single spectrum and the flat field calibration methods gave distinctly different results. In principle, the single spectrum method should be more accurate; however, additional fieldwork is needed to rigorously determine the degree of calibration success.

  8. Point source emissions mapping using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Astrophysics Data System (ADS)

    Thorpe, Andrew K.; Roberts, Dar A.; Dennison, Philip E.; Bradley, Eliza S.; Funk, Christopher C.

    2012-06-01

    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) measures reflected solar radiation in the shortwave infrared and has been used to map methane (CH4) using both a radiative transfer technique [1] and a band ratio method [2]. However, these methods are best suited to water bodies with high sunglint and are not well suited for terrestrial scenes. In this study, a cluster-tuned matched filter algorithm originally developed by Funk et al. [3] for synthetic thermal infrared data was used for gas plume detection over more heterogeneous backgrounds. This approach permits mapping of CH4, CO2 (carbon dioxide), and N2O (nitrous oxide) trace gas emissions in multiple AVIRIS scenes for terrestrial and marine targets. At the Coal Oil Point marine seeps offshore of Santa Barbara, CA, strong CH4 anomalies were detected that closely resemble results obtained using the band ratio index. CO2 anomalies were mapped for a fossil-fuel power plant, while multiple N2O and CH4 anomalies were present at the Hyperion wastewater treatment facility in Los Angeles, CA. Nearby, smaller CH4 anomalies were also detected immediately downwind of hydrocarbon storage tanks and centered on a flaring stack at the Inglewood Gas Plant. Improving these detection methods might permit gas detection over large search areas, e.g. identifying fugitive CH4 emissions from damaged natural gas pipelines or hydraulic fracturing. Further, this technique could be applied to other trace gasses with distinct absorption features and to data from planned instruments such as AVIRISng, the NEON Airborne Observation Platform (AOP), and the visible-shortwave infrared (VSWIR) sensor on the proposed HyspIRI satellite.

  9. Geometric and radiometric preprocessing of airborne visible/infrared imaging spectrometer (AVIRIS) data in rugged terrain for quantitative data analysis

    NASA Technical Reports Server (NTRS)

    Meyer, Peter; Green, Robert O.; Staenz, Karl; Itten, Klaus I.

    1994-01-01

    A geocoding procedure for remotely sensed data of airborne systems in rugged terrain is affected by several factors: buffeting of the aircraft by turbulence, variations in ground speed, changes in altitude, attitude variations, and surface topography. The current investigation was carried out with an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) scene of central Switzerland (Rigi) from NASA's Multi Aircraft Campaign (MAC) in Europe (1991). The parametric approach reconstructs for every pixel the observation geometry based on the flight line, aircraft attitude, and surface topography. To utilize the data for analysis of materials on the surface, the AVIRIS data are corrected to apparent reflectance using algorithms based on MODTRAN (moderate resolution transfer code).

  10. A comparison of LOWTRAN-7 corrected Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data with ground spectral measurements

    NASA Technical Reports Server (NTRS)

    Xu, Peng-Yang; Greeley, Ronald

    1992-01-01

    Atmospheric correction of imaging spectroscopy data is required for quantitative analysis. Different models were proposed for atmospheric correction of these data. LOWTRAN-7 is a low-resolution model and computer code for predicting atmospheric transmittance and background radiance from 0 to 50,00 cm(sup -1) which was developed by the Air Force Geophysics Laboratory. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data used are radiometrically calibrated and include the 28 Sep. 1989 Providence Fan flight line segment 07, California. It includes a dark gravel surface defined as a calibration site by the Geologic Remote Sensing Field Experiment (GRSFE). Several ground measurements of portable spectrometer DAEDALUS AA440 Spectrafax were taken during the GRSFE, July 1989 field campaign. Comparisons of the LOWTRAN-7 corrected AVIRIS data with the ground spectrometer measurement were made.

  11. Use of high spectral resolution airborne visible/infrared imaging spectrometer data for geologic mapping: An overview

    NASA Technical Reports Server (NTRS)

    Carrere, Veronique

    1991-01-01

    Specific examples of the use of AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) high spectral resolution data for mapping, alteration related to ore deposition and to hydrocarbon seepage, and alluvial fans are presented. Correction for atmospheric effects was performed using flat field correction, log residuals, and radiative transfer modeling. Minerals of interest (alunite, kaolinite, gypsum, carbonate iron oxides, etc.) were mapped based upon the wavelength position, depth and width of characteristic absorption features. Results were checked by comparing to existing maps, results from other sensors (Thematic Mapper (TM) and TIMS (Thermal Infrared Multispectral Scanner)), and laboratory spectra of samples collected in the field. Alteration minerals were identified and mapped. The signal to noise ratio of acquired AVIRIS data, long to 2.0 microns, was insufficient to map minerals of interest.

  12. Current instrument status of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Eastwood, Michael L.; Sarture, Charles M.; Chrien, Thomas G.; Green, Robert O.; Porter, Wallace M.

    1991-01-01

    An upgraded version of AVIRIS, an airborne imaging spectrometer based on a whiskbroom-type scanner coupled via optical fibers to four dispersive spectrometers, that has been in operation since 1987 is described. Emphasis is placed on specific AVIRIS subsystems including foreoptics, fiber optics, and an in-flight reference source; spectrometers and detector dewars; a scan drive mechanism; a signal chain; digital electronics; a tape recorder; calibration systems; and ground support requirements.

  13. Preliminary analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) for mineralogic mapping at sites in Nevada and Colorado

    NASA Technical Reports Server (NTRS)

    Kruse, Fred A.; Taranik, Dan L.; Kierein-Young, Kathryn S.

    1988-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data for sites in Nevada and Colorado were evaluated to determine their utility for mineralogical mapping in support of geologic investigations. Equal energy normalization is commonly used with imaging spectrometer data to reduce albedo effects. Spectra, profiles, and stacked, color-coded spectra were extracted from the AVIRIS data using an interactive analysis program (QLook) and these derivative data were compared to Airborne Imaging Spectrometer (AIS) results, field and laboratory spectra, and geologic maps. A feature extraction algorithm was used to extract and characterize absorption features from AVIRIS and laboratory spectra, allowing direct comparison of the position and shape of absorption features. Both muscovite and carbonate spectra were identified in the Nevada AVIRIS data by comparison with laboratory and AIS spectra, and an image was made that showed the distribution of these minerals for the entire site. Additional, distinctive spectra were located for an unknown mineral. For the two Colorado sites, the signal-to-noise problem was significantly worse and attempts to extract meaningful spectra were unsuccessful. Problems with the Colorado AVIRIS data were accentuated by the IAR reflectance technique because of moderate vegetation cover. Improved signal-to-noise and alternative calibration procedures will be required to produce satisfactory reflectance spectra from these data. Although the AVIRIS data were useful for mapping strong mineral absorption features and producing mineral maps at the Nevada site, it is clear that significant improvements to the instrument performance are required before AVIRIS will be an operational instrument.

  14. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). A description of the sensor, ground data processing facility, laboratory calibration, and first results

    NASA Technical Reports Server (NTRS)

    Vane, Gregg (Editor)

    1987-01-01

    The papers in this document were presented at the Imaging Spectroscopy 2 Conference of the 31st International Symposium on Optical and Optoelectronic Applied Science and Engineering, in San Diego, California, on 20 and 21 August 1987. They describe the design and performance of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor and its subsystems, the ground data processing facility, laboratory calibration, and first results.

  15. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS): Sensor improvements for 1994 and 1995

    NASA Technical Reports Server (NTRS)

    Sarture, C. M.; Chrien, T. G.; Green, R. O.; Eastwood, M. L.; Raney, J. J.; Hernandez, M. A.

    1995-01-01

    AVIRIS is a NASA-sponsored Earth-remote-sensing imaging spectrometer designed, built and operated by the Jet Propulsion Laboratory (JPL). While AVIRIS has been operational since 1989, major improvements have been completed in most of the sensor subsystems during the winter maintenance cycles. As a consequence of these efforts, the capabilities of AVIRIS to reliably acquire and deliver consistently high quality, calibrated imaging spectrometer data continue to improve annually, significantly over those in 1989. Improvements to AVIRIS prior to 1994 have been described previously. This paper details recent and planned improvements to AVIRIS in the sensor task.

  16. Mapped minerals at Questa, New Mexico, using airborne visible-infrared imaging spectrometer (AVIRIS) data -- Preliminary report

    USGS Publications Warehouse

    Livo, K. Eric; Clark, Roger N.

    2002-01-01

    This preliminary study for the First Quarterly Report has spectrally mapped hydrothermally altered minerals useful in assisting in assessment of water quality of the Red River. Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) data was analyzed to characterize mined and unmined ground at Questa, New Mexico. AVIRIS data covers the Red River drainage north of the river, from between the town of Questa on the west, to east of the town of Red River. The data was calibrated and analyzed using U.S. Geological Survey custom software and spectral mineral library. AVIRIS data was tested for spectral features that matched similar features in the spectral mineral library. Goodness-of-fit and band-depth were calculated for each comparison of spectral features and used to identify surface mineralogy. Mineral distribution, mineral associations, and AVIRIS pixel spectra were examined. Mineral maps show the distribution of iron hydroxides, iron sulfates, clays, micas, carbonates, and other minerals. Initial results show a system of alteration suites that overprint each other. Quartz-sericite-pyrite (QSP) alteration grading out to propylitic alteration (epidote and calcite) was identified at the Questa Mine (molybdenum porphyry) and a similar alteration pattern was mapped at the landslide (?scar?) areas. Supergene weathering overprints the altered rock, as shown by jarosite, kaolinite, and gypsum. In the spectral analysis, hydrothermally altered ground appears to be more extensive at the unmined Goat Hill Gulch and the mined ground, than the ?scars? to the east. Though the ?scars? have similar overall altered mineral suites, there are differences between the ?scars? in sericite, kaolinite, jarosite, gypsum, and calcite abundance. Fieldwork has verified the results at the central unmined ?scar? areas.

  17. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS): Recent improvements to the sensor

    NASA Technical Reports Server (NTRS)

    Chrien, Thomas G.; Green, Robert O.; Sarture, Charles M.; Chovit, Christopher; Eastwood, Michael L.; Eng, Bjorn T.

    1993-01-01

    AVIRIS is a NASA-sponsored Earth-looking imaging spectrometer designed, built and operated by the Jet Propulsion Laboratory. Spectral, radiometric and geometric characteristics of the data acquired by AVIRIS are given in Table 1. AVIRIS has been operational since 1989, however in each year since 1989 major improvements have been completed in most of the subsystems of the sensor. As a consequence of these efforts, the capabilities of AVIRIS to acquire and deliver calibrated imaging spectrometer data of high quality have improved significantly over those in 1989. Improvements to AVIRIS prior to 1992 have been described previously (Porter et al., 1990, Chrien et al., 1991, & Chrien et al., 1992). In the following sections of this paper we describe recent and planned improvements to AVIRIS in the sensor task.

  18. Quantitative investigations of geologic surfaces utilizing airborne visible/infrared imaging spectrometer (AVIRIS) and polarimetric radar (AIRSAR) data for Death Valley, California

    NASA Technical Reports Server (NTRS)

    Kierein-Young, Kathryn S.; Kruse, Fred A.

    1991-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and polarimetric radar (AIRSAR) data were collected over Death Valley, California, USA, in September 1989. These two data sets were used to quantitatively characterize both the mineralogy and surface structure of the valley floor. Field mapping and characterization of the salt flats across the valley identified 16 separate units. The AVIRIS data were calibrated using the 'empirical line' method, and spectra extracted for the 16 units. A water vapor map was generated from the AVIRIS data and showed spatial variations in its distribution due to evaporation of surface water. Unmixing of the 16 spectral units produced maps of endmember abundance.

  19. Expert system-based mineral mapping in northern Death Valley, California/Nevada, using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.; Lefkoff, A. B.; Dietz, J. B.

    1993-01-01

    Integrated analysis of imaging spectrometer data and field spectral measurements were used in conjunction with conventional geologic field mapping to characterize bedrock and surficial geology at the northern end of Death Valley, California and Nevada. A knowledge-based expert system was used to automatically produce image maps showing the principal surface mineralogy from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data. Linear spectral unmixing of the AVIRIS data allowed further determination of relative mineral, abundances and identification of mineral assemblages and mixtures. The imaging spectrometer data show the spatial distribution of spectrally distinct minerals occurring both as primary rockforming minerals and as alteration and weathering products. Field spectral measurements were used to verify the mineral maps and field mapping was used to extend the remote sensing results. Geographically referenced image maps produced from these data form new base maps from which to develop improved understanding of the processes of deposition and erosion affecting the present land surface.

  20. Use of the Airborne Visible/Infrared Imaging Spectrometer to calibrate the optical sensor on board the Japanese Earth Resources Satellite-1

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Conel, James E.; Vandenbosch, Jeannette; Shimada, Masanobu

    1993-01-01

    We describe an experiment to calibrate the optical sensor (OPS) on board the Japanese Earth Resources Satellite-1 with data acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). On 27 Aug. 1992 both the OPS and AVIRIS acquired data concurrently over a calibration target on the surface of Rogers Dry Lake, California. The high spectral resolution measurements of AVIRIS have been convolved to the spectral response curves of the OPS. These data in conjunction with the corresponding OPS digitized numbers have been used to generate the radiometric calibration coefficients for the eight OPS bands. This experiment establishes the suitability of AVIRIS for the calibration of spaceborne sensors in the 400 to 2500 nm spectral region.

  1. A Parametric Approach for the Geocoding of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Data in Rugged Terrain

    NASA Technical Reports Server (NTRS)

    Peter, M.

    1993-01-01

    A geocoding procedure for remotely sensed data of airborne systems in rugged terrain is affected by several factors: buffeting of the aircraft by turbulances, variations in ground speed, changes in altitude, attitude variations, and surface topography.

  2. Lithology and structure within the basement terrain adjacent to Clark Mountains, California, mapped with calibrated data from the airborne visible/infrared imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Vane, Gregg

    1989-01-01

    The Clark Mountains in eastern California form a rugged, highly dissected area nearly 5000 ft above sea level, with Clark Mountain rising to 8000 ft. The rocks of the Clark Mountains and the Mescal Range just to the south are Paleozoic carbonate and clastic rocks, and Mesozoic clastic and volcanic rocks standing in pronounced relief above the fractured Precambrian gneisses to the east. The Permian Kaibab Limestone and the Triassic Moenkopi and Chinle Formations are exposed in the Mescal Range, which is the only place in California where these rocks, which are typical of the Colorado Plateau, are found. To the west, the mountains are bordered by the broad alluvial plains of Shadow Valley. Cima Dome, which is an erosional remnant carved on a batholithic intrusion of quartz monzonite, is found at the south end of the valley. To the east of the Clark and Mescal Mountains is found the Ivanpah Valley, in the center of which is located the Ivanpah Play. Studies of the Clark Mountains with the airborne visible/infrared imaging spectrometer are briefly described.

  3. Comparison of laboratory calibrations of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) at the beginning and end of the first flight season

    NASA Technical Reports Server (NTRS)

    Vane, Gregg; Chrien, Thomas G.; Reimer, John H.; Green, Robert O.; Conel, James E.

    1988-01-01

    Spectral and radiometric calibrations of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) were performed in the laboratory in June and November, 1987, at the beginning and end of the first flight season. Those calibrations are described along with changes in instrument characteristics that occurred during the flight season as a result of factors such as detachment of the optical fibers to two of the four AVIRIS spectrometers, degradation in the optical alignment of the spectrometers due to thermally-induced and mechanical warpage, and breakage of a thermal blocking filter in one of the spectrometers. These factors caused loss of signal in three spectrometers, loss of spectral resolution in two spectrometers, and added uncertainty in the radiometry of AVIRIS. Results from in-flight assessment of the laboratory calibrations are presented. A discussion is presented of improvements made to the instrument since the end of the first flight season and plans for the future. Improvements include: (1) a new thermal control system for stabilizing spectrometer temperatures, (2) kinematic mounting of the spectrometers to the instrument rack, and (3) new epoxy for attaching the optical fibers inside their mounting tubes.

  4. Directly attributing methane emissions to point source locations using the next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG)

    NASA Astrophysics Data System (ADS)

    Thorpe, A. K.; Thompson, D. R.; Frankenberg, C.; Aubrey, A. D.; Bue, B. D.; Green, R. O.; Kort, E. A.; Eastwood, M. L.; Helmlinger, M. C.; Nolte, S. H.

    2015-12-01

    Imaging spectrometers like the next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) are well suited for identifying methane point sources by covering large regions with the high spatial resolution necessary to resolve emissions. A controlled release experiment at the Rocky Mountain Oilfield Testing Center (RMOTC) showed detectable methane plumes at multiple flux rates and flight altitudes. Images of plumes agreed with wind direction measured at ground stations and were consistently present for fluxes as low as 0.09 kt/year (14.16 cubic meters per hour; 500 standard cubic feet per hour, scfh). In some cases plumes were detected as low as 0.02 kt/year (3.40 cubic meters per hour; 120 scfh), indicating that AVIRIS-NG has the capability of detecting a number of fugitive methane source categories for natural gas fields. Following the RMOTC campaign, real time detection and geolocation of methane plumes has been implemented using an operator interface that overlays plumes on a true color image acquired by AVIRIS-NG. This has facilitated surveys over existing oil and gas fields to identify and attribute methane emissions to individual point source locations, including well pads known to use hydraulic fracturing and natural gas pipelines. An imaging spectrometer built exclusively for detection, quantification, and attribution of methane plumes would have improved sensitivity compared to AVIRIS-NG. The Airborne Methane Plume Spectrometer (AMPS) instrument concept is mature, ready for development, and would provide a spectral resolution of 1 nm and a detection threshold of approximately 0.28 cubic meters per hour (10 scfh). By offering the potential to identify point source locations, airborne imaging spectrometers could have particular utility for resolving the large uncertainties associated with anthropogenic emissions, including industrial point source emissions and fugitive methane from the oil and gas industry. Fig.1: True color image subset with

  5. Mapping hydrothermally altered rocks on Mount Rainier, Washington, with Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data

    USGS Publications Warehouse

    Crowley, J.K.; Zimbelman, D.R.

    1997-01-01

    Mount Rainier has produced numerous Holocene debris flows, the largest of which contain clays and other minerals derived from hydrothermally altered rocks on the volcano's edifice. Imagery from an advanced airborne sensor was used to map altered rocks at Mount Rainier and demonstrates their distinctly nonuniform distribution. The mapping of altered rocks helps to identify edifice failure surfaces and to recognize the source areas for the largest debris flow events. Remote sensing methods like those used at Mount Rainier can enhance ground-based mapping efforts and should prove useful for rapidly identifying hazardous sectors at other volcanoes.

  6. Applying spectral mixture analysis (SMA) for soil information extraction on the airborne visible/infrared imaging spectrometer (AVIRIS) data

    NASA Astrophysics Data System (ADS)

    Accioly, Luciano Jose De Oliveira

    1997-11-01

    The research objectives of this study were formulated to produce the soil spectral maps using spectral mixture analysis on the AVIRIS data of the Walnut Gulch Experimental Watershed, Tombstone, Arizona. To accomplish this objective the spectral characteristics of eight soils of this Watershed were determined considering the effect of the source of illumination/sensor viewing geometry, degree of wetness (dry vs wet), surface roughness, and the source of the spectra (field, sieved samples and lab) on the selection of image and reference endmembers. The scale effect of the source of spectra was also studied in connection with AVIRIS spectral response. The soils presented anisotropic behavior which varied inversely with the wavelength, and it was reduced under wet conditions. Loss of information occurred when moving from large scale data set (lab, sieved sample, and field spectra) to small scale data (AVIRIS). Cluster analysis and factor analysis were used to extract information about how soil reference endmembers are grouped in relation to viewing angles, degree of wetness and the source of the spectra. Factor analysis was applied to identify the key set of bands that carried most of the information. Soil spectral classes varied as a result of scale effects, soil conditions (wet or dry), and viewing angles. Factor analysis showed that with four unique bands (located at 0.410, 1.310, 0.650, and 2.400 mum) it was possible to reconstruct the four basic soil spectral curves (Epitaph, Graham, McAllister, and Baboquivari) from the lab data set. AVIRIS image was modeled using mixture analysis on the basis of image endmembers and reference endmembers. Based on the four dimensions of the AVIRIS data image endmembers were defined by three soil spectra (McAllister, Stronghold-3, and Graham) and by one spectra of green vegetation. The shade fractions were separated from dark soils (Graham and Epitaph) on the basis of the spatial context. The target test identified at least seven

  7. Comparative analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), and Hyperspectral Thermal Emission Spectrometer (HyTES) longwave infrared (LWIR) hyperspectral data for geologic mapping

    NASA Astrophysics Data System (ADS)

    Kruse, Fred A.

    2015-05-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and spatially coincident Hyperspectral Thermal Emission Spectrometer (HyTES) data were used to map geology and alteration for a site in northern Death Valley, California and Nevada, USA. AVIRIS, with 224 bands at 10 nm spectral resolution over the range 0.4 - 2.5 μm at 3-meter spatial resolution were converted to reflectance using an atmospheric model. HyTES data with 256 bands at approximately 17 nm spectral resolution covering the 8 - 12 μm range at 4-meter spatial resolution were converted to emissivity using a longwave infrared (LWIR) radiative transfer atmospheric compensation model and a normalized temperature-emissivity separation approach. Key spectral endmembers were separately extracted for each wavelength region and identified, and the predominant material at each pixel was mapped for each range using Mixture-Tuned-Matched Filtering (MTMF), a partial unmixing approach. AVIRIS mapped iron oxides, clays, mica, and silicification (hydrothermal alteration); and the difference between calcite and dolomite. HyTES separated and mapped several igneous phases (not possible using AVIRIS), silicification, and validated separation of calcite from dolomite. Comparison of the material maps from the different modes, however, reveals complex overlap, indicating that multiple materials/processes exist in many areas. Combined and integrated analyses were performed to compare individual results and more completely characterize occurrences of multiple materials. Three approaches were used 1) integrated full-range analysis, 2) combined multimode classification, and 3) directed combined analysis in geologic context. Results illustrate that together, these two datasets provide an improved picture of the distribution of geologic units and subsequent alteration.

  8. Comparison of two atmospheric correction models for a vegetated Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) scene

    NASA Technical Reports Server (NTRS)

    Vandenbosch, Jeannette Marie; Alley, R. E.

    1991-01-01

    Current atmospheric correction models applied to imaging spectroscopy data include such methods as residual (scene average) and flat field correction, regression method, and the LOWTRAN 7 method. Due to the limitations of using residual and flat field corrections on vegetated scenes, regression and LOWTRAN 7 are compared. Field measured targets taken at the time of the 13 April, 1989 AVIRIS overflight of Jasper Ridge, California (U.S.) were used to formulate the regression atmospheric correction. Assuming the regressed image represents ground truth, results show that the LOWTRAN 7 method with radiosonde data does not compensate as well for atmospheric water vapor as the regression method, but it may be easier to obtain a posteriori information to perform the LOWTRAN 7 atmospheric correction.

  9. Comparison of three atmospheric correction models for a vegetated airborne visible/infrared imaging spectrometer (AVIRIS) scene

    NASA Technical Reports Server (NTRS)

    Van Den Bosch, J. M.; Alley, R. E.

    1991-01-01

    Current atmospheric correction models applied to imaging spectroscopy data include such methods as residual or scene average, flat field correction, regression method or empirical line algorithm, the continuum interpolated band ratio (CIBR) derivation and the LOWTRAN 7 method. Due to the limitations of using residual and flat field corrections on vegetated scenes, three methods will be compared: regression, CIBR derivation and LOWTRAN 7. Field-measured bright and dark targets taken at the time of the 13 April, 1989 AVIRIS overflight of Jasper Ridge, California were used to formulate the regression method atmospheric correction. Using this corrected scene as 'ground truth', the CIBR derivation and the LOWTRAN 7 method with both input models are compared on the vegetated Jasper Ridge scene. Although representing a qualitative approach, this is a first approximation and shows the need for more quantitative analysis.

  10. Visible-Infrared Hyperspectral Image Projector

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew

    2013-01-01

    The VisIR HIP generates spatially-spectrally complex scenes. The generated scenes simulate real-world targets viewed by various remote sensing instruments. The VisIR HIP consists of two subsystems: a spectral engine and a spatial engine. The spectral engine generates spectrally complex uniform illumination that spans the wavelength range between 380 nm and 1,600 nm. The spatial engine generates two-dimensional gray-scale scenes. When combined, the two engines are capable of producing two-dimensional scenes with a unique spectrum at each pixel. The VisIR HIP can be used to calibrate any spectrally sensitive remote-sensing instrument. Tests were conducted on the Wide-field Imaging Interferometer Testbed at NASA s Goddard Space Flight Center. The device is a variation of the calibrated hyperspectral image projector developed by the National Institute of Standards and Technology in Gaithersburg, MD. It uses Gooch & Housego Visible and Infrared OL490 Agile Light Sources to generate arbitrary spectra. The two light sources are coupled to a digital light processing (DLP(TradeMark)) digital mirror device (DMD) that serves as the spatial engine. Scenes are displayed on the DMD synchronously with desired spectrum. Scene/spectrum combinations are displayed in rapid succession, over time intervals that are short compared to the integration time of the system under test.

  11. Automated extraction of absorption features from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Geophysical and Environmental Research Imaging Spectrometer (GERIS) data

    NASA Technical Reports Server (NTRS)

    Kruse, Fred A.; Calvin, Wendy M.; Seznec, Olivier

    1988-01-01

    Automated techniques were developed for the extraction and characterization of absorption features from reflectance spectra. The absorption feature extraction algorithms were successfully tested on laboratory, field, and aircraft imaging spectrometer data. A suite of laboratory spectra of the most common minerals was analyzed and absorption band characteristics tabulated. A prototype expert system was designed, implemented, and successfully tested to allow identification of minerals based on the extracted absorption band characteristics. AVIRIS spectra for a site in the northern Grapevine Mountains, Nevada, have been characterized and the minerals sericite (fine grained muscovite) and dolomite were identified. The minerals kaolinite, alunite, and buddingtonite were identified and mapped for a site at Cuprite, Nevada, using the feature extraction algorithms on the new Geophysical and Environmental Research 64 channel imaging spectrometer (GERIS) data. The feature extraction routines (written in FORTRAN and C) were interfaced to the expert system (written in PROLOG) to allow both efficient processing of numerical data and logical spectrum analysis.

  12. A visible-infrared imaging spectrometer for planetary missions

    NASA Technical Reports Server (NTRS)

    McCord, Thomas (Principal Investigator); Voelker, Mark; Owensby, Pam; Warren, Cris; Mooradian, Greg

    1996-01-01

    This final report summarizes the design effort for the construction of a visible-infrared imaging spectrometer for planetary missions, funded by NASA under the Planetary Instrument Definition and Development Program. The goal was to design and develop a prototype brassboard pushbroom imaging spectrometer covering the 0.35 gm to 2.5 gm spectral region using a simplified optical layout that would minimize the size, mass and parts count of the instrument by using a single holographic grating to disperse and focus light from a single slit onto both the infrared and visible focal plane arrays. Design approaches are presented and analyzed, along with problems encountered and recommended solutions to those problems. In particular, a new type of grating, incorporating two sets of rulings and a filter in a layered structure, is presented for further development.

  13. Photodetector Arrays for Multicolor Visible/Infrared Imaging

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath; Bandara, Sumith; Liu, John; Ting, David

    2006-01-01

    Monolithic focal-plane arrays of photodetectors capable of imaging the same scenes simultaneously in multiple wavelength bands in the visible and infrared spectral regions have been proposed. In prior visible/infrared imaging systems, it has been standard practice to use separate optical trains to form images in visible and infrared wavelength bands on separate visibleand infrared-photodetector arrays. Because the proposal would enable the detection of images in multiple wavelength bands on the same focal plane, the proposal would make it unnecessary to use multiple optical trains. Hence, multispectral imaging systems could be made more compact and the difficulties of aligning multiple optical trains would be eliminated. Each pixel in an array according to the proposal would contain stacks of several photodetectors. The proposal is a logical extension of prior concepts of arrays of stacked photodetectors for imaging in two or three wavelength bands. For example, such an array was described in Three-Color Focal-Plane Array of Infrared QWIPs (NPO-20683), NASA Tech Briefs, Vol. 24, No. 5 (May 2000), page 26a. In one proposed design, (see figure), each pixel would be divided into four subpixels, one being dedicated to a visible- and-near-infrared (V) band, one to a combination of the V band and a verylong- wavelength infrared (VLWIR) band, one to a combination of the V band and a long-wavelength infrared (LWIR) band, and one to a combination of the V band and a medium-wavelength infrared (MWIR) band. For this purpose, each subpixel would include a GaAs-based positive/intrinsic/negative (PIN) photodiode for detection in the V band stacked with three quantum-well infrared photodetectors (QWIPs), each optimized for one of the aforementioned infrared bands. The stacks of photodetectors in all the subpixels would be identical except for the electrical connections, which would be configured to activate the various wavelengthband combinations.

  14. VIIRS Product Aggregation and Packaging. [Visible/Infrared Imager Radiometer data products

    NASA Technical Reports Server (NTRS)

    Wolfe, Robert

    2006-01-01

    Areas where the end-users can help define the Visible/Infrared Imager Radiometer Suite (VIIRS) products distributed by NOAA include: temporal aggregation, band packaging, and gelolocation packaging. Proposals in these areas are presented along with background information, advantages and disadvantates of each proposal. The proposals are based on experience with NASA EOS missions and programs (MODIS and SeaWIFS).

  15. GOES-R Advanced Baseline Imager: spectral response functions and radiometric biases with the NPP Visible Infrared Imaging Radiometer Suite evaluated for desert calibration sites.

    PubMed

    Pearlman, Aaron; Pogorzala, David; Cao, Changyong

    2013-11-01

    The Advanced Baseline Imager (ABI), which will be launched in late 2015 on the National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite R-series satellite, will be evaluated in terms of its data quality postlaunch through comparisons with other satellite sensors such as the recently launched Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership satellite. The ABI has completed much of its prelaunch characterization and its developers have generated and released its channel spectral response functions (response versus wavelength). Using these responses and constraining a radiative transfer model with ground reflectance, aerosol, and water vapor measurements, we simulate observed top of atmosphere (TOA) reflectances for analogous visible and near infrared channels of the VIIRS and ABI sensors at the Sonoran Desert and White Sands National Monument sites and calculate the radiometric biases and their uncertainties. We also calculate sensor TOA reflectances using aircraft hyperspectral data from the Airborne Visible/Infrared Imaging Spectrometer to validate the uncertainties in several of the ABI and VIIRS channels and discuss the potential for validating the others. Once on-orbit, calibration scientists can use these biases to ensure ABI data quality and consistency to support the numerical weather prediction community and other data users. They can also use the results for ABI or VIIRS anomaly detection and resolution.

  16. Regional Sediment Management Experiment Using the Visible/Infrared Imager/Radiometer Suite and the Landsat Data Continuity Mission Sensor

    NASA Technical Reports Server (NTRS)

    Estep, Leland; Spruce, Joseph P.

    2007-01-01

    The central aim of this RPC (Rapid Prototyping Capability) experiment is to demonstrate the use of VIIRS (Visible/Infrared Imager/ Radiometer Suite and LDCM (Landsat Data Continuity Mission) sensors as key input to the RSM (Regional Sediment Management) GIS (geographic information system) DSS (Decision Support System). The project affects the Coastal Management National Application.

  17. Characterization of NPP Visible/Infrared Imager Radiometer Suite (VIIRS) Reflective Solar Bands Dual Gain Anomaly

    NASA Technical Reports Server (NTRS)

    Lee, Shihyan; McIntire, Jeff; Oudari, Hassan

    2012-01-01

    The Visible/Infrared Imager Radiometer Suite (VIIRS) contains six dual gain bands in the reflective solar spectrum. The dual gain bands are designed to switch gain mode at pre-defined thresholds to achieve high resolution at low radiances while maintaining the required dynamic range for science. During pre-launch testing, an anomaly in the electronic response before transitioning from high to low gain was discovered and characterized. On-orbit, the anomaly was confirmed using MODIS data collected during Simultaneous Nadir Overpasses (SNOs). The analysis of the Earth scene data shows that dual gain anomaly can be determined at the orbital basis. To characterize the dual gain anomaly, the anomaly region and electronic offsets were tracked per week during the first 8 month of VIIRS operation. The temporal analysis shows the anomaly region can drift 20 DN and is impacted by detectors DC Restore. The estimated anomaly flagging regions cover 2.5 % of the high gain dynamic range and are consistent with prelaunch and on-orbit LUT. The prelaunch results had a smaller anomaly range (30-50 DN) and are likely the results of more stable electronics from the shorter data collection time. Finally, this study suggests future calibration efforts to focus on the anomaly's impact on science products and possible correction method to reduce uncertainties.

  18. A Fast Visible-Infrared Imaging Radiometer Suite Simulator for Cloudy Atmopheres

    NASA Technical Reports Server (NTRS)

    Liu, Chao; Yang, Ping; Nasiri, Shaima L.; Platnick, Steven; Meyer, Kerry G.; Wang, Chen Xi; Ding, Shouguo

    2015-01-01

    A fast instrument simulator is developed to simulate the observations made in cloudy atmospheres by the Visible Infrared Imaging Radiometer Suite (VIIRS). The correlated k-distribution (CKD) technique is used to compute the transmissivity of absorbing atmospheric gases. The bulk scattering properties of ice clouds used in this study are based on the ice model used for the MODIS Collection 6 ice cloud products. Two fast radiative transfer models based on pre-computed ice cloud look-up-tables are used for the VIIRS solar and infrared channels. The accuracy and efficiency of the fast simulator are quantify in comparison with a combination of the rigorous line-by-line (LBLRTM) and discrete ordinate radiative transfer (DISORT) models. Relative errors are less than 2 for simulated TOA reflectances for the solar channels and the brightness temperature differences for the infrared channels are less than 0.2 K. The simulator is over three orders of magnitude faster than the benchmark LBLRTM+DISORT model. Furthermore, the cloudy atmosphere reflectances and brightness temperatures from the fast VIIRS simulator compare favorably with those from VIIRS observations.

  19. Visible Infrared Imaging Radiometer Suite (VIIRS) and uncertainty in the ocean color calibration methodology

    NASA Astrophysics Data System (ADS)

    Turpie, Kevin R.; Eplee, Robert E.; Meister, Gerhard

    2015-09-01

    During the first few years of the Suomi National Polar-orbiting Partnership (NPP) mission, the NASA Ocean Color calibration team continued to improve on their approach to the on-orbit calibration of the Visible Infrared Imaging Radiometer Suite (VIIRS). As the calibration was adjusted for changes in ocean band responsitivity, the team also estimated a theoretic residual error in the calibration trends well within a few tenths of a percent, which could be translated into trend uncertainties in regional time series of surface reflectance and derived products, where biases as low as a few tenths of a percent in certain bands can lead to significant effects. This study looks at effects from spurious trends inherent to the calibration and biases that arise between reprocessing efforts because of extrapolation of the timedependent calibration table. With the addition of new models for instrument and calibration system trend artifacts, new calibration trends led to improved estimates of ocean time series uncertainty. Table extrapolation biases are presented for the first time. The results further the understanding of uncertainty in measuring regional and global biospheric trends in the ocean using VIIRS, which better define the roles of such records in climate research.

  20. Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite Polarization Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Sun, Junqiang; Xiong, Xiaoxiong; Waluschka, Eugene; Wang, Menghua

    2016-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of five instruments onboard the Suomi National Polar-Orbiting Partnership (SNPP) satellite that launched from Vandenberg Air Force Base, California, on October 28, 2011. It is a whiskbroom radiometer that provides +/-56.28deg scans of the Earth view. It has 22 bands, among which 14 are reflective solar bands (RSBs). The RSBs cover a wavelength range from 410 to 2250 nm. The RSBs of a remote sensor are usually sensitive to the polarization of incident light. For VIIRS, it is specified that the polarization factor should be smaller than 3% for 410 and 862 nm bands and 2.5% for other RSBs for the scan angle within +/-45deg. Several polarization sensitivity tests were performed prelaunch for SNPP VIIRS. The first few tests either had large uncertainty or were less reliable, while the last one was believed to provide the more accurate information about the polarization property of the instrument. In this paper, the measured data in the last polarization sensitivity test are analyzed, and the polarization factors and phase angles are derived from the measurements for all the RSBs. The derived polarization factors and phase angles are band, detector, and scan angle dependent. For near-infrared bands, they also depend on the half-angle mirror side. Nevertheless, the derived polarization factors are all within the specification, although the strong detector dependence of the polarization parameters was not expected. Compared to the Moderate Resolution Imaging Spectroradiometer on both Aqua and Terra satellites, the polarization effect on VIIRS RSB is much smaller.

  1. System engineering of the visible infrared imaging radiometer suite (VIIRS): improvements in imaging radiometry enabled by innovation driven by requirements

    NASA Astrophysics Data System (ADS)

    Puschell, Jeffery J.; Ardanuy, Philip E.; Schueler, Carl F.

    2016-09-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is the new US operational environmental imaging spectroradiometer in polar orbit. The first VIIRS flight unit onboard Suomi NPP has been providing high-quality visible/infrared Earth observations since 2011. VIIRS provides an unprecedented combination of higher spatial resolution data across a wider area and more complete spectral coverage with onboard calibration than legacy instruments including AVHRR developed in the 1970s for NOAA, OLS developed in the 1970s for US DoD, MODIS developed in the 1990s for the NASA Terra and Aqua satellites and SeaWiFS developed for the commercial SeaStar system in the 1990s. A highly sensitive low light level day/night band (DNB) in VIIRS is improving weather forecasting around the world and providing new ways to observe the Earth from space. VIIRS replaces four legacy sensors with a single instrument enabled by innovations that were driven by requirements defined by NPOESS in the late 1990s. This paper highlights innovations developed by the VIIRS design team in response to challenging driving NPOESS requirements that resulted in remarkable improvements in operational remote sensing.

  2. Calibration Of Airborne Visible/IR Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Vane, G. A.; Chrien, T. G.; Miller, E. A.; Reimer, J. H.

    1990-01-01

    Paper describes laboratory spectral and radiometric calibration of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) applied to all AVIRIS science data collected in 1987. Describes instrumentation and procedures used and demonstrates that calibration accuracy achieved exceeds design requirements. Developed for use in remote-sensing studies in such disciplines as botany, geology, hydrology, and oceanography.

  3. Visible-infrared achromatic imaging by wavefront coding with wide-angle automobile camera

    NASA Astrophysics Data System (ADS)

    Ohta, Mitsuhiko; Sakita, Koichi; Shimano, Takeshi; Sugiyama, Takashi; Shibasaki, Susumu

    2016-09-01

    We perform an experiment of achromatic imaging with wavefront coding (WFC) using a wide-angle automobile lens. Our original annular phase mask for WFC was inserted to the lens, for which the difference between the focal positions at 400 nm and at 950 nm is 0.10 mm. We acquired images of objects using a WFC camera with this lens under the conditions of visible and infrared light. As a result, the effect of the removal of the chromatic aberration of the WFC system was successfully determined. Moreover, we fabricated a demonstration set assuming the use of a night vision camera in an automobile and showed the effect of the WFC system.

  4. Radiometric calibration of the Visible Infrared Imaging Radiometer Suite reflective solar bands with robust characterizations and hybrid calibration coefficients.

    PubMed

    Sun, Junqiang; Wang, Menghua

    2015-11-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is now entering its fourth year of in-orbit global environmental observation and is producing a wide range of scientific output. The ocean color products in particular require a level of accuracy from the reflective solar bands (RSBs) that is a magnitude higher than the specification. In this work, we present an updated and completed core calibration pipeline that achieves the best sensor data records (SDR) to date and helps the ocean color products to reach maturity. We review the core calibration methodology of the RSBs and describe each essential input, including the solar diffuser stability monitor, the solar diffuser (SD), and lunar calibrations. Their associated issues, along with the successful mitigation and improved results, are described and presented. In particular, we illuminate the inaccuracy suffered due to the evolving angular dependence in the degradation of the on-board SD that impacts the heart of the RSB calibration, but also show that lunar-based calibration instead provides the correct long-term baseline for the successful restoration of the core methodology. The new look-up tables, which combine the coefficients from the SD-based and lunar-based calibrations, produce the optimal result, with an estimated accuracy of ∼0.2%. This hybrid approach highlights significant progress in the VIIRS RSB calibration and marks a completion of the core calibration result upon which other physical impacts or scientific issues can then be more accurately examined. We demonstrate the significant improvement and its impact on the ocean color products by comparing the current official output to the newly generated result. Lastly, we point out that this hybrid calibration coefficients scheme is made possible by a VIIRS design and layout change over its predecessor, the Moderate Resolution Imaging Spectroradiometer, that allows both the SD and the moon to be viewed by the RSB at the same angle of incidence

  5. Validation of Vegetation Index Time Series from Suomi NPP Visible Infrared Imaging Radiometer Suite Using Tower Radiation Flux Measurements

    NASA Astrophysics Data System (ADS)

    Miura, T.; Kato, A.; Wang, J.; Vargas, M.; Lindquist, M.

    2015-12-01

    Satellite vegetation index (VI) time series data serve as an important means to monitor and characterize seasonal changes of terrestrial vegetation and their interannual variability. It is, therefore, critical to ensure quality of such VI products and one method of validating VI product quality is cross-comparison with in situ flux tower measurements. In this study, we evaluated the quality of VI time series derived from Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (NPP) spacecraft by cross-comparison with in situ radiation flux measurements at select flux tower sites over North America and Europe. VIIRS is a new polar-orbiting satellite sensor series, slated to replace National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer in the afternoon overpass and to continue the highly-calibrated data streams initiated with Moderate Resolution Imaging Spectrometer of National Aeronautics and Space Administration's Earth Observing System. The selected sites covered a wide range of biomes, including croplands, grasslands, evergreen needle forest, woody savanna, and open shrublands. The two VIIRS indices of the Top-of-Atmosphere (TOA) Normalized Difference Vegetation Index (NDVI) and the atmospherically-corrected, Top-of-Canopy (TOC) Enhanced Vegetation Index (EVI) (daily, 375 m spatial resolution) were compared against the TOC NDVI and a two-band version of EVI (EVI2) calculated from tower radiation flux measurements, respectively. VIIRS and Tower VI time series showed comparable seasonal profiles across biomes with statistically significant correlations (> 0.60; p-value < 0.01). "Start-of-season (SOS)" phenological metric values extracted from VIIRS and Tower VI time series were also highly compatible (R2 > 0.95), with mean differences of 2.3 days and 5.0 days for the NDVI and the EVI, respectively. These results indicate that VIIRS VI time series can capture seasonal evolution of

  6. Validation of Vegetation Index Time Series from Suomi NPP Visible Infrared Imaging Radiometer Suite Using Tower Radiation Flux Measurements

    NASA Astrophysics Data System (ADS)

    Miura, T.; Kato, A.; Wang, J.; Vargas, M.; Lindquist, M.

    2014-12-01

    Satellite vegetation index (VI) time series data serve as an important means to monitor and characterize seasonal changes of terrestrial vegetation and their interannual variability. It is, therefore, critical to ensure quality of such VI products and one method of validating VI product quality is cross-comparison with in situ flux tower measurements. In this study, we evaluated the quality of VI time series derived from Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (NPP) spacecraft by cross-comparison with in situ radiation flux measurements at select flux tower sites over North America and Europe. VIIRS is a new polar-orbiting satellite sensor series, slated to replace National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer in the afternoon overpass and to continue the highly-calibrated data streams initiated with Moderate Resolution Imaging Spectrometer of National Aeronautics and Space Administration's Earth Observing System. The selected sites covered a wide range of biomes, including croplands, grasslands, evergreen needle forest, woody savanna, and open shrublands. The two VIIRS indices of the Top-of-Atmosphere (TOA) Normalized Difference Vegetation Index (NDVI) and the atmospherically-corrected, Top-of-Canopy (TOC) Enhanced Vegetation Index (EVI) (daily, 375 m spatial resolution) were compared against the TOC NDVI and a two-band version of EVI (EVI2) calculated from tower radiation flux measurements, respectively. VIIRS and Tower VI time series showed comparable seasonal profiles across biomes with statistically significant correlations (> 0.60; p-value < 0.01). "Start-of-season (SOS)" phenological metric values extracted from VIIRS and Tower VI time series were also highly compatible (R2 > 0.95), with mean differences of 2.3 days and 5.0 days for the NDVI and the EVI, respectively. These results indicate that VIIRS VI time series can capture seasonal evolution of

  7. Visible Infrared Imaging Radiometer Suite solar diffuser calibration and its challenges using a solar diffuser stability monitor.

    PubMed

    Sun, Junqiang; Wang, Menghua

    2014-12-20

    The reflective solar bands (RSB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (SNPP) satellite is calibrated by a solar diffuser (SD) whose performance is itself monitored by a solar diffuser stability monitor (SDSM). In this study, we describe the calibration algorithm of the SDSM, analyze the current two and a half years of calibration data, and derive the performance result for the SD, commonly called SD degradation or H-factors. The application of the newly derived vignetting functions for both the SD screen and the SDSM sun-view screen effectively removes the seasonal oscillations in the derived SD degradation and significantly improves the quality of the H-factors. The full illumination region, the so-called "sweet spot," for both SD view and SDSM sun view is carefully examined and selected to ensure a consistent and an optimal number of valid data samples to reduce the sample noise owing to inconsistent or lack of samples. The result shows that SD degrades much faster at short wavelength as expected, about 28.5% at 412 nm but only 1.2% at 935 nm up to date. The performance of the SD degrades exponentially with time until 7 November 2013 but has since become flat. This sudden flattening of the SD degradation is a new phenomenon never previously observed for the degradations of the SD on VIIRS or other satellite sensors. The overall result shows that SDSM is essentially functioning without flaws in catching the on-orbit degradation of the SD. The most significant and direct impact of this work would be on the quality of the ocean color products that depend sensitively on moderate RSB (RSB) (M1-M8, M10, and M11). Two very important and key questions on the performance of the SD are also raised. One pertains to the directional dependence of the SD degradation result, and it is shown that the SD does not degrade uniformly in all directions as has been assumed by all SD calibration analyses. This

  8. On-orbit calibration of Visible Infrared Imaging Radiometer Suite reflective solar bands and its challenges using a solar diffuser.

    PubMed

    Sun, Junqiang; Wang, Menghua

    2015-08-20

    The reflective solar bands (RSBs) of the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National Polar-Orbiting Partnership satellite are calibrated by a solar diffuser (SD) panel whose performance is itself monitored by an accompanying solar diffuser stability monitor (SDSM). In this comprehensive work we describe the SD-based calibration algorithm of the RSBs, analyze the calibration data, and derive the performance results-the RSB calibration coefficients or F-factors-for the current three and a half years of mission. The application of the newly derived product of the SD bidirectional reflectance factor and the vignetting function for the SD screen and the newly derived SD degradation, so-called H-factors, effectively minimizes the artificial seasonal patterns in the RSB calibration coefficients due to the errors of these ingredient inputs. The full illumination region, the "sweet spot," during calibration events for SD view is carefully examined and selected to ensure high data quality and to reduce noise owing to non-fully illuminated samples. A time-dependent relative spectral response (RSR), coming from the large out-of-band contribution and the VIIRS optical system wavelength-dependent degradation, is derived from an iterative approach and applied in the SD calibration for each RSB. The result shows that VIIRS RSBs degrade much faster at near-infrared (NIR) and shortwave-infrared (SWIR) wavelength ranges due to the faster degradation of the rotating telescope assembly against the remaining part of the system. The gains of the VIIRS RSBs have degraded 2.0% (410 nm, Band M1), 0.2% (443 nm, Band M2), -0.3% (486 nm, Band M3), 0.2% (551 nm, Band M4), 6.2% (640 nm, Band I1), 11.0% (671 nm, Band M5), 21.3% (745 nm, Band M6), 35.8% (862 nm, Band I2), and 35.8% (862 nm, Band M7), respectively, since launch and 24.8% (1238 nm, Band M8), 18.5% (1378 nm, Band M9), 11.5% (1610 nm, Band I3), 11.5% (1610, Band M10), and 4.0% (2250

  9. In-flight radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Green, Robert O.; Alley, Ronald E.; Bruegge, Carol J.; Carrere, Veronique; Margolis, Jack S.; Vane, Gregg; Chrien, Thomas G.; Slater, Philip N.; Biggard, Stuart F.

    1988-01-01

    A reflectance-based method was used to provide an analysis of the in-flight radiometric performance of AVIRIS. Field spectral reflectance measurements of the surface and extinction measurements of the atmosphere using solar radiation were used as input to atmospheric radiative transfer calculations. Five separate codes were used in the analysis. Four include multiple scattering, and the computed radiances from these for flight conditions were in good agreement. Code-generated radiances were compared with AVIRIS-predicted radiances based on two laboratory calibrations (pre- and post-season of flight) for a uniform highly reflecting natural dry lake target. For one spectrometer (C), the pre- and post-season calibration factors were found to give identical results, and to be in agreement with the atmospheric models that include multiple scattering. This positive result validates the field and laboratory calibration technique. Results for the other spectrometers (A, B and D) were widely at variance with the models no matter which calibration factors were used. Potential causes of these discrepancies are discussed.

  10. Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop

    NASA Technical Reports Server (NTRS)

    Vane, Gregg (Editor)

    1988-01-01

    The focus of the workshop was the assessment of data quality by the AVIRIS project. Summaries of 16 of the presentations are published. The AVIRIS performance evaluation period began in June 87 with flight data collection in the eastern U.S., and continued in the west until Oct. 87, after which the instrument was returned for post flight calibration. At the beginning, the sensor met all of the spatial, spectral and radiometric performance requirements except in spectrometer D, where the signal to noise ratio was below the required value. By the end, sensor performance had deteriorated due to failure of 2 critical parts and to some design deficiences. The independent assessment by the NASA investigators confirmed the assessment by the AVIRIS project. Some scientific results were derived and are presented. These include the mapping of the spatial variation of atmospheric precipitable water, detection of shift in chlorophyll red, and mineral identification.

  11. A system overview of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Porter, Wallace M.; Enmark, Harry T.

    1987-01-01

    The AVIRIS instrument has been designed to do high spectral resolution remote sensing of the Earth. Utilizing both silicon and indium antimonide line array detectors, AVIRIS covers the spectral region from 0.41 to 2.45 microns in 10-nm bands. It was designed to fly aboard NASA's U-2 and ER-2 aircraft, where it will simulate the performance of future spacecraft instrumentation. Flying at an altitude of 20 km, it has an instantaneous field of view of 20 m and views a swath over 10 km wide. With an ability to record 40 minutes of data, it can, during a single flight, capture 500 km of flight line.

  12. Signal chain for the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Bunn, James S., Jr.

    1987-01-01

    The AVIRIS instrument has a separate dedicated analog signal processing chain for each of its four spectrometers. The signal chains amplify low-level focal-plane line array signals (5 to 10 mV full-scale span) in the presence of larger multiplexing signals (approx 150 mV) providing the data handling system a ten-bit digital word (for each spectrometer) each 1.3 microns. This signal chain provides automatic correction for the line array dark signal nonuniformity (which can approach the full-scale signal span).

  13. Early On-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite

    NASA Technical Reports Server (NTRS)

    Cao, Changyong; DeLuccia, Frank J.; Xiong, Xiaoxiong; Wolfe, Robert; Weng, Fuzhong

    2014-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of the key environmental remote-sensing instruments onboard the Suomi National Polar-Orbiting Partnership spacecraft, which was successfully launched on October 28, 2011 from the Vandenberg Air Force Base, California. Following a series of spacecraft and sensor activation operations, the VIIRS nadir door was opened on November 21, 2011. The first VIIRS image acquired signifies a new generation of operational moderate resolution-imaging capabilities following the legacy of the advanced very high-resolution radiometer series on NOAA satellites and Terra and Aqua Moderate-Resolution Imaging Spectroradiometer for NASA's Earth Observing system. VIIRS provides significant enhancements to the operational environmental monitoring and numerical weather forecasting, with 22 imaging and radiometric bands covering wavelengths from 0.41 to 12.5 microns, providing the sensor data records for 23 environmental data records including aerosol, cloud properties, fire, albedo, snow and ice, vegetation, sea surface temperature, ocean color, and nigh-time visible-light-related applications. Preliminary results from the on-orbit verification in the postlaunch check-out and intensive calibration and validation have shown that VIIRS is performing well and producing high-quality images. This paper provides an overview of the onorbit performance of VIIRS, the calibration/validation (cal/val) activities and methodologies used. It presents an assessment of the sensor initial on-orbit calibration and performance based on the efforts from the VIIRS-SDR team. Known anomalies, issues, and future calibration efforts, including the long-term monitoring, and intercalibration are also discussed.

  14. Detector-level spectral characterization of the Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite long-wave infrared bands M15 and M16.

    PubMed

    Padula, Francis; Cao, Changyong

    2015-06-01

    The Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) sensor data record (SDR) product achieved validated maturity status in March 2014 after roughly two years of on-orbit characterization (S-NPP spacecraft launched on 28 October 2011). During post-launch analysis the VIIRS Sea Surface Temperature (SST) Environmental Data Record (EDR) team observed an anomalous striping pattern in the daytime SST data. Daytime SST retrievals use the two VIIRS long-wave infrared bands: M15 (10.7 μm) and M16 (11.8 μm). To assess possible root causes due to detector-level spectral response function (SRF) effects, a study was conducted to compare the radiometric response of the detector-level and operational-band averaged SRFs of VIIRS bands M15 and M16. The study used simulated hyperspectral blackbody radiance data and clear-sky ocean hyperspectral radiances under different atmospheric conditions. It was concluded that the SST product is likely impacted by small differences in detector-level SRFs and that if users require optimal radiometric performance, detector-level processing is recommended for both SDR and EDR products. Future work should investigate potential SDR product improvements through detector-level processing in support of the generation of Suomi NPP VIIRS climate quality SDRs.

  15. The Use of Simulated Visible/Infrared Imager/Radiometer Suite (VIIRS) and Landsat Data Continuity Mission (LDCM) Imagery for Coral Reef Monitoring

    NASA Technical Reports Server (NTRS)

    Estep, L.; Spruce, J.; Blonski, S.; Moore, R.

    2008-01-01

    Coral reefs are some of the most biologically rich and economically important ecosystems on Earth. Coral reefs are Earth's largest biological structures and have taken thousands of years to form. Coral reefs not only provide important habitat for many marine animals and plants, but they also provide humanity with food, jobs, chemicals, protection against storms, and life-saving pharmaceuticals. Severe bleaching events have occurred that have dramatic long-term ecological impacts to corals, including loss of reef-building corals, changes in benthic habitat, and, in some cases, changes in larval fish populations (Holden and Ledrew, 1998). Some researchers suggest that 10 percent of Earth s coral reefs have already been destroyed and that another 60 percent are in danger. Scientists have proposed that as much as 95 percent of Jamaica's reefs are dying or dead. This poster reports on a Rapid Prototyping Capability (RPC) experiment done to determine whether future NASA sensors - the Visible/Infrared Imager/Radiometer Suite (VIIRS) and Landsat Data Continuity Mission (LDCM) - could generate key data products for the Integrated Coral Reef Observation Network (ICON)/Coral Reef Early Warning System (CREWS) Decision Support Tool (DST) operated by the National Oceanic and Atmospheric Administration (NOAA).

  16. Support vector data description model to map urban extent from National Polar-Orbiting Partnership Satellite-Visible Infrared Imaging Radiometer Suite nightlights and normalized difference vegetation index

    NASA Astrophysics Data System (ADS)

    Zhang, Jinshui; Zhou, Zhongwei; Shuai, Guanyuan; Liu, Hongli

    2016-04-01

    We explored a one-class classifier, the support vector data description (SVDD), using the Suomi National Polar-Orbiting Partnership Satellite-Visible Infrared Imaging Radiometer Suite and normalized difference vegetation index to map the urban extent, which was tested in the Beijing and Tianjin city group area. The urban edge-pixels were selected as training samples for SVDD based on a profile-based sampling method combining nighttime light value histograms. The results showed that the overall accuracy of SVDD was similar to the support vector machine (SVM) model. However, kappa coefficients of SVDD for highly developed cities were superior to SVM, as producer and user accuracies of SVDD were almost equal to show high agreement of urban and nonurban areas. For metropolitan areas, such as Beijing and Tianjin, the urban extent generated by SVDD is closer to the reference data. The R2 between the quantity of SVDD-estimated urban extent and population, 0.86, was higher than that obtained from SVM, 0.76, indicating that the estimated urban extent from the SVDD is more efficient for understanding the population development. The SVDD was further applied for three other representative metropolitans in China: Shanghai, Guangzhou, and Shenzhen to validate the SVDD's performance, and similar results were achieved. The success of the SVDD-based urban extent extraction improves our ability to map urban extent at regional and national scales.

  17. Overview of calibration and validation activities for the EUMETSAT polar system: second generation (EPS-SG) visible/infrared imager (METimage)

    NASA Astrophysics Data System (ADS)

    Phillips, P.; Bonsignori, R.; Schlüssel, P.; Schmülling, F.; Spezzi, L.; Watts, P.; Zerfowski, I.

    2016-10-01

    The EPS-SG Visible/Infrared Imaging (VII) mission is dedicated to supporting the optical imagery user needs for Numerical Weather Prediction (NWP), Nowcasting (NWC) and climate in the timeframe beyond 2020. The VII mission is fulfilled by the METimage instrument, developed by the German Space Agency (DLR) and funded by the German government and EUMETSAT. Following on from an important list of predecessors such as the Advanced Very High Resolution Radiometer (AVHRR) and the Moderate resolution Imaging Spectro-radiometer (MODIS), METimage will fly in the mid-morning orbit of the Joint Polar System, whilst the early-afternoon orbits are served by the JPSS (U.S. Joint Polar Satellite System) Visible Infrared Imager Radiometer Suite (VIIRS). METimage itself is a cross-purpose medium resolution, multi-spectral optical imager, measuring the optical spectrum of radiation emitted and reflected by the Earth from a low-altitude sun synchronous orbit over a minimum swath width of 2700 km. The top of the atmosphere outgoing radiance will be sampled every 500 m (at nadir) with measurements made in 20 spectral channels ranging from 443 nm in the visible up to 13.345 μm in the thermal infrared. The three major objectives of the EPS-SG METimage calibration and validation activities are: • Verification of the instrument performances through continuous in-flight calibration and characterisation, including monitoring of long term stability. • Provision of validated level 1 and level 2 METimage products. • Revision of product processing facilities, i.e. algorithms and auxiliary data sets, to assure that products conform with user requirements, and then, if possible, exceed user expectations. This paper will describe the overall Calibration and Validation (Cal/Val) logic and the methods adopted to ensure that the METimage data products meet performance specifications for the lifetime of the mission. Such methods include inter-comparisons with other missions through simultaneous

  18. Feasibility demonstration for calibrating Suomi-National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite day/night band using Dome C and Greenland under moon light

    NASA Astrophysics Data System (ADS)

    Qiu, Shi; Shao, Xi; Cao, Changyong; Uprety, Sirish

    2016-01-01

    The day/night band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi National Polar-orbiting Partnership (Suomi-NPP) represents a major advancement in night time imaging capabilities. DNB covers almost seven orders of magnitude in its dynamic range from full sunlight to half-moon. To achieve this large dynamic range, it uses four charge-coupled device arrays in three gain stages. The low gain stage (LGS) gain is calibrated using the solar diffuser. In operations, the medium and high gain stage values are determined by multiplying the gain ratios between the medium gain stage, and LGS, and high gain stage (HGS) and LGS, respectively. This paper focuses on independently verifying the radiometric accuracy and stability of DNB HGS using DNB observations of ground vicarious calibration sites under lunar illumination at night. Dome C in Antarctica in the southern hemisphere and Greenland in the northern hemisphere are chosen as the vicarious calibration sites. Nadir observations of these high latitude regions by VIIRS are selected during perpetual night season, i.e., from April to August for Dome C and from November to January for Greenland over the years 2012 to 2013. Additional selection criteria, such as lunar phase being more than half-moon and no influence of straylight effects, are also applied in data selection. The lunar spectral irradiance model, as a function of Sun-Earth-Moon distances and lunar phase, is used to determine the top-of-atmosphere reflectance at the vicarious site. The vicariously derived long-term reflectance from DNB observations agrees with the reflectance derived from Hyperion observations. The vicarious trending of DNB radiometric performance using DOME-C and Greenland under moon light shows that the DNB HGS radiometric variability (relative accuracy to lunar irradiance model and Hyperion observation) is within 8%. Residual variability is also discussed.

  19. Column atmospheric water vapor retrievals from airborne imaging spectrometer data

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Goetz, Alexander F. H.

    1989-01-01

    High-spatial-resolution column atmospheric water vapor amounts were derived from spectral data collected by the Airborne Visible Infrared Imaging Spectrometer (AVIRIS). The quantitative derivation is made by curve fitting observed spectra with calculated spectra in the 1.14- and 0.94-micron water-vapor band absorption regions with a nonlinear least-squares technique. The precision of the retrieved column water vapor is approximately 5 percent. The derived column water vapor amounts are independent of the absolute surface reflectance. Curve fitting of spectra near 1 micron from areas covered with vegetation indicates that both the amount of atmospheric water vapor and the moisture content of vegetation can be retrieved simultaneously. It should be possible to measure column water vapor over land areas from satellite altitude with the proposed high-resolution imaging spectrometer or even the moderate-resolution imaging spectrometer.

  20. Remote sensing of cirrus cloud optical thickness and effective particle size for the National Polar-orbiting Operational Environmental Satellite System Visible/Infrared Imager Radiometer Suite: sensitivity to instrument noise and uncertainties in environmental parameters.

    PubMed

    Ou, Szu-Cheng; Takano, Yoshihide; Liou, K N; Higgins, Glenn J; George, Adrian; Slonaker, Richard

    2003-12-20

    We describe sensitivity studies on the remote sensing of cirrus cloud optical thickness and effective particle size using the National Polar-orbiting Operational Environmental Satellite System Visible/Infrared Imager Radiometer Suite 0.67-, 1.24-, 1.61-, and 2.25-microm reflectances and thermal IR 3.70- and 10.76-microm radiances. To investigate the accuracy and precision of the solar and IR retrieval methods subject to instrument noise and uncertainties in environmental parameters, we carried out signal-to-noise ratio tests as well as the error budget study, where we used the University of California at Los Angeles line-by-line equivalent radiative transfer model to generate radiance tables for synthetic retrievals. The methodology and results of these error analyses are discussed.

  1. Summaries of the Sixth Annual JPL Airborne Earth Science Workshop. Volume 2; AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Kim, Yun-Jin (Editor)

    1996-01-01

    The Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996, was divided into two smaller workshops:(1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, and The Airborne Synthetic Aperture Radar (AIRSAR) workshop. This current paper, Volume 2 of the Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, presents the summaries for The Airborne Synthetic Aperture Radar (AIRSAR) workshop.

  2. Airborne Hyperspectral Imaging System

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E.; Cooper, Moogega; Adler, John; Jacobson, Tobias

    2012-01-01

    A document discusses a hyperspectral imaging instrument package designed to be carried aboard a helicopter. It was developed to map the depths of Greenland's supraglacial lakes. The instrument is capable of telescoping to twice its original length, allowing it to be retracted with the door closed during takeoff and landing, and manually extended in mid-flight. While extended, the instrument platform provides the attached hyperspectral imager a nadir-centered and unobstructed view of the ground. Before flight, the instrument mount is retracted and securely strapped down to existing anchor points on the floor of the helicopter. When the helicopter reaches the destination lake, the door is opened and the instrument mount is manually extended. Power to the instrument package is turned on, and the data acquisition computer is commanded via a serial cable from an onboard user-operated laptop to begin data collection. After data collection is complete, the instrument package is powered down and the mount retracted, allowing the door to be closed in preparation for landing. The present design for the instrument mount consists of a three-segment telescoping cantilever to allow for a sufficient extended length to see around the landing struts and provide a nadir-centered and unobstructed field of view for the hyperspectral imager. This instrument works on the premise that water preferentially absorbs light with longer wavelengths on the red side of the visible spectrum. This property can be exploited in order to remotely determine the depths of bodies of pure freshwater. An imager flying over such a lake receives light scattered from the surface, the bulk of the water column, and from the lake bottom. The strength of absorption of longer-wavelength light depends on the depth of the water column. Through calibration with in situ measurements of the water depths, a depth-determining algorithm may be developed to determine lake depth from these spectral properties of the

  3. Airborne microwave radiometric imaging system

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Li, Futang; Zhang, Zuyin

    1999-09-01

    A dual channel Airborne Microwave Radiometric Imaging system (AMRI) was designed and constructed for regional environment mapping. The system operates at 35GHz, which collects radiation at horizontal and vertical polarized channels. It runs at mechanical conical scanning with 45 degrees incidence angle. Two Cassegrain antennas with 1.5 degrees beamwidth scan the scene alternately and two pseudo- color images of two channels are displayed on the screen of PC in real time. Simultaneously, all parameters of flight and radiometric data are sorted in hard disk for post- processing. The sensitivity of the radiometer (Delta) T equals 0.16K. A new displaying method, unequal size element arc displaying method, is used in image displaying. Several experiments on mobile tower were carried out and the images demonstrate that the AMRI is available to work steadily and accurately.

  4. Airborne microwave radiometric imaging system

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Zhang, Zuyin; Chen, Zhengwen

    1998-08-01

    A dual channel Airborne Microwave Radiometric Imaging system (AMRI) was designed and constructed for regional environment mapping. The system operates at 35GHz, which collects radiation at horizontal and vertical polarized. It runs at mechanical conical scanning with 45 degrees incidence angle. Two Cassegrain antennas with 1.5 degrees 3 dB beamwidth scan the scene alternately and two pseudo-color images of two channels are displayed on the screen of PC in real time. Simultaneously all parameters of flight and radiometric data are stored in hard disk for postprocessing. The sensitivity of the radiometers of flight and radiometric data are stored in hard disk for postprocessing. The sensitivity of the radiometers (Delta) T equals 0.16K. A new display method, unequal size element arc displaying method, is used in image displaying. Several experiments on mobile tower were carried out and the images demonstrate the AMRI is available to work steadily and accurately.

  5. Cirrus cloud top temperatures retrieved from radiances in the National Polar-Orbiting Operational Environmental Satellite System--Visible Infrared Imager Radiometer Suite 8.55 and 12.0 microm bandpasses.

    PubMed

    Wong, Eric; Hutchison, Keith D; Ou, S C; Liou, K N

    2007-03-10

    We describe what is believed to be a new approach developed for the National Polar-Orbiting Operational Environmental Satellite System (NPOESS) to retrieve pixel-level, cirrus cloud top temperatures (CTTs) from radiances observed in the 8.55 and 12.0 microm bandpasses. The methodology solves numerically a set of nonlinear algebraic equations derived from the theory of radiative transfer based upon the correlation between emissivities in these two bandpasses. This new approach has been demonstrated using NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) as a proxy to Visible Infrared Imager Radiometer Suite (VIIRS) data. Many scenes have been analyzed covering a wide range of geophysical conditions, including single-layered and multilayered cirrus cloud situations along with diverse backgrounds and seasons. For single-layer clouds, the new approach compares very favorably with the MODIS 5 km resolution cloud products; the mean CTT for both methods are very close, while the standard deviation for the new approach is smaller. However, in multilayered cloud situations, the mean CTTs for the new approach appear to be colder than the CTTs from MODIS cloud products, which are acknowledged to be too warm. Finally, partly because the new approach is applied at the pixel level, CTTs do not increase toward cloud edges as is seen in the MODIS products. Based upon these initial results, the new approach to retrieve improved VIIRS cloud top properties has been incorporated into the ground-based data processing segment of the NPOESS system where prelaunch testing of all VIIRS algorithms continues.

  6. Visible/infrared radiometric calibration station

    SciTech Connect

    Byrd, D.A.; Maier, W.B. II; Bender, S.C.; Holland, R.F.; Michaud, F.D.; Luettgen, A.L.; Christensen, R.W.; O`Brian, T.R.

    1994-07-01

    We have begun construction of a visible/infrared radiometric calibration station that will allow for absolute calibration of optical and IR remote sensing instruments with clear apertures less than 16 inches in diameter in a vacuum environment. The calibration station broadband sources will be calibrated at the National Institute of Standards and Technology (NIST) and allow for traceable absolute radiometric calibration to within {plus_minus}3% in the visible and near IR (0.4--2.5 {mu}m), and less than {plus_minus}1% in the infrared, up to 12 {mu}m. Capabilities for placing diffraction limited images or for sensor full-field flooding will exist. The facility will also include the calibration of polarization and spectral effects, spatial resolution, field of view performance, and wavefront characterization. The configuration of the vacuum calibration station consists of an off-axis 21 inch, f/3.2, parabolic collimator with a scanning fold flat in collimated space. The sources are placed, via mechanisms to be described, at the focal plane of the off-axis parabola. Vacuum system pressure will be in the 10{sup {minus}6} Torr range. The broadband white-light source is a custom design by LANL with guidance from Labsphere Inc. The continuous operating radiance of the integrating sphere will be from 0.0--0.006 W/cm{sup 2}/Sr/{mu}m (upper level quoted for {approximately}500 nm wavelength). The blackbody source is also custom designed at LANL with guidance from NIST. The blackbody temperature will be controllable between 250--350{degrees}K. Both of the above sources have 4.1 inch apertures with estimated radiometric instability at less than 1%. The designs of each of these units will be described. The monochromator and interferometer light sources are outside the vacuum, but all optical relay and beam shaping optics are enclosed within the vacuum calibration station. These sources are described, as well as the methodology for alignment and characterization.

  7. Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Leifer, I.; Bovensmann, H.; Eastwood, M.; Fladeland, M.; Frankenberg, C.; Gerilowski, K.; Green, R. O.; Kratwurst, S.; Krings, T.; Luna, B.; Thorpe, A. K.

    2015-06-01

    Localized anthropogenic sources of atmospheric CH4 are highly uncertain and temporally variable. Airborne remote measurement is an effective method to detect and quantify these emissions. In a campaign context, the science yield can be dramatically increased by real-time retrievals that allow operators to coordinate multiple measurements of the most active areas. This can improve science outcomes for both single- and multiple-platform missions. We describe a case study of the NASA/ESA CO2 and Methane Experiment (COMEX) campaign in California during June and August/September 2014. COMEX was a multi-platform campaign to measure CH4 plumes released from anthropogenic sources including oil and gas infrastructure. We discuss principles for real-time spectral signature detection and measurement, and report performance on the NASA Next Generation Airborne Visible Infrared Spectrometer (AVIRIS-NG). AVIRIS-NG successfully detected CH4 plumes in real-time at Gb s-1 data rates, characterizing fugitive releases in concert with other in situ and remote instruments. The teams used these real-time CH4 detections to coordinate measurements across multiple platforms, including airborne in situ, airborne non-imaging remote sensing, and ground-based in situ instruments. To our knowledge this is the first reported use of real-time trace gas signature detection in an airborne science campaign, and presages many future applications.

  8. Planetary Instrument Definition and Development Program (PIDDP). Instrument for future planetary flight missions: A visible-infrared imaging spectrometer for planetary missions

    NASA Technical Reports Server (NTRS)

    Mccord, Thomas B.

    1993-01-01

    The objective of this project is to develop and prove a small, light-weight, efficient imaging spectrometer design to cover the VIS/NIR spectral range for applications particularly but not exclusively to NASA inner solar system space missions. A design and a brassboard prototype will be developed and tested. Progress over the first year of this project includes design specification, optical design layout, grating specifications, infrared detector selection, and mechanical design. Mechanical and grating manufacturing drawings were begun. We developed an agreement in principle to cooperate with the German space group, DLR, to apply some of their electronics microminiaturization technology to this imaging spectrometer project, mostly or entirely at their expense. Funds from NASA for the second year of this effort have been received and the effort is on track. Release of funds for the third year of this award will be requested later this year in order to accelerate this work and bring it to a conclusion in time for new NASA missions considerations as well as to make effective use of the DLR contributions.

  9. Algorithm Science to Operations for the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Visible/Infrared Imager/Radiometer Suite (VIIRS)

    NASA Technical Reports Server (NTRS)

    Duda, James L.; Barth, Suzanna C

    2005-01-01

    The VIIRS sensor provides measurements for 22 Environmental Data Records (EDRs) addressing the atmosphere, ocean surface temperature, ocean color, land parameters, aerosols, imaging for clouds and ice, and more. That is, the VIIRS collects visible and infrared radiometric data of the Earth's atmosphere, ocean, and land surfaces. Data types include atmospheric, clouds, Earth radiation budget, land/water and sea surface temperature, ocean color, and low light imagery. This wide scope of measurements calls for the preparation of a multiplicity of Algorithm Theoretical Basis Documents (ATBDs), and, additionally, for intermediate products such as cloud mask, et al. Furthermore, the VIIRS interacts with three or more other sensors. This paper addresses selected and crucial elements of the process being used to convert and test an immense volume of a maturing and changing science code to the initial operational source code in preparation for launch of NPP. The integrity of the original science code is maintained and enhanced via baseline comparisons when re-hosted, in addition to multiple planned code performance reviews.

  10. Proceedings of the 11th JPL Airborne Earth Science Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O.

    2002-01-01

    This publication contains the proceedings of the JPL Airborne Earth Science Workshop forum held to report science research and applications results with spectral images measured by the NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). These papers were presented at the Jet Propulsion Laboratory from March 5-8, 2001. Electronic versions of these papers may be found at the A VIRIS Web http://popo.jpl.nasa.gov/pub/docs/workshops/aviris.proceedings.html

  11. Image Based Synthesis for Airborne Minefield Data

    DTIC Science & Technology

    2005-12-01

    applications of image synthesis include artificial texture generation [1], image repairing [2], photometric image rendering [3] and ultrasound imaging...1999. 4. M. Song, R. M. Haralick, F.H. Sheehan, " Ultrasound imaging simulation and echocardiographic image synthesis ", Proceedings of the IEEE...Night Vision and Electronic Sensors Directorate AMSRD-CER-NV-TR-246I Image Based Synthesis for Airborne Minefield Data December 2005 Approved for

  12. Summaries of the Sixth Annual JPL Airborne Earth Science Workshop. Volume 1; AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1996-01-01

    This publication contains the summaries for the Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996. The main workshop is divided into two smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on March 4-6. The summaries for this workshop appear in Volume 1; (2) The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on March 6-8. The summaries for this workshop appear in Volume 2.

  13. A fast smoothing algorithm for post-processing of surface reflectance spectra retrieved from airborne imaging spectrometer data.

    PubMed

    Gao, Bo-Cai; Liu, Ming

    2013-10-14

    Surface reflectance spectra retrieved from remotely sensed hyperspectral imaging data using radiative transfer models often contain residual atmospheric absorption and scattering effects. The reflectance spectra may also contain minor artifacts due to errors in radiometric and spectral calibrations. We have developed a fast smoothing technique for post-processing of retrieved surface reflectance spectra. In the present spectral smoothing technique, model-derived reflectance spectra are first fit using moving filters derived with a cubic spline smoothing algorithm. A common gain curve, which contains minor artifacts in the model-derived reflectance spectra, is then derived. This gain curve is finally applied to all of the reflectance spectra in a scene to obtain the spectrally smoothed surface reflectance spectra. Results from analysis of hyperspectral imaging data collected with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data are given. Comparisons between the smoothed spectra and those derived with the empirical line method are also presented.

  14. A Fast Smoothing Algorithm for Post-Processing of Surface Reflectance Spectra Retrieved from Airborne Imaging Spectrometer Data

    PubMed Central

    Gao, Bo-Cai; Liu, Ming

    2013-01-01

    Surface reflectance spectra retrieved from remotely sensed hyperspectral imaging data using radiative transfer models often contain residual atmospheric absorption and scattering effects. The reflectance spectra may also contain minor artifacts due to errors in radiometric and spectral calibrations. We have developed a fast smoothing technique for post-processing of retrieved surface reflectance spectra. In the present spectral smoothing technique, model-derived reflectance spectra are first fit using moving filters derived with a cubic spline smoothing algorithm. A common gain curve, which contains minor artifacts in the model-derived reflectance spectra, is then derived. This gain curve is finally applied to all of the reflectance spectra in a scene to obtain the spectrally smoothed surface reflectance spectra. Results from analysis of hyperspectral imaging data collected with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data are given. Comparisons between the smoothed spectra and those derived with the empirical line method are also presented. PMID:24129022

  15. Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Leifer, I.; Bovensmann, H.; Eastwood, M.; Fladeland, M.; Frankenberg, C.; Gerilowski, K.; Green, R. O.; Kratwurst, S.; Krings, T.; Luna, B.; Thorpe, A. K.

    2015-10-01

    Localized anthropogenic sources of atmospheric CH4 are highly uncertain and temporally variable. Airborne remote measurement is an effective method to detect and quantify these emissions. In a campaign context, the science yield can be dramatically increased by real-time retrievals that allow operators to coordinate multiple measurements of the most active areas. This can improve science outcomes for both single- and multiple-platform missions. We describe a case study of the NASA/ESA CO2 and MEthane eXperiment (COMEX) campaign in California during June and August/September 2014. COMEX was a multi-platform campaign to measure CH4 plumes released from anthropogenic sources including oil and gas infrastructure. We discuss principles for real-time spectral signature detection and measurement, and report performance on the NASA Next Generation Airborne Visible Infrared Spectrometer (AVIRIS-NG). AVIRIS-NG successfully detected CH4 plumes in real-time at Gb s-1 data rates, characterizing fugitive releases in concert with other in situ and remote instruments. The teams used these real-time CH4 detections to coordinate measurements across multiple platforms, including airborne in situ, airborne non-imaging remote sensing, and ground-based in situ instruments. To our knowledge this is the first reported use of real-time trace-gas signature detection in an airborne science campaign, and presages many future applications. Post-analysis demonstrates matched filter methods providing noise-equivalent (1σ) detection sensitivity for 1.0 % CH4 column enhancements equal to 141 ppm m.

  16. Summaries of the Seventh JPL Airborne Earth Science Workshop January 12-16, 1998. Volume 1; AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1998-01-01

    This publication contains the summaries for the Seventh JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 12-16, 1998. The main workshop is divided into three smaller workshops, and each workshop has a volume as follows: (1) Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop; (2) Airborne Synthetic Aperture Radar (AIRSAR) Workshop; and (3) Thermal Infrared Multispectral Scanner (TIMS) Workshop. This Volume 1 publication contains 58 papers taken from the AVIRIS workshop.

  17. Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, March 4-8, 1996. Volume 2; AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Kim, Yunjin (Editor)

    1996-01-01

    This publication contains the summaries for the Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996. The main workshop is divided into two smaller workshops as follows: The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on March 4-6. The summaries for this workshop appear in Volume 1. The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on March 6-8. The summaries for this workshop appear in Volume 2.

  18. Monitoring the Impacts of Wildfires on Forest Ecosystems and Public Health in the Exo-Urban Environment Using High-Resolution Satellite Aerosol Products from the Visible Infrared Imaging Radiometer Suite (VIIRS)

    PubMed Central

    Huff, Amy K; Kondragunta, Shobha; Zhang, Hai; Hoff, Raymond M

    2015-01-01

    Increasing development of exo-urban environments and the spread of urbanization into forested areas is making humans and forest ecosystems more susceptible to the risks associated with wildfires. Larger and more damaging wildfires are having a negative impact on forest ecosystem services, and smoke from wildfires adversely affects the public health of people living in exo-urban environments. Satellite aerosol measurements are valuable tools that can track the evolution of wildfires and monitor the transport of smoke plumes. Operational users, such as air quality forecasters and fire management officials, can use satellite observations to complement ground-based and aircraft measurements of wildfire activity. To date, wildfire applications of satellite aerosol products, such as aerosol optical depth (AOD), have been limited by the relatively coarse resolution of available AOD data. However, the new Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on the Suomi National Polar-orbiting Partnership (S-NPP) satellite has high-resolution AOD that is ideally suited to monitoring wildfire impacts on the exo-urban scale. Two AOD products are available from VIIRS: the 750-m × 750-m nadir resolution Intermediate Product (IP) and the 6-km × 6-km resolution Environmental Data Record product, which is aggregated from IP measurements. True color (red, green, and blue [RGB]) imagery and a smoke mask at 750-m × 750-m resolution are also available from VIIRS as decision aids for wildfire applications; they serve as counterparts to AOD measurements by providing visible information about areas of smoke in the atmosphere. To meet the needs of operational users, who do not have time to process raw data files and need access to VIIRS products in near-real time (NRT), VIIRS AOD and RGB NRT imagery are available from the Infusing satellite Data into Environmental Applications (IDEA) web site. A key feature of IDEA is an interactive visualization tool that allows users to

  19. Monitoring the Impacts of Wildfires on Forest Ecosystems and Public Health in the Exo-Urban Environment Using High-Resolution Satellite Aerosol Products from the Visible Infrared Imaging Radiometer Suite (VIIRS).

    PubMed

    Huff, Amy K; Kondragunta, Shobha; Zhang, Hai; Hoff, Raymond M

    2015-01-01

    Increasing development of exo-urban environments and the spread of urbanization into forested areas is making humans and forest ecosystems more susceptible to the risks associated with wildfires. Larger and more damaging wildfires are having a negative impact on forest ecosystem services, and smoke from wildfires adversely affects the public health of people living in exo-urban environments. Satellite aerosol measurements are valuable tools that can track the evolution of wildfires and monitor the transport of smoke plumes. Operational users, such as air quality forecasters and fire management officials, can use satellite observations to complement ground-based and aircraft measurements of wildfire activity. To date, wildfire applications of satellite aerosol products, such as aerosol optical depth (AOD), have been limited by the relatively coarse resolution of available AOD data. However, the new Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on the Suomi National Polar-orbiting Partnership (S-NPP) satellite has high-resolution AOD that is ideally suited to monitoring wildfire impacts on the exo-urban scale. Two AOD products are available from VIIRS: the 750-m × 750-m nadir resolution Intermediate Product (IP) and the 6-km × 6-km resolution Environmental Data Record product, which is aggregated from IP measurements. True color (red, green, and blue [RGB]) imagery and a smoke mask at 750-m × 750-m resolution are also available from VIIRS as decision aids for wildfire applications; they serve as counterparts to AOD measurements by providing visible information about areas of smoke in the atmosphere. To meet the needs of operational users, who do not have time to process raw data files and need access to VIIRS products in near-real time (NRT), VIIRS AOD and RGB NRT imagery are available from the Infusing satellite Data into Environmental Applications (IDEA) web site. A key feature of IDEA is an interactive visualization tool that allows users to

  20. Comparison of laboratory calibrations of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) at the beginning and end of the first flight season

    NASA Technical Reports Server (NTRS)

    Vane, Gregg; Chrien, Thomas G.; Reimer, John H.; Green, Robert O.; Conel, James E.

    1988-01-01

    Spectral and radiometric calibrations of AVIRIS are described together with changes in instrument characteristics that occurred during the flight season. These changes include detachment of the optical fibers to two of the four AVIRIS spectrometers, degradation in the optical alignment of the spectrometers due to thermally induced and mechanical warpage, and breakage of a thermal blocking filter in one of the spectrometers. Means of improving the instrument are discussed.

  1. Imager-to-Radiometer In-flight Cross Calibration: RSP Radiometric Comparison with Airborne and Satellite Sensors

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Cairns, Brian; Wasilewski, Andrzej

    2016-01-01

    This work develops a method to compare the radiometric calibration between a radiometer and imagers hosted on aircraft and satellites. The radiometer is the airborne Research Scanning Polarimeter (RSP), which takes multi-angle, photo-polarimetric measurements in several spectral channels. The RSP measurements used in this work were coincident with measurements made by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), which was on the same aircraft. These airborne measurements were also coincident with an overpass of the Landsat 8 Operational Land Imager (OLI). First we compare the RSP and OLI radiance measurements to AVIRIS since the spectral response of the multispectral instruments can be used to synthesize a spectrally equivalent signal from the imaging spectrometer data. We then explore a method that uses AVIRIS as a transfer between RSP and OLI to show that radiometric traceability of a satellite-based imager can be used to calibrate a radiometer despite differences in spectral channel sensitivities. This calibration transfer shows agreement within the uncertainty of both the various instruments for most spectral channels.

  2. Cirrus cloud detection from airborne imaging spectrometer data using the 1.38 micron water vapor band

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Goetz, Alexander F. H.; Wiscombe, Warren J.

    1993-01-01

    Using special images acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) at 20 km altitude, we show that wavelengths close to the center of the strong 1.38 micron water vapor band are useful for detecting thin cirrus clouds. The detection makes use of the fact that cirrus clouds are located above almost all the atmospheric water vapor. Because of the strong water vapor absorption in the lower atmosphere, AVIRIS channels near 1.38 micron receive little scattered solar radiance from the surface of low level clouds. When cirrus clouds are present, however, these channels receive large amounts of scattered solar radiance from the cirrus clouds. Our ability to determine cirrus cloud cover using space-based remote sensing will be improved if channels near the center of the 1.38 micron water vapor band are added to future satellites.

  3. Performance metrics for an airborne imaging system

    NASA Astrophysics Data System (ADS)

    Dayton, David C.; Gonglewski, John D.

    2004-11-01

    A series of airborne imaging experiments have been conducted on the island of Maui and at North Oscura Peak in New Mexico. Two platform altitudes were considered 3000 meters and 600 meters, both with a slant range to the target up to 10000 meters. The airborne imaging platform was a Twin Otter aircraft, which circled ground target sites. The second was a fixed platform on a mountain peak overlooking a valley 600 meters below. The experiments were performed during the day using solar illuminated target buildings. Imaging system performance predictions were calculated using standard atmospheric turbulence models, and aircraft boundary layer models. Several different measurement approaches were then used to estimate the actual system performance, and make comparisons with the calculations.

  4. Highly Protable Airborne Multispectral Imaging System

    NASA Technical Reports Server (NTRS)

    Lehnemann, Robert; Mcnamee, Todd

    2001-01-01

    A portable instrumentation system is described that includes and airborne and a ground-based subsytem. It can acquire multispectral image data over swaths of terrain ranging in width from about 1.5 to 1 km. The system was developed especially for use in coastal environments and is well suited for performing remote sensing and general environmental monitoring. It includes a small,munpilotaed, remotely controlled airplance that carries a forward-looking camera for navigation, three downward-looking monochrome video cameras for imaging terrain in three spectral bands, a video transmitter, and a Global Positioning System (GPS) reciever.

  5. Improved discrimination among similar agricultural plots using red-and-green-based pseudo-colour imaging

    NASA Astrophysics Data System (ADS)

    Doi, Ryoichi

    2016-04-01

    The effects of a pseudo-colour imaging method were investigated by discriminating among similar agricultural plots in remote sensing images acquired using the Airborne Visible/Infrared Imaging Spectrometer (Indiana, USA) and the Landsat 7 satellite (Fergana, Uzbekistan), and that provided by GoogleEarth (Toyama, Japan). From each dataset, red (R)-green (G)-R-G-blue yellow (RGrgbyB), and RGrgby-1B pseudo-colour images were prepared. From each, cyan, magenta, yellow, key black, L*, a*, and b* derivative grayscale images were generated. In the Airborne Visible/Infrared Imaging Spectrometer image, pixels were selected for corn no tillage (29 pixels), corn minimum tillage (27), and soybean (34) plots. Likewise, in the Landsat 7 image, pixels representing corn (73 pixels), cotton (110), and wheat (112) plots were selected, and in the GoogleEarth image, those representing soybean (118 pixels) and rice (151) were selected. When the 14 derivative grayscale images were used together with an RGB yellow grayscale image, the overall classification accuracy improved from 74 to 94% (Airborne Visible/Infrared Imaging Spectrometer), 64 to 83% (Landsat), or 77 to 90% (GoogleEarth). As an indicator of discriminatory power, the kappa significance improved 1018-fold (Airborne Visible/Infrared Imaging Spectrometer) or greater. The derivative grayscale images were found to increase the dimensionality and quantity of data. Herein, the details of the increases in dimensionality and quantity are further analysed and discussed.

  6. AESMIR: A New NASA Airborne Microwave Imager

    NASA Technical Reports Server (NTRS)

    Kim, Edward J.; Hood, Robbie; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Airborne Earth Science Microwave Imaging Radiometer (AESMIR) is a versatile new airborne imaging radiometer under development by NASA. The AESMIR design is unique in that it will perform dual-polarized imaging at all AMSR frequency bands (6.9 through 89 GHz) using only one sensor head/scanner package, providing an efficient solution for AMSR-type science applications (snow, soil moisture/land parameters, precip, ocean winds, SST, water vapor, sea ice, etc.). The microwave radiometers themselves will incorporate state-of-the-art receivers, with particular attention given to instrument calibration for the best possible accuracy and sensitivity. The single-package design of AESMIR makes it compatible with high-altitude aircraft platforms such as the NASA ER-2s and the Proteus. The arbitrary 2-axis gimbal can perform conical and cross-track scanning, as well as fixed-beam staring. This compatibility with high-altitude platforms coupled with the flexible scanning configuration, opens up previously unavailable science opportunities for convection/precip/cloud science and co-flying with complementary instruments, as well as providing wider swath coverage for all science applications. By designing AESMIR to be compatible with these high-altitude platforms, we are also compatible with the NASA P-3, the NASA DC-8, and ground-based deployments. Thus AESMIR can provide low-, mid-, and high altitude microwave imaging.

  7. Advanced Airborne Hyperspectral Imaging System (AAHIS)

    NASA Astrophysics Data System (ADS)

    Topping, Miles Q.; Pfeiffer, Joel E.; Sparks, Andrew W.; Jim, Kevin T. C.; Yoon, Dugan

    2002-11-01

    The design, operation, and performance of the fourth generation of Science and Technology International's Advanced Airborne Hyperspectral Imaging Sensors (AAHIS) are described. These imaging spectrometers have a variable bandwidth ranging from 390-840 nm. A three-axis image stabilization provides spatially and spectrally coherent imagery by damping most of the airborne platform's random motion. A wide 40-degree field of view coupled with sub-pixel detection allows for a large area coverage rate. A software controlled variable aperture, spectral shaping filters, and high quantum efficiency, back-illuminated CCD's contribute to the excellent sensitivity of the sensors. AAHIS sensors have been operated on a variety of fixed and rotary wing platforms, achieving ground-sampling distances ranging from 6.5 cm to 2 m. While these sensors have been primarily designed for use over littoral zones, they are able to operate over both land and water. AAHIS has been used for detecting and locating submarines, mines, tanks, divers, camouflage and disturbed earth. Civilian applications include search and rescue on land and at sea, agricultural analysis, environmental time-series, coral reef assessment, effluent plume detection, coastal mapping, damage assessment, and seasonal whale population monitoring

  8. Oil Spill Detection along the Gulf of Mexico Coastline based on Airborne Imaging Spectrometer Data

    NASA Astrophysics Data System (ADS)

    Arslan, M. D.; Filippi, A. M.; Guneralp, I.

    2013-12-01

    The Deepwater Horizon oil spill in the Gulf of Mexico between April and July 2010 demonstrated the importance of synoptic oil-spill monitoring in coastal environments via remote-sensing methods. This study focuses on terrestrial oil-spill detection and thickness estimation based on hyperspectral images acquired along the coastline of the Gulf of Mexico. We use AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) imaging spectrometer data collected over Bay Jimmy and Wilkinson Bay within Barataria Bay, Louisiana, USA during September 2010. We also employ field-based observations of the degree of oil accumulation along the coastline, as well as in situ measurements from the literature. As part of our proposed spectroscopic approach, we operate on atmospherically- and geometrically-corrected hyperspectral AVIRIS data to extract image-derived endmembers via Minimum Noise Fraction transform, Pixel Purity Index-generation, and n-dimensional visualization. Extracted endmembers are then used as input to endmember-mapping algorithms to yield fractional-abundance images and crisp classification images. We also employ Multiple Endmember Spectral Mixture Analysis (MESMA) for oil detection and mapping in order to enable the number and types of endmembers to vary on a per-pixel basis, in contast to simple Spectral Mixture Analysis (SMA). MESMA thus better allows accounting for spectral variabiltiy of oil (e.g., due to varying oil thicknesses, states of degradation, and the presence of different oil types, etc.) and other materials, including soils and salt marsh vegetation of varying types, which may or may not be affected by the oil spill. A decision-tree approach is also utilized for comparison. Classification results do indicate that MESMA provides advantageous capabilities for mapping several oil-thickness classes for affected vegetation and soils along the Gulf of Mexico coastline, relative to the conventional approaches tested. Oil thickness-mapping results from MESMA

  9. Miniaturized Airborne Imaging Central Server System

    NASA Technical Reports Server (NTRS)

    Sun, Xiuhong

    2011-01-01

    In recent years, some remote-sensing applications require advanced airborne multi-sensor systems to provide high performance reflective and emissive spectral imaging measurement rapidly over large areas. The key or unique problem of characteristics is associated with a black box back-end system that operates a suite of cutting-edge imaging sensors to collect simultaneously the high throughput reflective and emissive spectral imaging data with precision georeference. This back-end system needs to be portable, easy-to-use, and reliable with advanced onboard processing. The innovation of the black box backend is a miniaturized airborne imaging central server system (MAICSS). MAICSS integrates a complex embedded system of systems with dedicated power and signal electronic circuits inside to serve a suite of configurable cutting-edge electro- optical (EO), long-wave infrared (LWIR), and medium-wave infrared (MWIR) cameras, a hyperspectral imaging scanner, and a GPS and inertial measurement unit (IMU) for atmospheric and surface remote sensing. Its compatible sensor packages include NASA s 1,024 1,024 pixel LWIR quantum well infrared photodetector (QWIP) imager; a 60.5 megapixel BuckEye EO camera; and a fast (e.g. 200+ scanlines/s) and wide swath-width (e.g., 1,920+ pixels) CCD/InGaAs imager-based visible/near infrared reflectance (VNIR) and shortwave infrared (SWIR) imaging spectrometer. MAICSS records continuous precision georeferenced and time-tagged multisensor throughputs to mass storage devices at a high aggregate rate, typically 60 MB/s for its LWIR/EO payload. MAICSS is a complete stand-alone imaging server instrument with an easy-to-use software package for either autonomous data collection or interactive airborne operation. Advanced multisensor data acquisition and onboard processing software features have been implemented for MAICSS. With the onboard processing for real time image development, correction, histogram-equalization, compression, georeference, and

  10. The enhanced MODIS airborne simulator hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Guerin, Daniel C.; Fisher, John; Graham, Edward R.

    2011-06-01

    The EMAS-HS or Enhanced MODIS Airborne Simulator is an upgrade to the solar reflected and thermal infrared channels of NASA's MODIS Airborne Simulator (MAS). In the solar reflected bands, the MAS scanner functionality will be augmented with the addition of this separate pushbroom hyperspectral instrument. As well as increasing the spectral resolution of MAS beyond 10 nm, this spectrometer is designed to maintain a stable calibration that can be transferred to the existing MAS sensor. The design emphasizes environmental control and on-board radiometric stability monitoring. The system is designed for high-altitude missions on the ER-2 and the Global Hawk platforms. System trades optimize performance in MODIS spectral bands that support land, cloud, aerosol, and atmospheric water studies. The primary science mission driving the development is high altitude cloud imaging, with secondary missions possible for ocean color. The sensor uses two Offner spectrometers to cover the 380-2400 nm spectral range. It features an all-reflective telescope with a 50° full field-of-view. A dichroic cold mirror will split the image from the telescope, with longer radiation transmitted to the SWIR spectrometer. The VNIR spectrometer uses a TE-cooled Si CCD detector that samples the spectrum at 2.5 nm intervals, while the SWIR spectrometer uses a Stirling-cooled hybrid HgCdTe detector to sample the spectrum at 10 nm per band. Both spectrometers will feature 1.05 mRad instantaneous fields-of-view registered to the MAS scanner IFOV's.

  11. Potential of Airborne Imaging Spectroscopy at Czechglobe

    NASA Astrophysics Data System (ADS)

    Hanuš, J.; Fabiánek, T.; Fajmon, L.

    2016-06-01

    Ecosystems, their services, structures and functions are affected by complex environmental processes, which are both natural and human-induced and globally changing. In order to understand how ecosystems behave in globally changing environment, it is important to monitor the current status of ecosystems and their structural and functional changes in time and space. An essential tool allowing monitoring of ecosystems is remote sensing (RS). Many ecosystems variables are being translated into a spectral response recorded by RS instruments. It is however important to understand the complexity and synergies of the key ecosystem variables influencing the reflected signal. This can be achieved by analysing high resolution RS data from multiple sources acquired simultaneously from the same platform. Such a system has been recently built at CzechGlobe - Global Change Research Institute (The Czech Academy of Sciences). CzechGlobe has been significantly extending its research infrastructure in the last years, which allows advanced monitoring of ecosystem changes at hierarchical levels spanning from molecules to entire ecosystems. One of the CzechGlobe components is a laboratory of imaging spectroscopy. The laboratory is now operating a new platform for advanced remote sensing observations called FLIS (Flying Laboratory of Imaging Spectroscopy). FLIS consists of an airborne carrier equipped with passive RS systems. The core instrument of FLIS is a hyperspectral imaging system provided by Itres Ltd. The hyperspectral system consists of three spectroradiometers (CASI 1500, SASI 600 and TASI 600) that cover the reflective spectral range from 380 to 2450 nm, as well as the thermal range from 8 to 11.5 μm. The airborne platform is prepared for mounting of full-waveform laser scanner Riegl-Q780 as well, however a laser scanner is not a permanent part of FLIS. In 2014 the installation of the hyperspectral scanners was completed and the first flights were carried out with all

  12. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 3: AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob (Editor)

    1995-01-01

    This publication is the third containing summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on January 23-24. The summaries for this workshop appear in Volume 1; (2) The Airborne synthetic Aperture Radar (AIRSAR) workshop, on January 25-26. The summaries for this workshop appear in this volume; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop, on January 26. The summaries for this workshop appear in Volume 2.

  13. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 2: TIMS Workshop

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J. (Editor)

    1995-01-01

    This publication is the second volume of the summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop on January 23-24. The summaries for this workshop appear in Volume 1; (2) The Airborne Synthetic Aperture Radar (AIRSAR) workshop on January 25-26. The summaries for this workshop appear in volume 3; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop on January 26. The summaries for this workshop appear in this volume.

  14. Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1992-01-01

    This publication contains the preliminary agenda and summaries for the Third Annual JPL Airborne Geoscience Workshop, held at the Jet Propulsion Laboratory, Pasadena, California, on 1-5 June 1992. This main workshop is divided into three smaller workshops as follows: (1) the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on June 1 and 2; (2) the Thermal Infrared Multispectral Scanner (TIMS) workshop, on June 3; and (3) the Airborne Synthetic Aperture Radar (AIRSAR) workshop, on June 4 and 5. The summaries are contained in Volumes 1, 2, and 3, respectively.

  15. Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 3: AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob (Editor)

    1992-01-01

    This publication contains the preliminary agenda and summaries for the Third Annual JPL Airborne Geoscience Workshop, held at the Jet Propulsion Laboratory, Pasadena, California, on 1-5 June 1992. This main workshop is divided into three smaller workshops as follows: (1) the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on June 1 and 2; the summaries for this workshop appear in Volume 1; (2) the Thermal Infrared Multispectral Scanner (TIMS) workshop, on June 3; the summaries for this workshop appear in Volume 2; and (3) the Airborne Synthetic Aperture Radar (AIRSAR) workshop, on June 4 and 5; the summaries for this workshop appear in Volume 3.

  16. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 1: AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1995-01-01

    This publication is the first of three containing summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on January 23-24. The summaries for this workshop appear in this volume; (2) The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on January 25-26. The summaries for this workshop appear in Volume 3; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop, on January 26. The summaries for this workshop appear in Volume 2.

  17. Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 2: TIMS Workshop

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J. (Editor)

    1992-01-01

    This publication contains the preliminary agenda and summaries for the Third Annual JPL Airborne Geoscience Workshop, held at the Jet Propulsion Laboratory, Pasadena, California, on 1-5 June 1992. This main workshop is divided into three smaller workshops as follows: (1) the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on June 1 and 2; the summaries for this workshop appear in Volume 1; (2) the Thermal Infrared Multispectral Scanner (TIMS) workshop, on June 3; the summaries for this workshop appear in Volume 2; and (3) the Airborne Synthetic Aperture Radar (AIRSAR) workshop, on June 4 and 5; the summaries for this workshop appear in Volume 3.

  18. Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1993-01-01

    This publication contains the summaries for the Fourth Annual JPL Airborne Geoscience Workshop, held in Washington, D. C. October 25-29, 1993 The main workshop is divided into three smaller workshops as follows: The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, October 25-26 (the summaries for this workshop appear in this volume, Volume 1); The Thermal Infrared Multispectral Scanner (TMIS) workshop, on October 27 (the summaries for this workshop appear in Volume 2); and The Airborne Synthetic Aperture Radar (AIRSAR) workshop, October 28-29 (the summaries for this workshop appear in Volume 3).

  19. Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 2: TIMS Workshop

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J. (Editor)

    1993-01-01

    This is volume 2 of a three volume set of publications that contain the summaries for the Fourth Annual JPL Airborne Geoscience Workshop, held in Washington, D.C. on October 25-29, 1993. The main workshop is divided into three smaller workshops as follows: The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on October 25-26. The summaries for this workshop appear in Volume 1. The Thermal Infrared Multispectral Scanner (TIMS) workshop, on October 27. The summaries for this workshop appear in Volume 2. The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on October 28-29. The summaries for this workshop appear in Volume 3.

  20. An integrated compact airborne multispectral imaging system using embedded computer

    NASA Astrophysics Data System (ADS)

    Zhang, Yuedong; Wang, Li; Zhang, Xuguo

    2015-08-01

    An integrated compact airborne multispectral imaging system using embedded computer based control system was developed for small aircraft multispectral imaging application. The multispectral imaging system integrates CMOS camera, filter wheel with eight filters, two-axis stabilized platform, miniature POS (position and orientation system) and embedded computer. The embedded computer has excellent universality and expansibility, and has advantages in volume and weight for airborne platform, so it can meet the requirements of control system of the integrated airborne multispectral imaging system. The embedded computer controls the camera parameters setting, filter wheel and stabilized platform working, image and POS data acquisition, and stores the image and data. The airborne multispectral imaging system can connect peripheral device use the ports of the embedded computer, so the system operation and the stored image data management are easy. This airborne multispectral imaging system has advantages of small volume, multi-function, and good expansibility. The imaging experiment results show that this system has potential for multispectral remote sensing in applications such as resource investigation and environmental monitoring.

  1. Airborne system for multispectral, multiangle polarimetric imaging.

    PubMed

    Bowles, Jeffrey H; Korwan, Daniel R; Montes, Marcos J; Gray, Deric J; Gillis, David B; Lamela, Gia M; Miller, W David

    2015-11-01

    In this paper, we describe the design, fabrication, calibration, and deployment of an airborne multispectral polarimetric imager. The motivation for the development of this instrument was to explore its ability to provide information about water constituents, such as particle size and type. The instrument is based on four 16 MP cameras and uses wire grid polarizers (aligned at 0°, 45°, 90°, and 135°) to provide the separation of the polarization states. A five-position filter wheel provides for four narrow-band spectral filters (435, 550, 625, and 750 nm) and one blocked position for dark-level measurements. When flown, the instrument is mounted on a programmable stage that provides control of the view angles. View angles that range to ±65° from the nadir have been used. Data processing provides a measure of the polarimetric signature as a function of both the view zenith and view azimuth angles. As a validation of our initial results, we compare our measurements, over water, with the output of a Monte Carlo code, both of which show neutral points off the principle plane. The locations of the calculated and measured neutral points are compared. The random error level in the measured degree of linear polarization (8% at 435) is shown to be better than 0.25%.

  2. An airborne four-camera imaging system for agricultural applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the design and testing of an airborne multispectral digital imaging system for remote sensing applications. The system consists of four high resolution charge coupled device (CCD) digital cameras and a ruggedized PC equipped with a frame grabber and image acquisition software. T...

  3. Airborne Microwave Imaging of River Velocities

    NASA Technical Reports Server (NTRS)

    Plant, William J.

    2002-01-01

    The objective of this project was to determine whether airborne microwave remote sensing systems can measure river surface currents with sufficient accuracy to make them prospective instruments with which to monitor river flow from space. The approach was to fly a coherent airborne microwave Doppler radar, developed by APL/UW, on a light airplane along several rivers in western Washington state over an extended period of time. The fundamental quantity obtained by this system to measure river currents is the mean offset of the Doppler spectrum. Since this scatter can be obtained from interferometric synthetic aperture radars (INSARs), which can be flown in space, this project provided a cost effective means for determining the suitability of spaceborne INSAR for measuring river flow.

  4. Progressive piecewise registration of orthophotos and airborne scanner images

    NASA Astrophysics Data System (ADS)

    Chen, Lin-Chi; Yang, T. T.

    1994-08-01

    From the image-to-image registration point of view, we propose a scheme to iteratively register airborne multi-spectral imagery onto its counterpart, i.e., orthographic photography. The required registration control point pairs are automatically augmented first. Then a local registration procedure is applied according to the generated registration control point pairs. The coordinate transformation uses thin plate spline function. Through a consistency check, if the disparities between the reference image and the transformed airborne multi-spectral image is too large to accept, next iteration is performed. During the second iteration, some best matched feature points used in the consistency check of the first iteration append to the existing registration control points. This iteration procedure continues until the disparities are small enough. Experimental results indicate that the output image attain an excellent geometrical similarity with respect to the reference image. The rms of the disparities is less than 0.5 pixels.

  5. Discriminating Phytoplankton Functional Types (PFTs) in the Coastal Ocean Using the Inversion Algorithm Phydotax and Airborne Imaging Spectrometer Data

    NASA Technical Reports Server (NTRS)

    Palacios, Sherry L.; Schafer, Chris; Broughton, Jennifer; Guild, Liane S.; Kudela, Raphael M.

    2013-01-01

    There is a need in the Biological Oceanography community to discriminate among phytoplankton groups within the bulk chlorophyll pool to understand energy flow through ecosystems, to track the fate of carbon in the ocean, and to detect and monitor-for harmful algal blooms (HABs). The ocean color community has responded to this demand with the development of phytoplankton functional type (PFT) discrimination algorithms. These PFT algorithms fall into one of three categories depending on the science application: size-based, biogeochemical function, and taxonomy. The new PFT algorithm Phytoplankton Detection with Optics (PHYDOTax) is an inversion algorithm that discriminates taxon-specific biomass to differentiate among six taxa found in the California Current System: diatoms, dinoflagellates, haptophytes, chlorophytes, cryptophytes, and cyanophytes. PHYDOTax was developed and validated in Monterey Bay, CA for the high resolution imaging spectrometer, Spectroscopic Aerial Mapping System with On-board Navigation (SAMSON - 3.5 nm resolution). PHYDOTax exploits the high spectral resolution of an imaging spectrometer and the improved spatial resolution that airborne data provides for coastal areas. The objective of this study was to apply PHYDOTax to a relatively lower resolution imaging spectrometer to test the algorithm's sensitivity to atmospheric correction, to evaluate capability with other sensors, and to determine if down-sampling spectral resolution would degrade its ability to discriminate among phytoplankton taxa. This study is a part of the larger Hyperspectral Infrared Imager (HyspIRI) airborne simulation campaign which is collecting Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery aboard NASA's ER-2 aircraft during three seasons in each of two years over terrestrial and marine targets in California. Our aquatic component seeks to develop and test algorithms to retrieve water quality properties (e.g. HABs and river plumes) in both marine and in

  6. Discriminating phytoplankton functional types (PFTs) in the coastal ocean using the inversion algorithm PHYDOTax and airborne imaging spectrometer data

    NASA Astrophysics Data System (ADS)

    Palacios, S. L.; Schafer, C. B.; Broughton, J.; Guild, L. S.; Kudela, R. M.

    2013-12-01

    There is a need in the Biological Oceanography community to discriminate among phytoplankton groups within the bulk chlorophyll pool to understand energy flow through ecosystems, to track the fate of carbon in the ocean, and to detect and monitor-for harmful algal blooms (HABs). The ocean color community has responded to this demand with the development of phytoplankton functional type (PFT) discrimination algorithms. These PFT algorithms fall into one of three categories depending on the science application: size-based, biogeochemical function, and taxonomy. The new PFT algorithm Phytoplankton Detection with Optics (PHYDOTax) is an inversion algorithm that discriminates taxon-specific biomass to differentiate among six taxa found in the California Current System: diatoms, dinoflagellates, haptophytes, chlorophytes, cryptophytes, and cyanophytes. PHYDOTax was developed and validated in Monterey Bay, CA for the high resolution imaging spectrometer, Spectroscopic Aerial Mapping System with On-board Navigation (SAMSON - 3.5 nm resolution). PHYDOTax exploits the high spectral resolution of an imaging spectrometer and the improved spatial resolution that airborne data provides for coastal areas. The objective of this study was to apply PHYDOTax to a relatively lower resolution imaging spectrometer to test the algorithm's sensitivity to atmospheric correction, to evaluate capability with other sensors, and to determine if down-sampling spectral resolution would degrade its ability to discriminate among phytoplankton taxa. This study is a part of the larger Hyperspectral Infrared Imager (HyspIRI) airborne simulation campaign which is collecting Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery aboard NASA's ER-2 aircraft during three seasons in each of two years over terrestrial and marine targets in California. Our aquatic component seeks to develop and test algorithms to retrieve water quality properties (e.g. HABs and river plumes) in both marine and in

  7. Column atmospheric water vapor and vegetation liquid water retrievals from Airborne Imaging Spectrometer data

    NASA Astrophysics Data System (ADS)

    Gao, Bo-Cai; Goetz, Alexander F. H.

    1990-03-01

    High spatial resolution column atmospheric water vapor amounts were derived from spectral data collected by the airborne visible-infrared imaging spectrometer (AVIRIS), which covers the spectral region from 0.4 to 2.5 μm in 10-nm bands and has a ground instantaneous field of view of 20×20 m from an altitude of 20 km. The quantitative derivation is made by curve fitting observed spectra with calculated spectra in the 1.14-μm and 0.94-μm water vapor band absorption regions using an atmospheric model, a narrowband spectral model, and a nonlinear least squares fitting technique. The derivation makes use of the facts that (1) the reflectances of many ground targets vary approximately linearly with wavelength in the 0.94- and 1.14-μm water vapor band absorption regions, (2) the scattered radiation near 1 μm is small compared with the directly reflected radiation when the atmospheric aerosol concentrations are low, and (3) the scattered radiation in the lower part of the atmosphere is subjected to the water vapor absorption. The technique is directly applicable for retrieving column water vapor amounts from AVIRIS spectra measured on clear days with visibilities 20 km or greater. The precision of the retrieved column water vapor amounts from several data sets is 5% or better. Based on the analyses of an AVIRIS data set that was acquired within an hour of radiosonde launch, it appears that the accuracy approaches the precision. The derived column water vapor amounts are independent of the absolute surface reflectances. It now appears feasible to derive high spatial resolution column water vapor amounts over land areas from satellite altitude with the proposed high resolution imaging spectrometer (HIRIS). Curve fitting of spectra near 1 μm from areas covered with vegetation, using an atmospheric model and a simplified vegetation reflectance model, indicates that both the amount of atmospheric water vapor and the moisture content of vegetation can be retrieved

  8. Vine variety discrimination with airborne imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferreiro-Armán, M.; Alba-Castro, J. L.; Homayouni, S.; da Costa, J. P.; Martín-Herrero, J.

    2007-09-01

    We aim at the discrimination of varieties within a single plant species (Vitis vinifera) by means of airborne hyperspectral imagery collected using a CASI-2 sensor and supervised classification, both under constant and varying within-scene illumination conditions. Varying illumination due to atmospheric conditions (such as clouds) and shadows cause different pixels belonging to the same class to present different spectral vectors, increasing the within class variability and hindering classification. This is specially serious in precision applications such as variety discrimination in precision agriculture, which depends on subtle spectral differences. In this study, we use machine learning techniques for supervised classification, and we also analyze the variability within and among plots and within and among sites, in order to address the generalizability of the results.

  9. Field of view selection for optimal airborne imaging sensor performance

    NASA Astrophysics Data System (ADS)

    Goss, Tristan M.; Barnard, P. Werner; Fildis, Halidun; Erbudak, Mustafa; Senger, Tolga; Alpman, Mehmet E.

    2014-05-01

    The choice of the Field of View (FOV) of imaging sensors used in airborne targeting applications has major impact on the overall performance of the system. Conducting a market survey from published data on sensors used in stabilized airborne targeting systems shows a trend of ever narrowing FOVs housed in smaller and lighter volumes. This approach promotes the ever increasing geometric resolution provided by narrower FOVs, while it seemingly ignores the influences the FOV selection has on the sensor's sensitivity, the effects of diffraction, the influences of sight line jitter and collectively the overall system performance. This paper presents a trade-off methodology to select the optimal FOV for an imaging sensor that is limited in aperture diameter by mechanical constraints (such as space/volume available and window size) by balancing the influences FOV has on sensitivity and resolution and thereby optimizing the system's performance. The methodology may be applied to staring array based imaging sensors across all wavebands from visible/day cameras through to long wave infrared thermal imagers. Some examples of sensor analysis applying the trade-off methodology are given that highlights the performance advantages that can be gained by maximizing the aperture diameters and choosing the optimal FOV for an imaging sensor used in airborne targeting applications.

  10. DETECTION AND IDENTIFICATION OF TOXIC AIR POLLUTANTS USING AIRBORNE LWIR HYPERSPECTRAL IMAGING

    EPA Science Inventory

    Airborne longwave infrared LWIR) hyperspectral imagery was utilized to detect and identify gaseous chemical release plumes at sites in sourthern Texzas. The Airborne Hysperspectral Imager (AHI), developed by the University of Hawaii was flown over a petrochemical facility and a ...

  11. Airborne electromagnetic imaging of discontinuous permafrost

    NASA Astrophysics Data System (ADS)

    Minsley, Burke J.; Abraham, Jared D.; Smith, Bruce D.; Cannia, James C.; Voss, Clifford I.; Jorgenson, M. Torre; Walvoord, Michelle A.; Wylie, Bruce K.; Anderson, Lesleigh; Ball, Lyndsay B.; Deszcz-Pan, Maryla; Wellman, Tristan P.; Ager, Thomas A.

    2012-01-01

    The evolution of permafrost in cold regions is inextricably connected to hydrogeologic processes, climate, and ecosystems. Permafrost thawing has been linked to changes in wetland and lake areas, alteration of the groundwater contribution to streamflow, carbon release, and increased fire frequency. But detailed knowledge about the dynamic state of permafrost in relation to surface and groundwater systems remains an enigma. Here, we present the results of a pioneering ˜1,800 line-kilometer airborne electromagnetic survey that shows sediments deposited over the past ˜4 million years and the configuration of permafrost to depths of ˜100 meters in the Yukon Flats area near Fort Yukon, Alaska. The Yukon Flats is near the boundary between continuous permafrost to the north and discontinuous permafrost to the south, making it an important location for examining permafrost dynamics. Our results not only provide a detailed snapshot of the present-day configuration of permafrost, but they also expose previously unseen details about potential surface - groundwater connections and the thermal legacy of surface water features that has been recorded in the permafrost over the past ˜1,000 years. This work will be a critical baseline for future permafrost studies aimed at exploring the connections between hydrogeologic, climatic, and ecological processes, and has significant implications for the stewardship of Arctic environments.

  12. Airborne electromagnetic imaging of discontinuous permafrost

    USGS Publications Warehouse

    Minsley, B.J.; Abraham, J.D.; Smith, B.D.; Cannia, J.C.; Voss, C.I.; Jorgenson, M.T.; Walvoord, M.A.; Wylie, B.K.; Anderson, L.; Ball, L.B.; Deszcz-Pan, M.; Wellman, T.P.; Ager, T.A.

    2012-01-01

    The evolution of permafrost in cold regions is inextricably connected to hydrogeologic processes, climate, and ecosystems. Permafrost thawing has been linked to changes in wetland and lake areas, alteration of the groundwater contribution to streamflow, carbon release, and increased fire frequency. But detailed knowledge about the dynamic state of permafrost in relation to surface and groundwater systems remains an enigma. Here, we present the results of a pioneering ∼1,800 line-kilometer airborne electromagnetic survey that shows sediments deposited over the past ∼4 million years and the configuration of permafrost to depths of ∼100 meters in the Yukon Flats area near Fort Yukon, Alaska. The Yukon Flats is near the boundary between continuous permafrost to the north and discontinuous permafrost to the south, making it an important location for examining permafrost dynamics. Our results not only provide a detailed snapshot of the present-day configuration of permafrost, but they also expose previously unseen details about potential surface – groundwater connections and the thermal legacy of surface water features that has been recorded in the permafrost over the past ∼1,000 years. This work will be a critical baseline for future permafrost studies aimed at exploring the connections between hydrogeologic, climatic, and ecological processes, and has significant implications for the stewardship of Arctic environments.

  13. Real-time airborne hyperspectral imaging of land mines

    NASA Astrophysics Data System (ADS)

    Ivanco, Tyler; Achal, Steve; McFee, John E.; Anger, Cliff; Young, Jane

    2007-04-01

    DRDC Suffeld and Itres Research have jointly investigated the use of visible and infrared hyperspectral imaging (HSI) for surface and buried land mine detection since 1989. These studies have demonstrated reliable passive HSI detection of surface-laid mines, based on their reflectance spectra, from airborne and ground-based platforms. Commercial HSI instruments collect and store image data at aircraft speeds, but the data are analysed off- line. This is useful for humanitarian demining, but unacceptable for military countermine operations. We have developed a hardware and software system with algorithms that can process the raw hyperspectral data in real time to detect mines. The custom algorithms perform radiometric correction of the raw data, then classify pixels of the corrected data, referencing a spectral signature library. The classification results are stored and displayed in real time, that is, within a few frame times of the data acquisition. Such real-time mine detection was demonstrated for the first time from a slowly moving land vehicle in March 2000. This paper describes an improved system which can achieve real-time detection of mines from an airborne platform, with its commensurately higher data rates. The system is presently compatible with the Itres family of visible/near infrared, short wave infrared and thermal infrared pushbroom hyperspectral imagers and its broadband thermal infrared pushbroom imager. Experiments to detect mines from an airborne platform in real time were conducted at DRDC Suffield in November 2006. Surface-laid land mines were detected in real time from a slowly moving helicopter with generally good detection rates and low false alarm rates. To the authors' knowledge, this is the first time that land mines have been detected from an airborne platform in real time using hyperspectral imaging.

  14. Landsat radiometric continuity using airborne imaging spectrometry

    NASA Astrophysics Data System (ADS)

    McCorkel, J.; Angal, A.; Thome, K.; Cook, B.

    2015-12-01

    NASA Goddard's Lidar, Hyperspectral and Thermal Imager (G-LiHT) includes a scanning lidar, an imaging spectrometer and a thermal camera. The Visible Near-Infrared (VNIR) Imaging Spectrometer acquires high resolution spectral measurements (1.5 nm resolution) from 0.4 to 1.0 µm. The SIRCUS-based calibration facility at NASA's Goddard Space Flight Center was used to measure the absolute spectral response (ASR) of the G-LiHT's imaging spectrometer. Continuously tunable lasers coupled to an integrating sphere facilitated a radiance-based calibration for the detectors in the reflective solar bands. The transfer of the SIRCUS-based laboratory calibration of G-LiHT's Imaging Spectrometer to the Landsat sensors (Landsat 7 ETM+ and Landsat 8 OLI) is demonstrated using simultaneous overpasses over the Red Lake Playa and McClaw's Playa sites during the commissioning phase of Landsat 8 in March 2013. Solar Lunar Absolute Imaging Spectrometer (SOLARIS) is the calibration demonstration system for the reflected solar instrument of CLARREO. A portable version of SOLARIS, known as Suitcase SOLARIS, also calibrated using a SIRCUS-based setup, was deployed for ground measurements as a part of both the field campaigns. Simultaneous measurements of SOLARIS allow cross-comparison with G-LiHT and Landsat sensors. The transfer of the lab-based calibration of G-LiHT to Landsat sensors show that the sensors agree within 5% with a 1-3% calibration uncertainty of G-LiHT's Imaging Spectrometer.

  15. Science Measurement Requirements for Imaging Spectrometers from Airborne to Spaceborne

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Asner, Gregory P.; Boardman, Joseph; Ungar, Stephen; Mouroulis, Pantazis

    2006-01-01

    This slide presentation reviews the objectives of the work to create imaging spectrometers. The science objectives are to remotely determine the properties of the surface and atmosphere (physics, chemistry and biology) revealed by the interaction of electromagnetic energy with matter via spectroscopy. It presents a review the understanding of spectral, radiometric and spatial science measurement requirements for imaging spectrometers based upon science research results from past and current airborne and spaceborne instruments. It also examines the future requirements that will enable the next level of imaging spectroscopy science.

  16. Airborne Hyperspectral Imaging of Seagrass and Coral Reef

    NASA Astrophysics Data System (ADS)

    Merrill, J.; Pan, Z.; Mewes, T.; Herwitz, S.

    2013-12-01

    This talk presents the process of project preparation, airborne data collection, data pre-processing and comparative analysis of a series of airborne hyperspectral projects focused on the mapping of seagrass and coral reef communities in the Florida Keys. As part of a series of large collaborative projects funded by the NASA ROSES program and the Florida Fish and Wildlife Conservation Commission and administered by the NASA UAV Collaborative, a series of airborne hyperspectral datasets were collected over six sites in the Florida Keys in May 2012, October 2012 and May 2013 by Galileo Group, Inc. using a manned Cessna 172 and NASA's SIERRA Unmanned Aerial Vehicle. Precise solar and tidal data were used to calculate airborne collection parameters and develop flight plans designed to optimize data quality. Two independent Visible and Near-Infrared (VNIR) hyperspectral imaging systems covering 400-100nm were used to collect imagery over six Areas of Interest (AOIs). Multiple collections were performed over all sites across strict solar windows in the mornings and afternoons. Independently developed pre-processing algorithms were employed to radiometrically correct, synchronize and georectify individual flight lines which were then combined into color balanced mosaics for each Area of Interest. The use of two different hyperspectral sensor as well as environmental variations between each collection allow for the comparative analysis of data quality as well as the iterative refinement of flight planning and collection parameters.

  17. Laser Imaging of Airborne Acoustic Emission by Nonlinear Defects

    NASA Astrophysics Data System (ADS)

    Solodov, Igor; Döring, Daniel; Busse, Gerd

    2008-06-01

    Strongly nonlinear vibrations of near-surface fractured defects driven by an elastic wave radiate acoustic energy into adjacent air in a wide frequency range. The variations of pressure in the emitted airborne waves change the refractive index of air thus providing an acoustooptic interaction with a collimated laser beam. Such an air-coupled vibrometry (ACV) is proposed for detecting and imaging of acoustic radiation of nonlinear spectral components by cracked defects. The photoelastic relation in air is used to derive induced phase modulation of laser light in the heterodyne interferometer setup. The sensitivity of the scanning ACV to different spatial components of the acoustic radiation is analyzed. The animated airborne emission patterns are visualized for the higher harmonic and frequency mixing fields radiated by planar defects. The results confirm a high localization of the nonlinear acoustic emission around the defects and complicated directivity patterns appreciably different from those observed for fundamental frequencies.

  18. Chemical detection using the airborne thermal infrared imaging spectrometer (TIRIS)

    SciTech Connect

    Gat, N.; Subramanian, S.; Sheffield, M.; Erives, H.; Barhen, J.

    1997-04-01

    A methodology is described for an airborne, downlooking, longwave infrared imaging spectrometer based technique for the detection and tracking of plumes of toxic gases. Plumes can be observed in emission or absorption, depending on the thermal contrast between the vapor and the background terrain. While the sensor is currently undergoing laboratory calibration and characterization, a radiative exchange phenomenology model has been developed to predict sensor response and to facilitate the sensor design. An inverse problem model has also been developed to obtain plume parameters based on sensor measurements. These models, the sensors, and ongoing activities are described.

  19. Preliminary evaluation of the airborne imaging spectrometer for vegetation analysis

    NASA Technical Reports Server (NTRS)

    Strahler, A. H.; Woodcock, C. E.

    1984-01-01

    The primary goal of the project was to provide ground truth and manual interpretation of data from an experimental flight of the Airborne Infrared Spectrometer (AIS) for a naturally vegetated test site. Two field visits were made; one trip to note snow conditions and temporally related vegetation states at the time of the sensor overpass, and a second trip following acquisition of prints of the AIS images for field interpretation. Unfortunately, the ability to interpret the imagery was limited by the quality of the imagery due to the experimental nature of the sensor.

  20. Visualisation of urban airborne laser scanning data with occlusion images

    NASA Astrophysics Data System (ADS)

    Hinks, Tommy; Carr, Hamish; Gharibi, Hamid; Laefer, Debra F.

    2015-06-01

    Airborne Laser Scanning (ALS) was introduced to provide rapid, high resolution scans of landforms for computational processing. More recently, ALS has been adapted for scanning urban areas. The greater complexity of urban scenes necessitates the development of novel methods to exploit urban ALS to best advantage. This paper presents occlusion images: a novel technique that exploits the geometric complexity of the urban environment to improve visualisation of small details for better feature recognition. The algorithm is based on an inversion of traditional occlusion techniques.

  1. Thermal Infrared Spectral Imager for Airborne Science Applications

    NASA Technical Reports Server (NTRS)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Hill, Cory J.; Mumolo, Jason M.; Eng, Bjorn T.

    2009-01-01

    An airborne thermal hyperspectral imager is under development which utilizes the compact Dyson optical configuration and quantum well infrared photo detector (QWIP) focal plane array. The Dyson configuration uses a single monolithic prism-like grating design which allows for a high throughput instrument (F/1.6) with minimal ghosting, stray-light and large swath width. The configuration has the potential to be the optimal imaging spectroscopy solution for lighter-than-air (LTA) vehicles and unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The planned instrument specifications are discussed as well as design trade-offs. Calibration testing results (noise equivalent temperature difference, spectral linearity and spectral bandwidth) and laboratory emissivity plots from samples are shown using an operational testbed unit which has similar specifications as the final airborne system. Field testing of the testbed unit was performed to acquire plots of apparent emissivity for various known standard minerals (such as quartz). A comparison is made using data from the ASTER spectral library.

  2. Airborne infrared hyperspectral imager for intelligence, surveillance and reconnaissance applications

    NASA Astrophysics Data System (ADS)

    Lagueux, Philippe; Puckrin, Eldon; Turcotte, Caroline S.; Gagnon, Marc-André; Bastedo, John; Farley, Vincent; Chamberland, Martin

    2012-09-01

    Persistent surveillance and collection of airborne intelligence, surveillance and reconnaissance information is critical in today's warfare against terrorism. High resolution imagery in visible and infrared bands provides valuable detection capabilities based on target shapes and temperatures. However, the spectral resolution provided by a hyperspectral imager adds a spectral dimension to the measurements, leading to additional tools for detection and identification of targets, based on their spectral signature. The Telops Hyper-Cam sensor is an interferometer-based imaging system that enables the spatial and spectral analysis of targets using a single sensor. It is based on the Fourier-transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. It provides datacubes of up to 320×256 pixels at spectral resolutions as fine as 0.25 cm-1. The LWIR version covers the 8.0 to 11.8 μm spectral range. The Hyper-Cam has been recently used for the first time in two compact airborne platforms: a bellymounted gyro-stabilized platform and a gyro-stabilized gimbal ball. Both platforms are described in this paper, and successful results of high-altitude detection and identification of targets, including industrial plumes, and chemical spills are presented.

  3. Airborne infrared hyperspectral imager for intelligence, surveillance, and reconnaissance applications

    NASA Astrophysics Data System (ADS)

    Puckrin, Eldon; Turcotte, Caroline S.; Gagnon, Marc-André; Bastedo, John; Farley, Vincent; Chamberland, Martin

    2012-06-01

    Persistent surveillance and collection of airborne intelligence, surveillance and reconnaissance information is critical in today's warfare against terrorism. High resolution imagery in visible and infrared bands provides valuable detection capabilities based on target shapes and temperatures. However, the spectral resolution provided by a hyperspectral imager adds a spectral dimension to the measurements, leading to additional tools for detection and identification of targets, based on their spectral signature. The Telops Hyper-Cam sensor is an interferometer-based imaging system that enables the spatial and spectral analysis of targets using a single sensor. It is based on the Fourier-transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. It provides datacubes of up to 320×256 pixels at spectral resolutions as fine as 0.25 cm-1. The LWIR version covers the 8.0 to 11.8 μm spectral range. The Hyper-Cam has been recently used for the first time in two compact airborne platforms: a belly-mounted gyro-stabilized platform and a gyro-stabilized gimbal ball. Both platforms are described in this paper, and successful results of high-altitude detection and identification of targets, including industrial plumes, and chemical spills are presented.

  4. Proceedings of the Airborne Imaging Spectrometer Data Analysis Workshop

    NASA Technical Reports Server (NTRS)

    Vane, G. (Editor); Goetz, A. F. H. (Editor)

    1985-01-01

    The Airborne Imaging Spectrometer (AIS) Data Analysis Workshop was held at the Jet Propulsion Laboratory on April 8 to 10, 1985. It was attended by 92 people who heard reports on 30 investigations currently under way using AIS data that have been collected over the past two years. Written summaries of 27 of the presentations are in these Proceedings. Many of the results presented at the Workshop are preliminary because most investigators have been working with this fundamentally new type of data for only a relatively short time. Nevertheless, several conclusions can be drawn from the Workshop presentations concerning the value of imaging spectrometry to Earth remote sensing. First, work with AIS has shown that direct identification of minerals through high spectral resolution imaging is a reality for a wide range of materials and geological settings. Second, there are strong indications that high spectral resolution remote sensing will enhance the ability to map vegetation species. There are also good indications that imaging spectrometry will be useful for biochemical studies of vegetation. Finally, there are a number of new data analysis techniques under development which should lead to more efficient and complete information extraction from imaging spectrometer data. The results of the Workshop indicate that as experience is gained with this new class of data, and as new analysis methodologies are developed and applied, the value of imaging spectrometry should increase.

  5. Calibration of the National Ecological Observatory Network's Airborne Imaging Spectrometers

    NASA Astrophysics Data System (ADS)

    Leisso, N.; Kampe, T. U.; Karpowicz, B. M.

    2014-12-01

    The National Ecological Observatory Network (NEON) is currently under construction by the National Science Foundation. NEON is designed to collect data on the causes and responses to change in the observed ecosystem. The observatory will combine site data collected by terrestrial, instrumental, and aquatic observation systems with airborne remote sensing data. The Airborne Observation Platform (AOP) is designed to collect high-resolution aerial imagery, waveform and discrete LiDAR, and high-fidelity imaging spectroscopic data over the NEON sites annually at or near peak-greenness. Three individual airborne sensor packages will be installed in leased Twin Otter aircraft and used to the collect the NEON sites as NEON enters operations. A key driver to the derived remote sensing data products is the calibration of the imaging spectrometers. This is essential to the overall NEON mission to detect changes in the collected ecosystems over the 30-year expected lifetime. The NEON Imaging Spectrometer (NIS) is a Visible and Shortwave Infrared (VSWIR) grating spectrometer designed by NASA JPL. Spectroscopic data is collected at 5-nm intervals from 380-2500-nm. A single 480 by 640 pixel HgCdTe Focal Plane Array collects dispersed light from a grating tuned for efficiency across the solar-reflective utilized in a push-broom configuration. Primary calibration of the NIS consists of the characterizing the FPA behavior, spectral calibration, and radiometric calibration. To this end, NEON is constructing a Sensor Test Facility to calibrate the NEON sensors. This work discusses the initial NIS laboratory calibration and verification using vicarious calibration techniques during operations. Laboratory spectral calibration is based on well-defined emission lines in conjunction with a scanning monochromator to define the individual spectral response functions. A NIST traceable FEL bulb is used to radiometrically calibrate the imaging spectrometer. An On-board Calibration (OBC) system

  6. Airborne Hyperspectral Imaging of Supraglacial Lakes in Greenland's Ablation Zone

    NASA Astrophysics Data System (ADS)

    Adler, J.; Behar, A. E.; Jacobson, N. T.

    2010-12-01

    In 2010 an airborne instrument was assembled to image supraglacial lakes near the Jakobshavn Isbrae of the Greenland Ice Sheet. The instrument was designed to fly on a helicopter, and consists of a hyperspectral imager, a GPS/inertial measurement unit (GPS/IMU), and a data-logging computer. A series of narrow visible optical channels ~13nm wide, such as found in a hyperspectral imager, are theorized to be useful in determining the depths of supraglacial lakes using techniques based on the Beer-Lambert-Bouguer Law. During June, several supraglacial lakes were selected for study each day, based upon MODIS imagery taken during the previous week. Flying over a given lake, several track lines were flown to image both shallow and deep sections of the lake, imaging the full range of depth for future algorithm development. The telescoping instrument mount was constructed to allow the sensor package to be deployed from a helicopter in-flight, with an unobstructed downward-facing field of view. The GPS/IMU records the pointing orientation, altitude, and geographical coordinates of the imager to the data-logger, in order to allow post-flight geo-referencing of the raw hyperspectral imagery. With this geo-referenced spectrum data, a depth map for a given lake can be calculated through reference to a water absorptivity model. This risk-reduction expedition to fly a helicopter-borne hyperspectral imager over the supraglacial lakes of Greenland was a success. The instrument mount for the imager worked as designed, and no vibration issues were encountered. As a result, we have confidence in the instrument platform's performance during future surveys of Greenland's supraglacial lakes. The hyperspectral imager, data acquisition computer, and geo-referencing services are provided by Resonon, Inc. of Bozeman, MT, and the GPS/IMU is manufactured by Cloudcap Technology of Hood River, OR.

  7. Multi-Wavelength Observations of Asteroid 2100 Ra-Shalom: Visible, Infrared, and Thermal Spectroscopy Results

    NASA Technical Reports Server (NTRS)

    Clark, Beth Ellen; Shepard, M.; Bus, S. J.; Vilas, F.; Rivkin, A. S.; Lim, L.; Lederer, S.; Jarvis, K.; Shah, S.; McConnochie, T.

    2004-01-01

    The August 2003 apparition of asteroid 2100 Ra-Shalom brought together a collaboration of observers with the goal of obtaining rotationally resolved multiwavelength spectra at each of 5 facilities: infrared spectra at the NASA Infrared Telescope Facility (Clark and Shepard), radar images at Arecibo (Shepard and Clark), thermal infrared spectra at Palomar (Lim, McConnochie and Bell), visible spectra at McDonald Observatory (Vilas, Lederer and Jarvis), and visible lightcurves at Ondrojev Observatory (Pravec). The radar data was to be used to develop a high spatial resolution physical model to be used in conjunction with spectral data to investigate compositional and textural properties on the near surface of Ra Shalom as a function of rotation phase. This was the first coordinated multi-wavelength investigation of any Aten asteroid. There are many reasons to study near-Earth asteroid (NEA) 2100 Ra-Shalom: 1) It has a controversial classification (is it a C- or K-type object)? 2) There would be interesting dynamical ramifications if Ra-Shalom is a K-type because most K-types come from the Eos family and there are no known dynamical pathways from Eos to the Aten population. 3) The best available spectra obtained previously may indicate a heterogeneous surface (most asteroids appear to be fairly homogeneous). 4) Ra-Shalom thermal observations obtained previously indicated a lack of regolith, minimizing the worry of space weathering effects in the spectra. 5) Radar observations obtained previously hinted at interesting surface structures. 6) Ra-Shalom is one of the largest Aten objects. And 7) Ra-Shalom is on a short list of proposed NEAs for spacecraft encounters and possible sample returns. Preliminary results from the visible, infrared, and thermal spectroscopy measurements will be presented here.

  8. Multispectral concealed weapon detection in visible, infrared, and terahertz

    NASA Astrophysics Data System (ADS)

    Kowalski, Marcin; Kastek, Mariusz; Polakowski, Henryk; Palka, Norbert; Piszczek, Marek; Szustakowski, Mieczyslaw

    2014-05-01

    Detection of concealed dangerous objects is a very demanding problem of public safety. So far, the problem of detecting objects hidden under clothing was considered only in the case of airports but it is becoming more and more important for public places like metro stations, and government buildings. The development of imaging devices and exploration of new spectral bands is a chance to introduce new equipment for assuring public safety. It has been proved that objects hidden under clothing can be detected and visualized using terahertz (THz) cameras. However, passive THz cameras still offer too low image resolution for objects recognition. On the other hand new infrared cameras offer sufficient parameters to detect objects covered with fabrics in some conditions, as well as high image quality and big pixel resolutions. The purpose of the studies is to investigate the possibilities of using various cameras operating in different spectral ranges for detection of concealed objects. In the article, we present the measurement setup consisting of medium wavelength infrared (MWIR), long wavelength infrared (LWIR), THz and visible cameras and the initial results of measurements with various types of clothing and test objects.

  9. Determination of pasture quality using airborne hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Pullanagari, R. R.; Kereszturi, G.; Yule, Ian J.; Irwin, M. E.

    2015-10-01

    Pasture quality is a critical determinant which influences animal performance (live weight gain, milk and meat production) and animal health. Assessment of pasture quality is therefore required to assist farmers with grazing planning and management, benchmarking between seasons and years. Traditionally, pasture quality is determined by field sampling which is laborious, expensive and time consuming, and the information is not available in real-time. Hyperspectral remote sensing has potential to accurately quantify biochemical composition of pasture over wide areas in great spatial detail. In this study an airborne imaging spectrometer (AisaFENIX, Specim) was used with a spectral range of 380-2500 nm with 448 spectral bands. A case study of a 600 ha hill country farm in New Zealand is used to illustrate the use of the system. Radiometric and atmospheric corrections, along with automatized georectification of the imagery using Digital Elevation Model (DEM), were applied to the raw images to convert into geocoded reflectance images. Then a multivariate statistical method, partial least squares (PLS), was applied to estimate pasture quality such as crude protein (CP) and metabolisable energy (ME) from canopy reflectance. The results from this study revealed that estimates of CP and ME had a R2 of 0.77 and 0.79, and RMSECV of 2.97 and 0.81 respectively. By utilizing these regression models, spatial maps were created over the imaged area. These pasture quality maps can be used for adopting precision agriculture practices which improves farm profitability and environmental sustainability.

  10. Identification of hydrothermal alteration assemblages using airborne imaging spectrometer data

    NASA Technical Reports Server (NTRS)

    Feldman, S. C.; Taranik, J. V.

    1986-01-01

    Airborne Imaging Spectrometer (AIS) data, field and laboratory spectra and samples for X-ray diffraction analysis were collected in argillically altered Tertiary volcanic rocks in the Hot Creek Range, Nevada. From laboratory and field spectral measurements in the 2.0 to 2.4 micron range and using a spectroradiometer with a 4 nm sampling interval, the absorption band centers for kaolinite were loacted at 2.172 and 2.215 microns, for montmorillonite at 2.214 micron and for illite at 2.205. Based on these values and the criteria for resolution and separtion of spectral features, a spectral sampling interval of less than 4 nm is necessary to separate the clays. With an AIS spectral sampling interval of 9.3 nm, a spectral matching algorithm is more effective for separating kaolinite, montmorillonite, ad illite in Hot Creek Range than using the location of absorption minima alone.

  11. Traffic monitoring with serial images from airborne cameras

    NASA Astrophysics Data System (ADS)

    Reinartz, Peter; Lachaise, Marie; Schmeer, Elisabeth; Krauss, Thomas; Runge, Hartmut

    The classical means to measure traffic density and velocity depend on local measurements from induction loops and other on site instruments. This information does not give the whole picture of the two-dimensional traffic situation. In order to obtain precise knowledge about the traffic flow of a large area, only airborne cameras or cameras positioned at very high locations (towers, etc.) can provide an up-to-date image of all roads covered. The paper aims at showing the potential of using image time series from these cameras to derive traffic parameters on the basis of single car measurements. To be able to determine precise velocities and other parameters from an image time series, exact geocoding is one of the first requirements for the acquired image data. The methods presented here for determining several traffic parameters for single vehicles and vehicle groups involve recording and evaluating a number of digital or analog aerial images from high altitude and with a large total field of view. Visual and automatic methods for the interpretation of images are compared. It turns out that the recording frequency of the individual images should be at least 1/3 Hz (visual interpretation), but is preferably 3 Hz or more, especially for automatic vehicle tracking. The accuracy and potentials of the methods are analyzed and presented, as well as the usage of a digital road database for improving the tracking algorithm and for integrating the results for further traffic applications. Shortcomings of the methods are given as well as possible improvements regarding methodology and sensor platform.

  12. Near ultraviolet visible infrared mapping spectrometer (NU-VIMS)

    NASA Astrophysics Data System (ADS)

    Reininger, Francis M.

    1994-09-01

    The NU-VIMS is a new instrument concept for high resolution spectral imaging within the spectral band of 0.25 to 5.0 micrometers . The concept utilizes state-of-the-art detector and grating technologies to extend the capabilities of the Cassini/VIMS-V prototype while maintaining its compact and lightweight format. The NU-VIMS optical design achieves remarkable performance while relying only on spherical surfaces in a single optical channel with only one grating and either one or two detector arrays. Though the concept was developed in anticipation of the MORO, Rosetta, and Pluto-Charon deep space missions, the instrument could also be mounted on a lightweight satellite for low cost remote sensing of the earth.

  13. Hierarchical classifier design for airborne SAR images of ships

    NASA Astrophysics Data System (ADS)

    Gagnon, Langis; Klepko, Robert

    1998-09-01

    We report about a hierarchical design for extracting ship features and recognizing ships from SAR images, and which will eventually feed a multisensor data fusion system for airborne surveillance. The target is segmented from the image background using directional thresholding and region merging processes. Ship end-points are then identified through a ship centerline detection performed with a Hough transform. A ship length estimate is calculated assuming that the ship heading and/or the cross-range resolution are known. A high-level ship classification identifies whether the target belongs to Line (mainly combatant military ships) or Merchant ship categories. Category discrimination is based on the radar scatterers' distribution in 9 ship sections along the ship's range profile. A 3-layer neural network has been trained on simulated scatterers distributions and supervised by a rule- based expert system to perform this task. The NN 'smoothes out' the rules and the confidence levels on the category declaration. Line ship type (Frigate, Destroyer, Cruiser, Battleship, Aircraft Carrier) is then estimated using a Bayes classifier based on the ship length. Classifier performances using simulated images are presented.

  14. Geologic mapping in Death Valley, California/Nevada using NASA/JPL airborne systems (AVIRIS, TIMS, and AIRSAR)

    NASA Technical Reports Server (NTRS)

    Kruse, Fred A.; Dietz, John B.; Kiereinyoung, Kathryn S.

    1991-01-01

    A multi-sensor aircraft campaign called the Geologic Remote Sensing Field Experiment (GRSFE) conducted during 1989 resulted in acquisition of high quality multispectral images in the visible, near infrared, shortwave infrared, thermal infrared, and microwave regions of the electromagnetic spectrum. The airborne data sets include the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), the Thermal Infrared Multispectral Scanner (TIMS), and the Airborne Synthetic Aperture Radar (SAR). Ancillary data include Landsat Thematic Mapper, laboratory and field spectral measurements, and traditional geologic mapping. The GRSFE data for a site in the northern Death Valley, (California and Nevada) region were calibrated to physical units and geometrically registered to a map base. Various aspects of this experiment are briefly discussed.

  15. Comparison of mosaicking techniques for airborne images from consumer-grade cameras

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Images captured from airborne imaging systems have the advantages of relatively low cost, high spatial resolution, and real/near-real-time availability. Multiple images taken from one or more flight lines could be used to generate a high-resolution mosaic image, which could be useful for diverse rem...

  16. Application of the airborne ocean color imager for commercial fishing

    NASA Technical Reports Server (NTRS)

    Wrigley, Robert C.

    1993-01-01

    The objective of the investigation was to develop a commercial remote sensing system for providing near-real-time data (within one day) in support of commercial fishing operations. The Airborne Ocean Color Imager (AOCI) had been built for NASA by Daedalus Enterprises, Inc., but it needed certain improvements, data processing software, and a delivery system to make it into a commercial system for fisheries. Two products were developed to support this effort: the AOCI with its associated processing system and an information service for both commercial and recreational fisheries to be created by Spectro Scan, Inc. The investigation achieved all technical objectives: improving the AOCI, creating software for atmospheric correction and bio-optical output products, georeferencing the output products, and creating a delivery system to get those products into the hands of commercial and recreational fishermen in near-real-time. The first set of business objectives involved Daedalus Enterprises and also were achieved: they have an improved AOCI and new data processing software with a set of example data products for fisheries applications to show their customers. Daedalus' marketing activities showed the need for simplification of the product for fisheries, but they successfully marketed the current version to an Italian consortium. The second set of business objectives tasked Spectro Scan to provide an information service and they could not be achieved because Spectro Scan was unable to obtain necessary venture capital to start up operations.

  17. Mako airborne thermal infrared imaging spectrometer: performance update

    NASA Astrophysics Data System (ADS)

    Hall, Jeffrey L.; Boucher, Richard H.; Buckland, Kerry N.; Gutierrez, David J.; Keim, Eric R.; Tratt, David M.; Warren, David W.

    2016-09-01

    The Aerospace Corporation's sensitive Mako thermal infrared imaging spectrometer, which operates between 7.6 and 13.2 microns at a spectral sampling of 44 nm, and flies in a DeHavilland DHC-6 Twin Otter, has undergone significant changes over the past year that have greatly increased its performance. A comprehensive overhaul of its electronics has enabled frame rates up to 3255 Hz and noise reductions bringing it close to background-limited. A replacement diffraction grating whose peak efficiency was tuned to shorter wavelength, coupled with new AR coatings on certain key optics, has improved the performance at the short wavelength end by a factor of 3, resulting in better sensitivity for methane detection, for example. The faster frame rate has expanded the variety of different scan schemes that are possible, including multi-look scans in which even sizeable target areas can be scanned multiple times during a single overpass. Off-nadir scanning to +/-56.4° degrees has also been demonstrated, providing an area scan rate of 33 km2/minute for a 2-meter ground sampling distance (GSD) at nadir. The sensor achieves a Noise Equivalent Spectral Radiance (NESR) of better than 0.6 microflicks (μf, 10-6 W/sr/cm2/μm) in each of the 128 spectral channels for a typical airborne dataset in which 4 frames are co-added. An additional improvement is the integration of a new commercial 3D stabilization mount which is significantly better at compensating for aircraft motions and thereby maintains scan performance under quite turbulent flying conditions. The new sensor performance and capabilities are illustrated.

  18. Advanced Airborne Hyperspectral Imaging System (AAHIS): an imaging spectrometer for maritime applications

    NASA Astrophysics Data System (ADS)

    Voelker, Mark A.; Resmini, Ronald G.; Mooradian, Gregory C.; McCord, Thomas B.; Warren, Christopher P.; Fene, Michael W.; Coyle, Christopher C.; Anderson, Richard

    1995-06-01

    The Advanced Airborne Hyperspectral Imaging System (AAHIS) is a compact, lightweight visible and near IR pushbroom hyperspectral imaging spectrometer flown on a Piper Aztec aircraft. AAHIS is optimized for use in shallow water, littoral, and vegetation remote sensing. Data are collected at up to 55 frames/second and may be displayed and analyzed inflight or recorded for post-flight processing. Swath width is 200 meters at a flight altitude of 1 km. Each image pixel contains hyperspectral data simultaneously recorded in up to 288 contiguous spectral channels covering the 432 to 832 nm spectral region. Pixel binning typically yields pixels 1.0 meter square with a spectral channel width of 5.5 nm. Design and performance of the AAHIS is presented, including processed imagery demonstrating feature detection and materials discrimination on land and underwater at depths up to 27 meters.

  19. A high-resolution airborne four-camera imaging system for agricultural remote sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the design and testing of an airborne multispectral digital imaging system for remote sensing applications. The system consists of four high resolution charge coupled device (CCD) digital cameras and a ruggedized PC equipped with a frame grabber and image acquisition software. T...

  20. An algorithm of remotely sensed hyperspectral image fusion based on spectral unmixing and feature reconstruction

    NASA Astrophysics Data System (ADS)

    Sun, Xuejian; Zhang, Lifu; Cen, Yi; Zhang, Mingyue

    2016-05-01

    In order to get high spatial resolution hyperspectral data, many studies have examined methods to combine spectral information contained in hyperspectral image with spatial information contained in multispectral/panchromatic image. This paper developed a new hyperspectral image fusion method base on the non-negative matrix factorization (NMF) theory. Data sets obtained by the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) was used to evaluate the performance of the method. Experimental results show that the proposed algorithm can provide a good way to solve the problem of high spatial resolution hyperspectral data shortage.

  1. Use of Airborne Hyperspectral Data in the Simulation of Satellite Images

    NASA Astrophysics Data System (ADS)

    de Miguel, Eduardo; Jimenez, Marcos; Ruiz, Elena; Salido, Elena; Gutierrez de la Camara, Oscar

    2016-08-01

    The simulation of future images is part of the development phase of most Earth Observation missions. This simulation uses frequently as starting point images acquired from airborne instruments. These instruments provide the required flexibility in acquisition parameters (time, date, illumination and observation geometry...) and high spectral and spatial resolution, well above the target values (as required by simulation tools). However, there are a number of important problems hampering the use of airborne imagery. One of these problems is that observation zenith angles (OZA), are far from those that the misisons to be simulated would use.We examine this problem by evaluating the difference in ground reflectance estimated from airborne images for different observation/illumination geometries. Next, we analyze a solution for simulation purposes, in which a Bi- directional Reflectance Distribution Function (BRDF) model is attached to an image of the isotropic surface reflectance. The results obtained confirm the need for reflectance anisotropy correction when using airborne images for creating a reflectance map for simulation purposes. But this correction should not be used without providing the corresponding estimation of BRDF, in the form of model parameters, to the simulation teams.

  2. Orientation of airborne laser scanning point clouds with multi-view, multi-scale image blocks.

    PubMed

    Rönnholm, Petri; Hyyppä, Hannu; Hyyppä, Juha; Haggrén, Henrik

    2009-01-01

    Comprehensive 3D modeling of our environment requires integration of terrestrial and airborne data, which is collected, preferably, using laser scanning and photogrammetric methods. However, integration of these multi-source data requires accurate relative orientations. In this article, two methods for solving relative orientation problems are presented. The first method includes registration by minimizing the distances between of an airborne laser point cloud and a 3D model. The 3D model was derived from photogrammetric measurements and terrestrial laser scanning points. The first method was used as a reference and for validation. Having completed registration in the object space, the relative orientation between images and laser point cloud is known. The second method utilizes an interactive orientation method between a multi-scale image block and a laser point cloud. The multi-scale image block includes both aerial and terrestrial images. Experiments with the multi-scale image block revealed that the accuracy of a relative orientation increased when more images were included in the block. The orientations of the first and second methods were compared. The comparison showed that correct rotations were the most difficult to detect accurately by using the interactive method. Because the interactive method forces laser scanning data to fit with the images, inaccurate rotations cause corresponding shifts to image positions. However, in a test case, in which the orientation differences included only shifts, the interactive method could solve the relative orientation of an aerial image and airborne laser scanning data repeatedly within a couple of centimeters.

  3. Orientation of Airborne Laser Scanning Point Clouds with Multi-View, Multi-Scale Image Blocks

    PubMed Central

    Rönnholm, Petri; Hyyppä, Hannu; Hyyppä, Juha; Haggrén, Henrik

    2009-01-01

    Comprehensive 3D modeling of our environment requires integration of terrestrial and airborne data, which is collected, preferably, using laser scanning and photogrammetric methods. However, integration of these multi-source data requires accurate relative orientations. In this article, two methods for solving relative orientation problems are presented. The first method includes registration by minimizing the distances between of an airborne laser point cloud and a 3D model. The 3D model was derived from photogrammetric measurements and terrestrial laser scanning points. The first method was used as a reference and for validation. Having completed registration in the object space, the relative orientation between images and laser point cloud is known. The second method utilizes an interactive orientation method between a multi-scale image block and a laser point cloud. The multi-scale image block includes both aerial and terrestrial images. Experiments with the multi-scale image block revealed that the accuracy of a relative orientation increased when more images were included in the block. The orientations of the first and second methods were compared. The comparison showed that correct rotations were the most difficult to detect accurately by using the interactive method. Because the interactive method forces laser scanning data to fit with the images, inaccurate rotations cause corresponding shifts to image positions. However, in a test case, in which the orientation differences included only shifts, the interactive method could solve the relative orientation of an aerial image and airborne laser scanning data repeatedly within a couple of centimeters. PMID:22454569

  4. Airborne measurements in the longwave infrared using an imaging hyperspectral sensor

    NASA Astrophysics Data System (ADS)

    Allard, Jean-Pierre; Chamberland, Martin; Farley, Vincent; Marcotte, Frédérick; Rolland, Matthias; Vallières, Alexandre; Villemaire, André

    2008-07-01

    Emerging applications in Defense and Security require sensors with state-of-the-art sensitivity and capabilities. Among these sensors, the imaging spectrometer is an instrument yielding a large amount of rich information about the measured scene. Standoff detection, identification and quantification of chemicals in the gaseous state is one important application. Analysis of the surface emissivity as a means to classify ground properties and usage is another one. Imaging spectrometers have unmatched capabilities to meet the requirements of these applications. Telops has developed the FIRST, a LWIR hyperspectral imager. The FIRST is based on the Fourier Transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. The FIRST, a man portable sensor, provides datacubes of up to 320×256 pixels at 0.35mrad spatial resolution over the 8-12 μm spectral range at spectral resolutions of up to 0.25cm-1. The FIRST has been used in several field campaigns, including the demonstration of standoff chemical agent detection [http://dx.doi.org/10.1117/12.788027.1]. More recently, an airborne system integrating the FIRST has been developed to provide airborne hyperspectral measurement capabilities. The airborne system and its capabilities are presented in this paper. The FIRST sensor modularity enables operation in various configurations such as tripod-mounted and airborne. In the airborne configuration, the FIRST can be operated in push-broom mode, or in staring mode with image motion compensation. This paper focuses on the airborne operation of the FIRST sensor.

  5. A model for forming airborne synthetic aperture radar images of underground targets

    SciTech Connect

    Doerry, A.W.

    1994-01-01

    Synthetic Aperture Radar (SAR) from an airborne platform has been proposed for imaging targets beneath the earth`s surface. The propagation of the radar`s energy within the ground, however, is much different than in the earth`s atmosphere. The result is signal refraction, echo delay, propagation losses, dispersion, and volumetric scattering. These all combine to make SAR image formation from an airborne platform much more challenging than a surface imaging counterpart. This report treats the ground as a lossy dispersive half-space, and presents a model for the radar echo based on measurable parameters. The model is then used to explore various imaging schemes, and image properties. Dynamic range is discussed, as is the impact of loss on dynamic range. Modified window functions are proposed to mitigate effects of sidelobes of shallow targets overwhelming deeper targets.

  6. Spectral difference analysis and airborne imaging classification for citrus greening infected trees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus greening, also called Huanglongbing (HLB), became a devastating disease spread through citrus groves in Florida, since it was first found in 2005. Multispectral (MS) and hyperspectral (HS) airborne images of citrus groves in Florida were acquired to detect citrus greening infected trees in 20...

  7. An airborne multispectral imaging system based on two consumer-grade cameras for agricultural remote sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the design and evaluation of an airborne multispectral imaging system based on two identical consumer-grade cameras for agricultural remote sensing. The cameras are equipped with a full-frame complementary metal oxide semiconductor (CMOS) sensor with 5616 × 3744 pixels. One came...

  8. Diffused Matrix Format: a new storage and processing format for airborne hyperspectral sensor images.

    PubMed

    Martínez, Pablo; Cristo, Alejandro; Koch, Magaly; Pérez, Rosa Ma; Schmid, Thomas; Hernández, Luz M

    2010-01-01

    At present, hyperspectral images are mainly obtained with airborne sensors that are subject to turbulences while the spectrometer is acquiring the data. Therefore, geometric corrections are required to produce spatially correct images for visual interpretation and change detection analysis. This paper analyzes the data acquisition process of airborne sensors. The main objective is to propose a new data format called Diffused Matrix Format (DMF) adapted to the sensor's characteristics including its spectral and spatial information. The second objective is to compare the accuracy of the quantitative maps derived by using the DMF data structure with those obtained from raster images based on traditional data structures. Results show that DMF processing is more accurate and straightforward than conventional image processing of remotely sensed data with the advantage that the DMF file structure requires less storage space than other data formats. In addition the data processing time does not increase when DMF is used.

  9. Charge-coupled device data processor for an airborne imaging radar system

    NASA Technical Reports Server (NTRS)

    Arens, W. E. (Inventor)

    1977-01-01

    Processing of raw analog echo data from synthetic aperture radar receiver into images on board an airborne radar platform is discussed. Processing is made feasible by utilizing charge-coupled devices (CCD). CCD circuits are utilized to perform input sampling, presumming, range correlation and azimuth correlation in the analog domain. These radar data processing functions are implemented for single-look or multiple-look imaging radar systems.

  10. New generation VNIR/SWIR/TIR airborne imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, Yueming; Wei, Liqin; Yuan, Liyin; Li, Chunlai; Lv, Gang; Xie, Feng; Han, Guicheng; Shu, Rong; Wang, Jianyu

    2016-10-01

    Imaging spectrometer plays an important role in the remote sensing application. Imaging spectrometer can collects and provides a unique spectral signature of many materials. The spectral signature may be absorbing, reflecting, and emitting. Generally, optical spectral bands for earth observing consist of VNIR, SWIR, TIR/LWIR. VNIR band imaging spectrometer is well-known in vegetation remote sensing and ocean detection. SWIR band imaging spectrometer is widely applied in mineralogy investigation. For its uniquely capability of spectral radiance measurement, TIR/LWIR imaging spectrometer attracts much attention these years. This paper will present a new generation VNIR/SWIR/TIR imaging spectrometer. The preliminary result of its first flight will also be shared. The spectral sampling intervals of VNIR/SWIR/TIR are 2.4nm/3nm/30nm, respectively. The spatial pixel numbers are 2800/1400/700,respectively. It's a push-broom imaging spectrometer.

  11. Comparison of mosaicking techniques for airborne images from consumer-grade cameras

    NASA Astrophysics Data System (ADS)

    Song, Huaibo; Yang, Chenghai; Zhang, Jian; Hoffmann, Wesley Clint; He, Dongjian; Thomasson, J. Alex

    2016-01-01

    Images captured from airborne imaging systems can be mosaicked for diverse remote sensing applications. The objective of this study was to identify appropriate mosaicking techniques and software to generate mosaicked images for use by aerial applicators and other users. Three software packages-Photoshop CC, Autostitch, and Pix4Dmapper-were selected for mosaicking airborne images acquired from a large cropping area. Ground control points were collected for georeferencing the mosaicked images and for evaluating the accuracy of eight mosaicking techniques. Analysis and accuracy assessment showed that Pix4Dmapper can be the first choice if georeferenced imagery with high accuracy is required. The spherical method in Photoshop CC can be an alternative for cost considerations, and Autostitch can be used to quickly mosaic images with reduced spatial resolution. The results also showed that the accuracy of image mosaicking techniques could be greatly affected by the size of the imaging area or the number of the images and that the accuracy would be higher for a small area than for a large area. The results from this study will provide useful information for the selection of image mosaicking software and techniques for aerial applicators and other users.

  12. Integrating Smartphone Images and Airborne LIDAR Data for Complete Urban Building Modelling

    NASA Astrophysics Data System (ADS)

    Zhang, Shenman; Shan, Jie; Zhang, Zhichao; Yan, Jixing; Hou, Yaolin

    2016-06-01

    A complete building model reconstruction needs data collected from both air and ground. The former often has sparse coverage on building façades, while the latter usually is unable to observe the building rooftops. Attempting to solve the missing data issues in building reconstruction from single data source, we describe an approach for complete building reconstruction that integrates airborne LiDAR data and ground smartphone imagery. First, by taking advantages of GPS and digital compass information embedded in the image metadata of smartphones, we are able to find airborne LiDAR point clouds for the corresponding buildings in the images. In the next step, Structure-from-Motion and dense multi-view stereo algorithms are applied to generate building point cloud from multiple ground images. The third step extracts building outlines respectively from the LiDAR point cloud and the ground image point cloud. An automated correspondence between these two sets of building outlines allows us to achieve a precise registration and combination of the two point clouds, which ultimately results in a complete and full resolution building model. The developed approach overcomes the problem of sparse points on building façades in airborne LiDAR and the deficiency of rooftops in ground images such that the merits of both datasets are utilized.

  13. Airborne Imaging Spectroscopy of Forest Canopy Chemistry in the Andes-Amazon Corridor

    NASA Astrophysics Data System (ADS)

    Martin, R.; Anderson, C.; Knapp, D. E.; Asner, G. P.

    2013-12-01

    The Andes-Amazon corridor is one of the most biologically diverse regions on Earth. Elevation gradients provide opportunities to explore the underlying sources and environmental controls on functional diversity of the forest canopy, however plot-based studies have proven highly variable. We used airborne imaging spectroscopy from the Carnegie Airborne Observatory (CAO) Airborne Taxonomic Mapping System (AToMS) to quantify changes canopy functional traits in a series of eleven 25-ha landscapes distributed along a 3300 m elevation gradient from lowland Amazonia to treeline in the Peruvian Andes. Each landscape encompassed a 1 ha field plot in which all trees reaching the canopy were climbed and leaves were sampled for 20 chemical traits. We used partial least squares regression to relate plot-level chemical values with airborne spectroscopy from the 1 ha area. Sixteen chemical traits produced predictable relationships with the spectra and were used to generate maps of the 25 ha landscape. Ten chemical traits were significantly related to elevation at the 25 ha scale. These ten traits displayed 35% greater accuracy (R2) and precision (rmse) when evaluated at the 25 ha scale compared to values derived from tree climbing alone. The results indicate that high-fidelity imaging spectroscopy can be used as surrogate for laborious tree climbing and chemical assays to understand chemical diversity in Amazonian forests. Understanding how these chemicals vary among forest communities throughout the Andes-Amazon corridor will facilitate mapping of functional diversity and the response of canopies to climate change.

  14. Prediction and performance measures of atmospheric disturbances on an airborne imaging platform

    NASA Astrophysics Data System (ADS)

    Dayton, David C.; Gonglewski, John D.; Martin, Jeffrey B.; Kovacs, Mark A.; Cardani, Joseph C.; Maia, Francisco; Aflalo, Tyson; Shilko, Michael L., Sr.

    2004-02-01

    A series of airborne imaging experiments have been conducted on the island of Maui. The imaging platform was a Twin Otter aircraft, which circled ground target sites. The typical platform altitude was 3000 meters, with a slant range to the target of 9000 meters. This experiment was performed during the day using solar illuminated target buildings, and at night with spotlights used to simulate point sources. Imaging system performance predictions were calculated using standard atmospheric turbulence models, and aircraft boundary layer models. Several different measurement approaches were then used to estimate the actual system performance, and make comparisons with the calculations.

  15. Novel Airborne Imaging Polarimeter Undergoes High-Altitude Flight Testing

    NASA Technical Reports Server (NTRS)

    Diner, David J.; Pingree, Paula J.; Chipman, Russell A.

    2015-01-01

    Optical and signal processing technologies for high-accuracy polarimetric imaging, aimed at studying the impact of atmospheric haze and clouds on Earth's climate, have been demonstrated on checkout flights aboard NASA's ER-2 aircraft.

  16. Using Visible Infrared Imaging Radiometer Suite (VIIRS) Imagery to identify and analyze light pollution

    NASA Astrophysics Data System (ADS)

    Nurbandi, Wahyu; Ramadhani Yusuf, Febrina; Prasetya, Ruwanda; Dimas Afrizal, Mousafi

    2016-11-01

    Light pollution is any adverse effect of artificial lighting including sky glow, glare, light trespass, light clutter, decreased visibility at night, and energy waste. Remote sensing is the acquisition of information about an object or phenomenon without making physical contact with the object. Remote sensing can be used for identification of light pollution. The purpose of this study is to identify and analyze the light pollution by using remote sensing imagery. This study uses VIIRS DNB Free Cloud Composites imagery to identify light pollution in Yogyakarta province and surrounding areas. VIIRS imagery which obtained is processed to get information of light pollution by classifying the information into several classes presented in a map. Selected few sample points as test sites to determine the actual condition. Field work conducted at theree location, they are Yogyakarta City, Depok Beach, and Gajah Mungkur reservoir. Night sky condition analysis conducted field tests as well as night time shooting the night sky conditions. Analysis of the night sky conditions are calculated qualitatively using Bortle Dark-Sky Scale with a value range of 1-9. Field test results show that Yogyakarta City has a value of 8, Depok has a value of 3, and Gajah Mungkur Reservoir has a value of 4. The conclusion of study is VIIRS imagery can be used for identification light pollution and calculation analysis of light pollution can use Bortle Dark-Sky Scale.

  17. Enhanced Feature Based Mosaicing Technique for Visually and Geometrically Degraded Airborne Synthetic Aperture Radar Images

    NASA Astrophysics Data System (ADS)

    Manikandan, S.; Vardhini, J. P.

    2015-11-01

    In airborne synthetic aperture radar (SAR), there was a major problem encountered in the area of image mosaic in the absence of platform information and sensor information (geocoding), when SAR is applied in large-scale scene and the platform faces large changes. In order to enhance real-time performance and robustness of image mosaic, enhancement based Speeded-Up Robust Features (SURF) mosaic method for airborne SAR is proposed in this paper. SURF is a novel scale-invariant and rotation-invariant feature. It is perfect in its high computation, speed and robustness. In this paper, When the SAR image is acquired, initially the image is enhanced by using local statistic techniques and SURF is applied for SAR image matching accord to its characteristic, and then acquires its invariant feature for matching. In the process of image matching, the nearest neighbor rule for initial matching is used, and the wrong points of the matches are removed through RANSAC fitting algorithm. The proposed algorithm is implemented in different SAR images with difference in scale change, rotation change and noise. The proposed algorithm is compared with other existing algorithms and the quantitative and qualitative measures are calculated and tabulated. The proposed algorithm is robust to changes and the threshold is varied accordingly to increase the matching rate more than 95 %.

  18. Alien plant monitoring with ultralight airborne imaging spectroscopy.

    PubMed

    Calviño-Cancela, María; Méndez-Rial, Roi; Reguera-Salgado, Javier; Martín-Herrero, Julio

    2014-01-01

    Effective management of invasive plants requires a precise determination of their distribution. Remote sensing techniques constitute a promising alternative to field surveys and hyperspectral sensors (also known as imaging spectrometers, with a large number of spectral bands and high spectral resolution) are especially suitable when very similar categories are to be distinguished (e.g. plant species). A main priority in the development of this technology is to lower its cost and simplify its use, so that its demonstrated aptitude for many environmental applications can be truly realized. With this aim, we have developed a system for hyperspectral imaging (200 spectral bands in the 380-1000 nm range and circa 3 nm spectral resolution) operated on board ultralight aircraft (namely a gyrocopter), which allows a drastic reduction of the running costs and operational complexity of image acquisition, and also increases the spatial resolution of the images (circa 5-8 pixels/m(2) at circa 65 km/h and 300 m height). The detection system proved useful for the species tested (Acacia melanoxylon, Oxalis pes-caprae, and Carpobrotus aff. edulis and acinaciformis), with user's and producer's accuracy always exceeding 90%. The detection accuracy reported corresponds to patches down to 0.125 m(2) (50% of pixels 0.5 × 0.5 m in size), a very small size for many plant species, making it very effective for initial stages of invasive plant spread. In addition, its low operating costs, similar to those of a 4WD ground vehicle, facilitate frequent image acquisition. Acquired images constitute a permanent record of the status of the study area, with great amount of information that can be analyzed in the future for other purposes, thus greatly facilitating the monitoring of natural areas at detailed spatial and temporal scales for improved management.

  19. Alien Plant Monitoring with Ultralight Airborne Imaging Spectroscopy

    PubMed Central

    Calviño-Cancela, María; Méndez-Rial, Roi; Reguera-Salgado, Javier; Martín-Herrero, Julio

    2014-01-01

    Effective management of invasive plants requires a precise determination of their distribution. Remote sensing techniques constitute a promising alternative to field surveys and hyperspectral sensors (also known as imaging spectrometers, with a large number of spectral bands and high spectral resolution) are especially suitable when very similar categories are to be distinguished (e.g. plant species). A main priority in the development of this technology is to lower its cost and simplify its use, so that its demonstrated aptitude for many environmental applications can be truly realized. With this aim, we have developed a system for hyperspectral imaging (200 spectral bands in the 380–1000 nm range and circa 3 nm spectral resolution) operated on board ultralight aircraft (namely a gyrocopter), which allows a drastic reduction of the running costs and operational complexity of image acquisition, and also increases the spatial resolution of the images (circa 5–8 pixels/m2 at circa 65 km/h and 300 m height). The detection system proved useful for the species tested (Acacia melanoxylon, Oxalis pes-caprae, and Carpobrotus aff. edulis and acinaciformis), with user’s and producer’s accuracy always exceeding 90%. The detection accuracy reported corresponds to patches down to 0.125 m2 (50% of pixels 0.5×0.5 m in size), a very small size for many plant species, making it very effective for initial stages of invasive plant spread. In addition, its low operating costs, similar to those of a 4WD ground vehicle, facilitate frequent image acquisition. Acquired images constitute a permanent record of the status of the study area, with great amount of information that can be analyzed in the future for other purposes, thus greatly facilitating the monitoring of natural areas at detailed spatial and temporal scales for improved management. PMID:25010601

  20. Proceedings of the Third Airborne Imaging Spectrometer Data Analysis Workshop

    NASA Technical Reports Server (NTRS)

    Vane, Gregg (Editor)

    1987-01-01

    Summaries of 17 papers presented at the workshop are published. After an overview of the imaging spectrometer program, time was spent discussing AIS calibration, performance, information extraction techniques, and the application of high spectral resolution imagery to problems of geology and botany.

  1. [New vegetation index fusing visible-infrared and shortwave infrared spectral feature for winter wheat LAI retrieval].

    PubMed

    Li, Xin-chuan; Bao, Yan-song; Xu, Xin-gang; Jin, Xiu-liang; Zhang, Jing-cheng; Song, Xiao-yu

    2013-09-01

    Considering the great relationships between shortwave infrared (SWIR) and leaf area index (LAI), innovative indices based on water vegetation indices and visible-infrared vegetation indices were presented. In the present work, PROSAIL model was used to study the saturation sensitivity of new vegetation indices to LAI. The estimate models about LAI of winter wheat were built on the basis of the experiment data in 2009 acting as train sample and their precisions were evaluated and tested on the basis of the experiment data in 2008. Ten visible-infrared vegetation indices and five water vegetation indices were used to construct new indices. The result showed that newly developed indices have significant relationships with LAI by numerical simulations and in-situ measurements. In particular, by implementing modified standardized LAI Determining Index (sLAIDI *), all new indices were neither sensitive to water variations nor affected by saturation at high LAI levels. The evaluation models could improve prediction accuracy and have well reliability for LAI retrieval. The result indicated that visible-infrared vegetation indices combined with water index have greater advantage for LAI estimation.

  2. An Airborne Conical Scanning Millimeter-Wave Imaging Radiometer (CoSMIR)

    NASA Technical Reports Server (NTRS)

    Piepmeier, J.; Racette, P.; Wang, J.; Crites, A.; Doiron, T.; Engler, C.; Lecha, J.; Powers, M.; Simon, E.; Triesky, M.; Krebs, Carolyn A. (Technical Monitor)

    2001-01-01

    An airborne Conical Scanning Millimeter-wave Imaging Radiometer (CoSMIR) for high-altitude observations from the NASA Research Aircraft (ER-2) is discussed. The primary application of the CoSMIR is water vapor profile remote sensing. Four radiometers operating at 50 (three channels), 92, 150, and 183 (three channels) GHz provide spectral coverage identical to nine of the Special Sensor Microwave Imager/Sounder (SSMIS) high-frequency channels. Constant polarization-basis conical and cross-track scanning capabilities are achieved using an elevation-under-azimuth two-axis gimbals.

  3. Overview of Austrian Airborne Imaging Spectrometer (AIS) programme and first results

    NASA Technical Reports Server (NTRS)

    Banninger, C.

    1987-01-01

    Airborne Imaging Spectrometer (AIS) data collected from eight test areas in Austria were evaluated for their usefulness in forest damage assessment, geobotany, alpine vegetation mapping, and land use classification. Difficulties encountered in installing the SPAM spectral analysis software for use on the image display system and the necessity to adapt existing programs for this task impeded and delayed the analysis of the AIS data. Spectral reflectance curves obtained from a geobotanical test site show a marked increase in reflectance across most of the measured spectrum for metal stressed spruce trees compared with nonstressed spruce trees.

  4. Tomographic Imaging of a Forested Area By Airborne Multi-Baseline P-Band SAR.

    PubMed

    Frey, Othmar; Morsdorf, Felix; Meier, Erich

    2008-09-24

    In recent years, various attempts have been undertaken to obtain information about the structure of forested areas from multi-baseline synthetic aperture radar data. Tomographic processing of such data has been demonstrated for airborne L-band data but the quality of the focused tomographic images is limited by several factors. In particular, the common Fourierbased focusing methods are susceptible to irregular and sparse sampling, two problems, that are unavoidable in case of multi-pass, multi-baseline SAR data acquired by an airborne system. In this paper, a tomographic focusing method based on the time-domain back-projection algorithm is proposed, which maintains the geometric relationship between the original sensor positions and the imaged target and is therefore able to cope with irregular sampling without introducing any approximations with respect to the geometry. The tomographic focusing quality is assessed by analysing the impulse response of simulated point targets and an in-scene corner reflector. And, in particular, several tomographic slices of a volume representing a forested area are given. The respective P-band tomographic data set consisting of eleven flight tracks has been acquired by the airborne E-SAR sensor of the German Aerospace Center (DLR).

  5. Tomographic Imaging of a Forested Area By Airborne Multi-Baseline P-Band SAR

    PubMed Central

    Frey, Othmar; Morsdorf, Felix; Meier, Erich

    2008-01-01

    In recent years, various attempts have been undertaken to obtain information about the structure of forested areas from multi-baseline synthetic aperture radar data. Tomographic processing of such data has been demonstrated for airborne L-band data but the quality of the focused tomographic images is limited by several factors. In particular, the common Fourier-based focusing methods are susceptible to irregular and sparse sampling, two problems, that are unavoidable in case of multi-pass, multi-baseline SAR data acquired by an airborne system. In this paper, a tomographic focusing method based on the time-domain back-projection algorithm is proposed, which maintains the geometric relationship between the original sensor positions and the imaged target and is therefore able to cope with irregular sampling without introducing any approximations with respect to the geometry. The tomographic focusing quality is assessed by analysing the impulse response of simulated point targets and an in-scene corner reflector. And, in particular, several tomographic slices of a volume representing a forested area are given. The respective P-band tomographic data set consisting of eleven flight tracks has been acquired by the airborne E-SAR sensor of the German Aerospace Center (DLR). PMID:27873847

  6. Geodetic imaging with airborne LiDAR: the Earth's surface revealed.

    PubMed

    Glennie, C L; Carter, W E; Shrestha, R L; Dietrich, W E

    2013-08-01

    The past decade has seen an explosive increase in the number of peer reviewed papers reporting new scientific findings in geomorphology (including fans, channels, floodplains and landscape evolution), geologic mapping, tectonics and faulting, coastal processes, lava flows, hydrology (especially snow and runoff routing), glaciers and geo-archaeology. A common genesis of such findings is often newly available decimeter resolution 'bare Earth' geodetic images, derived from airborne laser swath mapping, a.k.a. airborne LiDAR, observations. In this paper we trace nearly a half century of advances in geodetic science made possible by space age technology, such as the invention of short-pulse-length high-pulse-rate lasers, solid state inertial measurement units, chip-based high speed electronics and the GPS satellite navigation system, that today make it possible to map hundreds of square kilometers of terrain in hours, even in areas covered with dense vegetation or shallow water. To illustrate the impact of the LiDAR observations we present examples of geodetic images that are not only stunning to the eye, but help researchers to develop quantitative models explaining how terrain evolved to its present form, and how it will likely change with time. Airborne LiDAR technology continues to develop quickly, promising ever more scientific discoveries in the years ahead.

  7. Airborne Hyperspectral Infrared Imaging Survey of the Southern San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Lynch, D. K.; Tratt, D. M.; Buckland, K. N.; Johnson, P. D.

    2014-12-01

    The San Andreas Fault (SAF) between Desert Hot Springs and Bombay Beach has been surveyed with Mako, an airborne hyperspectral imager operating across the wavelength range 7.6-13.2 μm in the thermal-infrared (TIR) spectral region. The data were acquired with a 4-km swath width centered on the SAF, and many tectonic features are recorded in the imagery. Spectral analysis using diagnostic features of minerals can identify rocks, soils and vegetation. Mako imagery can also locate rupture zones and measure slip distances. Designed and built by The Aerospace Corporation, the innovative and highly capable airborne imaging spectrometer used for this work enables low-noise performance (NEΔT ≲ 0.1 K @ 10 μm) at small pixel IFOV (0.55 mrad) and high frame rates, making possible an area-coverage rate of 20 km2 per minute with 2-m ground resolution from 12,500 ft (3.8 km) above-ground altitude. Since its commissioning in 2010, Mako has been used in numerous studies involving other earthquake fault systems (Hector Mine, S. Bristol Mts.), mapping of surface geology, geothermal sources (fumaroles near the Salton Sea), urban surveys, and the detection, quantification, and tracking of natural and anthropogenic gaseous emission plumes. Mako is available for airborne field studies and new applications are of particular interest. It can be flown at any altitude below 20,000 ft to achieve the desired GSD.

  8. Geodetic imaging with airborne LiDAR: the Earth's surface revealed

    NASA Astrophysics Data System (ADS)

    Glennie, C. L.; Carter, W. E.; Shrestha, R. L.; Dietrich, W. E.

    2013-08-01

    The past decade has seen an explosive increase in the number of peer reviewed papers reporting new scientific findings in geomorphology (including fans, channels, floodplains and landscape evolution), geologic mapping, tectonics and faulting, coastal processes, lava flows, hydrology (especially snow and runoff routing), glaciers and geo-archaeology. A common genesis of such findings is often newly available decimeter resolution ‘bare Earth’ geodetic images, derived from airborne laser swath mapping, a.k.a. airborne LiDAR, observations. In this paper we trace nearly a half century of advances in geodetic science made possible by space age technology, such as the invention of short-pulse-length high-pulse-rate lasers, solid state inertial measurement units, chip-based high speed electronics and the GPS satellite navigation system, that today make it possible to map hundreds of square kilometers of terrain in hours, even in areas covered with dense vegetation or shallow water. To illustrate the impact of the LiDAR observations we present examples of geodetic images that are not only stunning to the eye, but help researchers to develop quantitative models explaining how terrain evolved to its present form, and how it will likely change with time. Airborne LiDAR technology continues to develop quickly, promising ever more scientific discoveries in the years ahead.

  9. End-to-end simulation of the image stability for the airborne telescope SOFIA

    NASA Astrophysics Data System (ADS)

    Schoenhoff, Ulrich; Eisentraeger, Peter; Wandner, Karl; Kaercher, Hans J.; Nordmann, Rainer

    2000-06-01

    To provide astronomers access to infrared wavelength unavailable from the ground the airborne telescope SOFIA is in development. This paper focuses on the image stability of the telescope, its modeling and simulation. The operation of the telescope under the harsh environmental conditions in the aircraft makes the prediction of the image stability during the design process necessary. For this purpose an integrated mathematical simulation model, which includes the optics, the structural dynamics and the control loops has been constructed. Because of the high relevance of the structural dynamics for image stability and control design, special attention is paid to the import and reduction of the finite element model of the telescopes mechanical structure. Different control approaches are considered for the attitude control and the compensation of the impact of the structural flexibility on the image motion. Additionally the secondary mirror servo-mechanism is utilized to optimize the image stability. Simulation results are shown.

  10. Group sparsity based airborne wide angle SAR imaging

    NASA Astrophysics Data System (ADS)

    Wei, Zhonghao; Zhang, Bingchen; Bi, Hui; Lin, Yun; Wu, Yirong

    2016-10-01

    In this paper, we develop a group sparsity based wide angle synthetic aperture radar (WASAR) imaging model and propose a novel algorithm called backprojection based group complex approximate message passing (GCAMP-BP) to recover the anisotropic scene. Compare to conventional backprojection based complex approximate message passing (CAMP-BP) algorithm for the recovery of isotropic scene, the proposed method accommodates aspect dependent scattering behavior better and can produce better imagery. Simulated and experimental results are presented to demonstrate the validity of the proposed algorithm.

  11. ICARE-HS: atmospheric correction of airborne hyperspectral urban images using 3D information

    NASA Astrophysics Data System (ADS)

    Ceamanos, Xavier; Briottet, Xavier; Roussel, Guillaume; Gilardy, Hugo

    2016-10-01

    The algorithm ICARE-HS (Inversion Code for urban Areas Reflectance Extraction using HyperSpectral imagery) is presented in this paper. ICARE-HS processes airborne hyperspectral images for atmospheric compensation taking into account the strong relief of urban areas. A digital surface model is used to provide the 3D information, which is key to simulating relief-related effects such as shadow casting, multiple reflections between objects and variable illumination depending on local solid angle of view of the sky. Some of these effects are modeled using ray tracing techniques. ICARE-HS is applied to airborne hyperspectral data of the city center of Toulouse, which are also processed by a standard atmospheric correction method for comparison.

  12. Disaster phenomena of Wenchuan earthquake in high resolution airborne synthetic aperture radar images

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Hong; Wu, Fan; Zhang, Bo; Tang, Yixian; Wu, Hongan; Wen, Xiaoyang; Yan, Dongmei

    2009-05-01

    The devastating Wenchuan Earthquake occurred in Sichuan Province, Southwestern China, with a magnitude of 8.0 on May 12, 2008. Most buildings along the seismic zone were ruined, resulting in infrastructure damage to factories, traffic facilities and power supplies. The earthquake also triggered geological disasters, such as landslides, debris flow, landslide lakes, etc. During the rescue campaign the remote sensing aircrafts of the Chinese Academy of Sciences (CAS), equipped with synthetic aperture radar (SAR) and optical sensors, flew over the disaster area and acquired many high resolution airborne SAR images. We first describe the basic characteristics of SAR imagery. The SAR images of buildings are simulated, and the backscattering mechanism of the buildings is analyzed. Finally, the various disaster phenomena are described and analyzed in the high resolution airborne SAR images. It is shown that certain phenomena of ruins could be identified clearly in high resolution SAR images in proper imaging conditions, while the functional destruction is quite difficult to detect. With calibrated data, the polarmetric SAR interferometry could be used to analyze the scattering mechanism and 3D distribution of the scattering center, which are redound to earthquake damage assessment.

  13. Calibration, Sensor Model Improvements and Uncertainty Budget of the Airborne Imaging Spectrometer APEX

    NASA Astrophysics Data System (ADS)

    Hueni, A.

    2015-12-01

    ESA's Airborne Imaging Spectrometer APEX (Airborne Prism Experiment) was developed under the PRODEX (PROgramme de Développement d'EXpériences scientifiques) program by a Swiss-Belgian consortium and entered its operational phase at the end of 2010 (Schaepman et al., 2015). Work on the sensor model has been carried out extensively within the framework of European Metrology Research Program as part of the Metrology for Earth Observation and Climate (MetEOC and MetEOC2). The focus has been to improve laboratory calibration procedures in order to reduce uncertainties, to establish a laboratory uncertainty budget and to upgrade the sensor model to compensate for sensor specific biases. The updated sensor model relies largely on data collected during dedicated characterisation experiments in the APEX calibration home base but includes airborne data as well where the simulation of environmental conditions in the given laboratory setup was not feasible. The additions to the model deal with artefacts caused by environmental changes and electronic features, namely the impact of ambient air pressure changes on the radiometry in combination with dichroic coatings, influences of external air temperatures and consequently instrument baffle temperatures on the radiometry, and electronic anomalies causing radiometric errors in the four shortwave infrared detector readout blocks. Many of these resolved issues might be expected to be present in other imaging spectrometers to some degree or in some variation. Consequently, the work clearly shows the difficulties of extending a laboratory-based uncertainty to data collected under in-flight conditions. The results are hence not only of interest to the calibration scientist but also to the spectroscopy end user, in particular when commercial sensor systems are used for data collection and relevant sensor characteristic information tends to be sparse. Schaepman, et al, 2015. Advanced radiometry measurements and Earth science

  14. Verification of 3d Building Models Using Mutual Information in Airborne Oblique Images

    NASA Astrophysics Data System (ADS)

    Nyaruhuma, A. P.; Gerke, M.; Vosselman, G.

    2012-07-01

    This paper describes a method for automatic verification of 3D building models using airborne oblique images. The problem being tackled is identifying buildings that are demolished or changed since the models were constructed or identifying wrong models using the images. The models verified are of CityGML LOD2 or higher since their edges are expected to coincide with actual building edges. The verification approach is based on information theory. Corresponding variables between building models and oblique images are used for deriving mutual information for individual edges, faces or whole buildings, and combined for all perspective images available for the building. The wireframe model edges are projected to images and verified using low level image features - the image pixel gradient directions. A building part is only checked against images in which it may be visible. The method has been tested with models constructed using laser points against Pictometry images that are available for most cities of Europe and may be publically viewed in the so called Birds Eye view of the Microsoft Bing Maps. Results are that nearly all buildings are correctly categorised as existing or demolished. Because we now concentrate only on roofs we also used the method to test and compare results from nadir images. This comparison made clear that especially height errors in models can be more reliably detected in oblique images because of the tilted view. Besides overall building verification, results per individual edges can be used for improving the 3D building models.

  15. Estimation of the Atmospheric Refraction Effect in Airborne Images Using Radiosonde Data

    NASA Astrophysics Data System (ADS)

    Beisl, U.; Tempelmann, U.

    2016-06-01

    The influence of the atmospheric refraction on the geometric accuracy of airborne photogrammetric images was already considered in the days of analogue photography. The effect is a function of the varying refractive index on the path from the ground to the image sensor. Therefore the effect depends on the height over ground, the view zenith angle and the atmospheric constituents. It is leading to a gradual increase of the scale towards the borders of the image, i.e. a magnification takes place. Textbooks list a shift of several pixels at the borders of standard wide angle images. As it was the necessity of that time when images could only be acquired at good weather conditions, the effect was calculated using standard atmospheres for good atmospheric conditions, leading to simple empirical formulas. Often the pixel shift caused by refraction was approximated as linear with height and compensated by an adjustment of the focal length. With the advent of sensitive digital cameras, the image dynamics allows for capturing images at adverse weather conditions. So the influence of the atmospheric profiles on the geometric accuracy of the images has to be investigated and the validity of the standard correction formulas has to be checked. This paper compares the results from the standard formulas by Saastamoinen with the results calculated from a broad selection of atmospheres obtained from radiosonde profile data. The geometric deviation is calculated by numerical integration of the refractive index as a function of the height using the refractive index formula by Ciddor. It turns out that the effect of different atmospheric profiles (including inversion situations) is generally small compared to the overall effect except at low camera heights. But there the absolute deviation is small. Since the necessary atmospheric profile data are often not readily available for airborne images a formula proposed by Saastamoinen is verified that uses only camera height, the pressure

  16. Advances in airborne remote sensing of ecosystem processes and properties: toward high-quality measurement on a global scale

    NASA Astrophysics Data System (ADS)

    Kampe, Thomas U.; Asner, Gregory P.; Green, Robert O.; Eastwood, Michael; Johnson, Brian R.; Kuester, Michele

    2010-08-01

    Airborne remote sensing provides the opportunity to quantitatively measure biochemical and biophysical properties of vegetation at regional scales, therefore complementing surface and satellite measurements. Next-generation programs are poised to advance ecological research and monitoring in the United States, the tropical regions of the globe, and to support future satellite missions. The Carnegie Institution will integrate a next generation imaging spectrometer with a waveform LiDAR into the Airborne Taxonomic Mapping System (AToMS) to identify the chemical, structural and taxonomic makeup of tropical forests at an unprecedented scale and detail. The NEON Airborne Observation Platform (AOP) is under development with similar technologies with a goal to provide long-term measurements of ecosystems across North America. The NASA Next Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRISng) is also under development to address the science measurement requirements for both the NASA Earth Science Research and Analysis Program and the spaceborne NASA HyspIRI Mission. Carnegie AToMS, NEON AOP, and AVIRISng are being built by the Jet Propulsion Laboratory as a suite of instruments. We discuss the synergy between these programs and anticipated benefits to ecologists and decision-makers.

  17. Kalman Filter Based Feature Analysis for Tracking People from Airborne Images

    NASA Astrophysics Data System (ADS)

    Sirmacek, B.; Reinartz, P.

    2011-09-01

    Recently, analysis of man events in real-time using computer vision techniques became a very important research field. Especially, understanding motion of people can be helpful to prevent unpleasant conditions. Understanding behavioral dynamics of people can also help to estimate future states of underground passages, shopping center like public entrances, or streets. In order to bring an automated solution to this problem, we propose a novel approach using airborne image sequences. Although airborne image resolutions are not enough to see each person in detail, we can still notice a change of color components in the place where a person exists. Therefore, we propose a color feature detection based probabilistic framework in order to detect people automatically. Extracted local features behave as observations of the probability density function (pdf) of the people locations to be estimated. Using an adaptive kernel density estimation method, we estimate the corresponding pdf. First, we use estimated pdf to detect boundaries of dense crowds. After that, using background information of dense crowds and previously extracted local features, we detect other people in non-crowd regions automatically for each image in the sequence. We benefit from Kalman filtering to track motion of detected people. To test our algorithm, we use a stadium entrance image data set taken from airborne camera system. Our experimental results indicate possible usage of the algorithm in real-life man events. We believe that the proposed approach can also provide crucial information to police departments and crisis management teams to achieve more detailed observations of people in large open area events to prevent possible accidents or unpleasant conditions.

  18. Multifrequency and multipolarization radar scatterometry of sand dunes and comparison with spaceborne and airborne radar images

    NASA Technical Reports Server (NTRS)

    Blom, Ronald; Elachi, Charles

    1987-01-01

    Airborne radar scatterometer data on sand dunes, acquired at multiple frequencies and polarizations, are reported. Radar backscatter from sand dunes is very sensitive to the imaging geometry. At small incidence angles the radar return is mainly due to quasi-specular reflection from dune slopes favorably oriented toward the radar. A peak return usually occurs at the incidence angle equal to the angle of repose for the dunes. The peak angle is the same at all frequencies as computed from specular reflection theory. At larger angles the return is significantly weaker. The scatterometer measurements verified observations made with airborne and spaceborne radar images acquired over a number of dune fields in the U.S., central Africa, and the Arabian peninsula. The imaging geometry constraints indicate that possible dunes on other planets, such as Venus, will probably not be detected in radar images unless the incidence angle is less than the angles of repose of such dunes and the radar look direction is approximately orthogonal to the dune trends.

  19. Preliminary assessment of airborne imaging spectrometer and airborne thematic mapper data acquired for forest decline areas in the Federal Republic of Germany

    NASA Technical Reports Server (NTRS)

    Herrmann, Karin; Ammer, Ulrich; Rock, Barrett; Paley, Helen N.

    1988-01-01

    This study evaluated the utility of data collected by the high-spectral resolution airborne imaging spectrometer (AIS-2, tree mode, spectral range 0.8-2.2 microns) and the broad-band Daedalus airborne thematic mapper (ATM, spectral range 0.42-13.0 micron) in assessing forest decline damage at a predominantly Scotch pine forest in the FRG. Analysis of spectral radiance values from the ATM and raw digital number values from AIS-2 showed that higher reflectance in the near infrared was characteristic of high damage (heavy chlorosis, limited needle loss) in Scotch pine canopies. A classification image of a portion of the AIS-2 flight line agreed very well with a damage assessment map produced by standard aerial photointerpretation techniques.

  20. Measuring cloud thermodynamic phase with shortwave infrared imaging spectroscopy

    SciTech Connect

    Thompson, David R.; McCubbin, Ian; Gao, Bo Cai; Green, Robert O.; Matthews, Alyssa A.; Mei, Fan; Meyer, Kerry G.; Platnick, Steven; Schmid, Beat; Tomlinson, Jason; Wilcox, Eric

    2016-08-12

    Shortwave Infrared imaging spectroscopy enables accurate remote mapping of cloud thermodynamic phase at high spatial resolution. We describe a measurement strategy to exploit signatures of liquid and ice absorption in cloud top apparent reflectance spectra from 1.4 to 1.8 μm. This signal is generally insensitive to confounding factors such as solar angles, view angles, and surface albedo. We first evaluate the approach in simulation and then apply it to airborne data acquired in the Calwater-2/ACAPEX campaign of Winter 2015. Here NASA’s “Classic” Airborne Visible Infrared Imaging Spectrometer (AVIRIS-C) remotely observed diverse cloud formations while the U.S. Department of Energy ARM Aerial Facility G-1 aircraft measured cloud integral and microphysical properties in situ. Finally, the coincident measurements demonstrate good separation of the thermodynamic phases for relatively homogeneous clouds.

  1. Measuring cloud thermodynamic phase with shortwave infrared imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Thompson, David R.; McCubbin, Ian; Gao, Bo Cai; Green, Robert O.; Matthews, Alyssa A.; Mei, Fan; Meyer, Kerry G.; Platnick, Steven; Schmid, Beat; Tomlinson, Jason; Wilcox, Eric

    2016-08-01

    Shortwave Infrared imaging spectroscopy enables accurate remote mapping of cloud thermodynamic phase at high spatial resolution. We describe a measurement strategy to exploit signatures of liquid and ice absorption in cloud top apparent reflectance spectra from 1.4 to 1.8 μm. This signal is generally insensitive to confounding factors such as solar angles, view angles, and surface albedo. We first evaluate the approach in simulation and then apply it to airborne data acquired in the Calwater-2/ACAPEX campaign of Winter 2015. Here NASA's "Classic" Airborne Visible Infrared Imaging Spectrometer (AVIRIS-C) remotely observed diverse cloud formations while the U.S. Department of Energy ARM Aerial Facility G-1 aircraft measured cloud integral and microphysical properties in situ. The coincident measurements demonstrate good separation of the thermodynamic phases for relatively homogeneous clouds.

  2. Fusion of airborne laserscanning point clouds and images for supervised and unsupervised scene classification

    NASA Astrophysics Data System (ADS)

    Gerke, Markus; Xiao, Jing

    2014-01-01

    Automatic urban object detection from airborne remote sensing data is essential to process and efficiently interpret the vast amount of airborne imagery and Laserscanning (ALS) data available today. This paper combines ALS data and airborne imagery to exploit both: the good geometric quality of ALS and the spectral image information to detect the four classes buildings, trees, vegetated ground and sealed ground. A new segmentation approach is introduced which also makes use of geometric and spectral data during classification entity definition. Geometric, textural, low level and mid level image features are assigned to laser points which are quantified into voxels. The segment information is transferred to the voxels and those clusters of voxels form the entity to be classified. Two classification strategies are pursued: a supervised method, using Random Trees and an unsupervised approach, embedded in a Markov Random Field framework and using graph-cuts for energy optimization. A further contribution of this paper concerns the image-based point densification for building roofs which aims to mitigate the accuracy problems related to large ALS point spacing. Results for the ISPRS benchmark test data show that to rely on color information to separate vegetation from non-vegetation areas does mostly lead to good results, but in particular in shadow areas a confusion between classes might occur. The unsupervised classification strategy is especially sensitive in this respect. As far as the point cloud densification is concerned, we observe similar sensitivity with respect to color which makes some planes to be missed out, or false detections still remain. For planes where the densification is successful we see the expected enhancement of the outline.

  3. A linear mixture analysis-based compression for hyperspectral image analysis

    SciTech Connect

    C. I. Chang; I. W. Ginsberg

    2000-06-30

    In this paper, the authors present a fully constrained least squares linear spectral mixture analysis-based compression technique for hyperspectral image analysis, particularly, target detection and classification. Unlike most compression techniques that directly deal with image gray levels, the proposed compression approach generates the abundance fractional images of potential targets present in an image scene and then encodes these fractional images so as to achieve data compression. Since the vital information used for image analysis is generally preserved and retained in the abundance fractional images, the loss of information may have very little impact on image analysis. In some occasions, it even improves analysis performance. Airborne visible infrared imaging spectrometer (AVIRIS) data experiments demonstrate that it can effectively detect and classify targets while achieving very high compression ratios.

  4. Design of an Airborne Portable Remote Imaging Spectrometer (PRISM) for the Coastal Ocean

    NASA Technical Reports Server (NTRS)

    Mouroulis, P.; vanGorp, B.; Green, R. O.; Cohen, D.; Wilson, D.; Randall, D.; Rodriguez, J.; Polanco, O.; Dierssen, H.; Balasubramanian, K.; Vargas, R.; Hein, R.; Sobel, H.; Eastwood, M.

    2010-01-01

    PRISM is a pushbroom imaging spectrometer currently under development at the Jet Propulsion Laboratory, intended to address the needs of airborne coastal ocean science research. We describe here the instrument design and the technologies that enable it to achieve its distinguishing characteristics. PRISM covers the 350-1050 nm range with a 3.1 nm sampling and a 33(deg) field of view. The design provides for high signal to noise ratio, high uniformity of response, and low polarization sensitivity. The complete instrument also incorporates two additional wavelength bands at 1240 and 1610 nm in a spot radiometer configuration to aid with atmospheric correction.

  5. A multi-scale registration of urban aerial image with airborne lidar data

    NASA Astrophysics Data System (ADS)

    Huang, Shuo; Chen, Siying; Zhang, Yinchao; Guo, Pan; Chen, He

    2015-11-01

    This paper presented a multi-scale progressive registration method of airborne LiDAR data with aerial image. The cores of the proposed method lie in the coarse registration with road networks and the fine registration method using regularized building corners. During the two-stage registration, the exterior orientation parameters (EOP) are continually refined. By validation of the actual flight data of Dunhuang, the experimental result shows that the proposed method can obtain accurate results with low-precision initial EOP, also improve the automatic degree of registration.

  6. Analysis of airborne imaging spectrometer data for the Ruby Mountains, Montana, by use of absorption-band-depth images

    NASA Technical Reports Server (NTRS)

    Brickey, David W.; Crowley, James K.; Rowan, Lawrence C.

    1987-01-01

    Airborne Imaging Spectrometer-1 (AIS-1) data were obtained for an area of amphibolite grade metamorphic rocks that have moderate rangeland vegetation cover. Although rock exposures are sparse and patchy at this site, soils are visible through the vegetation and typically comprise 20 to 30 percent of the surface area. Channel averaged low band depth images for diagnostic soil rock absorption bands. Sets of three such images were combined to produce color composite band depth images. This relative simple approach did not require extensive calibration efforts and was effective for discerning a number of spectrally distinctive rocks and soils, including soils having high talc concentrations. The results show that the high spectral and spatial resolution of AIS-1 and future sensors hold considerable promise for mapping mineral variations in soil, even in moderately vegetated areas.

  7. Radiometric Normalization of Large Airborne Image Data Sets Acquired by Different Sensor Types

    NASA Astrophysics Data System (ADS)

    Gehrke, S.; Beshah, B. T.

    2016-06-01

    Generating seamless mosaics of aerial images is a particularly challenging task when the mosaic comprises a large number of im-ages, collected over longer periods of time and with different sensors under varying imaging conditions. Such large mosaics typically consist of very heterogeneous image data, both spatially (different terrain types and atmosphere) and temporally (unstable atmo-spheric properties and even changes in land coverage). We present a new radiometric normalization or, respectively, radiometric aerial triangulation approach that takes advantage of our knowledge about each sensor's properties. The current implementation supports medium and large format airborne imaging sensors of the Leica Geosystems family, namely the ADS line-scanner as well as DMC and RCD frame sensors. A hierarchical modelling - with parameters for the overall mosaic, the sensor type, different flight sessions, strips and individual images - allows for adaptation to each sensor's geometric and radiometric properties. Additional parameters at different hierarchy levels can compensate radiome-tric differences of various origins to compensate for shortcomings of the preceding radiometric sensor calibration as well as BRDF and atmospheric corrections. The final, relative normalization is based on radiometric tie points in overlapping images, absolute radiometric control points and image statistics. It is computed in a global least squares adjustment for the entire mosaic by altering each image's histogram using a location-dependent mathematical model. This model involves contrast and brightness corrections at radiometric fix points with bilinear interpolation for corrections in-between. The distribution of the radiometry fixes is adaptive to each image and generally increases with image size, hence enabling optimal local adaptation even for very long image strips as typi-cally captured by a line-scanner sensor. The normalization approach is implemented in HxMap software. It has been

  8. Validation of Rain Rate Retrievals for the Airborne Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Jacob, Maria; Salemirad, Matin; Jones, W. Linwood; Biswas, Sayak; Cecil, Daniel

    2015-01-01

    On board of the NASA's Global Hawk (AV1) aircraft there are two microwave, namely: the passive microwave Hurricane Imaging Radiometer (HIRAD), and the active microwave High-altitude Imaging Wind and Rain Airborne Profiler (HIWRAP). This paper presents results from an unplanned rain rate measurement validation opportunity that occurred in 2013, when the Global Hawk aircraft flew over an intense tropical squall-line that was simultaneously observed, by the Tampa NEXRAD meteorological radar. During this experiment, Global Hawk flying at an altitude of 18 km made 3 passes over the rapidly propagating thunderstorm, while the TAMPA NEXRAD perform volume scans on a 5-minute interval. NEXRAD 2D images of rain rate (mm/hr) were obtained at two altitudes (3 km & 6 km), which serve as surface truth for the HIRAD rain rate retrievals. In this paper, results are presented of the three-way inter-comparison of HIRAD Tb, HIWRAP dbZ and NEXRAD rain rate imagery.

  9. The use of airborne imaging spectrometer data to determine experimentally induced variation in coniferous canopy chemistry

    NASA Technical Reports Server (NTRS)

    Swanberg, Nancy A.; Matson, Pamela A.

    1987-01-01

    It was experimentally determined whether induced differences in forest canopy chemical composition can be detected using data from the Airborne Imaging Spectrometer (AIS). Treatments were applied to an even-aged forest of Douglas fir trees. Work to date has stressed wet chemical analysis of foilage samples and correction of AIS data. Plot treatments were successful in providing a range of foliar N2 concentrations. Much time was spent investigating and correcting problems with the raw AIS data. Initial problems with groups of drop out lines in the AIS data were traced to the tape recorder and the tape drive. Custom adjustment of the tape drive led to recovery of most missing lines. Remaining individual drop out lines were replaced using average of adjacent lines. Application of a notch filter to the Fourier transform of the image in each band satisfactorily removed vertical striping. The aspect ratio was corrected by resampling the image in the line direction using nearest neighbor interpolation.

  10. Remote classification from an airborne camera using image super-resolution.

    PubMed

    Woods, Matthew; Katsaggelos, Aggelos

    2017-02-01

    The image processing technique known as super-resolution (SR), which attempts to increase the effective pixel sampling density of a digital imager, has gained rapid popularity over the last decade. The majority of literature focuses on its ability to provide results that are visually pleasing to a human observer. In this paper, we instead examine the ability of SR to improve the resolution-critical capability of an imaging system to perform a classification task from a remote location, specifically from an airborne camera. In order to focus the scope of the study, we address and quantify results for the narrow case of text classification. However, we expect the results generalize to a large set of related, remote classification tasks. We generate theoretical results through simulation, which are corroborated by experiments with a camera mounted on a DJI Phantom 3 quadcopter.

  11. Image-Based Airborne Sensors: A Combined Approach for Spectral Signatures Classification through Deterministic Simulated Annealing

    PubMed Central

    Guijarro, María; Pajares, Gonzalo; Herrera, P. Javier

    2009-01-01

    The increasing technology of high-resolution image airborne sensors, including those on board Unmanned Aerial Vehicles, demands automatic solutions for processing, either on-line or off-line, the huge amountds of image data sensed during the flights. The classification of natural spectral signatures in images is one potential application. The actual tendency in classification is oriented towards the combination of simple classifiers. In this paper we propose a combined strategy based on the Deterministic Simulated Annealing (DSA) framework. The simple classifiers used are the well tested supervised parametric Bayesian estimator and the Fuzzy Clustering. The DSA is an optimization approach, which minimizes an energy function. The main contribution of DSA is its ability to avoid local minima during the optimization process thanks to the annealing scheme. It outperforms simple classifiers used for the combination and some combined strategies, including a scheme based on the fuzzy cognitive maps and an optimization approach based on the Hopfield neural network paradigm. PMID:22399989

  12. Visible infrared spin-scan radiometers (VISSR) for the Geostationary Operational Environmental Satellite (GOES) B and C application

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Two visible infrared spin scan radiometer (VISSR) instruments provided for the Geostationary Operational Environmental Satellite B and C (GOES B and C) spacecrafts are described. The instruments are identical to those supplied previously are summarized. A significant number of changes primarily involving corrections of drawing errors and omissions were also performed. All electrical changes were breadboarded (where complexity required this), were incorporated into the test module, and subjected to verification of proper operation throughout fall instrument temperature range. Evaluation of the changes also included design operating safety margins to account for component variations and life.

  13. Visible-infrared remote-sensing model and applications for ocean waters. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lee, Zhongping

    1994-01-01

    Remote sensing has become important in the ocean sciences, especially for research involving large spatial scales. To estimate the in-water constituents through remote sensing, whether carried out by satellite or airplane, the signal emitted from beneath the sea surface, the so called water-leaving radiance (L(w)), is of prime importance. The magnitude of L(w) depends on two terms: one is the intensity of the solar input, and the other is the reflectance of the in-water constituents. The ratio of the water-leaving radiance to the downwelling irradiance (E(d)) above the sear surface (remote-sensing reflectance, R(sub rs)) is independent of the intensity of the irradiance input, and is largely a function of the optical properties of the in-water constituents. In this work, a model is developed to interpret r(sub rs) for ocean water in the visible-infrared range. In addition to terms for the radiance scattered from molecules and particles, the model includes terms that describe contributions from bottom reflectance, fluorescence of gelbstoff or colored dissolved organic matter (CDOM), and water Raman scattering. By using this model, the measured R(sub rs) of waters from the West Florida Shelf to the Mississippi River plume, which covered a (concentration of chlorophyll a) range of 0.07 - 50 mg/cu m, were well interpreted. The average percentage difference (a.p.d.) between the measured and modeled R(sub rs) is 3.4%, and, for the shallow waters, the model-required water depth is within 10% of the chart depth. Simple mathematical simulations for the phytoplankton pigment absorption coefficient (a(sub theta)) are suggested for using the R(sub rs) model. The inverse problem of R(sub rs), which is to analytically derive the in-water constituents from R(sub rs) data alone, can be solved using the a(sub theta) functions without prior knowledge of the in-water optical properties. More importantly, this method avoids problems associated with a need for knowledge of the shape

  14. [Winter wheat growth spatial variation study based on temporal airborne high-spectrum images].

    PubMed

    Song, Xiao-yu; Wang, Ji-hua; Yan, Guang-jian; Huang, Wen-jiang; Liu, Liang-yun

    2010-07-01

    Precision agriculture technology is defined as an information-and technology-based agriculture management system to identify, analyze and manage crop spatial and temporal variation within fields for optimum profitability, sustainability and protection of the environment. In the present study, push-broom hyperspectral image sensor (PHI) image was used to investigate the spatial variance of winter wheat growth. The variable-rate fertilization contrast experiment was carried out on the National Experimental Station for Precision Agriculture of China during 2001-2002. Three airborne PHI images were acquired during the wheat growth season of 2002. Then contrast analysis about the wheat growth spatial variation was applied to the variable-rate fertilization area and uniformity fertilization area. The results showed that the spectral reflectance standard deviation increased significantly in red edge and short infrared wave band for all images. The wheat milky stage spectral reflectance has the maximum standard deviation in short infrared wave band, then the wheat jointing stage and wheat filling stage. Then six spectrum parameters that sensitive to wheat growth variation were defined and analyzed. The results indicate that parameters spatial variation coefficient for variable-rate experiment area was higher than that of contrast area in jointing stage. However, it decreased after the variable-rate fertilization application. The parameters spatial variation coefficient for variable-rate area was lower than that of contrast area in filling and milking stages. In addition, the yield spatial variation coefficient for variable-rate area was lower than that of contrast area. However, the yield mean value for variable-rate area was lower than that of contrast area. The study showed that the crop growth spatial variance information can be acquired through airborne remote sensing images timely and exactly. Remote sensing technology has provided powerful analytical tools for

  15. Automated Data Production For A Novel Airborne Multiangle Spectropolarimetric Imager (AIRMSPI)

    NASA Technical Reports Server (NTRS)

    Jovanovic, V .M.; Bull, M.; Diner, D. J.; Geier, S.; Rheingans, B.

    2012-01-01

    A novel polarimetric imaging technique making use of rapid retardance modulation has been developed by JPL as a part of NASA's Instrument Incubator Program. It has been built into the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) under NASA's Airborne Instrument Technology Transition Program, and is aimed primarily at remote sensing of the amounts and microphysical properties of aerosols and clouds. AirMSPI includes an 8-band (355, 380, 445, 470, 555, 660, 865, 935 nm) pushbroom camera that measures polarization in a subset of the bands (470, 660, and 865 nm). The camera is mounted on a gimbal and acquires imagery in a configurable set of along-track viewing angles ranging between +67 deg and -67 deg relative to nadir. As a result, near simultaneous multi-angle, multi-spectral, and polarimetric measurements of the targeted areas at a spatial resolution ranging from 7 m to 20 m (depending on the viewing angle) can be derived. An automated data production system is being built to support high data acquisition rate in concert with co-registration and orthorectified mapping requirements. To date, a number of successful engineering checkout flights were conducted in October 2010, August-September 2011, and January 2012. Data products resulting from these flights will be presented.

  16. Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band-depth images

    USGS Publications Warehouse

    Crowley, J.K.; Brickey, D.W.; Rowan, L.C.

    1989-01-01

    Airborne imaging spectrometer data collected in the near-infrared (1.2-2.4 ??m) wavelength range were used to study the spectral expression of metamorphic minerals and rocks in the Ruby Mountains of southwestern Montana. The data were analyzed by using a new data enhancement procedure-the construction of relative absorption band-depth (RBD) images. RBD images, like bandratio images, are designed to detect diagnostic mineral absorption features, while minimizing reflectance variations related to topographic slope and albedo differences. To produce an RBD image, several data channels near an absorption band shoulder are summed and then divided by the sum of several channels located near the band minimum. RBD images are both highly specific and sensitive to the presence of particular mineral absorption features. Further, the technique does not distort or subdue spectral features as sometimes occurs when using other data normalization methods. By using RBD images, a number of rock and soil units were distinguished in the Ruby Mountains including weathered quartz - feldspar pegmatites, marbles of several compositions, and soils developed over poorly exposed mica schists. The RBD technique is especially well suited for detecting weak near-infrared spectral features produced by soils, which may permit improved mapping of subtle lithologic and structural details in semiarid terrains. The observation of soils rich in talc, an important industrial commodity in the study area, also indicates that RBD images may be useful for mineral exploration. ?? 1989.

  17. Validation of Rain Rate Retrievals for the Airborne Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Jacob, Maria; Salemirad, Matin; Jones, Linwood; Biswas, Sayak; Cecil, Daniel

    2015-01-01

    NASA's Global Hawk aircraft (AV1)has two microwave sensors: the passive Hurricane Imaging Radiometer (HIRAD), and the active High-altitude Imaging Wind and Rain Airborne Profiler(HIWRAP). Results are presented for a rain measurement validation opportunity that occurred in 2013, when the AV1 flew over a tropical squall-line that was simultaneously observed by the Tampa NEXRAD radar. During this experiment, Global Hawk made 3 passes over the rapidly propagating thunderstorm, while the TAMPA NEXRAD performed volume scans every 5 minutes. In this poster, the three-way inter-comparison of HIRAD Tb (base temperature), HIWRAP dbZ (decibels relative to equivalent reflectivity) and NEXRAD rain rate imagery are presented. Also, observed HIRAD Tbs are compared with theoretical radiative transfer model results using HIWRAP Rain Rates.

  18. Detection of hydrothermal alteration at Virginia City, Nevada using Airborne Imaging Spectrometry (AIS)

    NASA Technical Reports Server (NTRS)

    Hutsinpiller, A.; Taranik, J. V.

    1986-01-01

    Airborne Imaging Spectrometer (AIS) data were collected over Virginia City, Nevada; an area of gold and silver mineralization with extensive surface exposures of altered volcanic rocks. The data were corrected for atmospheric effects by a flat-field method, and compared to library spectra of various alteration minerals using a spectral analysis program SPAM. Areas of strong clay alteration were identified on the AIS images that were mapped as kaolinitic, illitic, and sericitic alterations zones. Kaolinitic alteration is distinguishable in the 2.1 to 2.4 and 1.2 to 1.5 micrometer wavelength regions. Montmorillonite, illite, and sericite have absorption features similar to each other at 2.2 micrometer wavelength. Montnorillonite and illite also may be present in varying proportions within one Ground Instantaneous Field of View (GIFOV). In general AIS data is useful in identifying alteration zones that are associated with or lie above precious metal mineralization at Virginia City.

  19. A Combined Texture-principal Component Image Classification Technique For Landslide Identification Using Airborne Multispectral Imagery

    NASA Astrophysics Data System (ADS)

    Whitworth, M.; Giles, D.; Murphy, W.

    The Jurassic strata of the Cotswolds escarpment of southern central United Kingdom are associated with extensive mass movement activity, including mudslide systems, rotational and translational landslides. These mass movements can pose a significant engineering risk and have been the focus of research into the use of remote sensing techniques as a tool for landslide identification and delineation on clay slopes. The study has utilised a field site on the Cotswold escarpment above the village of Broad- way, Worcestershire, UK. Geomorphological investigation was initially undertaken at the site in order to establish ground control on landslides and other landforms present at the site. Subsequent to this, Airborne Thematic Mapper (ATM) imagery and colour stereo photography were acquired by the UK Natural Environment Research Coun- cil (NERC) for further analysis and interpretation. This paper describes the textu- ral enhancement of the airborne imagery undertaken using both mean euclidean dis- tance (MEUC) and grey level co-occurrence matrix entropy (GLCM) together with a combined texture-principal component based supervised image classification that was adopted as the method for landslide identification. The study highlights the importance of image texture for discriminating mass movements within multispectral imagery and demonstrates that by adopting a combined texture-principal component image classi- fication we have been able to achieve classification accuracy of 84 % with a Kappa statistic of 0.838 for landslide classes. This paper also highlights the potential prob- lems that can be encountered when using high-resolution multispectral imagery, such as the presence of dense variable woodland present within the image, and presents a solution using principal component analysis.

  20. Artificial intelligence for geologic mapping with imaging spectrometers

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.

    1993-01-01

    This project was a three year study at the Center for the Study of Earth from Space (CSES) within the Cooperative Institute for Research in Environmental Science (CIRES) at the University of Colorado, Boulder. The goal of this research was to develop an expert system to allow automated identification of geologic materials based on their spectral characteristics in imaging spectrometer data such as the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). This requirement was dictated by the volume of data produced by imaging spectrometers, which prohibits manual analysis. The research described is based on the development of automated techniques for analysis of imaging spectrometer data that emulate the analytical processes used by a human observer. The research tested the feasibility of such an approach, implemented an operational system, and tested the validity of the results for selected imaging spectrometer data sets.

  1. The Laser Vegetation Imaging Sensor (LVIS): An Airborne Laser Altimeter for Mapping Vegetation and Topography

    NASA Technical Reports Server (NTRS)

    Bryan, J.; Rabine, David L.

    1998-01-01

    The Laser Vegetation Imaging Sensor (LVIS) is an airborne laser altimeter designed to quickly and extensively map surface topography as well as the relative heights of other reflecting surfaces within the laser footprint. Since 1997, this instrument has primarily been used as the airborne simulator for the Vegetation Canopy Lidar (VCL) mission, a spaceborne mission designed to measure tree height, vertical structure and ground topography (including sub-canopy topography). LVIS is capable of operating from 500 m to 10 km above ground level with footprint sizes from 1 to 60 m. Laser footprints can be randomly spaced within the 7 degree telescope field-of-view, constrained only by the operating frequency of the ND:YAG Q-switched laser (500 Hz). A significant innovation of the LVIS altimeter is that all ranging, waveform recording, and range gating are performed using a single digitizer, clock base, and detector. A portion of the outgoing laser pulse is fiber-optically fed into the detector used to collect the return signal and this entire time history of the outgoing and return pulses is digitized at 500 Msamp/sec. The ground return is then located using software digital signal processing, even in the presence of visibly opaque clouds. The surface height distribution of all reflecting surfaces within the laser footprint can be determined, for example, tree height and ground elevation. To date, the LVIS system has been used to monitor topographic change at Long Valley caldera, CA, as part of NASA's Topography and Surface Change program, and to map tree structure and sub-canopy topography at the La Selva Biological Research Station in Costa Rica, as part of the pre-launch calibration activities for the VCL mission. We present results that show the laser altimeter consistently and accurately maps surface topography, including sub-canopy topography, and vegetation height and structure. These results confirm the measurement concept of VCL and highlight the benefits of

  2. NASA Goddards LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager

    NASA Technical Reports Server (NTRS)

    Cook, Bruce D.; Corp, Lawrence A.; Nelson, Ross F.; Middleton, Elizabeth M.; Morton, Douglas C.; McCorkel, Joel T.; Masek, Jeffrey G.; Ranson, Kenneth J.; Ly, Vuong; Montesano, Paul M.

    2013-01-01

    The combination of LiDAR and optical remotely sensed data provides unique information about ecosystem structure and function. Here, we describe the development, validation and application of a new airborne system that integrates commercial off the shelf LiDAR hyperspectral and thermal components in a compact, lightweight and portable system. Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager is a unique system that permits simultaneous measurements of vegetation structure, foliar spectra and surface temperatures at very high spatial resolution (approximately 1 m) on a wide range of airborne platforms. The complementary nature of LiDAR, optical and thermal data provide an analytical framework for the development of new algorithms to map plant species composition, plant functional types, biodiversity, biomass and carbon stocks, and plant growth. In addition, G-LiHT data enhance our ability to validate data from existing satellite missions and support NASA Earth Science research. G-LiHT's data processing and distribution system is designed to give scientists open access to both low- and high-level data products (http://gliht.gsfc.nasa.gov), which will stimulate the community development of synergistic data fusion algorithms. G-LiHT has been used to collect more than 6,500 km2 of data for NASA-sponsored studies across a broad range of ecoregions in the USA and Mexico. In this paper, we document G-LiHT design considerations, physical specifications, instrument performance and calibration and acquisition parameters. In addition, we describe the data processing system and higher-level data products that are freely distributed under NASA's Data and Information policy.

  3. Airborne prototype instrument suite test flight of a low-light high-dynamic range imager and visible spectrometer

    NASA Astrophysics Data System (ADS)

    Kuester, Michele A.; Lasnik, James K.; Ramond, Tanya; Lin, Tony; Johnson, Brian; Kaptchen, Paul; Good, William

    2007-09-01

    The Airborne Sensors Initiative (ASI) at Ball Aerospace and Technologies Corp. (BATC) specializes in airborne demonstration of internally-developed instrument concepts and innovative remote sensing technologies. In December 2006, ASI flew an environmental remote sensing suite consisting of the Low Light Imager (LLI) and Prototype Airborne Visible Imaging Spectrometer (PAVIS), both of which are operated using a pushbroom approach. LLI is designed for nighttime or high dynamic range imaging. It is capable of yielding 10 7 dynamic range and offers quality images amid illumination extending from a 1/ 4 moon to full sunlight and with autonomous operation. PAVIS is an imaging spectrometer based on the Dyson design and exhibits a 200 nm spectral bandwidth tunable within 400 - 850 nm. Developed internally to demonstrate promising remote sensing capabilities, these small, low-mass and low-power instruments are prepared for aircraft flight and are currently being used in the field to acquire scientific data. The LLI/PAVIS instrument suite has been utilized to collect airborne urban and rural imagery, as well as spectral information about the Great Salt Lake area, western Colorado, and ancient lava flows in southern Idaho. Highlights of the instrument design and ensuing data from previous flights are presented herein.

  4. Supervised and unsupervised MRF based 3D scene classification in multiple view airborne oblique images

    NASA Astrophysics Data System (ADS)

    Gerke, M.; Xiao, J.

    2013-10-01

    In this paper we develop and compare two methods for scene classification in 3D object space, that is, not single image pixels get classified, but voxels which carry geometric, textural and color information collected from the airborne oblique images and derived products like point clouds from dense image matching. One method is supervised, i.e. relies on training data provided by an operator. We use Random Trees for the actual training and prediction tasks. The second method is unsupervised, thus does not ask for any user interaction. We formulate this classification task as a Markov-Random-Field problem and employ graph cuts for the actual optimization procedure. Two test areas are used to test and evaluate both techniques. In the Haiti dataset we are confronted with largely destroyed built-up areas since the images were taken after the earthquake in January 2010, while in the second case we use images taken over Enschede, a typical Central European city. For the Haiti case it is difficult to provide clear class definitions, and this is also reflected in the overall classification accuracy; it is 73% for the supervised and only 59% for the unsupervised method. If classes are defined more unambiguously like in the Enschede area, results are much better (85% vs. 78%). In conclusion the results are acceptable, also taking into account that the point cloud used for geometric features is not of good quality and no infrared channel is available to support vegetation classification.

  5. The Chlorophyll Fluorescence Imaging Spectrometer (CFIS): A New Airborne Instrument for Quantifying Solar-Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Drewry, D.; Frankenberg, C.; Verma, M.; Berry, J. A.; Schimel, D.; Geier, S.; Schwochert, M.

    2015-12-01

    Recent demonstrations of the retrieval of vegetation solar-induced fluorescence (SIF) emission from satellite platforms have opened up the possibility of remotely monitoring photosynthetic function, in addition to the structural and biochemical parameters that characterize the current capabilities of vegetation observing systems. These satellite retrievals, from platforms such as GOSAT, GOME-2, and most recently NASA's Orbiting Carbon Observatory 2 (OCO-2), provide powerful evidence of the correlation between vegetation productivity and SIF at seasonal to annual timescales, and at spatial resolutions of tens to hundreds of kilometers. The Chlorophyll Fluorescence Imaging Spectrometer (CFIS) was recently developed for OCO-2 validation purposes and provides an airborne capability to help fill the spatial gap between leaf- or canopy-level observations of SIF flux and extensive satellite footprints. The flexibility of an airborne instrument likewise allows for studies of the temporal variability of SIF emission over consecutive days, or with meteorological variability throughout a day. CFIS is a high resolution (<0.1nm) spectrometer covering the 740-770nm wavelength range, optimized for SIF quantification. Here we present an overview of the instrument design and capabilities, along with the retrieval methodology. An evaluation of data collected during initial campaigns conducted during the spring and summer of 2015 are also presented, demonstrating variability within and between days for campaigns spanning multiple days in the Midwest US and Northern California. Results will be compared to OCO-2 data as well as flux-tower measurements made during the CFIS flights.

  6. Evaluation of the airborne imaging spectrometer for remote sensing of forest stand conditions

    NASA Technical Reports Server (NTRS)

    Olson, Charles E., Jr.

    1986-01-01

    Five pairs of plots were established in forest stands with one of each pair trenched and covered to prevent precipitation from reaching the tree roots. High winds and falling limbs destroyed the covers on three of the plots. The two remaining plots were in a red pine plantation and in a natural stand of sugar maple. Trees in both plots developed levels of moisture stress more than nine bars higher than control trees on the dates of overflights with the Airborne Imaging Spectrometer (AIS) and the Collins' Airborne Spectroradiometer (CAS). Hemispherical reflectance from stressed and control trees was measured with a Beckman DK2A spectrophotometer. On the day of the AIS overflight, stressed maple foliage was less reflective than the control from 1000 to 1300 nm, but more reflective at wavelengths longer than 1300 nm. Pine foliage was less reflective than the control from 1000 to 1600 nm, but the difference was small at wavelengths longer than 1350 nm. AIS data collected showed brightness values for both maple and pine to be lower than for the controls from 1000 to 1300 nm. CAS data were used to determine the gain in species identification accuracy obtainable with high spectral resolution data.

  7. 3-D airborne ultrasound synthetic aperture imaging based on capacitive micromachined ultrasonic transducers.

    PubMed

    Park, Kwan Kyu; Khuri-Yakub, Butrus T

    2013-09-01

    In this paper, we present an airborne 3-D volumetric imaging system based on capacitive micromachined ultrasonic transducers (CMUTs). For this purpose we fabricated 89-kHz CMUTs where each CMUT is made of a circular single-crystal silicon plate with a radius of 1mm and a thickness of 20 μm, which is actuated by electrostatic force through a 20-μm vacuum gap. The measured transmit sensitivity at 300-V DC bias is 14.6 Pa/V and 24.2 Pa/V, when excited by a 30-cycle burst and a continuous wave, respectively. The measured receive sensitivity at 300-V DC bias is 16.6 mV/Pa (-35.6 dB re 1 V/Pa) for a 30-cycle burst. A 26×26 2-D array was implemented by mechanical scanning a co-located transmitter and receiver using the classic synthetic aperture (CSA) method. The measurement of a 1.6λ-size target at a distance of 500 mm presented a lateral resolution of 3.17° and also showed good agreement with the theoretical point spread function. The 3-D imaging of two plates at a distance of 350 mm and 400 mm was constructed to exhibit the capability of the imaging system. This study experimentally demonstrates that a 2-D CMUT array can be used for practical 3-D imaging applications in air, such as a human-machine interface.

  8. Airborne Linear Array Image Geometric Rectification Method Based on Unequal Segmentation

    NASA Astrophysics Data System (ADS)

    Li, J. M.; Li, C. R.; Zhou, M.; Hu, J.; Yang, C. M.

    2016-06-01

    As the linear array sensor such as multispectral and hyperspectral sensor has great potential in disaster monitoring and geological survey, the quality of the image geometric rectification should be guaranteed. Different from the geometric rectification of airborne planar array images or multi linear array images, exterior orientation elements need to be determined for each scan line of single linear array images. Internal distortion persists after applying GPS/IMU data directly to geometrical rectification. Straight lines may be curving and jagged. Straight line feature -based geometrical rectification algorithm was applied to solve this problem, whereby the exterior orientation elements were fitted by piecewise polynomial and evaluated with the straight line feature as constraint. However, atmospheric turbulence during the flight is unstable, equal piecewise can hardly provide good fitting, resulting in limited precision improvement of geometric rectification or, in a worse case, the iteration cannot converge. To solve this problem, drawing on dynamic programming ideas, unequal segmentation of line feature-based geometric rectification method is developed. The angle elements fitting error is minimized to determine the optimum boundary. Then the exterior orientation elements of each segment are fitted and evaluated with the straight line feature as constraint. The result indicates that the algorithm is effective in improving the precision of geometric rectification.

  9. Crude oil, petroleum product, and water discrimination on terrestrial substrates with airborne imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Allen, C. Scott; Krekeler, Mark P. S.

    2011-06-01

    The Deepwater Horizon explosion and subsequent sinking produced the largest oil spill in U.S. history. One of the most prominent portions of the response is mapping the extent to which oil has reached thousands of miles of shoreline. The most common method of detecting oil remains visual spotting from airframes, supplemented by panchromatic / multispectral aerial photography and satellite imagery. While this imagery provides a synoptic view, it is often ambiguous in its ability to discriminate water from hydrocarbon materials. By employing spectral libraries for material identification and discrimination, imaging spectroscopy supplements traditional imaging techniques by providing specific criteria for more accurate petroleum detection and discrimination from water on terrestrial backgrounds. This paper applies a new hydrocarbon-substrate spectral library to SpecTIR HST-3 airborne imaging spectroscopy data from the Hurricane Katrina disaster in 2005. Using common material identification algorithms, this preliminary analysis demonstrates the applicability and limitations of hyperspectral data to petroleum/water discrimination in certain conditions. The current work is also the first application of the petroleum-substrate library to imaging spectroscopy data and shows potential for monitoring long term impacts of Deepwater Horizon.

  10. MAPIR: An Airborne Polarmetric Imaging Radiometer in Support of Hydrologic Satellite Observations

    NASA Technical Reports Server (NTRS)

    Laymon, C.; Al-Hamdan, M.; Crosson, W.; Limaye, A.; McCracken, J.; Meyer, P.; Richeson, J.; Sims, W.; Srinivasan, K.; Varnevas, K.

    2010-01-01

    In this age of dwindling water resources and increasing demands, accurate estimation of water balance components at every scale is more critical to end users than ever before. Several near-term Earth science satellite missions are aimed at global hydrologic observations. The Marshall Airborne Polarimetric Imaging Radiometer (MAPIR) is a dual beam, dual angle polarimetric, scanning L band passive microwave radiometer system developed by the Observing Microwave Emissions for Geophysical Applications (OMEGA) team at MSFC to support algorithm development and validation efforts in support of these missions. MAPIR observes naturally-emitted radiation from the ground primarily for remote sensing of land surface brightness temperature from which we can retrieve soil moisture and possibly surface or water temperature and ocean salinity. MAPIR has achieved Technical Readiness Level 6 with flight heritage on two very different aircraft, the NASA P-3B, and a Piper Navajo.

  11. Analysis of Debris Flow Behavior Using Airborne LIDAR and Image Data

    NASA Astrophysics Data System (ADS)

    Kim, G.; Yune, C. Y.; Paik, J.; Lee, S. W.

    2016-06-01

    The frequency of debris flow events caused by severe rainstorms has increased in Korea. LiDAR provides high-resolution topographical data that can represent the land surface more effectively than other methods. This study describes the analysis of geomorphologic changes using digital surface models derived from airborne LiDAR and aerial image data acquired before and after a debris flow event in the southern part of Seoul, South Korea in July 2011. During this event, 30 houses were buried, 116 houses were damaged, and 22 human casualties were reported. Longitudinal and cross-sectional profiles of the debris flow path reconstructed from digital surface models were used to analyze debris flow behaviors such as landslide initiation, transport, erosion, and deposition. LiDAR technology integrated with GIS is a very useful tool for understanding debris flow behavior.

  12. Discrimination of hydrothermal alteration mineral assemblages at Virginia City, Nevada, using the airborne imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Hutsinpiller, Amy

    1988-01-01

    The purpose of this study is to use airborne imaging spectrometer data to discriminate hydrothermal alteration mineral assemblages associated with silver and gold mineralization at Virginia City, NV. The data is corrected for vertical striping and sample gradients, and converted to flat-field logarithmic residuals. Log residual spectra from areas known to be altered are compared to field spectra for kaolinitic, illitic, sericitic, and propylitic alteration types. The areal distributions of these alteration types are estimated using a spectral matching technique. Both visual examination of spectra and the matching techniques are effective in distinguishing kaolinitic, illitic, and propylitic alteration types from each other. However, illitic and sericitic alteration cannot be separated using these techniques because the spectra of illite and sericite are very similar. A principal components analysis of 14 channels in the 2.14-2.38 micron wavelength region is also successful in discriminating and mapping illitic, kaolinitic, and propylitic alteration types.

  13. Modelling plant species distribution in alpine grasslands using airborne imaging spectroscopy

    PubMed Central

    Pottier, Julien; Malenovský, Zbyněk; Psomas, Achilleas; Homolová, Lucie; Schaepman, Michael E.; Choler, Philippe; Thuiller, Wilfried; Guisan, Antoine; Zimmermann, Niklaus E.

    2014-01-01

    Remote sensing using airborne imaging spectroscopy (AIS) is known to retrieve fundamental optical properties of ecosystems. However, the value of these properties for predicting plant species distribution remains unclear. Here, we assess whether such data can add value to topographic variables for predicting plant distributions in French and Swiss alpine grasslands. We fitted statistical models with high spectral and spatial resolution reflectance data and tested four optical indices sensitive to leaf chlorophyll content, leaf water content and leaf area index. We found moderate added-value of AIS data for predicting alpine plant species distribution. Contrary to expectations, differences between species distribution models (SDMs) were not linked to their local abundance or phylogenetic/functional similarity. Moreover, spectral signatures of species were found to be partly site-specific. We discuss current limits of AIS-based SDMs, highlighting issues of scale and informational content of AIS data. PMID:25079495

  14. Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation.

    PubMed

    Asner, G P; Martin, R E; Knapp, D E; Tupayachi, R; Anderson, C B; Sinca, F; Vaughn, N R; Llactayo, W

    2017-01-27

    Functional biogeography may bridge a gap between field-based biodiversity information and satellite-based Earth system studies, thereby supporting conservation plans to protect more species and their contributions to ecosystem functioning. We used airborne laser-guided imaging spectroscopy with environmental modeling to derive large-scale, multivariate forest canopy functional trait maps of the Peruvian Andes-to-Amazon biodiversity hotspot. Seven mapped canopy traits revealed functional variation in a geospatial pattern explained by geology, topography, hydrology, and climate. Clustering of canopy traits yielded a map of forest beta functional diversity for land-use analysis. Up to 53% of each mapped, functionally distinct forest presents an opportunity for new conservation action. Mapping functional diversity advances our understanding of the biosphere to conserve more biodiversity in the face of land use and climate change.

  15. The use of Airborne Imaging Spectrometer (AIS) data to differentiate marsh vegetation

    NASA Technical Reports Server (NTRS)

    Gross, M. F.; Klemas, V.

    1986-01-01

    The Airborne Imaging Spectrometer (AIS) is a high spectral resolution (9.6-nm-wide bands between 0.9 and 2.4 microns) instrument. Analysis of AIS data revealed significant differences in characteristics of the spectral radiance curves of four types of wetland vegetation canopies (trees, broadleaf herbaceous, Spartina alterniflora, and S. patens/Distichlis spicata) in Delaware, enabling them to be distinguished. The single most useful spectral region was that between 1.40 and 1.90 microns. Differences in radiance values at various wavelengths between samples of the same vegetation type could potentially be used to estimate biomass. Thus, high spectral resolution spectrometry appears to have significant value for remote sensing studies of wetland vegetation.

  16. Three-dimensional image compression with integer wavelet transforms.

    PubMed

    Bilgin, A; Zweig, G; Marcellin, M W

    2000-04-10

    A three-dimensional (3-D) image-compression algorithm based on integer wavelet transforms and zerotree coding is presented. The embedded coding of zerotrees of wavelet coefficients (EZW) algorithm is extended to three dimensions, and context-based adaptive arithmetic coding is used to improve its performance. The resultant algorithm, 3-D CB-EZW, efficiently encodes 3-D image data by the exploitation of the dependencies in all dimensions, while enabling lossy and lossless decompression from the same bit stream. Compared with the best available two-dimensional lossless compression techniques, the 3-D CB-EZW algorithm produced averages of 22%, 25%, and 20% decreases in compressed file sizes for computed tomography, magnetic resonance, and Airborne Visible Infrared Imaging Spectrometer images, respectively. The progressive performance of the algorithm is also compared with other lossy progressive-coding algorithms.

  17. Three-Dimensional Image Compression With Integer Wavelet Transforms

    NASA Astrophysics Data System (ADS)

    Bilgin, Ali; Zweig, George; Marcellin, Michael W.

    2000-04-01

    A three-dimensional (3-D) image-compression algorithm based on integer wavelet transforms and zerotree coding is presented. The embedded coding of zerotrees of wavelet coefficients (EZW) algorithm is extended to three dimensions, and context-based adaptive arithmetic coding is used to improve its performance. The resultant algorithm, 3-D CB-EZW, efficiently encodes 3-D image data by the exploitation of the dependencies in all dimensions, while enabling lossy and lossless decompression from the same bit stream. Compared with the best available two-dimensional lossless compression techniques, the 3-D CB-EZW algorithm produced averages of 22%, 25%, and 20% decreases in compressed file sizes for computed tomography, magnetic resonance, and Airborne Visible Infrared Imaging Spectrometer images, respectively. The progressive performance of the algorithm is also compared with other lossy progressive-coding algorithms.

  18. Use of field reflectance data for crop mapping using airborne hyperspectral image

    NASA Astrophysics Data System (ADS)

    Nidamanuri, Rama Rao; Zbell, Bernd

    2011-09-01

    Recent developments in hyperspectral remote sensing technologies enable acquisition of image with high spectral resolution, which is typical to the laboratory or in situ reflectance measurements. There has been an increasing interest in the utilization of in situ reference reflectance spectra for rapid and repeated mapping of various surface features. Here we examined the prospect of classifying airborne hyperspectral image using field reflectance spectra as the training data for crop mapping. Canopy level field reflectance measurements of some important agricultural crops, i.e. alfalfa, winter barley, winter rape, winter rye, and winter wheat collected during four consecutive growing seasons are used for the classification of a HyMAP image acquired for a separate location by (1) mixture tuned matched filtering (MTMF), (2) spectral feature fitting (SFF), and (3) spectral angle mapper (SAM) methods. In order to answer a general research question "what is the prospect of using independent reference reflectance spectra for image classification", while focussing on the crop classification, the results indicate distinct aspects. On the one hand, field reflectance spectra of winter rape and alfalfa demonstrate excellent crop discrimination and spectral matching with the image across the growing seasons. On the other hand, significant spectral confusion detected among the winter barley, winter rye, and winter wheat rule out the possibility of existence of a meaningful spectral matching between field reflectance spectra and image. While supporting the current notion of "non-existence of characteristic reflectance spectral signatures for vegetation", results indicate that there exist some crops whose spectral signatures are similar to characteristic spectral signatures with possibility of using them in image classification.

  19. Visible/Infrared Optical Depths of Cirrus as Seen by Satellite and Scanning Lidar

    NASA Technical Reports Server (NTRS)

    Wylie, Donald; Wolf, Walt; Piironen, Paivi; Eloranta, Edwin

    1996-01-01

    The High Spectral Resolution Lidar (HSRL) and the Volume Imaging Lidar (VIL) were combined to produce a quantitative image of the visible optical depth of cirrus clouds. The HSRL was used to calibrate the VIL signal into backscatter cross sections of particulates. The backscatter cross sections were related to extinction by a constant backscatter phase function determined from the HSRL data. This produced a three dimensional image of visual extinction in the cirrus clouds over a one hour period. Two lidar images were constructed from one hour VIL cross section records.

  20. Airborne ultraviolet imaging system for oil slick surveillance: oil-seawater contrast, imaging concept, signal-to-noise ratio, optical design, and optomechanical model.

    PubMed

    Shi, Zhenhua; Yu, Lei; Cao, Diansheng; Wu, Qingwen; Yu, Xiangyang; Lin, Guanyu

    2015-09-01

    The airborne ultraviolet imaging system, which assesses oil slick areas better than visible and infrared optical systems, was designed to monitor and track oil slicks in coastal regions. A model was built to achieve the upwelling radiance distribution of oil-covered sea and clean seawater, based on the radiance transfer software. With this model, the oil-seawater contrast, which affects the detection of oil-covered coastal areas, was obtained. The oil-seawater contrast, fundamental imaging concept, analog calculation of SNR, optical design, and optomechanical configuration of the airborne ultraviolet imaging system are illustrated in this paper. The study of an airborne ultraviolet imaging system with F-number 3.4 and a 40° field of view (FOV) in near ultraviolet channel (0.32-0.38 μm) was illustrated and better imaging quality was achieved. The ground sample distance (GSD) is from 0.35 to 0.7 m with flight height ranges from 0.5 to 1 km. Comparisons of detailed characteristics of the airborne ultraviolet imaging system with the corresponding characteristics of previous ultraviolet systems were tabulated, and these comparisons showed that this system can achieve a wide FOV and a relative high SNR. A virtual mechanical prototype and tolerances analysis are illustrated in this paper to verify the performance of fabrication and assembly of the ultraviolet system.

  1. PICASSO: an end-to-end image simulation tool for space and airborne imaging systems

    NASA Astrophysics Data System (ADS)

    Cota, Stephen A.; Bell, Jabin T.; Boucher, Richard H.; Dutton, Tracy E.; Florio, Christopher J.; Franz, Geoffrey A.; Grycewicz, Thomas J.; Kalman, Linda S.; Keller, Robert A.; Lomheim, Terrence S.; Paulson, Diane B.; Wilkinson, Timothy S.

    2010-06-01

    The design of any modern imaging system is the end result of many trade studies, each seeking to optimize image quality within real world constraints such as cost, schedule and overall risk. Image chain analysis - the prediction of image quality from fundamental design parameters - is an important part of this design process. At The Aerospace Corporation we have been using a variety of image chain analysis tools for many years, the Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) among them. In this paper we describe our PICASSO tool, showing how, starting with a high quality input image and hypothetical design descriptions representative of the current state of the art in commercial imaging satellites, PICASSO can generate standard metrics of image quality in support of the decision processes of designers and program managers alike.

  2. PICASSO: an end-to-end image simulation tool for space and airborne imaging systems

    NASA Astrophysics Data System (ADS)

    Cota, Steve A.; Bell, Jabin T.; Boucher, Richard H.; Dutton, Tracy E.; Florio, Chris J.; Franz, Geoffrey A.; Grycewicz, Thomas J.; Kalman, Linda S.; Keller, Robert A.; Lomheim, Terrence S.; Paulson, Diane B.; Willkinson, Timothy S.

    2008-08-01

    The design of any modern imaging system is the end result of many trade studies, each seeking to optimize image quality within real world constraints such as cost, schedule and overall risk. Image chain analysis - the prediction of image quality from fundamental design parameters - is an important part of this design process. At The Aerospace Corporation we have been using a variety of image chain analysis tools for many years, the Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) among them. In this paper we describe our PICASSO tool, showing how, starting with a high quality input image and hypothetical design descriptions representative of the current state of the art in commercial imaging satellites, PICASSO can generate standard metrics of image quality in support of the decision processes of designers and program managers alike.

  3. The NASA Airborne Earth Science Microwave Imaging Radiometer (AESMIR): A New Sensor for Earth Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2003-01-01

    The Airborne Earth Science Microwave Imaging Radiometer (AESMIR) is a versatile new airborne imaging radiometer recently developed by NASA. The AESMIR design is unique in that it performs dual-polarized imaging at all standard passive microwave frequency bands (6-89 GHz) using only one sensor headscanner package, providing an efficient solution for Earth remote sensing applications (snow, soil moisture/land parameters, precipitation, ocean winds, sea surface temperature, water vapor, sea ice, etc.). The microwave radiometers themselves will incorporate state-of-the-art receivers, with particular attention given to instrument calibration for the best possible accuracy and sensitivity. The single-package design of AESMIR makes it compatible with high-altitude aircraft platforms such as the NASA ER-2s. The arbitrary 2-axis gimbal can perform conical and cross-track scanning, as well as fixed-beam staring. This compatibility with high-altitude platforms coupled with the flexible scanning configuration, opens up previously unavailable science opportunities for convection/precip/cloud science and co-flying with complementary instruments, as well as providing wider swath coverage for all science applications. By designing AESMIR to be compatible with these high-altitude platforms, we are also compatible with the NASA P-3, the NASA DC-8, C-130s and ground-based deployments. Thus AESMIR can provide low-, mid-, and high- altitude microwave imaging. Parallel filter banks allow AESMIR to simultaneously simulate the exact passbands of multiple satellite radiometers: SSM/I, TMI, AMSR, Windsat, SSMI/S, and the upcoming GPM/GMI and NPOESS/CMIS instruments --a unique capability among aircraft radiometers. An L-band option is also under development, again using the same scanner. With this option, simultaneous imaging from 1.4 to 89 GHz will be feasible. And, all receivers except the sounding channels will be configured for 4-Stokes polarimetric operation using high-speed digital

  4. HSI mapping of marine and coastal environments using the advanced airborne hyperspectral imaging system (AAHIS)

    NASA Astrophysics Data System (ADS)

    Holasek, Rick E.; Portigal, Frederick P.; Mooradian, Gregory C.; Voelker, Mark A.; Even, Detlev M.; Fene, Michael W.; Owensby, Pamela D.; Breitwieser, David S.

    1997-08-01

    The advanced airborne hyperspectral imaging system (AAHIS) is an operational, high signal-to-noise ratio, high resolution, integrated hyperspectral imaging spectrometer. The compact, lightweight and portable AAHIS system is normally flown in Piper Aztec aircraft. AAHIS collect 'push- broom' data with 385 spatial channels and 288 simultaneous spectral channels from 433 nm to 832 nm, recording at 12 bits up to 55 frames/second. Typical operation incorporates on-chip pixel binning of four pixels spectrally and two pixels spatially, increasing the signal-to-noise ratio and reducing data rate. When binned, the spectral resolution is 5.5 nm and the instantaneous field-of-view is 1 mrad, resulting in a ground sample distance of 0.5 m from 500 m altitude. The sensor is optimized for littoral region remote sensing for a variety of civilian and defense applications including ecosystem surveying and inventory, detection and monitoring of environmental pollution, infrastructure mapping, and surveillance. Since August 1994, AAHIS has acquired over 120 GB of hyperspectral image data of littoral, urban, desert and tropical scenes. System upgrades include real-time spectral image processing, integrated flight navigation and 3-axis image stabilization. A description of the sensor system, its performance characteristics, and several processed images demonstrating material discrimination are presented. The remote assessment, characterization, and mapping of coral reef health and species identification and floral species at Nu'upia Ponds, are shown and compared to extensive ground truthing in and around Kaneohe Bay, Oahu, Hawaii. SETS emphasizes providing georegistered, GIS-integrated, value- added data products for customers to help them solve real- world problems.

  5. Sunglint effects on the characterization of optically active substances in high spatial resolution airborne hyperspectral images

    NASA Astrophysics Data System (ADS)

    Streher, A. S.; Faria Barbosa, C. Clemente; Soares Galvão, L.; Goodman, J. A.; Silva, T. S.

    2013-05-01

    Sunglint, also known as the specular reflection of light from water surfaces, is a component of sensor-received radiance that represents a confounding factor on the characterization of water bodies by remote sensing. In airborne remote sensing images, the effect of sunglint can be minimized by optimizing the flight paths, directing the sensor towards or away from the Sun, and by keeping solar zenith angles between 30° and 60°. However, these guidelines cannot always be applied, often due to the irregular spatial pattern of lakes, estuaries and coastlines. The present study assessed the impact of sunglint on the relationship between the optically active substances (OAS) concentration, in optically complex waters, and the spectral information provided by an airborne high spatial resolution hyperspectral sensor (SpecTIR). The Ibitinga reservoir, located in southeastern Brazil (state of São Paulo), was selected as the study area because of its meandering shape. As a result, there is demanding constant changes in data acquisition geometry to achieve complete coverage, therefore not allowing sunglint conditions to be minimized during image acquisition. Field data collection was carried out on October 23 and 24, 2011. During these two days, 15 water stations along the reservoir were sampled, concurrently with the SpecTIR image acquisition in 357 bands (398-2455 nm) and at 3 m spatial resolution. Chlorophyll, pheophytin, total suspended solids, organic and inorganic suspended solids and colored dissolved matter were determined in laboratory. The images were corrected for the atmospheric effects using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) algorithm and then geometrically corrected. In order to evaluate the sunglint effects on the OAS characterization, the images were corrected for such effects using the deglint algorithm from Goodman et al. (2008). The SpecTIR 662-nm band reflectance was selected to be correlated to the OAS due to

  6. A Nadir-adjusted Airborne Multi Spectral Imaging System (NAMSIS) for high-resolution remote sensing of carbon fluxes

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; Scott, S.; Rahman, A. F.

    2012-12-01

    Satellite remote sensing is widely used in vegetation monitoring, water stress detection and carbon cycle modeling. However, image pixels from high temporal resolution satellite sensors (such as MODIS) have coarse spatial resolution, much larger than the canopies they are supposed to characterize. An alternative solution for on-demand high spatial resolution remote sensing is sensors onboard low-flying aircrafts. Airborne remote sensing has been traditionally used in crop management studies. In this presentation we demonstrate the application of a relatively low-cost airborne sensor system with customized spectral band combinations for studying forest carbon fluxes. Our team has developed an Inertia Measurement Unit (IMU) controlled automated system to detach aircraft movements (pitch and roll) and engine vibration from the six-band programmable imager, in order to maintain the sensor at nadir view at all times during the flight. Flight lines are configured by a GPS-controleld system to simulate MODIS pixels. A feature-based algorithm is used to automatically generate a mosaic of individual images along the flight lines. This algorithm eliminates the need to mosiac and georeference images manually. An empirical line method is used to calculate reflectance from the raw data. Images from this airborne system produce reflectance values that are comparable with MODIS reflectance product. These high spatial resolution (~0.5 m) images deliver detailed information about tree species and phenological conditions within each MODIS pixel, and thus permit a high resolution spatio-temporal assessment of forest carbon fluxes.

  7. Airborne and spaceborne radar images for geologic and environmental mapping in the Amazon rain forest, Brazil

    NASA Technical Reports Server (NTRS)

    Ford, John P.; Hurtak, James J.

    1986-01-01

    Spaceborne and airborne radar image of portions of the Middle and Upper Amazon basin in the state of Amazonas and the Territory of Roraima are compared for purposes of geological and environmental mapping. The contrasted illumination geometries and imaging parameters are related to terrain slope and surface roughness characteristics for corresponding areas that were covered by each of the radar imaging systems. Landforms range from deeply dissected mountain and plateau with relief up to 500 m in Roraima, revealing ancient layered rocks through folded residual mountains to deeply beveled pediplain in Amazonas. Geomorphic features provide distinct textural signatures that are characteristic of different rock associations. The principle drainages in the areas covered are the Rio Negro, Rio Branco, and the Rio Japura. Shadowing effects and low radar sensitivity to subtle linear fractures that are aligned parallel or nearly parallel to the direction of radar illumination illustrate the need to obtain multiple coverage with viewing directions about 90 degrees. Perception of standing water and alluvial forest in floodplains varies with incident angle and with season. Multitemporal data sets acquired over periods of years provide an ideal method of monitoring environmental changes.

  8. High Resolution Airborne Laser Scanning and Hyperspectral Imaging with a Small Uav Platform

    NASA Astrophysics Data System (ADS)

    Gallay, Michal; Eck, Christoph; Zgraggen, Carlo; Kaňuk, Ján; Dvorný, Eduard

    2016-06-01

    The capabilities of unmanned airborne systems (UAS) have become diverse with the recent development of lightweight remote sensing instruments. In this paper, we demonstrate our custom integration of the state-of-the-art technologies within an unmanned aerial platform capable of high-resolution and high-accuracy laser scanning, hyperspectral imaging, and photographic imaging. The technological solution comprises the latest development of a completely autonomous, unmanned helicopter by Aeroscout, the Scout B1-100 UAV helicopter. The helicopter is powered by a gasoline two-stroke engine and it allows for integrating 18 kg of a customized payload unit. The whole system is modular providing flexibility of payload options, which comprises the main advantage of the UAS. The UAS integrates two kinds of payloads which can be altered. Both payloads integrate a GPS/IMU with a dual GPS antenna configuration provided by OXTS for accurate navigation and position measurements during the data acquisition. The first payload comprises a VUX-1 laser scanner by RIEGL and a Sony A6000 E-Mount photo camera. The second payload for hyperspectral scanning integrates a push-broom imager AISA KESTREL 10 by SPECIM. The UAS was designed for research of various aspects of landscape dynamics (landslides, erosion, flooding, or phenology) in high spectral and spatial resolution.

  9. Airborne imaging sensors for environmental monitoring & surveillance in support of oil spills & recovery efforts

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R.; Jones, James; Frystacky, Heather; Coppin, Gaelle; Leavaux, Florian; Neyt, Xavier

    2011-11-01

    Collection of pushbroom sensor imagery from a mobile platform requires corrections using inertial measurement units (IMU's) and DGPS in order to create useable imagery for environmental monitoring and surveillance of shorelines in freshwater systems, coastal littoral zones and harbor areas. This paper describes a suite of imaging systems used during collection of hyperspectral imagery in northern Florida panhandle and Gulf of Mexico airborne missions to detect weathered oil in coastal littoral zones. Underlying concepts of pushbroom imagery, the needed corrections for directional changes using DGPS and corrections for platform yaw, pitch, and roll using IMU data is described as well as the development and application of optimal band and spectral regions associated with weathered oil. Pushbroom sensor and frame camera data collected in response to the recent Gulf of Mexico oil spill disaster is presented as the scenario documenting environmental monitoring and surveillance techniques using mobile sensing platforms. Data was acquired during the months of February, March, April and May of 2011. The low altitude airborne systems include a temperature stabilized hyperspectral imaging system capable of up to 1024 spectral channels and 1376 spatial across track pixels flown from 3,000 to 4,500 feet altitudes. The hyperspectral imaging system is collocated with a full resolution high definition video recorder for simultaneous HD video imagery, a 12.3 megapixel digital, a mapping camera using 9 inch film types that yields scanned aerial imagery with approximately 22,200 by 22,200 pixel multispectral imagery (~255 megapixel RGB multispectral images in order to conduct for spectral-spatial sharpening of fused multispectral, hyperspectral imagery. Two high spectral (252 channels) and radiometric sensitivity solid state spectrographs are used for collecting upwelling radiance (sub-meter pixels) with downwelling irradiance fiber optic attachment. These sensors are utilized for

  10. Joint influences of aerodynamic flow field and aerodynamic heating of the dome on imaging quality degradation of airborne optical systems.

    PubMed

    Xiao, Haosu; Zuo, Baojun; Tian, Yi; Zhang, Wang; Hao, Chenglong; Liu, Chaofeng; Li, Qi; Li, Fan; Zhang, Li; Fan, Zhigang

    2012-12-20

    We investigated the joint influences exerted by the nonuniform aerodynamic flow field surrounding the optical dome and the aerodynamic heating of the dome on imaging quality degradation of an airborne optical system. The Spalart-Allmaras model provided by FLUENT was used for flow computations. The fourth-order Runge-Kutta algorithm based ray tracing program was used to simulate optical transmission through the aerodynamic flow field and the dome. Four kinds of imaging quality evaluation parameters were presented: wave aberration of the exit pupil, point spread function, encircled energy, and modulation transfer function. The results show that the aero-optical disturbance of the aerodynamic flow field and the aerodynamic heating of the dome significantly affect the imaging quality of an airborne optical system.

  11. Comprehensive analysis of imaging quality degradation of an airborne optical system for aerodynamic flow field around the optical window.

    PubMed

    Hao, Chenglong; Chen, Shouqian; Zhang, Wang; Ren, Jinhan; Li, Chong; Pang, Hongjun; Wang, Honghao; Liu, Qian; Wang, Chao; Zou, Huiying; Fan, Zhigang

    2013-11-20

    We investigated the influences exerted by the nonuniform aerodynamic flow field surrounding the optical window on the imaging quality degradation of an airborne optical system. The density distribution of flow fields around three typical optical windows, including a spherical window, an ellipsoidal window, and a paraboloidal window, were calculated by adopting the Reynolds-averaged Navier-Stokes equations with the Spalart-Allmaras model provided by FLUENT. The fourth-order Runge-Kutta algorithm based ray-tracing program was used to simulate the optical transmission through the aerodynamic flow field. Four kinds of imaging quality evaluation parameters were presented: wave aberration of the entrance pupil, point spread function, encircled energy, and modulation transfer function. The results show that the imaging quality of the airborne optical system was affected by the shape of the optical window and angle of attack of the aircraft.

  12. Improved Hurricane Boundary Layer Observations with the Imaging Wind and Rain Airborne Profiler

    NASA Technical Reports Server (NTRS)

    Esteban-Fernandez, Daniel; Changy, P.; Carswell, J.; Contreras, R.; Chu, T.

    2006-01-01

    During the NOAA/NESDIS 2005 Hurricane Season (HS2005) and the 2006 Winter Experiment, the University of Massachusetts (UMass) installed two instruments on the NOAA N42RF WP-3D research aircraft: the Imaging Wind and Rain Airborne Profiler (IWRAP) and the Simultaneous Frequency Microwave Radiometer (SFMR). IWRAP is a dual-band (C- and Ku), dual-polarized pencil-beam airborne radar that profiles the volume backscatter and Doppler velocity from rain and that also measures the ocean backscatter response. It simultaneously profiles along four separate incidence angles while conically scanning at 60 RPM. SFMR is a C-band nadir viewing radiometer that measures the emission from the ocean surface and intervening atmosphere simultaneously at six frequencies. It is designed to obtain the surface wind speed and the column average rain rate. Both instruments have previously been flown during the 2002, 2003 and 2004 hurricane seasons. For the HS2005, the IWRAP system was modified to implement a raw data acquisition system. The importance of the raw data system arises when trying to profile the atmosphere all the way down to the surface with a non-nadir looking radar system. With this particular geometry, problems arise mainly from the fact that both rain and ocean provide a return echo coincident in time through the antenna s main lobe. This paper shows how this limitation has been removed and presents initial results demonstrating its new capabilities to derive the atmospheric boundary layer (ABL) wind field within the inner core of hurricanes to much lower altitudes than the ones the original system was capable of, and to analyze the spectral response of the ocean backscatter and the rain under different wind and rain conditions.

  13. Calibration and Validation of the National Ecological Observatory Network's Airborne Imaging Spectrometers

    NASA Astrophysics Data System (ADS)

    Leisso, N.

    2015-12-01

    The National Ecological Observatory Network (NEON) is being constructed by the National Science Foundation and is slated for completion in 2017. NEON is designed to collect data to improve the understanding of changes in observed ecosystems. The observatory will produce data products on a variety of spatial and temporal scales collected from individual sites strategically located across the U.S. including Alaska, Hawaii, and Puerto Rico. Data sources include standardized terrestrial, instrumental, and aquatic observation systems in addition to three airborne remote sensing observation systems installed into leased Twin Otter aircraft. The Airborne Observation Platforms (AOP) are designed to collect 3-band aerial imagery, waveform and discrete LiDAR, and high-fidelity imaging spectroscopy data over the NEON sites annually at or near peak-greenness. The NEON Imaging Spectrometer (NIS) is a Visible and Shortwave Infrared (VSWIR) sensor designed by NASA JPL for ecological applications. Spectroscopic data is collected at 5-nm intervals across the solar-reflective spectral region (380-nm to 2500-nm) in a 34-degree FOV swath. A key uncertainty driver to the derived remote sensing NEON data products is the calibration of the imaging spectrometers. In addition, the calibration and accuracy of the higher-level data product algorithms is essential to the overall NEON mission to detect changes in the collected ecosystems over the 30-year expected lifetime. The typical calibration workflow of the NIS consists of the characterizing the focal plane, spectral calibration, and radiometric calibration. Laboratory spectral calibration is based on well-defined emission lines in conjunction with a scanning monochromator to define the individual spectral response functions. The radiometric calibration is NIST traceable and transferred to the NIS with an integrating sphere calibrated through the use of transfer radiometers. The laboratory calibration is monitored and maintained through

  14. Conductivity depth imaging of Airborne Electromagnetic data with double pulse transmitting current based on model fusion

    NASA Astrophysics Data System (ADS)

    Li, Jing; Dou, Mei; Lu, Yiming; Peng, Cong; Yu, Zining; Zhu, Kaiguang

    2017-01-01

    The airborne electromagnetic (AEM) systems have been used traditionally in mineral exploration. Typically the system transmits a single pulse waveform to detect conductive anomaly. Conductivity-depth imaging (CDI) of data is generally applied in identifying conductive targets. A CDI algorithm with double-pulse transmitting current based on model fusion is developed. The double-pulse is made up of a half-sine pulse of high power and a trapezoid pulse of low power. This CDI algorithm presents more shallow information than traditional CDI with a single pulse. The electromagnetic response with double-pulse transmitting current is calculated by linear convolution based on forward modeling. The CDI results with half-sine and trapezoid pulse are obtained by look-up table method, and the two results are fused to form a double-pulse conductivity-depth imaging result. This makes it possible to obtain accurate conductivity and depth. Tests on synthetic data demonstrate that CDI algorithm with double-pulse transmitting current based on model fusion maps a wider range of conductivities and does a better job compared with CDI with a single pulse transmitting current in reflecting the whole geological conductivity changes.

  15. Airborne Fraunhofer line discriminator (FLD) luminescence imaging systems and its application to exploration problems

    USGS Publications Warehouse

    Watson, Robert D.; Theisen, Arnold F.; Hemphill, William R.; Barringer, Anthony R.

    1980-01-01

    Experiments with an imaging airborne Fraunhofer line discriminator (FLD) are being conducted to establish the feasibility of delineating the areal extent of luminescent materials on the earth's surface from aircraft and spacecraft. All luminescence measurements are related to a standard set of conditions with rhodamine wt dye used as a reference standard. The FLD has a minimum detectable rhodamine wt concentration of 0.1 parts per billion (ppb) at a signal-to-noise ratio of 5.0. Luminescence, when expressed in a signal-to-noise ratio (R) is related to equivalent ppb rhodamine wt through the relationship ppb=(0.1R-0.4). Luminescent materials imaged from an aircraft altitude of approximately 2400 m above terrain include fluorite in association with molybdenum, Pinenut Mountains, Nevada (R=62.0); mineralized playas, Claunch, New Mexico (R=960.0); uranium and vanadium-bearing outcrops, Big Indian Valley, Utah (R=105.0); uranophane sandstones, Sandia Mountains, New Mexico (R=60.0); phosphate outcrops, Pine Mountain, California (R=76.0); and marine oil slicks, Santa Barbara Channel, California (R=24.0). Correlation between the amount of fluorite in the rocks and soils of the Pinenut Mountains and luminescence, measured by the FLD, is as high as 0.88 at the 95 percent confidence level.

  16. Lineaments from airborne SAR images and the 1988 Saguenay earthquake, Quebec, Canada

    SciTech Connect

    Roy, D.W.; Schmitt, L.; Woussen, G.; Duberger, R. )

    1993-08-01

    Airborne SAR images provided essential clues to the tectonic setting of (1) the MbLg 6.5 Saguenay earthquake of 25 November 1988, (2) the Charlevoix-Kamouraska seismic source zone, and (3) some of the low *eve* seismic activity in the Eastern seismic background zone of Canada. The event occurred in the southeastern part of the Canadian Shield in an area where the boundary between the Saguenay graben and the Jacques Cartier horst is not well defined. These two tectonic blocks are both associated with the Iapetan St-Lawrence rift. These blocks exhibit several important structural breaks and distinct domains defined by the lineament orientations, densities, and habits. Outcrop observations confirm that several lineament sets correspond to Precambrian ductile shear zones reactivated as brittle faults during the Phanerozoic. In addition, the northeast and southwest limits of recent seismic activity in the Charlevoix-Kamouraska zone correspond to major elements of the fracture pattern identified on the SAR images. These fractures appear to be related to the interaction of the Charlevoix astrobleme with the tectonic features of the area. 20 refs.

  17. Development of the NASA High-Altitude Imaging Wind and Rain Airborne Profiler

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Heymsfield, Gerald; Carswell, James; Schaubert, Dan; McLinden, Matthew; Vega, Manuel; Perrine, Martin

    2011-01-01

    The scope of this paper is the development and recent field deployments of the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), which was funded under the NASA Instrument Incubator Program (IIP) [1]. HIWRAP is a dual-frequency (Ka- and Ku-band), dual-beam (300 and 400 incidence angles), conical scanning, Doppler radar system designed for operation on the NASA high-altitude (65,000 ft) Global Hawk Unmanned Aerial System (UAS). It utilizes solid state transmitters along with a novel pulse compression scheme that results in a system with compact size, light weight, less power consumption, and low cost compared to radars currently in use for precipitation and Doppler wind measurements. By combining measurements at Ku- and Ka-band, HIWRAP is able to image winds through measuring volume backscattering from clouds and precipitation. In addition, HIWRAP is also capable of measuring surface winds in an approach similar to SeaWinds on QuikScat. To this end, HIWRAP hardware and software development has been completed. It was installed on the NASA WB57 for instrument test flights in March, 2010 and then deployed on the NASA Global Hawk for supporting the Genesis and Rapid Intensification Processes (GRIP) field campaign in August-September, 2010. This paper describes the scientific motivations of the development of HIWRAP as well as system hardware, aircraft integration and flight missions. Preliminary data from GRIP science flights is also presented.

  18. Airborne Thermal Infrared Multispectral Scanner (TIMS) images over disseminated gold deposits, Osgood Mountains, Humboldt County, Nevada

    NASA Technical Reports Server (NTRS)

    Krohn, M. Dennis

    1986-01-01

    The U.S. Geological Survey (USGS) acquired airborne Thermal Infrared Multispectral Scanner (TIMS) images over several disseminated gold deposits in northern Nevada in 1983. The aerial surveys were flown to determine whether TIMS data could depict jasperoids (siliceous replacement bodies) associated with the gold deposits. The TIMS data were collected over the Pinson and Getchell Mines in the Osgood Mountains, the Carlin, Maggie Creek, Bootstrap, and other mines in the Tuscarora Mountains, and the Jerritt Canyon Mine in the Independence Mountains. The TIMS data seem to be a useful supplement to conventional geochemical exploration for disseminated gold deposits in the western United States. Siliceous outcrops are readily separable in the TIMS image from other types of host rocks. Different forms of silicification are not readily separable, yet, due to limitations of spatial resolution and spectral dynamic range. Features associated with the disseminated gold deposits, such as the large intrusive bodies and fault structures, are also resolvable on TIMS data. Inclusion of high-resolution thermal inertia data would be a useful supplement to the TIMS data.

  19. A building extraction approach for Airborne Laser Scanner data utilizing the Object Based Image Analysis paradigm

    NASA Astrophysics Data System (ADS)

    Tomljenovic, Ivan; Tiede, Dirk; Blaschke, Thomas

    2016-10-01

    In the past two decades Object-Based Image Analysis (OBIA) established itself as an efficient approach for the classification and extraction of information from remote sensing imagery and, increasingly, from non-image based sources such as Airborne Laser Scanner (ALS) point clouds. ALS data is represented in the form of a point cloud with recorded multiple returns and intensities. In our work, we combined OBIA with ALS point cloud data in order to identify and extract buildings as 2D polygons representing roof outlines in a top down mapping approach. We performed rasterization of the ALS data into a height raster for the purpose of the generation of a Digital Surface Model (DSM) and a derived Digital Elevation Model (DEM). Further objects were generated in conjunction with point statistics from the linked point cloud. With the use of class modelling methods, we generated the final target class of objects representing buildings. The approach was developed for a test area in Biberach an der Riß (Germany). In order to point out the possibilities of the adaptation-free transferability to another data set, the algorithm has been applied "as is" to the ISPRS Benchmarking data set of Toronto (Canada). The obtained results show high accuracies for the initial study area (thematic accuracies of around 98%, geometric accuracy of above 80%). The very high performance within the ISPRS Benchmark without any modification of the algorithm and without any adaptation of parameters is particularly noteworthy.

  20. Utilization of an Airborne Plant Chlorophyll Imaging System for Detection of Septic System Malfunction

    NASA Technical Reports Server (NTRS)

    Spiering, Bruce A.; Carter, Gregory A.

    2001-01-01

    Malfunctioning, or leaking, sewer systems increase the supply of water and nutrients to surface vegetation. Excess nutrients and harmful bacteria in the effluent pollute ground water and local water bodies and are dangerous to humans and the aquatic ecosystems. An airborne multispectral plant chlorophyll imaging system (PCIS) was used to identify growth patterns in the vegetation covering onsite and public sewer systems. The objective was to evaluate overall performance of the PCIS as well as to determine the best operational configuration for this application. The imaging system was flown in a light aircraft over selected locations Mobile County, Alabama. Calibration panels were used to help characterize instrument performance. Results demonstrated that the PCIS performed well and was capable of detecting septic leakage patterns from altitudes as high as 915 m. From 915 m, 6 of 18 sites were suspected to have sewage leakage. Subsequent ground inspections confirmed leakage on 3 of the 6 sites. From 610 m, 3 of 8 known leakage sites were detected. Tree cover and shadows near residential structures prevented detection of several known malfunctioning systems. Also some leakages known to occur in clear areas were not detected. False detections occurred in areas characterized by surface water drainage problems or recent excavation.

  1. System for processing of airborne images of forest ecosystems using high spectral and spatial resolution data

    NASA Astrophysics Data System (ADS)

    Kozoderov, V. V.; Dmitriev, E. V.; Kamentsev, V. P.

    2014-12-01

    The developed hardware and software system for the recognition of natural and man-made objects based on the airborne hyperspectral sensing implements flight tasks on selected survey routes and computational procedures for solving applied problems that occur in data processing. The basics of object recognition based on obtained images of high spectral and spatial resolution in mathematical terms of sets of sites and labels and the basics of interrelations between separate resolution elements (pixels) for selected object classes are presented. Features of energy minimization of the processed scene are depicted as a target function of the optimization of computation and regularization of the solution of the considered problems as a theoretical basis for distinguishing between classes of objects in the presence of boundaries between them. Examples of the formation of information layers of recorded spectra for selected "pure species" of pine and birch forests are cited, with the separation of illuminated and shaded pixels, which increases the accuracy of object recognition in the processing of the images.

  2. Automated processing of high resolution airborne images for earthquake damage assessment

    NASA Astrophysics Data System (ADS)

    Nex, F.; Rupnik, E.; Toschi, I.; Remondino, F.

    2014-11-01

    Emergency response ought to be rapid, reliable and efficient in terms of bringing the necessary help to sites where it is actually needed. Although the remote sensing techniques require minimum fieldwork and allow for continuous coverage, the established approaches rely on a vast manual work and visual assessment thus are time-consuming and imprecise. Automated processes with little possible interaction are in demand. This paper attempts to address the aforementioned issues by employing an unsupervised classification approach to identify building areas affected by an earthquake event. The classification task is formulated in the Markov Random Fields (MRF) framework and only post-event airborne high-resolution images serve as the input. The generated photogrammetric Digital Surface Model (DSM) and a true orthophoto provide height and spectral information to characterize the urban scene through a set of features. The classification proceeds in two phases, one for distinguishing the buildings out of an urban context (urban classification), and the other for identifying the damaged structures (building classification). The algorithms are evaluated on a dataset consisting of aerial images (7 cm GSD) taken after the Emilia-Romagna (Italy) earthquake in 2012.

  3. Calibration Design and Assessment of the Airborne Conical Scanning Millimeterwave Imaging Radiometer (CoSMIR)

    NASA Technical Reports Server (NTRS)

    Piepmeier, J. R.; Racette, P.; Walker, D. K.; Randa, J.; Krebs, Carolyn A. (Technical Monitor)

    2002-01-01

    The airborne Conical Scanning Millimeter-wave Imaging Radiometer (CoSMIR) will provide measurements useful for atmospheric studies and satellite calibration and validation (cal/val). Designed to match the tropospheric sounding channels of the Defense Meteorological Satellite Program QMSP) Special Sensor Microwave Imager/Sounder (SSMIS), the CoSMIR consists of four radiometers operating at 50-54 (3 channels - 50.3, 52.8, and 53.6), 91.655 (dual polarization), 150.0, and 193.31 (3 channels 11, 13, and 16.6) GHz. The design of CoSMIR was primarily driven by its intended initial use as an SSMIS cal/val sensor. In particular, three design features were directly affected by this requirement: frequency planning, calibration target design, and the mechanical gimbals. An initial calibration assessment of CoSMIR was performed to determine any needed improvements. We used a combination of laboratory and field measurements to do this. Laboratory measurements included comparisons to a liquid nitrogen standard, IF amplifier and diode linearity tests, LO leakage and reflection testing, and antenna to calibration target coupling tests. Results of these tests will be reported. We also performed a satellite underflight under DM SP F-15 and have compared CoSMIR imagery to SSM/T-2 and SSM/I imagery. Additional information is included in the original extended abstract.

  4. A rapid method for creating qualitative images indicative of thick oil emulsion on the ocean's surface from imaging spectrometer data

    USGS Publications Warehouse

    Kokaly, Raymond F.; Hoefen, Todd M.; Livo, K. Eric; Swayze, Gregg A.; Leifer, Ira; McCubbin, Ian B.; Eastwood, Michael L.; Green, Robert O.; Lundeen, Sarah R.; Sarture, Charles M.; Steele, Denis; Ryan, Thomas; Bradley, Eliza S.; Roberts, Dar A.; ,

    2010-01-01

    This report describes a method to create color-composite images indicative of thick oil:water emulsions on the surface of clear, deep ocean water by using normalized difference ratios derived from remotely sensed data collected by an imaging spectrometer. The spectral bands used in the normalized difference ratios are located in wavelength regions where the spectra of thick oil:water emulsions on the ocean's surface have a distinct shape compared to clear water and clouds. In contrast to quantitative analyses, which require rigorous conversion to reflectance, the method described is easily computed and can be applied rapidly to radiance data or data that have been atmospherically corrected or ground-calibrated to reflectance. Examples are shown of the method applied to Airborne Visible/Infrared Imaging Spectrometer data collected May 17 and May 19, 2010, over the oil spill from the Deepwater Horizon offshore oil drilling platform in the Gulf of Mexico.

  5. Airborne hyperspectral imaging for sensing phosphorus concentration in the Lake Okeechobee drainage basin

    NASA Astrophysics Data System (ADS)

    Bogrekci, Ismail; Lee, Won Suk; Jordan, Jonathan D.

    2005-05-01

    Eutrophication disturbs the ecological balance in the Lake Okeechobee due to high concentration of phosphorus emanated from the regions in the lake's drainage basin. Ability of measuring phosphorus (P) concentrations of water in the Lake Okeechobee itself is very important. Furthermore, monitoring P in its drainage basins is crucial in order to find the cause of P loading and contributing regions. Also, inexpensive real-time sensing capability for a large area in a short time would help scientist, government agents, and civilians to understand the causes, spot the high-risk areas, and develop management practices for restoring the natural equilibrium. In order to measure P concentrations in the Lake Okeechobee drainage basin, airborne hyperspectral images were taken from five representative target sites by deploying a modified queen air twin engine aircraft. Each flight line covered a swath of approximately 365 m wide. Spatial resolution was about 1 m. Spectral range covered was between 412.65 and 991.82 nm with an approximate of 5 nm spectral resolution. Ground truthing was conducted to collect soil and vegetation samples, GPS coordinates of each location, and reflectance measurement of each sample. On the ground, spectral reflectance was measured using a handheld spectrometer in 400-2500 nm. The samples were sent to a laboratory for chemical analysis. Also diffuse reflectance of the samples was measured in a laboratory setting using a spectrophotometer with an integrating sphere. Images were geocorrected and rectified to reduce geometric effect. Calibration of images was conducted to obtain actual reflectance of the target area. Score, SAM (Spectral Angle Mapping), SFF (Spectral Feature Fitting) were computed for spectral matching with image derived spectral library.

  6. Geodetic Imaging for Rapid Assessment of Earthquakes: Airborne Laser Scanning (ALS)

    NASA Astrophysics Data System (ADS)

    Carter, W. E.; Shrestha, R. L.; Glennie, C. L.; Sartori, M.; Fernandez-Diaz, J.; National CenterAirborne Laser Mapping Operational Center

    2010-12-01

    To the residents of an area struck by a strong earthquake quantitative information on damage to the infrastructure, and its attendant impact on relief and recovery efforts, is urgent and of primary concern. To earth scientists a strong earthquake offers an opportunity to learn more about earthquake mechanisms, and to compare their models with the real world, in hopes of one day being able to accurately predict the precise locations, magnitudes, and times of large (and potentially disastrous) earthquakes. Airborne laser scanning (also referred to as airborne LiDAR or Airborne Laser Swath Mapping) is particularly well suited for rapid assessment of earthquakes, both for immediately estimating the damage to infrastructure and for providing information for the scientific study of earthquakes. ALS observations collected at low altitude (500—1000m) from a relatively slow (70—100m/sec) aircraft can provide dense (5—15 points/m2) sets of surface features (buildings, vegetation, ground), extending over hundreds of square kilometers with turn around times of several hours to a few days. The actual response time to any given event depends on several factors, including such bureaucratic issues as approval of funds, export license formalities, and clearance to fly over the area to be mapped, and operational factors such as the deployment of the aircraft and ground teams may also take a number of days for remote locations. Of course the need for immediate mapping of earthquake damage generally is not as urgent in remote regions with less infrastructure and few inhabitants. During August 16-19, 2010 the National Center for Airborne Laser Mapping (NCALM) mapped the area affected by the magnitude 7.2 El Mayor-Cucapah Earthquake (Northern Baja California Earthquake), which occurred on April 4, 2010, and was felt throughout southern California, Arizona, Nevada, and Baja California North, Mexico. From initial ground observations the fault rupture appeared to extend 75 km

  7. Measuring Radiant Emissions from Entire Prescribed Fires with Ground, Airborne and Satellite Sensors RxCADRE 2012

    NASA Technical Reports Server (NTRS)

    Dickinson, Matthew B.; Hudak, Andrew T.; Zajkowski, Thomas; Loudermilk, E. Louise; Schroeder, Wilfrid; Ellison, Luke; Kremens, Robert L.; Holley, William; Martinez, Otto; Paxton, Alexander; Bright, Benjamin C.; O'Brien, Joseph J.; Hornsby, Benjamin; Ichoku, Charles; Faulring, Jason; Gerace, Aaron; Peterson, David; Mauceri, Joseph

    2015-01-01

    Characterising radiation from wildland fires is an important focus of fire science because radiation relates directly to the combustion process and can be measured across a wide range of spatial extents and resolutions. As part of a more comprehensive set of measurements collected during the 2012 Prescribed Fire Combustion and Atmospheric Dynamics Research (RxCADRE) field campaign, we used ground, airborne and spaceborne sensors to measure fire radiative power (FRP) from whole fires, applying different methods to small (2 ha) and large (.100 ha) burn blocks. For small blocks (n1/46), FRP estimated from an obliquely oriented long-wave infrared (LWIR) camera mounted on a boom lift were compared with FRP derived from combined data from tower-mounted radiometers and remotely piloted aircraft systems (RPAS). For large burn blocks (n1/43), satellite FRP measurements from the Moderate-resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors were compared with near-coincident FRP measurements derived from a LWIR imaging system aboard a piloted aircraft. We describe measurements and consider their strengths and weaknesses. Until quantitative sensors exist for small RPAS, their use in fire research will remain limited. For oblique, airborne and satellite sensors, further FRP measurement development is needed along with greater replication of coincident measurements, which we show to be feasible.

  8. On-board Polarimetric Calibration of Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) Measurements

    NASA Astrophysics Data System (ADS)

    van Harten, G.; Diner, D. J.; Bull, M. A.; Tkatcheva, I. N.; Jovanovic, V. M.; Seidel, F. C.; Garay, M. J.; Xu, F.; Davis, A. B.; Rheingans, B. E.; Chipman, R. A.

    2015-12-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) aims at characterizing atmospheric aerosols and clouds using highly accurate imaging polarimetry. The instrument is deployed regularly onboard the NASA ER2 high-altitude aircraft, which is an ideal testbed for satellite remote sensing. Flying at 20 km altitude, AirMSPI's pushbroom camera typically provides 11×11 km images at 10 m resolution. The target is observed from multiple along-track angles within ±67° using a gimbal mount. Eight spectral bands within 355-935 nm are recorded simultaneously in different detector rows, 3 of which also measure linear polarization: 470, 660 and 865 nm. Photoelastic modulators (PEMs) encode the polarized and total intensities in each polarimetric pixel as the amplitude and offset of a wavelike intensity pattern, such that the ratio of the two is insensitive to pixel-to-pixel differences. This enables an accuracy in the degree of linear polarization of ~0.001, as measured in the lab. To maintain this accuracy in-flight, an optical probe continuously monitors the PEMs' retardances and controls their driving signals. Before and after observing a target, the instrument also observes a validator, which is an extended, polarized light source, located inside the instrument housing. These data are now incorporated in the data processing pipeline to further improve the calibration of the modulation functions. Highly polarized pixels in Earth data are utilized to transfer the validator results to meet the illumination in Earth scenes, as well as to make fine adjustments at higher temporal resolution. The reprocessed polarization products for the PODEX campaign show significant improvements when intercompared with the Research Scanning Polarimeter (RSP, Goddard Institute for Space Studies). We currently evaluate the impact of the on-board polarimetric calibration on aerosol retrievals, and compare against AERONET reference measurements.

  9. Development of Real-Time Image Stabilization for an Airborne Infrared Spectrometer

    NASA Astrophysics Data System (ADS)

    Fedeler, Samuel; Samra, Jenna; Guth, Giora

    2017-01-01

    The total solar eclipse of August 21, 2017 offers a unique opportunity for study of the infrared solar corona. The Airborne Infrared Spectrometer (AIR-Spec), currently under development, is an infrared telescope and spectrometer that will search for several magnetically sensitive coronal emission lines between 1.4 and 4 micrometers. This instrument will be the first to observe several of these lines, and the measurement campaign will determine whether any lines may be useful for future direct observations of the coronal magnetic field. AIR-Spec will be mounted on an NSF/NCAR Gulfstream V jet and will observe the eclipse from an altitude greater than 14.9 km, above the bulk of IR-absorbing atmospheric water vapor.To ensure that the images taken for analysis have adequate spatial resolution, the AIR-Spec line-of-sight must be stabilized to 1.9 arc-seconds RMS over a 1 second exposure time. Image stabilization is achieved by using a fiber-optic gyroscope to measure aircraft rotation and a fast-steering mirror to adjust the line-of-sight accordingly. The stabilization algorithm runs in a programmable automation controller, which interfaces with the gyroscope and mirror. Software was developed to implement the stabilization algorithm in the controller and to integrate the controller with a user interface, allowing for data display and logging, user guided attitude calibration, and manual control of the fast-steering mirror. The current system stabilizes images to 1.9 arc-seconds in 60 percent of 1 second camera exposures under laboratory conditions. This software will be operational during test flights in Fall 2016 and Spring 2017, and will be optimized for the eclipse flight in Summer 2017.

  10. Passive signatures concealed objects recorded by multispectral and hyperspectral systems in visible, infrared and terahertz range

    NASA Astrophysics Data System (ADS)

    Kastek, Mariusz; Kowalski, Marcin; Polakowski, Henryk; Lagueux, Philippe; Gagnon, Marc-André

    2014-06-01

    Risks to the safety of public zones (generally available for people) are related mainly to the presence of hidden dangerous objects (such as knives, guns, bombs etc.) and their usage. Modern system for the monitoring of such zones attempt to detect dangerous tools using multispectral cameras working in different spectral ranges: the visible radiation, near, medium and long range infrared and recently also in terahertz range. In order to develop methods and algorithms to detect hidden objects it is necessary to determine the thermal signatures of such objects of interest. The laboratory measurements were conducted to determine the thermal signatures of dangerous tools hidden under various clothes in different ambient conditions. Cameras used for measurements were working in spectral range 0.6-12.5 µm. An infrared imaging Fourier transform spectroradiometer was also used, working in spectral range 7.7-11.7 µm. Analysis of registered thermograms and hyperspectral datacubes has yielded the thermal signatures for: two types of guns, two types of knives and home-made explosive bombs. The determined thermal signatures will be used in the development of method and algorithms of image analysis implemented in proposed monitoring systems.

  11. Imaging and radiometric performance simulation for a new high-performance dual-band airborne reconnaissance camera

    NASA Astrophysics Data System (ADS)

    Seong, Sehyun; Yu, Jinhee; Ryu, Dongok; Hong, Jinsuk; Yoon, Jee-Yeon; Kim, Sug-Whan; Lee, Jun-Ho; Shin, Myung-Jin

    2009-05-01

    In recent years, high performance visible and IR cameras have been used widely for tactical airborne reconnaissance. The process improvement for efficient discrimination and analysis of complex target information from active battlefields requires for simultaneous multi-band measurement from airborne platforms at various altitudes. We report a new dual band airborne camera designed for simultaneous registration of both visible and IR imagery from mid-altitude ranges. The camera design uses a common front end optical telescope of around 0.3m in entrance aperture and several relay optical sub-systems capable of delivering both high spatial resolution visible and IR images to the detectors. The camera design is benefited from the use of several optical channels packaged in a compact space and the associated freedom to choose between wide (~3 degrees) and narrow (~1 degree) field of view. In order to investigate both imaging and radiometric performances of the camera, we generated an array of target scenes with optical properties such as reflection, refraction, scattering, transmission and emission. We then combined the target scenes and the camera optical system into the integrated ray tracing simulation environment utilizing Monte Carlo computation technique. Taking realistic atmospheric radiative transfer characteristics into account, both imaging and radiometric performances were then investigated. The simulation results demonstrate successfully that the camera design satisfies NIIRS 7 detection criterion. The camera concept, details of performance simulation computation, the resulting performances are discussed together with future development plan.

  12. Mapping Forest Species Composition Using Imaging Spectrometry and Airborne Laser Scanner Data

    NASA Astrophysics Data System (ADS)

    Torabzadeh, H.; Morsdorf, F.; Leiterer, R.; Schaepman, M. E.

    2013-09-01

    Accurate mapping of forest species composition is an important aspect of monitoring and management planning related to ecosystem functions and services associated with water refinement, carbon sequestration, biodiversity, and wildlife habitats. Although different vegetation species often have unique spectral signatures, mapping based on spectral reflectance properties alone is often an ill-posed problem, since the spectral signature is as well influenced by age, canopy gaps, shadows and background characteristics. Thus, reducing the unknown variation by knowing the structural parameters of different species should improve determination procedures. In this study we combine imaging spectrometry (IS) and airborne laser scanning (ALS) data of a mixed needle and broadleaf forest to differentiate tree species more accurately as single-instrument data could do. Since forest inventory data in dense forests involve uncertainties, we tried to refine them by using individual tree crowns (ITC) position and shape, which derived from ALS data. Comparison of the extracted spectra from original field data and the modified one shows how ALS-derived shape and position of ITCs can improve separablity of the different species. The spatially explicit information layers containing both the spectral and structural components from the IS and ALS datasets were then combined by using a non-parametric support vector machine (SVM) classifier.

  13. Field-Based and Airborne Hyperspectral Imaging for Applied Research in the State of Alaska

    NASA Astrophysics Data System (ADS)

    Prakash, A.; Buchhorn, M.; Cristobal, J.; Kokaly, R. F.; Graham, P. R.; Waigl, C. F.; Hampton, D. L.; Werdon, M.; Guldager, N.; Bertram, M.; Stuefer, M.

    2015-12-01

    Hyperspectral imagery acquired using Hyspex VNIR-1800 and SWIR-384 camera systems have provided unique information on terrestrial and aquatic biogeochemical parameters, and diagnostic mineral properties in exposed outcrops in selected sites in the state of Alaska. The Hyspex system was configured for in-situ and field scanning by attaching it to a gimbal-mounted rotational stage on a robust tripod. Scans of vertical faces of vegetation and rock outcrops were made close to the campus of the University of Alaska Fairbanks, in an abandoned mine near Fairbanks, and on exposures of Orange Hill in Wrangell-St. Elias National Park. Atmospherically corrected integrated VNIR_SWIR spectra were extracted which helped to study varying nitrogen content in the vegetation, and helped to distinguish the various micas. Processed imagery helped to pull out carbonates, clays, sulfates, and alteration-related minerals. The same instrument was also mounted in airborne configuration on two different aircrafts, a DeHavilland Beaver and a Found Bush Hawk. Test flights were flown over urban and wilderness areas that presented a variety of landcover types. Processed imagery shows promise in mapping man-made surfaces, phytoplankton, and dissolved materials in inland water bodies. Sample data and products are available on the University of Alaska Fairbanks Hyperspectral Imaging Laboratory (HyLab) website at http://hyperspectral.alaska.edu.

  14. Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 3: AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob (Editor)

    1993-01-01

    This publication contains the summaries for the Fourth Annual JPL Airborne Geoscience Workshop, held in Washington, D.C. on October 25-29, 1993. The main workshop is divided into three smaller workshops as follows: The Airborne Visible/Infrared Spectrometer (AVIRIS) workshop, on October 25-26, whose summaries appear in Volume 1; The Thermal Infrared Multispectral Scanner (TIMS) workshop, on October 27, whose summaries appear in Volume 2; and The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on October 28-29, whose summaries appear in this volume, Volume 3.

  15. Spectral analysis of Ahuna Mons from Dawn mission's visible-infrared spectrometer

    NASA Astrophysics Data System (ADS)

    Zambon, F.; Raponi, A.; Tosi, F.; De Sanctis, M. C.; McFadden, L. A.; Carrozzo, F. G.; Longobardo, A.; Ciarniello, M.; Krohn, K.; Stephan, K.; Palomba, E.; Pieters, C. M.; Ammannito, E.; Russell, C. T.; Raymond, C. A.

    2017-01-01

    Ahuna Mons is the highest mountain on Ceres. A unique complex in terms of size, shape, and morphology, Ahuna is bordered by flanks of the talus around its summit. Recent work by Ruesch et al. based on Dawn's Framing Camera images shed light on the possible origin of Ahuna Mons. According to Ruesch et al. (2016), Ahuna Mons is formed by a volcanic process involving the ascent of cryomagma and extrusion onto the surface followed by dome development and subsequent spreading. Here we analyzed in detail the composition of Ahuna Mons, using data acquired by the visible and infrared spectrometer aboard Dawn. The spectral analysis reveals a relatively high abundance of carbonates and a nonhomogeneous variation in carbonate composition and abundance along Ahuna's flanks, associated with a lower amount of the Ceres's ubiquitous NH4-phyllosilicates over a large portion of the flanks. The grain size is coarser on the flanks than in the surrounding regions, suggesting the presence of fresher material, also compatible with a larger abundance of carbonates. Thermal variations are seen in Ahuna, supporting the evidence of different compactness of the surface regolith in specific locations. Results of the spectral analysis are consistent with a possible cryovolcanic origin which exposed fresher material that slid down on the flanks.

  16. What We are Learning about Airborne Particles from MISR Multi-angle Imaging

    NASA Astrophysics Data System (ADS)

    Kahn, Ralph

    The NASA Earth Observing System’s Multi-angle Imaging SpectroRadiometer (MISR) instrument has been collecting global observations in 36 angular-spectral channels about once per week for over 14 years. Regarding airborne particles, MISR is contributing in three broad areas: (1) aerosol optical depth (AOD), especially over land surface, including bright desert, (2) wildfire smoke, desert dust, and volcanic ash injection and near-source plume height, and (3) aerosol type, the aggregate of qualitative constraints on particle size, shape, and single-scattering albedo (SSA). Early advances in the retrieval of these quantities focused on AOD, for which surface-based sun photometers provided a global network of ground truth, and plume height, for which ground-based and airborne lidar offered near-coincident validation data. MSIR monthly, global AOD products contributed directly to the advances in modeling aerosol impacts on climate made between the Inter-governmental Panel on Climate Change (IPCC) third and fourth assessment reports. MISR stereo-derived plume heights are now being used to constrain source inventories for the AeroCom aerosol-climate modeling effort. The remaining challenge for the MISR aerosol effort is to refine and validate our global aerosol type product. Unlike AOD and plume height, aerosol type as retrieved by MISR is a qualitative classification derived from multi-dimensional constraints, so evaluation must be done on a categorical basis. Coincident aerosol type validation data are far less common than for AOD, and, except for rare Golden Days during aircraft field campaigns, amount to remote sensing retrievals from suborbital instruments having uncertainties comparable to those from the MISR product itself. And satellite remote sensing retrievals of aerosol type are much more sensitive to scene conditions such as surface variability and AOD than either AOD or plume height. MISR aerosol type retrieval capability and information content have been

  17. SWUIS-A: A Versatile, Low-Cost UV/VIS/IR Imaging System for Airborne Astronomy and Aeronomy Research

    NASA Technical Reports Server (NTRS)

    Durda, Daniel D.; Stern, S. Alan; Tomlinson, William; Slater, David C.; Vilas, Faith

    2001-01-01

    We have developed and successfully flight-tested on 14 different airborne missions the hardware and techniques for routinely conducting valuable astronomical and aeronomical observations from high-performance, two-seater military-type aircraft. The SWUIS-A (Southwest Universal Imaging System - Airborne) system consists of an image-intensified CCD camera with broad band response from the near-UV to the near IR, high-quality foreoptics, a miniaturized video recorder, an aircraft-to-camera power and telemetry interface with associated camera controls, and associated cables, filters, and other minor equipment. SWUIS-A's suite of high-quality foreoptics gives it selectable, variable focal length/variable field-of-view capabilities. The SWUIS-A camera frames at 60 Hz video rates, which is a key requirement for both jitter compensation and high time resolution (useful for occultation, lightning, and auroral studies). Broadband SWUIS-A image coadds can exceed a limiting magnitude of V = 10.5 in <1 sec with dark sky conditions. A valuable attribute of SWUIS-A airborne observations is the fact that the astronomer flies with the instrument, thereby providing Space Shuttle-like "payload specialist" capability to "close-the-loop" in real-time on the research done on each research mission. Key advantages of the small, high-performance aircraft on which we can fly SWUIS-A include significant cost savings over larger, more conventional airborne platforms, worldwide basing obviating the need for expensive, campaign-style movement of specialized large aircraft and their logistics support teams, and ultimately faster reaction times to transient events. Compared to ground-based instruments, airborne research platforms offer superior atmospheric transmission, the mobility to reach remote and often-times otherwise unreachable locations over the Earth, and virtually-guaranteed good weather for observing the sky. Compared to space-based instruments, airborne platforms typically offer

  18. Design of a Pushbroom Imaging Spectrometer that Exceeds AVIRIS Performance

    NASA Technical Reports Server (NTRS)

    Green, Robert O.

    2004-01-01

    This slide presentation reviews the design of a Pushbroom Imaging Spectrometer, that will exceed the performance of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The approach for the AVIRIS-II instrument is reviewed as are the specifications for the new spectrometer. Even though the pushbroom spectrometer is inherently non-uniform, the design of the AVIRIS-II provides for uniformity. Spot diagrams at the slit and at the detector inside the 27micron box are presented. A few of the challenges in the mechanical design and the making of the slit are discussed. The specifications of the 6604A detector array are reviewed. Slides showing the expected Signal to Noise Ratio performance are presented.

  19. Correction of Airborne Pushbroom Images Orientation Using Bundle Adjustment of Frame Images

    NASA Astrophysics Data System (ADS)

    Barbieux, K.; Constantin, D.; Merminod, B.

    2016-06-01

    To compute hyperspectral orthophotos of an area, one may proceed like for standard RGB orthophotos : equip an aircraft or a drone with the appropriate camera, a GPS and an Inertial Measurement Unit (IMU). The position and attitude data from the navigation sensors, together with the collected images, can be input to a bundle adjustment which refines the estimation of the parameters and allows to create 3D models or orthophotos of the scene. But most of the hyperspectral cameras are pushbrooms sensors : they acquire lines of pixels. The bundle adjustment identifies tie points (using their 2D neighbourhoods) between different images to stitch them together. This is impossible when the input images are lines. To get around this problem, we propose a method that can be used when both a frame RGB camera and a hyperspectral pushbroom camera are used during the same flight. We first use the bundle adjustment theory to obtain corrected navigation parameters for the RGB camera. Then, assuming a small boresight between the RGB camera and the navigation sensors, we can estimate this boresight as well as the corrected position and attitude parameters for the navigation sensors. Finally, supposing that the boresight between these sensors and the pushbroom camera is constant during the flight, we can retrieve it by matching manually corresponding pairs of points between the current projection and a reference. Comparison between the direct georeferencing and the georeferencing with our method on three flights performed during the Leman-Baikal project shows great improvement of the ground accuracy.

  20. Algorithms for detection of objects in image sequences captured from an airborne imaging system

    NASA Technical Reports Server (NTRS)

    Kasturi, Rangachar; Camps, Octavia; Tang, Yuan-Liang; Devadiga, Sadashiva; Gandhi, Tarak

    1995-01-01

    This research was initiated as a part of the effort at the NASA Ames Research Center to design a computer vision based system that can enhance the safety of navigation by aiding the pilots in detecting various obstacles on the runway during critical section of the flight such as a landing maneuver. The primary goal is the development of algorithms for detection of moving objects from a sequence of images obtained from an on-board video camera. Image regions corresponding to the independently moving objects are segmented from the background by applying constraint filtering on the optical flow computed from the initial few frames of the sequence. These detected regions are tracked over subsequent frames using a model based tracking algorithm. Position and velocity of the moving objects in the world coordinate is estimated using an extended Kalman filter. The algorithms are tested using the NASA line image sequence with six static trucks and a simulated moving truck and experimental results are described. Various limitations of the currently implemented version of the above algorithm are identified and possible solutions to build a practical working system are investigated.

  1. Image-Based Airborne LiDAR Point Cloud Encoding for 3d Building Model Retrieval

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chen; Lin, Chao-Hung

    2016-06-01

    With the development of Web 2.0 and cyber city modeling, an increasing number of 3D models have been available on web-based model-sharing platforms with many applications such as navigation, urban planning, and virtual reality. Based on the concept of data reuse, a 3D model retrieval system is proposed to retrieve building models similar to a user-specified query. The basic idea behind this system is to reuse these existing 3D building models instead of reconstruction from point clouds. To efficiently retrieve models, the models in databases are compactly encoded by using a shape descriptor generally. However, most of the geometric descriptors in related works are applied to polygonal models. In this study, the input query of the model retrieval system is a point cloud acquired by Light Detection and Ranging (LiDAR) systems because of the efficient scene scanning and spatial information collection. Using Point clouds with sparse, noisy, and incomplete sampling as input queries is more difficult than that by using 3D models. Because that the building roof is more informative than other parts in the airborne LiDAR point cloud, an image-based approach is proposed to encode both point clouds from input queries and 3D models in databases. The main goal of data encoding is that the models in the database and input point clouds can be consistently encoded. Firstly, top-view depth images of buildings are generated to represent the geometry surface of a building roof. Secondly, geometric features are extracted from depth images based on height, edge and plane of building. Finally, descriptors can be extracted by spatial histograms and used in 3D model retrieval system. For data retrieval, the models are retrieved by matching the encoding coefficients of point clouds and building models. In experiments, a database including about 900,000 3D models collected from the Internet is used for evaluation of data retrieval. The results of the proposed method show a clear superiority

  2. The airborne volcanic object imaging detector (AVOID): A new tool for airborne atmospheric remote sensing of clouds

    NASA Astrophysics Data System (ADS)

    Prata, F.; Durant, A.; Kylling, A.

    2012-04-01

    A new dual thermal imaging infrared camera system has been developed for aircraft in order to investigate water and volcanic clouds ahead. The system, AVOID, uses interference filters to discriminate clouds of water and ice from volcanic substances (silicates) by utilising the spectral features of these substances at wavelengths between 8-12 µm. Tests of the system were recently conducted in Sicily, in the vicinity of Mt Etna volcano and at Stromboli volcano, during emission of ash and SO2. The data were acquired from altitudes up to 12,000 ft, sampling from two cameras at frequencies down to 1 Hz. Corrections for the aircraft attitude were made using a very fast sampling attitude sensor, collocated with the imaging system. About 30 hours of data were acquired - over 90% of these measurements were of meteorological clouds of water droplets and ice. Using a radiative transfer model and information on the spectral refractive indices of water, ice and silicate ash, a retrieval scheme has been devised to determine the mass loading and effective particle radius of these substances and some preliminary results are presented. We have also developed a sophisticated simulation tool that allows us to model the 3D structure of clouds based on Monte Carlo radiative transfer. By utilising a narrow bandpass filter centred on 8.6 µm, AVOID can also detect SO2 gas and some illustrative examples are shown. During March 2012 the AVOID system will be mounted onto an AIRBUS A340 and flown at altitudes up to 38,000 ft. These tests will include measurements of clouds, as well as drifting volcanic ash and SO2 gas. We intend to present some of these initial results.

  3. Operational Tree Species Mapping in a Diverse Tropical Forest with Airborne Imaging Spectroscopy

    PubMed Central

    Baldeck, Claire A.; Asner, Gregory P.; Martin, Robin E.; Anderson, Christopher B.; Knapp, David E.; Kellner, James R.; Wright, S. Joseph

    2015-01-01

    Remote identification and mapping of canopy tree species can contribute valuable information towards our understanding of ecosystem biodiversity and function over large spatial scales. However, the extreme challenges posed by highly diverse, closed-canopy tropical forests have prevented automated remote species mapping of non-flowering tree crowns in these ecosystems. We set out to identify individuals of three focal canopy tree species amongst a diverse background of tree and liana species on Barro Colorado Island, Panama, using airborne imaging spectroscopy data. First, we compared two leading single-class classification methods—binary support vector machine (SVM) and biased SVM—for their performance in identifying pixels of a single focal species. From this comparison we determined that biased SVM was more precise and created a multi-species classification model by combining the three biased SVM models. This model was applied to the imagery to identify pixels belonging to the three focal species and the prediction results were then processed to create a map of focal species crown objects. Crown-level cross-validation of the training data indicated that the multi-species classification model had pixel-level producer’s accuracies of 94–97% for the three focal species, and field validation of the predicted crown objects indicated that these had user’s accuracies of 94–100%. Our results demonstrate the ability of high spatial and spectral resolution remote sensing to accurately detect non-flowering crowns of focal species within a diverse tropical forest. We attribute the success of our model to recent classification and mapping techniques adapted to species detection in diverse closed-canopy forests, which can pave the way for remote species mapping in a wider variety of ecosystems. PMID:26153693

  4. Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region

    PubMed Central

    Thorpe, Andrew K.; Thompson, David R.; Hulley, Glynn; Kort, Eric Adam; Vance, Nick; Borchardt, Jakob; Krings, Thomas; Gerilowski, Konstantin; Sweeney, Colm; Conley, Stephen; Bue, Brian D.; Aubrey, Andrew D.; Hook, Simon; Green, Robert O.

    2016-01-01

    Methane (CH4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit ∼ 2 kg/h to 5 kg/h through ∼ 5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. With the observed confirmation of a lognormal emission distribution, this airborne observing strategy and its ability to locate previously unknown point sources in real time provides an efficient and effective method to identify and mitigate major emissions contributors over a wide geographic area. With improved instrumentation, this capability scales to spaceborne applications [Thompson DR, et al. (2016) Geophys Res Lett 43(12):6571–6578]. Further illustration of this potential is demonstrated with two detected, confirmed, and repaired pipeline leaks during the campaign. PMID:27528660

  5. Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region.

    PubMed

    Frankenberg, Christian; Thorpe, Andrew K; Thompson, David R; Hulley, Glynn; Kort, Eric Adam; Vance, Nick; Borchardt, Jakob; Krings, Thomas; Gerilowski, Konstantin; Sweeney, Colm; Conley, Stephen; Bue, Brian D; Aubrey, Andrew D; Hook, Simon; Green, Robert O

    2016-08-30

    Methane (CH4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit [Formula: see text] 2 kg/h to 5 kg/h through [Formula: see text] 5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. With the observed confirmation of a lognormal emission distribution, this airborne observing strategy and its ability to locate previously unknown point sources in real time provides an efficient and effective method to identify and mitigate major emissions contributors over a wide geographic area. With improved instrumentation, this capability scales to spaceborne applications [Thompson DR, et al. (2016) Geophys Res Lett 43(12):6571-6578]. Further illustration of this potential is demonstrated with two detected, confirmed, and repaired pipeline leaks during the campaign.

  6. A Multispectral Image Creating Method for a New Airborne Four-Camera System with Different Bandpass Filters.

    PubMed

    Li, Hanlun; Zhang, Aiwu; Hu, Shaoxing

    2015-07-20

    This paper describes an airborne high resolution four-camera multispectral system which mainly consists of four identical monochrome cameras equipped with four interchangeable bandpass filters. For this multispectral system, an automatic multispectral data composing method was proposed. The homography registration model was chosen, and the scale-invariant feature transform (SIFT) and random sample consensus (RANSAC) were used to generate matching points. For the difficult registration problem between visible band images and near-infrared band images in cases lacking manmade objects, we presented an effective method based on the structural characteristics of the system. Experiments show that our method can acquire high quality multispectral images and the band-to-band alignment error of the composed multiple spectral images is less than 2.5 pixels.

  7. A Multispectral Image Creating Method for a New Airborne Four-Camera System with Different Bandpass Filters

    PubMed Central

    Li, Hanlun; Zhang, Aiwu; Hu, Shaoxing

    2015-01-01

    This paper describes an airborne high resolution four-camera multispectral system which mainly consists of four identical monochrome cameras equipped with four interchangeable bandpass filters. For this multispectral system, an automatic multispectral data composing method was proposed. The homography registration model was chosen, and the scale-invariant feature transform (SIFT) and random sample consensus (RANSAC) were used to generate matching points. For the difficult registration problem between visible band images and near-infrared band images in cases lacking manmade objects, we presented an effective method based on the structural characteristics of the system. Experiments show that our method can acquire high quality multispectral images and the band-to-band alignment error of the composed multiple spectral images is less than 2.5 pixels. PMID:26205264

  8. Extraction of Urban Trees from Integrated Airborne Based Digital Image and LIDAR Point Cloud Datasets - Initial Results

    NASA Astrophysics Data System (ADS)

    Dogon-yaro, M. A.; Kumar, P.; Rahman, A. Abdul; Buyuksalih, G.

    2016-10-01

    Timely and accurate acquisition of information on the condition and structural changes of urban trees serves as a tool for decision makers to better appreciate urban ecosystems and their numerous values which are critical to building up strategies for sustainable development. The conventional techniques used for extracting tree features include; ground surveying and interpretation of the aerial photography. However, these techniques are associated with some constraint, such as labour intensive field work, a lot of financial requirement, influences by weather condition and topographical covers which can be overcome by means of integrated airborne based LiDAR and very high resolution digital image datasets. This study presented a semi-automated approach for extracting urban trees from integrated airborne based LIDAR and multispectral digital image datasets over Istanbul city of Turkey. The above scheme includes detection and extraction of shadow free vegetation features based on spectral properties of digital images using shadow index and NDVI techniques and automated extraction of 3D information about vegetation features from the integrated processing of shadow free vegetation image and LiDAR point cloud datasets. The ability of the developed algorithms shows a promising result as an automated and cost effective approach to estimating and delineated 3D information of urban trees. The research also proved that integrated datasets is a suitable technology and a viable source of information for city managers to be used in urban trees management.

  9. Diagnostic Features of Lava Flows in Satellite and Airborne Images (Invited)

    NASA Astrophysics Data System (ADS)

    Rowland, S. K.; Bruno, B. C.; Comeau, D.; Mouginis-Mark, P. J.; Fagents, S. A.; Harris, A. J.

    2013-12-01

    Characteristic surface features on lava flows can be seen in, and measured from, nadir and oblique airborne and space borne images. Some are diagnostic of volumetric flow rate, lava-transport mode, rheology, and composition. These in turn can be used to infer eruption styles, magma chamber stress regimes, volcanic histories, etc. Where independent methods can determine these properties, the image-based methods can be refined and (tentatively) extended to other planets. For example, the planimetric outline of a lava flow is determined by the lava's volumetric flow rate and rheology, the strength of the cooled skin relative to that of the fluid interior, and the extent to which a flow can conform to, or over-run, pre-existing topography. Fluid, skin-strength-dominated lava such as pāhoehoe, has a very convoluted outline; more viscous, interior-strength-dominated lava such as ';a';ā (as well as more silicic compositions) have more linear outlines. This can be quantified by the fractal dimension, which increases with convolution. Spatial resolution and degradation of the flow margin are important caveats. Flow margins are relatively easy to measure with IKONOS and QuickBird (Earth), HiRISE (Mars), and LROC NAC (Moon) data, all of which have spatial resolutions < 1 m. They become more difficult to measure in Landsat (30 m), THEMIS vis. (Mars; 18 m), or Magellan (75 m; Venus) data. Also useful is the ratio between the radius of curvature of the flow front and the flow length, which is small for long narrow (fluid) flows, and large for short stubby (viscous) flows. Even incipient channels display shear zones across which there were sharp velocity gradients, and these are preserved on flow surfaces. Tube-fed flows may display lines of skylights that indicate master tubes. Whether a flow is channel-fed ';a';ā or tube-fed pāhoehoe is determined by the volumetric flow rate, which is almost always directly related to the eruption rate. This may be related to the driving

  10. Mapping Weathering and Alteration Minerals in the Comstock and Geiger Grade Areas using Visible to Thermal Infrared Airborne Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Vaughan, Greg R.; Calvin, Wendy M.

    2005-01-01

    To support research into both precious metal exploration and environmental site characterization a combination of high spatial/spectral resolution airborne visible, near infrared, short wave infrared (VNIR/SWIR) and thermal infrared (TIR) image data were acquired to remotely map hydrothermal alteration minerals around the Geiger Grade and Comstock alteration regions, and map the mineral by-products of weathered mine dumps in Virginia City. Remote sensing data from the Airborne Visible Infrared Imaging Spectrometer (AVIRIS), SpecTIR Corporation's airborne hyperspectral imager (HyperSpecTIR), the MODIS-ASTER airborne simulator (MASTER), and the Spatially Enhanced Broadband Array Spectrograph System (SEBASS) were acquired and processed into mineral maps based on the unique spectral signatures of image pixels. VNIR/SWIR and TIR field spectrometer data were collected for both calibration and validation of the remote data sets, and field sampling, laboratory spectral analyses and XRD analyses were made to corroborate the surface mineralogy identified by spectroscopy. The resulting mineral maps show the spatial distribution of several important alteration minerals around each study area including alunite, quartz, pyrophyllite, kaolinite, montmorillonite/muscovite, and chlorite. In the Comstock region the mineral maps show acid-sulfate alteration, widespread propylitic alteration and extensive faulting that offsets the acid-sulfate areas, in contrast to the larger, dominantly acid-sulfate alteration exposed along Geiger Grade. Also, different mineral zones within the intense acid-sulfate areas were mapped. In the Virginia City historic mining district the important weathering minerals mapped include hematite, goethite, jarosite and hydrous sulfate minerals (hexahydrite, alunogen and gypsum) located on mine dumps. Sulfate minerals indicate acidic water forming in the mine dump environment. While there is not an immediate threat to the community, there are clearly sources of

  11. Discovery and characterization of on-orbit degradation of the Visible Infrared Imaging Radiometer Suite (VIIRS) Rotating Telescope Assembly (RTA)

    NASA Astrophysics Data System (ADS)

    De Luccia, F.; Moyer, D.; Johnson, E.; Rausch, K.; Lei, N.; Chiang, K.; Xiong, X.; Fulbright, J.; Haas, E.; Iona, G.

    2012-09-01

    The Suomi National Polar-orbiting Partnership (NPP) satellite was launched on Oct. 28, 2011, and began the commissioning phase of several of its instruments shortly thereafter. One of these instruments, VIIRS, was found to exhibit a gradual but persistent decrease in the optical throughput of several bands, with the near-infrared bands being more affected than those in the visible. The rate of degradation quickly increased upon opening of the nadir door that permits the VIIRS telescope to view the earth. Simultaneously, a second instrument on NPP, the Solar Diffuser Stability Monitor (SDSM), was experiencing a similar decrease in response, leading the investigation team to suspect that the cause must be the result of some common contamination process. This paper will discuss a series of experiments that were performed to demonstrate that the VIIRS and SDSM response changes were due to separate causes, and which enabled the team to conclude that the VIIRS sensor degradation was the result of ultraviolet light exposure of the rotating telescope assembly. The root cause investigation of the telescope degradation will be addressed in a separate paper.

  12. Evaluation of Various Spectral Inputs for Estimation of Forest Biochemical and Structural Properties from Airborne Imaging Spectroscopy Data

    NASA Astrophysics Data System (ADS)

    Homolová, L.; Janoutová, R.; Malenovský, Z.

    2016-06-01

    In this study we evaluated various spectral inputs for retrieval of forest chlorophyll content (Cab) and leaf area index (LAI) from high spectral and spatial resolution airborne imaging spectroscopy data collected for two forest study sites in the Czech Republic (beech forest at Štítná nad Vláří and spruce forest at Bílý Kříž). The retrieval algorithm was based on a machine learning method - support vector regression (SVR). Performance of the four spectral inputs used to train SVR was evaluated: a) all available hyperspectral bands, b) continuum removal (CR) 645 - 710 nm, c) CR 705 - 780 nm, and d) CR 680 - 800 nm. Spectral inputs and corresponding SVR models were first assessed at the level of spectral databases simulated by combined leaf-canopy radiative transfer models PROSPECT and DART. At this stage, SVR models using all spectral inputs provided good performance (RMSE for Cab < 10 μg cm-2 and for LAI < 1.5), with consistently better performance for beech over spruce site. Since application of trained SVRs on airborne hyperspectral images of the spruce site produced unacceptably overestimated values, only the beech site results were analysed. The best performance for the Cab estimation was found for CR bands in range of 645 - 710 nm, whereas CR bands in range of 680 - 800 nm were the most suitable for LAI retrieval. The CR transformation reduced the across-track bidirectional reflectance effect present in airborne images due to large sensor field of view.

  13. The effect of boreal forest canopy to reflectance of snow covered terrain based on airborne imaging spectrometer observations

    NASA Astrophysics Data System (ADS)

    Heinilä, Kirsikka; Salminen, Miia; Pulliainen, Jouni; Cohen, Juval; Metsämäki, Sari; Pellikka, Petri

    2014-04-01

    Optical remote sensing methods for mapping of the seasonal snow cover are often obstructed by the masking effect of forest canopy. Therefore, optical algorithms tend to underestimate the amount of snow cover in forested regions. In this paper, we investigate the influence of boreal forest stand characteristics on the observed scene reflectance under full dry snow cover conditions by applying an advantageous experimental setup combining airborne hyperspectral imaging and LIDAR data sets from a test region in Sodankylä, northern Finland. This is particularly useful to the understanding of the composition of the mixed satellite scene reflectance behavior and it is relation to the natural ground targets' spectral signatures.

  14. Airborne Hyperspectral Imagery for the Detection of Agricultural Crop Stress

    NASA Technical Reports Server (NTRS)

    Cassady, Philip E.; Perry, Eileen M.; Gardner, Margaret E.; Roberts, Dar A.

    2001-01-01

    Multispectral digital imagery from aircraft or satellite is presently being used to derive basic assessments of crop health for growers and others involved in the agricultural industry. Research indicates that narrow band stress indices derived from hyperspectral imagery should have improved sensitivity to provide more specific information on the type and cause of crop stress, Under funding from the NASA Earth Observation Commercial Applications Program (EOCAP) we are identifying and evaluating scientific and commercial applications of hyperspectral imagery for the remote characterization of agricultural crop stress. During the summer of 1999 a field experiment was conducted with varying nitrogen treatments on a production corn-field in eastern Nebraska. The AVIRIS (Airborne Visible-Infrared Imaging Spectrometer) hyperspectral imager was flown at two critical dates during crop development, at two different altitudes, providing images with approximately 18m pixels and 3m pixels. Simultaneous supporting soil and crop characterization included spectral reflectance measurements above the canopy, biomass characterization, soil sampling, and aerial photography. In this paper we describe the experiment and results, and examine the following three issues relative to the utility of hyperspectral imagery for scientific study and commercial crop stress products: (1) Accuracy of reflectance derived stress indices relative to conventional measures of stress. We compare reflectance-derived indices (both field radiometer and AVIRIS) with applied nitrogen and with leaf level measurement of nitrogen availability and chlorophyll concentrations over the experimental plots (4 replications of 5 different nitrogen levels); (2) Ability of the hyperspectral sensors to detect sub-pixel areas under crop stress. We applied the stress indices to both the 3m and 18m AVIRIS imagery for the entire production corn field using several sub-pixel areas within the field to compare the relative

  15. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  16. Temporal variation in spectral detection thresholds of substrate and vegetation in AVIRIS images

    NASA Technical Reports Server (NTRS)

    Sabol, Donald E., Jr.; Roberts, Dar A.; Smith, Milton O.; Adams, John B.

    1992-01-01

    The ability to map changes over large surface areas over time is one of the advantages in using remote sensing as a monitoring tool. Temporal changes in the surface may be gradual, making them difficult to detect in the short-term, and because they commonly occur at the subpixel scale, they may be difficult to detect in the long-term as well. Also, subtle changes may be real or merely an artifact of image noise. It is, therefore, necessary to understand the factors that limit the detection of surface materials in evaluating temporal data. The spectral detectability of vegetation and soil in the 1990 July and October Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data of Jasper Ridge, CA was evaluated and compared.

  17. The necessity of exterior orientation parameters for the rigorous geometric correction of MEIS-II airborne digital images

    SciTech Connect

    Bannari, A.; Morin, D.; Gibson, J.R.

    1996-11-01

    The Canada Land Use Monitoring Program is attempting to replace aerial photographs by remote sensing imagery (satellite or airborne). The Canada Center for Remote Sensing (CCRS) is implementing an airborne multi-detector electro-optical imaging system (MEIS-II). The acceptance of airborne scanners has been slow principally due to poor spatial resolution and distortions induced by aircraft motion. To address this geometric problem, CCRS has developed a rigorous correction method based on fundamental photogrammetric principles (collinearity and coplanarity) and auxiliary navigation data (attitude, altitude and aircraft speed) measured in relation to time by an inertial navigation system (INS). The method can process images in monoscopy or stereoscopy. It uses primarily a low-order polynomial function for correcting auxiliary data based on the method of least squares and a few control points. The results are then used in the geometric correction procedure. In this study, we discuss the effect of geometric distortions caused by aircraft motion and we test two geometric correction methods. The first method is the one developed by CCRS mentioned above. The second method is based on a second order polynomial function. The effect of control point precision on the reliability of the geometric correction using geodetic points and other points derived from the 1/20 000 topographical map is examined. The results show a noticeable difference between the two approaches tested. The photogrammetric method, based on the condition of collinearity and coplanarity, and related to navigation data, results in precision in the order of one pixel with geodetic control points. The use of geodetic control points permits the elimination of the planimetric error characteristic of the topographical map. The polynomial method provides precision which is in the order of five pixels whatever the type and precision of the control points. 18 refs., 6 figs., 2 tabs.

  18. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  19. Airborne hyperspectral imaging in the visible-to-mid wave infrared spectral range by fusing three spectral sensors

    NASA Astrophysics Data System (ADS)

    Jakovels, Dainis; Filipovs, Jevgenijs; Erinš, Gatis; Taskovs, Juris

    2014-10-01

    Airborne hyperspectral imaging is widely used for remote sensing of environment. The choice of spectral region usually depends on the availability and cost of the sensor. Visible-to-near infrared (400-1100 nm) spectral range corresponds to spectral sensitivity of relatively cheap Si detectors therefore it is the most commonly used. The implementation of shortwave infrared (1100-3000 nm) requires more expensive solutions, but can provide valuable information about the composition of the substance. Mid wave infrared (3000-8000 nm) is rarely used for civilian applications, but it provides information on the thermal emission of materials. The fusion of different sensors allows spectral analysis of a wider spectral range combining and improving already existing algorithms for the analysis of chemical content and classification. Here we introduce our Airborne Surveillance and Environmental Monitoring System (ARSENAL) that was developed by fusing seven sensors. The first test results from the fusion of three hyperspectral imaging sensors in the visible-to-mid wave infrared (365-5000 nm) are demonstrated. Principal component analysis (PCA) is applied to test correlation between principal components (PCs) and common vegetation indices.

  20. Relationship of surface fuels to fire radiative energy as estimated from airborne lidar and thermal infrared imaging

    NASA Astrophysics Data System (ADS)

    Hudak, A. T.; Dickinson, M. B.; Kremens, R.; Loudermilk, L.; O'Brien, J.; Satterberg, K.; Strand, E. K.; Ottmar, R. D.

    2013-12-01

    Longleaf pine stand structure and function are dependent on frequent fires, so fire managers maintain healthy longleaf pine ecosystems by frequently burning surface fuels with prescribed fires. Eglin Air Force Base (AFB) in the Florida panhandle boasts the largest remnant of longleaf pine forest, providing a productive setting for fire scientists to make multi-scale measurements of fuels, fire behavior, and fire effects in collaboration with Eglin AFB fire managers. Data considered in this analysis were collected in five prescribed burn units: two forested units burned in 2011 and a forested unit and two grassland units burned in 2012. Our objective was to demonstrate the linear relationship between biomass and fire energy that has been shown in the laboratory, but using two independent remotely sensed airborne datasets collected at the unit level: 1) airborne lidar flown over the burn units immediately prior to the burns, and 2) thermal infrared image time series flown over the burn units at 2-3 minute intervals. Airborne lidar point cloud data were reduced to 3 m raster metrics of surface vegetation height and cover, which were in turn used to map surface fuel loads at 3 m resolution. Plot-based measures of prefire surface fuels were used for calibration/validation. Preliminary results based on 2011 data indicate airborne lidar can explain ~30% of variation in surface fuel loads. Multi-temporal thermal infrared imagery (WASP) collected at 3 m resolution were calibrated to units of fire radiative power (FRP), using simultaneous FRP measures from ground-based radiometers, and then temporally integrated to estimate fire radiative energy (FRE) release at the unit level. Prior to AGU, FRP and FRE will be compared to estimates of the same variables derived from ground-based FLIR thermal infrared imaging cameras, each deployed with a nadir view from a tripod, at three sites per burn unit. A preliminary proof-of-concept, comparing FRE derived from a tripod-based FLIR (3

  1. Orientation of Oblique Airborne Image Sets - Experiences from the Isprs/eurosdr Benchmark on Multi-Platform Photogrammetry

    NASA Astrophysics Data System (ADS)

    Gerke, M.; Nex, F.; Remondino, F.; Jacobsen, K.; Kremer, J.; Karel, W.; Hu, H.; Ostrowski, W.

    2016-06-01

    During the last decade the use of airborne multi camera systems increased significantly. The development in digital camera technology allows mounting several mid- or small-format cameras efficiently onto one platform and thus enables image capture under different angles. Those oblique images turn out to be interesting for a number of applications since lateral parts of elevated objects, like buildings or trees, are visible. However, occlusion or illumination differences might challenge image processing. From an image orientation point of view those multi-camera systems bring the advantage of a better ray intersection geometry compared to nadir-only image blocks. On the other hand, varying scale, occlusion and atmospheric influences which are difficult to model impose problems to the image matching and bundle adjustment tasks. In order to understand current limitations of image orientation approaches and the influence of different parameters such as image overlap or GCP distribution, a commonly available dataset was released. The originally captured data comprises of a state-of-the-art image block with very high overlap, but in the first stage of the so-called ISPRS/EUROSDR benchmark on multi-platform photogrammetry only a reduced set of images was released. In this paper some first results obtained with this dataset are presented. They refer to different aspects like tie point matching across the viewing directions, influence of the oblique images onto the bundle adjustment, the role of image overlap and GCP distribution. As far as the tie point matching is concerned we observed that matching of overlapping images pointing to the same cardinal direction, or between nadir and oblique views in general is quite successful. Due to the quite different perspective between images of different viewing directions the standard tie point matching, for instance based on interest points does not work well. How to address occlusion and ambiguities due to different views onto

  2. Development of a Next Generation Polar Multidisciplinary Airborne Imaging System for the International Polar Year 2007-2009

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Studinger, M.; Frearson, N.; Gogineni, P.; Braaten, D.

    2007-12-01

    Key elements in Earth's geodynamic and climatic systems, the polar regions are very sensitive to changing global environmental conditions such as increasing sea surface temperatures and have the potential to trigger significant global sea level rise as large volumes of ice melt. Locked within these icy regions are the records of past global climate shifts and novel ecosystems sealed from open interactions with the atmosphere for millions of years. While satellite missions can image the surface of the polar ice sheet, many of the key processes occur beneath the surface beyond the reach of space based observations. These crucial processes can only be efficiently examined through airborne instrumentation designed to study the vast expanses of snow and ice of the Antarctic continent, the sub-continent of Greenland and the surrounding oceans. The expanding logistical infrastructure associated with the International Polar Year (2007-2009) will enable the scientific community access major new portions of the polar regions. We are developing a state-of-the-art integrated multidisciplinary aerogeophysical instrumentation package for deployment during multi-national expeditions as part of the International Polar Year. This development project brings together the recent developments in radar sounding by the University of Kansas CReSIS (Center for Remote Sensing of Ice Sheets), that now permit the full characterization of the entire ice sheet and the major advances in the accuracy, resolution and efficiency of airborne gravity technology emerging from the private sector. Integrating the full spectrum of ice sheet imaging with high-resolution gravity and magnetics will enable the imaging of the previously invisible world of subglacial hydrodynamics.

  3. High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES)

    NASA Astrophysics Data System (ADS)

    Hulley, Glynn C.; Duren, Riley M.; Hopkins, Francesca M.; Hook, Simon J.; Vance, Nick; Guillevic, Pierre; Johnson, William R.; Eng, Bjorn T.; Mihaly, Jonathan M.; Jovanovic, Veljko M.; Chazanoff, Seth L.; Staniszewski, Zak K.; Kuai, Le; Worden, John; Frankenberg, Christian; Rivera, Gerardo; Aubrey, Andrew D.; Miller, Charles E.; Malakar, Nabin K.; Sánchez Tomás, Juan M.; Holmes, Kendall T.

    2016-06-01

    Currently large uncertainties exist associated with the attribution and quantification of fugitive emissions of criteria pollutants and greenhouse gases such as methane across large regions and key economic sectors. In this study, data from the airborne Hyperspectral Thermal Emission Spectrometer (HyTES) have been used to develop robust and reliable techniques for the detection and wide-area mapping of emission plumes of methane and other atmospheric trace gas species over challenging and diverse environmental conditions with high spatial resolution that permits direct attribution to sources. HyTES is a pushbroom imaging spectrometer with high spectral resolution (256 bands from 7.5 to 12 µm), wide swath (1-2 km), and high spatial resolution (˜ 2 m at 1 km altitude) that incorporates new thermal infrared (TIR) remote sensing technologies. In this study we introduce a hybrid clutter matched filter (CMF) and plume dilation algorithm applied to HyTES observations to efficiently detect and characterize the spatial structures of individual plumes of CH4, H2S, NH3, NO2, and SO2 emitters. The sensitivity and field of regard of HyTES allows rapid and frequent airborne surveys of large areas including facilities not readily accessible from the surface. The HyTES CMF algorithm produces plume intensity images of methane and other gases from strong emission sources. The combination of high spatial resolution and multi-species imaging capability provides source attribution in complex environments. The CMF-based detection of strong emission sources over large areas is a fast and powerful tool needed to focus on more computationally intensive retrieval algorithms to quantify emissions with error estimates, and is useful for expediting mitigation efforts and addressing critical science questions.

  4. Natural-color and color-infrared image mosaics of the Colorado River corridor in Arizona derived from the May 2009 airborne image collection

    USGS Publications Warehouse

    Davis, Philip A.

    2013-01-01

    The Grand Canyon Monitoring and Research Center (GCMRC) of the U.S. Geological Survey (USGS) periodically collects airborne image data for the Colorado River corridor within Arizona (fig. 1) to allow scientists to study the impacts of Glen Canyon Dam water release on the corridor’s natural and cultural resources. These data are collected from just above Glen Canyon Dam (in Lake Powell) down to the entrance of Lake Mead, for a total distance of 450 kilometers (km) and within a 500-meter (m) swath centered on the river’s mainstem and its seven main tributaries (fig. 1). The most recent airborne data collection in 2009 acquired image data in four wavelength bands (blue, green, red, and near infrared) at a spatial resolution of 20 centimeters (cm). The image collection used the latest model of the Leica ADS40 airborne digital sensor (the SH52), which uses a single optic for all four bands and collects and stores band radiance in 12-bits. Davis (2012) reported on the performance of the SH52 sensor and on the processing steps required to produce the nearly flawless four-band image mosaic (sectioned into map tiles) for the river corridor. The final image mosaic has a total of only 3 km of surface defects in addition to some areas of cloud shadow because of persistent inclement weather during data collection. The 2009 four-band image mosaic is perhaps the best image dataset that exists for the entire Arizona part of the Colorado River. Some analyses of these image mosaics do not require the full 12-bit dynamic range or all four bands of the calibrated image database, in which atmospheric scattering (or haze) had not been removed from the four bands. To provide scientists and the general public with image products that are more useful for visual interpretation, the 12-bit image data were converted to 8-bit natural-color and color-infrared images, which also removed atmospheric scattering within each wavelength-band image. The conversion required an evaluation of the

  5. Detecting subtle environmental change: a multi-temporal airborne imaging spectroscopy approach

    NASA Astrophysics Data System (ADS)

    Yule, Ian J.; Pullanagari, Reddy R.; Kereszturi, G.

    2016-10-01

    Airborne and satellite hyperspectral remote sensing is a key technology to observe finite change in ecosystems and environments. The role of such sensors will improve our ability to monitor and mitigate natural and agricultural environments on a much larger spatial scale than can be achieved using field measurements such as soil coring or proximal sensors to estimate the chemistry of vegetation. Hyperspectral sensors for commentarial and scientific activities are increasingly available and cost effective, providing a great opportunity to measure and detect changes in the environment and ecosystem. This can be used to extract critical information to develop more advanced management practices. In this research, we provide an overview of the data acquisition, processing and analysis of airborne, full-spectrum hyperspectral imagery from a small-scale aerial mapping project in hill-country farms in New Zealand, using an AISA Fenix sensor (Specim, Finland). The imagery has been radiometrically and atmospherically corrected, georectified and mosaicked. The hyperspectral data cube was then spectrally and spatially smoothed using Savitzky-Golay and median filter, respectively. The mosaicked imagery used to calculate bio-chemical properties of surface vegetation, such as pasture. Ground samples (n = 200) were collected a few days after the over-flight are used to develop a calibration model using partial least squares regression method. In-leaf nitrogen, potassium and phosphorous concentration were calculated using the reflectance values from the airborne hyperspectral imagery. In total, three surveys of an example property have been acquired that show changes in the pattern of availability of a major element in vegetation canopy, in this case nitrogen.

  6. Performance evaluation of four directional emissivity analytical models with thermal SAIL model and airborne images.

    PubMed

    Ren, Huazhong; Liu, Rongyuan; Yan, Guangjian; Li, Zhao-Liang; Qin, Qiming; Liu, Qiang; Nerry, Françoise

    2015-04-06

    Land surface emissivity is a crucial parameter in the surface status monitoring. This study aims at the evaluation of four directional emissivity models, including two bi-directional reflectance distribution function (BRDF) models and two gap-frequency-based models. Results showed that the kernel-driven BRDF model could well represent directional emissivity with an error less than 0.002, and was consequently used to retrieve emissivity with an accuracy of about 0.012 from an airborne multi-angular thermal infrared data set. Furthermore, we updated the cavity effect factor relating to multiple scattering inside canopy, which improved the performance of the gap-frequency-based models.

  7. Imaging spectrometry of the Earth and other solar system bodies

    NASA Technical Reports Server (NTRS)

    Vane, Gregg

    1993-01-01

    Imaging spectrometry is a relatively new tool for remote sensing of the Earth and other bodies of the solar system. The technique dates back to the late 1970's and early 1980's. It is a natural extension of the earlier multi-spectral imagers developed for remote sensing that acquire images in a few, usually broad spectral bands. Imaging spectrometers combine aspects of classical spectrometers and imaging systems, making it possible to acquire literally hundreds of images of an object, each image in a separate, narrow spectral band. It is thus possible to perform spectroscopy on a pixel-by-pixel basis with the data acquired with an imaging spectrometer. Two imaging spectrometers have flown in space and several others are planned for future Earth and planetary missions. The French-built Phobos Infrared Spectrometer (ISM) was part of the payload of the Soviet Mars mission in 1988, and the JPL-built Near Infrared Mapping Spectrometer (NIMS) is currently en route to Jupiter aboard the Galileo spacecraft. Several airborne imaging spectrometers have been built in the past decade including the JPL-built Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) which is the only such sensor that covers the full solar reflected portion of the spectrum in narrow, contiguous spectral bands. NASA plans two imaging spectrometers for its Earth Observing System, the Moderate and the High Resolution Imaging Spectrometers (MODIS and HIRIS). A brief overview of the applications of imaging spectrometry to Earth science will be presented to illustrate the value of the tool to remote sensing and indicate the types of measurements that are required. The system design for AVIRS and a planetary imaging spectrometer will be presented to illustrate the engineering considerations and challenges that must be met in building such instruments. Several key sensor technology areas will be discussed in which miniaturization and/or enhanced performance through micromachining and nanofabrication may

  8. Nanoscale Images of Airborne PM2.5: Aerosol Dynamics with the LCLS X-ray Laser

    NASA Astrophysics Data System (ADS)

    Bogan, M. J.

    2012-12-01

    It is now possible to capture images of individual airborne PM2.5 particles - including soot, NaCl particles and engineered nanoparticles - with 20-40 nm resolution (Loh et al Nature 2012). Ions released during the imaging process provide information on the chemical content of the isolated particles. The scattering signal used to compose the image also provides the fractal dimension of individual particles. This new paradigm of aerosol dynamics is enabled by the incredible brightness and ultrashort pulses available at X-ray free electron laser (FEL) facilities, such as the Linac Coherent Light Source (LCLS) and the FLASH FEL facility in Hamburg. Femtosecond long x-ray pulses deliver sufficient photons (10^12 per pulse) to detect scattered X-rays off individual particles injected at >100 m/s into vacuum through an aerodynamic lens stack. The intensity of the scattered X-rays measured by an area detector is fed into lensless imaging algorithms to reconstruct an image of the particle that caused the scattering. X-ray FELs can peer inside the individual airborne particles and are a sensitive probe of particle crystallinity. The development of this method and applications to imaging micron-sized soot, water droplets and biological aerosols will be discussed. A primary long-term goal of the research is to take snapshots of airborne particles as they change their size, shape and chemical make-up in response to their environment. "Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight" ND Loh, C Hampton, A Martin, D Starodub, R Sierra, A Barty, A Aquila, J Schulz, L Lomb, J Steinbrener, R Shoeman, S Kassemeyer, C Bostedt, J. Bozek, S Epp, B. Erk, R Hartmann, D Rolles, A Rudenko, B Rudek, L Foucar, N Kimmel, G Weidenspointner, G Hauser, P Holl, E. Pedersoli, M Liang, M Hunter, L Gumprecht, N Coppola, C Wunderer, H Graafsma, F Maia, T Ekeberg, M Hantke, H Fleckenstein, H. Hirsemann, K Nass, T White, H Tobias, G Farquar, W Benner, S Hau

  9. Evaluation of airborne image data and LIDAR main stem data for monitoring physical resources within the Colorado River ecosystem

    USGS Publications Warehouse

    Davis, Philip A.; Rosiek, Mark R.; Galuszka, Donna M.

    2002-01-01

    This study evaluated near-infrared LIDAR data acquired over the main-stem channel at four long-term monitoring sites within the Colorado River ecosystem (CRE) to determine the ability of these data to provide reliable indications in changes in water elevation over time. Our results indicate that there is a good correlation between the LIDAR water-surface elevations and ground measurements of water-edge elevation, but there are also inherent errors in the LIDAR data. The elevation errors amount to about 50 cm and therefore temporal changes in water-surface elevation that exceed this value by the majority of data at a particular location can be deemed significant or real. This study also evaluated airborne image data for producing photogrammetric elevation data and for automated mapping of sand bars and debris flows within the CRE. The photogrammetric analyses show that spatial resolutions of ≤ 10 cm are required to produce vertical accuracies

  10. High-resolution satellite and airborne thermal infrared imaging of precursory unrest and 2009 eruption of Redoubt Volcano, Alaska

    USGS Publications Warehouse

    Wessels, Rick L.; Vaughan, R. Greg; Patrick, Matthew R.; Coombs, Michelle L.

    2013-01-01

    A combination of satellite and airborne high-resolution visible and thermal infrared (TIR) image data detected and measured changes at Redoubt Volcano during the 2008–2009 unrest and eruption. The TIR sensors detected persistent elevated temperatures at summit ice-melt holes as seismicity and gas emissions increased in late 2008 to March 2009. A phreatic explosion on 15 March was followed by more than 19 magmatic explosive events from 23 March to 4 April that produced high-altitude ash clouds and large lahars. Two (or three) lava domes extruded and were destroyed between 23 March and 4 April. After 4 April, the eruption extruded a large lava dome that continued to grow until at least early July 2009.

  11. Spatial patterns of vegetation biomass and soil organic carbon acquired from airborne lidar and hyperspectral imagery at Reynolds Creek Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Will, R. M.; Li, A.; Glenn, N. F.; Benner, S. G.; Spaete, L.; Ilangakoon, N. T.

    2015-12-01

    Soil organic carbon distribution and the factors influencing this distribution are important for understanding carbon stores, vegetation dynamics, and the overall carbon cycle. Linking soil organic carbon (SOC) with aboveground vegetation biomass may provide a method to better understand SOC distribution in semiarid ecosystems. The Reynolds Creek Critical Zone Observatory (RC CZO) in Idaho, USA, is approximately 240 square kilometers and is situated in the semiarid Great Basin of the sagebrush-steppe ecosystem. Full waveform airborne lidar data and Next-Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-ng) collected in 2014 across the RC CZO are used to map vegetation biomass and SOC and then explore the relationships between them. Vegetation biomass is estimated by identifying vegetation species, and quantifying distribution and structure with lidar and integrating the field-measured biomass. Spectral data from AVIRIS-ng are used to differentiate non-photosynthetic vegetation (NPV) and soil, which are commonly confused in semiarid ecosystems. The information from lidar and AVIRIS-ng are then used to predict SOC by partial least squares regression (PLSR). An uncertainty analysis is provided, demonstrating the applicability of these approaches to improving our understanding of the distribution and patterns of SOC across the landscape.

  12. Accounting for surface reflectance in the derivation of vertical column densities of NO2 from airborne imaging DOAS

    NASA Astrophysics Data System (ADS)

    Meier, Andreas Carlos; Schönhardt, Anja; Richter, Andreas; Bösch, Tim; Seyler, André; Constantin, Daniel Eduard; Shaiganfar, Reza; Merlaud, Alexis; Ruhtz, Thomas; Wagner, Thomas; van Roozendael, Michel; Burrows, John. P.

    2016-04-01

    Nitrogen oxides, NOx (NOx = NO + NO2) play a key role in tropospheric chemistry. In addition to their directly harmful effects on the respiratory system of living organisms, they influence the levels of tropospheric ozone and contribute to acid rain and eutrophication of ecosystems. As they are produced in combustion processes, they can serve as an indicator for anthropogenic air pollution. In the late summers of 2014 and 2015, two extensive measurement campaigns were conducted in Romania by several European research institutes, with financial support from ESA. The AROMAT / AROMAT-2 campaigns (Airborne ROmanian Measurements of Aerosols and Trace gases) were dedicated to measurements of air quality parameters utilizing newly developed instrumentation at state-of-the-art. The experiences gained will help to calibrate and validate the measurements taken by the upcoming Sentinel-S5p mission scheduled for launch in 2016. The IUP Bremen contributed to these campaigns with its airborne imaging DOAS (Differential Optical Absorption Spectroscopy) instrument AirMAP (Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution). AirMAP allows retrieving spatial distributions of trace gas columns densities in a stripe below the aircraft. The measurements have a high spatial resolution of approximately 30 x 80 m2 (along x across track) at a typical flight altitude of 3000 m. Supported by the instrumental setup and the large swath, gapless maps of trace gas distributions above a large city, like Bucharest or Berlin, can be acquired within a time window of approximately two hours. These properties make AirMAP a valuable tool for the validation of trace gas measurements from space. DOAS retrievals yield the density of absorbers integrated along the light path of the measurement. The light path is altered with a changing surface reflectance, leading to enhanced / reduced slant column densities of NO2 depending on surface properties. This effect must be considered in

  13. Early algorithm development efforts for the National Ecological Observatory Network Airborne Observation Platform imaging spectrometer and waveform lidar instruments

    NASA Astrophysics Data System (ADS)

    Krause, Keith S.; Kuester, Michele A.; Johnson, Brian R.; McCorkel, Joel; Kampe, Thomas U.

    2011-10-01

    The National Ecological Observatory Network (NEON) will be the first observatory network of its kind designed to detect and enable forecasting of ecological change at continental scales over multiple decades. NEON will collect data at sites distributed at 20 ecoclimatic domains across the United States on the impacts of climate change, land use change, and invasive species on natural resources and biodiversity. The NEON Airborne Observation Platform (AOP) is an aircraft platform carrying remote sensing instrumentation designed to achieve sub-meter to meter scale ground resolution, bridging the scales from organisms and individual stands to satellite-based remote sensing. AOP instrumentation consists of a VIS/SWIR imaging spectrometer, a scanning small-footprint waveform LiDAR, and a high resolution airborne digital camera. AOP data will provide quantitative information on land use change and changes in ecological structure and chemistry including the presence and effects of invasive species. A Pathfinder Flight Campaign was conducted over a two week period during late August to early September 2010 in order to collect representative AOP data over one NEON domain site. NASA JPL flew the AVIRIS imaging spectrometer and NCALM flew an Optech Gemini waveform LiDAR over the University of Florida Ordway-Swisher Biological Station and Donaldson tree plantation near Gainesville Florida. The pathfinder data are discussed in detail along with how the data are being used for early algorithm and product development prototyping activities. The data collected during the campaign and prototype products are openly available to scientists to become more familiar with representative NEON AOP data.

  14. PICASSO: an end-to-end image simulation tool for space and airborne imaging systems II. Extension to the thermal infrared: equations and methods

    NASA Astrophysics Data System (ADS)

    Cota, Stephen A.; Lomheim, Terrence S.; Florio, Christopher J.; Harbold, Jeffrey M.; Muto, B. Michael; Schoolar, Richard B.; Wintz, Daniel T.; Keller, Robert A.

    2011-10-01

    In a previous paper in this series, we described how The Aerospace Corporation's Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) tool may be used to model space and airborne imaging systems operating in the visible to near-infrared (VISNIR). PICASSO is a systems-level tool, representative of a class of such tools used throughout the remote sensing community. It is capable of modeling systems over a wide range of fidelity, anywhere from conceptual design level (where it can serve as an integral part of the systems engineering process) to as-built hardware (where it can serve as part of the verification process). In the present paper, we extend the discussion of PICASSO to the modeling of Thermal Infrared (TIR) remote sensing systems, presenting the equations and methods necessary to modeling in that regime.

  15. Analysis of potential debris flow source areas on Mount Shasta, California, by using airborne and satellite remote sensing data

    USGS Publications Warehouse

    Crowley, J.K.; Hubbard, B.E.; Mars, J.C.

    2003-01-01

    Remote sensing data from NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the first spaceborne imaging spectrometer, Hyperion, show hydrothermally altered rocks mainly composed of natroalunite, kaolinite, cristobalite, and gypsum on both the Mount Shasta and Shastina cones. Field observations indicate that much of the visible altered rock consists of talus material derived from fractured rock zones within and adjacent to dacitic domes and nearby lava flows. Digital elevation data were utilized to distinguish steeply sloping altered bedrock from more gently sloping talus materials. Volume modeling based on the imagery and digital elevation data indicate that Mount Shasta drainage systems contain moderate volumes of altered rock, a result that is consistent with Mount Shasta's Holocene record of mostly small to moderate debris flows. Similar modeling for selected areas at Mount Rainier and Mount Adams, Washington, indicates larger altered rock volumes consistent with the occurrence of much larger Holocene debris flows at those volcanoes. The availability of digital elevation and spectral data from spaceborne sensors, such as Hyperion and the Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER), greatly expands opportunities for studying potential debris flow source characteristics at stratovolcanoes around the world. ?? 2003 Elsevier Inc. All rights reserved.

  16. High-resolution airborne gravity imaging over James Ross Island (West Antarctica)

    USGS Publications Warehouse

    Jordan, T.A.; Ferraccioli, F.; Jones, P.C.; Smellie, J.L.; Ghidella, M.; Corr, H. F. J.; Zakrajsek, A.F.

    2007-01-01

    James Ross Island (JRI) exposes a Miocene-Recent alkaline basaltic volcanic complex that developed in a back-arc, east of the northern Antarctic Peninsula. JRI has been the focus of several geological studies because it provides a window on Neogene magmatic processes and paleoenvironments. However, little is known about its internal structure. New airborne gravity data were collected as part of the first high-resolution aerogeophysical survey flown over the island and reveal a prominent negative Bouguer gravity anomaly over Mt Haddington. This is intriguing as basaltic volcanoes are typically associated with positive Bouguer anomalies, linked to underlying mafic intrusions. The negative Bouguer anomaly may be associated with a hitherto unrecognised low-density sub-surface body, such as a breccia-filled caldera, or a partially molten magma chamber.

  17. Mapping hydrothermally altered rocks in the Northern Grapevine Mountains, Nevada and California with the airborne imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Kruse, Fred A.

    1987-01-01

    Seven flightlines of Airborne Imaging Spectrometer (AIS) data were analyzed for an area of hydrothermally altered rocks. The data were reduced to reflectance relative to an average spectrum, and an automated procedure was used to produce a color coded image displaying absorption band information. Individual spectra were extracted from the AIS images to determine the detailed mineralogy. Two alteration types were mapped based upon mineralogy identified using the AIS data. The primary alteration type is quartz sericite pyrite alteration which occurs in northwest-trending zones in quartz monzonite porphyry. The AIS data allow identification of sericite (muscovite) based upon a strong absorption feature near 2.21 micron and weaker absorption features near 2.35 and 2.45 micron. The second alteration type occurs as a zone of argillic alteration associated with a granitic intrusion. Montmorillonite was identified based on a weak to moderate absorption feature near 2.2 micron and the absence of the two absorption features at longer wavelengths characteristic of sericite. Montmorillonite could be identified only where concentrations of sericite did not mask the montmorillonite spectrum.

  18. Airborne Imaging in the Yukon River Basin to Characterize SWOT Mission Phenomenology

    NASA Astrophysics Data System (ADS)

    Moller, D.; Pavelsky, T.; Arvesen, J. C.

    2015-12-01

    Remote sensing offers intriguing tools to track Arctic hydrology, but current techniques are largely limited to tracking either inundation or water surface elevation only. For the first time, the proposed Surface Water Ocean Topography (SWOT) satellite mission will provide regular, simultaneous observations of inundation extent and water level from space. SWOT is unique and distinct from precursor altimetry missions in some notable regards: 1) 100km+ of swath will provide complete ocean coverage, 2) in addition to the ocean product, land surface water will be mapped for storage measurement and discharge estimation and 3) Ka-band single-pass interferometry will produce the height measurements introducing a new measurement technique. This new approach introduces additional algorithmic, characterization and calibration/validation needs for which the Ka-band SWOT Phenomenology Airborne Radar (KaSPAR) was developed. In May 2015, AirSWOT (comprised of KaSPAR and a color infrared (CIR) high resolution aerial camera) was part of an intensive field campaign including observations of inundation extent and water level and in situ hydrologic measurements in two rivers and 20 lakes within the Yukon River Basin, Alaska. One goal is to explore the fundamental phenomenology of the SWOT measurement. This includes assessment of the effects of vegetation layover and attenuation, wind roughening and classification. Further KaSPAR-derived inundation extent will to be validated using a combination of ground surveys and coregistered CIR imagery. Ultimately, by combining measurements of changing inundation extent and water level between two collection dates, it will be possible to validate lake water storage variations against storage changes computed from in situ water levels and inundation area derived from AirSWOT. Our paper summarizes the campaign, the airborne and in situ measurements and presents some initial KaSPAR and CIR imagery from the Yukon flats region.

  19. Environmental mapping of the World Trade Center area with imaging spectroscopy after the September 11, 2001 attack

    USGS Publications Warehouse

    Clark, Roger N.; Swayze, Gregg A.; Hoefen, Todd M.; Green, Robert O.; Livo, Keith E.; Meeker, Gregory P.; Sutley, Stephen J.; Plumlee, Geoffrey S.; Pavri, Betina; Sarture, Charles M.; Boardman, Joe; Brownfield, Isabelle; Morath, Laurie C.

    2009-01-01

    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) was flown over the World Trade Center area on September 16, 18, 22, and 23, 2001. The data were used to map the WTC debris plume and its contents, including the spectral signatures of asbestiform minerals. Samples were collected and used as ground truth for the AVARIS mapping. A number of thermal hot spots were observed with temperatures greater than 700 °C. The extent and temperatures of the fires were mapped as a function of time. By September 23, most of the fires observed by AVIRIS had been eliminated or reduced in intensity. The mineral absorption features mapped by AVARIS only indicated the presence of serpentine mineralogy and not if the serpentine has asbestiform.

  20. Comparison of column water vapor measurements using downward-looking near-infrared and infrared imaging systems and upward-looking microwave radiometers

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Westwater, Ed R.; Stankov, B. B.; Birkenheuer, D.; Goetz, Alexander F. H.

    1992-01-01

    Remote soundings of precipitable water vapor from three systems are compared with each other and with ground truth from radiosondes. Ancillary data from a mesoscale network of surface observing stations and from wind-profiling radars are also used in the analysis. The three remote-sounding techniques are: (a) a reflectance technique using spectral data collected by the Airborne Visible-Infrared Imaging Spectrometer; (b) an emission technique using Visible-Infrared Spin Scan Radiometer Atmospheric Sounder (VAS) data acquired from the NOAA's GOES; and (c) a microwave technique using data from a limited network of three ground-based dual-channel microwave radiometers. The data were taken over the Front Range of eastern Colorado on 22-23 March 1990. The generally small differences between the three types of remote-sounding measurements are consistent with the horizontal and temporal resolutions of the instruments. The microwave and optical reflectance measurements agreed to within 0.1 cm; comparisons of the microwave data with radiosondes were also either as good or explainable. The largest differences between the VAS and the microwave radiometer at Elbert were between 0.4 and 0.5 cm and appear to be due to variable terrain within the satellite footprint.

  1. How Cities Breathe: Ground-Referenced, Airborne Hyperspectral Imaging Precursor Measurements To Space-Based Monitoring

    NASA Technical Reports Server (NTRS)

    Leifer, Ira; Tratt, David; Quattrochi, Dale; Bovensmann, Heinrich; Gerilowski, Konstantin; Buchwitz, Michael; Burrows, John

    2013-01-01

    Methane's (CH4) large global warming potential (Shindell et al., 2012) and likely increasing future emissions due to global warming feedbacks emphasize its importance to anthropogenic greenhouse warming (IPCC, 2007). Furthermore, CH4 regulation has far greater near-term climate change mitigation potential versus carbon dioxide CO2, the other major anthropogenic Greenhouse Gas (GHG) (Shindell et al., 2009). Uncertainties in CH4 budgets arise from the poor state of knowledge of CH4 sources - in part from a lack of sufficiently accurate assessments of the temporal and spatial emissions and controlling factors of highly variable anthropogenic and natural CH4 surface fluxes (IPCC, 2007) and the lack of global-scale (satellite) data at sufficiently high spatial resolution to resolve sources. Many important methane (and other trace gases) sources arise from urban and mega-urban landscapes where anthropogenic activities are centered - most of humanity lives in urban areas. Studying these complex landscape tapestries is challenged by a wide and varied range of activities at small spatial scale, and difficulty in obtaining up-to-date landuse data in the developed world - a key desire of policy makers towards development of effective regulations. In the developing world, challenges are multiplied with additional political access challenges. As high spatial resolution satellite and airborne data has become available, activity mapping applications have blossomed - i.e., Google maps; however, tap a minute fraction of remote sensing capabilities due to limited (three band) spectral information. Next generation approaches that incorporate high spatial resolution hyperspectral and ultraspectral data will allow detangling of the highly heterogeneous usage megacity patterns by providing diagnostic identification of chemical composition from solids (refs) to gases (refs). To properly enable these next generation technologies for megacity include atmospheric radiative transfer modeling

  2. Flight and Ground Results from Long-Wave and Mid-wave Airborne Hyperspectral Spectrographic Images

    DTIC Science & Technology

    2009-10-01

    hyperspectral imager for landmine detection ,” in Detection and Remediation Technologies for Mines and Mine-like Targets X, R.S.Harmon, J.T.Broach... hyperspectral imaging of land mines,” in Detection and Remediation Technologies for Mines and Mine-Like Targets XII, R.S.Harmon, J.T.Broach, and... hyperspectral pushbroom imagers which are ideally suited for landmine detection , but which also have numerous applications outside the defence community

  3. Automatic Calibration of an Airborne Imaging System to an Inertial Navigation Unit

    NASA Technical Reports Server (NTRS)

    Ansar, Adnan I.; Clouse, Daniel S.; McHenry, Michael C.; Zarzhitsky, Dimitri V.; Pagdett, Curtis W.

    2013-01-01

    This software automatically calibrates a camera or an imaging array to an inertial navigation system (INS) that is rigidly mounted to the array or imager. In effect, it recovers the coordinate frame transformation between the reference frame of the imager and the reference frame of the INS. This innovation can automatically derive the camera-to-INS alignment using image data only. The assumption is that the camera fixates on an area while the aircraft flies on orbit. The system then, fully automatically, solves for the camera orientation in the INS frame. No manual intervention or ground tie point data is required.

  4. Building detection by fusion of airborne laser scanner data and multi-spectral images: Performance evaluation and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Rottensteiner, Franz; Trinder, John; Clode, Simon; Kubik, Kurt

    In this paper, we describe the evaluation of a method for building detection by the Dempster-Shafer fusion of airborne laser scanner (ALS) data and multi-spectral images. For this purpose, ground truth was digitised for two test sites with quite different characteristics. Using these data sets, the heuristic models for the probability mass assignments are validated and improved, and rules for tuning the parameters are discussed. The sensitivity of the results to the most important control parameters of the method is assessed. Further we evaluate the contributions of the individual cues used in the classification process to determine the quality of the results. Applying our method with a standard set of parameters on two different ALS data sets with a spacing of about 1 point/m 2, 95% of all buildings larger than 70 m 2 could be detected and 95% of all detected buildings larger than 70 m 2 were correct in both cases. Buildings smaller than 30 m 2 could not be detected. The parameters used in the method have to be appropriately defined, but all except one (which must be determined in a training phase) can be determined from meaningful physical entities. Our research also shows that adding the multi-spectral images to the classification process improves the correctness of the results for small residential buildings by up to 20%.

  5. [Building Change Detection Based on Multi-Level Rules Classification with Airborne LiDAR Data and Aerial Images].

    PubMed

    Gong, Yi-long; Yan, Li

    2015-05-01

    The present paper proposes a new building change detection method combining Lidar point cloud with aerial image, using multi-level rules classification algorithm, to solve building change detection problem between these two kinds of heterogeneous data. Then, a morphological post-processing method combined with area threshold is proposed. Thus, a complete building change detection processing flow that can be applied to actual production is proposed. Finally, the effectiveness of the building change detection method is evaluated, processing the 2010 airborne LiDAR point cloud data and 2009 high resolution aerial image of Changchun City, Jilin province, China; in addition, compared with the object-oriented building change detection method based on support vector machine (SVM) classification, more analysis and evaluation of the suggested method is given. Experiment results show that the performance of the proposed building change detection method is ideal. Its Kappa index is 0. 90, and correctness is 0. 87, which is higher than the object-oriented building change detection method based on SVM classification.

  6. Land cover classification based on object-oriented with airborne lidar and high spectral resolution remote sensing image

    NASA Astrophysics Data System (ADS)

    Li, Fangfang; Liu, Zhengjun; Xu, Qiangqiang; Ren, Haicheng; Zhou, Xingyu; Yuan, Yonghua

    2016-10-01

    In order to improve land cover classification accuracy of the coastal tidal wetland area in Dafeng, this paper take advantage of hyper-spectral remote sensing image with high spatial resolution airborne Lidar data. The introduction of feature extraction, band selection and nDSM models to reduce the dimension of the original image. After segmentation process that combining FNEA segmentation with spectral differences segmentation method, the paper finalize the study area through the establishment of the rule set classification of land cover classification. The results show that the proposed classification for land cover classification accuracy has improved significantly, including housing, shadow, water, vegetation classification of high precision. That is to say that the method can meet the needs of land cover classification of the coastal tidal wetland area in Dafeng. This innovation is the introduction of principal component analysis, and the use of characteristic index, shape and characteristics of various types of data extraction nDSM feature to improve the accuracy and speed of land cover classification.

  7. Ice-volcano interactions during the 2010 Eyjafjallajökull eruption, as revealed by airborne imaging radar

    NASA Astrophysics Data System (ADS)

    Magnússon, E.; Gudmundsson, M. T.; Roberts, M. J.; Sigurã°Sson, G.; HöSkuldsson, F.; Oddsson, B.

    2012-07-01

    During the eruption of the ice-covered Eyjafjallajökull volcano, a series of images from an airborne Synthetic Aperture Radar (SAR) were obtained by the Icelandic Coast Guard. Cloud obscured the summit from view during the first three days of the eruption, making the weather-independent SAR a valuable monitoring resource. Radar images revealed the development of ice cauldrons in a 200 m thick ice cover within the summit caldera, as well as the formation of cauldrons to the immediate south of the caldera. Additionally, radar images were used to document the subglacial and supraglacial passage of floodwater to the north and south of the eruption site. The eruption breached the ice surface about four hours after its onset at about 01:30 UTC on 14 April 2010. The first SAR images, obtained between 08:55 and 10:42 UTC, show signs of limited supraglacial drainage from the eruption site. Floodwater began to drain from the ice cap almost 5.5 h after the beginning of the eruption, implying storage of meltwater at the eruption site due to initially constricted subglacial drainage from the caldera. Heat transfer rates from magma to ice during early stages of cauldron formation were about 1 MW m-2 in the radial direction and about 4 MW m-2 vertically. Meltwater release was characterized by accumulation and drainage with most of the volcanic material in the ice cauldrons being drained in hyperconcentrated floods. After the third day of the eruption, meltwater generation at the eruption site diminished due to an insulating lag of tephra.

  8. Acoustic imaging in application to reconstruction of rough rigid surface with airborne ultrasound waves

    NASA Astrophysics Data System (ADS)

    Krynkin, A.; Dolcetti, G.; Hunting, S.

    2017-02-01

    Accurate reconstruction of the surface roughness is of high importance to various areas of science and engineering. One important application of this technology is for remote monitoring of open channel flows through observing its dynamic surface roughness. In this paper a novel airborne acoustic method of roughness reconstruction is proposed and tested with a static rigid rough surface. This method is based on the acoustic holography principle and Kirchhoff approximation which make use of acoustic pressure data collected at multiple receiver points spread along an arch. The Tikhonov regularisation and generalised cross validation technique are used to solve the underdetermined system of equations for the acoustic pressures. The experimental data are collected above a roughness created with a 3D printer. For the given surface, it is shown that the proposed method works well with the various number of receiver positions. In this paper, the tested ratios between the number of surface points at which the surface elevation can be reconstructed and number of receiver positions are 2.5, 5, and 7.5. It is shown that, in a region comparable with the projected size of the main directivity lobe, the method is able to reconstruct the spatial spectrum density of the actual surface elevation with the accuracy of 20%.

  9. Imaging Hidden Water in Three Dimensions Using an Active Airborne Electromagnetic System

    NASA Astrophysics Data System (ADS)

    Wynn, J.

    2001-05-01

    The San Pedro Basin aquifer in southeastern Arizona and northern Mexico is important not only for local agriculture and residential communities, but also because it is the source of the San Pedro River. Declared a Riparian Conservation Area by Congress in 1988, the San Pedro is a critical element of one of four major migratory bird fly-ways over North America. The basin crosses the international frontier, extending into northern Mexico, where about 12,000 acre-ft of water is withdrawn yearly by the Cananea Mine. An additional 11,000 acre-ft is withdrawn by the US Army base at Fort Huachuca and surrounding towns including Sierra Vista. About 6,000 to 8,000 acre-ft of water is also estimated as lost to evapotranspiration, while recharge (mainly from the Huachuca Mountains) ranges from 12,500 to 15,000 acre-ft per year. This apparent net deficit is considered a serious threat by environmental groups to the integrity of the Riparian Conservation Area. Efforts have been underway to develop catchments and to implement water-conservation measures, but these have been hampered by a lack of detailed knowledge of the three-dimensional geometry and extent of the aquifer beneath the entire basin - at least until recently. In an effort to identify subcomponents and interconnectivities within the San Pedro Basin aquifer, the US Army funded several airborne EM surveys, conducted in 1997 and 1999 under the supervision of the US Geological Survey east of Fort Huachuca. These surveys used the Geoterrex GEOTEM system with 20 gated time-domain windows in three perpendicular orientations. The 60+ channel information was inverted using two different methods into conductivity-depth transforms, i.e., conductivity vs. depth along each flight-line. The resulting inversions have been assembled into a three-dimensional map of the aquifer, which in this arid region is quite conductive (the average is 338 micro-S/cm, around 30 ohm-meters). The coverage is about 1,000 square kilometers down to a

  10. Use of AVIRIS data to the definition of optimised specifications for land applications with future spaceborne imaging spectrometers

    NASA Technical Reports Server (NTRS)

    Bodechtel, J.

    1992-01-01

    Recent experience with airborne imaging spectrometers demonstrated the advantages of narrow band sensors over broad band scanners for characterizing the nature, extent, and physical status of typical land surfaces. Information on key spectral features associated with various land surfaces can be obtained from the data of such instruments, which can be used to simulate spaceborne imaging spectrometer data and to assess their information content if comprehensive underpinning is provided by ground data. The collection of such information was an issue of airborne imaging spectrometer campaigns like the NASA MAC-Europe 1991. Airborne and ground data obtained from different test sites in Europe are utilized for a comparative analysis of the spectral signatures of various land surfaces (vegetation, bare soils and rocks, and mixed soil/rock-vegetation) as seen from different imaging spectrometers like Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), GERIS 63 band scanner, and CASI. The following items are discussed: (1) the significance of different spectral regions within the wavelength interval between 0.4 m and 2.5 m for the differentiation of different land units; (2) recommendations on the optimum band selection and band-widths to be used for the application of future satellite-based imaging spectrometers for land applications; (3) the boundaries for the detection of plant features in mixed-soil plant spectra and the influence of different soil properties on the mixture of the spectra; (4) recommendations on the optimum spatial resolution and recording dates for the discrimination of spectral features of various surface types; and (5) evaluation of different data compressing techniques for the optimum extraction of spectral information from imaging spectrometry data.

  11. Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Atzberger, Clement; Darvishzadeh, Roshanak; Immitzer, Markus; Schlerf, Martin; Skidmore, Andrew; le Maire, Guerric

    2015-12-01

    Fine scale maps of vegetation biophysical variables are useful status indicators for monitoring and managing national parks and endangered habitats. Here, we assess in a comparative way four different retrieval methods for estimating leaf area index (LAI) in grassland: two radiative transfer model (RTM) inversion methods (one based on look-up-tables (LUT) and one based on predictive equations) and two statistical modelling methods (one partly, the other entirely based on in situ data). For prediction, spectral data were used that had been acquired over Majella National Park in Italy by the airborne hyperspectral HyMap instrument. To assess the performance of the four investigated models, the normalized root mean squared error (nRMSE) and coefficient of determination (R2) between estimates and in situ LAI measurements are reported (n = 41). Using a jackknife approach, we also quantified the accuracy and robustness of empirical models as a function of the size of the available calibration data set. The results of the study demonstrate that the LUT-based RTM inversion yields higher accuracies for LAI estimation (R2 = 0.91, nRMSE = 0.18) as compared to RTM inversions based on predictive equations (R2 = 0.79, nRMSE = 0.38). The two statistical methods yield accuracies similar to the LUT method. However, as expected, the accuracy and robustness of the statistical models decrease when the size of the calibration database is reduced to fewer samples. The results of this study are of interest for the remote sensing community developing improved inversion schemes for spaceborne hyperspectral sensors applicable to different vegetation types. The examples provided in this paper may also serve as illustrations for the drawbacks and advantages of physical and empirical models.

  12. High Speed Buffered Injection Readout for Airborne Visible and Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Pain, B.; Shaw, T.; Eastwood, M.; Green, R. O.

    1998-01-01

    Design and operation of a high speed, low noise, wide dynamic range linear infrared multiplexer array for readout of infrared detectors with large detector capacitance is presented. Image lag related to abrupt transitions of signal currents is analyzed.

  13. Detection of windows in building textures from airborne and terrestrial infrared image sequences

    NASA Astrophysics Data System (ADS)

    Iwaszczuk, D.; Hoegner, L.; Stilla, U.

    2011-12-01

    Infrared (IR) images depict thermal radiation of physical objects. Imaging the building façades and the roofs with an IR camera, thermal inspections of the buildings can be carried out. In such inspections a spatial correspondence between IR-images and the existing 3D building models can be helpful. Texturing 3D building models with IR images this spatial correspondence can be created. Furthermore in textures heat leakages can be detected and the heat bridges can be stored together with 3D building data. However, before extracting leakages, the windows should be located. In IR images glass reflects the surrounding and shows false results for the temperature measurements. Consequently, the windows should be detected in IR images and excluded for the inspection. The most common algorithms for window detection were developed for the images in the visual band. In this paper, an algorithm for window detection in textures extracted from terrestrial IR images is proposed. In the first step, small objects have to be removed by scaling down the image (texture). Then in the scaled image, regions are detected using a local dynamic threshold. Morphological operations are used to remove false detections and unify substructures of the windows. For every extracted region, which is a candidate for a window, the center of gravity is calculated. It is assumed that windows on façades are ordered in regular rows and columns. First the points are grouped into rows using histogram of height created from extracted gravity centers. Then masked correlation is used to detect the position and size of the windows. Finally, the gaps in the grid of windows are completed. For the first experiments we use a dataset from densely build urban area captured in Munich, Germany. The IR image sequences were taken from a vehicle driving on the street around the test area. Camera was directed to the building in oblique view. According to the acquisition geometry, no façade could be completely seen in

  14. MAPSAR Image Simulation Based on L-band Polarimetric Data from the SAR-R99B Airborne Sensor (SIVAM System)

    PubMed Central

    Mura, José Claudio; Paradella, Waldir Renato; Dutra, Luciano Vieira; dos Santos, João Roberto; Rudorff, Bernardo Friedrich Theodor; de Miranda, Fernando Pellon; da Silva, Mario Marcos Quintino; da Silva, Wagner Fernando

    2009-01-01

    This paper describes the methodology applied to generate simulated multipolarized L-band SAR images of the MAPSAR (Multi-Application Purpose SAR) satellite from the airborne SAR R99B sensor (SIVAM System). MAPSAR is a feasibility study conducted by INPE (National Institute for Space Research) and DLR (German Aerospace Center) targeting a satellite L-band SAR innovative mission for assessment, management and monitoring of natural resources. Examples of simulated products and their applications are briefly discussed. PMID:22389590

  15. DETECTION AND IDENTIFICATION OF TOXIC AIR POLLUTANTS USING FIELD PORTABLE AND AIRBORNE REMOTE IMAGING SYSTEMS

    EPA Science Inventory

    Remote sensing technologies are a class of instrument and sensor systems that include laser imageries, imaging spectrometers, and visible to thermal infrared cameras. These systems have been successfully used for gas phase chemical compound identification in a variety of field e...

  16. Airborne digital-image data for monitoring the Colorado River corridor below Glen Canyon Dam, Arizona, 2009 - Image-mosaic production and comparison with 2002 and 2005 image mosaics

    USGS Publications Warehouse

    Davis, Philip A.

    2012-01-01

    Airborne digital-image data were collected for the Arizona part of the Colorado River ecosystem below Glen Canyon Dam in 2009. These four-band image data are similar in wavelength band (blue, green, red, and near infrared) and spatial resolution (20 centimeters) to image collections of the river corridor in 2002 and 2005. These periodic image collections are used by the Grand Canyon Monitoring and Research Center (GCMRC) of the U.S. Geological Survey to monitor the effects of Glen Canyon Dam operations on the downstream ecosystem. The 2009 collection used the latest model of the Leica ADS40 airborne digital sensor (the SH52), which uses a single optic for all four bands and collects and stores band radiance in 12-bits, unlike the image sensors that GCMRC used in 2002 and 2005. This study examined the performance of the SH52 sensor, on the basis of the collected image data, and determined that the SH52 sensor provided superior data relative to the previously employed sensors (that is, an early ADS40 model and Zeiss Imaging's Digital Mapping Camera) in terms of band-image registration, dynamic range, saturation, linearity to ground reflectance, and noise level. The 2009 image data were provided as orthorectified segments of each flightline to constrain the size of the image files; each river segment was covered by 5 to 6 overlapping, linear flightlines. Most flightline images for each river segment had some surface-smear defects and some river segments had cloud shadows, but these two conditions did not generally coincide in the majority of the overlapping flightlines for a particular river segment. Therefore, the final image mosaic for the 450-kilometer (km)-long river corridor required careful selection and editing of numerous flightline segments (a total of 513 segments, each 3.2 km long) to minimize surface defects and cloud shadows. The final image mosaic has a total of only 3 km of surface defects. The final image mosaic for the western end of the corridor has

  17. Mapping Land Cover in the Taita Hills, se Kenya, Using Airborne Laser Scanning and Imaging Spectroscopy Data Fusion

    NASA Astrophysics Data System (ADS)

    Piiroinen, R.; Heiskanen, J.; Maeda, E.; Hurskainen, P.; Hietanen, J.; Pellikka, P.

    2015-04-01

    The Taita Hills, located in south-eastern Kenya, is one of the world's biodiversity hotspots. Despite the recognized ecological importance of this region, the landscape has been heavily fragmented due to hundreds of years of human activity. Most of the natural vegetation has been converted for agroforestry, croplands and exotic forest plantations, resulting in a very heterogeneous landscape. Given this complex agro-ecological context, characterizing land cover using traditional remote sensing methods is extremely challenging. The objective of this study was to map land cover in a selected area of the Taita Hills using data fusion of airborne laser scanning (ALS) and imaging spectroscopy (IS) data. Land Cover Classification System (LCCS) was used to derive land cover nomenclature, while the height and percentage cover classifiers were used to create objective definitions for the classes. Simultaneous ALS and IS data were acquired over a 10 km x 10 km area in February 2013 of which 1 km x 8 km test site was selected. The ALS data had mean pulse density of 9.6 pulses/m2, while the IS data had spatial resolution of 1 m and spectral resolution of 4.5-5 nm in the 400-1000 nm spectral range. Both IS and ALS data were geometrically co-registered and IS data processed to at-surface reflectance. While IS data is suitable for determining land cover types based on their spectral properties, the advantage of ALS data is the derivation of vegetation structural parameters, such as tree height and crown cover, which are crucial in the LCCS nomenclature. Geographic object-based image analysis (GEOBIA) was used for segmentation and classification at two scales. The benefits of GEOBIA and ALS/IS data fusion for characterizing heterogeneous landscape were assessed, and ALS and IS data were considered complementary. GEOBIA was found useful in implementing the LCCS based classification, which would be difficult to map using pixel-based methods.

  18. The Airborne Snow Observatory: fusion of imaging spectrometer and scanning lidar for studies of mountain snow cover (Invited)

    NASA Astrophysics Data System (ADS)

    Painter, T. H.; Andreadis, K.; Berisford, D. F.; Goodale, C. E.; Hart, A. F.; Heneghan, C.; Deems, J. S.; Gehrke, F.; Marks, D. G.; Mattmann, C. A.; McGurk, B. J.; Ramirez, P.; Seidel, F. C.; Skiles, M.; Trangsrud, A.; Winstral, A. H.; Kirchner, P.; Zimdars, P. A.; Yaghoobi, R.; Boustani, M.; Khudikyan, S.; Richardson, M.; Atwater, R.; Horn, J.; Goods, D.; Verma, R.; Boardman, J. W.

    2013-12-01

    Snow cover and its melt dominate regional climate and water resources in many of the world's mountainous regions. However, we face significant water resource challenges due to the intersection of increasing demand from population growth and changes in runoff total and timing due to climate change. Moreover, increasing temperatures in desert systems will increase dust loading to mountain snow cover, thus reducing the snow cover albedo and accelerating snowmelt runoff. The two most critical properties for understanding snowmelt runoff and timing are the spatial and temporal distributions of snow water equivalent (SWE) and snow albedo. Despite their importance in controlling volume and timing of runoff, snowpack albedo and SWE are still poorly quantified in the US and not at all in most of the globe, leaving runoff models poorly constrained. Recognizing this need, JPL developed the Airborne Snow Observatory (ASO), an imaging spectrometer and imaging LiDAR system, to quantify snow water equivalent and snow albedo, provide unprecedented knowledge of snow properties, and provide complete, robust inputs to snowmelt runoff models, water management models, and systems of the future. Critical in the design of the ASO system is the availability of snow water equivalent and albedo products within 24 hours of acquisition for timely constraint of snowmelt runoff forecast models. In spring 2013, ASO was deployed for its first year of a multi-year Demonstration Mission of weekly acquisitions in the Tuolumne River Basin (Sierra Nevada) and monthly acquisitions in the Uncompahgre River Basin (Colorado). The ASO data were used to constrain spatially distributed models of varying complexities and integrated into the operations of the O'Shaughnessy Dam on the Hetch Hetchy reservoir on the Tuolumne River. Here we present the first results from the ASO Demonstration Mission 1 along with modeling results with and without the constraint by the ASO's high spatial resolution and spatially

  19. Characterizing the Impacts of the Deepwater Horizon Oil Spill on Marshland Vegetation, Gulf Coast Louisiana, Using Airborne Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kokaly, R. F.; Roberts, D. A.; Heckman, D.; Piazza, S.; Steyer, G.; Couvillion, B.; Holloway, J. M.; Mills, C. T.; Hoefen, T. M.

    2010-12-01

    Between April-July 2010 oil from the nation's largest oil spill contaminated the coastal marshlands of Louisiana. Data from the Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) are being used to (1) delineate the area of impact, (2) quantify the depth of oil penetration into the marsh and (3) characterize the physical and chemical impacts of the oil on the ecosystem. AVIRIS was flown on NASA ER-2 and Twin Otter aircraft, acquiring data at 7.5 and 4.4 meter pixel size, respectively. Concurrently, field surveys and sample collections were made in the imaged areas. Data were collected in early May, early July, late July and mid-August over the area ranging from Terrebonne Bay to the end of the Mississippi River delta. AVIRIS data were converted from radiance to reflectance. Oiled areas were detected by comparing AVIRIS spectra to field and laboratory spectrometer measurements of oiled and unaffected vegetation using the USGS Material Identification and Characterization Algorithm (MICA). Results indicate that the area in and around Barataria Bay was most extensively and heavily affected. In field surveys, stems of Spartina alterniflora and Juncus roemerianus, the dominant species observed in the heavily oiled zones, were bent and broken by the weight of the oil, resulting in a damaged canopy that extended up to 30 meters into marsh. In less impacted zones, oil was observed on the plant stems but the canopy remained intact. In the bird's foot region of the delta, the area impacted was less extensive and the dominant affected species, Phragmites australis, suffered oiled stems but only minor fracturing of the canopy. Additional AVIRIS flights and field surveys are planned for the fall of 2010 and summer 2011. By comparing plant species composition, canopy biochemical content, and vegetation fractional cover within affected areas and to unaffected areas, we will continue to monitor degradation and recovery in the ecosystem, including on the longer-term chemical

  20. Evaluation of airborne thermal-infrared image data for monitoring aquatic habitats and cultural resources within the Grand Canyon

    USGS Publications Warehouse

    Davis, Philip A.

    2002-01-01

    This study examined thermal-infrared (TIR) image data acquired using the airborne Advanced Thematic Mapper (ATM) sensor in the afternoon of July 25th, 2000 over a portion of the Colorado River corridor to determine the capability of these 100-cm resolution data to address some biologic and cultural resource requirements for GCMRC. The requirements investigated included the mapping of warm backwaters that may serve as fish habitats and the detection (and monitoring) of archaeological structures and natural springs that occur on land. This report reviews the procedure for calibration of the airborne TIR data to obtain surface water temperatures and shows the results for various river reaches within the acquired river corridor. With respect to mapping warm backwater areas, our results show that TIR data need to be acquired with a gain setting that optimizes the range of temperatures found within the water to increase sensitivity of the resulting data to a level of 0.1 °C and to reduce scan-line noise. Data acquired within a two-hour window around maximum solar heating (1:30 PM) is recommended to provide maximum solar heating of the water and to minimize cooling effects of late-afternoon shadows. Ground-truth data within the temperature range of the warm backwaters are necessary for calibration of the TIR data. The ground-truth data need to be collected with good locational accuracy. The derived water-temperature data provide the capability for rapid, wide-area mapping of warm-water fish habitats using a threshold temperature for such habitats. The collected daytime TIR data were ineffective in mapping (detecting) both archaeological structures and natural springs (seeps). The inability of the daytime TIR data to detect archaeological structures is attributed to the low thermal sensitivity (0.3 °C) of the collected data. The detection of subtle thermal differences between geologic materials requires sensitivities of at least 0.1 °C, which can be obtained by most TIR

  1. Case Studies for UV, O2-A Band and Polarimetric Airborne Remote Sensing Observations of Coastal Waters: Implications for Atmospheric Correction.

    NASA Astrophysics Data System (ADS)

    Chowdhary, J.; van Diedenhoven, B.; Knobelspiesse, K. D.; Cairns, B.; Wasilewski, A. P.; Mccubbin, I. B.

    2014-12-01

    A major challenge for spaceborne observations of ocean color is to correct for atmospheric scattering, which typically contributes ≥85% to the top-of-atmosphere (TOA) radiance and varies substantially with aerosols. Ocean color missions traditionally analyze TOA radiance in the near-infrared (NIR), where the ocean is black, to constrain the TOA atmospheric scattering in the visible (VIS). However, this procedure is limited by insufficient sensitivity of NIR radiance to absorption and vertical distribution of aerosols, and by uncertainties in the extrapolation of aerosol properties from the NIR to the VIS. To improve atmospheric correction for ocean color observations, one needs to change the traditional procedure for this correction and/or increase the aerosol information. The instruments proposed for the Pre-Aerosol, Clouds, and ocean Ecosystem (PACE) mission include ultraviolet and Oxygen A-band observations, as well as multispectral and multiangle polarimetry, to increase the aerosol information content. However no studies have been performed on whether such observations contain sufficient aerosol information, and on how to use this information, to substantially improve atmospheric correction. To study the atmospheric correction capabilities of PACE-like instruments, we are conducting field experiments off the Coast of California to obtain high-altitude airborne and in-situ observations of water-leaving radiance. The airborne data sets consist of hyperspectral radiance between 380-2500 nm by the Airborne Visible/Infrared Imaging Spectrometer, and narrow-band multiangle polarimetric data between 410-2250 nm by the Research Scanning Polarimeter. We discuss the quality of and comparisons between these data sets, and their differential sensitivities to variations in aerosol properties and ocean color.

  2. Airborne radar imaging of subaqueous channel evolution in Wax Lake Delta, Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Shaw, John B.; Ayoub, Francois; Jones, Cathleen E.; Lamb, Michael P.; Holt, Benjamin; Wagner, R. Wayne; Coffey, Thomas S.; Chadwick, J. Austin; Mohrig, David

    2016-05-01

    Shallow coastal regions are among the fastest evolving landscapes but are notoriously difficult to measure with high spatiotemporal resolution. Using Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data, we demonstrate that high signal-to-noise L band synthetic aperture radar (SAR) can reveal subaqueous channel networks at the distal ends of river deltas. Using 27 UAVSAR images collected between 2009 and 2015 from the Wax Lake Delta in coastal Louisiana, USA, we show that under normal tidal conditions, planform geometry of the distributary channel network is frequently resolved in the UAVSAR images, including ~700 m of seaward network extension over 5 years for one channel. UAVSAR also reveals regions of subaerial and subaqueous vegetation, streaklines of biogenic surfactants, and what appear to be small distributary channels aliased by the survey grid, all illustrating the value of fine resolution, low noise, L band SAR for mapping the nearshore subaqueous delta channel network.

  3. The Spectral Image Processing System (SIPS): Software for integrated analysis of AVIRIS data

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.; Lefkoff, A. B.; Boardman, J. W.; Heidebrecht, K. B.; Shapiro, A. T.; Barloon, P. J.; Goetz, A. F. H.

    1992-01-01

    The Spectral Image Processing System (SIPS) is a software package developed by the Center for the Study of Earth from Space (CSES) at the University of Colorado, Boulder, in response to a perceived need to provide integrated tools for analysis of imaging spectrometer data both spectrally and spatially. SIPS was specifically designed to deal with data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the High Resolution Imaging Spectrometer (HIRIS), but was tested with other datasets including the Geophysical and Environmental Research Imaging Spectrometer (GERIS), GEOSCAN images, and Landsat TM. SIPS was developed using the 'Interactive Data Language' (IDL). It takes advantage of high speed disk access and fast processors running under the UNIX operating system to provide rapid analysis of entire imaging spectrometer datasets. SIPS allows analysis of single or multiple imaging spectrometer data segments at full spatial and spectral resolution. It also allows visualization and interactive analysis of image cubes derived from quantitative analysis procedures such as absorption band characterization and spectral unmixing. SIPS consists of three modules: SIPS Utilities, SIPS_View, and SIPS Analysis. SIPS version 1.1 is described below.

  4. Airborne cable detection with a W-band FMCW imaging sensor

    NASA Astrophysics Data System (ADS)

    Goshi, D. S.; Liu, Y.; Mai, K.; Bui, L.; Shih, Y.

    2010-04-01

    Numerous accidents occur each year due to wire strikes for both military and commercial helicopters leading to a significant number of fatalities. The millimeter-wave sensor presents itself as an ideal candidate for a solution because it can see the very small attributes of the typical power line/cable wire as well as operate when visual conditions worsen due to environmental issues such as fog, smoke or dust. This paper presents recent results on the development of a W-band FMCW imaging sensor with potential application to cable detection and imaging. The sensor front end is integrated with a radar signal generator, processor, and data acquisition unit for the purpose of closing the loop between prototype demonstration and system development. Real-time imaging is achieved at a 10 Hz frame rate with a field of view of 30°. A complete flight demonstration of this system was performed on a Honeywell-operated AStar helicopter to validate the flight-worthiness of the sensor under close to actual operational conditions. The development of such technology that can detect and avoid obstacles such as cables and wires especially for rotorcraft platforms will save lives, assets, and enable the execution of more complex and dangerous tactical missions.

  5. Reconstruction of 3D Shapes of Opaque Cumulus Clouds from Airborne Multiangle Imaging: A Proof-of-Concept

    NASA Astrophysics Data System (ADS)

    Davis, A. B.; Bal, G.; Chen, J.

    2015-12-01

    Operational remote sensing of microphysical and optical cloud properties is invariably predicated on the assumption of plane-parallel slab geometry for the targeted cloud. The sole benefit of this often-questionable assumption about the cloud is that it leads to one-dimensional (1D) radiative transfer (RT)---a textbook, computationally tractable model. We present new results as evidence that, thanks to converging advances in 3D RT, inverse problem theory, algorithm implementation, and computer hardware, we are at the dawn of a new era in cloud remote sensing where we can finally go beyond the plane-parallel paradigm. Granted, the plane-parallel/1D RT assumption is reasonable for spatially extended stratiform cloud layers, as well as the smoothly distributed background aerosol layers. However, these 1D RT-friendly scenarios exclude cases that are critically important for climate physics. 1D RT---whence operational cloud remote sensing---fails catastrophically for cumuliform clouds that have fully 3D outer shapes and internal structures driven by shallow or deep convection. For these situations, the first order of business in a robust characterization by remote sensing is to abandon the slab geometry framework and determine the 3D geometry of the cloud, as a first step toward bone fide 3D cloud tomography. With this specific goal in mind, we deliver a proof-of-concept for an entirely new kind of remote sensing applicable to 3D clouds. It is based on highly simplified 3D RT and exploits multi-angular suites of cloud images at high spatial resolution. Airborne sensors like AirMSPI readily acquire such data. The key element of the reconstruction algorithm is a sophisticated solution of the nonlinear inverse problem via linearization of the forward model and an iteration scheme supported, where necessary, by adaptive regularization. Currently, the demo uses a 2D setting to show how either vertical profiles or horizontal slices of the cloud can be accurately reconstructed

  6. Four-band image mosaic of the Colorado River corridor downstream of Glen Canyon Dam in Arizona, derived from the May 2013 airborne image acquisition

    USGS Publications Warehouse

    Durning, Laura E.; Sankey, Joel B.; Davis, Philip A.; Sankey, Temuulen T.

    2016-12-14

    In May 2013, the U.S. Geological Survey’s Grand Canyon Monitoring and Research Center acquired airborne multispectral high-resolution data for the Colorado River in the Grand Canyon, Arizona. The image data, which consist of four color bands (blue, green, red, and near-infrared) with a ground resolution of 20 centimeters, are available to the public as 16-bit geotiff files at http://dx.doi.org/10.5066/F7TX3CHS. The images are projected in the State Plane map projection, using the central Arizona zone (202) and the North American Datum of 1983. The assessed accuracy for these data is based on 91 ground-control points and is reported at the 95-percent confidence level as 0.64 meter (m) and a root mean square error of 0.36 m. The primary intended uses of this dataset are for maps to support field data collection and simple river navigation; high-spatial-resolution change detection of sandbars, other geomorphic landforms, riparian vegetation, and backwater and nearshore habitats; and other ecosystem-wide mapping.

  7. Airborne Remote Sensing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA imaging technology has provided the basis for a commercial agricultural reconnaissance service. AG-RECON furnishes information from airborne sensors, aerial photographs and satellite and ground databases to farmers, foresters, geologists, etc. This service produces color "maps" of Earth conditions, which enable clients to detect crop color changes or temperature changes that may indicate fire damage or pest stress problems.

  8. Spectral characterization of coastal sediments using Field Spectral Libraries, Airborne Hyperspectral Images and Topographic LiDAR Data (FHyL)

    NASA Astrophysics Data System (ADS)

    Manzo, Ciro; Valentini, Emiliana; Taramelli, Andrea; Filipponi, Federico; Disperati, Leonardo

    2015-04-01

    Beach dune systems are important for coastal zone ecosystems as they provide natural sea defences that dissipate wave energy. Geomorphological models of this near-shore topography require site-specific sediment composition, grain size and moisture content as inputs. Hyperspectral, field radiometry and LiDAR remote sensing can be used as tools by providing synoptic maps of these properties. However, multi-remote sensing of near-shore beach images can only be interpreted if there are adequate bio-geophysical or empirical models for information extraction. Our aim was thus to model the effects of varying sediment properties on the reflectance in both field and laboratory conditions within the FHyL (Field Spectral Libraries, Airborne Hyperspectral Images and Topographic LiDAR) procedure, using a multisource dataset (airborne Hyperspectral - MIVIS and topographic LiDAR - Hawk-eye II and field radiometry). The methodology consisted of (i) acquisition of simultaneous multi-source datasets (airborne Hyperspectral - MIVIS and topographic LiDAR - Hawk-eye) (ii) hyperspectral measurements of sediment mixtures with varying physical characteristics (moisture, grain size and minerals) in field and laboratory conditions, (iii) determination and quantification of specific absorption features, and (iv) correlation between the absorption features and physical parameters cited above. Results showed the potential of hyperspectral signals to assess the effect of moisture, grain-size and mineral composition on sediment properties.

  9. Airborne imaging for heritage documentation using the Fotokite tethered flying camera

    NASA Astrophysics Data System (ADS)

    Verhoeven, Geert; Lupashin, Sergei; Briese, Christian; Doneus, Michael

    2014-05-01

    Since the beginning of aerial photography, researchers used all kinds of devices (from pigeons, kites, poles, and balloons to rockets) to take still cameras aloft and remotely gather aerial imagery. To date, many of these unmanned devices are still used for what has been referred to as Low-Altitude Aerial Photography or LAAP. In addition to these more traditional camera platforms, radio-controlled (multi-)copter platforms have recently added a new aspect to LAAP. Although model airplanes have been around for several decades, the decreasing cost, increasing functionality and stability of ready-to-fly multi-copter systems has proliferated their use among non-hobbyists. As such, they became a very popular tool for aerial imaging. The overwhelming amount of currently available brands and types (heli-, dual-, tri-, quad-, hexa-, octo-, dodeca-, deca-hexa and deca-octocopters), together with the wide variety of navigation options (e.g. altitude and position hold, waypoint flight) and camera mounts indicate that these platforms are here to stay for some time. Given the multitude of still camera types and the image quality they are currently capable of, endless combinations of low- and high-cost LAAP solutions are available. In addition, LAAP allows for the exploitation of new imaging techniques, as it is often only a matter of lifting the appropriate device (e.g. video cameras, thermal frame imagers, hyperspectral line sensors). Archaeologists were among the first to adopt this technology, as it provided them with a means to easily acquire essential data from a unique point of view, whether for simple illustration purposes of standing historic structures or to compute three-dimensional (3D) models and orthophotographs from excavation areas. However, even very cheap multi-copters models require certain skills to pilot them safely. Additionally, malfunction or overconfidence might lift these devices to altitudes where they can interfere with manned aircrafts. As such, the

  10. Integration of visible-through microwave-range multispectral image data sets for geologic mapping

    NASA Technical Reports Server (NTRS)

    Kruse, Fred A.; Dietz, John B.

    1991-01-01

    Multispectral remote sensing data sets collected during the Geologic Remote Sensing Field Experiment (GRSFE) conducted during 1989 in the southwestern U.S. were used to produce thematic image maps showing details of the surface geology. LANDSAT TM (Thematic Mapper) images were used to map the distribution of clays, carbonates, and iron oxides. AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) data were used to identify and map calcite, dolomite, sericite, hematite, and geothite, including mixtures. TIMS (Thermal Infrared Multispectral Scanner) data were used to map the distribution of igneous rock phases and carbonates based on their silica contents. AIRSAR (Airborne Synthetic Aperture Radar) data were used to map surface textures related to the scale of surface roughness. The AIRSAR also allowed identification of previously unmapped fault segments and structural control of lithology and minerology. Because all of the above data sets were geographically referenced, combination of different data types and direct comparison of the results with conventional field and laboratory data sets allowed improved geologic mapping of the test site.

  11. Airborne thermal infrared imaging of the 2004-2005 eruption of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Schneider, D. J.; Vallance, J. W.; Logan, M.; Wessels, R.; Ramsey, M.

    2005-12-01

    A helicopter-mounted forward-looking infrared imaging radiometer (FLIR) documented the explosive and effusive activity at Mount St. Helens during the 2004-2005 eruption. A gyrostabilzed gimbal controlled by a crew member houses the FLIR radiometer and an optical video camera attached at the lower front of the helicopter. Since October 1, 2004 the system has provided an unprecedented data set of thermal and video dome-growth observations. Flights were conducted as frequently as twice daily during the initial month of the eruption (when changes in the crater and dome occurred rapidly), and have been continued on a tri-weekly basis during the period of sustained dome growth. As with any new technology, the routine use of FLIR images to aid in volcano monitoring has been a learning experience in terms of observation strategy and data interpretation. Some of the unique information that has been derived from these data to date include: 1) Rapid identification of the phreatic nature of the early explosive phase; 2) Observation of faulting and associated heat flow during times of large scale deformation; 3) Venting of hot gas through a short lived crater lake, indicative of a shallow magma source; 4) Increased heat flow of the crater floor prior to the initial dome extrusion; 5) Confirmation of new magma reaching the surface; 6) Identification of the source of active lava extrusion, dome collapse, and block and ash flows. Temperatures vary from ambient, in areas insulated by fault gouge and talus produced during extrusion, to as high as 500-740 degrees C in regions of active extrusion, collapse, and fracturing. This temperature variation needs to be accounted for in the retrieval of eruption parameters using satellite-based techniques as such features are sub-pixel size in satellite images.

  12. Validation of Rain Rate Retrievals for the Airborne Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Jacob, Maria Marta; Salemirad, Matin; Jones, W. Linwood; Biswas, Sayak; Cecil, Daniel

    2015-01-01

    The NASA Hurricane and Severe Storm Sentinel (HS3) mission is an aircraft field measurements program using NASA's unmanned Global Hawk aircraft system for remote sensing and in situ observations of Atlantic and Caribbean Sea hurricanes. One of the principal microwave instruments is the Hurricane Imaging Radiometer (HIRAD), which measures surface wind speeds and rain rates. For validation of the HIRAD wind speed measurement in hurricanes, there exists a comprehensive set of comparisons with the Stepped Frequency Microwave Radiometer (SFMR) with in situ GPS dropwindsondes [1]. However, for rain rate measurements, there are only indirect correlations with rain imagery from other HS3 remote sensors (e.g., the dual-frequency Ka- & Ku-band doppler radar, HIWRAP), which is only qualitative in nature. However, this paper presents results from an unplanned rain rate measurement validation opportunity that occurred in 2013, when HIRAD flew over an intense tropical squall line that was simultaneously observed by the Tampa NEXRAD meteorological radar (Fig. 1). During this experiment, Global Hawk flying at an altitude of 18 km made 3 passes over the rapidly propagating thunderstorm, while the TAMPA NEXRAD perform volume scans on a 5-minute interval. Using the well-documented NEXRAD Z-R relationship, 2D images of rain rate (mm/hr) were obtained at two altitudes (3 km & 6 km), which serve as surface truth for the HIRAD rain rate retrievals. A preliminary comparison of HIRAD rain rate retrievals (image) for the first pass and the corresponding closest NEXRAD rain image is presented in Fig. 2 & 3. This paper describes the HIRAD instrument, which 1D synthetic-aperture thinned array radiometer (STAR) developed by NASA Marshall Space Flight Center [2]. The rain rate retrieval algorithm, developed by Amarin et al. [3], is based on the maximum likelihood estimation (MLE) technique, which compares the observed Tb's at the HIRAD operating frequencies of 4, 5, 6 and 6.6 GHz with

  13. Multiscale Anomaly Detection and Image Registration Algorithms for Airborne Landmine Detection

    DTIC Science & Technology

    2008-05-01

    for compression and denoising , it is used in this work as a tool for signal analysis. The critically sampled wavelet transform finds its place in the...scales and the sampling intervals differ by a factor of two. The two-dimensional sequence d(k, l) is commonly referred to as the discrete wavelet ...variables of the CWT. The same name will be used later for wavelet transforms of discrete - time signals or discrete images. The representation in Eq. 2.8 is

  14. High-resolution measurements from the airborne Atmospheric Nitrogen Dioxide Imager (ANDI)

    NASA Astrophysics Data System (ADS)

    Lawrence, J. P.; Anand, J. S.; Vande Hey, J. D.; White, J.; Leigh, R. R.; Monks, P. S.; Leigh, R. J.

    2015-11-01

    Nitrogen dioxide is both a primary pollutant with direct health effects and a key precursor of the secondary pollutant ozone. This paper reports on the development, characterisation and test flight of the Atmospheric Nitrogen Dioxide Imager (ANDI) remote sensing system. The ANDI system includes an imaging UV/Vis grating spectrometer able to capture scattered sunlight spectra for the determination of tropospheric nitrogen dioxide (NO2) concentrations by way of DOAS slant column density and vertical column density measurements. Results are shown for an ANDI test flight over Leicester City in the UK on a cloud-free winter day in February 2013. Retrieved NO2 columns gridded to a surface resolution of 80 m × 20 m revealed hotspots in a series of locations around Leicester City, including road junctions, the train station, major car parks, areas of heavy industry, a nearby airport (East Midlands) and a power station (Ratcliffe-on-Soar). In the city centre the dominant source of NO2 emissions was identified as road traffic, contributing to a background concentration as well as producing localised hotspots. Quantitative analysis revealed a significant urban increment over the city centre which increased throughout the flight.

  15. High-resolution measurements from the airborne Atmospheric Nitrogen Dioxide Imager (ANDI)

    NASA Astrophysics Data System (ADS)

    Lawrence, J. P.; Anand, J. S.; Vande Hey, J. D.; Leigh, R. R.; Monks, P. S.; Leigh, R. J.

    2015-06-01

    Nitrogen Dioxide is both a primary pollutant with direct health effects and a key precursor of the secondary pollutant ozone. This paper reports on the development, characterisation and test flight of the Atmospheric Nitrogen Dioxide Imager (ANDI) remote sensing system. The ANDI system includes an imaging (UV)-vis grating spectrometer able to capture scattered sunlight spectra for the determination of tropospheric nitrogen dioxide (NO2) concentrations by way of DOAS slant column density and vertical column density measurements. Results are shown for an ANDI test flight over Leicester City in the UK. Retrieved NO2 columns at a surface resolution of 80 m x 20 m revealed hot spots in a series of locations around Leicester City, including road junctions, the train station, major car parks, areas of heavy industry, a nearby airport (East Midlands) and a power station (Ratcliffe-on-Soar). In the city centre the dominant source of NO2 emissions was identified as road traffic, contributing to a background concentration as well as producing localised hot spots. Quantitative analysis revealed a significant urban increment over the city centre which increased throughout the flight.

  16. Seasonal and Inter-Annual Patterns of Phytoplankton Community Structure in Monterey Bay, CA Derived from AVIRIS Data During the 2013-2015 HyspIRI Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Palacios, S. L.; Thompson, D. R.; Kudela, R. M.; Negrey, K.; Guild, L. S.; Gao, B. C.; Green, R. O.; Torres-Perez, J. L.

    2015-12-01

    There is a need in the ocean color community to discriminate among phytoplankton groups within the bulk chlorophyll pool to understand ocean biodiversity, to track energy flow through ecosystems, and to identify and monitor for harmful algal blooms. Imaging spectrometer measurements enable use of sophisticated spectroscopic algorithms for applications such as differentiating among coral species, evaluating iron stress of phytoplankton, and discriminating phytoplankton taxa. These advanced algorithms rely on the fine scale, subtle spectral shape of the atmospherically corrected remote sensing reflectance (Rrs) spectrum of the ocean surface. As a consequence, these algorithms are sensitive to inaccuracies in the retrieved Rrs spectrum that may be related to the presence of nearby clouds, inadequate sensor calibration, low sensor signal-to-noise ratio, glint correction, and atmospheric correction. For the HyspIRI Airborne Campaign, flight planning considered optimal weather conditions to avoid flights with significant cloud/fog cover. Although best suited for terrestrial targets, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has enough signal for some coastal chlorophyll algorithms and meets sufficient calibration requirements for most channels. However, the coastal marine environment has special atmospheric correction needs due to error that may be introduced by aerosols and terrestrially sourced atmospheric dust and riverine sediment plumes. For this HyspIRI campaign, careful attention has been given to the correction of AVIRIS imagery of the Monterey Bay to optimize ocean Rrs retrievals for use in estimating chlorophyll (OC3 algorithm) and phytoplankton functional type (PHYDOTax algorithm) data products. This new correction method has been applied to several image collection dates during two oceanographic seasons - upwelling and the warm, stratified oceanic period for 2013 and 2014. These two periods are dominated by either diatom blooms (occasionally

  17. Land cover classification of VHR airborne images for citrus grove identification

    NASA Astrophysics Data System (ADS)

    Amorós López, J.; Izquierdo Verdiguier, E.; Gómez Chova, L.; Muñoz Marí, J.; Rodríguez Barreiro, J. Z.; Camps Valls, G.; Calpe Maravilla, J.

    Managing land resources using remote sensing techniques is becoming a common practice. However, data analysis procedures should satisfy the high accuracy levels demanded by users (public or private companies and governments) in order to be extensively used. This paper presents a multi-stage classification scheme to update the citrus Geographical Information System (GIS) of the Comunidad Valenciana region (Spain). Spain is the first citrus fruit producer in Europe and the fourth in the world. In particular, citrus fruits represent 67% of the agricultural production in this region, with a total production of 4.24 million tons (campaign 2006-2007). The citrus GIS inventory, created in 2001, needs to be regularly updated in order to monitor changes quickly enough, and allow appropriate policy making and citrus production forecasting. Automatic methods are proposed in this work to facilitate this update, whose processing scheme is summarized as follows. First, an object-oriented feature extraction process is carried out for each cadastral parcel from very high spatial resolution aerial images (0.5 m). Next, several automatic classifiers (decision trees, artificial neural networks, and support vector machines) are trained and combined to improve the final classification accuracy. Finally, the citrus GIS is automatically updated if a high enough level of confidence, based on the agreement between classifiers, is achieved. This is the case for 85% of the parcels and accuracy results exceed 94%. The remaining parcels are classified by expert photo-interpreters in order to guarantee the high accuracy demanded by policy makers.

  18. New optical sensor systems for high-resolution satellite, airborne and terrestrial imaging systems

    NASA Astrophysics Data System (ADS)

    Eckardt, Andreas; Börner, Anko; Lehmann, Frank

    2007-10-01

    The department of Optical Information Systems (OS) at the Institute of Robotics and Mechatronics of the German Aerospace Center (DLR) has more than 25 years experience with high-resolution imaging technology. The technology changes in the development of detectors, as well as the significant change of the manufacturing accuracy in combination with the engineering research define the next generation of spaceborne sensor systems focusing on Earth observation and remote sensing. The combination of large TDI lines, intelligent synchronization control, fast-readable sensors and new focal-plane concepts open the door to new remote-sensing instruments. This class of instruments is feasible for high-resolution sensor systems regarding geometry and radiometry and their data products like 3D virtual reality. Systemic approaches are essential for such designs of complex sensor systems for dedicated tasks. The system theory of the instrument inside a simulated environment is the beginning of the optimization process for the optical, mechanical and electrical designs. Single modules and the entire system have to be calibrated and verified. Suitable procedures must be defined on component, module and system level for the assembly test and verification process. This kind of development strategy allows the hardware-in-the-loop design. The paper gives an overview about the current activities at DLR in the field of innovative sensor systems for photogrammetric and remote sensing purposes.

  19. Improved Atmospheric Boundary Layer Observations of Tropical Cyclones with the Imaging Wind and Rain Airborne Profiler

    NASA Technical Reports Server (NTRS)

    Fernandez, D. Esteban; Chang, P.; Carswel, J.; Contreras, R.; Chu, T.; Asuzu, P.; Black, P.; Marks, F.

    2006-01-01

    The Imaging Wind and Rain Arborne Profilers (IWRAP) is a dual-frequency, conically-scanning Doppler radar that measures high-resolution, dual-polarized, multi-beam C- and Ku-band reflectivity and Doppler velocity profiles of the atmospheric boundary layer (ABL) within the inner core of hurricanes.From the datasets acquired during the 2002 through 20O5 hurricane seasons as part of the ONR Coupled Boundary Layer Air-Sea Transfer (CBLAST) program and the NOAA/NESDIS Ocean Winds and Rain experiments, very high resolution radar observations of hurricanes have been acquired and made available to the CBLAST community. Of particular interest am the ABL wind fields and 3-D structures found within the inner core of hurricanes. As a result of these analysis, a limitation in the ability to retrieve the ABL wind field at very low altitudes was identified. This paper shows how this limitation has been removed and presents initial results demonstrating its new capabilities to derive the ABL wind field within the inner are of hurricanes to much lower altitudes than the ones the original system was capable of.

  20. Towards a 3-D tomographic retrieval for the air-borne limb-imager GLORIA

    NASA Astrophysics Data System (ADS)

    Ungermann, J.; Kaufmann, M.; Hoffmann, L.; Preusse, P.; Oelhaf, H.; Friedl-Vallon, F.; Riese, M.

    2010-11-01

    GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) is a new remote sensing instrument essentially combining a Fourier transform infrared spectrometer with a two-dimensional (2-D) detector array in combination with a highly flexible gimbal mount. It will be housed in the belly pod of the German research aircraft HALO (High Altitude and Long Range Research Aircraft). It is unique in its combination of high spatial and state-of-the art spectral resolution. Furthermore, the horizontal view angle with respect to the aircraft flight direction can be varied from 45° to 135°. This allows for tomographic measurements of mesoscale events for a wide variety of atmospheric constituents. In this paper, a tomographic retrieval scheme is presented, which is able to fully exploit the manifold radiance observations of the GLORIA limb sounder. The algorithm is optimized for massive 3-D retrievals of several hundred thousands of measurements and atmospheric constituents on common hardware. The new scheme is used to explore the capabilities of GLORIA to sound the atmosphere in full 3-D with respect to the choice of the flightpath and to different measurement modes of the instrument using ozone as a test species. It is demonstrated that the achievable resolution should approach 200 m vertically and 20 km-30 km horizontally. Finally, a comparison of the 3-D inversion with conventional 1-D inversions using the assumption of a horizontally homogeneous atmosphere is performed.

  1. Towards a 3-D tomographic retrieval for the Air-borne Limb-imager GLORIA

    NASA Astrophysics Data System (ADS)

    Ungermann, J.; Kaufmann, M.; Hoffmann, L.; Preusse, P.; Oelhaf, H.; Friedl-Vallon, F.; Riese, M.

    2010-07-01

    GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) is a new remote sensing instrument essentially combining a Fourier transform infrared spectrometer with two two-dimensional (2-D) detector arrays in combination with a highly flexible gimbal mount. It will be housed in the belly pod of the German research aircraft HALO (High Altitude and Long Range Research Aircraft). It is unique in its high spatial and spectral resolution. Furthermore, the horizontal view angle with respect to the aircraft can be varied from 45° to 135°. This allows for tomographic measurements of mesoscale events for a wide variety of atmospheric constituents. In this paper, a fast tomographic retrieval scheme is presented, which is able to fully exploit the high-resolution radiance observations of the GLORIA limb sounder. The algorithm is optimized for massive 3-D retrievals of several hundred thousands of measurements and atmospheric constituents on common hardware. The new scheme is used to explore the capabilities of GLORIA to sound the atmosphere in full 3-D with respect to the choice of the flightpath and to different measurement modes of the instrument using ozone as a test species. It is demonstrated that the achievable resolution should approach 200 m vertically and 20 km-30 km horizontally. Finally, a comparison of the 3-D inversion with conventional 1-D inversions using the assumption of a horizontally homogeneous atmosphere is performed.

  2. G-LiHT: Goddard's LiDAR, Hyperspectral and Thermal Airborne Imager

    NASA Technical Reports Server (NTRS)

    Cook, Bruce; Corp, Lawrence; Nelson, Ross; Morton, Douglas; Ranson, Kenneth J.; Masek, Jeffrey; Middleton, Elizabeth

    2012-01-01

    Scientists at NASA's Goddard Space Flight Center have developed an ultra-portable, low-cost, multi-sensor remote sensing system for studying the form and function of terrestrial ecosystems. G-LiHT integrates two LIDARs, a 905 nanometer single beam profiler and 1550 nm scanner, with a narrowband (1.5 nanometers) VNIR imaging spectrometer and a broadband (8-14 micrometers) thermal imager. The small footprint (approximately 12 centimeters) LIDAR data and approximately 1 meter ground resolution imagery are advantageous for high resolution applications such as the delineation of canopy crowns, characterization of canopy gaps, and the identification of sparse, low-stature vegetation, which is difficult to detect from space-based instruments and large-footprint LiDAR. The hyperspectral and thermal imagery can be used to characterize species composition, variations in biophysical variables (e.g., photosynthetic pigments), surface temperature, and responses to environmental stressors (e.g., heat, moisture loss). Additionally, the combination of LIDAR optical, and thermal data from G-LiHT is being used to assess forest health by sensing differences in foliage density, photosynthetic pigments, and transpiration. Low operating costs (approximately $1 ha) have allowed us to evaluate seasonal differences in LiDAR, passive optical and thermal data, which provides insight into year-round observations from space. Canopy characteristics and tree allometry (e.g., crown height:width, canopy:ground reflectance) derived from G-LiHT data are being used to generate realistic scenes for radiative transfer models, which in turn are being used to improve instrument design and ensure continuity between LiDAR instruments. G-LiHT has been installed and tested in aircraft with fuselage viewports and in a custom wing-mounted pod that allows G-LiHT to be flown on any Cessna 206, a common aircraft in use throughout the world. G-LiHT is currently being used for forest biomass and growth estimation

  3. Evaluation of airborne image data for mapping riparian vegetation within the Grand Canyon

    USGS Publications Warehouse

    Davis, Philip A.; Staid, Matthew I.; Plescia, Jeffrey B.; Johnson, Jeffrey R.

    2002-01-01

    This study examined various types of remote-sensing data that have been acquired during a 12-month period over a portion of the Colorado River corridor to determine the type of data and conditions for data acquisition that provide the optimum classification results for mapping riparian vegetation. Issues related to vegetation mapping included time of year, number and positions of wavelength bands, and spatial resolution for data acquisition to produce accurate vegetation maps versus cost of data. Image data considered in the study consisted of scanned color-infrared (CIR) film, digital CIR, and digital multispectral data, whose resolutions from 11 cm (photographic film) to 100 cm (multispectral), that were acquired during the Spring, Summer, and Fall seasons in 2000 for five long-term monitoring sites containing riparian vegetation. Results show that digitally acquired data produce higher and more consistent classification accuracies for mapping vegetation units than do film products. The highest accuracies were obtained from nine-band multispectral data; however, a four-band subset of these data, that did not include short-wave infrared bands, produced comparable mapping results. The four-band subset consisted of the wavelength bands 0.52-0.59 µm, 0.59-0.62 µm, 0.67-0.72 µm, and 0.73-0.85 µm. Use of only three of these bands that simulate digital CIR sensors produced accuracies for several vegetation units that were 10% lower than those obtained using the full multispectral data set. Classification tests using band ratios produced lower accuracies than those using band reflectance for scanned film data; a result attributed to the relatively poor radiometric fidelity maintained by the film scanning process, whereas calibrated multispectral data produced similar classification accuracies using band reflectance and band ratios. This suggests that the intrinsic band reflectance of the vegetation is more important than inter-band reflectance differences in

  4. Super-resolution of hyperspectral images using sparse representation and Gabor prior

    NASA Astrophysics Data System (ADS)

    Patel, Rakesh C.; Joshi, Manjunath V.

    2016-04-01

    Super-resolution (SR) as a postprocessing technique is quite useful in enhancing the spatial resolution of hyperspectral (HS) images without affecting its spectral resolution. We present an approach to increase the spatial resolution of HS images by making use of sparse representation and Gabor prior. The low-resolution HS observations consisting of large number of bands are represented as a linear combination of a small number of basis images using principal component analysis (PCA), and the significant components are used in our work. We first obtain initial estimates of SR on this reduced dimension by using compressive sensing-based method. Since SR is an ill-posed problem, the final solution is obtained by using a regularization framework. The novelty of our approach lies in: (1) estimation of optimal point spread function in the form of decimation matrix, and (2) using a new prior called "Gabor prior" to super-resolve the significant PCA components. Experiments are conducted on two different HS datasets namely, 31-band natural HS image set collected under controlled laboratory environment and a set of 224-band real HS images collected by airborne visible/infrared imaging spectrometer remote sensing sensor. Visual inspections and quantitative comparison confirm that our method enhances spatial information without introducing significant spectral distortion. Our conclusions include: (1) incorporate the sensor characteristics in the form of estimated decimation matrix for SR, and (2) preserve various frequencies in super-resolved image by making use of Gabor prior.

  5. Lossless compression of hyperspectral images using conventional recursive least-squares predictor with adaptive prediction bands

    NASA Astrophysics Data System (ADS)

    Gao, Fang; Guo, Shuxu

    2016-01-01

    An efficient lossless compression scheme for hyperspectral images using conventional recursive least-squares (CRLS) predictor with adaptive prediction bands is proposed. The proposed scheme first calculates the preliminary estimates to form the input vector of the CRLS predictor. Then the number of bands used in prediction is adaptively selected by an exhaustive search for the number that minimizes the prediction residual. Finally, after prediction, the prediction residuals are sent to an adaptive arithmetic coder. Experiments on the newer airborne visible/infrared imaging spectrometer (AVIRIS) images in the consultative committee for space data systems (CCSDS) test set show that the proposed scheme yields an average compression performance of 3.29 (bits/pixel), 5.57 (bits/pixel), and 2.44 (bits/pixel) on the 16-bit calibrated images, the 16-bit uncalibrated images, and the 12-bit uncalibrated images, respectively. Experimental results demonstrate that the proposed scheme obtains compression results very close to clustered differential pulse code modulation-with-adaptive-prediction-length, which achieves best lossless compression performance for AVIRIS images in the CCSDS test set, and outperforms other current state-of-the-art schemes with relatively low computation complexity.

  6. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  7. Joint aerosol and water-leaving radiance retrieval from Airborne Multi-angle SpectroPolarimeter Imager

    NASA Astrophysics Data System (ADS)

    Xu, F.; Dubovik, O.; Zhai, P.; Kalashnikova, O. V.; Diner, D. J.

    2015-12-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) [1] has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. In step-and-stare operation mode, AirMSPI typically acquires observations of a target area at 9 view angles between ±67° off the nadir. Its spectral channels are centered at 355, 380, 445, 470*, 555, 660*, and 865* nm, where the asterisk denotes the polarimetric bands. In order to retrieve information from the AirMSPI observations, we developed a efficient and flexible retrieval code that can jointly retrieve aerosol and water leaving radiance simultaneously. The forward model employs a coupled Markov Chain (MC) [2] and adding/doubling [3] radiative transfer method which is fully linearized and integrated with a multi-patch retrieval algorithm to obtain aerosol and water leaving radiance/Chl-a information. Various constraints are imposed to improve convergence and retrieval stability. We tested the aerosol and water leaving radiance retrievals using the AirMSPI radiance and polarization measurements by comparing to the retrieved aerosol concentration, size distribution, water-leaving radiance, and chlorophyll concentration to the values reported by the USC SeaPRISM AERONET-OC site off the coast of Southern California. In addition, the MC-based retrievals of aerosol properties were compared with GRASP ([4-5]) retrievals for selected cases. The MC-based retrieval approach was then used to systematically explore the benefits of AirMSPI's ultraviolet and polarimetric channels, the use of multiple view angles, and constraints provided by inclusion of bio-optical models of the water-leaving radiance. References [1]. D. J. Diner, et al. Atmos. Meas. Tech. 6, 1717 (2013). [2]. F. Xu et al. Opt. Lett. 36, 2083 (2011). [3]. J. E. Hansen and L.D. Travis. Space Sci. Rev. 16, 527 (1974). [4]. O. Dubovik et al. Atmos. Meas. Tech., 4, 975 (2011). [5]. O. Dubovik et al. SPIE: Newsroom, DOI:10.1117/2.1201408.005558 (2014).

  8. Remote Measurements of Snowfalls in Wakasa Bay, Japan with Airborne Millimeter- wave Imaging Radiometer and Cloud Radar

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Austin, R.; Liu, G. S.; Racette, P. E.

    2004-01-01

    In this paper we explore the application of combined millimeter-wave radar and radiometry to remotely measure snowfall. During January-February of 2003, a field campaign was conducted with the NASA P-3 aircraft in Wakasa Bay, Japan for the validation of the AMSRE microwave radiometer on board the Aqua satellite. Among the suite of instruments-on board the P-3 aircraft were the Millimeter-wave Imaging Radiometer (MIR) from the NASA Goddard Space Flight Center and the 94 GHz Airborne Cloud Radar (ACR) which is co-owned and operated by NASA Jet Propulsion Laboratory/University of Massachusetts. MIR is a total power, across-track scanning radiometer that measures radiation at the frequencies of 89, 150, 183.3 +/- 1, 183.3 +/- 3, 183.3 +/-7, 220, and 340 GHz. The MIR has flown many successful missions since its completion in May 1992. ACR is a newer instrument and flew only a few times prior to the Wakasa Bay deployment. These two instruments which are particularly well suited for the detection of snowfall functioned normally during flights over snowfall and excellent data sets were acquired. On January 14, 28, and 29 flights were conducted over snowfall events. The MIR and ACR detected strong signals during periods of snowfall over ocean and land. Results from the analysis of these concurrent data sets show that (1) the scattering of millimeter-wave radiation as detected by the MIR is strongly correlated with ACR radar reflectivity profiles, and (2) the scattering is highly frequency-dependent, the higher the frequency the stronger the scattering. Additionally, the more transparent channels of the MIR (e.g., 89, 150, and 220 GHz) are found to display ambiguous signatures of snowfall because of their exposure to surface features. Thus, the snowfall detection and retrievals of snowfall parameters, such as the ice water path (IWP) and median mass diameter (D(me)) are best conducted at the more opaque channels near 183.3 GHz and 340 GHz. Retrievals of IWP and D(me) using

  9. Bright Visible-Infrared Light Emitting Diodes Based on Hybrid Halide Perovskite with Spiro-OMeTAD as a Hole-Injecting Layer.

    PubMed

    Jaramillo-Quintero, Oscar A; Sanchez, Rafael S; Rincon, Marina; Mora-Sero, Ivan

    2015-05-21

    Hybrid halide perovskites that are currently intensively studied for photovoltaic applications, also present outstanding properties for light emission. Here, we report on the preparation of bright solid state light emitting diodes (LEDs) based on a solution-processed hybrid lead halide perovskite (Pe). In particular, we have utilized the perovskite generally described with the formula CH3NH3PbI(3-x)Cl(x) and exploited a configuration without electron or hole blocking layer in addition to the injecting layers. Compact TiO2 and Spiro-OMeTAD were used as electron and hole injecting layers, respectively. We have demonstrated a bright combined visible-infrared radiance of 7.1 W·sr(-1)·m(-2) at a current density of 232 mA·cm(-2), and a maximum external quantum efficiency (EQE) of 0.48%. The devices prepared surpass the EQE values achieved in previous reports, considering devices with just an injecting layer without any additional blocking layer. Significantly, the maximum EQE value of our devices is obtained at applied voltages as low as 2 V, with a turn-on voltage as low as the Pe band gap (V(turn-on) = 1.45 ± 0.06 V). This outstanding performance, despite the simplicity of the approach, highlights the enormous potentiality of Pe-LEDs. In addition, we present a stability study of unsealed Pe-LEDs, which demonstrates a dramatic influence of the measurement atmosphere on the performance of the devices. The decrease of the electroluminescence (EL) under continuous operation can be attributed to an increase of the non-radiative recombination pathways, rather than a degradation of the perovskite material itself.

  10. Application of multivariate curve resolution alternating least squares (MCR-ALS) to remote sensing hyperspectral imaging.

    PubMed

    Zhang, Xin; Tauler, Romà

    2013-01-31

    The application of the MCR-ALS method is demonstrated on two simulated remote sensing spectroscopic images and on one experimental reference remote sensing spectroscopic image obtained by the Airborn Visible/Infrared Imaging Spectrometer (AVIRIS). By application of MCR-ALS, the spectra signatures of the pure constituents present in the image and their concentration distribution at a pixel level are estimated. Results obtained by MCR-ALS are compared to those obtained by other methods frequently used in the remote sensing spectroscopic imaging field like VCA and MVSA. In the case of the analysis of the experimental data set, the resolved pure spectra signatures were compared to reference spectra from USGS library for their identification. In all cases, results were also evaluated for the presence of rotational ambiguities using the MCR-BANDS method. The obtained results confirmed that the MCR-ALS method can be successfully used for remote sensing hyperspectral image resolution purposes. However, the amount of rotation ambiguity still present in the solutions obtained by this and other resolution methods (like VCA or MVSA) can still be large and it should be evaluated with care, trying to reduce its effects by selecting the more appropriate constraints. Only in this way it is possible to increase the reliability of the solutions provided by these methods and decrease the uncertainties associated to their use.

  11. Using Imaging Spectrometry to Identify Crops in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Shivers, S.; Roberts, D. A.

    2015-12-01

    With a growing global population, limited resources and a changing climate, understanding and monitoring the distribution of our food and water resources is essential to their sustainability. Regional food yield estimates and water resource accounting are dependent upon accurate agricultural records. Crop mapping provides farmers, managers, and policymakers the information necessary to anticipate annual food supplies and water demands by better understanding the distribution of species. While on the ground crop accounting usually happens yearly at the county level and requires significant time and labor inputs, remote sensing has the potential to map crops and monitor their health over a greater spatial area with more frequent time intervals. Specifically, imaging spectrometers have the capability to produce imagery at high spectral and spatial resolutions, which may allow for differentiation of crops at the field-level scale. In this research 14 crop species and soil were classified in Kern County, California using canonical discriminant analysis (CDA) and Multiple Endmember Spectral Mixture Analysis (MESMA) on airborne visible/infrared imaging spectrometer (AVIRIS) imagery from June 2013. Imagery was then degraded to Landsat spectral resolution and reclassified for comparison. Results with the AVIRIS imagery show an overall accuracy of 69.0% using MESMA and 89.4% using CDA with nine out of fourteen crop species showing user and producer errors under ten percent. Lower accuracy was found for OLI data. This research illustrates great potential for field-level crop mapping with imaging spectrometry.

  12. Parallel multilayer perceptron neural network used for hyperspectral image classification

    NASA Astrophysics Data System (ADS)

    Garcia-Salgado, Beatriz P.; Ponomaryov, Volodymyr I.; Robles-Gonzalez, Marco A.

    2016-04-01

    This study is focused on time optimization for the classification problem presenting a comparison of five Artificial Neural Network Multilayer Perceptron (ANN-MLP) architectures. We use the Artificial Neural Network (ANN) because it allows to recognize patterns in data in a lower time rate. Time and classification accuracy are taken into account together for the comparison. According to time comparison, two paradigms in the computational field for each ANN-MLP architecture are analysed with three schemes. Firstly, sequential programming is applied by using a single CPU core. Secondly, parallel programming is employed over a multi-core CPU architecture. Finally, a programming model running on GPU architecture is implemented. Furthermore, the classification accuracy is compared between the proposed five ANN-MLP architectures and a state-of.the-art Support Vector Machine (SVM) with three classification frames: 50%,60% and 70% of the data set's observations are randomly selected to train the classifiers. Also, a visual comparison of the classified results is presented. The Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) criteria are also calculated to characterise visual perception. The images employed were acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), the Reflective Optics System Imaging Spectrometer (ROSIS) and the Hyperion sensor.

  13. Airborne Particles.

    ERIC Educational Resources Information Center

    Ojala, Carl F.; Ojala, Eric J.

    1987-01-01

    Describes an activity in which students collect airborne particles using a common vacuum cleaner. Suggests ways for the students to convert their data into information related to air pollution and human health. Urges consideration of weather patterns when analyzing the results of the investigation. (TW)

  14. Airborne Imagery

    NASA Technical Reports Server (NTRS)

    1983-01-01

    ATM (Airborne Thematic Mapper) was developed for NSTL (National Space Technology Companies) by Daedalus Company. It offers expanded capabilities for timely, accurate and cost effective identification of areas with prospecting potential. A related system is TIMS, Thermal Infrared Multispectral Scanner. Originating from Landsat 4, it is also used for agricultural studies, etc.

  15. Hyperspectral image preprocessing with bilateral filter for improving the classification accuracy of support vector machines

    NASA Astrophysics Data System (ADS)

    Sahadevan, Anand S.; Routray, Aurobinda; Das, Bhabani S.; Ahmad, Saquib

    2016-04-01

    Bilateral filter (BF) theory is applied to integrate spatial contextual information into the spectral domain for improving the accuracy of the support vector machine (SVM) classifier. The proposed classification framework is a two-stage process. First, an edge-preserved smoothing is carried out on a hyperspectral image (HSI). Then, the SVM multiclass classifier is applied on the smoothed HSI. One of the advantages of the BF-based implementation is that it considers the spatial as well as spectral closeness for smoothing the HSI. Therefore, the proposed method provides better smoothing in the homogeneous region and preserves the image details, which in turn improves the separability between the classes. The performance of the proposed method is tested using benchmark HSIs obtained from the airborne-visible-infrared-imaging-spectrometer (AVIRIS) and the reflective-optics-system-imaging-spectrometer (ROSIS) sensors. Experimental results demonstrate the effectiveness of the edge-preserved filtering in the classification of the HSI. Average accuracies (with 10% training samples) of the proposed classification framework are 99.04%, 98.11%, and 96.42% for AVIRIS-Salinas, ROSIS-Pavia University, and AVIRIS-Indian Pines images, respectively. Since the proposed method follows a combination of BF and the SVM formulations, it will be quite simple and practical to implement in real applications.

  16. An Airborne Ultrasonic Imaging System Based on 16 Elements: 150 kHz Piezopolymer Transducer Arrays—Preliminary Simulated and Experimental Results for Cylindrical Targets Detection

    NASA Astrophysics Data System (ADS)

    Capineri, L.; Bulletti, A.; Calzolai, M.; Giannelli, P.

    2016-12-01

    This paper describes the design and fabrication of a 16-element transducer array for airborne ultrasonic imaging operating at 150 kHz, that can operate both at close range (50 mm) in the near field of a synthetic aperture, and up to 250 mm. The proposed imaging technique is based on a modified version of the delay and sum algorithm implemented with a synthetic aperture where each pixel amplitude is determined by the integration of the signal obtained by the coherent summation of the acquired signals over a delayed window with fixed length. The image reconstruction methods using raw data provides the possibility to detect targets with smaller feature size on the order of one wavelength because the coherent signals summation over the selected window length while the image reconstruction methods using the summation of enveloped signals increases the amplitude response at the expenses of a lower spatial resolution. For the implementation of this system it is important to design compact airborne transducers with large field of view and this can be obtained with a new design of hemi-cylindrical polyvinylidene fluoride film transducers directly mounted on a printed circuit board. This new method is low cost and has repeatable transducer characteristics. The complete system is compact, with a modular architecture, in which eight boards with dual ultrasonic channels are mounted on a mother board. Each daughter board hosts a microcontroller unit and can operate with transducers in the bandwidth 40-200 kHz with on-board data acquisition, pre-processing and transfer on a dedicated bus.

  17. On the retrieval of water-related canopy biochemistry from airborne hyperspectral data and its comparison to MODIS spectral response

    NASA Astrophysics Data System (ADS)

    Casas Planes; Riaño, D.; Ustin, S.; Dennison, P. E.; Salas, J.

    2013-12-01

    Quantification of states and rates of water content in vegetation is critical in plant ecology. This work aims to assess the performance of a wide range of methodologies for the retrieval of vegetation biochemical and biophysical properties related to water, including: (i) foliar water content (FWC, cm), (ii) canopy water content (CWC, cm), (iii) fuel moisture content (FMC) and several interrelated variables: (iv) leaf mass per area (LMA, g/cm2), (v) foliar biomass (FB, g/m2), and (vi) leaf area index (LAI, m2/m2). Methods are applied to Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data collected over Stanford University's Jasper Ridge Biological Preserve, California, USA, and derived Moderate Resolution Imaging Spectrometer (MODIS)-like data, within a multitemporal frame and stratified by cover type (i.e. grassland, shrubland and forest). Assessed methods are: (i) spectral fitting techniques applied to AVIRIS data, ii) the use of standard and recently designed indices, iii) AVIRIS PROSAIL and MODIS CWC PROSAIL inversion; and iv) the estimation of best band combination indices calibrated with the experimental dataset. This work shows how CWC retrieved from spectral fitting techniques proved relatively inaccurate. RTM simulations were significantly improved with the incorporation of a soil spectrum particularly in the case of grasslands and only for LAI in forests. Spectral indices provided higher accuracy; however, the most accurate index differed by variable and by cover types. Empirical calibration of indices improved the retrievals significantly in the case of FMC, LMA and FB using bands in the longer wavelength SWIR region.

  18. Classification of high dimensional multispectral image data

    NASA Technical Reports Server (NTRS)

    Hoffbeck, Joseph P.; Landgrebe, David A.

    1993-01-01

    A method for classifying high dimensional remote sensing data is described. The technique uses a radiometric adjustment to allow a human operator to identify and label training pixels by visually comparing the remotely sensed spectra to laboratory reflectance spectra. Training pixels for material without obvious spectral features are identified by traditional means. Features which are effective for discriminating between the classes are then derived from the original radiance data and used to classify the scene. This technique is applied to Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data taken over Cuprite, Nevada in 1992, and the results are compared to an existing geologic map. This technique performed well even with noisy data and the fact that some of the materials in the scene lack absorption features. No adjustment for the atmosphere or other scene variables was made to the data classified. While the experimental results compare favorably with an existing geologic map, the primary purpose of this research was to demonstrate the classification method, as compared to the geology of the Cuprite scene.

  19. Solutions Network Formulation Report. Visible/Infrared Imager/Radiometer Suite and Landsat Data Continuity Mission Simulated Data Products for the Great Lakes Basin Ecological Team

    NASA Technical Reports Server (NTRS)

    Estep, Leland

    2007-01-01

    The proposed solution would simulate VIIRS and LDCM sensor data for use in the USGS/USFWS GLBET DST. The VIIRS sensor possesses a spectral range that provides water-penetrating bands that could be used to assess water clarity on a regional spatial scale. The LDCM sensor possesses suitable spectral bands in a range of wavelengths that could be used to map water quality at finer spatial scales relative to VIIRS. Water quality, alongshore sediment transport and pollutant discharge tracking into the Great Lakes system are targeted as the primary products to be developed. A principal benefit of water quality monitoring via satellite imagery is its economy compared to field-data collection methods. Additionally, higher resolution satellite imagery provides a baseline dataset(s) against which later imagery can be overlaid in GIS-based DST programs. Further, information derived from higher resolution satellite imagery can be used to address public concerns and to confirm environmental compliance. The candidate solution supports the Public Health, Coastal Management, and Water Management National Applications.

  20. Solutions Network Formulation Report. Visible/Infrared Imager/Radiometer Suite and Advanced Microwave Scanning Radiometer Data Products for National Drought Monitor Decision Support

    NASA Technical Reports Server (NTRS)

    Estep, Leland

    2007-01-01

    Drought effects are either direct or indirect depending on location, population, and regional economic vitality. Common direct effects of drought are reduced crop, rangeland, and forest productivity; increased fire hazard; reduced water levels; increased livestock and wildlife mortality rates; and damage to wildlife and fish habitat. Indirect impacts follow on the heels of direct impacts. For example, a reduction in crop, rangeland, and forest productivity may result in reduced income for farmers and agribusiness, increased prices for food and timber, unemployment, reduced tax revenues, increased crime, foreclosures on bank loans to farmers and businesses, migration, and disaster relief programs. In the United States alone, drought is estimated to result in annual losses of between $6 - 8 billion. Recent sustained drought in the United States has made decision-makers aware of the impacts of climate change on society and environment. The eight major droughts that occurred in the United States between 1980 and 1999 accounted for the largest percentage of weather-related monetary losses. Monitoring drought and its impact that occurs at a variety of scales is an important government activity -- not only nationally but internationally as well. The NDMC (National Drought Mitigation Center) and the USDA (U.S. Department of Agriculture) RMA (Risk Management Agency) have partnered together to develop a DM-DSS (Drought Monitoring Decision Support System). This monitoring system will be an interactive portal that will provide users the ability to visualize and assess drought at all levels. This candidate solution incorporates atmospherically corrected VIIRS data products, such as NDVI (Normalized Difference Vegetation Index) and Ocean SST (sea surface temperature), and AMSR-E soil moisture data products into two NDMC vegetation indices -- VegDRI (Vegetation Drought Response Index) and VegOUT (Vegetation Outlook) -- which are then input into the DM-DSS.

  1. The Laser Vegetation Imaging Sensor (LVIS): A Medium-Altitude, Digitization-Only, Airborne Laser Altimeter for Mapping Vegetation and Topography

    NASA Technical Reports Server (NTRS)

    Blair, J. Bryan; Rabine, David L.; Hofton, Michelle A.

    1999-01-01

    The Laser Vegetation Imaging Sensor (LVIS) is an airborne, scanning laser altimeter designed and developed at NASA's Goddard Space Flight Center. LVIS operates at altitudes up to 10 km above ground, and is capable of producing a data swath up to 1000 m wide nominally with 25 m wide footprints. The entire time history of the outgoing and return pulses is digitized, allowing unambiguous determination of range and return pulse structure. Combined with aircraft position and attitude knowledge, this instrument produces topographic maps with decimeter accuracy and vertical height and structure measurements of vegetation. The laser transmitter is a diode-pumped Nd:YAG oscillator producing 1064 nm, 10 nsec, 5 mJ pulses at repetition rates up to 500 Hz. LVIS has recently demonstrated its ability to determine topography (including sub-canopy) and vegetation height and structure on flight missions to various forested regions in the U.S. and Central America. The LVIS system is the airborne simulator for the Vegetation Canopy Lidar (VCL) mission (a NASA Earth remote sensing satellite due for launch in 2000), providing simulated data sets and a platform for instrument proof-of-concept studies. The topography maps and return waveforms produced by LVIS provide Earth scientists with a unique data set allowing studies of topography, hydrology, and vegetation with unmatched accuracy and coverage.

  2. Data assimilation of an airborne multiple-remote-sensor system and of satellite images for the North Sea and Baltic Sea

    NASA Astrophysics Data System (ADS)

    Trieschmann, Olaf; Hunsaenger, Thomas; Tufte, Lars; Barjenbruch, Ulrich

    2004-02-01

    Marine pollution in the sensible North and Baltic Sea forces an international aerial surveillance. Within this framework the German aerial surveillance operates an advanced instrumentation on board of two 'Dornier 228" aircrafts. The instrumentation consists of a set of state-of-the-art imaging remote sensors, like side looking airborne radar (SLAR), IR/UV line scanner and particularly a microwave radiometer (MWR) and a laser-fluoro-sensor (LFS). The most important aim is to detect oil discharges on the water surface, emitted accidentally or illegally. In case of discharge, the pollution has to be classified and quantified with a high accuracy. Another aim is to monitor biological and hydrological parameters, as there are the concentration of chlorophyll and dissolved organic matter (DOM) or the growth of phytoplancton. This paper describes the set of instruments and their potential to fulfill these demands. The SLAR operates to locate oil discharges and phytoplancton, whereas the IR/UV scanner allows to distinct the detected area. The IR/UV and especially the MWR sensor allow to quantify the thickness of the oil film. Finally, the LFS classifies the oil species as well as organic material. Emphasis is placed on the results of the sensor measurements and their synergy effects. The combination of the sensor data yields value added information for the operational users. An use of satellite data to improve the operational surveillance will be discussed. The potential and limitations of satellite and airborne data for the surveillance tasks will be compared.

  3. Imaging a 3D geological structure from HEM, airborne magnetic and ground ERT data in Kalat-e-Reshm area, Iran

    NASA Astrophysics Data System (ADS)

    Shirzaditabar, Farzad; Bastani, Mehrdad; Oskooi, Behrooz

    2011-11-01

    A set of geophysical data collected in an area in Iran are analyzed to check the validity of a geological map that was prepared in connection to a mineral prospecting project and also to image the spatial electrical resistivity distribution. The data set includes helicopter electromagnetic (HEM), airborne magnetic and ground electrical resistivity measurement. Occam approach was used to invert the HEM data to model the resistivity using a layered earth model with fixed thicknesses. The algorithm is based on a nonlinear inverse problem in a least-squares sense. The algorithm was tested on a part of an HEM dataset acquired with a DIGHEM helicopter EM system at Kalat-e-Reshm, Semnan in Iran. The area contains a resistive porphyry andesite that is covered by Eocene sedimentary units. The results are shown as resistivity sections and maps confirming the existence of an arc like resistive structure in the survey area. The resistive andesite seems to be thicker than it is indicated in the geological maps. The results are compared with the reduced to the pole (RTP) airborne magnetic anomaly field data as well as with two ground resistivity profiles. We found reasonable correlations between the HEM 1D resistivity models and 2D models from electrical resistivity tomography (ERT) inversions. A 3D visualization of the 1D models along all flight lines provided a useful tool for the study of spatial variations of the resistivity structure in the investigation area.

  4. Simultaneous Inflight Spectral and Radiometric Calibration Validation of AVRIS and HYDICE Over Lunar Lake, Nevada

    NASA Technical Reports Server (NTRS)

    Chrien, Thomas; Green, Robert; Chovit, Chris; Faust, Jessica; Johnson, Howell; Basedow, Robert; Zalewski, Edward; Colwell, John

    1995-01-01

    An experiment to check the spectral and radiometric calibration of two sensors--the airborne visible/infrared imaging spectromenter (AVRIS) and the Hyperspectral digital image collection experiment (HYDICE)--is described.

  5. [Study of automatic marine oil spills detection using imaging spectroscopy].

    PubMed

    Liu, De-Lian; Han, Liang; Zhang, Jian-Qi

    2013-11-01

    To reduce artificial auxiliary works in oil spills detection process, an automatic oil spill detection method based on adaptive matched filter is presented. Firstly, the characteristics of reflectance spectral signature of C-H bond in oil spill are analyzed. And an oil spill spectral signature extraction model is designed by using the spectral feature of C-H bond. It is then used to obtain the reference spectral signature for the following oil spill detection step. Secondly, the characteristics of reflectance spectral signature of sea water, clouds, and oil spill are compared. The bands which have large difference in reflectance spectral signatures of the sea water, clouds, and oil spill are selected. By using these bands, the sea water pixels are segmented. And the background parameters are then calculated. Finally, the classical adaptive matched filter from target detection algorithms is improved and introduced for oil spill detection. The proposed method is applied to the real airborne visible infrared imaging spectrometer (AVIRIS) hyperspectral image captured during the deepwater horizon oil spill in the Gulf of Mexico for oil spill detection. The results show that the proposed method has, high efficiency, does not need artificial auxiliary work, and can be used for automatic detection of marine oil spill.

  6. Identification and Atmospheric Transport of Microcystin Around Southern California Using Airborne Remote Sensing

    NASA Astrophysics Data System (ADS)

    Conlin, J.; Kudela, R. M.; Broughton, J.

    2014-12-01

    Microcystin, a hepatotoxin produced by the cyanobacteria Microcystis, has been known to contaminate fresh water sources around southern California. Ingesting this toxin can cause death in animals and illnesses in humans, which has promoted the World Health Organization (WHO) and California to establish preliminary guidelines for microcystin concentrations in the water (1 μg/L in drinking water and 0.8 μg/L for recreational exposure respectively). However, very few studies have been done to assess the effects of this toxin when aerosolized, even though Fitzgeorge et al. (1994) describes the toxin as potentially 12x more deadly if inhaled rather than swallowed. This project aimed to identify areas with the potential for high microcystin concentrations using airborne data and then model the potential atmospheric transport of the toxin. After applying the Master Scattering Line Height (MSLH) and Aphanizomenon-Microcystis Index (AMI) algorithms to Airborne Visible/ Infrared Imaging Spectrometer (AVIRIS), multiple water bodies were identified as having the potential for Microcystis, although many of the observed water bodies had AMI values indicating the presence of Aphanizomenon-- a non-toxic cyanobacteria that is usually present before Microcystis. A relationship between toxins and biomass was developed and used to estimate the amount of phycocyanin and dissolved microcystin in the water. Brevetoxin, common in the Florida 'red tides', was used as a proxy to estimate the amount of microcystin that becomes aerosolized given a known water concentration (Kirkpatrick et al, 2010). These amounts were then run and averaged with the HYSPLIT dispersion model for 4 hours, 12 hours, and 24 hours. The final results show that most areas are exposed to less than 0.1 ng/m^3 after 4 hours. As a worst case scenario, one final model was run to show the exposure amount when Pinto Lake was observed to have the maximum amount of microcystin recorded in 2007. The results show that after 4

  7. Molecular Shocks Associated with Massive Young Stars: CO Line Images with a New Far-Infrared Spectroscopic Camera on the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Watson, Dan M.

    1997-01-01

    Under the terms of our contract with NASA Ames Research Center, the University of Rochester (UR) offers the following final technical report on grant NAG 2-958, Molecular shocks associated with massive young stars: CO line images with a new far-infrared spectroscopic camera, given for implementation of the UR Far-Infrared Spectroscopic Camera (FISC) on the Kuiper Airborne Observatory (KAO), and use of this camera for observations of star-formation regions 1. Two KAO flights in FY 1995, the final year of KAO operations, were awarded to this program, conditional upon a technical readiness confirmation which was given in January 1995. The funding period covered in this report is 1 October 1994 - 30 September 1996. The project was supported with $30,000, and no funds remained at the conclusion of the project.

  8. Airborne Open Polar/Imaging Nephelometer for Ice Particles in Cirrus Clouds and Aerosols Field Campaign Report

    SciTech Connect

    Martins, JV

    2016-04-01

    The Open Imaging Nephelometer (O-I-Neph) instrument is an adaptation of a proven laboratory instrument built and tested at the University of Maryland, Baltimore County (UMBC), the Polarized Imaging Nephelometer (PI-Neph). The instrument design of both imaging nephelometers uses a narrow-beam laser source and a wide-field-of-view imaging camera to capture the entire scattering-phase function in one image, quasi-instantaneously.

  9. PITBUL: a physics-based modeling package for imaging and tracking of airborne targets for HEL applications including active illumination

    NASA Astrophysics Data System (ADS)

    Van Zandt, Noah R.; McCrae, Jack E.; Fiorino, Steven T.

    2013-05-01

    Aimpoint acquisition and maintenance is critical to high energy laser (HEL) system performance. This study demonstrates the development by the AFIT/CDE of a physics-based modeling package, PITBUL, for tracking airborne targets for HEL applications, including atmospheric and sensor effects and active illumination, which is a focus of this work. High-resolution simulated imagery of the 3D airborne target in-flight as seen from the laser position is generated using the HELSEEM model, and includes solar illumination, laser illumination, and thermal emission. Both CW and pulsed laser illumination are modeled, including the effects of illuminator scintillation, atmospheric backscatter, and speckle, which are treated at a first-principles level. Realistic vertical profiles of molecular and aerosol absorption and scattering, as well as optical turbulence, are generated using AFIT/CDE's Laser Environmental Effects Definition and Reference (LEEDR) model. The spatially and temporally varying effects of turbulence are calculated and applied via a fast-running wave optical method known as light tunneling. Sensor effects, for example blur, sampling, read-out noise, and random photon arrival, are applied to the imagery. Track algorithms, including centroid and Fitts correlation, as a part of a closed loop tracker are applied to the degraded imagery and scored, to provide an estimate of overall system performance. To gauge performance of a laser system against a UAV target, tracking results are presented as a function of signal to noise ratio. Additionally, validation efforts to date involving comparisons between simulated and experimental tracking of UAVs are presented.

  10. Data products of NASA Goddard's LiDAR, hyperspectral, and thermal airborne imager (G-LiHT)

    NASA Astrophysics Data System (ADS)

    Corp, Lawrence A.; Cook, Bruce D.; McCorkel, Joel; Middleton, Elizabeth M.

    2015-06-01

    Scientists in the Biospheric Sciences Laboratory at NASA's Goddard Space Flight Center have undertaken a unique instrument fusion effort for an airborne package that integrates commercial off the shelf LiDAR, Hyperspectral, and Thermal components. G-LiHT is a compact, lightweight and portable system that can be used on a wide range of airborne platforms to support a number of NASA Earth Science research projects and space-based missions. G-LiHT permits simultaneous and complementary measurements of surface reflectance, vegetation structure, and temperature, which provide an analytical framework for the development of new algorithms for mapping plant species composition, plant functional types, biodiversity, biomass, carbon stocks, and plant growth. G-LiHT and its supporting database are designed to give scientists open access to the data that are needed to understand the relationship between ecosystem form and function and to stimulate the advancement of synergistic algorithms. This system will enhance our ability to design new missions and produce data products related to biodiversity and climate change. G-LiHT has been operational since 2011 and has been used to collect data for a number of NASA and USFS sponsored studies, including NASA's Carbon Monitoring System (CMS) and the American ICESat/GLAS Assessment of Carbon (AMIGA-Carb). These acquisitions target a broad diversity of forest communities and ecoregions across the United States and Mexico. Here, we will discuss the components of G-LiHT, their calibration and performance characteristics, operational implementation, and data processing workflows. We will also provide examples of higher level data products that are currently available.

  11. Lossy to lossless compressions of hyperspectral images using three-dimensional set partitioning algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Jiaji; Wu, Zhensen; Wu, Chengke

    2006-02-01

    We present a three-dimensional (3-D) hyperspectral image compression algorithm based on zero-block coding and wavelet transforms. An efficient asymmetric 3-D wavelet transform (AT) based on the lifting technique and packet transform is used to reduce redundancies in both the spectral and spatial dimensions. The implementation via 3-D integer lifting scheme enables us to map integer-to-integer values, enabling lossy and lossless decompression from the same bit stream. To encode these coefficients after the AT, a modified 3DSPECK algorithm-asymmetric transform 3-D set-partitioning embedded block (AT-3DSPECK) is proposed. According to the distribution of energy of the transformed coefficients, the 3DSPECK's 3-D set partitioning block algorithm and the 3-D octave band partitioning scheme are efficiently combined in the proposed AT-3DSPECK algorithm. Several AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) images are used to evaluate the compression performance. Compared with the JPEG2000, AT-3DSPIHT, and 3DSPECK lossless compression techniques, the AT-3DSPECK achieves the best lossless performance. In lossy mode, the AT-3DSPECK algorithm outperforms AT-3DSPIHT and 3DSPECK at all rates. Besides the high compression performance, AT-3DSPECK supports progressive transmission. Clearly, the proposed AT-3DSPECK algorithm is a better candidate than several conventional methods.

  12. Mapping Pollution Plumes in Areas Impacted by Hurricane Katrina With Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Swayze, G. A.; Furlong, E. T.; Livo, K. E.

    2007-12-01

    New Orleans endured flooding on a massive scale subsequent to Hurricane Katrina in August of 2005. Contaminant plumes were noticeable in satellite images of the city in the days following flooding. Many of these plumes were caused by oil, gasoline, and diesel that leaked from inundated vehicles, gas stations, and refineries. News reports also suggested that the flood waters were contaminated with sewage from breached pipes. Effluent plumes such as these pose a potential health hazard to humans and wildlife in the aftermath of hurricanes and potentially from other catastrophic events (e.g., earthquakes, shipping accidents, chemical spills, and terrorist attacks). While the extent of effluent plumes can be gauged with synthetic aperture radar and broad- band visible-infrared images (Rykhus, 2005) (e.g., Radarsat and Landsat ETM+) the composition of the plumes could not be determined. These instruments lack the spectral resolution necessary to do chemical identification. Imaging spectroscopy may help solve this problem. Over 60 flight lines of NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected over New Orleans, the Mississippi Delta, and the Gulf Coast from one to two weeks after Katrina while the contaminated water was being pumped out of flooded areas. These data provide a unique opportunity to test if imaging spectrometer data can be used to identify the chemistry of these flood-related plumes. Many chemicals have unique spectral signatures in the ultraviolet to near-infrared range (0.2 - 2.5 microns) that can be used as fingerprints for their identification. We are particularly interested in detecting thin films of oil, gasoline, diesel, and raw sewage suspended on or in water. If these materials can be successfully differentiated in the lab then we will use spectral-shape matching algorithms to look for their spectral signatures in the AVIRIS data collected over New Orleans and other areas impacted by Katrina. If imaging spectroscopy

  13. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  14. A spatially variable light-frequency-selective component-based, airborne pushbroom imaging spectrometer for the water environment

    NASA Astrophysics Data System (ADS)

    Sun, Xiuhong; Anderson, J. M.

    1993-03-01

    A design of a variable interference filter imaging spectrometer (VIFIS) system is described. A set of systematic concepts, including continuous spectral image encoding using a spatially variable light-frequency-selective principle; spectral image data reconstruction using a transputer co-processed video rate pushbroom queue processing algorithm; and complete spectral image information storages and retrieval using video recording, have been adopted in the system. These result in a system that can supply up to 640 spectral bands of 8-bit images within the spectral range from 400 to 700 nm after one flyby. Many other attributes such as compactness of the sensor, simplicity in operation, availability of in-flight image inspection, accessibility in flight height and velocity are other advantages of the system. A preliminary test over the Tay Estuary was performed aboard a Cessna 152 aircraft. The images and spectral profiles obtained show the system to be an effective tool for remote sensing.

  15. Hyperspectral Image Classification using a Self-Organizing Map

    NASA Technical Reports Server (NTRS)

    Martinez, P.; Gualtieri, J. A.; Aguilar, P. L.; Perez, R. M.; Linaje, M.; Preciado, J. C.; Plaza, A.

    2001-01-01

    The use of hyperspectral data to determine the abundance of constituents in a certain portion of the Earth's surface relies on the capability of imaging spectrometers to provide a large amount of information at each pixel of a certain scene. Today, hyperspectral imaging sensors are capable of generating unprecedented volumes of radiometric data. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), for example, routinely produces image cubes with 224 spectral bands. This undoubtedly opens a wide range of new possibilities, but the analysis of such a massive amount of information is not an easy task. In fact, most of the existing algorithms devoted to analyzing multispectral images are not applicable in the hyperspectral domain, because of the size and high dimensionality of the images. The application of neural networks to perform unsupervised classification of hyperspectral data has been tested by several authors and also by us in some previous work. We have also focused on analyzing the intrinsic capability of neural networks to parallelize the whole hyperspectral unmixing process. The results shown in this work indicate that neural network models are able to find clusters of closely related hyperspectral signatures, and thus can be used as a powerful tool to achieve the desired classification. The present work discusses the possibility of using a Self Organizing neural network to perform unsupervised classification of hyperspectral images. In sections 3 and 4, the topology of the proposed neural network and the training algorithm are respectively described. Section 5 provides the results we have obtained after applying the proposed methodology to real hyperspectral data, described in section 2. Different parameters in the learning stage have been modified in order to obtain a detailed description of their influence on the final results. Finally, in section 6 we provide the conclusions at which we have arrived.

  16. Polarimetric sensor systems for airborne ISR

    NASA Astrophysics Data System (ADS)

    Chenault, David; Foster, Joseph; Pezzaniti, Joseph; Harchanko, John; Aycock, Todd; Clark, Alex

    2014-06-01

    Over the last decade, polarimetric imaging technologies have undergone significant advancements that have led to the development of small, low-power polarimetric cameras capable of meeting current airborne ISR mission requirements. In this paper, we describe the design and development of a compact, real-time, infrared imaging polarimeter, provide preliminary results demonstrating the enhanced contrast possible with such a system, and discuss ways in which this technology can be integrated with existing manned and unmanned airborne platforms.

  17. Mapping potentialy asbestos-bearing rocks using imaging spectroscopy

    USGS Publications Warehouse

    Swayze, G.A.; Kokaly, R.F.; Higgins, C.T.; Clinkenbeard, J.P.; Clark, R.N.; Lowers, H.A.; Sutley, S.J.

    2009-01-01

    Rock and soil that may contain naturally occurring asbestos (NOA), a known human carcinogen, were mapped in the Sierra Nevada, California, using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) to determine if these materials could be uniquely identified with spectroscopy. Such information can be used to prepare or refine maps of areas that may contain minerals that can be asbestiform, such as serpentine and tremolite-actinolite, which were the focus of this study. Although thick vegetation can conceal underlying rock and soil, use of linear-mixture spectra calculated from spectra of dry grass and serpentine allowed detection of serpentine in some parts of the study area with up to ???80% dry-grass cover. Chaparral vegetation, which was dominantly, but not exclusively, found in areas underlain by serpentinized ultramafic rocks, was also mapped. Overall, field checking at 201 sites indicated highly accurate identification by AVIRIS of mineral (94%) and vegetation (89%) categories. Practical applications of AVIRIS to mapping areas that may contain NOA include locating roads that are surfaced with serpentine aggregate, identifying sites that may require enhanced dust control or other safety measures, and filling gaps in geologic mapping where field access is limited. ?? 2009 Geological Society of America.

  18. Airborne and terrestrial lidar imaging and analysis of the 4 April 2010 El Mayor-Cucapah earthquake rupture

    NASA Astrophysics Data System (ADS)

    Oskin, M. E.; Gold, P. O.; Hinojosa, A.; Arrowsmith, R.; Elliott, A. J.; Taylor, M. H.; Herrs, A. J.; Sartori, M.; Gonzalez-Garcia, J. J.; Gonzalez, A.; Kreylos, O.; Cowgill, E.

    2010-12-01

    We report newly available data sets and preliminary analysis of ground- and airborne-lidar surveys of the 4 April 2010 El Mayor-Cucapah earthquake rupture. The hyperarid setting and varied surficial geology of this complex rupture zone presents an ideal setting to advance the use of lidar in post-earthquake scientific response. Terrestrial lidar surveys commenced within two weeks of the earthquake and capture ephemeral geomorphic features of the rupture zone. We recorded approximately 2 km of rupture on the Borrego fault where oblique dextral slip approaches four meters. These data highlight fine-scale features such as centimeter-scale scarps, subtle warping of the ground surface, and striations on the exposed fault free-face. Airborne lidar surveys, collected mid-August, 2010, span the rupture zone for 100 km in a NW-SE direction, from just south of the international border to the tidal flats of the Colorado River delta at the head of the Gulf of California. 3.8 billion point measurements were obtained with an average density of 11 points per square meter. GPS ground control was provided from a combination of PBO stations north of the border and coordination with the occupation of post-earthquake campaign sites in the central and southern portions of the rupture zone. The 3 km average width of the survey captures the complexity of strain-transfer between the multiple fault segments that slipped in 2010, as well as the adjacent zone of surface ruptures attributed to the 1892 Laguna Salada earthquake. This data set provides a new basis for offset measurements to be compared against field data collected immediately following the 2010 earthquake. Quantitative comparison to lower-resolution, pre-event lidar collected by the Instituto Nacional de Estadística y Geografía (INEGI) illuminates near-field distributed vertical deformation adjacent to the fault rupture. The southeastern half of the lidar survey spans a zone of cryptic dextral deformation, hosted within the

  19. Seasonal and spatial variations in phytoplanktonic chlorophyll in eutrophic Mono Lake, California, measured with the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Melack, John M.; Gastil, Mary

    1992-01-01

    The principal problem with application of airborne imaging spectrometers to lakes is the weak upwelling signal, especially when narrow spectral bands with high spatial resolution are sought. Furthermore, atmospheric path radiance dominates the signal received from dark targets such as lakes. Once atmospheric effects have been removed from the radiance received at the sensor, semi-empirical relationships can be developed to extract information about phytoplankton pigment concentrations for different underwater optical conditions. In lakes where concentrations of dissolved organics and suspended detritus may not co-vary with phytoplankton pigments, the many spectral channels of an imaging spectrometer such as AVIRIS are likely to be required to distinguish the various aquasols. The objectives of our study are to: (1) estimate the chlorophyll content of a lake with hundred-fold seasonal ranges in chlorophyll concentration using atmospherically corrected upwelling radiances derived from AVIRIS imagery, and (2) to examine spatial patterns in chlorophyll after reduction of the coherent noise in the imagery by filtering techniques.

  20. Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern grapevine mountains, Nevada, and California

    USGS Publications Warehouse

    Kruse, F.A.

    1988-01-01

    Three flightlines of Airborne Imaging Spectrometer (AIS) data, acquired over the northern Grapevine Mountains, Nevada, and California, were used to map minerals associated with hydrothermally altered rocks. The data were processed to remove vertical striping, normalized using an equal area normalization, and reduced to reflectance relative to an average spectrum derived from the data. An algorithm was developed to automatically calculate the absorption band parameters band position, band depth, and band width for the strongest absorption feature in each pixel. These parameters were mapped into an intensity, hue, saturation (IHS) color system to produce a single color image that summarized the absorption band information, This image was used to map areas of potential alteration based upon the predicted relationships between the color image and mineral absorption band. Individual AIS spectra for these areas were then examined to identify specific minerals. Two types of alteration were mapped with the AIS data. Areas of quartz-sericite-pyrite alteration were identified based upon a strong absorption feature near 2.21 ??m, a weak shoulder near 2.25 ??m, and a weak absorption band near 2.35 ??m caused by sericite (fine-grained muscovite). Areas of argillic alteration were defined based on the presence of montmorillonite, identified by a weak to moderate absorption feature near 2.21 ??m and the absence of the 2.35 ??m band. Montmorillonite could not be identified in mineral mixtures. Calcite and dolomite were identified based on sharp absorption features near 2.34 and 2.32 ??m, respectively. Areas of alteration identified using the AIS data corresponded well with areas mapped using field mapping, field reflectance spectra, and laboratory spectral measurements. ?? 1988.

  1. PHIPS-HALO: the airborne Particle Habit Imaging and Polar Scattering probe - Part 1: Design and operation

    NASA Astrophysics Data System (ADS)

    Abdelmonem, Ahmed; Järvinen, Emma; Duft, Denis; Hirst, Edwin; Vogt, Steffen; Leisner, Thomas; Schnaiter, Martin

    2016-07-01

    The number and shape of ice crystals present in mixed-phase and ice clouds influence the radiation properties, precipitation occurrence and lifetime of these clouds. Since clouds play a major role in the climate system, influencing the energy budget by scattering sunlight and absorbing heat radiation from the earth, it is necessary to investigate the optical and microphysical properties of cloud particles particularly in situ. The relationship between the microphysics and the single scattering properties of cloud particles is usually obtained by modelling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. There is a demand to obtain both information correspondently and simultaneously for individual cloud particles in their natural environment. For evaluating the average scattering phase function as a function of ice particle habit and crystal complexity, in situ measurements are required. To this end we have developed a novel airborne optical sensor (PHIPS-HALO) to measure the optical properties and the corresponding microphysical parameters of individual cloud particles simultaneously. PHIPS-HALO has been tested in the AIDA cloud simulation chamber and deployed in mountain stations as well as research aircraft (HALO and Polar 6). It is a successive version of the laboratory prototype instrument PHIPS-AIDA. In this paper we present the detailed design of PHIPS-HALO, including the detection mechanism, optical design, mechanical construction and aerodynamic characterization.

  2. AVIRIS Spectrometer Maps Total Water Vapor Column

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Green, Robert O.; Carrere, Veronique; Margolis, Jack S.; Alley, Ronald E.; Vane, Gregg A.; Bruegge, Carol J.; Gary, Bruce L.

    1992-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) processes maps of vertical-column abundances of water vapor in atmosphere with good precision and spatial resolution. Maps provide information for meteorology, climatology, and agriculture.

  3. Measuring the expressed abundance of the three phases of water with an imaging spectrometer over melting snow

    NASA Astrophysics Data System (ADS)

    Green, Robert O.; Painter, Thomas H.; Roberts, Dar A.; Dozier, Jeff

    2006-10-01

    From imaging spectrometer data, we simultaneously estimate the abundance of the three phases of water in an environment that includes melting snow, basing the analysis on the spectral shift in the absorption coefficient between water vapor, liquid water, and ice at 940, 980, and 1030 nm respectively. We apply a spectral fitting algorithm that measures the expressed abundance of the three phases of water to a data set acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over Mount Rainier, Washington, on 14 June 1996. Precipitable water vapor varies from 1 mm over the summit of Mount Rainier to 10 mm over the lower valleys to the northwest. Equivalent path absorption of liquid water varies from 0 to 13 mm, with the zero values over rocky areas and high-elevation snow and the high values associated with liquid water held in vegetation canopies and in melting snow. Ice abundance varies from 0 to 30 mm equivalent path absorption in the snow- and glacier-covered portions of Mount Rainier. The water and ice abundances are related to the amount of liquid water and the sizes of the ice grains in the near-surface layer. Precision of the estimates, calculated over locally homogeneous areas, indicates an uncertainty of better than 1.5% for all three phases, except for liquid water in vegetation, where an optimally homogeneous site was not found. The analysis supports new strategies for hydrological research and applications as imaging spectrometers become more available.

  4. Impact of atmospheric correction and image filtering on hyperspectral classification of tree species using support vector machine

    NASA Astrophysics Data System (ADS)

    Shahriari Nia, Morteza; Wang, Daisy Zhe; Bohlman, Stephanie Ann; Gader, Paul; Graves, Sarah J.; Petrovic, Milenko

    2015-01-01

    Hyperspectral images can be used to identify savannah tree species at the landscape scale, which is a key step in measuring biomass and carbon, and tracking changes in species distributions, including invasive species, in these ecosystems. Before automated species mapping can be performed, image processing and atmospheric correction is often performed, which can potentially affect the performance of classification algorithms. We determine how three processing and correction techniques (atmospheric correction, Gaussian filters, and shade/green vegetation filters) affect the prediction accuracy of classification of tree species at pixel level from airborne visible/infrared imaging spectrometer imagery of longleaf pine savanna in Central Florida, United States. Species classification using fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) atmospheric correction outperformed ATCOR in the majority of cases. Green vegetation (normalized difference vegetation index) and shade (near-infrared) filters did not increase classification accuracy when applied to large and continuous patches of specific species. Finally, applying a Gaussian filter reduces interband noise and increases species classification accuracy. Using the optimal preprocessing steps, our classification accuracy of six species classes is about 75%.

  5. Investigation of image enhancement techniques for the development of a self-contained airborne radar navigation system

    NASA Technical Reports Server (NTRS)

    Phatak, A. V.; Karmali, M. S.

    1983-01-01

    This study was devoted to an investigation of the feasibility of applying advanced image processing techniques to enhance radar image characteristics that are pertinent to the pilot's navigation and guidance task. Millimeter (95 GHz) wave radar images for the overwater (i.e., offshore oil rigs) and overland (Heliport) scenario were used as a data base. The purpose of the study was to determine the applicability of image enhancement and scene analysis algorithms to detect and improve target characteristics (i.e., manmade objects such as buildings, parking lots, cars, roads, helicopters, towers, landing pads, etc.) that would be helpful to the pilot in determining his own position/orientation with respect to the outside world and assist him in the navigation task. Results of this study show that significant improvements in the raw radar image may be obtained using two dimensional image processing algorithms. In the overwater case, it is possible to remove the ocean clutter by thresholding the image data, and furthermore to extract the target boundary as well as the tower and catwalk locations using noise cleaning (e.g., median filter) and edge detection (e.g., Sobel operator) algorithms.

  6. Using Hyperspectral Frame Images from Unmanned Airborne Vehicle for Detailed Measurement of Boreal Forest 3D Structure

    NASA Astrophysics Data System (ADS)

    de Oliveira, Raquel A.; Tommaselli, Antonio M. G.; Honkavaara, Eija

    2016-10-01

    Objective of this work was to investigate the feasibility of using multi-image matching and information extracted from image classification to improve strategies in generation of point clouds of 3D forest scene. Image data sets were collected by a Fabry-Pérot interferometer (FPI) based hyperspectral frame camera on-board a UAV in a boreal forest area. The results of the new method are analysed and compared with commercial software and LiDAR data. Experiments showed that the point clouds generated with the proposed algorithm fitted better with the LiDAR data at the ground level, which is favourable for digital terrain model (DTM) extraction.

  7. Roads Centre-Axis Extraction in Airborne SAR Images: AN Approach Based on Active Contour Model with the Use of Semi-Automatic Seeding

    NASA Astrophysics Data System (ADS)

    Lotte, R. G.; Sant'Anna, S. J. S.; Almeida, C. M.

    2013-05-01

    Research works dealing with computational methods for roads extraction have considerably increased in the latest two decades. This procedure is usually performed on optical or microwave sensors (radar) imagery. Radar images offer advantages when compared to optical ones, for they allow the acquisition of scenes regardless of atmospheric and illumination conditions, besides the possibility of surveying regions where the terrain is hidden by the vegetation canopy, among others. The cartographic mapping based on these images is often manually accomplished, requiring considerable time and effort from the human interpreter. Maps for detecting new roads or updating the existing roads network are among the most important cartographic products to date. There are currently many studies involving the extraction of roads by means of automatic or semi-automatic approaches. Each of them presents different solutions for different problems, making this task a scientific issue still open. One of the preliminary steps for roads extraction can be the seeding of points belonging to roads, what can be done using different methods with diverse levels of automation. The identified seed points are interpolated to form the initial road network, and are hence used as an input for an extraction method properly speaking. The present work introduces an innovative hybrid method for the extraction of roads centre-axis in a synthetic aperture radar (SAR) airborne image. Initially, candidate points are fully automatically seeded using Self-Organizing Maps (SOM), followed by a pruning process based on specific metrics. The centre-axis are then detected by an open-curve active contour model (snakes). The obtained results were evaluated as to their quality with respect to completeness, correctness and redundancy.

  8. Assessing the impact of sub-pixel vegetation structure on imaging spectroscopy via simulation

    NASA Astrophysics Data System (ADS)

    Yao, Wei; van Leeuwen, Martin; Romanczyk, Paul; Kelbe, David; van Aardt, Jan

    2015-05-01

    Consistent and scalable estimation of vegetation structural parameters from imaging spectroscopy is essential to remote sensing for ecosystem studies, with applications to a wide range of biophysical assessments. To support global vegetation assessment, NASA has proposed the Hyperspectral Infrared Imager (HyspIRI) imaging spectrometer, which measures the randiance 380-2500nm in 10nm contiguous bands with 60m ground sample distance (GSD). However, because of the large pixel size on the ground, there is uncertainty as to the effects of vegetation structure on observed radiance. This research evaluates linkages between vegetation structure and imaging spectroscopy. Specifically, we assess the impact of within-pixel vegetation density and position on large-footprint spectral radiances. To achieve this objective, three virtual forest scenes were constructed, which correspond to the actual veg- etation structure of the National Ecological Observatory Network (NEON) Pacific Southwest domain (PSW; D17; Fresno, CA). These were used to simulate anticipated HyspIRI data (60m GSD) using the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model, a first-principles synthetic image generation model de- veloped by the Rochester Institute of Technology. Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) and NEON's high-resolution imaging spectrometer (NIS) data were used to verify the geometric parameters and physical models. Multiple simulated HyspIRI data sets were generated by varying within-pixel structural variables, such as forest density, position, and distribution of trees, in order to assess the impact of sub-pixel structural variation on observed HyspIRI data. Results indicate that HyspIRI is sensitive to sub-pixel vegetation density variation in the visible to short- wavelength infrared spectrum due to vegetation structural changes, and associated pigment and water content variation. This has implications for improving the system's suitability for

  9. New hyperspectral difference water index for the extraction of urban water bodies by the use of airborne hyperspectral images

    NASA Astrophysics Data System (ADS)

    Xie, Huan; Luo, Xin; Xu, Xiong; Tong, Xiaohua; Jin, Yanmin; Pan, Haiyan; Zhou, Bingzhong

    2014-01-01

    Extracting surface land-cover types and analyzing changes are among the most common applications of remote sensing. One of the most basic tasks is to identify and map surface water boundaries. Spectral water indexes have been successfully used in the extraction of water bodies in multispectral images. However, directly applying a water index method to hyperspectral images disregards the abundant spectral information and involves difficulty in selecting appropriate spectral bands. It is also a challenge for a spectral water index to distinguish water from shadowed regions. The purpose of this study is therefore to develop an index that is suitable for water extraction by the use of hyperspectral images, and with the capability to mitigate the effects of shadow and low-albedo surfaces, especially in urban areas. Thus, we introduce a new hyperspectral difference water index (HDWI) to improve the water classification accuracy in areas that include shadow over water, shadow over other ground surfaces, and low-albedo ground surfaces. We tested the new method using PHI-2, HyMAP, and ROSIS hyperspectral images of Shanghai, Munich, and Pavia. The performance of the water index was compared with the normalized difference water index (NDWI) and the Mahalanobis distance classifier (MDC). With all three test images, the accuracy of HDWI was significantly higher than that of NDWI and MDC. Therefore, HDWI can be used for extracting water with a high degree of accuracy, especially in urban areas, where shadow caused by high buildings is an important source of classification error.

  10. Assessment of urban tree growth from structure, nutrients and composition data derived from airborne lidar and imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Gu, H.; Townsend, P. A.; Singh, A.

    2014-12-01

    Urban forests provide important ecosystem services related to climate, nutrients, runoff and aesthetics. Assessment of variations in urban forest growth is critical to urban management and planning, as well as to identify responses to climate and other environmental changes. We estimated annual relative basal area increment by tree rings from 37 plots in Madison, Wisconsin and neighboring municipalities. We related relative basal area growth to variables of vegetation traits derived from remote sensing, including structure (aboveground biomass, diameter, height, basal area, crown width and crown length) from discrete-return airborne lidar, and biochemical variables (foliar nitrogen, carbon, lignin, cellulose, fiber and LMA), spectral indices (NDVI, NDWI, PRI, NDII etc.) and species composition from AVIRIS hyperspectral imagery. Variations in tree growth was mainly correlated with tree species composition (R2 = 0.29, RMSE = 0.004) with coniferous stands having a faster growth rate than broadleaf plots. Inclusion of stand basal area improved model prediction from R2 = 0.29 to 0.35, with RMSE = 0.003. Then, we assessed the growth by functional type, we found that foliar lignin concentration and the proportion of live coniferous trees explained 57% variance in the growth of conifer stands. In contrast, broadleaf forest growth was more strongly correlated with species composition and foliar carbon (R2 = 0.59, RMSE = 0.003). Finally, we compared the relative basal area growth by species. In our study area, red pine and white pine exhibited higher growth rates than other species, while white oak plots grew slowest. There is a significant negative relationship between tree height and the relative growth in red pine stands (r = -0.95), as well as a strong negative relationship between crown width and the relative growth in white pine stands (r = -0.87). Growth declines as trees grow taller and wider may partly be the result of reduced photosynthesis and water availability

  11. Reflectance spectra from eutrophic Mono Lake California, measured with the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Melack, John M.; Pilorz, Stuart H.

    1990-01-01

    An AVIRIS image was obtained for Mono Lake, California, on May 26, 1989, a day with excellent visibility. Atmospherically-corrected reflectance spectra derived from the image indicate a spectral signature for chlorophyll a, the dominant photosynthetic pigment in the phytoplankton of the lake. Chlorophyll a concentrations in the lake were about 22 mg/cu m, and the upwelling radiance was low with a peak reflectance at about 570 nm of about 5 percent. Coherent noise appeared in the image as regular variations of 0.1 to 0.2 microwatts/sq cm per str oriented diagonally to the flight line. A simple ratio of two spectral bands removed the conspicuous undulations, but modifications of the shielding within the instrument are needed to improve the signal especially over dark targets such as lakes.

  12. Airborne Snow Observatory: measuring basin-wide seasonal snowpack with LiDAR and an imaging spectrometer to improve runoff forecasting and reservoir operation (Invited)

    NASA Astrophysics Data System (ADS)

    McGurk, B. J.; Painter, T. H.

    2013-12-01

    The Airborne Snow Observatory (ASO) NASA-JPL demonstration mission collected detailed snow information for portions of the Tuolumne Basin in California and the Uncompahgre Basin in Colorado in spring of 2013. The ASO uses an imaging spectrometer and LiDAR sensors mounted in an aircraft to collect snow depth and extent data, and snow albedo. By combining ground and modeled density fields, the ~weekly flights over the Tuolumne produced both basin-wide and detailed sub-basin snow water equivalent (SWE) estimates that were used in a hydrologic simulation model to improve the accuracy and timing of runoff forecasting tools used to manage Hetch Hetchy Reservoir, the source of 85% of the water supply for 2.5 million people on the San Francisco Peninsula. The USGS PRMS simulation model was calibrated to the 459 square mile basin and was updated with both weather forecast data and distributed snow information from ASO flights to inform the reservoir operators of predicted inflow volumes and timing. Information produced by the ASO data collection was used to update distributed SWE and albedo state variables in the PRMS model and improved inflow forecasts for Hetch Hetchy. Data from operational ASO programs is expected to improve the ability of reservoir operators to more efficiently allocate the last half of the recession limb of snowmelt inflow and be more assured of meeting operational mandates. This presentation will provide results from the project after its first year.

  13. A First Look at Airborne Imaging Spectrometer (AIS) Data in an Area of Altered Volcanic Rocks and Carbonate Formations, Hot Creek Range, South Central Nevada

    NASA Technical Reports Server (NTRS)

    Feldman, S. C.; Taranik, J. V.; Mouat, D. A.

    1985-01-01

    Three flight lines of Airborne Imaging Spectrometer (AIS) data were collected in 128 bands between 1.2 and 2.4 microns in the Hot Creek Range, Nevada on July 25, 1984. The flight lines are underlain by hydrothermally altered and unaltered Paleozoic carbonates and Tertiary rhyolitic to latitic volcanics in the Tybo mining district. The original project objectives were to discriminate carbonate rocks from other rock types, to distinguish limestone from dolomite, and to discriminate carbonate units from each other using AIS imagery. Because of high cloud cover over the prime carbonate flight line and because of the acquisition of another flight line in altered and unaltered volcanics, the study has been extended to the discrimination of alteration products. In an area of altered and unaltered rhyolites and latites in Red Rock Canyon, altered and unaltered rock could be discriminated from each other using spectral features in the 1.16 to 2.34 micron range. The altered spectral signatures resembled montmorillonite and kaolinite. Field samples were gathered and the presence of montmorillonite was confirmed by X-ray analysis.

  14. Visible-Near Infrared Imaging Spectrometer Data of Explosion Craters

    NASA Technical Reports Server (NTRS)

    Farr, T. G.

    2005-01-01

    In a continuing study to capture a realistic terrain applicable to studies of cratering processes and landing hazards on Mars, we have obtained new high resolution visible-near infrared images of several explosion craters at the Nevada Test Site. We used the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) to obtain images in 224 spectral bands from 0.4-2.5 microns [1]. The main craters that were imaged were Sedan, Scooter, Schooner, Buggy, and Danny Boy [2]. The 390 m diameter Sedan crater, located on Yucca Flat, is the largest and freshest explosion crater on Earth that was formed under conditions similar to hypervelocity impact cratering. As such, it is effectively pristine, having been formed in 1962 as a result of the detonation of a 104 kiloton thermonuclear device, buried at the appropriate equivalent depth of burst required to make a "simple" crater [2]. Sedan was formed in alluvium of mixed lithology [3] and subsequently studied using a variety of field-based methods. Nearby secondary craters were also formed at the time and were also imaged by AVIRIS. Adjacent to Sedan and also in alluvium is Scooter, about 90 m in diameter and formed by a high-explosive event. Schooner (240 m) and Danny Boy (80 m, Fig. 1) craters were also important targets for AVIRIS as they were excavated in hard welded tuff and basaltic andesite, respectively [3, 4]. This variation in targets will allow the study of ejecta patterns, compositional modifications due to the explosions, and the role of craters as subsurface probes.

  15. Airborne thermography or infrared remote sensing.

    PubMed

    Goillot, C C

    1975-01-01

    Airborne thermography is part of the more general remote sensing activity. The instruments suitable for image display are infrared line scanners. A great deal of interest has developed during the past 10 years in airborne thermal remote sensing and many applications are in progress. Infrared scanners on board a satellite are used for observation of cloud cover; airborne infrared scanners are used for forest fire detection, heat budget of soils, detecting insect attack, diseases, air pollution damage, water stress, salinity stress on vegetation, only to cite some main applications relevant to agronomy. Using this system it has become possible to get a 'picture' of our thermal environment.

  16. Movement of water vapor in the atmosphere measured by an imaging spectrometer at Rogers Dry Lake, CA

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Conel, James E.

    1995-01-01

    Movement of water as vapor in the atmosphere is a fundamental process in the Earth's hydrological cycle. Investigations of spatial and time scales of water vapor transport in the atmosphere are important areas of research. Water vapor transmits energy as a function of its abundance across the spectrum. This is shown in the 400- to 2500-nm spectral region where the transmission of the terrestrial atmosphere has been modeled using the MODTRAN radiative transfer code for a range of water vapor abundances. Based on these model results, spectra measured by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) have been used to investigate the movement of water vapor at 20-m spatial resolution over an 11-by-30-km area at approximately 15-minute time intervals (1.25 hours total). AVIRIS measures the upwelling spectral radiance from 400 to 2500 nm at 10-nm spectral intervals and collects images of 11-by-up-to-1000 km at 20-m spatial resolution. Data are collected at a rate of 1 km of flight line per 4.5 seconds. A set of five AVIRIS flight lines was acquired in rapid succession over Rogers Dry Lake, CA on May 18, 1993 at 18:59, 19:13, 19:29, 19:47, and 19:59 UTC. Rogers Dry lake is located 2 hours north of Los Angeles, CA at 34.84 degrees north latitude and 117.83 degrees west longitude in the Mojave Desert.

  17. Use of Very High-Resolution Airborne Images to Analyse 3d Canopy Architecture of a Vineyard

    NASA Astrophysics Data System (ADS)

    Burgos, S.; Mota, M.; Noll, D.; Cannelle, B.

    2015-08-01

    Differencing between green cover and grape canopy is a challenge for vigour status evaluation in viticulture. This paper presents the acquisition methodology of very high-resolution images (4 cm), using a Sensefly Swinglet CAM unmanned aerial vehicle (UAV) and their processing to construct a 3D digital surface model (DSM) for the creation of precise digital terrain models (DTM). The DTM was obtained using python processing libraries. The DTM was then subtracted to the DSM in order to obtain a differential digital model (DDM) of a vineyard. In the DDM, the vine pixels were then obtained by selecting all pixels with an elevation higher than 50 [cm] above the ground level. The results show that it was possible to separate pixels from the green cover and the vine rows. The DDM showed values between -0.1 and + 1.5 [m]. A manually delineation of polygons based on the RGB image belonging to the green cover and to the vine rows gave a highly significant differences with an average value of 1.23 [m] and 0.08 [m] for the vine and the ground respectively. The vine rows elevation is in good accordance with the topping height of the vines 1.35 [m] measured on the field. This mask could be used to analyse images of the same plot taken at different times. The extraction of only vine pixels will facilitate subsequent analyses, for example, a supervised classification of these pixels.

  18. Surface Deformation Associated With a Historical Diking Event in Afar From Correlation of Space and Air-Borne Optical Images

    NASA Astrophysics Data System (ADS)

    Harrington, J.; Peltzer, G.; Leprince, S.; Ayoub, F.; Kasser, M.

    2011-12-01

    We present new measurements of the surface deformation associated with the rifting event of 1978 in the Asal-Ghoubbet rift, Republic of Djibouti. The Asal-Ghoubbet rift forms a component of the Afar Depression, a broad extensional region at the junction between the Nubia, Arabia, and Somalia plates, which apart from Iceland, is the only spreading center located above sea-level. The 1978 rifting event was marked by a 2-month sequence of small to moderate earthquakes (Mb ~3-5) and a fissural eruption of the Ardukoba Volcano. Deformation in the Asal rift associated with the event included the reactivation of the main bordering faults and the development of numerous open fissures on the rift floor. The movement of the rift shoulders, measured using ground-based geodesy, showed up to 2.5 m of opening in the N40E direction. Our data include historical aerial photographs from 1962 and 1984 (less than 0.8 m/pixel) along the northern border fault, three KH-9 Hexagon(~8 m/pixel) satellite images from 1973, and recently acquired ASTER (15 m/pixel) and SPOT5 (2.5 m/pixel) data. The measurements are made by correlating pre- and post-event images using the COSI-Corr (Co-registration of Optically Sensed Images and Correlation) software developed at Caltech. The ortho-rectification of the images is done with a mosaic of a 10 m resolution digital elevation model, made by French Institut Geographique National (IGN), and the SRTM and GDEM datasets. Correlation results from the satellite images indicate 2-3 meters of opening across the rift. Preliminary results obtained using the 1962 and 1984 aerial photographs indicate that a large fraction of the opening occurred on or near Fault γ, which borders the rift to the North. These preliminary results are largely consistent with the ground based measurements made after the event. A complete analysis of the aerial photograph coverage will provide a better characterization of the spatial distribution of the deformation throughout the rift.

  19. Urban forest ecosystem analysis using fused airborne hyperspectral and lidar data

    NASA Astrophysics Data System (ADS)

    Alonzo, Mike Gerard

    Urban trees are strategically important in a city's effort to mitigate their carbon footprint, heat island effects, air pollution, and stormwater runoff. Currently, the most common method for quantifying urban forest structure and ecosystem function is through field plot sampling. However, taking intensive structural measurements on private properties throughout a city is difficult, and the outputs from sample inventories are not spatially explicit. The overarching goal of this dissertation is to develop methods for mapping urban forest structure and function using fused hyperspectral imagery and waveform lidar data at the individual tree crown scale. Urban forest ecosystem services estimated using the USDA Forest Service's i-Tree Eco (formerly UFORE) model are based largely on tree species and leaf area index (LAI). Accordingly, tree species were mapped in my Santa Barbara, California study area for 29 species comprising >80% of canopy. Crown-scale discriminant analysis methods were introduced for fusing Airborne Visible Infrared Imaging Spectrometry (AVIRIS) data with a suite of lidar structural metrics (e.g., tree height, crown porosity) to maximize classification accuracy in a complex environment. AVIRIS imagery was critical to achieving an overall species-level accuracy of 83.4% while lidar data was most useful for improving the discrimination of small and morphologically unique species. LAI was estimated at both the field-plot scale using laser penetration metrics and at the crown scale using allometry. Agreement of the former with photographic estimates of gap fraction and the latter with allometric estimates based on field measurements was examined. Results indicate that lidar may be used reasonably to measure LAI in an urban environment lacking in continuous canopy and characterized by high species diversity. Finally, urban ecosystem services such as carbon storage and building energy-use modification were analyzed through combination of aforementioned

  20. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  1. Microwave backscatter and emission observed from Shuttle Imaging Radar B and an airborne 1.4 GHz radiometer

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Schiue, J. C.; Schmugge, T. J.; Engman, E. T.; Mo, T.; Lawrence, R. W.

    1985-01-01

    A soil moisture experiment conducted with the Shuttle Imaging Radar B (SIR-B) is reported. SIR-B operated at 1.28 GHz provided the active microwave measurements, while a 4-beam pushbroom 1.4 GHz radiometer gave the complementary passive microwave measurements. The aircraft measurements were made at an altitude of 330 m, resulting in a ground resolution cell of about 100 m diameter. SIR-B ground resolution from 225 km was about 35 m. More than 150 agricultural fields in the San Joaquin Valley of California were examined in the experiment. The effect of surface roughness height on radar backscatter and radiometric measurements was studied.

  2. Measurement of the Spectral Absorption of Liquid Water in Melting Snow With an Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Dozier, Jeff

    1995-01-01

    Melting of the snowpack is a critical parameter that drives aspects of the hydrology in regions of the Earth where snow accumulates seasonally. New techniques for measurement of snow melt over regional scales offer the potential to improve monitoring and modeling of snow-driven hydrological processes. In this paper we present the results of measuring the spectral absorption of liquid water in a melting snowpack with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data were acquired over Mammoth Mountain, in east central California on 21 May 1994 at 18:35 UTC. The air temperature at 2926 m on Mammoth Mountain at site A was measured at 15-minute intervals during the day preceding the AVIRIS data acquisition. At this elevation. the air temperature did not drop below freezing the night of the May 20 and had risen to 6 degrees Celsius by the time of the overflight on May 21. These temperature conditions support the presence of melting snow at the surface as the AVIRIS data were acquired.

  3. Measurement of the spectral absorption of liquid water in melting snow with an imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Dozier, Jeff

    1995-01-01

    Melting of the snowpack is a critical parameter that drives aspects of the hydrology in regions of the earth where snow accumulates seasonally. New techniques for measurement of snow melt over regional scales offer the potential to improve monitoring and modeling of snow-driven hydrological processes. We present the results of measuring the spectral absorption of liquid water in a melting snowpack with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data were acquired over Mammoth Mountain, in east central California on 21 May 1994 at 18:35 UTC. The air temperature at 2926 m on Mammoth Mountain at site A was measured at 15-minute intervals during the day preceding the AVIRIS data acquisition. At this elevation, the air temperature did not drop below freezing the night of May 20 and had risen to 6 degrees Celsius by the time of the overflight on May 21. These temperature conditions support the presence of melting snow at the surface as the AVIRIS data were acquired.

  4. Effect of Spatial Resolution for Characterizing Soil Properties from Imaging Spectrometer Data

    NASA Astrophysics Data System (ADS)

    Dutta, D.; Kumar, P.; Greenberg, J. A.

    2015-12-01

    The feasibility of quantifying soil constituents over large areas using airborne hyperspectral data [0.35 - 2.5 μm] in an ensemble bootstrapping lasso algorithmic framework has been demonstrated previously [1]. However the effects of coarsening the spatial resolution of hyperspectral data on the quantification of soil constituents are unknown. We use Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data collected at 7.6m resolution over Birds Point New Madrid (BPNM) floodway for up-scaling and generating multiple coarser resolution datasets including the 60m Hyperspectral Infrared Imager (HyspIRI) like data. HyspIRI is a proposed visible shortwave/thermal infrared mission, which will provide global data over a spectral range of 0.35 - 2.5μm at a spatial resolution of 60m. Our results show that the lasso method, which is based on point scale observational data, is scalable. We found consistent good model performance (R2) values (0.79 < R2 < 0.82) and correct classifications as per USDA soil texture classes at multiple spatial resolutions. The results further demonstrate that the attributes of the pdf for different soil constituents across the landscape and the within-pixel variance are well preserved across scales. Our analysis provides a methodological framework with a sufficient set of metrics for assessing the performance of scaling up analysis from point scale observational data and may be relevant for other similar remote sensing studies. [1] Dutta, D.; Goodwell, A.E.; Kumar, P.; Garvey, J.E.; Darmody, R.G.; Berretta, D.P.; Greenberg, J.A., "On the Feasibility of Characterizing Soil Properties From AVIRIS Data," Geoscience and Remote Sensing, IEEE Transactions on, vol.53, no.9, pp.5133,5147, Sept. 2015. doi: 10.1109/TGRS.2015.2417547.

  5. Fully integrated surface-subsurface flow modelling of groundwater-lake interaction in an esker aquifer: Model verification with stable isotopes and airborne thermal imaging

    NASA Astrophysics Data System (ADS)

    Ala-aho, Pertti; Rossi, Pekka M.; Isokangas, Elina; Kløve, Bjørn

    2015-03-01

    Water resources management is moving towards integration, where groundwater (GW), surface water (SW) and related aquatic ecosystems are considered one management unit. Because of this paradigm shift, more information and new tools are needed to understand the ecologically relevant fluxes (water, heat, solutes) at the GW-SW interface. This study estimated the magnitude, temporal variability and spatial distribution of water fluxes at the GW-SW interface using a fully integrated hydrological modelling code (HydroGeoSphere). The model domain comprised a hydrologically complex esker aquifer in Northern Finland with interconnected lakes, streams and wetlands. The model was calibrated in steady state for soil hydraulic conductivity and anisotropy and it reproduced the hydraulic head and stream baseflow distribution throughout the aquifer in both transient and steady state modes. In a novel analysis, model outputs were compared with the locations and magnitude of GW discharge to lakes estimated using field techniques. Spatial occurrence of GW-lake interaction was interpreted from airborne thermal infrared imaging. The observed GW inflow locations coincided well with model nodes showing positive exchange flux between surface and subsurface domains. Order of magnitude of simulated GW inflow to lakes showed good agreement with flux values calculated with a stable water isotope technique. Finally, time series of GW inflow, extracted as model output, showed moderate annual variability and demonstrated different interannual inflow changes in seepage and drainage lakes of the aquifer. Overall, this study demonstrated the ability of a fully integrated numerical model to reproduce observed GW-SW exchange processes in a complex unconfined aquifer system. The model-based estimates obtained for GW influx magnitude and spatial distribution, along with information on GW quality can be used to estimate ecologically relevant fluxes in future water resources management.

  6. Application of spectral and spatial indices for specific class identification in Airborne Prism EXperiment (APEX) imaging spectrometer data for improved land cover classification

    NASA Astrophysics Data System (ADS)

    Kallepalli, Akhil; Kumar, Anil; Khoshelham, Kourosh; James, David B.

    2016-10-01

    Hyperspectral remote sensing's ability to capture spectral information of targets in very narrow bandwidths gives rise to many intrinsic applications. However, the major limiting disadvantage to its applicability is its dimensionality, known as the Hughes Phenomenon. Traditional classification and image processing approaches fail to process data along many contiguous bands due to inadequate training samples. Another challenge of successful classification is to deal with the real world scenario of mixed pixels i.e. presence of more than one class within a single pixel. An attempt has been made to deal with the problems of dimensionality and mixed pixels, with an objective to improve the accuracy of class identification. In this paper, we discuss the application of indices to cope with the disadvantage of the dimensionality of the Airborne Prism EXperiment (APEX) hyperspectral Open Science Dataset (OSD) and to improve the classification accuracy using the Possibilistic c-Means (PCM) algorithm. This was used for the formulation of spectral and spatial indices to describe the information in the dataset in a lesser dimensionality. This reduced dimensionality is used for classification, attempting to improve the accuracy of determination of specific classes. Spectral indices are compiled from the spectral signatures of the target and spatial indices have been defined using texture analysis over defined neighbourhoods. The classification of 20 classes of varying spatial distributions was considered in order to evaluate the applicability of spectral and spatial indices in the extraction of specific class information. The classification of the dataset was performed in two stages; spectral and a combination of spectral and spatial indices individually as input for the PCM classifier. In addition to the reduction of entropy, while considering a spectral-spatial indices approach, an overall classification accuracy of 80.50% was achieved, against 65% (spectral indices only) and

  7. Temporal multiparameter airborne DLR E-SAR images for crop monitoring: summary of the CLEOPATRA campaign 1992

    NASA Astrophysics Data System (ADS)

    Schmullius, Christiane C.; Nithack, Juergen

    1997-01-01

    From May 11 to July 31, 1992 the Cloud Experiment OberPfaffenhofen And Transports took place as a field experimental contribution to the global energy and water cycle experiment. The DLR Institute of Radio Frequency Technology participated with its experimental SAR system E- SAR. Multitemporal X-, C- and L-band data from 8 dates and three ERS-1 images between May 20 and July 30, 1992 are analyzed in regard to the influence of changing plant backscatter constituents and to investigate the impact of increasing ground cover in the different wavelength on soil moisture mapping. Backscatter curves of four crops are shown, which indicate the possibility for crop monitoring and preferred times for crop classification. Detection of soil moisture changes is only possible with L-band and only under grain crops. Maximum likelihood and isocluster classifications were applied on several single- and multifrequency, mono- and multitemporal channel combinations. The overall classification accuracies were higher than with supervised methods. Maximum likelihood classification allowed identification of ten crop types with accuracies of up to 84 percent, when a temporal multifrequency data set was used.

  8. Combined scanning electron microscopy and image analysis to investigate airborne submicron particles: a comparison between personal samplers.

    PubMed

    Zamengo, L; Barbiero, N; Gregio, M; Orrù, G

    2009-07-01

    The main objectives of this study were: (i) to compare commonly used personal samplers and verify their collection efficiency with regards to submicron particles; (ii) to investigate how the submicron particles deposit onto the filter surface in order to assess the homogeneity of the deposition; (iii) to estimate the biases which could affect results when number concentration values have to be determined by particle counting. A method based on image analysis (IA) and scanning electron microscopy (SEM) is developed and adopted to investigate a large numbers of particles. Four different personal samplers were tested: the IOM sampler, the Button sampler and the German GSP for the inhalable aerosol fraction; the PEM sampler for the thoracic aerosol fraction. In order to investigate how particles distribute on the filters surface, the area of each filter was virtually divided into circular concentric areas or deposition zones (DZ). Results from different DZ of the same filter were compared. Uniformity of deposition was mostly observed for three of the four tested samplers. A significant radial distribution was observed only for the GSP sampler. The major homogeneity was found for the Button sampler. In order to estimate the relative collection efficiency between samplers, particles number concentrations determined by particle counting were compared. The GSP sampler provided the greatest concentrations but also the greatest variability. The PEM sampler provided the lowest concentrations. The homogeneity of particle deposition on the filter surface mostly affected results when counting is performed on localized areas of the filter.

  9. Land cover/use classification of Cairns, Queensland, Australia: A remote sensing study involving the conjunctive use of the airborne imaging spectrometer, the large format camera and the thematic mapper simulator

    NASA Technical Reports Server (NTRS)

    Heric, Matthew; Cox, William; Gordon, Daniel K.

    1987-01-01

    In an attempt to improve the land cover/use classification accuracy obtainable from remotely sensed multispectral imagery, Airborne Imaging Spectrometer-1 (AIS-1) images were analyzed in conjunction with Thematic Mapper Simulator (NS001) Large Format Camera color infrared photography and black and white aerial photography. Specific portions of the combined data set were registered and used for classification. Following this procedure, the resulting derived data was tested using an overall accuracy assessment method. Precise photogrammetric 2D-3D-2D geometric modeling techniques is not the basis for this study. Instead, the discussion exposes resultant spectral findings from the image-to-image registrations. Problems associated with the AIS-1 TMS integration are considered, and useful applications of the imagery combination are presented. More advanced methodologies for imagery integration are needed if multisystem data sets are to be utilized fully. Nevertheless, research, described herein, provides a formulation for future Earth Observation Station related multisensor studies.

  10. Estimating woody aboveground biomass in an area of agroforestry using airborne light detection and ranging and compact airborne spectrographic imager hyperspectral data: individual tree analysis incorporating tree species information

    NASA Astrophysics Data System (ADS)

    Wang, Zhihui; Liu, Liangyun; Peng, Dailiang; Liu, Xinjie; Zhang, Su; Wang, Yingjie

    2016-07-01

    Until now, there have been only a few studies that have made estimates of the woody aboveground biomass (AGB) in an area of agroforestry using remote sensing technology. The woody AGB density was estimated using individual tree analysis (ITA) that incorporated tree species information using a combination of airborne light detection and ranging (LiDAR) and compact airborne spectrographic imagery acquired over a typical agroforestry in northwestern China. First, a series of improved LiDAR processing algorithms was applied to achieve individual tree segmentation, and accurate plot-level canopy heights and crown diameters were obtained. The individual tree species were then successfully classified using both spectral and shape characteristics with an overall accuracy of 0.97 and a kappa coefficient of 0.85. Finally, the tree-level AGB (kg) was estimated based on the ITA; the AGB density (Mg/ha) was then upscaled based on the tree-level AGB values. It is concluded that, compared with the commonly used area-based method combining LiDAR and spectral metrics [root mean square error (RMSE)=19.58 Mg/ha], the ITA method performs better at estimating AGB density (RMSE=10.56 Mg/ha). The tree species information also improved the accuracy of the AGB estimation even though the species are not well diversified in this study area.

  11. Integration of airborne optical and thermal imagery for archaeological subsurface structures detection: the Arpi case study (Italy)

    NASA Astrophysics Data System (ADS)

    Bassani, C.; Cavalli, R. M.; Fasulli, L.; Palombo, A.; Pascucci, S.; Santini, F.; Pignatti, S.

    2009-04-01

    The application of Remote Sensing data for detecting subsurface structures is becoming a remarkable tool for the archaeological observations to be combined with the near surface geophysics [1, 2]. As matter of fact, different satellite and airborne sensors have been used for archaeological applications, such as the identification of spectral anomalies (i.e. marks) related to the buried remnants within archaeological sites, and the management and protection of archaeological sites [3, 5]. The dominant factors that affect the spectral detectability of marks related to manmade archaeological structures are: (1) the spectral contrast between the target and background materials, (2) the proportion of the target on the surface (relative to the background), (3) the imaging system characteristics being used (i.e. bands, instrument noise and pixel size), and (4) the conditions under which the surface is being imaged (i.e. illumination and atmospheric conditions) [4]. In this context, just few airborne hyperspectral sensors were applied for cultural heritage studies, among them the AVIRIS (Airborne Visible/Infrared Imaging Spectrometer), the CASI (Compact Airborne Spectrographic Imager), the HyMAP (Hyperspectral MAPping) and the MIVIS (Multispectral Infrared and Visible Imaging Spectrometer). Therefore, the application of high spatial/spectral resolution imagery arise the question on which is the trade off between high spectral and spatial resolution imagery for archaeological applications and which spectral region is optimal for the detection of subsurface structures. This paper points out the most suitable spectral information useful to evaluate the image capability in terms of spectral anomaly detection of subsurface archaeological structures in different land cover contexts. In this study, we assess the capability of MIVIS and CASI reflectances and of ATM and MIVIS emissivities (Table 1) for subsurface archaeological prospection in different sites of the Arpi

  12. Airborne Crowd Density Estimation

    NASA Astrophysics Data System (ADS)

    Meynberg, O.; Kuschk, G.

    2013-10-01

    This paper proposes a new method for estimating human crowd densities from aerial imagery. Applications benefiting from an accurate crowd monitoring system are mainly found in the security sector. Normally crowd density estimation is done through in-situ camera systems mounted on high locations although this is not appropriate in case of very large crowds with thousands of people. Using airborne camera systems in these scenarios is a new research topic. Our method uses a preliminary filtering of the whole image space by suitable and fast interest point detection resulting in a number of image regions, possibly containing human crowds. Validation of these candidates is done by transforming the corresponding image patches into a low-dimensional and discriminative feature space and classifying the results using a support vector machine (SVM). The feature space is spanned by texture features computed by applying a Gabor filter bank with varying scale and orientation to the image patches. For evaluation, we use 5 different image datasets acquired by the 3K+ aerial camera system of the German Aerospace Center during real mass events like concerts or football games. To evaluate the robustness and generality of our method, these datasets are taken from different flight heights between 800 m and 1500 m above ground (keeping a fixed focal length) and varying daylight and shadow conditions. The results of our crowd density estimation are evaluated against a reference data set obtained by manually labeling tens of thousands individual persons in the corresponding datasets and show that our method is able to estimate human crowd densities in challenging realistic scenarios.

  13. Low-level water vapor fields from the VISSR atmospheric sounder (VAS) split window channels at 11 and 12 microns. [visible infrared spin scan radiometer

    NASA Technical Reports Server (NTRS)

    Chesters, D.; Uccellini, L.; Robinson, W.

    1982-01-01

    A series of high-resolution water vapor fields were derived from the 11 and 12 micron channels of the VISSR Atmospheric Sounder (VAS) on GOES-5. The low-level tropospheric moisture content was separated from the surface and atmospheric radiances by using the differential adsorption across the 'split window' along with the average air temperature from imbedded radiosondes. Fields of precipitable water are presented in a time sequence of five false color images taken over the United States at 3-hour intervals. Vivid subsynoptic and mesoscale patterns evolve at 15 km horizontal resolution over the 12-hour observing period. Convective cloud formations develop from several areas of enhanced low-level water vapor, especially where the vertical water vapor gradient relatively strong. Independent verification at radiosonde sites indicates fairly good absolute accuracy, and the spatial and temporal continuity of the water vapor features indicates very good relative accuracy. Residual errors are dominated by radiometer noise and unresolved clouds.

  14. Experience with airborne detection of radioactive pollution (ENMOS, IRIS).

    PubMed

    Pavlik, Bohuslav; Engelsmann, Jan

    2004-01-01

    This paper discusses the advantages of airborne monitoring of radioactive pollution and shows example maps indicating manmade pollution from different sources. The sensitivity of airborne radioactive detection is discussed. Comparisons of airborne and different ground measurements are presented. New instrumentation for airborne or ground moving vehicles is briefly described. Airborne footprinting provides rapid, well-defined spatial images of natural and manmade radioactive contamination. Data acquisition integrated with GPS navigation provides consistent data and guarantees proper data location. Real-time airborne measurements are re-calculated, with the use of special algorithms, into absolute units for individual radioactive nuclei contamination of the ground together with dose calculation. Raw records and calculated data are provided after enhanced post-flight processing. Dose rates and detection of different radioactive elements are presented. (ENMOS is a product of Picodas Group Inc. and IRIS is the product of Pico Envirotec Inc.)

  15. Nondestructive testing using air-borne ultrasound.

    PubMed

    Hsu, David K

    2006-12-22

    Over the last two decades, more efficient transducers were developed for the generation and reception of air-borne ultrasound, thus enabling the non-contact, non-contaminating inspection of composite laminates and honeycomb structures widely used in the aerospace industry. This paper presents the fundamentals of making air-borne ultrasonic measurement, and point out special considerations unique to propagating ultrasound in air and through solids. Transducer beam profile characterization, thickness dependence and resonance effects in the transmission of air-coupled ultrasound through plates, and the detection and imaging of defects and damage in solid laminates and honeycomb sandwich will be discussed and illustrated with examples. Finally, a manual scan system developed for implementing air-borne ultrasonic imaging in the field and on aircraft will be introduced.

  16. Quantifying the Availability of Tidewater Glacial Ice as Habitat for Harbor Seals in a Tidewater Glacial Fjord in Alaska Using Object-Based Image Analysis of Airborne Visible Imagery

    NASA Astrophysics Data System (ADS)

    Prakash, A.; Haselwimmer, C. E.; Gens, R.; Womble, J. N.; Ver Hoef, J.

    2013-12-01

    Tidewater glaciers are prominent landscape features that play a significant role in landscape and ecosystem processes along the southeastern and southcentral coasts of Alaska. Tidewater glaciers calve large icebergs that serve as an important substrate for harbor seals (Phoca vitulina richardii) for resting, pupping, nursing young, molting, and avoiding predators. Many of the tidewater glaciers in Alaska are retreating, which may influence harbor seal populations. Our objectives are to investigate the relationship between ice conditions and harbor seal distributions, which are poorly understood, in John's Hopkins Inlet, Glacier Bay National Park, Alaska, using a combination of airborne remote sensing and statistical modeling techniques. We present an overview of some results from Object-Based Image Analysis (OBIA) for classification of a time series of very high spatial resolution (4 cm pixels) airborne imagery acquired over John's Hopkins Inlet during the harbor seal pupping season in June and during the molting season in August from 2007 - 2012. Using OBIA we have developed a workflow to automate processing of the large volumes (~1250 images/survey) of airborne visible imagery for 1) classification of ice products (e.g. percent ice cover, percent brash ice, percent ice bergs) at a range of scales, and 2) quantitative determination of ice morphological properties such as iceberg size, roundness, and texture that are not found in traditional per-pixel classification approaches. These ice classifications and morphological variables are then used in statistical models to assess relationships with harbor seal abundance and distribution. Ultimately, understanding these relationships may provide novel perspectives on the spatial and temporal variation of harbor seals in tidewater glacial fjords.

  17. Sampling for Airborne Radioactivity

    DTIC Science & Technology

    2007-10-01

    compared to betas, gammas and neutrons. For an airborne radioactivity detection system, it is most important to be able to detect alpha particles and... Airborne radioactive particles may emit alpha, beta, gamma or neutron radiation, depending on which radioisotope is present. From a health perspective...

  18. MultiSpec—a tool for multispectral hyperspectral image data analysis

    NASA Astrophysics Data System (ADS)

    Biehl, Larry; Landgrebe, David

    2002-12-01

    MultiSpec is a multispectral image data analysis software application. It is intended to provide a fast, easy-to-use means for analysis of multispectral image data, such as that from the Landsat, SPOT, MODIS or IKONOS series of Earth observational satellites, hyperspectral data such as that from the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) and EO-1 Hyperion satellite system or the data that will be produced by the next generation of Earth observational sensors. The primary purpose for the system was to make new, otherwise complex analysis tools available to the general Earth science community. It has also found use in displaying and analyzing many other types of non-space related digital imagery, such as medical image data and in K-12 and university level educational activities. MultiSpec has been implemented for both the Apple Macintosh ® and Microsoft Windows ® operating systems (OS). The effort was first begun on the Macintosh OS in 1988. The GLOBE ( http://www.globe.gov) program supported the development of a subset of MultiSpec for the Windows OS in 1995. Since then most (but not all) of the features in the Macintosh OS version have been ported to the Windows OS version. Although copyrighted, MultiSpec with its documentation is distributed without charge. The Macintosh and Windows versions and documentation on its use are available from the World Wide Web at URL: http://dynamo.ecn.purdue.edu/˜biehl/MultiSpec/ MultiSpec is copyrighted (1991-2001) by Purdue Research Foundation, West Lafayette, Indiana 47907.

  19. Mapping Waterhyacinth Infestations Using Airborne Hyperspectral Imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Waterhyacinth [Eichhornia crassipes (Mart.) Solms] is an exotic aquatic weed that often invades and clogs waterways in many tropical and subtropical regions of the world. The objective of this study was to evaluate airborne hyperspectral imagery and different image classification techniques for mapp...

  20. Study of spin-scan imaging for outer planets missions: Executive summary

    NASA Technical Reports Server (NTRS)

    Russell, E. E.; Chandos, R. A.; Kodak, J. C.; Pellicori, S. F.; Tomasko, M. G.

    1974-01-01

    The development and characteristics of spin-scan imagers for interplanetary exploration are discussed. The spin-scan imaging photopolarimeter instruments of Pioneer 10 and 11 are described. In addition to the imaging function, the instruments are also used in a faint-light mode to take sky maps in both radiance and polarization. The performance of a visible-infrared spin-scan radiometer (VISSR), which operates in both visible and infrared wavelengths, is reported.

  1. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  2. Lithological discrimination and structural trends in W-Rwanda (Africa) on images of airborne radiometric and aeromagnetic surveys, coregistered to a Landsat TM scene

    NASA Astrophysics Data System (ADS)

    Fernandez-Alonso, M.; Tahon, A.

    Processing and interpretation of an airborne gamma-ray and aeromagnetic survey, combined with Thematic Mapper imagery, enables the successful discrimination of lithological units and their geological and structural interpretation in a complex area, where weathering and a dense vegetation cover make traditional mapping extremely difficult. The visual inspection of RGB color-composites reveals the differentiation of the area in distinct colored domains, each of which has been related to existing units. The aeromagnetic data not only reveal superficial structures, but also show deeper structural detail inside the tectonometamorphic complexes of the area, adding weight to existing hypotheses on the evolution of the Kibaran orogeny.

  3. Airborne Next: Rethinking Airborne Organization and Applying New Concepts

    DTIC Science & Technology

    2015-06-01

    structures since its employment on a large scale during World War II. It is puzzling to consider how little airborne organizational structures and employment...future potential of airborne concepts by rethinking traditional airborne organizational structures and employment concepts. Using a holistic approach in... structures of airborne forces to model a “small and many” approach over a “large and few” approach, while incorporating a “swarming” concept. Utilizing

  4. ISMAR: an airborne submillimetre radiometer

    NASA Astrophysics Data System (ADS)

    Fox, Stuart; Lee, Clare; Moyna, Brian; Philipp, Martin; Rule, Ian; Rogers, Stuart; King, Robert; Oldfield, Matthew; Rea, Simon; Henry, Manju; Wang, Hui; Chawn Harlow, R.

    2017-02-01

    The International Submillimetre Airborne Radiometer (ISMAR) has been developed as an airborne demonstrator for the Ice Cloud Imager (ICI) that will be launched on board the next generation of European polar-orbiting weather satellites in the 2020s. It currently has 15 channels at frequencies between 118 and 664 GHz which are sensitive to scattering by cloud ice, and additional channels at 874 GHz are being developed. This paper presents an overview of ISMAR and describes the algorithms used for calibration. The main sources of bias in the measurements are evaluated, as well as the radiometric sensitivity in different measurement scenarios. It is shown that for downward views from high altitude, representative of a satellite viewing geometry, the bias in most channels is less than ±1 K and the NEΔT is less than 2 K, with many channels having an NEΔT less than 1 K. In-flight calibration accuracy is also evaluated by comparison of high-altitude zenith views with radiative-transfer simulations.

  5. Mapping changing distributions of dominant species in oil-contaminated salt marshes of Louisiana using imaging spectroscopy

    USGS Publications Warehouse

    Beland, Michael; Roberts, Dar A.; Peterson, Seth H.; Biggs, Trent W.; Kokaly, Raymond F.; Piazza, Sarai; Roth, Keely L.; Khanna, Shruti; Ustin, Susan L.

    2016-01-01

    The April 2010 Deepwater Horizon (DWH) oil spill was the largest coastal spill in U.S. history. Monitoring subsequent change in marsh plant community distributions is critical to assess ecosystem impacts and to establish future coastal management priorities. Strategically deployed airborne imaging spectrometers, like the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), offer the spectral and spatial resolution needed to differentiate plant species. However, obtaining satisfactory and consistent classification accuracies over time is a major challenge, particularly in dynamic intertidal landscapes.Here, we develop and evaluate an image classification system for a time series of AVIRIS data for mapping dominant species in a heavily oiled salt marsh ecosystem. Using field-referenced image endmembers and canonical discriminant analysis (CDA), we classified 21 AVIRIS images acquired during the fall of 2010, 2011 and 2012. Classification results were evaluated using ground surveys that were conducted contemporaneously to AVIRIS collection dates. We analyzed changes in dominant species cover from 2010 to 2012 for oiled and non-oiled shorelines.CDA discriminated dominant species with a high level of accuracy (overall accuracy = 82%, kappa = 0.78) and consistency over three imaging dates (overall2010 = 82%, overall2011 = 82%, overall2012 = 88%). Marshes dominated by Spartina alterniflora were the most spatially abundant in shoreline zones (≤ 28 m from shore) for all three dates (2010 = 79%, 2011 = 61%, 2012 = 63%), followed by Juncus roemerianus (2010 = 11%, 2011 = 19%, 2012 = 17%) and Distichlis spicata (2010 = 4%, 2011 = 10%, 2012 = 7%).Marshes that were heavily contaminated with oil exhibited variable responses from 2010 to 2012. Marsh vegetation classes converted to a subtidal, open water class along oiled and non-oiled shorelines that were similarly situated in the landscape. However, marsh loss along oil-contaminated shorelines

  6. Identification of central Kenyan Rift Valley Fever virus vector habitats with Landsat TM and evaluation of their flooding status with airborne imaging radar

    NASA Technical Reports Server (NTRS)

    Pope, K. O.; Sheffner, E. J.; Linthicum, K. J.; Bailey, C. L.; Logan, T. M.; Kasischke, E. S.; Birney, K.; Njogu, A. R.; Roberts, C. R.

    1992-01-01

    Rift Valley Fever (RVF) is a mosquito-borne virus that affects livestock and humans in Africa. Landsat TM data are shown to be effective in identifying dambos, intermittently flooded areas that are potential mosquite breeding sites, in an area north of Nairobi, Kenya. Positive results were obtained from a limited test of flood detection in dambos with airborne high resolution L, C, and X band multipolarization SAR imagery. L and C bands were effective in detecting flooded dambos, but LHH was by far the best channel for discrimination between flooded and nonflooded sites in both sedge and short-grass environments. This study demonstrates the feasibility of a combined passive and active remote sensing program for monitoring the location and condition of RVF vector habitats, thus making future control of the disease more promising.

  7. Airborne multispectral detection of regrowth cotton fields

    NASA Astrophysics Data System (ADS)

    Westbrook, John K.; Suh, Charles P.-C.; Yang, Chenghai; Lan, Yubin; Eyster, Ritchie S.

    2015-01-01

    Effective methods are needed for timely areawide detection of regrowth cotton plants because boll weevils (a quarantine pest) can feed and reproduce on these plants beyond the cotton production season. Airborne multispectral images of regrowth cotton plots were acquired on several dates after three shredding (i.e., stalk destruction) dates. Linear spectral unmixing (LSU) classification was applied to high-resolution airborne multispectral images of regrowth cotton plots to estimate the minimum detectable size and subsequent growth of plants. We found that regrowth cotton fields can be identified when the mean plant width is ˜0.2 m for an image resolution of 0.1 m. LSU estimates of canopy cover of regrowth cotton plots correlated well (r2=0.81) with the ratio of mean plant width to row spacing, a surrogate measure of plant canopy cover. The height and width of regrowth plants were both well correlated (r2=0.94) with accumulated degree-days after shredding. The results will help boll weevil eradication program managers use airborne multispectral images to detect and monitor the regrowth of cotton plants after stalk destruction, and identify fields that may require further inspection and mitigation of boll weevil infestations.

  8. Geodetic Imaging Lidar: Applications for high-accuracy, large area mapping with NASA's upcoming high-altitude waveform-based airborne laser altimetry Facility

    NASA Astrophysics Data System (ADS)

    Blair, J. B.; Rabine, D.; Hofton, M. A.; Citrin, E.; Luthcke, S. B.; Misakonis, A.; Wake, S.

    2015-12-01

    Full waveform laser altimetry has demonstrated its ability to capture highly-accurate surface topography and vertical structure (e.g. vegetation height and structure) even in the most challenging conditions. NASA's high-altitude airborne laser altimeter, LVIS (the Land Vegetation, and Ice Sensor) has produced high-accuracy surface maps over a wide variety of science targets for the last 2 decades. Recently NASA has funded the transition of LVIS into a full-time NASA airborne Facility instrument to increase the amount and quality of the data and to decrease the end-user costs, to expand the utilization and application of this unique sensor capability. Based heavily on the existing LVIS sensor design, the Facility LVIS instrument includes numerous improvements for reliability, resolution, real-time performance monitoring and science products, decreased operational costs, and improved data turnaround time and consistency. The development of this Facility instrument is proceeding well and it is scheduled to begin operations testing in mid-2016. A comprehensive description of the LVIS Facility capability will be presented along with several mission scenarios and science applications examples. The sensor improvements included increased spatial resolution (footprints as small as 5 m), increased range precision (sub-cm single shot range precision), expanded dynamic range, improved detector sensitivity, operational autonomy, real-time flight line tracking, and overall increased reliability and sensor calibration stability. The science customer mission planning and data product interface will be discussed. Science applications of the LVIS Facility include: cryosphere, territorial ecology carbon cycle, hydrology, solid earth and natural hazards, and biodiversity.

  9. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  10. Airborne asbestos in buildings.

    PubMed

    Lee, R J; Van Orden, D R

    2008-03-01

    The concentration of airborne asbestos in buildings nationwide is reported in this study. A total of 3978 indoor samples from 752 buildings, representing nearly 32 man-years of sampling, have been analyzed by transmission electron microscopy. The buildings that were surveyed were the subject of litigation related to suits alleging the general building occupants were exposed to a potential health hazard as a result the presence of asbestos-containing materials (ACM). The average concentration of all airborne asbestos structures was 0.01structures/ml (s/ml) and the average concentration of airborne asbestos > or = 5microm long was 0.00012fibers/ml (f/ml). For all samples, 99.9% of the samples were <0.01 f/ml for fibers longer than 5microm; no building averaged above 0.004f/ml for fibers longer than 5microm. No asbestos was detected in 27% of the buildings and in 90% of the buildings no asbestos was detected that would have been seen optically (> or = 5microm long and > or = 0.25microm wide). Background outdoor concentrations have been reported at 0.0003f/ml > or = 5microm. These results indicate that in-place ACM does not result in elevated airborne asbestos in building atmospheres approaching regulatory levels and that it does not result in a significantly increased risk to building occupants.

  11. Imaging the Structure of the Pacific-North American Plate Boundary using Airborne Laser Swath Mapping (ALSM) Data and Wavelet Analysis

    NASA Astrophysics Data System (ADS)

    Sanquini, A.; Cheung, K.; Gudmundsdottir, M. H.; Moon, S.; Lin, N.; Shelef, E.; Hilley, G. E.; Prentice, C. S.

    2011-12-01

    Since the 1906 San Francisco earthquake, geologists have noted that the topography of active fault zones is significantly modified by repeated fault ruptures over geologic time. Here, we present an analysis of fault zone topography generated by high-resolution Airborne Laser Swath Mapping (ALSM) data collected by the National Center for Airborne Laser Mapping (NCALM). The digital elevation models (DEMs) generated from the ALSM data reveal the location, orientation, and curvature of scarps associated with active, plate-boundary faults. In particular, we have examined topographic data from the B4 and Northern California data sets, as well as data from faults within the Eastern California Shear Zone. We used a wavelet-based convolution scheme, based on topographic forms modified from the profile scarp-diffusion model of Hanks et al. (1984), extended to encompass along-strike features. We applied this filtering methodology to digital topography along fault zones to estimate the best-fitting height, orientation, morphologic age, and associated Signal-to-Noise Ratio (SNR) of scarps found within these datasets. These results will be available to the community via a GIS web portal so that other workers can mine these data to understand patterns of fault-zone structure observed along the plate-bounding fault zones. To evaluate the utility of this methodology for identifying and characterizing fault scarps within the topographic swaths, we present sample results from the Calaveras fault, part of the San Andreas fault system in northern California. We found that along this fault, the filtering algorithm correctly identifies scarps characterized by ground surveys, previous analysis of aerial photography, and/or field mapping. However, some mapped fault traces with low SNR values because of their subtle morphologic expression are not identified by the algorithm. Similarly, some fluvial scarps that trend in a similar orientation to the overall fault zone are erroneously

  12. Airborne SAR imagery to support hydraulic models

    NASA Astrophysics Data System (ADS)

    Castiglioni, S.

    2009-04-01

    Satellite images and airborne SAR (Synthetic Aperture Radar) imagery are increasingly widespread and they are effective tools for measuring the size of flood events and for assessment of damage. The Hurricane Katrina disaster and the tsunami catastrophe in Indian Ocean countries are two recent and sadly famous examples. Moreover, as well known, the inundation maps can be used as tools to calibrate and validate hydraulic model (e.g. Horritt et al., Hydrological Processes, 2007). We carry out an application of a 1D hydraulic model coupled with a high resolution DTM for predicting the flood inundation processes. The study area is a 16 km reach of the River Severn, in west-central England, for which, four maps of inundated areas, obtained through airborne SAR images, and hydrometric data are available. The inundation maps are used for the calibration/validation of a 1D hydraulic model through a comparison between airborne SAR images and the results of hydraulic simulations. The results confirm the usefulness of inundation maps as hydraulic modelling tools and, moreover, show that 1D hydraulic model can be effectively used when coupled with high resolution topographic information.

  13. Photoreactivation in Airborne Mycobacterium parafortuitum

    PubMed Central

    Peccia, Jordan; Hernandez, Mark

    2001-01-01

    Photoreactivation was observed in airborne Mycobacterium parafortuitum exposed concurrently to UV radiation (254 nm) and visible light. Photoreactivation rates of airborne cells increased with increasing relative humidity (RH) and decreased with increasing UV dose. Under a constant UV dose with visible light absent, the UV inactivation rate of airborne M. parafortuitum cells decreased by a factor of 4 as RH increased from 40 to 95%; however, under identical conditions with visible light present, the UV inactivation rate of airborne cells decreased only by a factor of 2. When irradiated in the absence of visible light, cellular cyclobutane thymine dimer content of UV-irradiated airborne M. parafortuitum and Serratia marcescens increased in response to RH increases. Results suggest that, unlike in waterborne bacteria, cyclobutane thymine dimers are not the most significant form of UV-induced DNA damage incurred by airborne bacteria and that the distribution of DNA photoproducts incorporated into UV-irradiated airborne cells is a function of RH. PMID:11526027

  14. Mutli-temporal Imaging Spectroscopy Analysis for the Identification of Coniferous Forest Mortality Related to Drought Stress in the Central Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Tane, Z.; Roberts, D. A.; Koltunov, A.; Ramirez, C.; Ustin, S.; Roth, K. L.

    2015-12-01

    The ongoing drought in California has had a significant impact on the vegetation communities of California. As a result of the drought, there has been a notable increase in forest mortality throughout the state. In this presentation Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) imagery acquired for the HyspIRI Preparatory Mission over the western Sierra Nevada Range in 2013 and 2014 was used to quantify the mortality of conifers in 2014. Data products provided by NASA's Jet Propulsion Lab (NASA-JPL) were re-sampled to a common 15meter pixel resolution, co-registered, and geo-referenced. Ecological cover type was first assessed using the random forest machine learning technique with training data produced from AVIRIS summer 2013 imagery and comparison with high-spatial resolution World View-2 imagery. Then, in areas identified as being primarily composed of needle-leaf tree cover, the change in fractional change in green vegetation cover was assessed using Multiple Endmember Spectral Mixture Analysis (MESMA) in fall 2013 and fall 2014 AVIRIS images. The source spectral library for the MESMA endmembers was created from AVIRIS-Next Generation (AVIRIS-NG) images taken over Sierra National Forest in 2014. False positives were further reduced using a spatio-temporal filtering approach. Final accuracy of the modeled areas of conifer mortality were assessed by comparison with 2015 WorldView-2 and WorldView-3 imagery over the study area, as well as with recently acquired field data within the southern Sierra Nevada. Early results support the need for increased fidelity data for providing timely information on ecosystem dynamics to land management agencies.

  15. Vegetation species composition and canopy architecture information expressed in leaf water absorption measured in the 1000 nm and 2200 spectral region by an imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Roberts, Dar A.

    1995-01-01

    Plant species composition and plant architectural attributes are critical parameters required for the measuring, monitoring, and modeling of terrestrial ecosystems. Remote sensing is commonly cited as an important tool for deriving vegetation properties at an appropriate scale for ecosystem studies, ranging from local to regional and even synoptic scales. Classical approaches rely on vegetation indices such as the normalized difference vegetation index (NDVI) to estimate biophysical parameters such as leaf area index or intercepted photosynthetically active radiation (IPAR). Another approach is to apply a variety of classification schemes to map vegetation and thus extrapolate fine-scale information about specific sites to larger areas of similar composition. Imaging spectrometry provides additional information that is not obtainable through broad-band sensors and that may provide improved inputs both to direct biophysical estimates as well as classification schemes. Some of this capability has been demonstrated through improved discrimination of vegetation, estimates of canopy biochemistry, and liquid water estimates from vegetation. We investigate further the potential of leaf water absorption estimated from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data as a means for discriminating vegetation types and deriving canopy architectural information. We expand our analysis to incorporate liquid water estimates from two spectral regions, the 1000-nm region and the 2200-nm region. The study was conducted in the vicinity of Jasper Ridge, California, which is located on the San Francisco peninsula to the west of the Stanford University campus. AVIRIS data were acquired over Jasper Ridge, CA, on June 2, 1992, at 19:31 UTC. Spectra from three sites in this image were analyzed. These data are from an area of healthy grass, oak woodland, and redwood forest, respectively. For these analyses, the AVIRIS-measured upwelling radiance spectra for the entire Jasper

  16. Observing with FIFI-LS on SOFIA: time estimates and strategies to use a field imaging spectrometer on an airborne observatory

    NASA Astrophysics Data System (ADS)

    Fischer, Christian; Bryant, Aaron; Beckmann, Siman; Colditz, Sebastian; Fumi, Fabio; Geis, Norbert; Henning, Thomas; Hönle, Rainer; Iserlohe, Christof; Klein, Randolf; Krabbe, Alfred; Looney, Leslie W.; Poglitsch, Albrecht; Raab, Walfried; Rebell, Felix; Trinh, Christopher

    2016-07-01

    Observing on the Stratospheric Observatory for Infrared Astronomy (SOFIA) requires a strategy that takes the specific circumstances of an airborne platform into account. Observations of a source cannot be extended or shortened on the spot due to flight path constraints. Still, no exact prediction of the time on source is available since there are always wind and weather conditions, and sometimes technical issues. Observations have to be planned to maximize the observing efficiency while maintaining full flexibility for changes during the observation. The complex nature of observations with FIFI-LS - such as the interlocking cycles of the mechanical gratings, telescope nodding and dithering - is considered in the observing strategy as well. Since SOFIA Cycle 3 FIFI-LS is available to general investigators. Therefore general investigators must be able to define the necessary parameters simply, without being familiar with the instrument, still resulting in efficient and flexible observations. We describe the observing process with FIFI-LS including the integration time estimate, the mapping and dithering setup and aspects of the scripting for the actual observations performed in flight. We also give an overview of the observing scenarios, which have proven to be useful for FIFI-LS.

  17. The information of oil and gas micro-seepage in Dongsheng region of inner Mongolia based on the airborne hyperspectral remote sensing image

    NASA Astrophysics Data System (ADS)

    Tian, Shu-Fang; Chen, Jian-Ping; Zhou, Mi

    2008-11-01

    The technology of hyper-spectral remote sensing which has higher spatial resolution characteristic, and optimizes the qualification of identifying and extracting salt mines, not only enhances the capacity of natural scenes detection and recognition, but also advances the level of quantitative remote sensing. It has important meaning for using the technology of hyper-spectral remote sensing to quantitative extraction. The paper investigate gas micro-seepage based on the Airborne Hyper-spectral Remote Sensing in Dongsheng of Inner Mongolia on the basis of gas micro-seepage theory using EO-1 Hyperion data collected by Satellite-Borne Sensor which has highest spatial resolution presently in the world. On the basis of data pretreated this paper adopts band math extracted the distribution of oil and gas micro-seepage using diagnostic assimilating spectrum of alteration minerals by the numbers. With eigenvector length model evaluates the research area comprehensive index, oil and gas micro-seepage information model of the research area is established and key regions of oil and gas micro-seepage are confirmed, which offers academic gist for oil and gas resource exploitation of Dongsheng.

  18. Remotely estimating photosynthetic capacity, and its response to temperature, in vegetation canopies using imaging spectroscopy

    SciTech Connect

    Serbin, Shawn P.; Singh, Aditya; Desai, Ankur R.; Dubois, Sean G.; Jablonski, Andrew D.; Kingdon, Clayton C.; Kruger, Eric L.; Townsend, Philip A.

    2015-06-11

    To date, the utility of ecosystem and Earth system models (EESMs) has been limited by poor spatial and temporal representation of critical input parameters. For example, EESMs often rely on leaf-scale or literature-derived estimates for a key determinant of canopy photosynthesis, the maximum velocity of RuBP carboxylation (Vcmax, μmol m–2 s–1). Our recent work (Ainsworth et al., 2014; Serbin et al., 2012) showed that reflectance spectroscopy could be used to estimate Vcmax at the leaf level. Here, we present evidence that imaging spectroscopy data can be used to simultaneously predict Vcmax and its sensitivity to temperature (EV) at the canopy scale. In 2013 and 2014, high-altitude Airborne Visible/Infrared Imaging Spectroscopy (AVIRIS) imagery and contemporaneous ground-based assessments of canopy structure and leaf photosynthesis were acquired across an array of monospecific agroecosystems in central and southern California, USA. A partial least-squares regression (PLSR) modeling approach was employed to characterize the pixel-level variation in canopy Vcmax (at a standardized canopy temperature of 30 °C) and EV, based on visible and shortwave infrared AVIRIS spectra (414–2447 nm). Our approach yielded parsimonious models with strong predictive capability for Vcmax (at 30 °C) and EV (R2 of withheld data = 0.94 and 0.92, respectively), both of which varied substantially in the field (≥ 1.7 fold) across the sampled crop types. The models were applied to additional AVIRIS imagery to generate maps of Vcmax and EV, as well as their uncertainties, for agricultural landscapes in California. The spatial patterns exhibited in the maps were consistent with our in-situ observations. As a result, these findings highlight the considerable promise of airborne and, by implication, space-borne imaging spectroscopy, such as the proposed HyspIRI mission, to map spatial and

  19. Remotely estimating photosynthetic capacity, and its response to temperature, in vegetation canopies using imaging spectroscopy

    DOE PAGES

    Serbin, Shawn P.; Singh, Aditya; Desai, Ankur R.; ...

    2015-06-11

    To date, the utility of ecosystem and Earth system models (EESMs) has been limited by poor spatial and temporal representation of critical input parameters. For example, EESMs often rely on leaf-scale or literature-derived estimates for a key determinant of canopy photosynthesis, the maximum velocity of RuBP carboxylation (Vcmax, μmol m–2 s–1). Our recent work (Ainsworth et al., 2014; Serbin et al., 2012) showed that reflectance spectroscopy could be used to estimate Vcmax at the leaf level. Here, we present evidence that imaging spectroscopy data can be used to simultaneously predict Vcmax and its sensitivity to temperature (EV) at the canopymore » scale. In 2013 and 2014, high-altitude Airborne Visible/Infrared Imaging Spectroscopy (AVIRIS) imagery and contemporaneous ground-based assessments of canopy structure and leaf photosynthesis were acquired across an array of monospecific agroecosystems in central and southern California, USA. A partial least-squares regression (PLSR) modeling approach was employed to characterize the pixel-level variation in canopy Vcmax (at a standardized canopy temperature of 30 °C) and EV, based on visible and shortwave infrared AVIRIS spectra (414–2447 nm). Our approach yielded parsimonious models with strong predictive capability for Vcmax (at 30 °C) and EV (R2 of withheld data = 0.94 and 0.92, respectively), both of which varied substantially in the field (≥ 1.7 fold) across the sampled crop types. The models were applied to additional AVIRIS imagery to generate maps of Vcmax and EV, as well as their uncertainties, for agricultural landscapes in California. The spatial patterns exhibited in the maps were consistent with our in-situ observations. As a result, these findings highlight the considerable promise of airborne and, by implication, space-borne imaging spectroscopy, such as the proposed HyspIRI mission, to map spatial and temporal variation in key drivers of photosynthetic metabolism in terrestrial vegetation.« less

  20. Absolute airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Baumann, Henri

    This work consists of a feasibility study of a first stage prototype airborne absolute gravimeter system. In contrast to relative systems, which are using spring gravimeters, the measurements acquired by absolute systems are uncorrelated and the instrument is not suffering from problems like instrumental drift, frequency response of the spring and possible variation of the calibration factor. The major problem we had to resolve were to reduce the influence of the non-gravitational accelerations included in the measurements. We studied two different approaches to resolve it: direct mechanical filtering, and post-processing digital compensation. The first part of the work describes in detail the different mechanical passive filters of vibrations, which were studied and tested in the laboratory and later in a small truck in movement. For these tests as well as for the airborne measurements an absolute gravimeter FG5-L from Micro-G Ltd was used together with an Inertial navigation system Litton-200, a vertical accelerometer EpiSensor, and GPS receivers for positioning. These tests showed that only the use of an optical table gives acceptable results. However, it is unable to compensate for the effects of the accelerations of the drag free chamber. The second part describes the strategy of the data processing. It is based on modeling the perturbing accelerations by means of GPS, EpiSensor and INS data. In the third part the airborne experiment is described in detail, from the mounting in the aircraft and data processing to the different problems encountered during the evaluation of the quality and accuracy of the results. In the part of data processing the different steps conducted from the raw apparent gravity data and the trajectories to the estimation of the true gravity are explained. A comparison between the estimated airborne data and those obtained by ground upward continuation at flight altitude allows to state that airborne absolute gravimetry is feasible and

  1. Airborne X-band SAR tomography for forest volumes

    NASA Astrophysics Data System (ADS)

    Muirhead, Fiona; Woodhouse, Iain H.; Mulgrew, Bernard

    2016-10-01

    We evaluate the usefulness of X-band, airborne (helicopter) data for tomography over forestry regions and discuss the use of compressive sensing algorithms to aid X-band airborne tomography. This work examines if there is any information that can be gained from forest volumes when analysing forestry sites using X-band data. To do so, different forest scenarios were simulated and a fast SAR simulator was used to model airborne multipass SAR data, at X-band, with parameters based on Leonardo's PicoSAR instrument. Model simulations considered varying factors that affect the height determination when using tomography. The main parameters that are considered here are: motion errors of the platform, the spacing of the flight paths, the resolution of the SAR images and plant life being present under the canopy (an understory). It was found that residual motion errors from the airborne platform cause the largest error in the tomographic profile.

  2. Within-field and regional-scale accuracies of topsoil organic carbon content prediction from an airborne visible near-infrared hyperspectral image combined with synchronous field spectra for temperate croplands

    NASA Astrophysics Data System (ADS)

    Vaudour, Emmanuelle; Gilliot, Jean-Marc; Bel, Liliane; Lefevre, Josias; Chehdi, Kacem

    2016-04-01

    This study was carried out in the framework of the TOSCA-PLEIADES-CO of the French Space Agency and benefited data from the earlier PROSTOCK-Gessol3 project supported by the French Environment and Energy Management Agency (ADEME). It aimed at identifying the potential of airborne hyperspectral visible near-infrared AISA-Eagle data for predicting the topsoil organic carbon (SOC) content of bare cultivated soils over a large peri-urban area (221 km2) with intensive annual crop cultivation and both contrasted soils and SOC contents, located in the western region of Paris, France. Soils comprise hortic or glossic luvisols, calcaric, rendzic cambisols and colluvic cambisols. Airborne AISA-Eagle images (400-1000 nm, 126 bands) with 1 m-resolution were acquired on 17 April 2013 over 13 tracks. Tracks were atmospherically corrected then mosaicked at a 2 m-resolution using a set of 24 synchronous field spectra of bare soils, black and white targets and impervious surfaces. The land use identification system layer (RPG) of 2012 was used to mask non-agricultural areas, then calculation and thresholding of NDVI from an atmospherically corrected SPOT4 image acquired the same day enabled to map agricultural fields with bare soil. A total of 101 sites, which were sampled either at the regional scale or within one field, were identified as bare by means of this map. Predictions were made from the mosaic AISA spectra which were related to SOC contents by means of partial least squares regression (PLSR). Regression robustness was evaluated through a series of 1000 bootstrap data sets of calibration-validation samples, considering those 75 sites outside cloud shadows only, and different sampling strategies for selecting calibration samples. Validation root-mean-square errors (RMSE) were comprised between 3.73 and 4.49 g. Kg-1 and were ~4 g. Kg-1 in median. The most performing models in terms of coefficient of determination (R²) and Residual Prediction Deviation (RPD) values were the

  3. Fluid Lensing, Applications to High-Resolution 3D Subaqueous Imaging & Automated Remote Biosphere Assessment from Airborne and Space-borne Platforms

    NASA Astrophysics Data System (ADS)

    Chirayath, V.

    2014-12-01

    Fluid Lensing is a theoretical model and algorithm I present for fluid-optical interactions in turbulent flows as well as two-fluid surface boundaries that, when coupled with an unique computer vision and image-processing pipeline, may be used to significantly enhance the angular resolution of a remote sensing optical system with applicability to high-resolution 3D imaging of subaqueous regions and through turbulent fluid flows. This novel remote sensing technology has recently been implemented on a quadcopter-based UAS for imaging shallow benthic systems to create the first dataset of a biosphere with unprecedented sub-cm-level imagery in 3D over areas as large as 15 square kilometers. Perturbed two-fluid boundaries with different refractive indices, such as the surface between the ocean and air, may be exploited for use as lensing elements for imaging targets on either side of the interface with enhanced angular resolution. I present theoretical developments behind Fluid Lensing and experimental results from its recent implementation for the Reactive Reefs project to image shallow reef ecosystems at cm scales. Preliminary results from petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk coral reefs in American Samoa (August, 2013) show broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to understanding climate change's impact on coastal zones, global oxygen production and carbon sequestration.

  4. Airborne Intercept Monitoring

    DTIC Science & Technology

    2006-04-01

    Primary mirror of Zerodur with Pilkington 747 coating • FOV = 0.104 degrees Airborne Intercept Monitoring RTO-MP-SET-105 16 - 3 UNCLASSIFIED...Pointing System (SPS). The STS is a 0.75 meter aperture Mersenne Cassegrain telescope and the SAT is a 0.34 meter aperture 3- mirror anastigmat telescope...UNLIMITED UNCLASSIFIED/UNLIMITED • Air Flow to Mitigate Thermal “Seeing” Effects • Light weighted primary mirror to reduce mass The SAT

  5. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  6. Airborne Infrared Astronomical Telescopes

    NASA Astrophysics Data System (ADS)

    Erickson, Edwin F.

    2017-01-01

    A unique program of infrared astronomical observations from aircraft evolved at NASA’s Ames Research Center, beginning in the 1960s. Telescopes were flown on a Convair 990, a Lear Jet, and a Lockheed C-141 - the Kuiper Airborne Observatory (KAO) - leading to the planning and development of SOFIA: a 2.7 m telescope now flying on a Boeing 747SP. The poster describes these telescopes and highlights of some of the scientific results obtained from them.

  7. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  8. Airborne field strength monitoring

    NASA Astrophysics Data System (ADS)

    Bredemeyer, J.; Kleine-Ostmann, T.; Schrader, T.; Münter, K.; Ritter, J.

    2007-06-01

    In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper.

  9. Vegetation water content mapping in a diverse agricultural landscape: National Airborne Field Experiment 2006

    NASA Astrophysics Data System (ADS)

    Cosh, Michael H.; Tao, Jing; Jackson, Thomas J.; McKee, Lynn; O'Neill, Peggy

    2010-05-01

    Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE'06), it is challenging to provide accurate high resolution vegetation information, especially on a daily basis. A technique proposed in previous studies was adapted here to the heterogenous conditions encountered in NAFE'06, which included a hydrologically complex landscape consisting of both irrigated and dryland agriculture. Using field vegetation sampling and ground-based reflectance measurements, the knowledge base for relating the Normalized Difference Water Index (NDWI) and the vegetation water content was extended to a greater diversity of agricultural crops, which included dryland and irrigated wheat, alfalfa, and canola. Critical to the generation of vegetation water content maps, the land cover for this region was determined from satellite visible/infrared imagery and ground surveys with an accuracy of 95.5% and a kappa coefficient of 0.95. The vegetation water content was estimated with a root mean square error of 0.33 kg/m2. The results of this investigation contribute to a more robust database of global vegetation water content observations and demonstrate that the approach can be applied with high accuracy.

  10. Vegetation Water Content Mapping in a Diverse Agricultural Landscape: National Airborne Field Experiment 2006

    NASA Technical Reports Server (NTRS)

    Cosh, Michael H.; Jing Tao; Jackson, Thomas J.; McKee, Lynn; O'Neill, Peggy

    2011-01-01

    Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE 06), it is challenging to provide accurate high resolution vegetation information, especially on a daily basis. A technique proposed in previous studies was adapted here to the heterogenous conditions encountered in NAFE 06, which included a hydrologically complex landscape consisting of both irrigated and dryland agriculture. Using field vegetation sampling and ground-based reflectance measurements, the knowledge base for relating the Normalized Difference Water Index (NDWI) and the vegetation water content was extended to a greater diversity of agricultural crops, which included dryland and irrigated wheat, alfalfa, and canola. Critical to the generation of vegetation water content maps, the land cover for this region was determined from satellite visible/infrared imagery and ground surveys with an accuracy of 95.5% and a kappa coefficient of 0.95. The vegetation water content was estimated with a root mean square error of 0.33 kg/sq m. The results of this investigation contribute to a more robust database of global vegetation water content observations and demonstrate that the approach can be applied with high accuracy. Keywords: Vegetation, field experimentation, thematic mapper, NDWI, agriculture.

  11. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  12. Visualizing Airborne and Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Bierwirth, Victoria A.

    2011-01-01

    Remote sensing is a process able to provide information about Earth to better understand Earth's processes and assist in monitoring Earth's resources. The Cloud Absorption Radiometer (CAR) is one remote sensing instrument dedicated to the cause of collecting data on anthropogenic influences on Earth as well as assisting scientists in understanding land-surface and atmospheric interactions. Landsat is a satellite program dedicated to collecting repetitive coverage of the continental Earth surfaces in seven regions of the electromagnetic spectrum. Combining these two aircraft and satellite remote sensing instruments will provide a detailed and comprehensive data collection able to provide influential information and improve predictions of changes in the future. This project acquired, interpreted, and created composite images from satellite data acquired from Landsat 4-5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper plus (ETM+). Landsat images were processed for areas covered by CAR during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCT AS), Cloud and Land Surface Interaction Campaign (CLASIC), Intercontinental Chemical Transport Experiment-Phase B (INTEXB), and Southern African Regional Science Initiative (SAFARI) 2000 missions. The acquisition of Landsat data will provide supplemental information to assist in visualizing and interpreting airborne and satellite imagery.

  13. Environmental Mapping with Imaging Spectroscopy of the World Trade Center Area After the September 11, 2001 Attack

    NASA Astrophysics Data System (ADS)

    Clark, R. N.; Swayze, G. A.; Hoefen, T.; Livo, E.; Sutley, S.; Meeker, G.; Plumlee, G.; Brownfield, I.; Hageman, P.; Lamothe, P.; Gent, C.; Morath, L.; Taggart, J.; Theodorakos, T.; Adams, M.; Green, R.; Pavri, B.; Sarture, C.; Vance, S.; Boardman, J.

    2002-12-01

    The Airborne Visible / Infrared Imaging Spectrometer (AVIRIS), a hyperspectral remote sensing instrument, was flown by JPL/NASA over the World Trade Center (WTC) area on September 16, 18, 22, and 23, 2001. A 2-person USGS crew collected samples of dusts and airfall debris from more than 35 localities within a 1-km radius of the World trade Center site on the evenings of September 17 and 18, 2001. The AVIRIS data, field spectrometer data collected in areas away from the WTC, and information derived from field samples in and around the WTC were used to calibrate, provide ground truth, and map the debris and its composition in the lower Manhattan area with 2x4-meter sampling. Laboratory analyses and the AVIRIS mapping results indicate the dusts are variable in composition, both on a fine scale within individual samples and on a coarser spatial scale based on direction and distance from the WTC. Replicate mineralogical and chemical analyses of material from the same sample reveal variability that presumably is due to the heterogeneous mixture of different materials comprising the dusts. The spatial variability is observed at large scales of tens of meters to centimeter and smaller scales. AVIRIS mapping suggests that materials with higher iron content settled to the south-southeast of the building 2 collapse center. Chrysotile may occur primarily (but not exclusively) in a discontinuous pattern radially in west, north, and easterly directions, perhaps at distances greater than 3/4 kilometer from ground zero. Although only trace levels of chrysotile asbestos have been detected in the dust and airfall samples studied to date, the presence of up to 20 volume % chrysotile asbestos in material coating steel beams in the WTC debris, and the potential areas indicated in the AVIRIS mineral maps, indicate that asbestos can be found in localized concentrations.

  14. Airborne system for testing multispectral reconnaissance technologies

    NASA Astrophysics Data System (ADS)

    Schmitt, Dirk-Roger; Doergeloh, Heinrich; Keil, Heiko; Wetjen, Wilfried

    1999-07-01

    There is an increasing demand for future airborne reconnaissance systems to obtain aerial images for tactical or peacekeeping operations. Especially Unmanned Aerial Vehicles (UAVs) equipped with multispectral sensor system and with real time jam resistant data transmission capabilities are of high interest. An airborne experimental platform has been developed as testbed to investigate different concepts of reconnaissance systems before their application in UAVs. It is based on a Dornier DO 228 aircraft, which is used as flying platform. Great care has been taken to achieve the possibility to test different kinds of multispectral sensors. Hence basically it is capable to be equipped with an IR sensor head, high resolution aerial cameras of the whole optical spectrum and radar systems. The onboard equipment further includes system for digital image processing, compression, coding, and storage. The data are RF transmitted to the ground station using technologies with high jam resistance. The images, after merging with enhanced vision components, are delivered to the observer who has an uplink data channel available to control flight and imaging parameters.

  15. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  16. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown.

  17. Improved Airborne System for Sensing Wildfires

    NASA Technical Reports Server (NTRS)

    McKeown, Donald; Richardson, Michael

    2008-01-01

    The Wildfire Airborne Sensing Program (WASP) is engaged in a continuing effort to develop an improved airborne instrumentation system for sensing wildfires. The system could also be used for other aerial-imaging applications, including mapping and military surveillance. Unlike prior airborne fire-detection instrumentation systems, the WASP system would not be based on custom-made multispectral line scanners and associated custom- made complex optomechanical servomechanisms, sensors, readout circuitry, and packaging. Instead, the WASP system would be based on commercial off-the-shelf (COTS) equipment that would include (1) three or four electronic cameras (one for each of three or four wavelength bands) instead of a multispectral line scanner; (2) all associated drive and readout electronics; (3) a camera-pointing gimbal; (4) an inertial measurement unit (IMU) and a Global Positioning System (GPS) receiver for measuring the position, velocity, and orientation of the aircraft; and (5) a data-acquisition subsystem. It would be necessary to custom-develop an integrated sensor optical-bench assembly, a sensor-management subsystem, and software. The use of mostly COTS equipment is intended to reduce development time and cost, relative to those of prior systems.

  18. The spectral imaging facility: Setup characterization

    SciTech Connect

    De Angelis, Simone De Sanctis, Maria Cristina; Manzari, Paola Olga; Ammannito, Eleonora; Di Iorio, Tatiana; Liberati, Fabrizio; Tarchi, Fabio; Dami, Michele; Olivieri, Monica; Pompei, Carlo; Mugnuolo, Raffaele

    2015-09-15

    The SPectral IMager (SPIM) facility is a laboratory visible infrared spectrometer developed to support space borne observations of rocky bodies of the solar system. Currently, this laboratory setup is used to support the DAWN mission, which is in its journey towards the asteroid 1-Ceres, and to support the 2018 Exo-Mars mission in the spectral investigation of the Martian subsurface. The main part of this setup is an imaging spectrometer that is a spare of the DAWN visible infrared spectrometer. The spectrometer has been assembled and calibrated at Selex ES and then installed in the facility developed at the INAF-IAPS laboratory in Rome. The goal of SPIM is to collect data to build spectral libraries for the interpretation of the space borne and in situ hyperspectral measurements of planetary materials. Given its very high spatial resolution combined with the imaging capability, this instrument can also help in the detailed study of minerals and rocks. In this paper, the instrument setup is first described, and then a series of test measurements, aimed to the characterization of the main subsystems, are reported. In particular, laboratory tests have been performed concerning (i) the radiation sources, (ii) the reference targets, and (iii) linearity of detector response; the instrumental imaging artifacts have also been investigated.

  19. The New Airborne Disease

    PubMed Central

    Goldsmith, John R.

    1970-01-01

    Community air pollution is the new airborne disease of our generation's communities. It is caused by the increasing use of fuel, associated with both affluence and careless waste. Photochemical air pollution of the California type involves newly defined atmospheric reactions, is due mostly to motor vehicle exhaust, is oxidizing, and produces ozone, plant damage, impairment of visibility and eye and respiratory symptoms. Aggravation of asthma, impairment of lung function among persons with chronic respiratory disease and a possible causal role, along with cigarette smoking in emphysema and chronic bronchitis, are some of the effects of photochemical pollution. More subtle effects of pollution include impairment of oxygen transport by the blood due to carbon monoxide and interference with porphyrin metabolism due to lead. Carbon monoxide exposures may affect survival of patients who are in hospitals because of myocardial infarction. While many uncertainties in pollution-health reactions need to be resolved, a large number of people in California have health impairment due to airborne disease of this new type. PMID:5485227

  20. Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE)

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.

    1998-01-01

    Scanning holographic lidar receivers are currently in use in two operational lidar systems, PHASERS (Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing) and now HARLIE (Holographic Airborne Rotating Lidar Instrument Experiment). These systems are based on volume phase holograms made in dichromated gelatin (DCG) sandwiched between 2 layers of high quality float glass. They have demonstrated the practical application of this technology to compact scanning lidar systems at 532 and 1064 nm wavelengths, the ability to withstand moderately high laser power and energy loading, sufficient optical quality for most direct detection systems, overall efficiencies rivaling conventional receivers, and the stability to last several years under typical lidar system environments. Their size and weight are approximately half of similar performing scanning systems using reflective optics. The cost of holographic systems will eventually be lower than the reflective optical systems depending on their degree of commercialization. There are a number of applications that require or can greatly benefit from a scanning capability. Several of these are airborne systems, which either use focal plane scanning, as in the Laser Vegetation Imaging System or use primary aperture scanning, as in the Airborne Oceanographic Lidar or the Large Aperture Scanning Airborne Lidar. The latter class requires a large clear aperture opening or window in the aircraft. This type of system can greatly benefit from the use of scanning transmission holograms of the HARLIE type because the clear aperture required is only about 25% larger than the collecting aperture as opposed to 200-300% larger for scan angles of 45 degrees off nadir.

  1. A multiple criteria-based spectral partitioning method for remotely sensed hyperspectral image classification

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Li, Jun; Plaza, Antonio; Sun, Yanli

    2016-10-01

    the original band set. An ensemble learning technique is then used to fuse the information from multiple features, taking advantage of the relevant information provided by each classifier. Our experimental results with two real hyperspectral images, collected by the reflective optics system imaging spectrometer (ROSIS) over the University of Pavia in Italy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over the Salinas scene, reveal that our presented method, driven by multiple band priority criteria, is able to obtain better classification results compared with classic band selection techniques. This paper also discusses several possibilities for computationally efficient implementation of the proposed technique using various high-performance computing architectures.

  2. Modeling and Prediction of Wildfire Hazard in Southern California, Integration of Models with Imaging Spectrometry

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Church, Richard; Ustin, Susan L.; Brass, James A. (Technical Monitor)

    2001-01-01

    Large urban wildfires throughout southern California have caused billions of dollars of damage and significant loss of life over the last few decades. Rapid urban growth along the wildland interface, high fuel loads and a potential increase in the frequency of large fires due to climatic change suggest that the problem will worsen in the future. Improved fire spread prediction and reduced uncertainty in assessing fire hazard would be significant, both economically and socially. Current problems in the modeling of fire spread include the role of plant community differences, spatial heterogeneity in fuels and spatio-temporal changes in fuels. In this research, we evaluated the potential of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Airborne Synthetic Aperture Radar (AIRSAR) data for providing improved maps of wildfire fuel properties. Analysis concentrated in two areas of Southern California, the Santa Monica Mountains and Santa Barbara Front Range. Wildfire fuel information can be divided into four basic categories: fuel type, fuel load (live green and woody biomass), fuel moisture and fuel condition (live vs senesced fuels). To map fuel type, AVIRIS data were used to map vegetation species using Multiple Endmember Spectral Mixture Analysis (MESMA) and Binary Decision Trees. Green live biomass and canopy moisture were mapped using AVIRIS through analysis of the 980 nm liquid water absorption feature and compared to alternate measures of moisture and field measurements. Woody biomass was mapped using L and P band cross polarimetric data acquired in 1998 and 1999. Fuel condition was mapped using spectral mixture analysis to map green vegetation (green leaves), nonphotosynthetic vegetation (NPV; stems, wood and litter), shade and soil. Summaries describing the potential of hyperspectral and SAR data for fuel mapping are provided by Roberts et al. and Dennison et al. To utilize remotely sensed data to assess fire hazard, fuel-type maps were translated

  3. Design and implementation of digital airborne multispectral camera system

    NASA Astrophysics Data System (ADS)

    Lin, Zhaorong; Zhang, Xuguo; Wang, Li; Pan, Deai

    2012-10-01

    The multispectral imaging equipment is a kind of new generation remote sensor, which can obtain the target image and the spectra information simultaneously. A digital airborne multispectral camera system using discrete filter method had been designed and implemented for unmanned aerial vehicle (UAV) and manned aircraft platforms. The digital airborne multispectral camera system has the advantages of larger frame, higher resolution, panchromatic and multispectral imaging. It also has great potential applications in the fields of environmental and agricultural monitoring and target detection and discrimination. In order to enhance the measurement precision and accuracy of position and orientation, Inertial Measurement Unit (IMU) is integrated in the digital airborne multispectral camera. Meanwhile, the Temperature Control Unit (TCU) guarantees that the camera can operate in the normal state in different altitudes to avoid the window fogging and frosting which will degrade the imaging quality greatly. Finally, Flying experiments were conducted to demonstrate the functionality and performance of the digital airborne multispectral camera. The resolution capability, positioning accuracy and classification and recognition ability were validated.

  4. Evaluating Airborne Hyperspectral imagery for mapping waterhyacinth infestations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Waterhyacinth [Eichhornia crassipes (Mart.) Solms] is an exotic aquatic weed that often invades and clogs waterways in many tropical and subtropical regions of the world. The objective of this study was to evaluate airborne hyperspectral imagery and different image classification techniques for mapp...

  5. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  6. Case study of spatial and temporal variability of snow cover, grain size, albedo and radiative forcing in the Sierra Nevada and Rocky Mountain snowpack derived from imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Seidel, Felix C.; Rittger, Karl; McKenzie Skiles, S.; Molotch, Noah P.; Painter, Thomas H.

    2016-06-01

    Quantifying the spatial distribution and temporal change in mountain snow cover, microphysical and optical properties is important to improve our understanding of the local energy balance and the related snowmelt and hydrological processes. In this paper, we analyze changes of snow cover, optical-equivalent snow grain size (radius), snow albedo and radiative forcing by light-absorbing impurities in snow and ice (LAISI) with respect to terrain elevation and aspect at multiple dates during the snowmelt period. These snow properties are derived from the NASA/JPL Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data from 2009 in California's Sierra Nevada and from 2011 in Colorado's Rocky Mountains, USA. Our results show a linearly decreasing snow cover during the ablation period in May and June in the Rocky Mountains and a snowfall-driven change in snow cover in the Sierra Nevada between February and May. At the same time, the snow grain size is increasing primarily at higher elevations and north-facing slopes from 200 microns to 800 microns on average. We find that intense snowmelt renders the mean grain size almost invariant with respect to elevation and aspect. Our results confirm the inverse relationship between snow albedo and grain size, as well as between snow albedo and radiative forcing by LAISI. At both study sites, the mean snow albedo value decreases from approximately 0.7 to 0.5 during the ablation period. The mean snow grain size increased from approximately 150 to 650 microns. The mean radiative forcing increases from 20 W m-2 up to 200 W m-2 during the ablation period. The variability of snow albedo and grain size decreases in general with the progression of the ablation period. The spatial variability of the snow albedo and grain size decreases through the melt season while the spatial variability of radiative forcing remains constant.

  7. Advanced airborne ISR demonstration system (USA)

    NASA Astrophysics Data System (ADS)

    Henry, Daniel J.

    2005-05-01

    Recon/Optical, Inc. (ROI) is developing an advanced airborne Intelligence, Surveillance, and Reconnaissance (ISR) demonstration system based upon the proven ROI technology used in the SHAred Reconnaissance Pod (SHARP) for the U.S. Navy F/A-18. The demonstration system, which includes several state-of-the-art technology enhancements for next-generation ISR, is scheduled for flight testing in the summer of 2005. The demonstration system contains a variant of the SHARP medium altitude CA-270 camera, comprising an inertially stabilized Visible/NIR 5Kx5K imager and MWIR 2Kx2K imager to provide simultaneous high resolution/wide area coverage dual-band operation. The imager has been upgraded to incorporate a LN-100G GPS/INS within the sensor passive isolation loop to improve the accuracy of the NITF image metadata. The Image Processor is also based upon the SHARP configuration, but the demo system contains several enhancements including increased image processing horsepower, Ethernet-based Command & Control, next-generation JPEG2000 image compression, JPEG2000 Interactive Protocol (JPIP) network data server/client architecture, bi-directional RF datalink, advanced image dissemination/exploitation, and optical Fibrechannel I/O to the solid state recorder. This paper describes the ISR demonstration system and identifies the new network centric CONOPS made possible by the technology enhancements.

  8. The analysis of spatial and temporal changes of land cover and land use in the reclaimed areas with the application of airborne orthophotomaps and LANDSAT images

    NASA Astrophysics Data System (ADS)

    Szostak, Marta; Wężyk, Piotr; Hawryło, Paweł; Pietrzykowski, Marcin

    2015-06-01

    The aim of this study was to investigate the possible use of geoinformatics tools and generally available geodata for mapping land cover/use on the reclaimed areas. The choice of subject was dictated by the growing number of such areas and the related problem of their restoration. Modern technology, including GIS, photogrammetry and remote sensing are relevant in assessing the reclamation effects and monitoring of changes taking place on such sites. The LULC classes mapping, supported with thorough knowledge of the operator, is useful tool for the proper reclamation process evaluation. The study was performed for two post-mine sites: reclaimed external spoil heap of the sulfur mine Machów and areas after exploitation of sulfur mine Jeziórko, which are located in the Tarnobrzeski district. The research materials consisted of aerial orthophotos, which were the basis of on-screen vectorization; LANDSAT satellite images, which were used in the pixel and object based classification; and the CORINE Land Cover database as a general reference to the global maps of land cover and land use.

  9. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  10. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  11. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  12. High Accuracy In-Flight Wavelength Calibration of Imaging Spectrometry Data

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H.; Heidebrecht, Kathleen B.; Chrien, Thomas G.

    1995-01-01

    Accurate wavelength calibration of imaging spectrometer data is essential if proper atmospheric transmission corrections are to be made to obtain apparent surface reflectance. Accuracies of 0.1 nm are necessary for a 10 nm-sampling instrument in order to match the slopes of the deep atmospheric water vapor features that dominate the 0.7-2.3 micrometer regions. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is calibrated in the laboratory to determine the wavelength position and full-width-half-maximum (FWHM) response for each of the 224 channels. The accuracies are limited by the quality of the monochromator used as a source. The accuracies vary from plus or minus to plus or minus 1.5 nm depending on the wavelength region, in general decreasing with increasing wavelength. Green et al. make corrections to the wavelength calibrations by using the known positions of 14 atmospheric absorption features throughout the 0.4-2.5 micrometer wavelength region. These features, having varying width and intensity, were matched to the MODTRAN model with a non-linear least squares fitting algorithm. A complete calibration was developed for all 224 channels by interpolation. Instrument calibration cannot be assumed to be stable to 0.1 nm over a flight season given the rigors of thermal cycling and launch and landing loads. The upcoming sensor HYDICE will require a means for in-flight spectral calibration of each scene because the calibration is both temperature and pressure sensitive. In addition, any sensor using a two-dimensional array has the potential for systematic wavelength shifts as a function of cross-track position, commonly called 'smile'. Therefore, a rapid means for calibrating complete images will be required. The following describes a method for determining instrument wavelength calibration using atmospheric absorption features that is efficient enough to be used for entire images on workstations. This study shows the effect of the surface reflectance on

  13. Characterising Vegetation Structural and Functional Differences Across Australian Ecosystems From a Network of Terrestrial Laser Scanning Survey Sites and Airborne and Satellite Image Archives

    NASA Astr