Science.gov

Sample records for airborne volcanic ash

  1. On the visibility of airborne volcanic ash and mineral dust

    NASA Astrophysics Data System (ADS)

    Weinzierl, B.; Sauer, D. N.; Minikin, A.; Reitebuch, O.; Dahlkötter, F.; Mayer, B. C.; Emde, C.; Tegen, I.; Gasteiger, J.; Petzold, A.; Veira, A.; Kueppers, U.; Schumann, U.

    2012-12-01

    airborne aerosol layer and the background, the illumination, the particle size distribution and mass concentration, the wavelength-dependent light scattering and absorption by the aerosol layer, the human perception, etc. In addition, the optical depth along the line of sight through an aerosol layer is more important than just the (vertical) optical depth, which is measured, for example, by sun photometers or satellites. The results of our study are in particular interesting for the question on the visibility of volcanic ash. Our analyses of "visible ash" demonstrate that under clear sky conditions volcanic ash is visible already at concentrations far below what is currently considered as the upper limit for safe operation of an aircraft engine (2 mg m-3). The presence of a grayish-brown layer in the atmosphere does not unambiguously indicate the presence of volcanic ash. An uninformed observer is unlikely to identify an aged volcanic ash layer in his field of view without further information. The presence of clouds would make it even more complicated to visually detect volcanic ash. In regions with high background aerosol loading in the atmosphere from natural or anthropogenic influences, such as seen in large parts of Asia, the visual detection of volcanic ash as an additional contaminant will be substantially more difficult.

  2. Airborne volcanic ash; a global threat to aviation

    USGS Publications Warehouse

    Neal, Christina A.; Guffanti, Marianne C.

    2010-01-01

    The world's busy air traffic corridors pass over or downwind of hundreds of volcanoes capable of hazardous explosive eruptions. The risk to aviation from volcanic activity is significant - in the United States alone, aircraft carry about 300,000 passengers and hundreds of millions of dollars of cargo near active volcanoes each day. Costly disruption of flight operations in Europe and North America in 2010 in the wake of a moderate-size eruption in Iceland clearly demonstrates how eruptions can have global impacts on the aviation industry. Airborne volcanic ash can be a serious hazard to aviation even hundreds of miles from an eruption. Encounters with high-concentration ash clouds can diminish visibility, damage flight control systems, and cause jet engines to fail. Encounters with low-concentration clouds of volcanic ash and aerosols can accelerate wear on engine and aircraft components, resulting in premature replacement. The U.S. Geological Survey (USGS), in cooperation with national and international partners, is playing a leading role in the international effort to reduce the risk posed to aircraft by volcanic eruptions.

  3. The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle: a review

    NASA Astrophysics Data System (ADS)

    Duggen, S.; Olgun, N.; Croot, P.; Hoffmann, L.; Dietze, H.; Teschner, C.

    2009-07-01

    Iron is a key micronutrient for phytoplankton growth in the surface ocean. Yet the significance of volcanism for the marine biogeochemical iron-cycle is poorly constrained. Recent studies, however, suggest that offshore deposition of airborne ash from volcanic eruptions is a way to inject significant amounts of bio-available iron into the surface ocean. Volcanic ash may be transported up to several tens of kilometres high into the atmosphere during large-scale eruptions and fine ash may encircle the globe for years, thereby reaching even the remotest and most iron-starved oceanic areas. Scientific ocean drilling demonstrates that volcanic ash layers and dispersed ash particles are frequently found in marine sediments and that therefore volcanic ash deposition and iron-injection into the oceans took place throughout much of the Earth's history. The data from geochemical and biological experiments, natural evidence and satellite techniques now available suggest that volcanic ash is a so far underestimated source for iron in the surface ocean, possibly of similar importance as aeolian dust. Here we summarise the development of and the knowledge in this fairly young research field. The paper covers a wide range of chemical and biological issues and we make recommendations for future directions in these areas. The review paper may thus be helpful to improve our understanding of the role of volcanic ash for the marine biogeochemical iron-cycle, marine primary productivity and the ocean-atmosphere exchange of CO2 and other gases relevant for climate throughout the Earth's history.

  4. The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle: a review

    NASA Astrophysics Data System (ADS)

    Duggen, S.; Olgun, N.; Croot, P.; Hoffmann, L.; Dietze, H.; Delmelle, P.; Teschner, C.

    2010-03-01

    Iron is a key micronutrient for phytoplankton growth in the surface ocean. Yet the significance of volcanism for the marine biogeochemical iron-cycle is poorly constrained. Recent studies, however, suggest that offshore deposition of airborne ash from volcanic eruptions is a way to inject significant amounts of bio-available iron into the surface ocean. Volcanic ash may be transported up to several tens of kilometers high into the atmosphere during large-scale eruptions and fine ash may stay aloft for days to weeks, thereby reaching even the remotest and most iron-starved oceanic regions. Scientific ocean drilling demonstrates that volcanic ash layers and dispersed ash particles are frequently found in marine sediments and that therefore volcanic ash deposition and iron-injection into the oceans took place throughout much of the Earth's history. Natural evidence and the data now available from geochemical and biological experiments and satellite techniques suggest that volcanic ash is a so far underestimated source for iron in the surface ocean, possibly of similar importance as aeolian dust. Here we summarise the development of and the knowledge in this fairly young research field. The paper covers a wide range of chemical and biological issues and we make recommendations for future directions in these areas. The review paper may thus be helpful to improve our understanding of the role of volcanic ash for the marine biogeochemical iron-cycle, marine primary productivity and the ocean-atmosphere exchange of CO2 and other gases relevant for climate in the Earth's history.

  5. Ambient airborne solids concentrations including volcanic ash at Hanford, Washington sampling sites subsequent to the Mount St. Helens eruption

    NASA Technical Reports Server (NTRS)

    Sehmel, G. A.

    1982-01-01

    Airborne solids concentrations were measured on a near daily basis at two Hanford, Washington sites after the eruption of Mount St. Helens on May 18, 1980. These sites are about 211 km east of Mount St. Helens. Collected airborne solids included resuspended volcanic ash plus normal ambient solids. Average airborne solids concentrations were greater at the Hanford meteorological station sampling site which is 24 km northwest of the Horn Rapids dam sampling site. These increased concentrations reflect the sampling site proximity to greater ash fallout depths. Both sites are in low ash fallout areas although the Hanford meteorological station site is closer to the greater ash fallout areas. Airborne solids concentrations were decreased by rain, but airborne solids concentrations rapidly increased as surfaces dried. Airborne concentrations tended to become nearly the same at both sampling sites only for July 12 and 13.

  6. Identification and characterization of individual airborne volcanic ash particles by Raman microspectroscopy.

    PubMed

    Ivleva, Natalia P; Huckele, Susanne; Weinzierl, Bernadett; Niessner, Reinhard; Haisch, Christoph; Baumann, Thomas

    2013-11-01

    We present for the first time the Raman microspectroscopic identification and characterization of individual airborne volcanic ash (VA) particles. The particles were collected in April/May 2010 during research aircraft flights, which were performed by Deutsches Zentrum für Luft- und Raumfahrt in the airspace near the Eyjafjallajökull volcano eruption and over Europe (between Iceland and Southern Germany). In addition, aerosol particles were sampled by an Electrical Low Pressure Impactor in Munich, Germany. As references for the Raman analysis, we used the spectra of VA collected at the ground near the place of eruption, of mineral basaltic rock, and of different minerals from a database. We found significant differences in the spectra of VA and other aerosol particles (e.g., soot, nitrates, sulfates, and clay minerals), which allowed us to identify VA among other atmospheric particulate matter. Furthermore, while the airborne VA shows a characteristic Raman pattern (with broad band from ca. 200 to ca. 700 cm(-1) typical for SiO₂ glasses and additional bands of ferric minerals), the differences between the spectra of aged and fresh particles were observed, suggesting differences in their chemical composition and/or structure. We also analyzed similarities between Eyjafjallajökull VA particles collected at different sampling sites and compared the particles with a large variety of glassy and crystalline minerals. This was done by applying cluster analysis, in order to get information on the composition and structure of volcanic ash. PMID:24121468

  7. Surface ocean iron fertilization: The role of airborne volcanic ash and iron-flux into the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Olgun, N.; Duggen, S.; Croot, P.; Dietze, H.

    2009-04-01

    Iron is a limiting micro-nutrient for marine primary production (MPP) in vast areas in the surface ocean. Hence, atmospheric supply of iron to the surface ocean can affect marine biogeochemical cycles, associated ocean-atmosphere exchange of CO2 and eventually climate development. Airborne volcanic ash from volcanic eruptions can be an important atmospheric iron-source in the surface ocean by releasing bio-available iron while settling through in the surface ocean. Here we present new data from time-dependent geochemical experiments with pristine (unhydrated) volcanic ash samples and natural seawater by means of Cathodic Stripping Voltammetry. Our results demonstrate that volcanic ash mobilizes significant amounts of soluble Fe within 60 minutes of contact with natural seawater. Depending on the amount of volcanic ash deposited offshore during major volcanic eruptions and the amount of iron that ash can release on contact with seawater, the calculated increase in the surface ocean Fe levels range from several nanomolar up to several hundred nanomolar (nM). Only 2 nM increase in iron concentrations can stimulate massive diatom blooms in the oceanic regions in which MPP is limited by the availability of iron (the iron-limited oceanic areas) (Wells, 2003). Therefore volcanic ash should be able to significantly affect marine phytoplankton growth in an ash fall area, acting as an iron fertilizer. Based on our new iron-release data and marine sediment core data we provide the first estimate of the flux of Fe from volcanic ash into the Pacific Ocean that covers more than 60 percent of the iron-limited oceanic regions. Our calculations show that the flux of Fe from volcanic ash is comparable to the order of magnitude of the flux of Fe from aeolian dust. Our study shows that volcanic ash is a major and so far underestimated atmospheric iron-source for the oceans and therefore an important component in marine biogeochemical iron cycles. Wells, M.L.: The level of iron

  8. Modeling volcanic ash dispersal

    ScienceCinema

    None

    2011-10-06

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  9. Modeling volcanic ash dispersal

    SciTech Connect

    2010-10-22

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  10. Ambient airborne-solids concentrations including volcanic ash at Hanford, Washington sampling sites subsequent to the Mount St. Helens eruption

    SciTech Connect

    Sehmel, G.A.

    1981-06-01

    A major eruption of Mount St. Helens, state of Washington, USA, occurred on May 18, 1980. The resulting volcanic ash plume was transported to the east. The Hanford area, northwest of Richland, Washington, was within the southern edge of the fallout plume. Airborne solid concentrations and airborne particle size distributions were measured at two sites in the Hanford area, a southern and northern site. During the initial sampling day (May 19), the average concentration for respirable particles, < 5.5-..mu..m diameter, was 1430-..mu..g/m/sup 3/ at the southern site; the total collection was 2610-..mu..g/m/sup 3/. The respirable content of the total airborne solids was 55%. At both sites average airborne solid concentrations decreased to 10- to 20-..mu..g/m/sup 3/ in December.

  11. The visibility of airborne volcanic ash from the flight deck of an aircraft - The effect of clouds in the field of view

    NASA Astrophysics Data System (ADS)

    Sauer, Daniel; Gasteiger, Josef; Emde, Claudia; Buras, Robert; Mayer, Bernhard; Weinzierl, Bernadett

    2013-05-01

    In April 2010, the volcanic ash cloud from the Eyjafjalla volcano in Iceland strongly impacted aviation in Europe. Several other incidents in the past have shown that volcanic ash can have severe consequences on aviation. One operational necessity is, therefore, to determine whether a pilot has the means to avoid flying through potentially dangerous volcanic ash just by visual observation of the sky from the cockpit of an aircraft. Here we investigate how clouds affect the visibility of a volcanic ash aerosol layer for an observer in the cockpit of an aircraft using a 3D Monte Carlo radiative transfer model MYSTIC. This study builds on the results of a previous study on the visibility of airborne volcanic ash in Weinzierl et al. (2012) where we considered the cloud-free case. With clouds, the discernibility of ash layers is substantially reduced. Even layers with comparably high mass concentrations of 2 mg m-3 might not be visible for uninformed observers.

  12. Airborne lidar observations of volcanic ash during the eruption of Eyjafjallajökull in Spring 2010

    NASA Astrophysics Data System (ADS)

    Marenco, F.; Johnson, B.; Turnbull, K.; Haywood, J.; Newman, S.; Webster, H.; Cooke, M.; Dorsey, J.; Ricketts, H.; Clarisse, L.

    2012-04-01

    The London Volcanic Ash Advisory Centre (VAAC), based at the Met Office, provided forecast guidance for the Civil Aviation Authority during the eruption of Eyjafjallajökull in April-May 2010. Besides providing daily forecasts using the Numerical Atmospheric-dispersion Modelling Environment (NAME), a series of observational activities were carried out by the Met Office, involving ground-based lidars, the exploitation of satellite data, and research flights using the Facility for Airborne Atmospheric Measurements BAe-146 research aircraft (FAAM, www.faam.ac.uk), on which this talk is focused. Due to safety restrictions, aircraft sampling has only been performed in areas where ash concentrations where forecasted to be less than 2000 μg/m3. Volcanic ash layers were observed using an elastic backscatter lidar on-board the FAAM aircraft operating at 355 nm, which allowed detailed mapping of the plumes. A flight on 4 May overpassed the ground-based lidar in Aberystwyth a few times. This provided ground truth validation of the on-board lidar and of its data inversion procedure. The ash layer during this flight was found to be in patches of short horizontal extent, but despite the strong horizontal inhomogeneity the two lidars showed excellent qualitative and quantitative agreement. Moreover, radiative transfer computations using the lidar-derived profiles of aerosol extinction led to a good reconstruction of observed radiance spectra with on-board spectrometers. Aircraft in situ measurements of the particle size-distribution permitted the evaluation of a coarse extinction fraction (ranging 0.5-1) and a coarse mode specific extinction (0.6-0.9 m2/g) for six research flights. These quantities were then used to convert the lidar-derived aerosol extinction to ash concentration (with an estimated uncertainty of a factor of two). The combination of lidar and in-situ sampling of aerosol properties has thus offered us the opportunity to compile a dataset of the airborne

  13. Melting Behavior of Volcanic Ash relevant to Aviation Ash Hazard

    NASA Astrophysics Data System (ADS)

    Song, W.; Hess, K.; Lavallee, Y.; Cimarelli, C.; Dingwell, D. B.

    2013-12-01

    Volcanic ash is one of the major hazards caused by volcanic eruptions. In particular, the threat to aviation from airborne volcanic ash has been widely recognized and documented. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in-flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The primary cause of engine thrust loss is that the glass in volcanic ash particles is generated at temperatures far lower than the temperatures in the combustion chamber of a jet engine ( i.e. > 1600 oC) and when the molten volcanic ash particles leave this hottest section of the engine, the resolidified molten volcanic ash particles will be accumulated on the turbine nozzle guide vanes, which reduced the effective flow of air through the engine ultimately causing failure. Thus, it is essential to investigate the melting process and subsequent deposition behavior of volcanic ash under gas turbine conditions. Although few research studies that investigated the deposition behavior of volcanic ash at the high temperature are to be found in public domain, to the best our knowledge, no work addresses the formation of molten volcanic ash. In this work, volcanic ash produced by Santiaguito volcano in Guatemala in November 8, 2012 was selected for study because of their recent activity and potential hazard to aircraft safety. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the sintering and fusion phenomena as well as determine the volcanic ash melting behavior by using characteristic temperatures by means of hot stage microscope (HSM), different thermal analysis (DTA) and Thermal Gravimetric Analysis (TGA) to

  14. Volcanic Ash Transport and Dispersion Forecasting

    NASA Astrophysics Data System (ADS)

    Servranckx, R.; Stunder, B.

    2006-12-01

    Volcanic ash transport and dispersion models (VATDM) have been used operationally since the mid 1990's by the International Civil Aviation Organization (ICAO) designated Volcanic Ash Advisory Centers (VAAC) to provide ash forecast guidance. Over the years, significant improvements in the detection and prediction of airborne volcanic ash have been realized thanks to improved models, increases in computing power, 24-hr real time monitoring by VAACs / Meteorological Watch Offices and close coordination with Volcano Observatories around the world. Yet, predicting accurately the spatial and temporal structures of airborne volcanic ash and the deposition at the earth's surface remains a difficult and challenging problem. The forecasting problem is influenced by 3 main components. The first one (ERUPTION SOURCE PARAMETERS) comprises all non-meteorological parameters that characterize a specific eruption or volcanic ash cloud. For example, the volume / mass of ash released in the atmosphere, the duration of the eruption, the altitude and distribution of the ash cloud, the particle size distribution, etc. The second component (METEOROLOGY) includes all meteorological parameters (wind, moisture, stability, etc.) that are calculated by Numerical Weather Prediction models and that serve as input to the VATDM. The third component (TRANSPORT AND DISPERSION) combines input from the other 2 components through the use of VATDM to transport and disperse airborne volcanic ash in the atmosphere as well as depositing it at the surface though various removal mechanisms. Any weakness in one of the components may adversely affect the accuracy of the forecast. In a real-time, operational response context such as exists at the VAACs, the rapid delivery of the modeling results puts some constraints on model resolution and computing time. Efforts are ongoing to evaluate the reliability of VATDM forecasts though the use of various methods, including ensemble techniques. Remote sensing data

  15. Validation of Volcanic Ash Forecasting Performed by the Washington Volcanic Ash Advisory Center

    NASA Astrophysics Data System (ADS)

    Salemi, A.; Hanna, J.

    2009-12-01

    In support of NOAA’s mission to protect life and property, the Satellite Analysis Branch (SAB) uses satellite imagery to monitor volcanic eruptions and track volcanic ash. The Washington Volcanic Ash Advisory Center (VAAC) was established in late 1997 through an agreement with the International Civil Aviation Organization (ICAO). A volcanic ash advisory (VAA) is issued every 6 hours while an eruption is occurring. Information about the current location and height of the volcanic ash as well as any pertinent meteorological information is contained within the VAA. In addition, when ash is detected in satellite imagery, 6-, 12- and 18-hour forecasts of ash height and location are provided. This information is garnered from many sources including Meteorological Watch Offices (MWOs), pilot reports (PIREPs), model forecast winds, radiosondes and volcano observatories. The Washington VAAC has performed a validation of their 6, 12 and 18 hour airborne volcanic ash forecasts issued since October, 2007. The volcanic ash forecasts are viewed dichotomously (yes/no) with the frequency of yes and no events placed into a contingency table. A large variety of categorical statistics useful in describing forecast performance are then computed from the resulting contingency table.

  16. Ambient Airborne Solids Concentrations Including Volcanic Ash at Hanford, Washington Sampling Sites Subsequent to the Mount St. Helens Eruption

    SciTech Connect

    Sehmel, G.A.

    1982-12-20

    A major eruption of Mount St. Helens occurred on May 18, 1980. Subsequently, airborne solid concentrations were measured as a function of time at two sites within the southern edge of the fallout plume about 211 km east of Mount St. Helens. This ash was a source for investigating area-wide resuspension. Rain had a variable effect on decreasing airborne concentrations from resuspension. From 0.5 to 1.5 cm of rain were required to significantly reduce airborne solid concentrations through July. For a more aged resuspension source in September, a rain of 2.0 cm had a negligible effect. A monthly average threshold-wind speed for resuspension was defined as 3.6 m/s. For monthly-average wind speeds less than the threshold wind speed, monthly-average airborne concentrations tended to decrease with time. A decrease was recorded between September and October. For this 4-month time period, the half-life was on the order of 50 days, corresponding to a weathering rate of 5.1 year/sup -1/.

  17. Volcanic ash impacts on critical infrastructure

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    supply managers include: monitoring turbidity levels in raw water intakes, and if necessary increasing chlorination to compensate for higher turbidity; managing water demand; and communicating monitoring results with the public to allay fears of contamination. Ash can cause major damage to wastewater disposal systems. Ash deposited onto impervious surfaces such as roads and car parks is very easily washed into storm drains, where it can form intractable masses and lead to long-term flooding problems. It can also enter wastewater treatment plants (WWTPs), both through sewer lines and by direct fallout. Damage to modern WWTPs can run into millions of dollars. Ash falls reduce visibility creating hazards for ground transportation. Dry ash is also readily remobilised by vehicle traffic and wind, and dry and wet ash deposits will reduce traction on paved surfaces, including airport runways. Ash cleanup from road and airports is commonly necessary, but the large volumes make it logistically challenging. Vehicles are vulnerable to ash; it will clog filters and brake systems and abrade moving parts within engines. Lastly, modern telecommunications networks appear to be relatively resilient to volcanic ash fall. Signal attenuation and interference during ash falls has not been reported in eruptions over the past 20 years, with the exception of interference from ash plume-generated lightning. However, some telecommunications equipment is vulnerable to airborne ash, in particular heating, ventilation and air-conditioning (HVAC) systems which may become blocked from ash ingestion leading to overheating. This summary of volcanic ash impacts on critical infrastructure provides insight into the relative vulnerability of infrastructure under a range of different ashfall scenarios. Identifying and quantifying these impacts is an essential step in building resilience within these critical systems. We have attempted to consider interdependencies between sectors in a holistic way using

  18. Volcanic ash impacts on critical infrastructure

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    supply managers include: monitoring turbidity levels in raw water intakes, and if necessary increasing chlorination to compensate for higher turbidity; managing water demand; and communicating monitoring results with the public to allay fears of contamination. Ash can cause major damage to wastewater disposal systems. Ash deposited onto impervious surfaces such as roads and car parks is very easily washed into storm drains, where it can form intractable masses and lead to long-term flooding problems. It can also enter wastewater treatment plants (WWTPs), both through sewer lines and by direct fallout. Damage to modern WWTPs can run into millions of dollars. Ash falls reduce visibility creating hazards for ground transportation. Dry ash is also readily remobilised by vehicle traffic and wind, and dry and wet ash deposits will reduce traction on paved surfaces, including airport runways. Ash cleanup from road and airports is commonly necessary, but the large volumes make it logistically challenging. Vehicles are vulnerable to ash; it will clog filters and brake systems and abrade moving parts within engines. Lastly, modern telecommunications networks appear to be relatively resilient to volcanic ash fall. Signal attenuation and interference during ash falls has not been reported in eruptions over the past 20 years, with the exception of interference from ash plume-generated lightning. However, some telecommunications equipment is vulnerable to airborne ash, in particular heating, ventilation and air-conditioning (HVAC) systems which may become blocked from ash ingestion leading to overheating. This summary of volcanic ash impacts on critical infrastructure provides insight into the relative vulnerability of infrastructure under a range of different ashfall scenarios. Identifying and quantifying these impacts is an essential step in building resilience within these critical systems. We have attempted to consider interdependencies between sectors in a holistic way using

  19. Hygroscopic properties of volcanic ash

    NASA Astrophysics Data System (ADS)

    Lathem, T. L.; Kumar, P.; Nenes, A.; Dufek, J.; Sokolik, I. N.; Trail, M.; Russell, A.

    2011-06-01

    Limited observational data exists on the physical interactions between volcanic ash particles and water vapor; yet it is thought that these interactions can strongly impact the microphysical evolution of ash, with implications for its atmospheric lifetime and transport, as well as formation of water and ice clouds. In this study, we investigate for the first time, the hygroscopic properties of ultra-fine volcanic ash (<125 μm diameter) from the eruptions of Mt. St. Helens in 1980, El Chichón in 1982, Tungurahua in 2006, Chaitén in 2008, Mt. Redoubt in 2009, and Eyjafjallajökull in 2010. The hygroscopicity of the ash particles is quantified by their ability to uptake water and nucleate into cloud drops under controlled levels of water vapor supersaturation. Evidence presented strongly suggests that ash uptakes water efficiently via adsorption and a simple parameterization of ash hygroscopicity is developed for use in ash plume and atmospheric models.

  20. Volcanic ash - Terrestrial versus extraterrestrial

    NASA Technical Reports Server (NTRS)

    Okeefe, J. A.

    1976-01-01

    A principal difference between terrestrial and extraterrestrial lavas may consist in the greater ability of terrestrial lavas to form thin films (like those of soap bubbles) and hence foams. It would follow that, in place of the pumice and spiny shards found in terrestrial volcanic ash, an extraterrestrial ash should contain minute spherules. This hypothesis may help to explain lunar microspherules.

  1. National volcanic ash operations plan for aviation

    USGS Publications Warehouse

    United States Department of Commerce; National Oceanic and Atmospheric Administration

    2007-01-01

    The National Aviation Weather Program Strategic Plan (1997) and the National Aviation Weather Initiatives (1999) both identified volcanic ash as a high-priority informational need to aviation services. The risk to aviation from airborne volcanic ash is known and includes degraded engine performance (including flameout), loss of visibility, failure of critical navigational and operational instruments, and, in the worse case, loss of life. The immediate costs for aircraft encountering a dense plume are potentially major—damages up to $80 million have occurred to a single aircraft. Aircraft encountering less dense volcanic ash clouds can incur longer-term costs due to increased maintenance of engines and external surfaces. The overall goal, as stated in the Initiatives, is to eliminate encounters with ash that could degrade the in-flight safety of aircrews and passengers and cause damage to the aircraft. This goal can be accomplished by improving the ability to detect, track, and forecast hazardous ash clouds and to provide adequate warnings to the aviation community on the present and future location of the cloud. To reach this goal, the National Aviation Weather Program established three objectives: (1) prevention of accidental encounters with hazardous clouds; (2) reduction of air traffic delays, diversions, or evasive actions when hazardous clouds are present; and (3) the development of a single, worldwide standard for exchange of information on airborne hazardous materials. To that end, over the last several years, based on numerous documents (including an OFCMsponsored comprehensive study on aviation training and an update of Aviation Weather Programs/Projects), user forums, and two International Conferences on Volcanic Ash and Aviation Safety (1992 and 2004), the Working Group for Volcanic Ash (WG/VA), under the OFCM-sponsored Committee for Aviation Services and Research, developed the National Volcanic Ash Operations Plan for Aviation and Support of the

  2. An atlas of volcanic ash

    NASA Technical Reports Server (NTRS)

    Heiken, G.

    1974-01-01

    Volcanic ash samples collected from a variety of recent eruptions were studied, using petrography, chemical analyses, and scanning electron microscopy to characterize each ash type and to relate ash morphology to magma composition and eruption type. The ashes are best placed into two broad genetic categories: magnetic and hydrovolcanic (phreatomagmatic). Ashes from magmatic eruptions are formed when expanding gases in the magma form a froth that loses its coherence as it approaches the ground surface. During hydrovolcanic eruptions, the magma is chilled on contact with ground or surface waters, resulting in violent steam eruptions. Within these two genetic categories, ashes from different magma types can be characterized. The pigeon hole classification used here is for convenience; there are eruptions which are driven by both phreatic and magmatic gases.

  3. A review of volcanic ash aggregation

    NASA Astrophysics Data System (ADS)

    Brown, R. J.; Bonadonna, C.; Durant, A. J.

    2012-01-01

    Most volcanic ash particles with diameters <63 μm settle from eruption clouds as particle aggregates that cumulatively have larger sizes, lower densities, and higher terminal fall velocities than individual constituent particles. Particle aggregation reduces the atmospheric residence time of fine ash, which results in a proportional increase in fine ash fallout within 10-100 s km from the volcano and a reduction in airborne fine ash mass concentrations 1000 s km from the volcano. Aggregate characteristics vary with distance from the volcano: proximal aggregates are typically larger (up to cm size) with concentric structures, while distal aggregates are typically smaller (sub-millimetre size). Particles comprising ash aggregates are bound through hydro-bonds (liquid and ice water) and electrostatic forces, and the rate of particle aggregation correlates with cloud liquid water availability. Eruption source parameters (including initial particle size distribution, erupted mass, eruption column height, cloud water content and temperature) and the eruption plume temperature lapse rate, coupled with the environmental parameters, determines the type and spatiotemporal distribution of aggregates. Field studies, lab experiments and modelling investigations have already provided important insights on the process of particle aggregation. However, new integrated observations that combine remote sensing studies of ash clouds with field measurement and sampling, and lab experiments are required to fill current gaps in knowledge surrounding the theory of ash aggregate formation.

  4. Remote sensing's contribution to life cycle analysis of volcanic ash

    NASA Astrophysics Data System (ADS)

    Watson, Matthew

    2016-04-01

    Remote sensing has been used as a tool to monitor and quantify airborne volcanic ash for several decades. As algorithms and sensors (both ground- and satellite-based) increase in sensitivity and complexity we can learn more about fragmentation, transport, deposition and remobilisation processes using these types of observations. Recent eruptions in Iceland have brought together a wealth of different data on ash processes using, a combination of remote and direct sampling and dispersion modelling. I will present the current state of knowledge on remote sensing of volcanic ash, include recent advances in detection and quantification of particle size information and discuss where the field is heading in the next five years.

  5. Hail formation triggers rapid ash aggregation in volcanic plumes

    NASA Astrophysics Data System (ADS)

    van Eaton, Alexa R.; Mastin, Larry G.; Herzog, Michael; Schwaiger, Hans F.; Schneider, David J.; Wallace, Kristi L.; Clarke, Amanda B.

    2015-08-01

    During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized `wet' eruption. The 2009 eruption of Redoubt Volcano, Alaska, incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits and numerical modelling demonstrate that hail-forming processes in the eruption plume triggered aggregation of ~95% of the fine ash and stripped much of the erupted mass out of the atmosphere within 30 min. Based on these findings, we propose a mechanism of hail-like ash aggregation that contributes to the anomalously rapid fallout of fine ash and occurrence of concentrically layered aggregates in volcanic deposits.

  6. Estimating volcanic ash hazard in European airspace

    NASA Astrophysics Data System (ADS)

    Dingwell, Adam; Rutgersson, Anna

    2014-05-01

    The wide spread disruption of European air traffic in late April 2010, during the eruption of Eyjafjallajökull, showed the importance of early assessment of volcanic hazard from explosive eruptions. In this study we look at the short term hazard of airborne ash through a climatological perspective, focusing on eruptions on Iceland. By studying eruptions of different magnitude and frequency we attempt to estimate the overall probability that ash concentrations considered hazardous to aviation are exceeded over different parts of Europe. The method involves setting up a range of eruption scenarios based on the eruptive history of Icelandic volcanoes, and repeated simulation of these scenarios for several years' worth of weather data. Simulations are conducted using meteorological data from the ERA-Interim reanalysis set which is downscaled using the Weather Research and Forecasting (WRF) model. The weather data is then used to drive the Lagrangian particle dispersion model FLEXPART-WRF, which is set up appropriately for each eruption scenario. We see that the dispersion of ash is highly dominated by the mid-latitude westerlies and mainly affect northern UK and the Scandinavian peninsula. The occurrence of high ash levels from Icelandic volcanoes is lower over continental Europe but should not be neglected for eruptions of volcanic explosivity index (VEI) 5 or greater, which have a recurrence interval of about 120-150 years. There is a clear seasonal variation in the ash hazard. During the summer months there is no single dominating dispersion direction and high concentrations are restricted to a relatively small area around Iceland with some plumes extending to the northwest and Greenland. In contrast, during the winter months the strong westerly winds will transport most of the emissions eastwards. The affected area of a winter-time eruption will be larger as high concentrations can be found at a further distance downwind from the volcano, effectively increasing

  7. Estimating volcanic ash hazard in European airspace

    NASA Astrophysics Data System (ADS)

    Dingwell, Adam; Rutgersson, Anna

    2014-10-01

    The widespread disruption of European air traffic in late April 2010, during the eruption of Eyjafjallajökull, showed the importance of early assessment of volcanic hazard from explosive eruptions. In this study, we focus on the short-term hazard of airborne ash from a climatological perspective, focusing on eruptions on Iceland. By studying eruptions of different intensity and frequency, we estimate the overall probability that ash concentration levels considered hazardous to aviation are exceeded over different parts of Europe. The method involves setting up a range of eruption scenarios based on the eruptive history of Icelandic volcanoes, and repeated simulation of these scenarios for 2 years' worth of meteorological data. Simulations are conducted using meteorological data from the ERA-Interim reanalysis set, which is downscaled using the Weather Research and Forecasting (WRF) model. The weather data are then used to drive the Lagrangian particle dispersion model FLEXPART-WRF for each of the eruption scenarios. A set of threshold values, commonly used in Volcanic Ash Advisories, are used to analyze concentration data from the dispersion model. We see that the dispersion of ash is highly dominated by the mid-latitude westerlies and mainly affect northern UK and the Scandinavian peninsula. The occurrence of high ash levels from Icelandic volcanoes is lower over continental Europe but should not be neglected for eruptions when the release rate of fine ash (< 16μ m) is in the order of 107 kg s - 1 or higher. There is a clear seasonal variation in the ash hazard. During the summer months, the dominating dispersion direction is less distinct with some plumes extending to the northwest and Greenland. In contrast, during the winter months, the strong westerly winds tend to transport most of the emissions eastwards. The affected area of a winter-time eruption is likely to be larger as high concentrations can be found at a further distance downwind from the volcano

  8. Optical properties of volcanic ash: improving remote sensing observations.

    NASA Astrophysics Data System (ADS)

    Whelley, Patrick; Colarco, Peter; Aquila, Valentina; Krotkov, Nickolay; Bleacher, Jake; Garry, Brent; Young, Kelsey; Rocha Lima, Adriana; Martins, Vanderlei; Carn, Simon

    2016-04-01

    Many times each year explosive volcanic eruptions loft ash into the atmosphere. Global travel and trade rely on aircraft vulnerable to encounters with airborne ash. Volcanic ash advisory centers (VAACs) rely on dispersion forecasts and satellite data to issue timely warnings. To improve ash forecasts model developers and satellite data providers need realistic information about volcanic ash microphysical and optical properties. In anticipation of future large eruptions we can study smaller events to improve our remote sensing and modeling skills so when the next Pinatubo 1991 or larger eruption occurs, ash can confidently be tracked in a quantitative way. At distances >100km from their sources, drifting ash plumes, often above meteorological clouds, are not easily detected from conventional remote sensing platforms, save deriving their quantitative characteristics, such as mass density. Quantitative interpretation of these observations depends on a priori knowledge of the spectral optical properties of the ash in UV (>0.3μm) and TIR wavelengths (>10μm). Incorrect assumptions about the optical properties result in large errors in inferred column mass loading and size distribution, which misguide operational ash forecasts. Similarly, simulating ash properties in global climate models also requires some knowledge of optical properties to improve aerosol speciation.

  9. Volcanic Ash on Slopes of Karymsky

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A volcanic eruption can produce gases, lava, bombs of rock, volcanic ash, or any combination of these elements. Of the volcanic products that linger on the land, most of us think of hardened lava flows, but volcanic ash can also persist on the landscape. One example of that persistence appeared on Siberia's Kamchatka Peninsula in spring 2007. On March 25, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the area around the Karymsky Volcano. In this image, volcanic ash from earlier eruptions has settled onto the snowy landscape, leaving dark gray swaths. The ash stains are confined to the south of the volcano's summit, one large stain fanning out toward the southwest, and another toward the east. At first glance, the ash stain toward the east appears to form a semicircle north of the volcano and sweep back east. Only part of this dark shape, however, is actually volcanic ash. Near the coast, the darker color may result from thicker vegetation. Similar darker coloring appears to the south. Volcanic ash is not really ash at all, but tiny, jagged bits of rock and glass. These jagged particles pose serious health risks to humans and animals who might inhale them. Likewise, the ash poses hazards to animals eating plants that have been coated with ash. Because wind can carry volcanic ash thousands of kilometers, it poses a more far-reaching hazard than other volcanic ejecta. Substantial amounts of ash can even affect climate by blocking sunlight. Karymsky is a stratovolcano composed of alternating layers of solidified ash, hardened lava, and volcanic rocks. It is one of many active volcanoes on Russia's Kamchatka Peninsula, which is part of the 'Ring of Fire' around the Pacific Rim. NASA image created by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  10. Volcanic ash - danger to aircraft in the north Pacific

    USGS Publications Warehouse

    Neal, Christina A.; Casadevall, Thomas J.; Miller, Thomas P.; Hendley, James W., II; Stauffer, Peter H.

    1997-01-01

    The world's busy air traffic corridors pass over hundreds of volcanoes capable of sudden, explosive eruptions. In the United States alone, aircraft carry many thousands of passengers and millions of dollars of cargo over volcanoes each day. Volcanic ash can be a serious hazard to aviation even thousands of miles from an eruption. Airborne ash can diminish visibility, damage flight control systems, and cause jet engines to fail. USGS and other scientists with the Alaska Volcano Observatory are playing a leading role in the international effort to reduce the risk posed to aircraft by volcanic eruptions.

  11. Volcanic ash melting under conditions relevant to ash turbine interactions.

    PubMed

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B

    2016-01-01

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines. PMID:26931824

  12. Volcanic ash melting under conditions relevant to ash turbine interactions

    NASA Astrophysics Data System (ADS)

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B.

    2016-03-01

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines.

  13. Volcanic ash melting under conditions relevant to ash turbine interactions

    PubMed Central

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B.

    2016-01-01

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200–2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines. PMID:26931824

  14. Airborne in-situ investigations of the Eyjafjallajökull volcanic ash plume on Iceland and over north-western Germany with light aircrafts and optical particle counters

    NASA Astrophysics Data System (ADS)

    Weber, K.; Eliasson, J.; Vogel, A.; Fischer, C.; Pohl, T.; van Haren, G.; Meier, M.; Grobéty, B.; Dahmann, D.

    2012-03-01

    During the time period of the eruption of the Icelandic volcano Eyjafjallajökull in April/May 2010 the Duesseldorf University of Applied Sciences has performed 14 research flights in situations with and without the volcanic ash plume over Germany. In parallel to the research flights in Germany three measurement flights have been performed by the University of Iceland in May 2010 over the western part of Iceland. During two of these flights the outskirts of the eruption plume were entered directly, delivering most direct measurements within the eruption plume during this eruptive event. For all the measurement flights reported here, light durable piston-motor driven aircrafts were used, which were equipped with optical particle counters for in-situ measurements. Real-time monitoring of the particle concentrations was possible during the flights. As different types of optical particle counters have been used in Iceland and Germany, the optical particle counters have been re-calibrated after the flights to the same standard using gravimetric reference methods and original Eyjafjallajökull volcanic ash samples. In-situ measurement results with high spatial resolution, directly from the eruption plume in Iceland as well as from the dispersed and several days old plume over Germany, are therefore presented here for the first time. They are normalized to the same ash concentration calibration standard. Moreover, airborne particles could be sampled directly out of the eruption plume in Iceland as well as during the flights over Germany. During the research flights over Iceland from 9 May 2011 to 11 May 2011 the ash emitted from the vent of the volcano turned out to be concentrated in a narrow well-defined plume of about 10 km width at a distance of 45-60 km away from the vent. Outside this plume the airborne ash concentrations could be proved to be below 50 μg m -3 over western Iceland. However, by entering the outskirts of the plume directly the research aircraft could

  15. Mount St. Helens' volcanic ash: hemolytic activity.

    PubMed

    Vallyathan, V; Mentnech, M S; Stettler, L E; Dollberg, D D; Green, F H

    1983-04-01

    Volcanic ash samples from four Mount St. Helens' volcanic eruptions were subjected to mineralogical, analytical, and hemolytic studies in order to evaluate their potential for cytotoxicity and fibrogenicity. Plagioclase minerals constituted the major component of the ash with free crystalline silica concentrations ranging from 1.5 to 7.2%. The in vitro hemolytic activity of the volcanic ash was compared to similar concentrations of cytotoxic and inert minerals. The ash was markedly hemolytic, exhibiting an activity similar to chrysotile asbestos, a known fibrogenic agent. The hemolysis of the different ash samples varied with particle size but not with crystalline silica concentration. The results of these studies taken in conjunction with the results of our animal studies indicate a fibrogenic potential of volcanic ash in heavily exposed humans. PMID:6832120

  16. Volcanic ash: toxicity to isolated lung cells.

    PubMed

    Castranova, V; Bowman, L; Shreve, J M; Jones, G S; Miles, P R

    1982-02-01

    Samples of volcanic ash from Mount St. Helens were collected from Spokane, Washington, after the major eruption of May 18, 1980. The toxicity of ash to the lung was estimated by monitoring the effects of in vitro and in vivo exposure on various physiological parameters of isolated lung cells. Volcanic ash had little effect on O2 consumption of rabbit type II pneumocytes, O2 consumption or superoxide release of resting rat alveolar macrophages, or membrane integrity of rat alveolar macrophages. Ash also caused no significant lipid peroxidation in rat lung microsomes. However, volcanic ash did inhibit superoxide anion release from zymosan-stimulated rat alveolar macrophages. Since superoxide is an antibacterial substance, this result suggests that exposure to volcanic ash may adversely affect the ability of alveolar macrophages to protect the lung from infection. PMID:6281450

  17. Morphology and petrography of volcanic ashes.

    NASA Technical Reports Server (NTRS)

    Heiken, G.

    1972-01-01

    Study of volcanic ash samples collected from a variety of recent eruptions using petrography, chemical analyses, and scanning electron microscopy to characterize each type and to relate ash morphology to magma composition and the type of eruption. The ashes are placed in the broad genetic categories of magmatic and phreatomagmatic. The morphology of ash particles from magmatic eruptions of high viscosity magma is governed primarily by vesicle density and shape. Ash particles from eruptions of low viscosity magmas are mostly droplets. The morphology of ash particles from phreatomagmatic eruptions is controlled by stresses within the chilled magma which result in fragmentation of the glass to form small blocky or pyramidal glass ash particles.

  18. Optical Properties of Volcanic Ash: Improving Remote Sensing Observations

    NASA Astrophysics Data System (ADS)

    Whelley, P.; Colarco, P. R.; Aquila, V.; Krotkov, N. A.; Bleacher, J. E.; Garry, W. B.; Young, K. E.; Lima, A. R.; Martins, J. V.; Carn, S. A.

    2015-12-01

    Many times each year explosive volcanic eruptions loft ash into the atmosphere. Global travel and trade rely on aircraft vulnerable to encounters with airborne ash. Volcanic ash advisory centers (VAACs) rely on dispersion forecasts and satellite data to issue timely warnings. To improve ash forecasts model developers and satellite data providers need realistic information about volcanic ash microphysical and optical properties. In anticipation of future large eruptions we can study smaller events to improve our remote sensing and modeling skills so when the next Pinatubo 1991 or larger eruption occurs, ash can confidently be tracked in a quantitative way. At distances >100km from their sources, drifting ash plumes, often above meteorological clouds, are not easily detected from conventional remote sensing platforms, save deriving their quantitative characteristics, such as mass density. Quantitative interpretation of these observations depends on a priori knowledge of the spectral optical properties of the ash in UV (>0.3μm) and TIR wavelengths (>10μm). Incorrect assumptions about the optical properties result in large errors in inferred column mass loading and size distribution, which misguide operational ash forecasts. Similarly, simulating ash properties in global climate models also requires some knowledge of optical properties to improve aerosol speciation. Recent research has identified a wide range in volcanic ash optical properties among samples collected from the ground after different eruptions. The database of samples investigated remains relatively small, and measurements of optical properties at the relevant particle sizes and spectral channels are far from complete. Generalizing optical properties remains elusive, as does establishing relationships between ash composition and optical properties, which are essential for satellite retrievals. We are building a library of volcanic ash optical and microphysical properties. In this presentation we show

  19. Monitoring presence and streaming patterns of Icelandic volcanic ash during its arrival to Slovenia

    NASA Astrophysics Data System (ADS)

    Gao, F.; Stanič, S.; Bergant, K.; Bolte, T.; Coren, F.; He, T.-Y.; Hrabar, A.; Jerman, J.; Mladenovič, A.; Turšič, J.; Veberič, D.; Iršič Žibert, M.

    2011-08-01

    The eruption of the Eyjafjallajökull volcano starting on 14 April 2010 resulted in the spreading of volcanic ash over most parts of Europe. In Slovenia, the presence of volcanic ash was monitored using ground-based in-situ measurements, lidar-based remote sensing and airborne in-situ measurements. Volcanic origin of the detected aerosols was confirmed by subsequent spectral and chemical analysis of the collected samples. The initial arrival of volcanic ash to Slovenia was first detected through the analysis of precipitation, which occurred on 17 April 2010 at 01:00 UTC and confirmed by satellite-based remote sensing. At this time, the presence of low clouds and occasional precipitation prevented ash monitoring using lidar-based remote sensing. The second arrival of volcanic ash on 20 April 2010 was detected by both lidar-based remote sensing and airborne in-situ measurements, revealing two or more elevated atmospheric aerosol layers. The ash was not seen in satellite images due to lower concentrations. The identification of aerosol samples from ground-based and airborne in-situ measurements based on energy-dispersive X-ray spectroscopy confirmed that a fraction of particles were volcanic ash from the Eyjafjallajökull eruption. To explain the history of the air masses bringing volcanic ash to Slovenia, we analyzed airflow trajectories using ECMWF and HYSPLIT models.

  20. Toward an integrated Volcanic Ash Observing System in Europe

    NASA Astrophysics Data System (ADS)

    Lee, Deborah; Lisk, Ian

    2014-05-01

    Volcanic ash from the Icelandic eruption of Eyjafjallajökull in April and May of 2010 resulted in the decision by many northern European countries to impose significant restrictions on the use of their airspace. The eruption, extent and persistence of the ash revealed how reliant society now is on a safe and efficient air transport system and the fragility of that system when affected by the impact of complex natural hazards. As part of an EC framework programme, the 2011-2013 WEZARD (WEather HaZARD for aeronautics) consortium conducted a cross-industry volcanic ash capability and gap analyses, with the EUMETNET (network of 29 National Meteorological Services) led Work Package 3 focussing on a review of observational and monitoring capabilities, atmospheric dispersion modelling and data exchange. The review has revealed a patchwork of independent observing capabilities for volcanic ash, with some countries investing and others not at all, and most existing networks focus on space-based products. Existing capabilities do not provide the necessary detail on the geographical and vertical extent of volcanic ash and associated levels of contamination, which decision makers in the aviation industry require in order to decide where it is safe to fly. A resultant high priority was identified by WEZARD Work Package 3 for an enhanced observational network of complementary monitoring systems needed to initialise, validate and verify volcanic ash dispersion model output and forecasts. Thus a key recommendation is to invest in a major pre-operational demonstrator "European volcanic ash observing network", focussing on distal monitoring, and aiming to a) fill R&D gaps identified in instrumentation and algorithms and b) integrate data, where possible in near-real-time, from a range of ground-based, airborne and space-based techniques. Here we present a key WEZARD recommendation toward an integrated volcanic ash observing system in Europe, in context with other related projects

  1. Probabilistic detection of volcanic ash using a Bayesian approach

    PubMed Central

    Mackie, Shona; Watson, Matthew

    2014-01-01

    Airborne volcanic ash can pose a hazard to aviation, agriculture, and both human and animal health. It is therefore important that ash clouds are monitored both day and night, even when they travel far from their source. Infrared satellite data provide perhaps the only means of doing this, and since the hugely expensive ash crisis that followed the 2010 Eyjafjalljökull eruption, much research has been carried out into techniques for discriminating ash in such data and for deriving key properties. Such techniques are generally specific to data from particular sensors, and most approaches result in a binary classification of pixels into “ash” and “ash free” classes with no indication of the classification certainty for individual pixels. Furthermore, almost all operational methods rely on expert-set thresholds to determine what constitutes “ash” and can therefore be criticized for being subjective and dependent on expertise that may not remain with an institution. Very few existing methods exploit available contemporaneous atmospheric data to inform the detection, despite the sensitivity of most techniques to atmospheric parameters. The Bayesian method proposed here does exploit such data and gives a probabilistic, physically based classification. We provide an example of the method's implementation for a scene containing both land and sea observations, and a large area of desert dust (often misidentified as ash by other methods). The technique has already been successfully applied to other detection problems in remote sensing, and this work shows that it will be a useful and effective tool for ash detection. Key Points Presentation of a probabilistic volcanic ash detection scheme Method for calculation of probability density function for ash observations Demonstration of a remote sensing technique for monitoring volcanic ash hazards PMID:25844278

  2. A frictional law for volcanic ash gouge

    NASA Astrophysics Data System (ADS)

    Lavallée, Y.; Hirose, T.; Kendrick, J. E.; De Angelis, S.; Petrakova, L.; Hornby, A. J.; Dingwell, D. B.

    2014-08-01

    Volcanic provinces are structurally active regions - undergoing continual deformation along faults. Within such fault structures, volcanic ash gouge, containing both crystalline and glassy material, may act as a potential fault plane lubricant. Here, we investigate the frictional properties of volcanic ash gouges with varying glass fractions using a rotary shear apparatus at a range of slip rates (1.3-1300 mm/s) and axial stresses (0.5-2.5 MPa). We show that the frictional behaviour of volcanic ash is in agreement with Byerlee's friction law at low slip velocities, irrespective of glass content. The results reveal a common non-linear reduction of the friction coefficient with slip velocity and yield a frictional law for fault zones containing volcanic ash gouge. Textural analysis reveals that strain localisation and the development of shear bands are more prominent at higher slip velocities (>10 mm/s). The textures observed here are similar to those recorded in ash gouge at the surface of extrusive spines at Mount St. Helens (USA). We use the rate-weakening component of the frictional law to estimate shear-stress-resistance reductions associated with episodic seismogenic slip events that accompany magma ascent pulses. We conclude that the internal structure of volcanic ash gouge may act as a kinematic marker of exogenic dome growth.

  3. Probabilistic detection of volcanic ash using a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Mackie, Shona; Watson, Matthew

    2014-03-01

    Airborne volcanic ash can pose a hazard to aviation, agriculture, and both human and animal health. It is therefore important that ash clouds are monitored both day and night, even when they travel far from their source. Infrared satellite data provide perhaps the only means of doing this, and since the hugely expensive ash crisis that followed the 2010 Eyjafjalljökull eruption, much research has been carried out into techniques for discriminating ash in such data and for deriving key properties. Such techniques are generally specific to data from particular sensors, and most approaches result in a binary classification of pixels into "ash" and "ash free" classes with no indication of the classification certainty for individual pixels. Furthermore, almost all operational methods rely on expert-set thresholds to determine what constitutes "ash" and can therefore be criticized for being subjective and dependent on expertise that may not remain with an institution. Very few existing methods exploit available contemporaneous atmospheric data to inform the detection, despite the sensitivity of most techniques to atmospheric parameters. The Bayesian method proposed here does exploit such data and gives a probabilistic, physically based classification. We provide an example of the method's implementation for a scene containing both land and sea observations, and a large area of desert dust (often misidentified as ash by other methods). The technique has already been successfully applied to other detection problems in remote sensing, and this work shows that it will be a useful and effective tool for ash detection.

  4. Marine mesocosm bacterial colonisation of volcanic ash

    NASA Astrophysics Data System (ADS)

    Witt, Verena; Cimarelli, Corrado; Ayris, Paul; Kueppers, Ulrich; Erpenbeck, Dirk; Dingwell, Donald; Woerheide, Gert

    2015-04-01

    Volcanic eruptions regularly eject large quantities of ash particles into the atmosphere, which can be deposited via fallout into oceanic environments. Such fallout has the potential to alter pH, light and nutrient availability at local scales. Shallow-water coral reef ecosystems - "rainforests of the sea" - are highly sensitive to disturbances, such as ocean acidification, sedimentation and eutrophication. Therefore, wind-delivered volcanic ash may lead to burial and mortality of such reefs. Coral reef ecosystem resilience may depend on pioneer bacterial colonisation of the ash layer, supporting subsequent establishment of the micro- and ultimately the macro-community. However, which bacteria are involved in pioneer colonisation remain unknown. We hypothesize that physico-chemical properties (i.e., morphology, mineralogy) of the ash may dictate bacterial colonisation. The effect of substrate properties on bacterial colonisation was tested by exposing five substrates: i) quartz sand ii) crystalline ash (Sakurajima, Japan) iii) volcanic glass iv) carbonate reef sand and v) calcite sand of similar grain size, in controlled marine coral reef aquaria under low light conditions for six months. Bacterial communities were screened every month by Automated Ribosomal Intergenic Spacer Analysis of the 16S-23S rRNA Internal Transcribed Spacer region. Multivariate statistics revealed discrete groupings of bacterial communities on substrates of volcanic origin (ash and glass) and reef origin (three sands). Analysis of Similarity supported significantly different communities associated with all substrates (p=0.0001), only quartz did not differ from both carbonate and calcite sands. The ash substrate exhibited the most diverse bacterial community with the most substrate-specific bacterial operational taxonomic units. Our findings suggest that bacterial diversity and community composition during colonisation of volcanic ash in a coral reef-like environment is controlled by the

  5. Hail formation triggers rapid ash aggregation in volcanic plumes

    USGS Publications Warehouse

    Van Eaton, Alexa; Mastin, Larry G.; Herzog, M.; Schwaiger, Hans F.; Schneider, David J.; Wallace, Kristi; Clarke, Amanda B

    2015-01-01

    During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized ‘wet’ eruption. The 2009 eruption of Redoubt Volcano in Alaska incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits, and numerical modeling demonstrate that volcanic hail formed rapidly in the eruption plume, leading to mixed-phase aggregation of ~95% of the fine ash and stripping much of the cloud out of the atmosphere within 30 minutes. Based on these findings, we propose a mechanism of hail-like aggregation that contributes to the anomalously rapid fallout of fine ash and the occurrence of concentrically-layered aggregates in volcanic deposits.

  6. Hail formation triggers rapid ash aggregation in volcanic plumes

    PubMed Central

    Van Eaton, Alexa R.; Mastin, Larry G.; Herzog, Michael; Schwaiger, Hans F.; Schneider, David J.; Wallace, Kristi L.; Clarke, Amanda B.

    2015-01-01

    During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized ‘wet' eruption. The 2009 eruption of Redoubt Volcano, Alaska, incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits and numerical modelling demonstrate that hail-forming processes in the eruption plume triggered aggregation of ∼95% of the fine ash and stripped much of the erupted mass out of the atmosphere within 30 min. Based on these findings, we propose a mechanism of hail-like ash aggregation that contributes to the anomalously rapid fallout of fine ash and occurrence of concentrically layered aggregates in volcanic deposits. PMID:26235052

  7. Hail formation triggers rapid ash aggregation in volcanic plumes.

    PubMed

    Van Eaton, Alexa R; Mastin, Larry G; Herzog, Michael; Schwaiger, Hans F; Schneider, David J; Wallace, Kristi L; Clarke, Amanda B

    2015-01-01

    During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized 'wet' eruption. The 2009 eruption of Redoubt Volcano, Alaska, incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits and numerical modelling demonstrate that hail-forming processes in the eruption plume triggered aggregation of ∼95% of the fine ash and stripped much of the erupted mass out of the atmosphere within 30 min. Based on these findings, we propose a mechanism of hail-like ash aggregation that contributes to the anomalously rapid fallout of fine ash and occurrence of concentrically layered aggregates in volcanic deposits. PMID:26235052

  8. Scientists Outline Volcanic Ash Risks to Aviation

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-01-01

    The ash clouds that belched out of Iceland's Eyjafjallajökull volcano last spring and dispersed over much of Europe, temporarily paralyzing aviation, were vast smoke signal warnings about the hazard that volcanic ash poses for air traffic around the world. At a 15 December news briefing at the AGU Fall Meeting in San Francisco, two experts with the U.S. Geological Survey (USGS) presented an overview of the damage airplanes can sustain from rock fragment- and mineral fragment-laden ash, an update on efforts to mitigate the hazard of ash, and an outline of further measures that are needed to address the problem. Between 1953 and 2009, there were 129 reported encounters of aircraft with volcanic ash clouds, according to a newly released USGS document cited at the briefing. The report, “Encounters of aircraft with volcanic ash clouds: A compilation of known incidents, 1953-2009,” by Marianne Guffanti, Thomas Casadevall, and Karin Budding, indicates that 26 encounters involved significant damage to the airplanes; nine of those incidents resulted in engine shutdown during flight. The report, which does not focus on the effects on airplanes of cumulative exposure to dilute ash and does not include data since 2009, indicates that “ash clouds continue to pose substantial risks to safe and efficient air travel globally.”

  9. Evaluation of quantitative satellite-based retrievals of volcanic ash clouds

    NASA Astrophysics Data System (ADS)

    Schneider, D. J.; Pavolonis, M. J.; Bojinski, S.; Siddans, R.; Thomas, G.

    2015-12-01

    Volcanic ash clouds are a serious hazard to aviation, and mitigation requires a robust system of volcano monitoring, eruption detection, characterization of cloud properties, forecast of cloud movement, and communication of warnings. Several research groups have developed quantitative satellite-based volcanic ash products and some of these are in operational use by Volcanic Ash Advisory Centers around the world to aid in characterizing cloud properties and forecasting regions of ash hazard. The algorithms applied to the satellite data utilize a variety of techniques, and thus produce results that differ. The World Meteorological Organization has recently sponsored an intercomparison study of satellite-based retrievals with four goals: 1) to establish a validation protocol for satellite-based volcanic ash products, 2) to quantify and understand differences in products, 3) to develop best practices, and 4) to standardize volcanic cloud geophysical parameters. Six volcanic eruption cases were considered in the intercomparison: Eyjafallajökull, Grimsvötn, Kelut, Kirishimayama, Puyehue-Cordón Caulle, and Sarychev Peak. Twenty-four algorithms were utilized, which retrieved parameters including: ash cloud top height, ash column mass loading, ash effective radius, and ash optical depth at visible and thermal-infrared wavelengths. Results were compared to space-based, airborne, and ground-based lidars; complementary satellite retrievals; and manual "expert evaluation" of ash extent. The intercomparison results will feed into the International Civil Aviation Organization "Roadmap for International Airways Volcano Watch", which integrates volcanic meteorological information into decision support systems for aircraft operations.

  10. Characterizing uncertainty in the motion, future location and ash concentrations of volcanic plumes and ash clouds

    NASA Astrophysics Data System (ADS)

    Webley, P.; Patra, A. K.; Bursik, M. I.; Pitman, E. B.; Dehn, J.; Singh, T.; Singla, P.; Stefanescu, E. R.; Madankan, R.; Pouget, S.; Jones, M.; Morton, D.; Pavolonis, M. J.

    2013-12-01

    Forecasting the location and airborne concentrations of volcanic ash plumes and their dispersing clouds is complex and knowledge of the uncertainty in these forecasts is critical to assess and mitigate the hazards that could exist. We show the results from an interdisciplinary project that brings together scientists drawn from the atmospheric sciences, computer science, engineering, mathematics, and geology. The project provides a novel integration of computational and statistical modeling with a widely-used volcanic particle dispersion code, to provide quantitative measures of confidence in predictions of the motion of ash clouds caused by volcanic eruptions. We combine high performance computing and stochastic analysis, resulting in real time predictions of ash cloud motion that account for varying wind conditions and a range of model variables. We show how coupling a real-time model for ash dispersal, PUFF, with a volcanic eruption model, BENT, allows for the definition of the variability in the dispersal model inputs and hence classify the uncertainty that can then propagate for the ash cloud location and downwind concentrations. We additionally analyze the uncertainty in the numerical weather prediction forecast data used by the dispersal model by using ensemble forecasts and assess how this affects the downwind concentrations. These are all coupled together and by combining polynomical chaos quadrature with stochastic integration techniques, we provide a quantitative measure of the reliability (i.e. error) of those predictions. We show comparisons of the downwind height calculations and mass loadings with observations of ash clouds available from satellite remote sensing data. The aim is to provide a probabilistic forecast of location and ash concentration that can be generated in real-time and used by those end users in the operational ash cloud hazard assessment environment.

  11. Remote Sensing of Volcanic ASH at the Met Office

    NASA Astrophysics Data System (ADS)

    Marenco, F.; Kent, J.; Adam, M.; Buxmann, J.; Francis, P.; Haywood, J.

    2016-06-01

    The eruption of Eyjafjallajökull in 2010 has triggered the rapid development of volcanic ash remote sensing activities at the Met Office. Volcanic ash qualitative and quantitative mapping have been achieved using lidar on board the Facility for Airborne Atmospheric Measurements (FAAM) research aircraft, and using improved satellite retrieval algorithms. After the eruption, a new aircraft facility, the Met Office Civil Contingencies Aircraft (MOCCA), has been set up to enable a rapid response, and a network of ground-based remote sensing sites with lidars and sunphotometers is currently being developed. Thanks to these efforts, the United Kingdom (UK) will be much better equipped to deal with such a crisis, should it happen in the future.

  12. International Database of Volcanic Ash Impacts

    NASA Astrophysics Data System (ADS)

    Wallace, K.; Cameron, C.; Wilson, T. M.; Jenkins, S.; Brown, S.; Leonard, G.; Deligne, N.; Stewart, C.

    2015-12-01

    Volcanic ash creates extensive impacts to people and property, yet we lack a global ash impacts catalog to organize, distribute, and archive this important information. Critical impact information is often stored in ephemeral news articles or other isolated resources, which cannot be queried or located easily. A global ash impacts database would improve 1) warning messages, 2) public and lifeline emergency preparation, and 3) eruption response and recovery. Ashfall can have varying consequences, such as disabling critical lifeline infrastructure (e.g. electrical generation and transmission, water supplies, telecommunications, aircraft and airports) or merely creating limited and expensive inconvenience to local communities. Impacts to the aviation sector can be a far-reaching global issue. The international volcanic ash impacts community formed a committee to develop a database to catalog the impacts of volcanic ash. We identify three user populations for this database: 1) research teams, who would use the database to assist in systematic collection, recording, and storage of ash impact data, and to prioritize impact assessment trips and lab experiments 2) volcanic risk assessment scientists who rely on impact data for assessments (especially vulnerability/fragility assessments); a complete dataset would have utility for global, regional, national and local scale risk assessments, and 3) citizen science volcanic hazard reporting. Publication of an international ash impacts database will encourage standardization and development of best practices for collecting and reporting impact information. Data entered will be highly categorized, searchable, and open source. Systematic cataloging of impact data will allow users to query the data and extract valuable information to aid in the development of improved emergency preparedness, response and recovery measures.

  13. Uncertainty in volcanic ash particle size distribution and implications for infrared remote sensing and airspace management

    NASA Astrophysics Data System (ADS)

    Western, L.; Watson, M.; Francis, P. N.

    2014-12-01

    Volcanic ash particle size distributions are critical in determining the fate of airborne ash in drifting clouds. A significant amount of global airspace is managed using dispersion models that rely on a single ash particle size distribution, derived from a single source - Hobbs et al., 1991. This is clearly wholly inadequate given the range of magmatic compositions and eruptive styles that volcanoes present. Available measurements of airborne ash lognormal particle size distributions show geometric standard deviation values that range from 1.0 - 2.5, with others showing mainly polymodal distributions. This paucity of data pertaining to airborne sampling of volcanic ash results in large uncertainties both when using an assumed distribution to retrieve mass loadings from satellite observations and when prescribing particle size distributions of ash in dispersion models. Uncertainty in the particle size distribution can yield order of magnitude differences to mass loading retrievals of an ash cloud from satellite observations, a result that can easily reclassify zones of airspace closure. The uncertainty arises from the assumptions made when defining both the geometric particle size and particle single scattering properties in terms of an effective radius. This has significant implications for airspace management and emphasises the need for an improved quantification of airborne volcanic ash particle size distributions.

  14. Artificial cloud test confirms volcanic ash detection using infrared spectral imaging

    NASA Astrophysics Data System (ADS)

    Prata, A. J.; Dezitter, F.; Davies, I.; Weber, K.; Birnfeld, M.; Moriano, D.; Bernardo, C.; Vogel, A.; Prata, G. S.; Mather, T. A.; Thomas, H. E.; Cammas, J.; Weber, M.

    2016-05-01

    Airborne volcanic ash particles are a known hazard to aviation. Currently, there are no means available to detect ash in flight as the particles are too fine (radii < 30 μm) for on-board radar detection and, even in good visibility, ash clouds are difficult or impossible to detect by eye. The economic cost and societal impact of the April/May 2010 Icelandic eruption of Eyjafjallajökull generated renewed interest in finding ways to identify airborne volcanic ash in order to keep airspace open and avoid aircraft groundings. We have designed and built a bi-spectral, fast-sampling, uncooled infrared camera device (AVOID) to examine its ability to detect volcanic ash from commercial jet aircraft at distances of more than 50 km ahead. Here we report results of an experiment conducted over the Atlantic Ocean, off the coast of France, confirming the ability of the device to detect and quantify volcanic ash in an artificial ash cloud created by dispersal of volcanic ash from a second aircraft. A third aircraft was used to measure the ash in situ using optical particle counters. The cloud was composed of very fine ash (mean radii ~10 μm) collected from Iceland immediately after the Eyjafjallajökull eruption and had a vertical thickness of ~200 m, a width of ~2 km and length of between 2 and 12 km. Concentrations of ~200 μg m‑3 were identified by AVOID at distances from ~20 km to ~70 km. For the first time, airborne remote detection of volcanic ash has been successfully demonstrated from a long-range flight test aircraft.

  15. Artificial cloud test confirms volcanic ash detection using infrared spectral imaging

    PubMed Central

    Prata, A. J.; Dezitter, F.; Davies, I.; Weber, K.; Birnfeld, M.; Moriano, D.; Bernardo, C.; Vogel, A.; Prata, G. S.; Mather, T. A.; Thomas, H. E.; Cammas, J.; Weber, M.

    2016-01-01

    Airborne volcanic ash particles are a known hazard to aviation. Currently, there are no means available to detect ash in flight as the particles are too fine (radii < 30 μm) for on-board radar detection and, even in good visibility, ash clouds are difficult or impossible to detect by eye. The economic cost and societal impact of the April/May 2010 Icelandic eruption of Eyjafjallajökull generated renewed interest in finding ways to identify airborne volcanic ash in order to keep airspace open and avoid aircraft groundings. We have designed and built a bi-spectral, fast-sampling, uncooled infrared camera device (AVOID) to examine its ability to detect volcanic ash from commercial jet aircraft at distances of more than 50 km ahead. Here we report results of an experiment conducted over the Atlantic Ocean, off the coast of France, confirming the ability of the device to detect and quantify volcanic ash in an artificial ash cloud created by dispersal of volcanic ash from a second aircraft. A third aircraft was used to measure the ash in situ using optical particle counters. The cloud was composed of very fine ash (mean radii ~10 μm) collected from Iceland immediately after the Eyjafjallajökull eruption and had a vertical thickness of ~200 m, a width of ~2 km and length of between 2 and 12 km. Concentrations of ~200 μg m−3 were identified by AVOID at distances from ~20 km to ~70 km. For the first time, airborne remote detection of volcanic ash has been successfully demonstrated from a long-range flight test aircraft. PMID:27156701

  16. Artificial cloud test confirms volcanic ash detection using infrared spectral imaging.

    PubMed

    Prata, A J; Dezitter, F; Davies, I; Weber, K; Birnfeld, M; Moriano, D; Bernardo, C; Vogel, A; Prata, G S; Mather, T A; Thomas, H E; Cammas, J; Weber, M

    2016-01-01

    Airborne volcanic ash particles are a known hazard to aviation. Currently, there are no means available to detect ash in flight as the particles are too fine (radii < 30 μm) for on-board radar detection and, even in good visibility, ash clouds are difficult or impossible to detect by eye. The economic cost and societal impact of the April/May 2010 Icelandic eruption of Eyjafjallajökull generated renewed interest in finding ways to identify airborne volcanic ash in order to keep airspace open and avoid aircraft groundings. We have designed and built a bi-spectral, fast-sampling, uncooled infrared camera device (AVOID) to examine its ability to detect volcanic ash from commercial jet aircraft at distances of more than 50 km ahead. Here we report results of an experiment conducted over the Atlantic Ocean, off the coast of France, confirming the ability of the device to detect and quantify volcanic ash in an artificial ash cloud created by dispersal of volcanic ash from a second aircraft. A third aircraft was used to measure the ash in situ using optical particle counters. The cloud was composed of very fine ash (mean radii ~10 μm) collected from Iceland immediately after the Eyjafjallajökull eruption and had a vertical thickness of ~200 m, a width of ~2 km and length of between 2 and 12 km. Concentrations of ~200 μg m(-3) were identified by AVOID at distances from ~20 km to ~70 km. For the first time, airborne remote detection of volcanic ash has been successfully demonstrated from a long-range flight test aircraft. PMID:27156701

  17. Insight of the fusion behavior of volcanic ash: Implications for Volcanic ash Hazards to Aircraft Safety

    NASA Astrophysics Data System (ADS)

    Song, Wenjia; Hess, Kai-Uwe; Küppers, Ulrich; Scheu, Bettina; Cimarelli, Corrado; Lavallée, Yan; Sohyun, Park; Gattermann, Ulf; Müller, Dirk; Dingwell, Donald Bruce

    2014-05-01

    The interaction of volcanic ash with jet turbines during via ingestion of ash into engines operating at supra-volcanic temperatures is widely recognized as a potentially fatal hazard for jet aircraft. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The fusibility of volcanic ash is believed to impact strongly its deposition in the hotter parts of jet engines. Despite this, explicit investigation of ash sintering using standardized techniques is in its infancy. Volcanic ash may vary widely in its physical state and chemical composition between and even within explosive volcanic eruptions. Thus a comparative study of the fusibility of ash which involves a standard recognized techniques would be highly desirable. In this work, nine samples of fine ash, deposited from co-pyroclastic offrom nine different volcanoes which cover a broad range of chemical composition, were investigated. Eight of them were collected from 2001-2009 eruptions. Because of the currently elevated level of eruptive activity and its potential hazards to aircraft safety and the remaining one sample was collected from a 12,121 ± 114 yr B.P. eruption. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the fusion phenomena as well as determine the volcanic ash melting behavior by defining four characteristic temperatures (shrinkage temperature, deformation temperature, hemispherical temperature, and flow temperature) by means of heating microscope instrument and different thermal analysis methods. Here, we find that there are similar sticking ability and flow behavior of

  18. Volcanic ash layer depth: Processes and mechanisms

    NASA Astrophysics Data System (ADS)

    Dacre, H. F.; Grant, A. L. M.; Harvey, N. J.; Thomson, D. J.; Webster, H. N.; Marenco, F.

    2015-01-01

    The long duration of the 2010 Eyjafjallajökull eruption provided a unique opportunity to measure a widely dispersed volcanic ash cloud. Layers of volcanic ash were observed by the European Aerosol Research Lidar Network with a mean depth of 1.2 km and standard deviation of 0.9 km. In this paper we evaluate the ability of the Met Office's Numerical Atmospheric-dispersion Modelling Environment (NAME) to simulate the observed ash layers and examine the processes controlling their depth. NAME simulates distal ash layer depths exceptionally well with a mean depth of 1.2 km and standard deviation of 0.7 km. The dominant process determining the depth of ash layers over Europe is the balance between the vertical wind shear (which acts to reduce the depth of the ash layers) and vertical turbulent mixing (which acts to deepen the layers). Interestingly, differential sedimentation of ash particles and the volcano vertical emission profile play relatively minor roles.

  19. Marine Mesocosm Bacterial Colonisation of Volcanic Ash

    NASA Astrophysics Data System (ADS)

    Witt, V.; Cimarelli, C.; Ayris, P. M.; Kueppers, U.; Erpenbeck, D.; Dingwell, D. B.; Woerheide, G.

    2014-12-01

    Explosive volcanic eruptions regularly eject large quantities of ash particles into the atmosphere, which can be deposited via fallout into oceanic environments. Such fallout has the potential to alter pH, light and nutrient availability at local or regional scales. Shallow-water coral reef ecosystems - "rainforests of the sea" - are highly sensitive to disturbances, such as ocean acidification, sedimentation and eutrophication. Therefore, ash deposition may lead to burial and mortality of such reefs. Coral reef ecosystem resilience may depend on pioneer bacterial colonisation of the ash layer, supporting subsequent establishment of the micro- and ultimately the macro-community. However, it is currently unknown which bacteria are involved in pioneer colonisation. We hypothesize that physico-chemical properties (i.e., morphology, chemistry, mineralogy) of the ash may dictate bacterial colonisation. We have tested the effect of substrate properties on bacterial diversity and abundance colonising five substrates: i) quartz sand ii) crystalline ash from the Sakurajima volcano (Japan) iii) volcanic glass iv) carbonate reef sand and v) calcite sand of similar grain size - by incubation in a controlled marine mesocosm (coral reef aquarium) under low light conditions for three months. Bacterial communities were screened every month by Automated Ribosomal Intergenic Spacer Analysis of the 16S-23S rRNA Internal Transcribed Spacer region. Multivariate statistics revealed discrete groupings of bacterial communities on substrates of volcanic origin (ash and glass) and reef origin (three sands). Analysis Of Similarity supports significantly different communities associated with all substrates (p=0.0001), only quartz did not differ from both carbonate and calcite sands. The ash substrate exhibited the most diverse bacterial community and carried the most substrate-specific bacterial operational taxonomic units. Our findings suggest that bacterial diversity and community

  20. Reference dataset of volcanic ash physicochemical and optical properties for atmospheric measurement retrievals and transport modelling

    NASA Astrophysics Data System (ADS)

    Vogel, Andreas; Durant, Adam; Sytchkova, Anna; Diplas, Spyros; Bonadonna, Costanza; Scarnato, Barbara; Krüger, Kirstin; Kylling, Arve; Kristiansen, Nina; Stohl, Andreas

    2016-04-01

    Explosive volcanic eruptions emit up to 50 wt.% (total erupted mass) of fine ash particles (<63 microns), which individually can have theoretical atmospheric lifetimes that span hours to days. Depending on the injection height, fine ash may be subsequently transported and dispersed by the atmosphere over 100s - 1000s km and can pose a major threat for aviation operations. Recent volcanic eruptions, such as the 2010 Icelandic Eyjafjallajökull event, illustrated how volcanic ash can severely impact commercial air traffic. In order to manage the threat, it is important to have accurate forecast information on the spatial extent and absolute quantity of airborne volcanic ash. Such forecasts are constrained by empirically-derived estimates of the volcanic source term and the nature of the constituent volcanic ash properties. Consequently, it is important to include a quantitative assessment of measurement uncertainties of ash properties to provide realistic ash forecast uncertainty. Currently, information on volcanic ash physicochemical and optical properties is derived from a small number of somewhat dated publications. In this study, we provide a reference dataset for physical (size distribution and shape), chemical (bulk vs. surface chemistry) and optical properties (complex refractive index in the UV-vis-NIR range) of a representative selection of volcanic ash samples from 10 different volcanic eruptions covering the full variability in silica content (40-75 wt.% SiO2). Through the combination of empirical analytical methods (e.g., image analysis, Energy Dispersive Spectroscopy, X-ray Photoelectron Spectroscopy, Transmission Electron Microscopy and UV/Vis/NIR/FTIR Spectroscopy) and theoretical models (e.g., Bruggeman effective medium approach), it was possible to fully capture the natural variability of ash physicochemical and optical characteristics. The dataset will be applied in atmospheric measurement retrievals and atmospheric transport modelling to determine

  1. Ash iron mobilization in volcanic eruption plumes

    NASA Astrophysics Data System (ADS)

    Hoshyaripour, G.; Hort, M.; Langmann, B.

    2014-12-01

    It has been shown that volcanic ash fertilizes the Fe-limited areas of the surface ocean through releasing soluble iron. As ash iron is mostly insoluble upon the eruption, it is hypothesized that heterogeneous in-plume and in-cloud processing of the ash promote the iron solubilization. Direct evidences concerning such processes are, however, lacking. In this study, a 1-D numerical model is developed to simulate the physicochemical interactions of gas-ash-aerosol in volcanic eruption plumes focusing on the iron mobilization processes at temperatures between 600 and 0 °C. Results show that sulfuric acid and water vapor condense at ~150 and ~50 °C on the ash surface, respectively. This liquid phase then efficiently scavenges the surrounding gases (>95% of HCl, 3-20% of SO2 and 12-62% of HF) forming an extremely acidic coating at the ash surface. The low pH conditions of the aqueous film promote acid-mediated dissolution of the Fe-bearing phases present in the ash material. We estimate that 0.1 to 33% of the total iron available at the ash surface is dissolved in the aqueous phase before the freezing point is reached. The efficiency of dissolution is controlled by the halogen content of the erupted gas as well as the mineralogy of the iron at ash surface: elevated halogen concentrations and presence of Fe2+-carrying phases lead to the highest dissolution efficiency. Findings of this study are in agreement with the data obtained through leaching experiments.

  2. The adsorption of HCl on volcanic ash

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Xochilt; Schiavi, Federica; Keppler, Hans

    2016-03-01

    Understanding the interaction between volcanic gases and ash is important to derive gas compositions from ash leachates and to constrain the environmental impact of eruptions. Volcanic HCl could potentially damage the ozone layer, but it is unclear what fraction of HCl actually reaches the stratosphere. The adsorption of HCl on volcanic ash was therefore studied from -76 to +150 °C to simulate the behavior of HCl in the dilute parts of a volcanic plume. Finely ground synthetic glasses of andesitic, dacitic, and rhyolitic composition as well as a natural obsidian from Vulcano (Italy) served as proxies for fresh natural ash. HCl adsorption is an irreversible process and appears to increase with the total alkali content of the glass. Adsorption kinetics follow a first order law with rate constants of 2.13 ṡ10-6 s-1 to 1.80 ṡ10-4 s-1 in the temperature range investigated. For dacitic composition, the temperature and pressure dependence of adsorption can be described by the equation ln ⁡ c = 1.26 + 0.27 ln ⁡ p - 715.3 / T, where c is the surface concentration of adsorbed HCl in mg/m2, T is temperature in Kelvin, and p is the partial pressure of HCl in mbar. A comparison of this model with a large data set for the composition of volcanic ash suggests that adsorption of HCl from the gas phase at relatively low temperatures can quantitatively account for the majority of the observed Cl concentrations. The model implies that adsorption of HCl on ash increases with temperature, probably because of the increasing number of accessible adsorption sites. This temperature dependence is opposite to that observed for SO2, so that HCl and SO2 are fractionated by the adsorption process and the fractionation factor changes by four orders of magnitude over a temperature range of 250 K. The assumption of equal adsorption of different species is therefore not appropriate for deriving volcanic gas compositions from analyses of adsorbates on ash. However, with the experimental

  3. Fusion characteristics of volcanic ash relevant to aviation hazards

    NASA Astrophysics Data System (ADS)

    Song, Wenjia; Hess, Kai-Uwe; Damby, David E.; Wadsworth, Fabian B.; Lavallée, Yan; Cimarelli, Corrado; Dingwell, Donald B.

    2014-04-01

    The fusion dynamics of volcanic ash strongly impacts deposition in hot parts of jet engines. In this study, we investigate the sintering behavior of volcanic ash using natural ash of intermediate composition, erupted in 2012 at Santiaguito Volcano, Guatemala. A material science procedure was followed in which we monitored the geometrical evolution of cylindrical-shaped volcanic ash compact upon heating from 50 to 1400°C in a heating microscope. Combined morphological, mineralogical, and rheological analyses helped define the evolution of volcanic ash during fusion and sintering and constrain their sticking potential as well as their ability to flow at characteristic temperatures. For the ash investigated, 1240°C marks the onset of adhesion and flowability. The much higher fusibility of ash compared to that of typical test sands demonstrates for the need of a more extensive fusion characterization of volcanic ash in order to mitigate the risk posed on jet engine operation.

  4. Modeling Measurement and Identification of Icelandic Volcanic Ash Streaming over Slovenia

    NASA Astrophysics Data System (ADS)

    Gao, F.; Bergant, K.; Bolte, T.; Coren, F.; He, T.-Y.; Hrabar, A.; Jerman, J.; Mladenovic, A.; Stanic, S.; Tursic, J.; Veberic, D.

    2011-01-01

    The eruption of the Eyjafjallajåkull volcano starting on 14 April 2010 resulted in the spreading of volcanic ash over most parts of Europe. In Slovenia, the presence of volcanic ash was monitored by our team using ground-based measurement, lidar-based remote sensing and Airborne measurement. Volcanic origin of aerosols was confirmed by subsequent structural and chemical analysis of the collected samples. According to ECMWF model, initial arrival of volcanic ash to Slovenia during the night of 17 April 2010 occurred at the altitudes above 5 km. At this time, we detected only an increase of the concentration of F- ions in the precipitation. During the second arrival of volcanic ash on 20 April 2010, lidar measurements revealed two elevated aerosol layers at altitudes of 2.6 km and 1.7 km. Identification of particle samples from ground-based and airborne measurements confirmed that a fraction of particles are volcanic ash from Eyjafjallaåjkull eruption.

  5. Chemical processing of volcanic ash within eruption plume and cloud: a numerical modeling approach

    NASA Astrophysics Data System (ADS)

    Hoshyaripour, Gholam Ali; Hort, Matthias; Langmann, Baerbel; Brasseur, Guy

    2015-04-01

    Volcanic ash is recently identified as an active chemical agent in the Earth system. Generated mainly through lithospheric processes and magma fragmentation, it can pose significant impacts upon different components of the Earth system for e.g. atmosphere and hydrosphere on various temporal and spatial scales. While airborne in the atmosphere, transition metals contained in the ash can catalyze the sulfur oxidation cycle thereby indirectly affecting the volcanic radiative forcing. Moreover, upon deposition on the surface ocean, ash can release soluble iron that fertilizes Fe-limited areas of the ocean and stimulate the marine productivity and CO2 drawdown. Such impacts are provoked through interfacial processes and thus, are mainly induced by the ash surface composition. Recent studies suggest that in-plume and in-cloud processing of volcanic ash primarily control its surface composition. Direct evidences concerning such processes are, however, lacking. Here we present the results of our recent investigations on in-plume and in-cloud processing of volcanic ash. A 1D numerical model is developed that simulates the gas-ash-aerosol interactions in volcanic eruption plume and cloud at temperatures between 600 C and 0 C focusing on iron, sulfur and halogen chemistry. Results show that sulfuric acid and water vapor condense at 150 C and 50 C, respectively, generating a liquid coating at the ash surface that scavenges the surrounding gases (>95extremely acidic (pH

  6. Isotopic paleoclimate from hydrated volcanic ash

    SciTech Connect

    Friedman, I.; Izett, G.A.; Gleason, J.D.

    1985-01-01

    The deuterium composition (deltaD) of secondary water in glass shards of volcanic ash can be used to calculate the deltaD--and hence the climatic association--of water that was in contact with the ash during the first 10,000 years after eruption of the ash; this being the approximate (+/-5000 years) time necessary for water to diffuse completely through the thin walls of the pumice and glass shards. The fractionation between environmental water and water diffusing into the glassy ash must be known in order to calculate the deltaD of the ancient ground water. With help from A.J. Gude and R.A. Sheppard, the authors have recently determined this fractionation, and have used it to derive a value for deltaD of water from 25 samples of glass from the Huckleberry Ridge (2.1 m.y.), Bishop Tuff (0.74 m.y.), and Lava Creek B (0.61 m.y.) ashes collected from sites throughout the Western US. All of these deltaD values correlate very well with latitude and with the present distribution of deltaD in surface water. For example, the deltaD of water in Huckleberry Ridge ash varies from -85 per thousand SMOW for samples collected in Texas, to -148 per thousand for samples from south-central Montana. Thus, water of hydration in rhyolitic ash represents samples of ancient environmental water and can be used to study changes in the deltaD of the precipitation through time.

  7. Filling the Gaps: The Synergistic Application of Satellite Data for the Volcanic Ash Threat to Aviation

    NASA Technical Reports Server (NTRS)

    Murray, John; Vernier, Jean-Paul; Fairlie, T. Duncan; Pavolonis, Michael; Krotkov, Nickolay A.; Lindsay, Francis; Haynes, John

    2013-01-01

    Although significant progress has been made in recent years, estimating volcanic ash concentration for the full extent of the airspace affected by volcanic ash remains a challenge. No single satellite, airborne or ground observing system currently exists which can sufficiently inform dispersion models to provide the degree of accuracy required to use them with a high degree of confidence for routing aircraft in and near volcanic ash. Toward this end, the detection and characterization of volcanic ash in the atmosphere may be substantially improved by integrating a wider array of observing systems and advancements in trajectory and dispersion modeling to help solve this problem. The qualitative aspect of this effort has advanced significantly in the past decade due to the increase of highly complementary observational and model data currently available. Satellite observations, especially when coupled with trajectory and dispersion models can provide a very accurate picture of the 3-dimensional location of ash clouds. The accurate estimate of the mass loading at various locations throughout the entire plume, however improving, remains elusive. This paper examines the capabilities of various satellite observation systems and postulates that model-based volcanic ash concentration maps and forecasts might be significantly improved if the various extant satellite capabilities are used together with independent, accurate mass loading data from other observing systems available to calibrate (tune) ash concentration retrievals from the satellite systems.

  8. The aggregation efficiency of very fine volcanic ash

    NASA Astrophysics Data System (ADS)

    Del Bello, E.; Taddeucci, J.; Scarlato, P.

    2013-12-01

    Explosive volcanic eruptions can discharge large amounts of very small sized pyroclasts (under 0.090 mm) into the atmosphere that may cause problems to people, infrastructures and environment. The transport and deposition of fine ash are ruled by aggregation that causes premature settling of fine ash and, as consequence, significantly reduces the concentration of airborne material over long distances. Parameterizing the aggregation potential of fine ash is then needed to provide accurate modelling of ash transport and deposition from volcanic plumes. Here we present the first results of laboratory experiments investigating the aggregation efficiency of very fine volcanic particles. Previous laboratory experiments have shown that collision kinetic and relative humidity provide the strongest effect on aggregation behaviour but were only limited to particles with size > 0.125 mm. In our work, we focus on natural volcanic ash at ambient humidity with particles size < 0.090 mm, by taking into account the effect of grain size distribution on aggregation potential. Two types of ash were used in our experiments: fresh ash, collected during fall-out from a recent plume-forming eruption at Sakurajima (Japan -July 2013) and old ash, collected from fall-out tephra deposits at Campi Flegrei (Italy, ca. 10 ka), to account for the different chemical composition and morphoscopic effects of altered ash on aggregation efficiency. Total samples were hand sieved to obtain three classes with unimodal grain size distributions (<0.090 mm, <0.063 mm, <0.032 mm). Bimodal grain size distributions were also obtained by mixing the three classes in different proportions. During each experiments, particles were sieved from the top of a transparent tank where a fan, placed at the bottom, allows turbulent dispersion of particles. Collision and sticking of particles on a vertical glass slide were filmed with a high speed cameras at 6000 fps. Our lenses arrangement provide high image resolution

  9. The Global Framework for Providing Information about Volcanic-Ash Hazards to International Air Navigation

    NASA Astrophysics Data System (ADS)

    Romero, R. W.; Guffanti, M.

    2009-12-01

    The International Civil Aviation Organization (ICAO) created the International Airways Volcano Watch (IAVW) in 1987 to establish a requirement for international dissemination of information about airborne ash hazards to safe air navigation. The IAVW is a set of operational protocols and guidelines that member countries agree to follow in order to implement a global, multi-faceted program to support the strategy of ash-cloud avoidance. Under the IAVW, the elements of eruption reporting, ash-cloud detecting, and forecasting expected cloud dispersion are coordinated to culminate in warnings sent to air traffic controllers, dispatchers, and pilots about the whereabouts of ash clouds. Nine worldwide Volcanic Ash Advisory Centers (VAAC) established under the IAVW have the responsibility for detecting the presence of ash in the atmosphere, primarily by looking at imagery from civilian meteorological satellites, and providing advisories about the location and movement of ash clouds to aviation meteorological offices and other aviation users. Volcano Observatories also are a vital part of the IAVW, as evidenced by the recent introduction of a universal message format for reporting the status of volcanic activity, including precursory unrest, to aviation users. Since 2003, the IAVW has been overseen by a standing group of scientific, technical, and regulatory experts that assists ICAO in the development of standards and other regulatory material related to volcanic ash. Some specific problems related to the implementation of the IAVW include: the lack of implementation of SIGMET (warning to aircraft in flight) provisions and delayed notifications of volcanic eruptions. Expected future challenges and developments involve the improvement in early notifications of volcanic eruptions, the consolidation of the issuance of SIGMETs, and the possibility of determining a “safe” concentration of volcanic ash.

  10. Testing exposure of a jet engine to a dilute volcanic-ash cloud

    NASA Astrophysics Data System (ADS)

    Guffanti, M.; Mastin, L. G.; Schneider, D. J.; Holliday, C. R.; Murray, J. J.

    2013-12-01

    An experiment to test the effects of volcanic-ash ingestion by a jet engine is being planned for 2014 by a consortium of U.S. Government agencies and engine manufacturers, under the auspices of NASA's Vehicle Integrated Propulsion Research Program. The experiment, using a 757-type engine, will be an on-ground, on-wing test carried out at Edwards Air Force Base, California. The experiment will involve the use of advanced jet-engine sensor technology for detecting and diagnosing engine health. A primary test objective is to determine the effect on the engine of many hours of exposure to ash concentrations (1 and 10 mg/cu m) representative of ash clouds many 100's to >1000 km from a volcanic source, an aviation environment of great interest since the 2010 Eyjafjallajökull, Iceland, eruption. A natural volcanic ash will be used; candidate sources are being evaluated. Data from previous ash/aircraft encounters, as well as published airborne measurements of the Eyjafjallajökull ash cloud, suggest the ash used should be composed primarily of glassy particles of andesitic to rhyolitic composition (SiO2 of 57-77%), with some mineral crystals, and a few tens of microns in size. Collected ash will be commercially processed less than 63 microns in size with the expectation that the ash particles will be further pulverized to smaller sizes in the engine during the test. For a nominally planned 80 hour test at multiple ash-concentration levels, the test will require roughly 500 kg of processed (appropriately sized) ash to be introduced into the engine core. Although volcanic ash clouds commonly contain volcanic gases such as sulfur dioxide, testing will not include volcanic gas or aerosol interactions as these present complex processes beyond the scope of the planned experiment. The viscous behavior of ash particles in the engine is a key issue in the experiment. The small glassy ash particles are expected to soften in the engine's hot combustion chamber, then stick to cooler

  11. Volcanic ash in deep marine sediment: A comparison of dispersed ash and adjacent ash layers

    NASA Astrophysics Data System (ADS)

    Scudder, R. P.; Murray, R. W.; Kutterolf, S.; Schindlbeck, J. C.

    2012-12-01

    The presence of dispersed volcanic ash in pelagic marine sediment (as differentiated from ash found in discrete layers) has been known since the 1970's. Most previous studies have assessed the dispersed component through sedimentological and petrographic methods. As part of an effort to quantitatively determine the amount, and chemical composition, of dispersed ash in pelagic sediments, we are undertaking a systematic study of the western Pacific marine sediments. ODP Site 1149 (Leg 185), located immediately east of the Izu-Bonin Arc, consists of aluminosilicate clay and large amounts of volcanic ash (>75 ash layers described in units I and II). In addition to the ash layers, there is abundant dispersed ash (20 - 50% of the bulk). Using a multi-elemental geochemical and statistical approach we can characterize and quantify this dispersed ash component, and thus complement the original ash layer record by a novel dataset. At Site 1149, our previous work based on refractory trace element end members of potential sources (from the literature) indicate that Chinese Loess, Ryukyu Dacite (Japan), and an average of Izu-Bonin Front Arc material yield the best mixing to explain the bulk sedimentary composition (Scudder et al., 2009, EPSL, 284, 639-648). Contribution of a significant distal Ryukyu Arc component to the sediment eastward of Izu-Bonin (i.e., Site 1149) is surprising, yet is required by our chemical results, and is consistent with the previous work of Egeberg et al. (1992). While Scudder et al. (2009) was based on a small number of samples (~15 samples for complete major, trace, and REE analysis) and a modest element menu, we here present the results from an expansive suite of analyses (>80 samples) allowing us to test the effect of sample number on the statistical results and achieve additional quantitative resolution of volcanic and upper crustal sources (e.g., loess). This further improves our statistical ability to resolve temporal changes that may be

  12. Monitoring of volcanic emissions of SO2 and ash

    NASA Astrophysics Data System (ADS)

    Theys, Nicolas; Clarisse, Lieven; Brenot, Hugues; van Gent, Jeroen; Campion, Robin; van der A, Ronald; Valks, Pieter; Corradini, Stefano; Merucci, Luca; Van Roozendael, Michel; Coheur, Pierre-François; Hurtmans, Daniel; Clerbaux, Cathy; Tait, Steve; Ferrucci, Fabrizio

    2013-04-01

    Volcanic eruptions can emit large quantities of fine particles (ash) into the atmosphere as well as several trace gases, such as water vapour, carbon dioxide, sulphur species (SO2, H2S) and halogens (HCl, HBr, HF). These volcanic ejecta can have a considerable impact on the atmosphere, human health and society. Volcanic ash in particular is known to be a major threat for aviation, especially after dispersion over long distances (>1000 km) from the erupting volcano. In this respect, the continuous monitoring of volcanic ash from space is playing an essential role for the mitigation of aviation hazards. Compared to ash, SO2 is less critical for aviation safety, but is much easier to measure. Therefore, SO2 observations are often use as a marker of volcanic ash in the atmosphere. Moreover, SO2 yields information on the processes occurring in the magmatic system and is used as a proxy for the eruptive rate. In this presentation we give an overview of recent developments of the Support to Aviation Control Service (SACS). The focus is on the near-real time detection and monitoring of volcanic plumes of ash and SO2 using polar-orbiting instruments GOME-2, OMI, IASI and AIRS. The second part of the talk is dedicated to the determination of volcanic SO2 fluxes from satellite measurements. We review different techniques and investigate the temporal evolution of the total emissions of SO2 for recent volcanic events.

  13. Respiratory Health Effects of Volcanic Ash - a new Approach

    NASA Astrophysics Data System (ADS)

    Horwell, C. J.; Fenoglio, I.; Sparks, R. J.; Ragnarsdottir, K. V.; Fubini, B.

    2003-12-01

    Attempts to characterise the toxicity of volcanic ash have focused on the presence of the crystalline silica polymorph cristobalite, which is known to cause silicosis and lung cancer in industrial settings. Within the lung, it is the surface of the particles which will react with endogenous molecules. Free radicals, produced on particle surfaces, can react with DNA and other cellular components, instigating a chain of toxic events. For the first time, the ability of volcanic ash to form free radicals has been assessed using Electron Paramagnetic Resonance techniques specific to the hydroxyl radical. Respirable (< 4 microns) crystalline silica, separated from volcanic ash from the Soufriere Hills volcano, Montserrat, West Indies, did not produce hydroxyl free radicals or surface radicals. However, the ash, itself, generated up to 3 times more hydroxyl radicals than a quartz of known toxicity. The cause of the reactivity is reduced iron on the surface of iron-rich minerals such as amphiboles and pyroxenes. Fresh volcanic ash generates more free radicals than weathered volcanic ash which will have oxidised (and leached away) surface iron. These results have implications for volcanic health hazard research as it was previously assumed that volcanoes which did not produce respirable crystalline silica presented a lesser respiratory health hazard. The International Volcanic Health Hazard Network (IVHHN) promotes research into the health effects of volcanic emissions. Under the auspices of IVHHN, volcanic ash samples from volcanoes world-wide are being analysed for surface reactivity, grain-size distribution and composition to form a comprehensive database for use by volcano observatories, emergency managers, medical practitioners and researchers. The results will highlight volcanoes which have the potential to cause a respiratory health hazard through generation of iron-catalysed free radicals, as well as more conventional markers such as concentration of respirable

  14. Volcanic ash hazard climatology for an eruption of Hekla Volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Leadbetter, Susan J.; Hort, Matthew C.

    2011-01-01

    Ash produced by a volcanic eruption on Iceland can be hazardous for both the transatlantic flight paths and European airports and airspace. In order to begin to quantify the risk to aircraft, this study explored the probability of ash from a short explosive eruption of Hekla Volcano (63.98°N, 19.7°W) reaching European airspace. Transport, dispersion and deposition of the ash cloud from a three hour 'explosive' eruption with an initial plume height of 12 km was simulated using the Met Office's Numerical Atmospheric-dispersion Modelling Environment, NAME, the model used operationally by the London Volcanic Ash Advisory Centre. Eruptions were simulated over a six year period, from 2003 until 2008, and ash clouds were tracked for four days following each eruption. Results showed that a rapid spread of volcanic ash is possible, with all countries in Europe facing the possibility of an airborne ash concentration exceeding International Civil Aviation Organization (ICAO) limits within 24 h of an eruption. An additional high impact, low probability event which could occur is the southward spread of the ash cloud which would block transatlantic flights approaching and leaving Europe. Probabilities of significant concentrations of ash are highest to the east of Iceland, with probabilities exceeding 20% in most countries north of 50°N. Deposition probabilities were highest at Scottish and Scandinavian airports. There is some seasonal variability in the probabilities; ash is more likely to reach southern Europe in winter when the mean winds across the continent are northerly. Ash concentrations usually remain higher for longer during summer when the mean wind speeds are lower.

  15. Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska

    USGS Publications Warehouse

    Sassen, Kenneth; Zhu, Jiang; Webley, Peter W.; Dean, K.; Cobb, Patrick

    2007-01-01

    During mid January to early February 2006, a series of explosive eruptions occurred at the Augustine volcanic island off the southern coast of Alaska. By early February a plume of volcanic ash was transported northward into the interior of Alaska. Satellite imagery and Puff volcanic ash transport model predictions confirm that the aerosol plume passed over a polarization lidar (0.694 mm wavelength) site at the Arctic Facility for Atmospheric Remote Sensing at the University of Alaska Fairbanks. For the first time, lidar linear depolarization ratios of 0.10 – 0.15 were measured in a fresh tropospheric volcanic plume, demonstrating that the nonspherical glass and mineral particles typical of volcanic eruptions generate strong laser depolarization. Thus, polarization lidars can identify the volcanic ash plumes that pose a threat to jet air traffic from the ground, aircraft, or potentially from Earth orbit.

  16. SO2 as a possible proxy for volcanic ash in aviation hazard avoidance

    NASA Astrophysics Data System (ADS)

    Sears, T. M.; Thomas, G. E.; Carboni, E.; Smith, A. J. A.; Grainger, R. G.

    2013-06-01

    Airborne volcanic ash poses a significant danger to aircraft, but is difficult to quantify accurately using satellite data, while sulphur dioxide is much easier to detect accurately, but is much less of a direct hazard to aviation. This paper investigates the reliability of using SO2 as a proxy for the location of volcanic ash, using an SO2 retrieval from the Infrared Atmospheric Sounding Interferometer (IASI) and ash detections from IASI and the Advanced Along Track Scanning Radiometer (AATSR). Using a numerical "missed ash fraction" applied to the eruptions of Eyjafjallajökull in 2010 and Puyehue-Cordón Caulle in 2011 reveals that the SO2 flag typically misses ˜30% of the detectable ash. Furthermore, the missed ash fraction is found to be highly variable, both between the two eruptions and over the course of each eruption, with values of over 80% found on some days. The detection threshold of the AATSR ash flag is also investigated using radiative transfer calculations, allowing the threshold of the IASI flag to be inferred, and these are related to the ash contamination levels.

  17. Strong responses of Southern Ocean phytoplankton communities to volcanic ash

    NASA Astrophysics Data System (ADS)

    Browning, T. J.; Bouman, H. A.; Henderson, G. M.; Mather, T. A.; Pyle, D. M.; Schlosser, C.; Woodward, E. M. S.; Moore, C. M.

    2014-04-01

    Volcanic eruptions have been hypothesized as an iron supply mechanism for phytoplankton blooms; however, little direct evidence of stimulatory responses has been obtained in the field. Here we present the results of twenty-one 1-2 day bottle enrichment experiments from cruises in the South Atlantic and Southern Ocean which conclusively demonstrated a photophysiological and biomass stimulation of phytoplankton communities following supply of basaltic or rhyolitic volcanic ash. Furthermore, experiments in the Southern Ocean demonstrated significant phytoplankton community responses to volcanic ash supply in the absence of responses to addition of dissolved iron alone. At these sites, dissolved manganese concentrations were among the lowest ever measured in seawater, and we therefore suggest that the enhanced response to ash may have been a result of the relief of manganese (co)limitation. Our results imply that volcanic ash deposition events could trigger extensive phytoplankton blooms, potentially capable of significant impacts on regional carbon cycling.

  18. Volcanic ash cloud forecasting: combining satellite observations and dispersion modelling

    NASA Astrophysics Data System (ADS)

    Wilkins, Kate; Watson, Matthew; Webster, Helen; Thomson, David; Dacre, Helen; Mackie, Shona; Harvey, Natalie

    2014-05-01

    During the eruption of Eyjafjallajökull in April and May 2010, the London Volcanic Ash Advisory Centre demonstrated the importance of InfraRed satellite imagery for monitoring volcanic ash in the atmosphere and in validating NAME, the UK Met Office operational model used to forecast ash dispersion and to advise Civil Aviation. Significant effort has gone into researching inversion modelling using NAME and satellite retrievals of volcanic ash to infer an optimal model source term, elements of which are often unknown or highly uncertain. This presentation poses a possible alternative method for combining the two by assimilating satellite observations of downwind ash clouds into the model to create effective, virtual sources in order to constrain some of the uncertainty in the source term.

  19. Atmospheric fate and transport of fine volcanic ash: Does particle shape matter?

    NASA Astrophysics Data System (ADS)

    White, C. M.; Allard, M. P.; Klewicki, J.; Proussevitch, A. A.; Mulukutla, G.; Genareau, K.; Sahagian, D. L.

    2013-12-01

    Volcanic ash presents hazards to infrastructure, agriculture, and human and animal health. In particular, given the economic importance of intercontinental aviation, understanding how long ash is suspended in the atmosphere, and how far it is transported has taken on greater importance. Airborne ash abrades the exteriors of aircraft, enters modern jet engines and melts while coating interior engine parts causing damage and potential failure. The time fine ash stays in the atmosphere depends on its terminal velocity. Existing models of ash terminal velocities are based on smooth, quasi-spherical particles characterized by Stokes velocity. Ash particles, however, violate the various assumptions upon which Stokes flow and associated models are based. Ash particles are non-spherical and can have complex surface and internal structure. This suggests that particle shape may be one reason that models fail to accurately predict removal rates of fine particles from volcanic ash clouds. The present research seeks to better parameterize predictive models for ash particle terminal velocities, diffusivity, and dispersion in the atmospheric boundary layer. The fundamental hypothesis being tested is that particle shape irreducibly impacts the fate and transport properties of fine volcanic ash. Pilot studies, incorporating modeling and experiments, are being conducted to test this hypothesis. Specifically, a statistical model has been developed that can account for actual volcanic ash size distributions, complex ash particle geometry, and geometry variability. Experimental results are used to systematically validate and improve the model. The experiments are being conducted at the Flow Physics Facility (FPF) at UNH. Terminal velocities and dispersion properties of fine ash are characterized using still air drop experiments in an unconstrained open space using a homogenized mix of source particles. Dispersion and sedimentation dynamics are quantified using particle image

  20. International collaboration between Volcanic Ash Advisory Centers: Geospatially enabled tools to ensure forecast harmonization across global air routes

    NASA Astrophysics Data System (ADS)

    Osiensky, J. M.; Moore, D.; Kibler, J.; Bensimon, D.

    2013-12-01

    Volcanic plumes and drifting ash clouds pose a risk to flight operations somewhere across the globe every day. Airborne ash plumes pose a significant hazard to aircraft and timely and accurate forecasts greatly help mitigate the risk of an encounter. The world's nine (9) Volcanic Ash Advisory Centers (VAACs) provide products and services to address the volcanic ash hazard to aviation. These nine centers are operated by the meteorological authority within the state in which they are located. Each VAAC has its unique set of tools and procedures on how the data will be captured, displayed, analyzed and turned into a suite of products. The end products (e.g. Volcanic Ash Advisories (VAA) and Volcanic Ash Graphic (VAG)) are standardized through the International Civil Aviation Organization's International Airways Volcano Watch Operations Group (ICAO IAVWOPSG). Improvements in methods of collaboration between the VAACs are needed to allow for a seamless global harmonization of volcanic ash products. A geospatially enabled tool would allow for a common operating platform, data sharing, and situational awareness. The North American VAACs have been testing a capability to provide this environment to make forecast collaboration simple across the globe. This presentation highlights work that has been done to demonstrate this capability.

  1. Volcanic and atmospheric controls on ash iron solubility: A review

    NASA Astrophysics Data System (ADS)

    Ayris, Paul; Delmelle, Pierre

    2012-01-01

    The ash material produced by volcanic eruptions carries important information about the underground magma eruptive conditions and subsequent modifications in the volcanic plume and during atmospheric transport. Volcanic ash is also studied because of its impacts on the environment and human health. In particular, there is a growing interest from a multidisciplinary scientific community to understand the role that ash deposition over open ocean regions may play as a source of bioavailable Fe for phytoplankton production. Similar to aeolian mineral dust, the processes that affect the mineralogy and speciation of Fe in ash may promote solubilisation of Fe in ash, and thus may increase the amount of volcanic Fe supplied to ocean surface waters. Our knowledge of these controls is still very limited, a situation which has hindered quantitative interpretation of experimental Fe release measurements. In this review, we identify the key volcanic and atmospheric controls that are likely to modulate ash Fe solubility. We also briefly discuss existing data on Fe release from ash and make some recommendations for future studies in this area.

  2. Volcanic ash as an oceanic iron source and sink

    NASA Astrophysics Data System (ADS)

    Rogan, Nicholas; Achterberg, Eric P.; Le Moigne, Frédéric A. C.; Marsay, Chris M.; Tagliabue, Alessandro; Williams, Richard G.

    2016-03-01

    Volcanic ash deposition to the ocean forms a natural source of iron (Fe) to surface water microbial communities. Inputs of lithogenic material may also facilitate Fe removal through scavenging. Combining dissolved Fe (dFe) and thorium-234 observations alongside modeling, we investigate scavenging of Fe in the North Atlantic following the Eyjafjallajökull volcanic eruption. Under typical conditions biogenic particles dominate scavenging, whereas ash particles dominate during the eruption. The size of particles is important as smaller scavenging particles can become saturated with surface-associated ions. Model simulations indicate that ash deposition associated with Eyjafjallajökull likely led to net Fe removal. Our model suggests a threefold greater stimulation of biological activity if ash deposition had occurred later in the growing season when the region was Fe limited. The implications of ash particle scavenging, eruption timing, and particle saturation need to be considered when assessing the impact of ash deposition on the ocean Fe cycle and productivity.

  3. Traumatic Inhalation due to Merapi Volcanic Ash.

    PubMed

    Trisnawati, Ika; Budiono, Eko; Sumardi; Setiadi, Andang

    2015-07-01

    Pneumonoultramicroscopicsilicovolcanoconiosis is fibrotic lung diseases of the pulmonary parenchyma following chronic inhalation of inorganic dusts containing crystalline silicon dioxide. The acute manifestations observed after heavy ashfalls include attacks of asthma and bronchitis, with an increased reporting of cough, breathlessness, chest tightness, and wheezing due to irritation of the lining of the airways. The chronic health condition of most concern is silicosis, a diffuse nodular fibrosis of the lungs, develops slowly, usually appearing 10 to 30 years after first exposure. A 35 years old male was admitted to Sardjito Hospital, Yogyakarta with complaints of progressive dyspnoea, right side chest pain since last 3 month and periodic episodes of dry cough. He had history of exposure to volcanic ash at the location around volcano eruption for about 10 month. Examination revealed hyperresonant note, diminished vesicular breath sounds in lower right side of the chest. The chest X-ray presence leads to bleb. Based on the clinical and radiological suspicion of pneumoconiosis the patient was submitted to computed tomography of the chest and revealed bilateral multiple bullae mainly at the right lung field. The biopsy specimen verified the diagnosis of anthrocosilicosis. There is no proven specific therapy for any form of silicosis. Symptomatic therapy should include treatment of airflow limitation with bronchodilators, aggressive management of respiratory tract infection with antibiotics, and use of supplemental oxygen (if indicated) to prevent complications of chronic hypoxemia. PMID:26586390

  4. Volcanic Ash a Sink for Atmospheric Trace Species? A Laboratory Study of SO2 and O3 Uptake by Ash

    NASA Astrophysics Data System (ADS)

    Maters, E. C.; Delmelle, P.; Rossi, M. J.

    2015-12-01

    The impacts of volcanic activity on atmospheric chemistry have dominantly been viewed in relation to sulphur and halogen gas and aerosol emissions, while volcanic ash has been largely overlooked. However, solid particles in the atmosphere are increasingly recognised to be important in providing surfaces for heterogeneous reaction with trace gases such as SO2, NOx, O3 and organic compounds. Average annual emissions of ash, the <2 mm aluminosilicate particles generated during explosive eruptions, correspond to a surface area roughly equivalent to one-third to one-half of Earth's geometric surface area. Despite the substantial surface presented by airborne ash particles, interactions between ash and gases at ambient temperature have seldom been investigated. Laboratory studies with volcanic ash similar to those conducted with mineral dust from arid and semi-arid regions are much needed to understand and quantify the kinetics and mechanisms involved in heterogeneous reactions. Addressing this gap in knowledge is fundamental to better assess the capacity of ash emissions to affect atmospheric chemistry. We determined the initial uptake coefficient (γM) and the total uptake capacity (NiM) for gaseous SO2 and O3 by a compositional range of ash and glass powders in a Knudsen flow reactor. The volcanic materials exhibited γSO2 and NiSO2 values ranging from 10-3 to 10-2 and from 1011 to 1013 molecules cm-2, respectively. The solids samples also showed γO3 and NiO3 values ranging from 10-3 to 10-2 and from 1012 to 1013 molecules cm-2, respectively. Results of sequential exposure trials (SO2 then O3, O3 then SO2) suggest that SO2 and O3 do not compete for surface sites on the aluminosilicate materials, although O3 may participate in redox reactions with surface adsorbed sulphur species, enhancing the total capacity for O3 uptake by the solid. Differences in reactivity of the samples towards SO2 and O3 may be interpreted in light of variations in types and abundances of

  5. Determination of time- and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: the 2010 Eyjafjallajökull eruption

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Prata, A. J.; Eckhardt, S.; Clarisse, L.; Durant, A.; Henne, S.; Kristiansen, N. I.; Minikin, A.; Schumann, U.; Seibert, P.; Stebel, K.; Thomas, H. E.; Thorsteinsson, T.; Tørseth, K.; Weinzierl, B.

    2011-05-01

    The April-May, 2010 volcanic eruptions of Eyjafjallajökull, Iceland caused significant economic and social disruption in Europe whilst state of the art measurements and ash dispersion forecasts were heavily criticized by the aviation industry. Here we demonstrate for the first time that large improvements can be made in quantitative predictions of the fate of volcanic ash emissions, by using an inversion scheme that couples a priori source information and the output of a Lagrangian dispersion model with satellite data to estimate the volcanic ash source strength as a function of altitude and time. From the inversion, we obtain a total fine ash emission of the eruption of 8.3 ± 4.2 Tg for particles in the size range of 2.8-28 μm diameter. We evaluate the results of our model results with a posteriori ash emissions using independent ground-based, airborne and space-borne measurements both in case studies and statistically. Subsequently, we estimate the area over Europe affected by volcanic ash above certain concentration thresholds relevant for the aviation industry. We find that during three episodes in April and May, volcanic ash concentrations at some altitude in the atmosphere exceeded the limits for the "Normal" flying zone in up to 14 % (6-16 %), 2 % (1-3 %) and 7 % (4-11 %), respectively, of the European area. For a limit of 2 mg m-3 only two episodes with fractions of 1.5 % (0.2-2.8 %) and 0.9 % (0.1-1.6 %) occurred, while the current "No-Fly" zone criterion of 4 mg m-3 was rarely exceeded. Our results have important ramifications for determining air space closures and for real-time quantitative estimations of ash concentrations. Furthermore, the general nature of our method yields better constraints on the distribution and fate of volcanic ash in the Earth system.

  6. Improved prediction and tracking of volcanic ash clouds

    USGS Publications Warehouse

    Webley, P.; Mastin, L.

    2009-01-01

    During the past 30??years, more than 100 airplanes have inadvertently flown through clouds of volcanic ash from erupting volcanoes. Such encounters have caused millions of dollars in damage to the aircraft and have endangered the lives of tens of thousands of passengers. In a few severe cases, total engine failure resulted when ash was ingested into turbines and coating turbine blades. These incidents have prompted the establishment of cooperative efforts by the International Civil Aviation Organization and the volcanological community to provide rapid notification of eruptive activity, and to monitor and forecast the trajectories of ash clouds so that they can be avoided by air traffic. Ash-cloud properties such as plume height, ash concentration, and three-dimensional ash distribution have been monitored through non-conventional remote sensing techniques that are under active development. Forecasting the trajectories of ash clouds has required the development of volcanic ash transport and dispersion models that can calculate the path of an ash cloud over the scale of a continent or a hemisphere. Volcanological inputs to these models, such as plume height, mass eruption rate, eruption duration, ash distribution with altitude, and grain-size distribution, must be assigned in real time during an event, often with limited observations. Databases and protocols are currently being developed that allow for rapid assignment of such source parameters. In this paper, we summarize how an interdisciplinary working group on eruption source parameters has been instigating research to improve upon the current understanding of volcanic ash cloud characterization and predictions. Improved predictions of ash cloud movement and air fall will aid in making better hazard assessments for aviation and for public health and air quality. ?? 2008 Elsevier B.V.

  7. Changes in humoral immunologic parameters after exposure to volcanic ash.

    PubMed

    Olenchock, S A; Mull, J C; Mentnech, M S; Lewis, D M; Bernstein, R S

    1983-03-01

    Occupational exposure to volcanic ash from Mount St. Helens continues during the salvaging of trees in the high dust blow-down area of Washington. We studied the effects of volcanic ash exposure on the level of humoral immune factors IgG, IgA, IgM, C3, C4, and ANA (antinuclear antibody) in a group of volcanic ash-exposed loggers shortly after the major eruption and one year later. Comparisons with similar levels in nonexposed, similarly employed, matched loggers were made. C3 and C4 levels were significantly lower at both time periods in the exposed loggers when compared to the reference group. No differences between groups were observed at either time period for the immunoglobulin levels or ANA. The exposed loggers did show a marked decrease (not seen in the reference group) in serum IgG levels after 1 yr of exposure to the volcanic ash. They likewise showed a significant mean increase in IgA, while the reference group had a mean increase in IgM after 1 yr. These data suggest that exposure to volcanic ash may affect humoral immunologic parameters. PMID:6601725

  8. Olivine + halides: a recipe for iron mobilization in volcanic ash?

    NASA Astrophysics Data System (ADS)

    Hoshyaripour, G.; Hort, M. K.; Langmann, B.

    2013-12-01

    During the last decade, scientific evidences strongly suggest that volcanic ash iron has fertilization impact upon the surface ocean. Still, it is not well constrained how the insoluble iron in ash (i.e., as a component in minerals and also glass) could be mobilized during volcanic eruptions and atmospheric transport. Here we investigate the volcanic plume controls on ash iron solubility. We develope a conceptual box model to simulate the high, mid and low temperature chemical, physical and thermodynamic processes in eruption plumes to better constrain the iron mobilization in volcanic ash. We take into account the interaction of different species in a solid-liquid-gas system representing various volcanic settings (convergent plate, divergent plate and hot spot). Results show that the hot core of a volcanic plume (T>600°C) does not produce soluble iron directly but significantly controls the Fe mineralogy and oxidation state at the ash surface. The final iron mineralogy at the ash surface (i.e. the ash's oxidation front with 1-100 nm thickness) is likely to be independent of temperature and oxygen fugacity and is closely correlated to the ratio of H2 and H2S content of the magmatic gas to the amount of entrained oxygen. As the plume continues rising and cooling, sulfuric acid condenses at about 150°C followed by water condensation at about 50°C which also dissociates sulfuric acid and produces H+ ions in the liquid phase. The aqueous phase scavenges the surrounding gas species (e.g. SO2, HCl, HF) and concurrently dissolves the ash surface constituents. Since HCl is about 4 orders of magnitudes more soluble than SO2, its dissolution mainly controls the pH of the liquid. Hence, high HCl concentrations in the gas phase results in lower pH in the aqueous phase (pH<0.5) and consequently an increase in the ash dissolution rate. Moreover reduced iron carrying minerals (e.g. fayalite) show a much higher dissolution rate in comparison with oxidized species (e.g. hematite

  9. Volcanic ash: What it is and how it forms

    SciTech Connect

    Heiken, G.

    1991-09-13

    There are four basic eruption processes that produce volcanic ash: (1) decompression of rising magma, gas bubble growth, and fragmentation of the foamy magma in the volcanic vent (magmatic), (2) explosive mixing of magma with ground or surface water (hydrovolcanic), (3) fragmentation of country rock during rapid expansion of steam and/or hot water (phreatic), and (4) breakup of lava fragments during rapid transport from the vent. Variations in eruption style and the characteristics of volcanic ashes produced during explosive eruptions depend on many factors, including magmatic temperature, gas content, viscosity and crystal content of the magma before eruption, the ratio of magma to ground or surface water, and physical properties of the rock enclosing the vent. Volcanic ash is composed of rock and mineral fragments, and glass shards, which is less than 2 mm in diameter. Glass shard shapes and sizes depend upon size and shape of gas bubbles present within the magma immediately before eruption and the processes responsible for fragmentation of the magma. Shards range from slightly curved, thin glass plates, which were broken from large, thin-walled spherical bubble walls, to hollow needles broken from pumiceous melts containing gas bubbles stretched by magma flow within the volcanic vent. Pumice fragments make up the coarser-grained portions of the glass fraction. Particle sizes range from meters for large blocks expelled near the volcanic vent to nanometers for fine ash and aerosol droplets within well-dispersed eruption plumes. 18 refs., 6 figs., 1 tab.

  10. Estimation of Volcanic Ash Plume Top Height using AATSR

    NASA Astrophysics Data System (ADS)

    Virtanen, Timo; Kolmonen, Pekka; Sogacheva, Larisa; Sundström, Anu-Maija; Rodriguez, Edith; de Leeuw, Gerrit

    2015-04-01

    The AATSR Correlation Method (ACM) height estimation algorithm is presented. The algorithm uses Advanced Along Track Scanning Radiometer (AATSR) satellite data to detect volcanic ash plumes and to estimate the plume top height. The height estimate is based on the stereo-viewing capability of the AATSR instrument, which allows to determine the parallax between the satellite's 55° forward and nadir views, and thus the corresponding height. Besides the stereo view, AATSR provides another advantage compared to other satellite based instruments. With AATSR it is possible to detect ash plumes using brightness temperature difference between thermal infrared (TIR) channels centered at 11 and 12 µm. The automatic ash detection makes the algorithm efficient in processing large quantities of data: the height estimate is calculated only for the ash-flagged pixels. In addition, it is possible to study the effect of using different wavelengths in the height estimate, ranging from visible (555 nm) to thermal infrared (12 µm). The ACM algorithm can be applied to the Sea and Land Surface Temperature Radiometer (SLSTR), scheduled for launch at the end of 2015. Accurate information on the volcanic ash position is important for air traffic safety. The ACM algorithm can provide valuable data of both horizontal and vertical ash dispersion. These data may be useful for comparisons with existing volcanic ash dispersion models and retrieval methods. We present ACM plume top height estimate results for the Eyjafjallajökull eruption, and comparisons against available ground based and satellite observations.

  11. Pulmonary toxicity of Mount St. Helens volcanic ash

    SciTech Connect

    Sanders, C.L.; Conklin, A.W.; Gelman, R.A.; Adee, R.R.; Rhoads, K.

    1982-02-01

    The effects of Mount St. Helens volcanic ash, a sandy loam soil, and quartz particles on the lung and mediastinal lymph nodes of Fischer rats were studied at time intervals of up to 109 days after in tratracheal instillation of 40 mg ash, soil, or quartz in a single dose or after multiple doses of ash instilled in seven consecutive weekly doses for a total deposition of 77 mg. Quartz caused early granuloma formation, later fibrosis was also seen in lymph nodes. Volcanic ash caused an ill-defined inflammatory reaction with a few rats showing granuloma formulation, a very limited linear fibrosis, and a moderate lipoproteinosis, and lymph nodes were enlarged with numerous microgranulomas but without reticulin and collagen formation. Pulmonary reactions to soil particles were less intense but similar to those in ash- exposed animals; lymph nodes were not enlarged. No significant clearance of ash was found at 3 months after instillation. Volcanic ash produced a simple pneumoconiosis similar to what has been described for animals and humans living for prolonged periods of time in dusty desert areas of the United States.

  12. Volcanic ash forecast transport and dispersion (VAFTAD) model

    SciTech Connect

    Heffter, J.L.; Stunder, B.J.B.

    1993-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory (ARL) has developed a Volcanic Ash Forecast Transport And Dispersion (VAFTAD) model for emergency response use focusing on hazards to aircraft flight operations. The model is run on a workstation at ARL. Meteorological input for the model is automatically downloaded from the NOAA National Meteorological Center (NMC) twice-daily forecast model runs to ARL. Additional input for VAFTAD ragarding the volcanic eruption is supplied by the user guided by monitor prompts. The model calculates transport and dispersion of volcanic ash from an initial ash cloud that has reached its maximum height within 3 h of eruption time. The model assumes that spherical ash particles of diameters ranging from 0.3 to 30 micrometers are distributed throughout the initial cloud with a particle number distribution based on Mount St. Helens and Redoubt Volcano eruptions. Particles are advected horizontally and vertically by the winds and fall according to Stoke`s law with a slip correction. A bivariate-normal distribution is used for horizontally diffusing the cloud and determining ash concentrations. Model output gives maps with symbols representing relative concentrations in three flight layers, and throughout the entire ash cloud, for sequential 6- and 12-h time intervals. A verification program for VAFTAD has been started. Results subjectively comparing model ash cloud forecasts with satellite imagery for three separate 1992 eruptions of Mount Spurr in Alaska have been most encouraging.

  13. A Relocatable Environmental Prediction System for Volcanic Ash Forecasts

    NASA Astrophysics Data System (ADS)

    Cook, J.; Geiszler, D.

    2009-12-01

    Timeliness is an essential component for any system generating volcanic ash forecasts for aviation. Timeliness implies that the steps required for estimating the concentration of volcanic ash in the atmosphere are streamlined into a process that can accurately identify the volcano’s source function, utilize atmospheric conditions to predict the movement of the volcanic ash plume, and ultimately produce a volcanic ash forecast product in a useable format for aviation interests. During the past decade, the Naval Research Laboratory (NRL) has developed a suite of software integrated with the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®) that is designed with a similar automated purpose in support of the Navy’s operational (24/7) schedule and diverse mission requirements worldwide. The COAMPS-OS® (On-demand System) provides web-based interfaces to COAMPS that allows Navy users to rapidly (in a few minutes) set up and start a new forecast in response to short-fused requests. A unique capability in COAMPS unlike many regional numerical weather prediction models is the option to initialize a volcanic ash plume and use the model’s full three-dimensional atmospheric grid (e.g. winds and precipitation) to predict the movement and concentration of the plume. This paper will describe the efforts to automate volcanic ash forecasts using COAMPS-OS including the specification of the source function, initialization and configuration of COAMPS, and generation of output products for aviation. This research is in response to requirements and funding by the Federal Aviation Administration (FAA). The views expressed are those of the authors and do not necessarily represent the official policy or position of the FAA. COAMPS® and COAMPS-OS® are registered trademarks of the Naval Research Laboratory.

  14. Deposition Rate and Size Distribution of Volcanic Ash

    NASA Astrophysics Data System (ADS)

    Hikida, M.

    2006-12-01

    Sakurajima Volcano has been in violent activity since 1955 and erupting large amount of volcanic ash and stones from the crater. Volcanic fallouts have caused damages to the agricaltural products in the area and denuded the mountainside of vegitation. Deposited ash and stones on the mountainside has also caused hazardrous debris flows in the rivers. Therefore, it is necessary to know the deposition rate of the fallouts in prediction of debris flow. Due to the violent volcanic activity, however, it is prohibited to enter within two kilometers of the crater, making it impossible to measure the depth of deposited fallouts in the area. Theoretical study on deposition rate of volcanic fallouts should be needed to estimate the amount of fallouts in the upstream area. At first, motion of a particle erupted from the crater into the air was computed to examine its trajectory. From the simulation of the trajectory, a particle was assumed to fall at its terminal veloctity, and theoretical equation which give the deposition rate of volcanic ash and the distribution of deposited ash were obtained. In the derivation of these equations, the probability density functions of eruption column height, the terminal velocity of the erupted particles and the wind velocity were introduced. The computed values of amount of deposited ash show good agreement with the data taken from 93 collection points around Sakurajima Volcano. The annual amount of erupted volcanic ash was estimated to be about thirteen millions tons. The sample of deposited fallouts were taken to analize the size distribution. The data was also used to check the applicability of the theory presented.

  15. The identification and tracking of volcanic ash using the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI)

    NASA Astrophysics Data System (ADS)

    Naeger, A. R.; Christopher, S. A.

    2014-02-01

    In this paper, we develop an algorithm based on combining spectral, spatial, and temporal thresholds from the geostationary Spinning Enhanced Visible and Infrared Imager (SEVIRI) daytime measurements to identify and track different aerosol types, primarily volcanic ash. Contemporary methods typically do not use temporal information to identify ash. We focus not only on the identification and tracking of volcanic ash during the Eyjafjallajökull volcanic eruption period beginning in 14 April and ending 17 May 2010 but also on a pixel-level classification method for separating various classes in the SEVIRI images. Three case studies on 13, 16, and 17 May are analyzed in extensive detail with other satellite data including from the Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging Spectroradiometer (MISR), and Facility for Airborne Atmospheric Measurements (FAAM) BAe146 aircraft data to verify the aerosol spatial distribution maps generated by the SEVIRI algorithm. Our results indicate that the SEVIRI algorithm is able to track volcanic ash when the solar zenith angle is lower than about 65°. Furthermore, the BAe146 aircraft data show that the SEVIRI algorithm detects nearly all ash regions when AOD > 0.2. However, the algorithm has higher uncertainties when AOD is < 0.1 over water and AOD < 0.2 over land. The ash spatial distributions provided by this algorithm can be used as a critical input and validation for atmospheric dispersion models simulated by Volcanic Ash Advisory Centers (VAACs). Identifying volcanic ash is an important first step before quantitative retrievals of ash concentration can be made.

  16. Unmanned Airborne Platforms for Validation of Volcanic Emission Composition and Transport Models

    NASA Astrophysics Data System (ADS)

    Pieri, D. C.; Diaz, J. A.; Bland, G.; Fladeland, M. M.

    2012-12-01

    In recent years there has been an increasing realization that current remote sensing retrieval and transport models to detect, characterize, and track airborne volcanic emissions will be much improved fundamentally, and in their application, by the acquisition of in situ validation data. This issue was highlighted by the need for operational estimates of airborne ash concentrations during the 2010 eruption at Eyjafjallajökull-Fimmvörduháls in Iceland. In response, important campaigns were mounted in Europe to conduct airborne in situ observations with manned aircraft to validate ash concentration estimates based on remote sensing data. This effort had immediate application providing crucial accuracy and precision estimates for predicting locations, trajectories, and concentrations of the drifting ash to mitigate the severe economic impacts caused by the continent-wide grounding of aircraft. Manned flying laboratories, however, sustain serious risks if flown into the areas of volcanic plumes and drifting clouds that are of the highest interest, namely the zones of most concentrated ash and gas, which are often opaque to upwelling radiation at the longer infrared wavelengths (e.g., 8-12μm), where ash and gas can be most readily detected. Unmanned airborne vehicles (UAVs), of course, can provide volcanic aerosol and gas sampling and measurement platforms with no risk to flight crews, and can penetrate the most ash-concentrated zones of plumes and drifting clouds. Current interest has been high in developing and testing small UAVs (e.g., NASA, University of Costa Rica, University of Düsseldorf; INGV-Catania and Rome, and others) for proximal sulfur dioxide and solid aerosol observations and sampling in relatively quiescently erupting plumes as a first step toward more far ranging and higher altitude deployments into drifting volcanic ash clouds at regional scales. Nevertheless, in the aftermath of the Icelandic crisis, ash and gas concentrations from analysis of

  17. An accelerated data assimilation approach for volcanic ash forecast

    NASA Astrophysics Data System (ADS)

    Fu, Guangliang; Lin, Haixiang; Heemink, Arnold; Segers, Arjo; Lu, Sha

    2016-04-01

    The 2010 Eyjafjallajökull volcano eruption had serious consequences to civil aviation. This has initiated a lot of research on volcanic ash forecast in recent years. Ensemble-based data assimilation uses the observation data to improve the parameter and state estimation and subsequently the volcanic ash forecast accuracy. Due to the computational complexity of ensemble-based algorithms and the large scale of real-life applications, application of these methods usually introduces a large computational cost, particularly in the analysis step of assimilation processes. Because the other time-consuming part in the single CPU case, the forecast step, can be efficiently and easily parallelized. In this study, we focus on speeding up of the analysis step. For volcanic ash assimilation of aircraft-based measurements, the most time-consuming part in the analysis step has been shown to be the computation of the Kalman gain matrix. After a careful study on the characteristics of ensemble ash states, we propose a model-reduced Kalman gain (MR-Gain) approach which transforms the ensemble state matrix into a low-rank matrix by a multiplication with an index matrix which recorded the sparsity information of the ensemble state matrix, and thus the computational cost of all the ensemble-related matrix multiplications are reduced. After the computation of Kalman gain, using the previously recorded state index, the full analyzed ensemble states are reconstructed. The result shows the MR-Gain approach is exact, which can be used to replace the original full matrix with a much low computation cost. Computer experiments show that the computing time for the analysis step with the new approach is a factor of ten times faster than the conventional analysis step. The result also shows that with the accelerated analysis step in volcanic ash assimilation system, the total amount of computing time for volcanic ash forecast can be significantly reduced by up to a factor of 5.

  18. Volcanic controls on ash iron solubility: thermodynamic modeling of gas-ash interaction in the hot core of volcanic plumes

    NASA Astrophysics Data System (ADS)

    Hoshyaripour, G.; Hort, M.; Langmann, B.

    2012-04-01

    Recently it has been shown that volcanic ash can act as a fertilizer for phytoplankton bloom by injecting bio-available iron into the surface ocean. However, it is also well known that iron in volcanic ash at least at its generation point (i.e. magma) is mostly in insoluble form, i.e. not bio-available. Although different volcanic and atmospheric processes are assumed to contribute to the transformation of insoluble iron into soluble salts, the causes of iron mobilization in volcanic ash are poorly constrained. Here we explore the volcanic control on the mobilization of iron in volcanic ash in the hot core of volcanic plumes (T>600° C) based on thermodynamic equilibrium considerations. A conceptual box model is considered for the hot core in which 1000° C magmatic gas, ash and 25° C ambient air are mixed. The initial composition of volcanic gas and ash are parameterized based on three types of tectonic settings (convergent plate, divergent plate, and hot spot) and basaltic to rhyolitic magmas. The effect of the initial oxidation state is also considered by changing the oxygen fugacity. First, magmatic oxides (i.e. SiO2, FeO, MgO etc) are titrated into the magmatic gas at constant temperature and fugacity in order to generate the initial iron carrying minerals. Since the alteration of ash composition is mainly diffusion controlled, we assume that inside the hot core of the volcanic plume the Fe speciation is only affected at or near to the ash surface. Results show that the main initial iron carrying minerals are usually ilmenite and fayalite with some addition of pyhrrotite at reduced conditions in divergent plate and hot spot settings. Then the 1000° C magmatic gas-ash mixture is mixed with the 25° C air (N2 79%, O2 21%) until a temperature of 600° C is reached. Results demonstrate that the hot core functions as an oxidizing reactor for the ash surface transforming the whole Fe2+ minerals to Fe3+ species while being cooled to 600° C. However, in reduced

  19. Toward an Integrated Solution to Mitigate the Impact of Volcanic Ash to Aviation

    NASA Technical Reports Server (NTRS)

    Murray, John J.; Dezitter, Fabien; Fairlie, T. Duncan; Krotkov, Nickolay; Lekki, John; Lindsay, Francis; Pavolonis, Mike; Pieri, David; Prata, Fred; Vernier, Jean-Paul

    2015-01-01

    The science community is making a concerted effort to improve the reliability of dispersion models for the forecasting of volcanic ash plumes. Toward this end, it has been observed that the assimilation of diverse, accurate and frequent surface, airborne and satellite observations of the source and distal ash plumes may hold the key. Various international research organizations and operational agencies make these observations using a variety of active and passive remote sensing systems and use them to initialize atmospheric trajectory and dispersion models. These observation systems range from surface LIDAR and ceilometers, to airborne radiometers and nephelometers, to satellite radiometers, multi-spectral imagers, LIDAR and UV-photometers. None of these systems alone is a panacea, however, their synergistic application holds great promise toward solving this complex problem. Additionally, the aeronautical and science communities are working to better understand the quantitative thresholds and tolerances of aviation systems to volcanic ash to better inform scientists of the accuracy requirements for dispersion model forecasts. A number of the most recent and promising efforts in all of these area are discussed in this presentation.

  20. Examples of transport of volcanic ash

    NASA Astrophysics Data System (ADS)

    Bursik, M. I.

    2011-12-01

    Examination of the transport of volcanic aerosol clouds can be implemented by utilizing models for introduction and early stage spread of eruption plumes, and long-range transport. As a plume rises into the atmosphere, it is subject to the atmospheric circulation. Average wind patterns in the troposphere and stratosphere are useful in determining general features of volcanic cloud transport, but daily, seasonal and year to year variance must be taken into account in any one particular case. Tropospheric circulation plays a small role relative to stratospheric circulation, although the effects of the tropospheric portion of eruptions can be significant to catastrophic, as was the case with the April, 2010, eruption of Eyjafjallajokull, Iceland. Stratospheric circulation plays an important role in the long-term influence of volcanic aerosol, since residence time is great, due to limited mixing and vertical motion. The eruptions of Eyjafjallajokull and Laki, Iceland; Hudson, Chile; El Chichon, Mexico, and Pinatubo, Phillipines, provide examples of how volcanic clouds interact with the atmospheric circulation. Eruption clouds from low latitudes spread across both hemispheres, while eruption clouds from high latitudes remain in the hemisphere of the eruption. Cloud form and dispersal pattern are determined by season; the shape of a volcanic cloud is altitude dependent. The size of a volcanic cloud in relation to atmospheric eddies is important in determining how it is dispersed.

  1. The United States national volcanic ash operations plan for aviation

    USGS Publications Warehouse

    Albersheim, Steven; Guffanti, Marianne

    2009-01-01

    Volcanic-ash clouds are a known hazard to aviation, requiring that aircraft be warned away from ash-contaminated airspace. The exposure of aviation to potential hazards from volcanoes in the United States is significant. In support of existing interagency operations to detect and track volcanic-ash clouds, the United States has prepared a National Volcanic Ash Operations Plan for Aviation to strengthen the warning process in its airspace. The US National Plan documents the responsibilities, communication protocols, and prescribed hazard messages of the Federal Aviation Administration, National Oceanic and Atmospheric Administration, US Geological Survey, and Air Force Weather Agency. The plan introduces a new message format, a Volcano Observatory Notice for Aviation, to provide clear, concise information about volcanic activity, including precursory unrest, to air-traffic controllers (for use in Notices to Airmen) and other aviation users. The plan is online at http://www.ofcm.gov/p35-nvaopa/pdf/FCM-P35-2007-NVAOPA.pdf. While the plan provides general operational practices, it remains the responsibility of the federal agencies involved to implement the described procedures through orders, directives, etc. Since the plan mirrors global guidelines of the International Civil Aviation Organization, it also provides an example that could be adapted by other countries.

  2. Pulmonary toxicity of Mount St. Helens volcanic ash

    SciTech Connect

    Sanders, C.L.; Gelman, A.; Conklin, A.; Adee, R.R.

    1980-01-01

    The distribution, clearance, translocation and pathobiology of intratracheally instilled (IT) Mount St. Helens volcanic ash samples are discussed and compared with NIOSH quartz and Ritzville sandy loam samples as positive controls and saline as a negative control. Comparisons are also made with similar studies in rats using chrysotile asbestos, beryllium oxide and cadmium oxide.

  3. Pulmonary response to Mount St. Helens' volcanic ash.

    PubMed

    Vallyathan, V; Mentnech, M S; Tucker, J H; Green, F H

    1983-04-01

    The pulmonary response to a sedimented sample of Mount St. Helens' volcanic ash from the first eruption was studied at 1, 7, 28, 90, and 180 days postintratracheal administration of 1 or 10 mg of ash in specific-pathogen-free rats. One day administration of volcanic ash all animals exhibited a marked inflammatory cell response centered on respiratory bronchioles in which polymorphonuclear leukocytes predominated. At 7 days the reaction was characterized by mononuclear cellular infiltrates. The macrophages within the respiratory bronchioles and alveoli contained intracytoplasmic ash particles. At 28 days the intraalveolar aggregates of mononuclear cells had condensed to form granulomas. Most of the granulomas contained foreign body-type giant cells and some showed central necrosis. The granulomas enlarged in size from 28 days until the termination of the experiment at 180 days with progressive increase in the amount of collagenous tissue. The results of these studies suggest that the volcanic ash may pose a risk for pneumoconiosis in heavily exposed human populations. PMID:6219872

  4. Dispersed Ash in Marine Sediment: An Overview Towards Unraveling the 'Missing Volcanic Record'

    NASA Astrophysics Data System (ADS)

    Murray, R. W.; Scudder, R.; Kutterolf, S.; Schindlbeck, J.

    2013-12-01

    Volcanic ash occurs in marine sediment both as discrete layers as well as isolated grains and shards dispersed throughout the bulk sediment, and with highly variable grain sizes. The study of this dispersed component has lagged behind the sophisticated petrographic, sedimentologic, geochemical, and isotopic assessment of the ash layer record. For example, while decades of smear-slide studies of bulk sediment in volcanic-rich regimes have presented visual estimations of the abundance of 'volcanic glass', 'shards', and/or other components, the quantitative importance of the dispersed ash and/or the cryptotephra component remains largely unconstrained on local, regional, and global scales. Chemical and isotopic characterization of this dispersed component has remained elusive. Building on earlier work, research in the 1970s began documenting the importance of dispersed ash and its alteration products. This dispersed ash is the result of the bioturbation of pre-existing discrete layers, the settling of airborne ash, distribution from subaqueous eruptions, and other mechanisms. Compared to the often visually stunning ash layer records, which in certain settings can leave single layers with thicknesses of 10s of cm, the dispersed ash component and cryptotephra layers are unable to be visually differentiated from detrital clay. Furthermore, its extremely fine grain size is an additional hindrance to quantification of its abundance and the identification of source. More completely characterizing the total ash inventory (that is, the dispersed ash in addition to the ash layers) will contribute significantly to studies of marine and terrestrial volcanism at many scales, geochemical mass balances, arc evolution, hydration of marine sediment during alteration, atmospheric circulation, putative relationships between volcanism and climate, and other key components of the earth-ocean-atmosphere system. Beginning with work in the Caribbean Sea and progressing to the northwest

  5. A new natural hazards data-base for volcanic ash and SO2 from global satellite remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Stebel, Kerstin; Prata, Fred; Theys, Nicolas; Tampellini, Lucia; Kamstra, Martijn; Zehner, Claus

    2014-05-01

    used in VAST to simulate the dispersion of volcanic ash and SO2 emitted during an eruption. Source terms and dispersion model results will be given. In time, data from conventional in situ sampling instruments, airborne and ground-based remote sensing platforms and other meta-data (bulk ash and gas properties, volcanic setting, volcanic eruption chronologies, potential impacts etc.) will be added. Important applications of the data-base are illustrated related to the ash/aviation problem and to estimating SO2 fluxes from active volcanoes-as a means to diagnose future unrest. The data-base has the potential to provide the natural hazards community with a dynamic atmospheric volcanic hazards map and will be a valuable tool particularly for aviation.

  6. Dating volcanic ash by use of thermoluminescence

    SciTech Connect

    Berger, G.W. )

    1992-01-01

    The fine-silt-sized (4-11 {mu}m) grains of glass separated from four samples of independently dated, 8 to 400 ka, tephra beds provide accurate thermoluminescence (TL) ages. This demonstration of reliable TL dating of volcanic glass provides a new tephrochronometer for deposits spanning the Holocene to middle Pleistocene age range.

  7. Aerosol measurements from a recent Alaskan volcanic eruption: Implications for volcanic ash transport predictions

    NASA Astrophysics Data System (ADS)

    Cahill, Catherine F.; Rinkleff, Peter G.; Dehn, Jonathan; Webley, Peter W.; Cahill, Thomas A.; Barnes, David E.

    2010-12-01

    Size and time-resolved aerosol compositional measurements conducted during the 2006 eruption of Augustine Volcano provide quantitative information on the size and concentration of the fine volcanic ash emitted during the eruption and carried and deposited downwind. These data can be used as a starting point to attempt to validate volcanic ash transport models. For the 2006 eruption of Augustine Volcano, an island volcano in south-central Alaska, size and time-resolved aerosol measurements were made using an eight-stage (0.09-0.26, 0.26-0.34, 0.34-0.56, 0.56-0.75, 0.75-1.15, 1.15-2.5, 2.5-5.0, and 5.0-35.0 μm in aerodynamic diameter) Davis Rotating Unit for Monitoring (DRUM) aerosol impactor deployed near ground level in Homer, Alaska, approximately 110 km east-northeast of the volcano. The aerosol samples collected by the DRUM impactor were analyzed for mass and elemental composition every 90 min during a four-week sampling period from January 13 to February 11, 2006, that spanned several explosive episodes during the 2006 eruption. The collected aerosols showed that the size distribution of the volcanic ash fallout changed during this period of eruption. Ash had its highest concentrations in the largest size fraction (5.0-35.0 μm) with no ash present in the less than 1.15 μm size fractions during the short-lived explosive events. In contrast, during the continuous ash emission phase, concentrations of volcanic ash were more significant in the less than 1.15 μm size fractions. Settling velocities dictate that the smaller size particles will transport far from the volcano and, unlike the larger particles, not be retained in the proximal stratigraphic record. These results show that volcanic ash transport and dispersion (VATD) model predictions based on massless tracer particles, such as the predictions from the PUFF VATD model, provide a good first-order approximation of the transport of both large and small volcanic ash particles. Unfortunately, the

  8. Agricultural Fragility Estimates Subjected to Volcanic Ash Fall Hazards

    NASA Astrophysics Data System (ADS)

    Ham, H. J.; Lee, S.; Choi, S. H.; Yun, W. S.

    2015-12-01

    Agricultural Fragility Estimates Subjected to Volcanic Ash Fall Hazards Hee Jung Ham1, Seung-Hun Choi1, Woo-Seok Yun1, Sungsu Lee2 1Department of Architectural Engineering, Kangwon National University, Korea 2Division of Civil Engineering, Chungbuk National University, Korea ABSTRACT In this study, fragility functions are developed to estimate expected volcanic ash damages of the agricultural sector in Korea. The fragility functions are derived from two approaches: 1) empirical approach based on field observations of impacts to agriculture from the 2006 eruption of Merapi volcano in Indonesia and 2) the FOSM (first-order second-moment) analytical approach based on distribution and thickness of volcanic ash observed from the 1980 eruption of Mt. Saint Helens and agricultural facility specifications in Korea. Fragility function to each agricultural commodity class is presented by a cumulative distribution function of the generalized extreme value distribution. Different functions are developed to estimate production losses from outdoor and greenhouse farming. Seasonal climate influences vulnerability of each agricultural crop and is found to be a crucial component in determining fragility of agricultural commodities to an ash fall. In the study, the seasonality coefficient is established as a multiplier of fragility function to consider the seasonal vulnerability. Yields of the different agricultural commodities are obtained from Korean Statistical Information Service to create a baseline for future agricultural volcanic loss estimation. Numerically simulated examples of scenario ash fall events at Mt. Baekdu volcano are utilized to illustrate the application of the developed fragility functions. Acknowledgements This research was supported by a grant 'Development of Advanced Volcanic Disaster Response System considering Potential Volcanic Risk around Korea' [MPSS-NH-2015-81] from the Natural Hazard Mitigation Research Group, Ministry of Public Safety and Security of

  9. Spatial evaluation of volcanic ash forecasts using satellite observations

    NASA Astrophysics Data System (ADS)

    Harvey, N. J.; Dacre, H. F.

    2016-01-01

    The decision to close airspace in the event of a volcanic eruption is based on hazard maps of predicted ash extent. These are produced using output from volcanic ash transport and dispersion (VATD) models. In this paper the fractions skill score has been used for the first time to evaluate the spatial accuracy of VATD simulations relative to satellite retrievals of volcanic ash. This objective measure of skill provides more information than traditional point-by-point metrics, such as success index and Pearson correlation coefficient, as it takes into the account spatial scale over which skill is being assessed. The FSS determines the scale over which a simulation has skill and can differentiate between a "near miss" and a forecast that is badly misplaced. The idealized scenarios presented show that even simulations with considerable displacement errors have useful skill when evaluated over neighbourhood scales of 200-700 (km)2. This method could be used to compare forecasts produced by different VATDs or using different model parameters, assess the impact of assimilating satellite-retrieved ash data and evaluate VATD forecasts over a long time period.

  10. Spatial evaluation of volcanic ash forecasts using satellite observations

    NASA Astrophysics Data System (ADS)

    Harvey, N. J.; Dacre, H. F.

    2015-09-01

    The decision to close airspace in the event of a volcanic eruption is based on hazard maps of predicted ash extent. These are produced using output from volcanic ash transport and dispersion (VATD) models. In this paper an objective metric to evaluate the spatial accuracy of VATD simulations relative to satellite retrievals of volcanic ash is presented. The metric is based on the fractions skill score (FSS). This measure of skill provides more information than traditional point-by-point metrics, such as success index and Pearson correlation coefficient, as it takes into the account spatial scale over which skill is being assessed. The FSS determines the scale over which a simulation has skill and can differentiate between a "near miss" and a forecast that is badly misplaced. The idealised scenarios presented show that even simulations with considerable displacement errors have useful skill when evaluated over neighbourhood scales of 200-700 km2. This method could be used to compare forecasts produced by different VATDs or using different model parameters, assess the impact of assimilating satellite retrieved ash data and evaluate VATD forecasts over a long time period.

  11. Volcanic ash transport integrated in the WRF-Chem model: a description of the application and verification results from the 2010 Eyjafjallajökull eruption.

    NASA Astrophysics Data System (ADS)

    Stuefer, Martin; Webley, Peter; Grell, Georg; Freitas, Saulo; Kim, Chang Ki; Egan, Sean

    2013-04-01

    Regional volcanic ash dispersion models are usually offline decoupled from the numerical weather prediction model. Here we describe a new functionality using an integrated modeling system that allows simulating emission, transport, and sedimentation of pollutants released during volcanic activities. A volcanic preprocessor tool has been developed to initialize the Weather Research Forecasting model with coupled Chemistry (WRF-Chem) with volcanic ash and sulphur dioxide emissions. Volcanic ash variables were added into WRF-Chem, and the model was applied to study the 2010 eruption of Eyjafjallajökull. We evaluate our results using WRF-Chem with available ash detection data from satellite and airborne sensors, and from ground based Lidar measurements made available through the AeroCom project. The volcanic ash was distributed into 10 different bins according to the particle size ranging from 2 mm to less than 3.9 μm; different particle size distributions derived from historic eruptions were tested. An umbrella shaped initial ash cloud and an empirical relationship between mass eruption rates and eruption heights were used to initialize WRF-Chem. We show WRF-Chem model verification for the Eyjafjallajökull eruptions, which occurred during the months of April and May 2010. The volcanic ash plume dispersed extensively over Europe. Comparisons with satellite remote sensing volcanic ash retrievals showed good agreement during the events, also ground-based LIDAR compared well to the model simulations. The model sensitivity analysis of the Eyjafjallajökull event showed a considerable bias of ass mass concentrations afar from the volcano depending on initial ash size and eruption rate assumptions. However the WRF-Chem model initialized with reliable eruption source parameters produced good quality forecasts, and will be tested for operational volcanic ash transport predictions.

  12. Uncertainty in volcanic ash cloud forecasting: sources and quantification (Invited)

    NASA Astrophysics Data System (ADS)

    Folch, A.

    2013-12-01

    Volcanic ash clouds formed during explosive volcanic eruptions can disperse in the atmosphere over larger distances jeopardizing aerial navigation. The trajectories and extent of ash clouds are forecasted operationally coupling atmospheric transport and numerical weather prediction models. The major uncertainties in simulations come from wind fields, eruption source parameters (eruption rate, vertical distribution of ash in the atmosphere and particle granulometry) and removal processes (ash aggregation, wet and dry deposition mechanisms). The global air traffic disruptions following the 2010 and 2011 eruptions of Eyjafjallajökull and Cordón Caulle forced a revision of the modelling approaches in order to provide a more robust and reliable response to the social needs. Strategies to reduce and quantify uncertainties are being introduced at both research and operational levels, including data assimilation, ensemble modelling and probabilistic forecasts. This requires collaboration amongst volcanological and meteorological communities. Initiatives such as the 2nd IUGG-WMO workshop on ash dispersal forecast and civil aviation (Geneva, 18-20 November 2013) help to develop strategies for a closer working relationship and further collaboration amongst scientific communities and between scientists and aviation industry and other stakeholders.

  13. Estimation of volcanic ash refractive index from satellite infrared sounder data

    NASA Astrophysics Data System (ADS)

    Ishimoto, H.; Masuda, K.

    2014-12-01

    The properties of volcanic ash clouds (cloud height, optical depth, and effective radius of the particles) are planned to estimate from the data of the next Japanese geostationary meteorological satellite, Himawari 8/9. The volcanic ash algorithms, such as those proposed by NOAA/NESDIS and by EUMETSAT, are based on the infrared absorption properties of the ash particles, and the refractive index of a typical volcanic rock (i.e. andesite) has been used in the forward radiative transfer calculations. Because of a variety of the absorption properties for real volcanic ash particles at infrared wavelengths (9-13 micron), a large retrieval error may occur if the refractive index of the observed ash particles was different from that assumed in the retrieval algorithm. Satellite infrared sounder provides spectral information for the volcanic ash clouds. If we can estimate the refractive index of the ash particles from the infrared sounder data, a dataset of the optical properties for similar rock type of the volcanic ash can be prepared for the ash retrieval algorithms of geostationary/polar-orbiting satellites in advance. Furthermore, the estimated refractive index can be used for a diagnostic and a correction of the ash particle model in the retrieval algorithm within a period of the volcanic activities. In this work, optimal estimation of the volcanic ash parameters was conducted through the radiative transfer calculations for the window channels of the atmospheric infrared sounder (AIRS). The estimated refractive indices are proposed for the volcanic ash particles of some eruption events.

  14. A method for characterizing volcanic ash

    SciTech Connect

    Bayhurst, G.K.; Wohletz, K.H.; Mason, A.S.

    1991-01-01

    The development of an automated program for characterization of particles using a scanning electron microscope (SEM) with an energy dispersive X-ray detector (EDS) has greatly reduced the time required for analysis of particulate samples. The SEM system provides a digital representation of all particles scanned such that further measurement of the size, shape, and area are a product of image processing. The EDS and associated software provides information as to the particles' chemical composition. The data obtained from the SEM by this method are reduced by computer to obtain distribution graphs for size, density, shape, and mineralogy. These SEM results have been tested by comparisons with results obtained by traditional optical microscopy, which supports the results and provide details concerning crystallinity and glass content. This method was applied to the ash that damaged the engines from the KLM 747 flight of December 15, 1989 while encountering the ash cloud from Redoubt Volcano. The sample was collected from the pitot-static system and had not been exposed to any engine parts that might have changed its characteristics. The sample analysis presented here demonstrates the capabilities and information obtainable from out automated SEM technique. 5 refs., 7 figs., 3 tabs.

  15. In vitro biological effects of volcanic ash from Mount Sakurajima

    SciTech Connect

    Yano, E.; Takeuchi, A.; Nishii, S.; Koizumi, A.; Poole, A.; Brown, R.C.; Johnson, N.F.; Evans, P.H.; Yukiyama, Y.

    1985-01-01

    Mount Sakurajima in the south of the Kyushu Island of Japan erupts hundreds of times a year and continuously emits large amounts of ash. More than a million people live under this ash plume, and there is considerable concern about the possible effects of this on their health. The authors have studied the physiochemical characteristics and in vitro effects of airborne ash collected at 8 km from the crater. More than 30% of the ash was found to be SiO2 (w/w) with most of the particles within the respirable size range. The ash did not inhibit the colony formation of V79-4 cells and failed to activate complement or generate chemotactic factor activity in samples of fresh human serum. It was minimally active in causing the release of lysosomal enzymes from human neutrophils, and did not cause arachidonic acid release from macrophage-like cells. These results were in accord with our epidemiological study, in which very low prevalences of nonspecific respiratory diseases were demonstrated even at the area with highest ash exposure.

  16. GNSS Radio Occultations for monitoring volcanic ash clouds

    NASA Astrophysics Data System (ADS)

    Biondi, Riccardo; Rieckh, Therese; Steiner, Andrea; Kirchengast, Gottfried

    2014-05-01

    Volcanic explosive eruptions affect economic, political and cultural activities. Major explosive eruptions, such as Mount Pinatubo in 1991, can also impact the Earth's climate. They inject huge amounts of gas, aerosol and ash into the upper troposphere and lower stratosphere (UTLS) causing increased reflection of solar radiation back to space and cooling the Earth's troposphere. Measurements of atmospheric parameters, such as temperature and density, with high vertical resolution and accuracy are difficult during volcanic eruptions. Ongoing satellite missions do not provide suitable space-time coverage with adequate horizontal and vertical resolution and sensitivity. In-situ measurements are sparse and the acquisitions at UTLS altitudes are difficult and often not reliable. According to the statement of the International Union of Geodesy and Geophysics on "Volcanological and Meteorological Support for Volcanic Ash Monitoring", about 50% of the world's volcanoes that currently threaten air operations do not have any sort of ground based monitoring. Key parameters are the total erupted mass (total volume and maximum height of plume) and the cloud ash extent. The atmospheric height reached by a plume is fundamentally related to the flux of material ejected at the vent. The determination of the top height of the ash cloud and the monitoring of cloud movement and extent is important for characterizing the eruptive processes and for understanding the impact on climate due to the radiative interaction between the clouds, surface and atmosphere. The Global Positioning System (GPS) Radio Occultation (RO) technique enables measurements of the atmospheric density structure in any meteorological condition, during day and night, with global coverage, high vertical resolution and high accuracy. Several ongoing RO missions provide a high density of vertical profiles with a good time and space coverage. With more than 10 years of GNSS RO availability, these acquisitions became

  17. Airborne stratospheric observations of major volcanic eruptions: past and future

    NASA Astrophysics Data System (ADS)

    Newman, P. A.; Aquila, V.; Colarco, P. R.

    2015-12-01

    Major volcanic eruptions (e.g. the 1991 eruption of Mt. Pinatubo) lead to a surface cooling and disruptions of the chemistry of the stratosphere. In this presentation, we will show model simulations of Mt. Pinatubo that can be used to devise a strategy for answering specific science questions. In particular, what is the initial mass injection, how is the cloud spreading, how are the stratospheric aerosols evolving, what is the impact on stratospheric chemistry, and how will climate be affected? We will also review previous stratospheric airborne observations of volcanic clouds using NASA sub-orbital assets, and discuss our present capabilities to observe the evolution of a stratospheric volcanic plume. These capabilities include aircraft such as the NASA ER-2, WB-57f, and Global Hawk. In addition, the NASA DC-8 and P-3 can be used to perform remote sensing. Balloon assets have also been employed, and new instrumentation is now available for volcanic work.

  18. Using Volcanic Ash to Remove Dissolved Uranium and Lead

    NASA Technical Reports Server (NTRS)

    McKay, David S.; Cuero, Raul G.

    2009-01-01

    Experiments have shown that significant fractions of uranium, lead, and possibly other toxic and/or radioactive substances can be removed from an aqueous solution by simply exposing the solution, at ambient temperature, to a treatment medium that includes weathered volcanic ash from Pu'u Nene, which is a cinder cone on the Island of Hawaii. Heretofore, this specific volcanic ash has been used for an entirely different purpose: simulating the spectral properties of Martian soil. The treatment medium can consist of the volcanic ash alone or in combination with chitosan, which is a natural polymer that can be produced from seafood waste or easily extracted from fungi, some bacteria, and some algae. The medium is harmless to plants and animals and, because of the abundance and natural origin of its ingredient( s), is inexpensive. The medium can be used in a variety of ways and settings: it can be incorporated into water-filtration systems; placed in contact or mixed with water-containing solids (e.g., soils and sludges); immersed in bodies of water (e.g., reservoirs, lakes, rivers, or wells); or placed in and around nuclear power plants, mines, and farm fields.

  19. INHALATION STUDIES OF MT. ST. HELENS VOLCANIC ASH IN ANIMALS. 2. LUNG FUNCTION, BIOCHEMISTRY, AND HISTOLOGY

    EPA Science Inventory

    Rats were exposed by inhalation to 9.4 mg/m3 size-fractionated volcanic ash for 5 days (2hr/day) and examined for changes in pulmonary function and histology for periods of up to 1 year. Fine-mode volcanic ash, SO2, and a combination of ash and SO2 produced no observable effects ...

  20. Magmatic and fragmentation controls on volcanic ash surface chemistry

    NASA Astrophysics Data System (ADS)

    Ayris, Paul M.; Diplas, Spyros; Damby, David E.; Hornby, Adrian J.; Cimarelli, Corrado; Delmelle, Pierre; Scheu, Bettina; Dingwell, Donald B.

    2016-04-01

    The chemical effects of silicate ash ejected by explosive volcanic eruptions on environmental systems are fundamentally mediated by ash particle surfaces. Ash surfaces are a composite product of magmatic properties and fragmentation mechanisms, as well as in-plume and atmospheric alteration processes acting upon those surfaces during and after the eruption. Recent attention has focused on the capacity of alteration processes to shape ash surfaces; most notably, several studies have utilised X-ray photoelectron spectroscopy (XPS), a technique probing the elemental composition and coordination state of atoms within the top 10 nm of ash surfaces, to identify patterns of elemental depletions and enrichments relative to bulk ash chemical composition. Under the presumption of surface and bulk equivalence, any disparities have been previously attributed to surface alteration processes, but the ubiquity of some depletions (e.g., Ca, Fe) across multiple ash studies, irrespective of eruptive origin, could suggest these to be features of the surface produced at the instant of magma fragmentation. To investigate this possibility further, we conducted rapid decompression experiments at different pressure conditions and at ambient and magmatic temperature on porous andesitic rocks. These experiments produced fragmented ash material untouched by secondary alteration, which were compared to particles produced by crushing of large clasts from the same experiments. We investigated a restricted size fraction (63-90 μm) from both fragmented and crushed materials, determining bulk chemistry and mineralogy via XRF, SEM-BSE and EPMA, and investigated the chemical composition of the ash surface by XPS. Analyses suggest that fragmentation under experimental conditions partitioned a greater fraction of plagioclase-rich particles into the selected size fraction, relative to particles produced by crushing. Trends in surface chemical composition in fragmented and crushed particles mirror that

  1. Determination of time- and height-resolved volcanic ash emissions for quantitative ash dispersion modeling: the 2010 Eyjafjallajökull eruption

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Prata, A. J.; Eckhardt, S.; Clarisse, L.; Durant, A.; Henne, S.; Kristiansen, N. I.; Minikin, A.; Schumann, U.; Seibert, P.; Stebel, K.; Thomas, H. E.; Thorsteinsson, T.; Tørseth, K.; Weinzierl, B.

    2011-02-01

    The April-May 2010 volcanic eruptions of Eyjafjallajökull, Iceland caused significant economic and social disruption in Europe whilst state of the art measurements and ash dispersion forecasts were heavily criticized by the aviation industry. Here we demonstrate for the first time that dramatic improvements can be made in quantitative predictions of the fate of volcanic ash emissions, by using an inversion scheme that couples a priori source information and the output of a Lagrangian dispersion model with satellite data to estimate the volcanic ash source strength as a function of altitude and time. From the inversion, we obtain a total fine ash emission of the eruption of 8.3 ± 4.2 Tg for particles in the size range of 2.8-28 μm diameter and extrapolate this to a total ash emission of 11.9 ± 5.9 Tg for the size range of 0.25-250 μm. We evaluate the results of our a posteriori model using independent ground-based, airborne and space-borne measurements both in case studies and statistically. Subsequently, we estimate the area over Europe affected by volcanic ash above certain concentration thresholds relevant for the aviation industry. We find that during three episodes in April and May, volcanic ash concentrations at some altitude in the atmosphere exceeded the limits for the "normal" flying zone in up to 14% (6-16%), 2% (1-3%) and 7% (4-11%), respectively, of the European area. For a limit of 2 mg m-3 only two episodes with fractions of 1.5% (0.2-2.8%) and 0.9% (0.1-1.6%) occurred, while the current "no-fly" zone criterion of 4 mg m-3 was rarely exceeded. Our results have important ramifications for determining air space closures and for real-time quantitative estimations of ash concentrations. Furthermore, the general nature of our method yields better constraints on the distribution and fate of volcanic ash in the Earth system.

  2. Monitoring Volcanic Ash with MSG Seviri Image and RGB Application

    NASA Astrophysics Data System (ADS)

    Erturk, Aydin Gurol; Kerkman, Jochen

    2011-01-01

    The eruption from the Eyjafjallajökull Volcano, Iceland recently became a high importance for the Meteorological Institutes, Aviation, Satellite Centers and other related institutions. Urgent forecasts were requested by the air control centers, aviation industry and even the passengers who stuck at the airports. It was announced that thousands of flights are canceled; hundreds of thousands of passengers affected and the airlines lost around 1.7 billion dollars in April-May 2010. This is the worst aviation crises. MSG (METEOSAT Second Generation) SEVIRI (Spinning Enhanced Visible and Infrared Imagery) with its 11 narrow and 1 broad band channels have been providing a worth of data sources for nowcasting and very short forecasting. SEVIRI images and RGB applications have been acted an important role to monitor Volcanic Ash during above aviation crises. SEVIRI has an infrared channel (centered @8.7 micron) which is sensitive sand, dust and ash in the atmosphere. In this study we present Ash RGB applications derived from SEVIRI data to monitor and track Ash clouds over Europe. Two main eruptions during 14-20 April and 7-17 May 2010 will be demonstrated. In addition to this, we will propose an Ash product algorithm and discuss its weakness and strength.

  3. AATSR Based Volcanic Ash Plume Top Height Estimation

    NASA Astrophysics Data System (ADS)

    Virtanen, Timo H.; Kolmonen, Pekka; Sogacheva, Larisa; Sundstrom, Anu-Maija; Rodriguez, Edith; de Leeuw, Gerrit

    2015-06-01

    The AATSR Correlation Method (ACM) height estimation algorithm is presented. The algorithm uses Advanced Along Track Scanning Radiometer (AATSR) satellite data to detect volcanic ash plumes and to estimate the plume top height. The height estimate is based on the stereo-viewing capability of the AATSR instrument, which allows to determine the parallax between the satellite's nadir and 55° forward views, and thus the corresponding height. AATSR provides an advantage compared to other stereo-view satellite instruments: with AATSR it is possible to detect ash plumes using brightness temperature difference between thermal infrared (TIR) channels centered at 11 and 12 μm. The automatic ash detection makes the algorithm efficient in processing large quantities of data: the height estimate is calculated only for the ash-flagged pixels. Besides ash plumes, the algorithm can be applied to any elevated feature with sufficient contrast to the background, such as smoke and dust plumes and clouds. The ACM algorithm can be applied to the Sea and Land Surface Temperature Radiometer (SLSTR), scheduled for launch at the end of 2015.

  4. Volcanic ash and meteorological clouds detection by neural networks

    NASA Astrophysics Data System (ADS)

    Picchiani, Matteo; Del Frate, Fabio; Stefano, Corradini; Piscini, Alessandro; Merucci, Luca; Chini, Marco

    2014-05-01

    interpreted considering the information of the visible and infrared channels. The comparison shows that the proposed methodology achieves very promising performances, indeed an overall accuracy greater than 87% can be iteratively obtained classifying new images without human interactions. References: Corradini, S., Spinetti, C., Carboni, E., Tirelli, C., Buongiorno, M. F., Pugnaghi, S., and Gangale, G..; "Mt. Etna tropospheric ash retrieval and sensitivity analysis using Moderate Resolution Imaging Spectroradiometer measurements". J, Atmosph. Rem. Sens., 2, 023550, DOI:10.1117/12.823215, 2008. Prata A. J., "Infrared radiative transfer calculations for volcanic ash clouds", Geophys. Res. Lett., Vol. 16, No. 11, pp. 1293-1296, 1989. Picchiani, M., Chini, M., Corradini, S., Merucci, L., Sellitto, P., Del Frate, F. and Stramondo, S., "Volcanic ash detection and retrievals from MODIS data by means of Neural Networks", Atmos. Meas. Tech., 4, 2619-2631, doi:10.5194/amt-4-2619-2011, 2011.

  5. Volcanic ash: a hazard for aviation in Southeast Asia (Invited)

    NASA Astrophysics Data System (ADS)

    Whelley, P.; Newhall, C. G.

    2013-12-01

    There are more than 500 potentially active volcanoes in Southeast Asia. Ash from eruptions of Volcanic Explosivity Index 3 (VEI 3) and larger pose local hazards while eruptions of VEI 4 or greater could disrupt trade, travel, and daily life in large parts of the region. To better manage and understand the risk volcanic ash presents to Southeast Asia, this study quantifies the long-term probability of an eruption interfering with aviation in the region. Southeast Asian volcanoes are classified into 5 groups, using satellite data, by their morphology and, where known, their eruptive history. ';Laguna' type are fields of maars, cinder cones and spatter cones, named for the Laguna Volcanic Field, Philippines. ';Mayon' type volcanoes are open-vent (i.e., observably degassing), frequently active, steep sided stratocones with small summit craters, spatter ramparts, small pyroclastic fans (typically < 3 km but up to 5 km) and lava flows (Mayon Volcano, Philippines). ';Kelut' type are plugged (i.e., not observably degassing) composite cones with dome complexes, pyroclastic fans, and/or debris avalanche deposits (Kelut Volcano, Indonesia). ';Pinatubo' type are large plugged stratovolcanoes with extensive (tens of km) pyroclastic fans and large summit craters or calderas up to 5 km in diameter (Pinatubo Volcano, Philippines). ';Toba-Tambora' type are calderas with long axes > 5 km and surrounded by ignimbrite sheets (Toba Caldera, Indonesia; Tambora Volcano, Indonesia). In addition, silicic dome complexes that might potentially produce large caldera-forming eruptions are classified as Toba-Tambora type. The eruptive histories of most volcanoes in Southeast Asia are poorly constrained. Assuming that volcanoes with similar morphologies have had similar eruption histories, we use eruption histories of well-studied examples of each morphologic category as proxy histories for understudied volcanoes in the class. Results from this work are used to model volcanic ash contamination

  6. Exercises for the VAST demonstration volcanic ash forecast system

    NASA Astrophysics Data System (ADS)

    Arnold, Delia; Bialek, Jakub; O'Dowd, Collin; Iren Kristiansen, Nina; Martin, Damien; Maurer, Christian; Miklos, Erika; Prata, Fred; Radulescu, Razvan; Sollum, Espen; Sofiev, Mikhail; Stebel, Kerstin; Stohl, Andreas; Vira, Julius; Wotawa, Gerhard

    2014-05-01

    Within the ESA-funded international project VAST (Volcanic Ash Strategic Initiative Team) a demonstration service for volcanic ash forecasting and source term estimate is planned. This service takes advantage of the operationally available EO data for constraining the source term and multi-input and multi-model ensemble approaches to account, at a certain extent, for the uncertainties associated to the meteorological data used to drive the forecast models and the models themselves. In order to test the approach and current capabilities of the team, a set of exercises was carried out in 2013 including fictitious scenarios that would potentially affect the European airspace giving significant fine ash loads at usual cruise levels. The recent activity of Etna, with events in Autumn and Winter 2013 with clear transport over Europe, is providing a good test case for the evaluation of the system, from the early warning to the ensemble modeling tools, in a real case scenario. Although the releases were not a potential threat for aviation at an European scale, the local airport of Catania, at a close distance, was affected. For one recent Etna eruption and the former exercises we present here the performance of the system and the ensemble results. The combination atmospheric dispersion model-meteorology used are: FLEXPART-ECMWF/GFS/WRF, WRF-Chem and SILAM.

  7. Model-based aviation advice on distal volcanic ash clouds by assimilating aircraft in situ measurements

    NASA Astrophysics Data System (ADS)

    Fu, Guangliang; Heemink, Arnold; Lu, Sha; Segers, Arjo; Weber, Konradin; Lin, Hai-Xiang

    2016-07-01

    The forecast accuracy of distal volcanic ash clouds is important for providing valid aviation advice during volcanic ash eruption. However, because the distal part of volcanic ash plume is far from the volcano, the influence of eruption information on this part becomes rather indirect and uncertain, resulting in inaccurate volcanic ash forecasts in these distal areas. In our approach, we use real-life aircraft in situ observations, measured in the northwestern part of Germany during the 2010 Eyjafjallajökull eruption, in an ensemble-based data assimilation system combined with a volcanic ash transport model to investigate the potential improvement on the forecast accuracy with regard to the distal volcanic ash plume. We show that the error of the analyzed volcanic ash state can be significantly reduced through assimilating real-life in situ measurements. After a continuous assimilation, it is shown that the aviation advice for Germany, the Netherlands and Luxembourg can be significantly improved. We suggest that with suitable aircrafts measuring once per day across the distal volcanic ash plume, the description and prediction of volcanic ash clouds in these areas can be greatly improved.

  8. The health hazards of volcanic ash--A guide for the public

    USGS Publications Warehouse

    Horwell, C.; Baxter, P.

    2007-01-01

    This document has been prepared by the International Volcanic Health Hazard Network (IVHHN), Cities and Volcanoes Commission, GNS Science and the United States Geological Survey (USGS) to promote the safety of those who experience volcanic ashfall. This guide explains the potential health effects of volcanic ash and gives details on how to protect yourself and your family in the event of a volcanic ashfall.

  9. The formation and fate of fine volcanic ash

    NASA Astrophysics Data System (ADS)

    Rose, W. I.; Durant, A. J.; Horwell, C. J.

    2006-12-01

    Volcanic ash is fragmental magma and occurs in size ranges from the lapilli boundary (2 mm) to less than 0.1 μm in diameter. Satellite remote sensing measurements show that ash with diameter <100 μm falls out much faster than it could fall as simple particles. We applied laser diffraction methods to determine the grain size distribution (GSD) of an archive of more than 200 samples of fine-grained ashfalls from plinian, subplinian and peleean eruptions of the past 40 years which range from basalt to dacite. The samples were collected days after eruption and fall. Results show that fine ash fell largely at distances which, based on atmospheric trajectory analyses, represent one to several hours of atmospheric residence, far less than their GSD would suggest based on diameter and fall as simple particles. Many samples show bimodal GSD with larger pyroclasts possibly capturing smaller ones during fall. A large number of samples from all the volcanoes studied have unimodal GSD with Mdφ of 4-7 (8-63 μm diameter) and have fine tails. These samples generally do not contain pyroclasts which could have fallen as simple particles. There is no simple relationship between GSD and distance among these samples. Ice generated from the convective eruption column is strongly suspected to play an important role in the fallout of fine ash, especially in more intense eruptions which reach the upper troposphere or stratosphere because the residence of fine ash matches the residence time of ice, which is unstable in the dry atmosphere. Among important issues that need clarification are: What processes cause fine ash to form? What controls the locations of fall? We found abundant evidence that one process which generates fine ash is milling by pyroclastic flows and elutriation of resulting fines. We also can show that fine ash falls out in a pattern that differs markedly from coarser ash that falls in the turbulent flow regime and that this pattern seems to be related to wind fields

  10. Volcanic ash: a potential hazard for aviation in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Whelley, P. L.; Newhall, C. G.

    2012-12-01

    There are more than 400 volcanoes in Southeast Asia. Ash from eruptions of Volcanic Explosivity Index 3 (VEI 3) and larger pose local hazards and eruptions of VEI 4 or greater could disrupt trade, travel, and daily life in large parts of the region. To better manage and understand the risk volcanic ash poses to Southeast Asia, this study quantifies the long-term probability of a large eruption sending ash into the Singapore Flight Information Region (FIR), which is a 1,700 km long, quasi-rectangular zone from the Strait of Malacca to the South China Sea. Southeast Asian volcanoes are classified into 6 groups, using satellite data, by their morphology, and where known, their eruptive history. 'Laguna' type are fields of maars, cinder cones and spatter cones, named for the Laguna Volcanic Field, Philippines (13.204, 123.525). 'Kembar' type are broad, gently sloping shield volcanoes with extensive lava flows (Kembar Volcano, Indonesia: 3.850, 097.664). 'Mayon' type volcanoes are open-vent, frequently active, steep sided stratocones with small summit craters, spatter ramparts, small pyroclastic fans (typically < 3 km but up to 5 km) and lava flows (Mayon Volcano, Philippines: 13.257, 123.685). 'Kelut' type are semi-plugged composite cones with dome complexes, pyroclastic fans, and/or debris avalanche deposits (Kelut Volcano, Indonesia: -7.933, 112.308). 'Pinatubo' type are large plugged stratovolcanoes with extensive (tens of km) pyroclastic fans and large summit craters or calderas up to 5 km in diameter (Pinatubo Volcano, Philippines: 15.133, 120.350). 'Toba' type are calderas with long axes > 5 km and surrounded by ignimbrite sheets (Toba Caldera, Indonesia: 02.583, 098.833). In addition silicic dome complexes that might eventually produce large caldera-forming eruptions are also classified as Toba type. The eruptive histories of most volcanoes in Southeast Asia are poorly constrained. Assuming that volcanoes with similar morphologies have had similar eruption

  11. Spreading dynamic of viscous volcanic ash in stimulated jet engine conditions

    NASA Astrophysics Data System (ADS)

    song, wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado

    2016-04-01

    The ingestion of volcanic ash is widely recognised as a potentially fatal hazard for aircraft operation. The volcanic ash deposition process in a jet turbine is potentially complex. Volcanic ash in the air stream enters the inner liners of the combustors and partially or completely melts under the flames up to 2000 °C, at which point part of the ash deposits in the combustor fuel nozzle. Molten volcanic particles within high energy airflow escape the combustor to enter the turbine and impact the stationary (e.g., inlet nozzle guide vanes) and rotating airfoils (e.g., first stage high-pressure turbine blades) at high speed (up to Mach 1.25) in different directions, with the result that ash may stick, flow and remain liquid or solidify. Thus, the wetting behaviour of molten volcanic ash particle is fundamental to investigate impingement phenomena of ash droplet on the surface of real jet engine operation. The topic of wetting has received tremendous interest from both fundamental and applied points of view. However, due to the interdisciplinary gap between jet engine engineering and geology science, explicit investigation of wetting behaviour of volcanic ash at high temperature is in its infancy. We have taken a big step towards meeting this challenge. Here, we experimentally and theoretically investigate the wetting behaviour of viscous volcanic ash over a wide temperature range from 1100 to 1550 °C using an improved sessile-drop method. The results of our experiment demonstrate that temperature and viscosity play a critical role in determining the wetting possibility and governing the spreading kinetics of volcanic ash at high temperatures. Our systemic analysis of spreading of molten volcanic ash systems allows us to report on the fundamental differences between the mechanisms controlling spreading of organic liquids at room temperature and molten volcanic ash droplets.

  12. Generation of volcanic ash: a textural study of ash produced in various laboratory experiments

    NASA Astrophysics Data System (ADS)

    Lavallée, Yan; Kueppers, Ulrich; Dingwell, Donald B.

    2010-05-01

    In volcanology, ash is commonly understood as a fragment of a bubble wall that gets disrupted during explosive eruptions. Most volcanic ashes are indeed the product of explosive eruptions, but the true definition is however that of a particle size being inferior to 2 mm. The term does not hold any information about its genesis. During fragmentation, particles of all sizes in various amounts are generated. In nature, fragmentation is a brittle response of the material (whether a rock or magma) caused by changes in 1) strain rate and 2) temperature, and/or 3) chemical composition. Here we used different experimental techniques to produce ash and study their physical characteristics. The effects of strain rate were investigated by deforming volcanic rocks and magma (pure silicate melt and crystal-bearing magma) at different temperatures and stresses in a uniaxial compression apparatus. Failure of pure silicate melts is spontaneous and generates more ash particles than fragmentation of crystal-bearing melts. In the latter, the abundance of generated ash correlates positively with the strain rate. We complemented this investigation with a study of particles generated during rapid decompression of porous rocks, using a fragmentation apparatus. Products of decompression experiments at different initial applied pore pressure show that the amount of ash generated by bubble burst increase with the initial applied pressure and the open porosity. The effects of temperature were investigated by dropping pure silicate melts and crystal-bearing magma at 900 and 1100°C in water at room temperature. Quenching of the material is accompanied by rapid contraction and near instantaneous fragmentation. Pure silicate melts respond more violently to the interaction with water and completely fragmented into small particles, including a variety of ash morphologies and surface textures. Crystal-bearing magmas however fragmented only very partially when in contact with water and produced a

  13. A new natural hazards data-base for volcanic ash and SO2 from global satellite remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Prata, F.; Stebel, K.

    2013-12-01

    Over the last few years there has been a recognition of the utility of satellite measurements to identify and track volcanic emissions that present a natural hazard to human populations. Mitigation of the volcanic hazard to life and the environment requires understanding of the properties of volcanic emissions, identifying the hazard in near real-time and being able to provide timely and accurate forecasts to affected areas. Amongst the many ways to measure volcanic emissions, satellite remote sensing is capable of providing global quantitative retrievals of important microphysical parameters such as ash mass loading, ash particle effective radius, infrared optical depth, SO2 partial and total column abundance, plume altitude, aerosol optical depth and aerosol absorbing index. The eruption of Eyjafjallajokull in April-May, 2010 led to increased research and measurement programs to better characterize properties of volcanic ash and the need to establish a data-base in which to store and access these data was confirmed. The European Space Agency (ESA) has recognized the importance of having a quality controlled data-base of satellite retrievals and has funded an activity (VAST) to develop novel remote sensing retrieval schemes and a data-base, initially focused on several recent hazardous volcanic eruptions. As a first step, satellite retrievals for the eruptions of Eyjafjallajokull, Grimsvotn, Puyhue-Cordon Caulle, Nabro, Merapi, Okmok, Kasatochi and Sarychev Peak are being considered. Here we describe the data, retrievals and methods being developed for the data-base. Three important applications of the data-base are illustrated related to the ash/aviation problem, to the impact of the Merapi volcanic eruption on the local population, and to estimate SO2 fluxes from active volcanoes-as a means to diagnose future unrest. Dispersion model simulations are also being included in the data-base. In time, data from conventional in situ sampling instruments, airborne and

  14. An airborne system for detection of volcanic surface deformations

    NASA Technical Reports Server (NTRS)

    Lunine, J.

    1980-01-01

    A technique is proposed for measuring volcanic deformation on the order of centimeters per day to centimeters per year. An airborne multifrequency pulsed radar, tracking passive ground reflectors spaced at 1 kilometer intervals over a 50 square kilometer area is employed. Identification of targets is accomplished by Doppler and range resolution techniques, with final relative position measurements accomplished by phase comparison of multifrequency signals. Atmospheric path length errors are corrected by an airborne refractometer, meteorological instruments, or other refractive index measuring devices. Anticipated system accuracy is 1-2 cm, with measuring times on the order of minutes. Potential problems exist in the high intrinsic data assimilation rate required of the system to overcome ground backscatter noise.

  15. The identification and tracking of volcanic ash using the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infra-Red Imager (SEVIRI)

    NASA Astrophysics Data System (ADS)

    Naeger, A. R.; Christopher, S. A.

    2013-06-01

    In this paper, we develop an algorithm based on combining spectral, spatial, and temporal thresholds from the geostationary Spinning Enhanced Visible and InfraRed Imager (SEVIRI) daytime measurements to identify and track different aerosol types, primarily volcanic ash. Contemporary methods typically do not use temporal information to identify ash. We focus not only on the identification and tracking of volcanic ash during the Eyjafjallajökull volcanic eruption period beginning 14 April 2010 to May but a pixel level classification method for separating various classes in the SEVIRI images. Three case studies on 19 April, 16 May, and 17 May are analyzed in extensive detail with other satellite data including the Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging Spectroradiometer (MISR), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and Facility for Airborne Atmospheric Measurements (FAAM) BAe146 aircraft data to verify the aerosol spatial distribution maps generated by the SEVIRI algorithm. Our results indicate that the SEVIRI algorithm is able to track volcanic ash even at these high latitudes. Furthermore, the BAe146 aircraft data shows that the SEVIRI algorithm detects nearly all ash regions when AOD > 0.2. However, the algorithm has higher uncertainties when AOD is < 0.1 over water and AOD < 0.2 over land. The ash spatial distributions provided by this algorithm can be used as a critical input and validation for atmospheric dispersion models simulated by Volcanic Ash Advisory Centers (VAACs). Identifying volcanic ash is an important first step before quantitative retrievals of ash concentration can be made.

  16. Volcanic ash vs. sand and dust - "to stick or not to stick" in jet engines

    NASA Astrophysics Data System (ADS)

    Kueppers, U.; Song, W.; Lavallée, Y.; Hess, K. U.; Cimarelli, C.; Dingwell, D. B.

    2015-12-01

    Safe air travel activity requires clean flight corridors. But particles scattered in the atmosphere, whether volcanic ash, dust or sand, may present a critical threat to aviation safety. When these foreign particles are ingested into jet engines, whose interiors (e.g., the combustor and turbine blades) reach 1200-2000 °C, they can abrade, melt, and stick to the internal components of the engine, clogging ventilation traps of the cooling system as well as imparting substantial damage and potentially resulting in catastrophic system failure. To date, no criterion predicts ash behaviour at high temperature. Here, we experimentally develop the first quantitative model to predict melting and sticking conditions for the compositional range of volcanic ash encountered worldwide (Fig.1). The assumption that volcanic ash can be approximated by sand or dust is wholly inadequate, leading to an overestimation of sticking temperature and a correspondingly severe underestimation of the thermal hazard. Our findings confirm that the melting/softening behaviour of volcanic ash at high temperatures is essentially controlled by the composition of erupted ash - which may serve as an accurate proxy of the thermal hazard potential of volcanic ash interaction with jet engines. The criterion proposed here successfully parameterizes the potentially complex "melting" process of volcanic ash and can be used to assess the deposition probability of volcanic ash upon ingestion into hot jet engines.

  17. Volcanic eruptions, hazardous ash clouds and visualization tools for accessing real-time infrared remote sensing data

    NASA Astrophysics Data System (ADS)

    Webley, P.; Dehn, J.; Dean, K. G.; Macfarlane, S.

    2010-12-01

    Volcanic eruptions are a global hazard, affecting local infrastructure, impacting airports and hindering the aviation community, as seen in Europe during Spring 2010 from the Eyjafjallajokull eruption in Iceland. Here, we show how remote sensing data is used through web-based interfaces for monitoring volcanic activity, both ground based thermal signals and airborne ash clouds. These ‘web tools’, http://avo.images.alaska.edu/, provide timely availability of polar orbiting and geostationary data from US National Aeronautics and Space Administration, National Oceanic and Atmosphere Administration and Japanese Meteorological Agency satellites for the North Pacific (NOPAC) region. This data is used operationally by the Alaska Volcano Observatory (AVO) for monitoring volcanic activity, especially at remote volcanoes and generates ‘alarms’ of any detected volcanic activity and ash clouds. The webtools allow the remote sensing team of AVO to easily perform their twice daily monitoring shifts. The web tools also assist the National Weather Service, Alaska and Kamchatkan Volcanic Emergency Response Team, Russia in their operational duties. Users are able to detect ash clouds, measure the distance from the source, area and signal strength. Within the web tools, there are 40 x 40 km datasets centered on each volcano and a searchable database of all acquired data from 1993 until present with the ability to produce time series data per volcano. Additionally, a data center illustrates the acquired data across the NOPAC within the last 48 hours, http://avo.images.alaska.edu/tools/datacenter/. We will illustrate new visualization tools allowing users to display the satellite imagery within Google Earth/Maps, and ArcGIS Explorer both as static maps and time-animated imagery. We will show these tools in real-time as well as examples of past large volcanic eruptions. In the future, we will develop the tools to produce real-time ash retrievals, run volcanic ash dispersion

  18. The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation

    NASA Astrophysics Data System (ADS)

    Horwell, Claire J.; Baxter, Peter J.

    2006-07-01

    Studies of the respiratory health effects of different types of volcanic ash have been undertaken only in the last 40 years, and mostly since the eruption of Mt. St. Helens in 1980. This review of all published clinical, epidemiological and toxicological studies, and other work known to the authors up to and including 2005, highlights the sparseness of studies on acute health effects after eruptions and the complexity of evaluating the long-term health risk (silicosis, non-specific pneumoconiosis and chronic obstructive pulmonary disease) in populations from prolonged exposure to ash due to persistent eruptive activity. The acute and chronic health effects of volcanic ash depend upon particle size (particularly the proportion of respirable-sized material), mineralogical composition (including the crystalline silica content) and the physico-chemical properties of the surfaces of the ash particles, all of which vary between volcanoes and even eruptions of the same volcano, but adequate information on these key characteristics is not reported for most eruptions. The incidence of acute respiratory symptoms (e.g. asthma, bronchitis) varies greatly after ashfalls, from very few, if any, reported cases to population outbreaks of asthma. The studies are inadequate for excluding increases in acute respiratory mortality after eruptions. Individuals with pre-existing lung disease, including asthma, can be at increased risk of their symptoms being exacerbated after falls of fine ash. A comprehensive risk assessment, including toxicological studies, to determine the long-term risk of silicosis from chronic exposure to volcanic ash, has been undertaken only in the eruptions of Mt. St. Helens (1980), USA, and Soufrière Hills, Montserrat (1995 onwards). In the Soufrière Hills eruption, a long-term silicosis hazard has been identified and sufficient exposure and toxicological information obtained to make a probabilistic risk assessment for the development of silicosis in outdoor

  19. Nanoscale surface modification of Mt. Etna volcanic ashes

    NASA Astrophysics Data System (ADS)

    Barone, G.; Mazzoleni, P.; Corsaro, R. A.; Costagliola, P.; Di Benedetto, F.; Ciliberto, E.; Gimeno, D.; Bongiorno, C.; Spinella, C.

    2016-02-01

    Ashes emitted during volcanic explosive activity present peculiar surface chemical and mineralogical features related in literature to the interaction in the plume of solid particles with gases and aerosols. The compositional differences of magmas and gases, the magnitude, intensity and duration of the emission and the physical condition during the eruption, strongly influence the results of the modification processes. Here we report the characterization of the products emitted during the 2013 paroxysmal activity of Mt. Etna. The surface features of the ash particles were investigated through X-ray photoelectron spectroscopy (XPS) and Transmission electron microscopy (TEM) allowing the analysis at nanometer scale. TEM images showed on the surface the presence of composite structures formed by Ca, Mg and Na sulphates and halides and of droplets and crystals of chlorides; nanometric magnesioferrite and metallic iron dendrites are observable directly below the surface. From the chemical point of view, the most external layer of the volcanic glassy particles (<5 nm), analysed by XPS, presents depletion in Si, Mg, Ca, Na and K and strong enrichment in volatile elements especially F and S, with respect to the inner zone, which represents the unaltered counterpart. Below this external layer, a transition glassy shell (thick 50-100 nm) is characterized by Fe, Mg and Ca enrichments with respect to the inner zone. We propose that the ash particle surface composition is the result of a sequence of events which start at shallow depth, above the exsolution surface, where gas bubbles nucleate and the interfaces between bubbles and melt represent proto-surfaces of future ash particles. Enrichment of Ca, Mg and Fe and halides may be due to the early partition of F and Cl in the gas phase and their interaction with the melt layer located close to the bubbles. Furthermore the formation of volatile SiF4 and KF explain the observed depletion of Si and K. The F enrichment in the

  20. Aircraft and Volcanic Ash a Key Focus of EGU Meeting

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-05-01

    The erupting Eyjafjallajökull volcano in southern Iceland, which has intermittently disrupted European air traffic since 14 April, provided a dramatic backdrop for the recent European Geosciences Union (EGU) General Assembly in Vienna, Austria, about 2700 kilometers to the east. EGU organized several last-minute conference sessions about the eruption, and a number of scientists, including some from Iceland, discussed the latest situation, monitoring and assessment needs, and new guidance about flying through volcanic ash, which volcanologist and incoming EGU president-elect Donald Dingwell of the University of Munich, Germany, called “one of the ugliest cocktails nature throws up.” Although the eruption was small compared with those at Mount St. Helens in 1980 or Mount Pinatubo in 1991, the event produced an estimated 0.1 ± 0.05 cubic kilometer of tephra between 14 and 16 April, according to preliminary numbers from the Institute of Earth Sciences in Reykjavik, Iceland (see the related news item in this issue). An enormous amount of ash from the eruption got lofted into the jet stream toward the United Kingdom and the European mainland. European air traffic controllers, operating under the best guidance and guidelines available at that time—which indicated no flying in ash—shut down European air space to avoid a potential catastrophe if ash clogged up an aircraft's engines.

  1. Communicating Uncertainty in Volcanic Ash Forecasts: Decision-Making and Information Preferences

    NASA Astrophysics Data System (ADS)

    Mulder, Kelsey; Black, Alison; Charlton-Perez, Andrew; McCloy, Rachel; Lickiss, Matthew

    2016-04-01

    The Robust Assessment and Communication of Environmental Risk (RACER) consortium, an interdisciplinary research team focusing on communication of uncertainty with respect to natural hazards, hosted a Volcanic Ash Workshop to discuss issues related to volcanic ash forecasting, especially forecast uncertainty. Part of the workshop was a decision game in which participants including forecasters, academics, and members of the Aviation Industry were given hypothetical volcanic ash concentration forecasts and asked whether they would approve a given flight path. The uncertainty information was presented in different formats including hazard maps, line graphs, and percent probabilities. Results from the decision game will be presented with a focus on information preferences, understanding of the forecasts, and whether different formats of the same volcanic ash forecast resulted in different flight decisions. Implications of this research will help the design and presentation of volcanic ash plume decision tools and can also help advise design of other natural hazard information.

  2. Effects Of Crystallographic Properties On The Ice Nucleation Properties Of Volcanic Ash Particles

    SciTech Connect

    Kulkarni, Gourihar R.; Nandasiri, Manjula I.; Zelenyuk, Alla; Beranek, Josef; Madaan, Nitesh; Devaraj, Arun; Shutthanandan, V.; Thevuthasan, Suntharampillai; Varga, Tamas

    2015-04-28

    Specific chemical and physical properties of volcanic ash particles that could affect their ability to induce ice formation are poorly understood. In this study, the ice nucleating properties of size-selected volcanic ash and mineral dust particles in relation to their surface chemistry and crystalline structure at temperatures ranging from –30 to –38 °C were investigated in deposition mode. Ice nucleation efficiency of dust particles was higher compared to ash particles at all temperature and relative humidity conditions. Particle characterization analysis shows that surface elemental composition of ash and dust particles was similar; however, the structural properties of ash samples were different.

  3. How accurate are volcanic ash simulations of the 2010 Eyjafjallajökull eruption?

    NASA Astrophysics Data System (ADS)

    Dacre, Helen; Harvey, Natalie; Webley, Peter; Morton, Don

    2016-04-01

    In the event of a volcanic eruption the decision to close airspace is based on forecast ash maps, produced using volcanic ash transport and dispersion models. In this paper we quantitatively evaluate the spatial skill of volcanic ash simulations using satellite retrievals of ash from the Eyjafjallajökull eruption during the period from 7-16 May 2010. We find that at the start of this period, 7-10 May, the model (FLEXPART) has excellent skill and can predict the spatial distribution of the satellite retrieved ash to within 0.5°× 0.5° lat/lon. However, on the 10 May there is a decrease in the spatial accuracy of the model, to 2.5°× 2.5° lat/lon, and between 11-12 May the simulated ash location errors grow rapidly. On the 11 May ash is located close to a bifurcation point in the atmosphere, resulting in a rapid divergence in the modeled and satellite ash locations. In general, the model skill reduces as the residence time of ash increases. However, the error growth is not always steady. Rapid increases in error growth are linked to critical points in the ash trajectories. Ensemble modeling using perturbed meteorological data would help to represent this uncertainty and assimilation of satellite ash data would help to reduce uncertainty in volcanic ash forecasts.

  4. How accurate are volcanic ash simulations of the 2010 Eyjafjallajökull eruption?

    NASA Astrophysics Data System (ADS)

    Dacre, H. F.; Harvey, N. J.; Webley, P. W.; Morton, D.

    2016-04-01

    In the event of a volcanic eruption the decision to close airspace is based on forecast ash maps, produced using volcanic ash transport and dispersion models. In this paper we quantitatively evaluate the spatial skill of volcanic ash simulations using satellite retrievals of ash from the Eyjafjallajökull eruption during the period from 7 to 16 May 2010. We find that at the start of this period, 7-10 May, the model (FLEXible PARTicle) has excellent skill and can predict the spatial distribution of the satellite-retrieved ash to within 0.5° × 0.5° latitude/longitude. However, on 10 May there is a decrease in the spatial accuracy of the model to 2.5°× 2.5° latitude/longitude, and between 11 and 12 May the simulated ash location errors grow rapidly. On 11 May ash is located close to a bifurcation point in the atmosphere, resulting in a rapid divergence in the modeled and satellite ash locations. In general, the model skill reduces as the residence time of ash increases. However, the error growth is not always steady. Rapid increases in error growth are linked to key points in the ash trajectories. Ensemble modeling using perturbed meteorological data would help to represent this uncertainty, and assimilation of satellite ash data would help to reduce uncertainty in volcanic ash forecasts.

  5. INHALATION STUDIES OF MT. ST. HELENS VOLCANIC ASH IN ANIMALS: RESPIRATORY MECHANICS, AIRWAY REACTIVITY AND DEPOSITION

    EPA Science Inventory

    Effects of fine volcanic ash aerosol on pulmonary mechanical properties of awake guinea pigs were evaluated during exposure by inhalation. Ash penetration into the lungs as well as tissue response to ash were determined by transmission electron microscopy. The reactivity of airwa...

  6. Engine Damage to a NASA DC-8-72 Airplane From a High-Altitude Encounter With a Diffuse Volcanic Ash Cloud

    NASA Technical Reports Server (NTRS)

    Grindle, Thomas J.; Burcham, Frank W., Jr.

    2003-01-01

    The National Aeronautics and Space Administration (NASA) DC-8 airborne sciences research airplane inadvertently flew through a diffuse volcanic ash cloud of the Mt. Hekla volcano in February 2000 during a flight from Edwards Air Force Base (Edwards, California) to Kiruna, Sweden. Although the ash plume was not visible to the flight crew, sensitive research experiments and instruments detected it. In-flight performance checks and postflight visual inspections revealed no damage to the airplane or engine first-stage fan blades; subsequent detailed examination of the engines revealed clogged turbine cooling air passages. The engines were removed and overhauled. This paper presents volcanic ash plume analysis, trajectory from satellites, analysis of ash particles collected in cabin air heat exchanger filters and removed from the engines, and data from onboard instruments and engine conditions.

  7. Volcanic-Ash Hazards to Aviation—Changes and Challenges since the 2010 Eruption of Eyjafjallajökull, Iceland

    NASA Astrophysics Data System (ADS)

    Guffanti, M.; Tupper, A.; Mastin, L. G.; Lechner, P.

    2012-12-01

    In response to the severe disruptions to civil aviation that resulted from atmospheric transport of ash from the eruption of Eyjafjallajökull volcano in Iceland in April and May 2010, the International Civil Aviation Organization (ICAO) quickly formed the International Volcanic Ash Task Force (IVATF), charging it to support the accelerated development of a global risk-management framework for volcanic-ash hazards to aviation. Recognizing the need for scientifically based advice on best methods to detect ash in the atmosphere and depict zones of hazardous airspace, the IVATF sought input from the global scientific community, primarily by means of the Volcanic Ash Scientific Advisory Group which was established in May 2010 by the World Meteorological Organization (WMO) and International Union of Geodesy and Geophysics to serve as a scientific resource for ICAO. The IVATF finished its work in June 2012 (see http://www.icao.int/safety/meteorology/ivatf/Pages/default.aspx for a record of its results). A major science-based outcome is that production of charts depicting areas of airspace expected to have specific ash-concentration values (e.g. <0.2, 0.2-2, 2-4, >4 mg/cu. m) will not be required of the world's nine Volcanic Ash Advisory Centers (VAACs). The VAACs are responsible for issuing warning information to the aviation sector regarding ash-cloud position and expected movement. Forecast concentrations in these charts are based primarily on dispersion models that have at least an order of magnitude in uncertainty in their output and therefore do not delineate hazardous airspace with the level of confidence needed by the aviation sector. The recommended approach to improving model-forecast accuracy is to assimilate diverse observations (e.g., satellite thermal-infrared measurements, lidar, radar, direct airborne sampling, visual sightings, etc.) into model simulations; doing that during an eruption in the demanding environment of aviation operations is a substantial

  8. Cataclastic production of volcanic ash at Mount Saint Helens

    NASA Astrophysics Data System (ADS)

    Kennedy, Lori A.; Russell, James K.

    2012-01-01

    The 2004-2008 eruption of Mt. St. Helens (MSH) produced a series of lava domes and spines distinguished by the occurrence of an enveloping carapace of finely comminuted, weakly indurated fault gouge. The fault gouge results from fracture and shear strain, causing comminution of dacite along the conduit walls during ascent. The faulting associated with the formation of gouge is assumed to be the origin of a repetitive microseismicity (i.e., “drumbeat” seismicity) sourced at ∼0.5-1 km depth. The early phases of dome extrusion were attended by several small explosive events producing plumes of volcanic ash derived largely from the fault gouge. Here we present experimental results that establish the requisite conditions for this cataclastic production of volcanic ash at MSH. The experiments are low temperature rock deformation experiments performed on MSH dacite under confining pressures consistent with conduit pressures (0.1, 25, 50, 75 MPa). The first set of experiments ended once a through-going shear fracture was formed; these produced a highly localized fault surface and associated fault gouge. A second set of experiments allowed frictional sliding along the fault surface after failure thereby exploring the role of shear strain on grain size reduction of the gouge. Rock strength increases with confining pressure (from 139 to 722 MPa at 0.1 to 75 MPa). Unconfined loading of the MSH dacite produced several longitudinal fractures with little gouge and a small stress drop (∼120 MPa), whereas 75 MPa experiments produced a near-linear shear fracture, with a stress drop of ∼300 MPa. The amount of gouge and the grain size distribution of the gouge are only weakly affected by the confining pressure. Continued sliding (i.e., shear strain) causes a substantial increase in the amount of gouge but does not increase the number abundance of the finest (<10 μm) particles. Thus, the finest particles are an expression only of the magnitude of the stress drop event

  9. Cataclastic Production of Volcanic Ash at Mount Saint Helens

    NASA Astrophysics Data System (ADS)

    Kennedy, L.; Russell, K.; CentreExperimental Studies of the Lithosphere

    2011-12-01

    The 2004-2008 eruption of Mt. St. Helens (MSH) produced a series of lava domes and spines distinguished by the occurrence of an enveloping carapace of finely comminuted, weakly indurated fault gouge. The fault gouge results from fracture and shear strain, causing comminution of dacite along the conduit walls during ascent. The faulting associated with the formation of gouge is assumed to be the origin of a repetitive microseismicity (i.e., "drumbeat" seismicity) sourced at ~ 0.5 - 1 km depth. The early phases of dome extrusion were attended by several small explosive events producing plumes of volcanic ash derived largely from the fault gouge. Here we present experimental results that establish the requisite conditions for this cataclastic production of volcanic ash at MSH. The experiments are low temperature rock deformation experiments performed on MSH dacite under confining pressures consistent with conduit pressures (0.1, 25, 50, 75 MPa). The first set of experiments ended once a through-going shear fracture was formed; these produced a highly localized fault surface and associated fault gouge. A second set of experiments allowed frictional sliding along the fault surface after failure thereby exploring the role of shear strain on grain size reduction of the gouge. Rock strength increases with confining pressure (from 139-722 MPa at 0.1 to 75 MPa). Unconfined loading of the MSH dacite produced several longitudinal fractures with little gouge and a small stress drop (~120 MPa), whereas 75 MPa experiments produced a near-linear shear fracture, with a stress drop of ~300 MPa. The amount of gouge and the grain size distribution of the gouge are only weakly affected by the confining pressure. Continued sliding (i.e., shear strain) causes a substantial increase in the amount of gouge but does not increase the number abundance of the finest (<10 mm) particles. Thus, the finest particles are an expression only of the magnitude of the stress drop event (fracture) and

  10. Validation of ash optical depth and layer height retrieved from passive satellite sensors using EARLINET and airborne lidar data: the case of the Eyjafjallajökull eruption

    NASA Astrophysics Data System (ADS)

    Balis, Dimitris; Koukouli, Maria-Elissavet; Siomos, Nikolaos; Dimopoulos, Spyridon; Mona, Lucia; Pappalardo, Gelsomina; Marenco, Franco; Clarisse, Lieven; Ventress, Lucy J.; Carboni, Elisa; Grainger, Roy G.; Wang, Ping; Tilstra, Gijsbert; van der A, Ronald; Theys, Nicolas; Zehner, Claus

    2016-05-01

    The vulnerability of the European airspace to volcanic eruptions was brought to the attention of the public and the scientific community by the 2010 eruptions of the Icelandic volcano Eyjafjallajökull. As a consequence of this event, ash concentration thresholds replaced the "zero tolerance to ash" rule, drastically changing the requirements on satellite ash retrievals. In response to that, the ESA funded several projects aiming at creating an optimal end-to-end system for volcanic ash plume monitoring and prediction. Two of them, namely the SACS-2 and SMASH projects, developed and improved dedicated satellite-derived ash plume and sulfur dioxide level assessments. The validation of volcanic ash levels and height extracted from the GOME-2 and IASI instruments on board the MetOp-A satellite is presented in this work. EARLINET lidar measurements are compared to different satellite retrievals for two eruptive episodes in April and May 2010. Comparisons were also made between satellite retrievals and aircraft lidar data obtained with the UK's BAe-146-301 Atmospheric Research Aircraft (managed by the Facility for Airborne Atmospheric Measurements, FAAM) over the United Kingdom and the surrounding regions. The validation results are promising for most satellite products and are within the estimated uncertainties of each of the comparative data sets, but more collocation scenes would be desirable to perform a comprehensive statistical analysis. The satellite estimates and the validation data sets are better correlated for high ash optical depth values, with correlation coefficients greater than 0.8. The IASI retrievals show a better agreement concerning the ash optical depth and ash layer height when compared with the ground-based and airborne lidar data.

  11. NASA Applied Science Program Applications for the Volcanic Ash Threat to Aviation

    NASA Astrophysics Data System (ADS)

    Murray, J. J.; Haynes, J. A.; Lindsay, F.

    2012-12-01

    Over the past decade, the public interest has been increasingly focused on the significant safety and economic impacts of the volcanic ash threat to aviation. During this period, the NASA Applied Science Program has developed a significant number of critical volcanic ash applications for a wide range of cutting-edge NASA satellite observations. This has entailed the development of many new and innovative technical advances and these advances have enabled and are increasingly improving the accuracy and the utility of volcanic ash advisories worldwide. The development of these applications is examined with respect to the specific sensor technologies, their pedigree and legacy, their unique and critical data for volcanic ash detection or characterization, volcanic ash algorithm development and validation and, finally, the use and impact of these applications. This substantial legacy rests on NASA Earth Observing Satellites and their advanced data. Imager applications for the The MODerate Resolution Imaging Spectro-radiometer (MODIS) instrument onboard NASA Terra and Aqua spacecraft and the Visible Infrared Imager Radiometer Suite (VIIRS) instrument onboard Suomi NPP allow better discrimination of ash from water vapor and ice clouds than traditional split-window imager techniques, as well as improved height assignment. Chemistry and aerosol applications for the Ozone Monitoring Instrument (OMI) onboard the NASA Aura spacecraft and the Ozone Mapper and Profiler Suite (OMPS) onboard Suomi NPP produce improved horizontal dispersion maps, and indices for volcanic ash and sulfate aerosol concentrations. Applications for the Caliop lidar onboard the NASA Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite provide very accurate estimates of volcanic ash altitude, layering and concentration. These are critical assimilation elements for volcanic ash dispersion models and forecasts. The Multi-angle Imaging SpectroRadiometer (MISR) instrument

  12. Regional model studies of the atmospheric dispersion of fine volcanic ash after the eruption of Eyjafjallajoekull

    NASA Astrophysics Data System (ADS)

    Langmann, B.; Hort, M. K.

    2010-12-01

    During the eruption of Eyjafjallajoekull on Iceland in April/May 2010 air traffic over Europe was repeatedly interrupted because of volcanic ash in the atmosphere. This completely unusual situation in Europe leads to the demand of improved crisis management, e.g. European wide regulations of volcanic ash thresholds and improved forecasts of theses thresholds. However, the quality of the forecast of fine volcanic ash concentrations in the atmosphere depends to a great extent on a realistic description of the erupted mass flux of fine ash particles, which is rather uncertain. Numerous aerosol measurements (ground based and satellite remote sensing, and in situ measurements) all over Europe have tracked the volcanic ash clouds during the eruption of Eyjafjallajoekull offering the possibility for an interdisciplinary effort between volcanologists and aerosol researchers to analyse the release and dispersion of fine volcanic ash in order to better understand the needs for realistic volcanic ash forecasts. This contribution describes the uncertainties related to the amount of fine volcanic ash released from Eyjafjallajoekull and its influence on the dispersion of volcanic ash over Europe by numerical modeling. We use the three-dimensional Eulerian atmosphere-chemistry/aerosol model REMOTE (Langmann et al., 2008) to simulate the distribution of volcanic ash as well as its deposition after the eruptions of Eyjafjallajoekull during April and May 2010. The model has been used before to simulate the fate of the volcanic ash after the volcanic eruptions of Kasatochi in 2008 (Langmann et al., 2010) and Mt. Pinatubo in 1991. Comparing our model results with available measurements for the Eyjafjallajoekull eruption we find a quite good agreement with available ash concentrations data measured over Europe as well as with the results from other models. Langmann, B., K. Zakšek and M. Hort, Atmospheric distribution and removal of volcanic ash after the eruption of Kasatochi volcano

  13. Long-range volcanic ash transport and fallout during the 2008 eruption of Chaitén volcano, Chile

    NASA Astrophysics Data System (ADS)

    Durant, Adam J.; Villarosa, Gustavo; Rose, William I.; Delmelle, Pierre; Prata, Alfred J.; Viramonte, José G.

    2012-01-01

    The May 2008 eruption of Chaitén volcano, Chile, provided a rare opportunity to measure the long-range transport of volcanic emissions and characteristics of a widely-dispersed terrestrial ash deposit. Airborne ash mass, quantified using thermal infrared satellite remote sensing, ranged between 0.2 and 0.4 Tg during the period 3-7 May 2008. A high level of spatiotemporal correspondence was observed between cloud trajectories and changes in surface reflectivity, which was inferred to indicate ash deposition. The evolution of the deposit was mapped for the first time using satellite-based observations of surface reflectivity. The distal (>80 km) ash deposit was poorly sorted and fine grained, and mean particle size varied very little beyond a distance >300 km. There were three particle size subpopulations in fallout at distances >300 km which mirror those identified in fallout from the 18 May 1980 eruption of Mount St. Helens, known to have a high propensity for aggregation. Discrete temporal sampling and characterisation of fallout demonstrated contributions from specific eruptive phases. Samples collected at the time of deposition were compared to bulk samples collected months after deposition and provided some evidence for winnowing. Experimentally-derived ash leachates had near-neutral pH values and charge balance which indicates minimal quantities of adsorbed acids. X-ray Photoelectron Spectroscopy (XPS) analyses revealed surface enrichments in Ca, Na and Fe and the presence of coatings of mixed Ca-, Na- and Fe-rich salts on ash particles prior to deposition. Low S:Cl ratios in leachates indicate that the eruption had a low S content, and high Cl:F ratios imply gas-ash interaction within a Cl-rich environment. We estimate that ash fallout had potential to scavenge ∼42% of total S released into the atmosphere prior to deposition. XPS analyses also revealed ash particle surfaces were strongly enriched in Fe (in contrast to the results from bulk leachate

  14. Volcanic controls on ash iron solubility: New insights from high-temperature gas-ash interaction modeling

    NASA Astrophysics Data System (ADS)

    Hoshyaripour, G.; Hort, M.; Langmann, B.; Delmelle, P.

    2014-10-01

    Recent studies strongly suggest that volcanic ash can fertilize the surface ocean by releasing soluble iron. However, the volcanic and atmospheric processes that solubilize ash iron during its transport from the volcano to the ocean are poorly understood. Using thermodynamic equilibrium calculations, we investigate the influence of gas-ash interaction within the hot core (T > 600 °C) of the volcanic plume and the consequences of this for ash iron solubility. Simulations are performed by considering the plume hot core as a box model in which 1000 °C magmatic gas, ash and 25 °C ambient air are mixed together. We show that mixing and the resulting cooling of the gas-ash-air mixture affect the mineralogy and oxidation state of iron in the ash surface rim. Iron mineralogy in the ash surface layer after high-temperature plume processing is primarily governed by the ratio of the H2 and H2S content of the magmatic gas to the amount of entrained O2 into the hot plume (Xmix). The model results indicate that most of the iron in the ash surface layer is oxidized to ferric iron (Fe(III)) when log Xmix drops below - 3.5 in the hot core. Such conditions may be encountered at convergent plate volcanoes, which release H2O-rich magmatic gases. In contrast, high temperature gas-ash interaction at divergent plate and hot spot volcanoes, which tend to be associated with CO2-rich and SO2-rich magmatic gases, respectively, may produce ash surfaces where iron mostly occurs as ferrous (Fe(II)). These volcanoes seem to be more favorable for iron fertilization because log Xmix does not fall below - 3.5 and > 80% of the iron in the ash surface remains ferrous (Fe(II)), which is more soluble in water than Fe(III).

  15. Environmental and anthropogenic factors affecting the respiratory toxicity of volcanic ash in vitro

    NASA Astrophysics Data System (ADS)

    Tomašek, Ines; Horwell, Claire J.; Damby, David E.; Ayris, Paul M.; Barošová, Hana; Geers, Christoph; Petri-Fink, Alke; Rothen-Rutishauser, Barbara; Clift, Martin J. D.

    2016-04-01

    Human exposure to inhalable volcanic ash particles following an eruption is a health concern, as respirable-sized particles can potentially contribute towards adverse respiratory health effects, such as the onset or exacerbation of respiratory and cardiovascular diseases. Although there is substantial information on the mineralogical properties of volcanic ash that may influence its biological reactivity, knowledge as to how external factors, such as air pollution, contribute to and augment the potential reactivity is limited. To determine the respiratory effects of volcanic particle interactions with anthropogenic pollution and volcanic gases we will experimentally assess: (i) physicochemical characteristics of volcanic ash relevant to respiratory toxicity; (ii) the effects of simultaneously inhaling anthropogenic pollution (i.e. diesel exhaust particles (DEP)) and volcanic ash (of different origins); (iii) alteration of volcanic ash toxicity following interaction with volcanic gases. In order to gain a first understanding of the biological impact of the respirable fraction of volcanic ash when inhaled with DEP in vitro, we used a sophisticated 3D triple cell co-culture model of the human alveolar epithelial tissue barrier. The multi-cellular system was exposed to DEP [0.02 mg/mL] and then exposed to either a single or repeated dose of well-characterised respirable volcanic ash (0.26 ± 0.09 or 0.89 ± 0.29 μg/cm2, respectively) from the Soufrière Hills volcano, Montserrat for a period of 24 hours using a pseudo-air liquid interface approach. Cultures were subsequently assessed for adverse biological endpoints including cytotoxicity, oxidative stress and (pro)-inflammatory responses. Results indicated that the combination of DEP and respirable volcanic ash at sub-lethal concentrations incited a significant release of pro-inflammatory markers that was greater than the response for either DEP or volcanic ash, independently. Further work is planned, to determine if

  16. Iron Fertilization by Volcanic Ash in the Cenomanian/Turonian Western Interior Seaway

    NASA Astrophysics Data System (ADS)

    Zeng, Z.; Tice, M. M.; Xu, G.; Hatcheria, J.; Sulak, C.; Rucker, B.; Gao, Z.; Maulana, I.; Figueroa, C.; Nimmo, L.; Gutkowski, B.; Dougherty, B.; Mattson, A.; Gillespie, D.; Wood, E.; Wehner, M.; Conte, R.

    2014-12-01

    Volcanic ash contains 1-10% FeO by weight and can be a significant contributor of Fe to the surface ocean. It is possible that Fe fertilization by volcanic ash has contributed to marine productivity in the past. The Late Cretaceous Eagle Ford Group (Cenomanian/Turonian) contains abundant volcanic ash beds interbedded with black argillaceous limestones and calcareous mudstones, providing opportunities for observation of the influence of ash on productivity and basin chemistry in the Western Interior Seaway. In particular, we hypothesize that volcanic ash from nearby arc volcanoes stimulated productivity by providing reactive iron to the surface ocean that was otherwise nutrient-limited by poor ventilation in a stratified water column. Enhanced productivity likewise reinforced basinal anoxia. To test our hypothesis, we examined the Swenson #1 core (151 feet) from McMullen County, south Texas, which contains 51 visualized ash beds with varying thickness. High resolution x-ray fluorescence spectroscopy (5 mm), x-ray fluorescence microscopy (100 μm) and scanning electron microscopy were performed to examine burial of Fe, trace elements delivered to the sediment by sinking organic matter (Cu and Ba), and paleoredox proxies (Mo and Cr) below, in, and above ash beds. Ash beds and beds containing admixed ash contain much more Fe than interbedded black shales, with nearly all Fe present in pyrite intergrown with or partially replacing altered ash grains, suggesting that ash transported reactive Fe to otherwise Fe-poor settings. Concentrations of Cu, Ba, Mo, and Cr were significantly greater in beds with admixed ash than in underlying beds. This suggests that input of ash increased marine productivity (Cu and Ba), which in turn enhanced oxygen demand and promoted euxinia (Mo and Cr). We conclude that Fe-bearing volcanic ash fertilized the southern Cenomanian/Turonian Western Interior Seaway, episodically forcing or enhancing euxinia both before and after OAE2.

  17. Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010

    NASA Astrophysics Data System (ADS)

    Schumann, U.; Weinzierl, B.; Reitebuch, O.; Schlager, H.; Minikin, A.; Forster, C.; Baumann, R.; Sailer, T.; Graf, K.; Mannstein, H.; Voigt, C.; Rahm, S.; Simmet, R.; Scheibe, M.; Lichtenstern, M.; Stock, P.; Rüba, H.; Schäuble, D.; Tafferner, A.; Rautenhaus, M.; Gerz, T.; Ziereis, H.; Krautstrunk, M.; Mallaun, C.; Gayet, J.-F.; Lieke, K.; Kandler, K.; Ebert, M.; Weinbruch, S.; Stohl, A.; Gasteiger, J.; Groß, S.; Freudenthaler, V.; Wiegner, M.; Ansmann, A.; Tesche, M.; Olafsson, H.; Sturm, K.

    2011-03-01

    Airborne lidar and in-situ measurements of aerosols and trace gases were performed in volcanic ash plumes over Europe between Southern Germany and Iceland with the Falcon aircraft during the eruption period of the Eyjafjalla volcano between 19 April and 18 May 2010. Flight planning and measurement analyses were supported by a refined Meteosat ash product and trajectory model analysis. The volcanic ash plume was observed with lidar directly over the volcano and up to a distance of 2700 km downwind, and up to 120 h plume ages. Aged ash layers were between a few 100 m to 3 km deep, occurred between 1 and 7 km altitude, and were typically 100 to 300 km wide. Particles collected by impactors had diameters up to 20 μm diameter, with size and age dependent composition. Ash mass concentrations were derived from optical particle spectrometers for a particle density of 2.6 g cm-3 and various values of the refractive index (RI, real part: 1.59; 3 values for the imaginary part: 0, 0.004 and 0.008). The mass concentrations, effective diameters and related optical properties were compared with ground-based lidar observations. Theoretical considerations of particle sedimentation constrain the particle diameters to those obtained for the lower RI values. The ash mass concentration results have an uncertainty of a factor of two. The maximum ash mass concentration encountered during the 17 flights with 34 ash plume penetrations was below 1 mg m-3. The Falcon flew in ash clouds up to about 0.8 mg m-3 for a few minutes and in an ash cloud with approximately 0.2 mg m-3 mean-concentration for about one hour without engine damage. The ash plumes were rather dry and correlated with considerable CO and SO2 increases and O3 decreases. To first order, ash concentration and SO2 mixing ratio in the plumes decreased by a factor of two within less than a day. In fresh plumes, the SO2 and CO concentration increases were correlated with the ash mass concentration. The ash plumes were often

  18. Aerosol Measurements From Recent Alaskan Volcanic Eruptions: Implications for Volcanic Ash Transport Predictions

    NASA Astrophysics Data System (ADS)

    Cahill, C. F.; Rinkleff, P. G.; Dehn, J.; Webley, P.; Cahill, T. A.; Barnes, D. E.

    2007-12-01

    Size and time-resolved aerosol compositional measurements conducted during the 2006 Augustine Volcano and 2007 Pavlof Volcano eruptions provide ground-truth information for use in the validation of volcanic ash transport models. These measurements provide quantitative information on the size and concentration of the aerosol, which can be used to test the volcanic aerosol source profiles and transport characteristics used in volcanic ash transport models. Augustine Volcano is on an island in Cook Inlet in southern Alaska. For the 2006 Augustine Volcano eruption, the size and time-resolved aerosol measurements were made using an eight stage (35-5.0, 5.0-2.5, 2.5-1.15, 1.15- 0.75, 0.75-0.56, 0.56-0.34, 0.34-0.26 and 0.26-0.09 microns in aerodynamic diameter) DRUM aerosol impactor deployed in Homer, approximately 120 km northeast of the volcano. Aerosols from the volcano reached the sampler and showed that the size distribution of the volcanic emissions changed during the course of the eruption. For example, crustal elements were present in high concentrations in the largest size fraction (35-5.0 microns) but low concentrations in a smaller size fraction (0.75-0.56 microns) during the phreatomagmatic explosive events. However, during the magmatic emissions period, the concentrations of these elements in the large size fraction decreased, but greatly increased in the smaller size fraction. Pavlof Volcano is a volcano on the Alaska Peninsula in southwestern Alaska. During the 2007 Pavlof Volcano eruption, a network of four DRUM aerosol impactors was deployed downwind of the volcano in an attempt to characterize the change in aerosol size distribution and composition during transport away from the volcano. The samplers were located at Nelson Lagoon, approximately 80 km northeast of the volcano (eight stage DRUM impactor with a top cut point of approximately 12 microns), Sand Point approximately 90 km east of the volcano (three stage DRUM impactor with aerodynamic diameter

  19. Assimilation of satellite-retrieved data to improve forecasts of volcanic ash concentrations

    NASA Astrophysics Data System (ADS)

    Fu, Guangliang; Lin, Haixiang; Heemink, Arnold; Segers, Arjo; Lu, Sha

    2016-04-01

    Since the 2010 Eyjafjallajökull volcano eruption caused a big problem to aviation and economy, improvement on volcanic ash forecast has been put onto the research agenda. Satellite-based measurements are considered as the most common and cheapest type of volcanic ash observations. However, due to its intrinsic functionality, satellite-retrived two-dimensional data can not be easily and directly combined with a three-dimensional volcanic ash model to improve volcanic ash forecasts continuously. Here we propose a satellite observational operator to transfer 2D volcanic ash mass loadings to 3D concentrations. The uncertainties of reconstructed 3D ash concentrations are also quantified. Sequential data assimilation is used to continuously assimilate the reconstructed volcanic ash concentrations. The results are evaluated in a multi-observational network including satellite-based measurements and aircraft in-situ measurements. Here we show for long-time assimilating satellite-based measurements, Ensemble Squre Root Filter (EnSR), as a common sequential data assimilation technique, is more efficient than Ensemble Kalman Filter (EnKF) because the ensemble size required for EnSR is considerable less than the ensemble size of EnKF for a comparable assimilation performance. Moreover, the forecast after assimilation is validated to be accurate and valid within 15 hours.

  20. Volcanic Ash Impacts on Air Traffic from the 2009 Mt. Redoubt Eruption

    NASA Astrophysics Data System (ADS)

    Murray, J. J.; Matus, A. V.; Hudnall, L. A.; Krueger, A. J.; Haynes, J. A.; Pippin, M. R.

    2009-12-01

    The dispersion of volcanic ash during the March 2009 eruption of Mt. Redoubt created the potential for major problems for aviation. Mt. Redoubt is located 110 km west-southwest of Alaska Airlines hub in Anchorage. It last erupted in 1990 and caused an estimated $101 million cost to the aviation industry (Waythomas, 1998). This study was conducted to assist in improving warning systems, policy and procedures for addressing the impact of volcanic ash on aviation. The study had two primary components. First, the altitude and extent of SO2 dispersion was determined through analysis of synoptic meteorological conditions and satellite imagery. Second, impacts on aviation from the volcanic ash dispersion were investigated. OMI SO2 column measurements were employed to assess the altitude and extent of SO2 dispersion of volcanic ash. To accomplish this, OMI data were assimilated with CALIPSO backscatter profiles, geopotential height plots, and HYSPLIT forward model trajectories. Volcanic Ash Advisories were compared to airport and pilot reports to assess aviation impacts. The eruption produced a complex dispersion of volcanic ash. Volcanic ash altitudes estimated for 23 March 2009 indicate that the majority of the plume remained at approximately 8 km, although reports indicate that the initial plume may have reached as high as18 km (60,000 ft). A low pressure system which passed over the eruption area appears to have entrained most of the ash at approximately 8 km, however the CALIPSO satellite indicates that dispersion also extended to 10 km and 16 km. Atmospheric patterns suggest dispersion at approximately 3 km near Hudson Bay. Analysis of 25 March 2009 indicates that much of the ash plume was dispersed at higher altitudes, where CALIPSO data locates the stratospheric ash plume at approximately 14 km above mean sea level. By the time the eruptions had subsided in April, Alaska Airlines had cancelled 295 flights and disrupted the flights of over 20,000 passengers. This

  1. Estimation of volcanic ash emissions from satellite data using trajectory-based 4D-Var

    NASA Astrophysics Data System (ADS)

    Lu, Sha; Lin, Haixiang; Heemink, Arnold; Segers, Arjo; Fu, Guangliang

    2016-04-01

    An accurate determination of emission parameters are crucial to the volcanic ash forecast for aviation, health and climate interests. In this study, we reconstruct the vertical profile of the volcanic ash emission from satellite ash mass loading data using trajectory-based 4D-Var (Trj4DVar) approach with Eyjafjallajökull 2010 eruptive event and the corresponding SEVIRI data as a study case. Since the Eyjafjallajökull eruption in April 2010, besides ash mass loadings retrieved from satellite data, the additional information of plume height and mass eruption rate is always available from volcanic ash detections and observations. Modifications is made in Trj4DVar to integrate the additional information into the data assimilation system to improve the estimation of volcanic ash emissions and achieve a better initial condition for quantitative predictions. The modified Trj4DVar has been tested in twin experiments designed based on the study case, and shows significant improvement on straightforward Trj4DVar since it has great correction impact to recognize the injection height and produce more accurate emission estimation and reliable initial field of volcanic ash loading. To apply the approach to the real case with SEVIRI data, two strategies was proposed: observational mask matrix and separate time windows. The results produced a better initial condition and predictive forecast that were more fitter the SEVIRI ash mass loading fields, which showed a great potential of applying the method in practice.

  2. Development of Satellite Remote Sensing Techniques for Quantifying Volcanic Ash Cloud Properties

    NASA Astrophysics Data System (ADS)

    Pavolonis, Michael J.

    Novel new approaches to automatically detect and characterize volcanic ash using satellite data are presented. The Spectrally Enhanced Cloud Objects (SECO) ash detection algorithm, combines radiative transfer theory, Bayesian methods, and image processing/computer vision concepts to identify volcanic ash clouds in satellite data with skill that is generally comparable to a human expert, especially with respect to false alarm rate. The SECO method is globally applicable and can be applied to virtually any low earth orbit or geostationary satellite sensor. The new ash detection approach was quantitatively proven to be significantly more skillful than traditional pixel based approaches, including the commonly used "split-window" technique. The performance of the SECO approach is extremely promising and well suited for a variety of new and improved applications. A new approach to retrieve volcanic ash cloud properties from infrared satellite measurements was also developed. The algorithm utilizes an optimal estimation framework to retrieve ash cloud height, mass loading, and effective particle radius. Optimal estimation allows uncertainties in the measurements and forward model to be taken into account and uncertainty estimates for each of the retrieved parameters to be determined. Background atmospheric water vapor, surface temperature, and surface emissivity are explicitly accounted for on a pixel-by-pixel basis, so the algorithm is globally applicable. In addition, the ash cloud retrieval algorithm is unique because it allows the cloud temperature/height to be a free parameter. Volcanic ash clouds are a major aviation hazard. Fine-grained ash from explosive eruptions can be transported long distances (>1000 km) from the source volcano by atmospheric winds, severely disrupting aviation operations. Volcanic ash clouds are complex and the background environment in which they reside can be as well. Thus, sophisticated satellite remote sensing techniques for extracting

  3. Characterization of fine volcanic ash from explosive eruption from Sakurajima volcano, South Japan

    NASA Astrophysics Data System (ADS)

    Nanayama, F.; Furukawa, R.; Ishizuka, Y.; Yamamoto, T.; Geshi, N.; Oishi, M.

    2013-12-01

    Explosive volcanic eruptions can affect infrastructure and ecosystem by their dispersion of the volcanic particle. Characterization of volcanic particle expelled by explosive eruption is crucial for evaluating for quantitative hazard assessment by future volcanic eruption. Especially for fine volcanic ash less than 64 micron in diameter, it can disperse vast area from the source volcano and be easily remobilized by surface wind and precipitation after the deposition. As fine volcanic ash is not preserved well at the earth surface and in strata except for enormously large scale volcanic eruption. In order to quantify quantitative characteristics of fine volcanic ash particle, we sampled volcanic ash directly falling from the eruption cloud from Showa crater, the most active vent of Sakurajima volcano, just before landing on ground. We newly adopted high precision digital microscope and particle grain size analyzer to develop hazard evaluation method of fine volcanic ash particle. Field survey was performed 5 sequential days in January, 2013 to take tamper-proof volcanic ash samples directly obtained from the eruption cloud of the Sakurajima volcano using disposable paper dishes and plastic pails. Samples were taken twice a day with time-stamp in 40 localities from 2.5 km to 43 km distant from the volcano. Japan Meteorological Agency reported 16 explosive eruptions of vulcanian style occurred during our survey and we took 140 samples of volcanic ash. Grain size distribution of volcanic ash was measured by particle grain size analyzer (Mophologi G3S) detecting each grain with parameters of particle diameter (0.3 micron - 1 mm), perimeter, length, area, circularity, convexity, solidity, and intensity. Component of volcanic ash was analyzed by CCD optical microscope (VHX-2000) which can take high resolution optical image with magnifying power of 100-2500. We discriminated each volcanic ash particle by color, texture of surface, and internal structure. Grain size

  4. Comparative in vitro cytotoxicity of volcanic ashes from Mount St. Helens, El Chichon, and Galunggung.

    PubMed

    Vallyathan, V; Robinson, V; Reasor, M; Stettler, L; Bernstein, R

    1984-01-01

    Dry sedimented volcanic ash samples from each of three widely separated volcanoes of the "Circum Pacific" region have been subjected to mineralogic analysis and in vitro tests for cytotoxicity. The ash samples from the three different volcanoes varied in particle size, surface area, and concentration of silica. Total crystalline silica in the respirable fraction of ashes was 1.5% (Mount St. Helens, Moses Lake); 1.36% (Galunggung, Bandung-1); 1.95% (Gallunggung, Bandung-2); and 1.72% (El Chichon, Tuxtla). Hemolysis as an index of cytotoxicity was measured by in vitro tests on sheep blood erythrocytes and indicated wide differences in hemolytic activity among ash samples. Alveolar macrophage cytosolic (lactate dehydrogenase) and lysosomal (beta-glucuronidase and beta-N-acetyl glucosaminidase) enzymes were measured as an index of cellular integrity following dust exposure. Hemolysis and release of enzymes from alveolar macrophages were greater with volcanic ash from Galunggung (Bandung-1) and El Chichon (Tuxtla) than the other ashes. Although crystalline silica induced an effect similar to volcanic ash from Galunggung (Bandung-1) on the release of enzymes from alveolar macrophages, the hemolytic potency of silica was much greater. Light and electron microscopic observations of dust-exposed alveolar macrophages indicated that the ash particles were readily phagocytized. These results indicate that volcanic ash is moderately cytotoxic and that exposure may lead to overt reactions and the exacerbation of preexisting chronic inflammatory processes. PMID:6097694

  5. 3-D numerical simulations of volcanic ash transport and deposition

    NASA Astrophysics Data System (ADS)

    Suzuki, Y. J.; Koyaguchi, T.

    2012-12-01

    During an explosive volcanic eruption, volcanic gas and pyroclasts are ejected from the volcanic vent. The pyroclasts are carried up within a convective plume, advected by the surrounding wind field, and sediment on the ground depending on their terminal velocity. The fine ash are expected to have atmospheric residence, whereas the coarser particles form fall deposits. Accurate modeling of particle transport and deposition is of critical importance from the viewpoint of disaster prevention. Previously, some particle-tracking models (e.g., PUFF) and advection-diffusion models (e.g., TEPHRA2 and FALL3D) tried to forecast particle concentration in the atmosphere and particle loading at ground level. However, these models assumed source conditions (the grain-size distribution, plume height, and mass release location) based on the simple 1-D model of convective plume. In this study, we aim to develop a new 3-D model which reproduces both of the dynamics of convective plume and the ash transport. The model is designed to describe the injection of eruption cloud and marker particles from a circular vent above a flat surface into the stratified atmosphere. Because the advection is the predominant mechanism of particle transport near the volcano, the diffusive process is not taken into account in this model. The distribution of wind velocity is given as an initial condition. The model of the eruption cloud dynamics is based on the 3-D time-dependent model of Suzuki et al. (2005). We apply a pseudo-gas model to calculate the eruption cloud dynamics: the effect of particle separation on the cloud dynamics is not considered. In order to reproduce the drastic change of eruption cloud density, we change the effective gas constant and heat capacity of the mixture in the equation of state for ideal gases with the mixing ratio between the ejected material and entrained air. In order to calculate the location and movement of ash particles, the present model employs Lagrangian marker

  6. Quantifying volcanic ash dispersal and impact of the Campanian Ignimbrite super-eruption

    NASA Astrophysics Data System (ADS)

    Costa, A.; Folch, A.; Macedonio, G.; Giaccio, B.; Isaia, R.; Smith, V. C.

    2012-05-01

    We apply a novel computational approach to assess, for the first time, volcanic ash dispersal during the Campanian Ignimbrite (Italy) super-eruption providing insights into eruption dynamics and the impact of this gigantic event. The method uses a 3D time-dependent computational ash dispersion model, a set of wind fields, and more than 100 thickness measurements of the CI tephra deposit. Results reveal that the CI eruption dispersed 250-300 km3 of ash over ˜3.7 million km2. The injection of such a large quantity of ash (and volatiles) into the atmosphere would have caused a volcanic winter during the Heinrich Event 4, the coldest and driest climatic episode of the Last Glacial period. Fluorine-bearing leachate from the volcanic ash and acid rain would have further affected food sources and severely impacted Late Middle-Early Upper Paleolithic groups in Southern and Eastern Europe.

  7. Volcanic ash as an iron-fertilizer in ocean surface water

    NASA Astrophysics Data System (ADS)

    Olgun, N.; Duggen, S.; Croot, P.; Dietze, H.; Schacht, U.; Oskarsson, N.; Siebe, C.; Auer, A.

    2007-12-01

    Surface ocean fertilisation with iron may affect the marine primary productivity, C-cycles and eventually climate development. Volcanic ash has the potential to release iron on contact with seawater and to stimulate phytoplankton growth (1,2) but the relative importance of volcanism at destructive plate margins (subduction zones, SZ) and intraplate volcanic settings (ocean islands at hot spots) remains unknown. Here we present new results from geochemical experiments with natural seawater and numerous volcanic ash samples from SZ volcanoes in the Pacific Ring of Fire (Alaska, Japan, Kamchatka, Northern and Central America and Papua New Guinea) and hot spot volcanoes (on Iceland and Hawaii). The release of iron as a function of time was determined in situ in seawater by means of Cathodic Stripping Voltammetry. Our experiments show that: A) volcanic ash from both SZ and hot spot volcanic areas mobilise significant amounts of iron, B) with the highest mobilisation rates within the first 10-20 minutes and C) indicate that volcanic ash from hot spot volcanoes mobilise less iron than volcanic ash from SZ. We propose that the higher iron-mobilisation potential of SZ volcanic ash results from higher HCl/HF ratios in SZ volcanic gases that seem to be involved in the formation of Fe-bearing soluble salt coatings (condensed gases and adsorbed aerosols) on ash particles (1,2,3). Higher HCl/HF ratios in SZ volcanic gases thus appear to be linked to the recycling of seawater through subduction of oceanic lithosphere at destructive plate margins. Together, taking into account differences in ash-fluxes from SZ and hot spot volcanoes into the oceans, our study suggests that SZ volcanic ash plays a more important role for the global surface ocean iron budget than ash from volcanoes in hot spot areas. 1 Frogner, Gislason, Oskarsson (2001). Geology, 29, 487-490. 2 Duggen, Croot, Schacht, Hofmann (2007) Geoph. Res. Letters 34, 5. 3 Oskarsson (1980), J. Volc. and Geoth. Res. 8, 251-266.

  8. Effect of Particle Non-Sphericity on Satellite Monitoring of Drifting Volcanic Ash Clouds

    NASA Technical Reports Server (NTRS)

    Krotkov, Nicholay A.; Flittner, D. E.; Krueger, A. J.; Kostinski, A.; Riley, C.; Rose, W.

    1998-01-01

    Volcanic eruptions loft gases and ash particles into the atmosphere and produce effects that are both short term (aircraft hazards, interference with satellite measurements) and long term (atmospheric chemistry, climate). Large (greater than 0.5mm) ash particles fall out in minutes [Rose et al, 1995], but fine ash particles can remain in the atmosphere for many days. This fine volcanic ash is a hazard to modem jet aircraft because the operating temperatures of jet engines are above the solidus temperature of volcanic ash, and because ash causes abrasion of windows and airframe, and disruption of avionics. At large distances(10(exp 2)-10(exp 4) km or more) from their source, drifting ash clouds are increasingly difficult to distinguish from meteorological clouds, both visually and on radar [Rose et al., 1995]. Satellites above the atmosphere are unique platforms for viewing volcanic clouds on a global basis and measuring their constituents and total mass. Until recently, only polar AVHRR and geostationary GOES instruments could be used to determine characteristics of drifting volcanic ash clouds using the 10-12 micron window [Prata 1989; Wen and Rose 1994; Rose and Schneider 1996]. The NASA Total Ozone Mapping Spectrometer (TOMS) instruments aboard the Nimbus-7, Meteor3, ADEOS, and Earth Probe satellites have produced a unique data set of global SO2 volcanic emissions since 1978 (Krueger et al., 1995). Besides SO2, a new technique has been developed which uses the measured spectral contrast of the backscattered radiances in the 330-380nm spectral region (where gaseous absorption is negligible) in conjunction with radiative transfer models to retrieve properties of volcanic ash (Krotkov et al., 1997) and other types of absorbing aerosols (Torres et al., 1998).

  9. Estimating Losses from Volcanic Ash in case of a Mt. Baekdu Eruption

    NASA Astrophysics Data System (ADS)

    Yu, Soonyoung; Yoon, Seong-Min; Kim, Sung-Wook; Choi, Eun-Kyeong

    2014-05-01

    We will present the preliminary result of economic losses in South Korea in case of a Mt. Baedu eruption. The Korean peninsula has Mt. Baekdu in North Korea, which will soon enter an active phase, according to volcanologists. The anticipated eruption will be explosive given the viscous and grassy silica-rich magma, and is expected to be one of the largest in recent millennia. We aim to assess the impacts of this eruption to South Korea and help government prepare for the volcanic disasters. In particular, the economic impact from volcanic ash is estimated given the distance from Mt. Baedu to South Korea. In order to scientifically estimate losses from volcanic ash, we need volcanic ash thickness, inventory database, and damage functions between ash thickness and damage ratios for each inventory item. We use the volcanic ash thickness calculated by other research groups in Korea, and they estimated the ash thickness for each eruption scenario using average wind fields. Damage functions are built using the historical damage data in the world, and inventory database is obtained from available digital maps in Korea. According to the preliminary results, the economic impact from volcanic ash is not significant because the ash is rarely deposited in South Korea under general weather conditions. However, the ash can impact human health and environment. Also worst case scenarios can have the significant economic impacts in Korea, and may result in global issues. Acknowledgement: This research was supported by a grant [NEMA-BAEKDUSAN-2012-1-3] from the Volcanic Disaster Preparedness Research Center sponsored by National Emergency Management Agency of Korea.

  10. Toward an Observation of Volcanic ASH: Which Kind of Observation can be Made by Different Instruments

    NASA Astrophysics Data System (ADS)

    Besson, Florence; Lampin, Jean-Luc

    2016-06-01

    In the first part, this presentation describes how an intercomparison was conducted between several lidars and ceilometers, the processing algorithms used, the difficulties encountered and the method used to design an optimum volcanic ash detection network. In the second part, we describe the work progress of a feasibility study concerning a WMO intercomparison for volcanic ash detection that is beginning with experts and colleagues from many others countries.

  11. Volcanic ash ingestion by a large gas turbine aeroengine: fan-particle interaction

    NASA Astrophysics Data System (ADS)

    Vogel, Andreas; Clarkson, Rory; Durant, Adam; Cassiani, Massimo; Stohl, Andreas

    2016-04-01

    Airborne particles from explosive volcanic eruptions are a major safety threat for aviation operations. The fine fraction of the emitted particles (<63 microns diameter) may remain in the atmosphere for days, or even weeks, and can affect commercial air traffic routes. Over the past century, there have been a considerable number of aircraft encounters with drifting volcanic ash clouds. Particles ingested into the engine cause erosion of upstream surfaces of compressor fan blades and rotor-path components, and can also cause contamination or blockage of electrical systems and the fuel system such as fuel nozzles and air bleed filters. Ash particles that enter the hot-section of the engine (combustor and turbine stages; temperature between 1400-1800°C) are rapidly heated above the glass transition temperature (about 650-1000°C) and become soft (or form a melt) and can stick as re-solidified deposits on nozzle guide vanes. The glass deposits change the internal aerodynamic airflow in the engine and can affect the cooling capability of the different components by clogging the cooling inlets/outlets, which can lead to a loss of power or flame-out. The nature of volcanic ash ingestion is primarily influenced by the fan at the front of the engine which produces the thrust that drives the aircraft. The ingested air is split between the core (compressor/combustor/turbine) and bypass (thrust) at a ratio of typically between, 1:5-10 on modern engines. Consequently, the ash particles are fractionated between the core and bypass by the geometry and dynamics of the fan blades. This study uses computational fluid dynamics (CFD) simulations of particle-laden airflows into a turbofan engine under different atmospheric and engine operation conditions. The main aim was to investigate the possible centrifugal effect of the fan blades as a function of particle size, and to relate this to the core intake concentration. We generated a generic 3D axial high-bypass turbofan engine using

  12. Simulated volcanic ash imagery: A method to compare NAME ash concentration forecasts with SEVIRI imagery for the Eyjafjallajökull eruption in 2010

    NASA Astrophysics Data System (ADS)

    Millington, S. C.; Saunders, R. W.; Francis, P. N.; Webster, H. N.

    2012-10-01

    During volcanic eruptions that eject ash into the atmosphere Volcanic Ash Advisory Centers issue statements on the forecast dispersion of the ash so that the aviation industry can manage airspace to avoid aircraft encountering volcanic ash. Observations, such as those from satellites, are compared with the forecasts from an atmospheric dispersion model to assess the quality of the ash forecasts. A method has been developed to enable like-with-like comparison between satellite imagery of volcanic ash and simulated imagery using the forecast ash concentration data from an atmospheric dispersion model. The ash concentration and numerical weather prediction data are used as inputs to a radiative transfer model to simulate radiances. Simulated satellite images are created from these simulated radiances. Here, Spinning Enhanced Visible and Infrared Imager volcanic ash images based on infrared brightness temperatures for the Eyjafjallajökull eruption in 2010 are simulated. In addition to providing a useful tool for forecasters in a Volcanic Ash Advisory Center, the simulated images can be used to aid the understanding of how the ash affects the satellite imagery and also the physical properties of the ash.

  13. Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010

    NASA Astrophysics Data System (ADS)

    Schumann, U.; Weinzierl, B.; Reitebuch, O.; Schlager, H.; Minikin, A.; Forster, C.; Baumann, R.; Sailer, T.; Graf, K.; Mannstein, H.; Voigt, C.; Rahm, S.; Simmet, R.; Scheibe, M.; Lichtenstern, M.; Stock, P.; Rüba, H.; Schäuble, D.; Tafferner, A.; Rautenhaus, M.; Gerz, T.; Ziereis, H.; Krautstrunk, M.; Mallaun, C.; Gayet, J.-F.; Lieke, K.; Kandler, K.; Ebert, M.; Weinbruch, S.; Stohl, A.; Gasteiger, J.; Olafsson, H.; Sturm, K.

    2010-09-01

    Airborne measurements of Lidar backscatter, aerosol concentrations (particle diameters of 4 nm to 50 μm), trace gas mixing ratios (SO2, CO, O3, H2O), single particle properties, and meteorological parameters have been performed in volcanic ash plumes with the Falcon aircraft operated by Deutsches Zentrum für Luft- und Raumfahrt (DLR). A series of 17 flights was performed over Europe between Southern Germany and Iceland during the eruption period of the Eyjafjalla1 volcano between 19 April and 18 May 2010. Flight planning and measurement analyses were supported by a refined Meteosat ash product and trajectory model analysis. The volcanic ash plume was observed with Lidar directly over the volcano and up to a distance of 2700 km downwind. Lidar and in-situ measurements covered plume ages of 7 h to 120 h. Aged ash layers were between a few 100 m to 3 km deep, occurred between 1 and 7 km altitude, and were typically 100 to 300 km wide. Particles collected by impactors had diameters up to 20 μm diameter, with size and age dependent composition. Ash mass concentration was evaluated for a material density of 2.6 g cm-3 and for either weakly or moderately absorbing coarse mode particles (refractive index 1.59+0i or 1.59+0.004i). In the absorbing case, the ash concentration is about a factor of four larger than in the non-absorbing limit. Because of sedimentation constraints, the smaller results are the more realistic ones for aged plumes. The Falcon flew in ash clouds up to about 1 mg m-3 for a few minutes and in an ash cloud with more than 0.2 mg m-3 mean-concentration for about one hour without engine damages. In fresh plumes, the SO2 concentration was correlated with the ash mass concentration. Typically, 0.5 mg m-3 ash concentration was related to about 100 nmol mol-31 SO2 mixing ratio and 70 nmol mol-1 CO mixing ratio increases for this volcano period. In aged plumes, layers with enhanced coarse mode particle concentration but without SO2 enhancements occurred. To

  14. Nocardioides rubroscoriae sp. nov., isolated from volcanic ash.

    PubMed

    Lee, Soon Dong; Lee, Dong Wan

    2014-06-01

    A rod-shaped actinobacterium, designated Sco-A25(T), was isolated from a red-coloured layer of scoria (volcanic ash) in the Republic of Korea and subjected to a polyphasic taxonomic characterization. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain Sco-A25(T) is a member of the genus Nocardioides and formed a tight monophyletic unit with the type strain of Nocardioides plantarum (98.7 % gene similarity). LL-Diaminopimelic acid was detected in the cell wall. The predominant menaquinone is MK-8(H4). The polar lipids found were phosphatidylinositol, diphosphatidylglycerol, phosphatidylglycerol, and an unknown phospholipid. The fatty acid profile was represented by large amounts of saturated, unsaturated and iso-branched fatty acids. The DNA G+C content was 71.6 mol %. Genomic DNA similarity between strain Sco-A25(T) and N. plantarum KCTC 9577(T) was 47.8 %. On the basis of the results of phenotypic, genetic and phylogenetic analyses presented here, strain Sco-A25(T) is considered to represent a novel species of the genus Nocardioides, for which the name Nocardioides rubroscoriae sp. nov. is proposed. The type strain is Sco-A25(T) (=KCTC 19805(T) = DSM 23986(T) = NBRC 107916(T)). PMID:24696303

  15. Lipid peroxidation and cytotoxicity induced by respirable volcanic ash.

    PubMed

    Cervini-Silva, Javiera; Antonio-Nieto-Camacho; Gomez-Vidales, Virginia; Ramirez-Apan, María Teresa; Palacios, Eduardo; Montoya, Ascención; Kaufhold, Stephan; Abidin, Zeanal; Theng, Benny K G

    2014-06-15

    This paper reports that the main component of respirable volcanic ash, allophane, induces lipid peroxidation (LP), the oxidative degradation of lipids in cell membranes, and cytotoxicity in murin monocyle/macrophage cells. Naturally-occurring allophane collected from New Zealand, Japan, and Ecuador was studied. The quantification of LP was conducted using the Thiobarbituric Acid Reactive Substances (TBARS) assay. The cytotoxic effect was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide colorimetric assay. Electron-Paramagnetic Resonance (EPR) determinations of naturally-occurring allophane confirmed the incorporation in the structure and clustering of structural Fe(3+), and nucleation and growth of small-sized Fe (oxyhydr)oxide or gibbsite. LP induced by allophane varied with time, and solid concentration and composition, reaching 6.7 ± 0.2 nmol TBARS mg prot(-1). LP was surface controlled but not restricted by structural or surface-bound Fe(3+), because redox processes induced by soluble components other than perferryl iron. The reactivity of Fe(3+) soluble species stemming from surface-bound Fe(3+) or small-sized Fe(3+) refractory minerals in allophane surpassed that of structural Fe(3+) located in tetrahedral or octahedral sites of phyllosilicates or bulk iron oxides. Desferrioxamine B mesylate salt (DFOB) or ethylenediaminetetraacetic acid (EDTA) inhibited LP. EDTA acted as a more effective inhibitor, explained by multiple electron transfer pathways. Registered cell-viability values were as low as 68.5 ± 6.7%. PMID:24793297

  16. Volcanic Ashes Intercalated with Cultural Vestiges at Archaeological Sites from the Piedmont to the Amazon, Ecuador

    NASA Astrophysics Data System (ADS)

    Valverde, Viviana; Mothes, Patricia; Andrade, Daniel

    2014-05-01

    A mineralogical analysis was done on 70 volcanic ashes; 9 corresponding to proximal samples of seven volcanoes: Cotopaxi (4500 yBP), Guagua Pichincha (3300 yBP, 1000 yBP and 1660 yAD), Cuicocha (3100 yBP), Pululahua (2400 yBP), Ninahuilca (2350 yBP and 4600 yBP) and 61 to distal ashes collected at eight archaeological sites in the Coastal, Sierra and Amazon regions of Ecuador. Cultural vestiges are from Pre-ceramic, Formative, Regional Development and Integration periods, with the exception of a site denominated Hacienda Malqui, which also has Inca vestiges. The sampling process was done in collaboration with various archaeologists in 2011-2013. The volcanic ashes were washed, dried and divided in order to obtain a representative fraction and their later analysis with binocular microscope. The microscope analysis allowed determination of the characteristics of each component of volcanic ash. These main elements are: pumice fragments, minerals, volcanic glass, lithics and exogenous material (non volcanic). The petrographic analysis of distal volcanic ash layers at each archaeological site was correlated by their components and characteristics with proximal volcanic ashes of source volcanoes. Some correlations permitted obtaining a relative age for the layers of distal volcanic ash in the archaeological sites. The petrographic analysis showed a correlation between the archaeological sites of Las Mercedes - Los Naranjos, Rumipamba and El Condado (located west of Quito) with the eruptive activity of Guagua Pichincha volcano (3300 yBP, 1000 yBP and 1660 yAD) and Pululahua volcano (2400 yBP). Also, a correlation with eruptive activity of Ninahuilca (2350 yBP), Cotopaxi (4500 yBP) and Quilotoa (800 yBP) volcanoes at Hda. Malqui (60 km west of Latacunga) was provided by mineralogy of the respective ashes expulsed by these volcanoes. The ash layers at Cuyuja (50 km east of Quito) are mostly superficial; they are associated with Quilotoa's 800 yBP plinian. Finally at the

  17. Modelling concentrations of volcanic ash encountered by aircraft in past eruptions

    NASA Astrophysics Data System (ADS)

    Witham, Claire; Webster, Helen; Hort, Matthew; Jones, Andrew; Thomson, David

    2012-03-01

    Prolonged disruption to aviation during the April-May 2010 eruption of Eyjafjallajökull, Iceland resulted in pressure to predict volcanic ash plume concentrations for the purpose of allowing aircraft to fly in regions with low ash contamination. Over the past few decades there have been a number of incidents where aircraft have encountered volcanic ash resulting in damage to the aircraft and loss of power to engines. Understanding the volcanic ash concentrations that these aircraft have encountered provides important input to determining a safe concentration limit. Aircraft encounters with six volcanic eruption plumes have been studied and ash concentrations predicted using the atmospheric dispersion model NAME. The eruptions considered are Galunggung 1982, Soputan 1985, Redoubt 1989, Pinatubo 1991, Hekla 2000 and Manam 2006. Uncertainties in the eruption source details (start time, stop time and eruption height) and in the aircraft encounter location and flight path are found to be major limitations in some cases. Errors in the driving meteorological data (which is often coarse in resolution for historic studies) and the lack of eruption plume dynamics (e.g. umbrella cloud representation) results in further uncertainties in the predicted ash concentrations. In most of the case studies, the dispersion modelling shows the presence of ash at the aircraft encounter location. Maximum ash concentrations in the vicinity of the aircraft are predicted to be at least 4000 μg m -3 although confidence in the estimated concentrations is low and uncertainties of orders of magnitude are shown to be possible.

  18. Controls on the surface chemical reactivity of volcanic ash investigated with probe gases

    NASA Astrophysics Data System (ADS)

    Maters, Elena C.; Delmelle, Pierre; Rossi, Michel J.; Ayris, Paul M.; Bernard, Alain

    2016-09-01

    Increasing recognition that volcanic ash emissions can have significant impacts on the natural and human environment calls for a better understanding of ash chemical reactivity as mediated by its surface characteristics. However, previous studies of ash surface properties have relied on techniques that lack the sensitivity required to adequately investigate them. Here we characterise at the molecular monolayer scale the surfaces of ash erupted from Eyjafjallajökull, Tungurahua, Pinatubo and Chaitén volcanoes. Interrogation of the ash with four probe gases, trimethylamine (TMA; N(CH3)3), trifluoroacetic acid (TFA; CF3COOH), hydroxylamine (HA; NH2OH) and ozone (O3), reveals the abundances of acid-base and redox sites on ash surfaces. Measurements on aluminosilicate glass powders, as compositional proxies for the primary constituent of volcanic ash, are also conducted. We attribute the greater proportion of acidic and oxidised sites on ash relative to glass surfaces, evidenced by comparison of TMA/TFA and HA/O3 uptake ratios, in part to ash interaction with volcanic gases and condensates (e.g., H2O, SO2, H2SO4, HCl, HF) during the eruption. The strong influence of ash surface processing in the eruption plume and/or cloud is further supported by particular abundances of oxidised and reduced sites on the ash samples resulting from specific characteristics of their eruptions of origin. Intense interaction with water vapour may result in a higher fraction of oxidised sites on ash produced by phreatomagmatic than by magmatic activity. This study constitutes the first quantification of ash chemical properties at the molecular monolayer scale, and is an important step towards better understanding the factors that govern the role of ash as a chemical agent within atmospheric, terrestrial, aquatic or biotic systems.

  19. Testing hypotheses for the use of Icelandic volcanic ashes as low cost, natural fertilizers

    NASA Astrophysics Data System (ADS)

    Seward, W.; Edwards, B.

    2012-04-01

    Andisols are soils derived from tephra/volcanic bedrock and are generally considered to be fertile for plant growth (cf. University of Hawaii at Manoa, CTAHR). However, few studies have been published examining the immediate effects of the addition of volcanic ash to soils immediately after an eruption. Our research is motivated by unpublished accounts from Icelandic farmers that the growing season following the 2010 Eyjafjallajökull eruption ended with unusually high yields in areas that were covered by ash from the eruption early in the spring. To test the hypothesis that addition of volcanic ash to soil would have no immediate effect on plant growth, we conducted a ~6 week growth experiment in at controlled environment at the Dickinson College Farm. The experiment used relatively fast growing grain seeds as a test crop, controlled watering, known quantities of peat as an organic base, and the following general experimental design: peat was mixed in known but systematically differing proportions with 1) commercial quartz sand, 2) basaltic ash from the 2004 Grimsvötn eruption, and 3) trachyandesite ash from the 2010 Eyjafjallajökull eruption. For all experiments, the seeds growing in the simulated soil created with the two different composition volcanic ash had higher germination rates, higher growth rates, and produced plants that were healthier in appearance than the soil made from peat mixed with quartz sand. Some differences were also noted between the germination and grow rates between the basaltic and trachyandesitic ash experiments as well. Working hypotheses to explain these results include (1) shard shapes and vesicles from volcanic ash provide better water retention than quartz, allowing water to be stored longer and increasing average soil moisture, and (2) chemical nutrients from the ash facilitate germination and growth of plants. Documenting the potential benefits of fresh volcanic ash as a fertilizer is important as use of fresh ash fertlizer

  20. Correlation and Analysis of Volcanic Ash in Marine Sediments From the Peru Margin

    NASA Astrophysics Data System (ADS)

    Hart, D.; Miller, J.

    2005-05-01

    While land studies have identified the major volcanic centers of historic eruptions and active to recent volcanism within the Central Volcanic Zone (CVZ) of the Central Andes, the tephrachronologic records are disturbed by the high erosion rates of this arid region. However, volcanic material frequently occurs in marine sediment as discrete ash-fall layers and, or disseminated ash accumulations. Cores from three Peru Margin sites sites(1227, 1228, and 1229) drilled during Ocean Drilling Program (ODP) Leg 201 have been studied to determine the occurrence of volcanic ash layers and ash accumulations within marine sediments along the Peru shelf. The thickness of each ash layer and accumulations has been measured and the volumes calculated in order to decipher the episodicity of explosive volcanic activity in the North-Central Andes recorded in the off shore sediments. The geographic distribution of the sites (over 3 degrees of latitude and from 50 to 300 km offshore) and correlation of ash units between sites form the basis for minimal estimates of explosive volcanic activity in the region (only eruptions large enough to deposit ash in excess of 100 km from source are represented). Pouclet et al., (1990) estimated the minimum explosive activity along the Andean Arc from ash-bearing sediments and ash layers within cores from sites along the Peru margin collected during ODP Leg 112. As a result of better recovery (as much as ten times more core recovery in many intervals) and decreased disturbance in cores recovered during Leg 201, our documentation of ash content in cores from Leg 201 has led to a more complete record of the explosive volcanic activity along the Andean Arc. For example, Pouclet, et al., (1990) reports four ash layers from Sites 684, 680, and 681, whereas forty ash layers have been documented from cores recovered from the same locations (Sites 1227, 1228, and 1229 respectively). Our stratigraphic record agrees with Pouclet, et al., (1990), suggesting

  1. Aging affects the ice-nucleating properties of volcanic ash aerosol

    NASA Astrophysics Data System (ADS)

    Bingemer, H.; Klein, H.; Ebert, M.; Haunold, W.; Bundke, U.; Herrmann, T.; Kandler, K.; Müller-Ebert, D.; Weinbruch, S.; Judt, A.; Wéber, A.; Nillius, B.; Ardon-Dryer, K.; Levin, Z.; Curtius, J.

    2012-04-01

    The effectiveness of volcanic ash as ice nuclei (IN) has been debated in the past. While some reported enhanced IN concentrations in volcanic plumes, others found no evidence for that. Here we show that "aged" volcanic particles sampled from the atmosphere in central Germany when the ash cloud of the 2010 Eyjafjallajökull eruption was present are very effective IN, as compared to particles of aerosolized "fresh" volcanic sediment that had been collected close to the eruption site in Iceland. The number concentration of atmospheric IN was measured with the same method both at the Taunus Observatory in central Germany and at Tel Aviv University, Israel, as well as in laboratory-generated aerosol of volcanic ash. Aerosol was sampled by electrostatic precipitation of particles onto silicon substrates and was subsequently analyzed at - 8° to -18°C (deposition and condensation nucleation modes) in the isothermal static vapor diffusion chamber FRIDGE. The composition of individual atmospheric IN was analyzed by environmental scanning electron microscopy (ESEM) with EDX. Our daily measurements show a significant enhancement of atmospheric IN when the dispersed ash cloud reached central Europe in April 2010 and the eastern Mediterranean in May 2010. Pure volcanic ash accounts for at least 53-68% of the 239 individual ice nucleating particles that were analyzed by ESEM-EDX in aerosol samples collected at Taunus Observatory during the volcanic peak of April 2010. Volcanic ash samples that had been collected close to the eruption site were aerosolized in the laboratory and measured by FRIDGE. Our analysis confirms the relatively poor ice nucleating efficiency (at -18°C and 119% ice-saturation) of such "fresh" volcanic ash, as it had recently been found by other workers. We find that both the fraction of the aerosol that is active as ice nuclei as well as the density of ice-active sites on the aerosol surface are three orders of magnitude larger in the samples collected

  2. Sinking of volcanic ash in uncompacted sediment in williams lake, washington.

    PubMed

    Anderson, R Y; Nuhfer, E B; Dean, W E

    1984-08-01

    Volcanic ash from the eruption of Mount St. Helens on 18 May 1980 fell into Williams Lake in eastern Washington and was temporarily suspended at the sediment-water interface. After several months of compaction, the ash layer broke up and sank into lower density uncompacted lake sediment. Stratigraphic time displacements of several hundred years and a failure to recognize discontinuous ash layers in sediment cores are possible consequences of this process. PMID:17750852

  3. An Improved Operational Volcanic Ash Dispersion Modelling System for the Wellington VAAC

    NASA Astrophysics Data System (ADS)

    Shucksmith, Paul; Davis, Cory; Soltanzadeh, Iman; Bernard, Matthieu; Rye, Graham

    2015-04-01

    The Meteorological Service of New Zealand's (MetService's) responsibilities as a Volcanic Ash Advisory Centre (VAAC) require the operational use of volcanic ash dispersion and transport models to provide guidance for issuing Volcanic Ash Advisories in the event of volcanic eruptions. The operational volcanic ash dispersion modelling system currently in use at MetService is based on the PUFF model (Searcy et al., 1998) driven by GFS NWP data. This system possesses several shortcomings, most notably the lack of quantitative concentration output for quantitative comparison with satellite observations, no accounting for wet deposition of ash and the use of low resolution NWP input from a single model. To overcome these shortcomings, a new modelling system has been developed, built around the HYSPLIT model (developed by NOAA's Air Resources Laboratory) driven with NWP from three different models: IFS, GFS and WRF. Eruption parameters (duration, plume height and mass eruption rate) are provided from a set of defaults, spanning a range of eruption sizes, for each volcano -- at present taken from the USGS eruption parameter database (Mastin et al., 2009) -- until observations of the eruption become available to specify these. The system is operated through a web interface which allows simulations to be triggered by forecasters simply and quickly and also provides graphical output of mass loading. Further visualization is provided through integration with IBL's Visual Weather product which allows easy comparison with satellite observations as well as the editing and publishing of Volcanic Ash Advisories and Volcanic Ash Graphics. Early results indicate that in general, differences between ash dispersion forecasts from the two global models are slight in comparison to the differences between the global models and the limited area WRF. A number of eruption case studies will be presented, demonstrating the multi-model/multi-parameter ensemble output and assessment of model

  4. Effect of particle volume fraction on the settling velocity of volcanic ash particles: implications for ash dispersion models

    NASA Astrophysics Data System (ADS)

    Del Bello, E.; Taddeucci, J.; De'Michieli Vitturi, M.; Scarlato, P.; Andronico, D.; Scollo, S.; Kueppers, U.

    2015-12-01

    We present the first report of experimental measurements of the enhanced settling velocity of volcanic particles as function of particle volume fraction. In order to investigate the differences in the aerodynamic behavior of ash particles when settling individually or in mass, we performed systematic large-scale ash settling experiments using natural basaltic and phonolitic ash. By releasing ash particles at different, controlled volumetric flow rates, in an unconstrained open space and at minimal air movement, we measured their terminal velocity, size, and particle volume fraction with a high-speed camera at 2000 fps. Enhanced settling velocities of individual particles increase with increasing particle volume fraction. This suggests that particle clustering during fallout may be one reason explaining larger than theoretical depletion rates of fine particles from volcanic ash clouds. We provide a quantitative empirical model that allows to calculate, from a given particle size and density, the enhanced velocity resulting from a given particle volume fraction. The proposed model has the potential to serve as a simple tool for the prediction of the terminal velocity of ash of an hypothetical distribution of ash of known particle size and volume fraction. This is of particular importance for advection-diffusion transport model of ash where generally a one-way coupling is adopted, considering only the flow effects on particles. To better quantify the importance of the enhanced settling velocity in ash dispersal, we finally introduced the new formulation in a Lagrangian model calculating for realistic eruptive conditions the resulting ash concentration in the atmosphere and on the ground.

  5. A novel reactor for the simulation of gas and ash interactions in volcanic eruption plumes

    NASA Astrophysics Data System (ADS)

    Ayris, Paul M.; Cimarelli, Corrado; Delmelle, Pierre; Dingwell, Donald B.

    2014-05-01

    The chemical interactions between volcanic ash and the atmosphere, hydrosphere, pedosphere, cryosphere and biosphere are initially the result of rapid mobilisation of soluble salts and aqueous acids from wetted particle surfaces. Such surface features are attributable to the scavenging of sulphur and halide species by ash during its transport through the eruption plume and volcanic cloud. It has been historically considered (e.g., Rose, 1977) that the primary mechanism driving scavenging of sulphur and halide species is via condensation of acid aerosols onto ash surfaces within the cold volcanic cloud. However, for large explosive eruptions, insights from new experimental highlight the potential for scavenging via adsorption onto ash within the high-temperature eruption plume. In previous investigations on simple SO2 (Ayris et al. 2013a) and HCl systems (Ayris et al. 2013b), we identified ash composition, and the duration and temperature of gas-ash interaction as key determinants of adsorption-mode scavenging. However, the first generation of gas-ash reactors could not fully investigate the interactions between ash and the hydrous volcanic atmosphere; we have therefore developed an Advanced Gas Ash Reactor (AGAR), which can be fluxed with varying proportions of H2O, CO2, SO2 and HCl. The AGAR consists of a longitudinally-rotating quartz glass reaction bulb contained within a horizontal, three-stage tube furnace operating at temperatures of 25-900° C. A sample mass of up to 100 g can traverse a thermal gradient via manual repositioning of the reaction bulb within the furnace. In combination with existing melt synthesis capabilities in our laboratories, this facility permits a detailed investigation of the effects of ash and gas composition, and temperature on in-plume scavenging of SO2 and HCl. Additionally, the longitudinal rotation enables particle-particle interaction under an 'in-plume' atmosphere, and may yield insight into the effects of gas-ash interaction

  6. Retrieval of volcanic ash properties from the Infrared Atmospheric Sounding Interferometer (IASI)

    NASA Astrophysics Data System (ADS)

    Ventress, Lucy; Carboni, Elisa; Smith, Andrew; Grainger, Don; Dudhia, Anu; Hayer, Catherine

    2014-05-01

    The Infrared Atmospheric Sounding Interferometer (IASI), on board both the MetOp-A and MetOp-B platforms, is a Fourier transform spectrometer covering the mid-infrared (IR) from 645-2760cm-1 (3.62-15.5 μm) with a spectral resolution of 0.5cm-1 (apodised) and a pixel diameter at nadir of 12km. These characteristics allow global coverage to be achieved twice daily for each instrument and make IASI a very useful tool for the observation of larger aerosol particles (such as desert dust and volcanic ash) and the tracking of volcanic plumes. In recent years, following the eruption of Eyjafjallajökull, interest in the the ability to detect and characterise volcanic ash plumes has peaked due to the hazards to aviation. The thermal infrared spectra shows a rapid variation with wavelength due to absorption lines from atmospheric and volcanic gases as well as broad scale features principally due to particulate absorption. The ash signature depends upon both the composition and size distribution of ash particles as well as the altitude of the volcanic plume. To retrieve ash properties, IASI brightness temperature spectra are analysed using an optimal estimation retrieval scheme and a forward model based on RTTOV. Initially, IASI pixels are flagged for the presence of volcanic ash using a linear retrieval detection method based on departures from a background state. Given a positive ash signal, the RTTOV output for a clean atmosphere (containing atmospheric gases but no cloud or aerosol/ash) is combined with an ash/cloud layer using the same scheme as for the Oxford-RAL Retrieval of Aerosol and Cloud (ORAC) algorithm. The retrieved parameters are ash optical depth (at a reference wavelength of 550nm), ash effective radius, layer altitude and surface temperature. The potential for distinguishing between different ash types is explored and a sensitivity study of the retrieval algorithm is presented. Results are shown from studies of the evolution and composition of ash plumes

  7. Combining four dimensional variational data assimilation and particle filtering for estimating volcanic ash emissions

    NASA Astrophysics Data System (ADS)

    Franke, Philipp; Elbern, Hendrik

    2016-04-01

    Estimating volcanic ash emissions is a very challenging task due to limited monitoring capacities of the ash plume and nonlinear processes in the atmosphere, which renders application of source strength and injection height estimations difficult. Most models, which estimate volcanic ash emissions, make strong simplifications of the dispersion of volcanic ash and corresponding atmospheric processes. The objective of this work is to estimate volcanic ash emissions and simulate the ensuing dispersion applying a full chemistry transport model in a hybrid approach by using its adjoint as well as an ensemble of model runs to quantify forecast uncertainties. Therefore, the four dimensional variational data assimilation version of the EURAD-IM chemistry transport model is extended to include a Sequential Importance Resampling Smoother (SIRS), introducing novel weighting and resampling strategies. In the main SIRS step the ensemble members exchange high rated emission patterns while rejecting emission patterns with low value for the forecast. The emission profiles of the ensemble members are perturbed afterwards to guarantee different emissions for all ensemble members. First identical twin experiments show the ability of the system to estimate the temporal and vertical distribution of volcanic ash emissions. The 4D-var data assimilation algorithm of the new system additionally provides quantitative emission estimation.

  8. The effect of Etna volcanic ash clouds on the Maltese Islands

    NASA Astrophysics Data System (ADS)

    Azzopardi, Francelle; Ellul, Raymond; Prestifilippo, Michele; Scollo, Simona; Coltelli, Mauro

    2013-06-01

    In this paper, we have studied in depth the effect of Etna volcanic ash clouds on the Maltese Islands. Research was carried out to gather information about Etna's eruptions that impacted the Maltese Islands, starting with historical eruptions dating back to the 14th century continuing to present day. A statistical approach was utilized to provide tephra deposit load and ash concentration using PUFF - a model which simulates the transport, dispersion and sedimentation of volcanic ash. Three different eruptive scenarios that characterize Etna's recent activity were considered; the first scenario representing the 2001 eruption (Sc1), the second scenario representing the July 1998 eruption (Sc2) whilst the third scenario represents the recent activity in 2011-2012 (Sc3). We found that the time taken for the volcanic ash cloud to reach the Maltese Islands, when the wind direction is toward the south-west ranges from 4 to 6 h. The probability that an Etna volcanic cloud reaches Malta during an eruption is about 15% per annum. The now calibrated model may be now used to produce deposit load and cumulative columnar load (i.e. summation from maximum height of volcanic cloud to ground) of volcanic ash in atmosphere for the Maltese area and help the aviation authorities and Malta airport to make decisions during Etna eruptions. This will be of direct use to local communities and aviation.

  9. Assimilating aircraft-based measurements to improve forecast accuracy of volcanic ash transport

    NASA Astrophysics Data System (ADS)

    Fu, G.; Lin, H. X.; Heemink, A. W.; Segers, A. J.; Lu, S.; Palsson, T.

    2015-08-01

    The 2010 Eyjafjallajökull volcano eruption had serious consequences to civil aviation. This has initiated a lot of research on volcanic ash transport forecast in recent years. For forecasting the volcanic ash transport after eruption onset, a volcanic ash transport and diffusion model (VATDM) needs to be run with Eruption Source Parameters (ESP) such as plume height and mass eruption rate as input, and with data assimilation techniques to continuously improve the initial conditions of the forecast. Reliable and accurate ash measurements are crucial for providing a successful ash clouds advice. In this paper, simulated aircraft-based measurements, as one type of volcanic ash measurements, will be assimilated into a transport model to identify the potential benefit of this kind of observations in an assimilation system. The results show assimilating aircraft-based measurements can significantly improve the state of ash clouds, and further providing an improved forecast as aviation advice. We also show that for advice of aeroplane flying level, aircraft-based measurements should be preferably taken from this level to obtain the best performance on it. Furthermore it is shown that in order to make an acceptable advice for aviation decision makers, accurate knowledge about uncertainties of ESPs and measurements is of great importance.

  10. Influence of Mount St. Helens volcanic ash on alfalfa growth and nutrient uptake

    SciTech Connect

    Mahler, R.L.

    1984-01-01

    Concern has been expressed that large amounts of volcanic ash from the May 18, 1980 eruption of Mount St. Helens may have created potential nutritional problems associated with forage production in northern Idaho and eastern Washington to the extent that adjustments need to be made in soil test correlation data. The objectives of this greenhouse study were to : (1) determine the effect of varying amounts of volcanic ash mixed into soils of northern Idaho on total alfalfa biomass production, and (2) to determine the effect of various soil/ash mixtures on the nutrient concentrations of P, K, S, Ca, Mg, Mn and Zn in alfalfa. Alfalfa was grown in eight different northern Idaho soils amended with differing levels of volcanic ash (0, 20, 35, 50 and 75%) in the greenhouse. The alfalfa seeds were inoculated and fertilizer P and S were added to all treatments. Total plant biomass and P, K, S, Ca, Mg, Mn and Zn plant concentrations were measured. The eight were pooled for analysis and it was found that increasing amounts of volcanic ash increased alfalfa biomass production. Plant P, S, Ca, Mg and Zn concentrations also increased with increasing levels of ash. Conversely, increasing levels of ash resulted in lower alfalfa tissue K and Mn concentrations. 13 references, 7 figures.

  11. APhoRISM FP7 project: the Multi-platform volcanic Ash Cloud Estimation (MACE) infrastructure

    NASA Astrophysics Data System (ADS)

    Merucci, Luca; Corradini, Stefano; Bignami, Christian; Stramondo, Salvatore

    2014-05-01

    APHORISM is an FP7 project that aims to develop innovative products to support the management and mitigation of the volcanic and the seismic crisis. Satellite and ground measurements will be managed in a novel manner to provide new and improved products in terms of accuracy and quality of information. The Multi-platform volcanic Ash Cloud Estimation (MACE) infrastructure will exploit the complementarity between geostationary, and polar satellite sensors and ground measurements to improve the ash detection and retrieval and to fully characterize the volcanic ash clouds from source to the atmosphere. The basic idea behind the proposed method consists to manage in a novel manner, the volcanic ash retrievals at the space-time scale of typical geostationary observations using both the polar satellite estimations and in-situ measurements. The typical ash thermal infrared (TIR) retrieval will be integrated by using a wider spectral range from visible (VIS) to microwave (MW) and the ash detection will be extended also in case of cloudy atmosphere or steam plumes. All the MACE ash products will be tested on three recent eruptions representative of different eruption styles in different clear or cloudy atmospheric conditions: Eyjafjallajokull (Iceland) 2010, Grimsvotn (Iceland) 2011 and Etna (Italy) 2011-2012. The MACE infrastructure will be suitable to be implemented in the next generation of ESA Sentinels satellite missions.

  12. Selective preservation of carbohydrates in volcanic ash soils

    NASA Astrophysics Data System (ADS)

    Kaal, J.; Buurman, P.; Nierop, K. G. J.; Piccolo, A.

    2009-04-01

    Volcanic soils (Andosols) are formed in volcanic ash and depending on environmental and climatic factors they develop to two main forms, either allophanic Andosols (dominated by amorphous minerals) or non-allophanic Andosols (dominated by Al/Fe organic matter complexes). Andosols contain the largest amounts of organic carbon of all mineral soil orders. In recent studies using analytical pyrolysis techniques on the soil organic matter (SOM) of allophanic soils from the Azores Islands (Portugal) there was no indication of preservation of plant-derived organic matter by allophane or Al3+, but the presence of large amounts of (microbial) polysaccharides and chitin suggested that secondary organic matter products were stabilized. In the present study we used 13C NMR to further explore the organic matter of the Andosols of the Azores, and applied a molecular mixing model (MMM; ascribing characteristic resonances to the main biocomponent classes carbohydrate, protein, lipid, lignin and char) to the quantified NMR spectra to allow for a quantitative comparison with pyrolysis-GC/MS. The dominance of O-alkyl and di-O-alkyl C in the NMR spectra and carbohydrate contribution to the predictions made by the MMM (50 ± 8%) confirms that the majority of the SOM can still be recognised as carbohydrate. The accumulation of secondary/microbial carbohydrates (and, to a lesser extent, secondary proteinaceous matter and chitins) is thus a key characteristic of these Andosols. NMR-MMM and pyrolysis-GC/MS were in rough agreement. However, NMR does not recognise chitin (N-containing carbohydrate-like material) and chitin-associated protein, nor can it be used to estimate the degree of degradation of the carbohydrates. Therefore, NMR (as applied here) has a very limited capacity for characterisation of the SOM particularly in the Andosols studied. On the other hand, large peaks from carboxylic and amidic functional groups detected by NMR were not observed by pyrolysis-GC/MS. It is therefore

  13. Satellite Derived Volcanic Ash Product Inter-Comparison in Support to SCOPE-Nowcasting

    NASA Astrophysics Data System (ADS)

    Siddans, Richard; Thomas, Gareth; Pavolonis, Mike; Bojinski, Stephan

    2016-04-01

    In support of aeronautical meteorological services, WMO organized a satellite-based volcanic ash retrieval algorithm inter-comparison activity, to improve the consistency of quantitative volcanic ash products from satellites, under the Sustained, Coordinated Processing of Environmental Satellite Data for Nowcasting (SCOPEe Nowcasting) initiative (http:/ jwww.wmo.int/pagesjprogjsatjscopee nowcasting_en.php). The aims of the intercomparison were as follows: 1. Select cases (Sarychev Peak 2009, Eyjafyallajökull 2010, Grimsvötn 2011, Puyehue-Cordón Caulle 2011, Kirishimayama 2011, Kelut 2014), and quantify the differences between satellite-derived volcanic ash cloud properties derived from different techniques and sensors; 2. Establish a basic validation protocol for satellite-derived volcanic ash cloud properties; 3. Document the strengths and weaknesses of different remote sensing approaches as a function of satellite sensor; 4. Standardize the units and quality flags associated with volcanic cloud geophysical parameters; 5. Provide recommendations to Volcanic Ash Advisory Centers (VAACs) and other users on how to best to utilize quantitative satellite products in operations; 6. Create a "road map" for future volcanic ash related scientific developments and inter-comparison/validation activities that can also be applied to SO2 clouds and emergent volcanic clouds. Volcanic ash satellite remote sensing experts from operational and research organizations were encouraged to participate in the inter-comparison activity, to establish the plans for the inter-comparison and to submit data sets. RAL was contracted by EUMETSAT to perform a systematic inter-comparison of all submitted datasets and results were reported at the WMO International Volcanic Ash Inter-comparison Meeting to held on 29 June - 2 July 2015 in Madison, WI, USA (http:/ /cimss.ssec.wisc.edujmeetings/vol_ash14). 26 different data sets were submitted, from a range of passive imagers and spectrometers and

  14. El Chichon volcanic ash in the stratosphere - Particle abundances and size distributions after the 1982 eruption

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.; Clanton, U. S.; Gabel, E. M.; Warren, J. L.

    1983-01-01

    Volcanic ash particles collected from the stratosphere after the March/April, 1982 explosive eruption of El Chichon volcano, Mexico, were mostly 2-40 micron vesicular shards of silicic volcanic glass that varied in abundance, at 16.8-19.2 km altitude, from 200 per cu m (30-49 deg N lat.) in May to 1.3 per cu m (45-75 deg N) in October. At the minimum, the ash cloud covered latitudes 10-60 deg N in July and 10 deg S-75 deg N in October. In May and July, ash particles were mostly free, individual shards (and clusters of shards) but, by October, were intimately associated with liquid droplets (presumably, sulfuric acid). In May 1982, the total stratospheric burden of ash was at least 240 tons (2.2 x 10 to the 8th g) although the total ash injected into the stratosphere by the eruption was probably 480-8400 tons.

  15. Evaluation of physical health effects due to volcanic hazards: crystalline silica in Mount St. Helens volcanic ash

    SciTech Connect

    Dollberg, D.D.; Balyard, M.L.; Smith, D.L.

    1986-03-01

    This investigation has shown that crystalline silica has been identified as being present in the Mount St. Helens volcanic ash at levels of 3 to 7 per cent by weight. This identification has been established using X-ray powder diffraction, infrared spectrophotometry, visible spectrophotometry, electron microscopy, and Laser Raman spectrophometry. Quantitative analysis by IR, XRD, and visible spectrophotometry requires a preliminary phosphoric acid digestion of the ash sample to remove the plagioclase silicate material which interferes with the determination by these methods. Electron microscopic analysis as well as Laser Raman spectrophotometric analysis of the untreated ash confirms the presence of silica and at levels found by the XRD and IR analysis of the treated samples. An interlaboratory study of volcanic ash samples by 15 laboratories confirms the presence and levels of crystalline silica. Although several problems with applying the digestion procedure were observed in this hastily organized study, all laboratories employed the digestion procedure reported the presence of crystalline silica. These results unequivocally put to rest the question of the presence of silica in the volcanic ash from eruptions of Mount St. Helens in 1980.

  16. Evaluation of physical health effects due to volcanic hazards: crystalline silica in Mount St. Helens volcanic ash.

    PubMed

    Dollberg, D D; Bolyard, M L; Smith, D L

    1986-03-01

    This investigation has shown that crystalline silica has been identified as being present in the Mount St. Helens volcanic ash at levels of 3 to 7 per cent by weight. This identification has been established using X-ray powder diffraction, infrared spectrophotometry, visible spectrophotometry, electron microscopy, and Laser Raman spectrophotometry. Quantitative analysis by IR, XRD, and visible spectrophotometry requires a preliminary phosphoric acid digestion of the ash sample to remove the plagioclase silicate material which interferes with the determination by these methods. Electron microscopic analysis as well as Laser Raman spectrophotometric analysis of the untreated ash confirms the presence of silica and at levels found by the XRD and IR analysis of the treated samples. An interlaboratory study of volcanic ash samples by 15 laboratories confirms the presence and levels of crystalline silica. Although several problems with applying the digestion procedure were observed in this hastily organized supply, all laboratories employing the digestion procedure reported the presence of crystalline silica. These results unequivocally put to rest the question of the presence of silica in the volcanic ash from eruptions of Mount St. Helens in 1980. PMID:3004241

  17. Volcanic Ash fall Impact on Vegetation, Colima 2005

    NASA Astrophysics Data System (ADS)

    Garcia, M. G.; Martin, A.; Fonseca, R.; Nieto, A.; Radillo, R.; Armienta, M.

    2007-05-01

    An ash sampling network was established arround Colima Volcano in 2005. Ash fall was sampled on the North, Northeast, East, Southeast, South, Southwest and West of the volcano. Samples were analyzed for ash components, geochemistry and leachates. Ash fall ocurred on April (12), May (10, 23), June (2, 6, 9, 10, 12, 14), July (27), September (27), October (23) and November (24). Most of the ash is made of andesitic dome-lithics but shows diferences in crystal, juvenile material and lithic content. In May, some samples contained grey and dark pumice (scoria). Texture varies from phi >4 to phi 0. Leachate concentration were low: SO4 (7.33-54.19) Cl- (2.29-4.97) and F- (0.16-0.37). During 2005, Colima Volcano's ash fall rotted some of the guava and peach fruits and had a drying effect on spearment and epazote plants. Even these small ash amounts could have hindered sugar cane and agave growth.

  18. Grain size distribution uncertainty quantification in volcanic ash dispersal and deposition from weak plumes

    NASA Astrophysics Data System (ADS)

    Pardini, Federica; Spanu, Antonio; de'Michieli Vitturi, Mattia; Salvetti, Maria Vittoria; Neri, Augusto

    2016-02-01

    We present the results of uncertainty quantification and sensitivity analysis applied to volcanic ash dispersal from weak plumes with focus on the uncertainties associated to the original grain size distribution of the mixture. The Lagrangian particle model Lagrangian Particles Advection Code is used to simulate the transport of inertial particles under the action of realistic atmospheric conditions. The particle motion equations are derived by expressing the particle acceleration as the sum of forces acting along its trajectory, with the drag force calculated as a function of particle diameter, density, shape, and Reynolds number. Simulations are representative of a weak plume event of Mount Etna (Italy) and aimed at quantifying the effect on the dispersal process of the uncertainty in the mean and standard deviation of a lognormal function describing the initial grain size distribution and in particle sphericity. In order to analyze the sensitivity of particle dispersal to these uncertain variables with a reasonable number of simulations, response surfaces in the parameter space are built by using the generalized polynomial chaos expansion technique. The mean diameter and standard deviation of particle size distribution, and their probability density functions, at various distances from the source, both airborne and on ground, are quantified. Results highlight that uncertainty ranges in these quantities are drastically reduced with distance from source, making them largely dependent just on the location. Moreover, at a given distance from source, the distribution is mostly controlled by particle sphericity, particularly on the ground, whereas in air also mean diameter and sorting play a main role.

  19. Volcanic ash aggregation in the lab - can we mimic natural processes?

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Kueppers, Ulrich; Jacob, Michael; Ayris, Paul; Cimarelli, Corrado; Dingwell, Donald B.; Guttzeit, Melanie; Hess, Kai-Uwe; Walter, Ulrich

    2015-04-01

    Explosive volcanic eruptions release large amounts of particles into the atmosphere. Volcanic ash, by definition pyroclasts smaller than 2 mm, can be distributed around the globe by prevailing winds. Ash poses hazards to aviation industry by melting in jet turbines, to human health by entering respiration systems and to society by damaging infrastructure. Under certain circumstances, ash particles can cluster together and build ash aggregates. Aggregates range in size from few mm to few cm and may exhibit complex internal stratigraphy. During growth, weight, density and aerodynamic properties change, leading to a significantly different settling behavior compared to individual ash particles. Although ash aggregation has been frequently observed in the geologic record, the physical and chemical mechanisms generating the aggregates remain poorly understood. During several field campaigns, we collected numerous ash aggregates and analyzed their textural, chemical and mechanical properties. Based on this knowledge, we have designed experiments using the ProCell Lab System® of Glatt Ingenieurtechnik GmbH, Germany. In this device, a continuous fluidized bed can be applied on solid particles and simulate gas-particle flow conditions as they would be expected in volcanic plumes or pyroclastic density currents. The geological record and direct observations have shown that both processes are capable of producing ash aggregates. As starting material we used Na-glass beads as an analogue and volcanic ash from Laacher See Volcano, Eifel Volcanic Field, Germany. We define parameters such as grainsize, specific surface area and concentration of the starting material, degree of turbulence, temperature and moisture in the process chamber and the composition of the liquid phase to influence form, size, stability and production rate of aggregates. We were able to experimentally produce round, unstructured ash pellets up to 5mm in diameter. A detailed textural description highlights

  20. Calibration of microbolometer infrared cameras for measuring volcanic ash mass loading

    NASA Astrophysics Data System (ADS)

    Carroll, Russell C.

    Small spacecraft with thermal infrared (TIR) imaging capabilities are needed to detect dangerous levels of volcanic ash that can severely damage jet aircraft engines and must be avoided. Grounding aircraft after a volcanic eruption may cost the airlines millions of dollars per day, while accurate knowledge of volcanic ash density might allow for safely routing aircraft around dangerous levels of volcanic ash. There are currently limited numbers of satellites with TIR imaging capabilities so the elapsed time between revisits can be large, and these instruments can only resolve total mass loading along the line-of-sight. Multiple small satellites could allow for decreased revisit times as well as multiple viewing angles to reveal the three-dimensional structure of the ash cloud through stereoscopic techniques. This paper presents the design and laboratory evaluation of a TIR imaging system that is designed to fit within the resource constraints of a multi-unit CubeSat to detect volcanic ash mass loading. The laboratory prototype of this TIR imaging system uses a commercial off-the shelf (COTS) camera with an uncooled microbolometer sensor, two narrowband filters, a black body source and a custom filter wheel. The infrared imaging system detects the difference in attenuation of volcanic ash at 11 mum and 12 mum by measuring the brightness temperature at each band. The brightness temperature difference method is used to measure the column mass loading. Multi-aspect images and stereoscopic techniques are needed to estimate the mass density from the mass loading, which is the measured mass per unit area. Laboratory measurements are used to characterize the noise level and thermal stability of the sensor. A calibration technique is developed to compensate for sensor temperature drift. The detection threshold of volcanic ash density of this TIR imaging system is found to be from 0.35 mg/m3 to 26 mg/m3 for ash clouds that have thickness of 1 km, while ash cloud densities

  1. Chemistry of ash-leachates: a reliable monitoring tool for volcanic activity

    NASA Astrophysics Data System (ADS)

    Armienta, M. A.; De la Cruz-Reyna, S.; Soler, A.; Ceniceros, N.; Cruz, O.; Aguayo, A.

    2012-04-01

    Real-time volcanic hazard assessment requires the integrated interpretation of data obtained with different monitoring methods, particularly when people may be at risk. One of the methods rendering earliest precursory variations reflecting the internal state of a volcano is the geochemical analysis of gases, ground or lake waters related to volcanic systems, and volcanic ash. At Popocatépetl volcano, Central México, chemical fluctuations of the soluble cover of volcanic ash particles has proved to reflect diverse characteristics of the eruption types. Chloride, sulfate and fluoride concentrations of ash leachates have been consistently measured within the current eruptive episode beginning in December 1994. Particularly, main anions presented diverse relative concentrations in periods of dome extrusions, contrasting with hydrothermal activity or quiescence. Multivariate statistical analysis revealed that higher proportions of fluoride in the leachates corresponded to new dome emplacements and relatively higher sulfate concentrations to hydrothermal ashes, although these results may be ambiguous at times. However, different sulfur isotopic ratios were measured in sulfate from ashes erupted during periods dominated by hydrothermal activity to those emitted during dome emplacement. Additionally, ascent of fresh magma was reflected on high fluoride concentrations jointly with low 34S-SO4 isotopic values. It is thus recommended to maintain persistent analyses of ash-leachates from on-going eruptions as a monitoring tool at active volcanoes.

  2. Eyjafjallajokull volcanic ash concentrations determined from CALIOP and SEVIRI measurements (Invited)

    NASA Astrophysics Data System (ADS)

    Prata, F.; Prata, A.

    2010-12-01

    During 14 April to 25 May 2010, Eyjfjoll volcano in Iceland, erupted a large amount of fine grained ash that rapidly spread across the north Atlantic and entered European airspace causing significant disruption to commercial aviation. Dispersion models and satellite data were used to identify the location of the Eyjafloll ash cloud, but due to lack of information on the eruption source parameters, quantitative estimates of the ash concentrations could not be made. By using multispectral, high frequency geosynchronous satellite measurements from the SEVIRI instrument, it is shown that quantitative estimates of the mass loadings (g m-2) can be made with accuracies of ±50% and with a detection limit of ~0.5 g m-2, every 15 minutes (night or day) and with a spatial resolution that varies from about 10--100 km2, depending on scan position. When the mass loadings are combined with coincident cloud thickness measurements from the Caliop lidar on board CALIPSO, ash concentrations can be derived. Here it is shown that ash concentrations in the dense parts of the dispersing Eyjfjoll ash cloud frequently exceeded 4 mg m-3 and that ash clouds with concentrations >2 mg m-3 covered large parts of European airspace on several occasions. Animated loops of SEVIRI ash mass loadings have been generated and a Google Earth applet designed to illustrate the geographic extent of the ash over Europe, and interactively interrogate the retrievals. Air-routes from European and US airports can also be added. These tools and the new satellite retrieval methodology may be combined with dispersion model results to provide Volcanic Ash Advisory Centres (VAACs) with better information for issuing volcanic ash advisories Google Earth visualization showing SEVIRI retrieved ash mass loadings and air routes from London to airports in Ireland, Scotland and continental Europe that cross the hazardous ash cloud.

  3. D Visualization of Volcanic Ash Dispersion Prediction with Spatial Information Open Platform in Korea

    NASA Astrophysics Data System (ADS)

    Youn, J.; Kim, T.

    2016-06-01

    Visualization of disaster dispersion prediction enables decision makers and civilian to prepare disaster and to reduce the damage by showing the realistic simulation results. With advances of GIS technology and the theory of volcanic disaster prediction algorithm, the predicted disaster dispersions are displayed in spatial information. However, most of volcanic ash dispersion predictions are displayed in 2D. 2D visualization has a limitation to understand the realistic dispersion prediction since its height could be presented only by colour. Especially for volcanic ash, 3D visualization of dispersion prediction is essential since it could bring out big aircraft accident. In this paper, we deals with 3D visualization techniques of volcanic ash dispersion prediction with spatial information open platform in Korea. First, time-series volcanic ash 3D position and concentrations are calculated with WRF (Weather Research and Forecasting) model and Modified Fall3D algorithm. For 3D visualization, we propose three techniques; those are 'Cube in the air', 'Cube in the cube', and 'Semi-transparent plane in the air' methods. In the 'Cube in the Air', which locates the semitransparent cubes having different color depends on its particle concentration. Big cube is not realistic when it is zoomed. Therefore, cube is divided into small cube with Octree algorithm. That is 'Cube in the Cube' algorithm. For more realistic visualization, we apply 'Semi-transparent Volcanic Ash Plane' which shows the ash as fog. The results are displayed in the 'V-world' which is a spatial information open platform implemented by Korean government. Proposed techniques were adopted in Volcanic Disaster Response System implemented by Korean Ministry of Public Safety and Security.

  4. Online-coupled modeling of volcanic ash and SO2 dispersion with WRF-Chem

    NASA Astrophysics Data System (ADS)

    Stuefer, Martin; Egan, Sean; Webley, Peter; Grell, Georg; Freitas, Saulo; Pavolonis, Mike; Dehn, Jonathan

    2014-05-01

    We included a volcanic emission and plume model into the Weather Research Forecast Model with inline Chemistry (WRF-Chem). The volcanic emission model with WRF-Chem has been tested and evaluated with historic eruptions, and the volcanic application was included into the official release of WRF-Chem beginning with WRF version 3.3 in 2011. Operational volcanic WRF-Chem runs have been developed using different domains centered on main volcanoes of the Aleutian chain and Popocatépetl Volcano, Mexico. The Global Forecast System (GFS) is used for the meteorological initialization of WRF-Chem, and default eruption source parameters serve as initial source data for the runs. We report on the model setup, and the advantages to treat the volcanic ash and sulphur dioxide emissions inline within the numerical weather prediction model. In addition we outline possibilities to initialize WRF-Chem with a fully automated algorithm to retrieve volcanic ash cloud properties from satellite data. WRF-Chem runs from recent volcanic eruptions resulted in atmospheric ash loadings, which compared well with the satellite data taking into account that satellite retrieval data represent only a limited amount of the actually emitted source due to detection thresholds. In addition particle aggregative effects are not included in the WRF-Chem model to date.

  5. Comments on "Failures in detecting volcanic ash from a satellite-based technique"

    USGS Publications Warehouse

    Prata, F.; Bluth, G.; Rose, B.; Schneider, D.; Tupper, A.

    2001-01-01

    The recent paper by Simpson et al. [Remote Sens. Environ. 72 (2000) 191.] on failures to detect volcanic ash using the 'reverse' absorption technique provides a timely reminder of the danger that volcanic ash presents to aviation and the urgent need for some form of effective remote detection. The paper unfortunately suffers from a fundamental flaw in its methodology and numerous errors of fact and interpretation. For the moment, the 'reverse' absorption technique provides the best means for discriminating volcanic ash clouds from meteorological clouds. The purpose of our comment is not to defend any particular algorithm; rather, we point out some problems with Simpson et al.'s analysis and re-state the conditions under which the 'reverse' absorption algorithm is likely to succeed. ?? 2001 Elsevier Science Inc. All rights reserved.

  6. Lung changes in rats following inhalation exposure to volcanic ash for two years.

    PubMed

    Wehner, A P; Dagle, G E; Clark, M L; Buschbom, R L

    1986-08-01

    Rats were exposed by inhalation to 5 or 50 mg/m3 Mount St. Helens volcanic ash, to 50 mg/m3 quartz (positive controls), or to filtered room air (sham-exposed controls), for 6 hr/day, 5 days/week, for up to 24 months to investigate biological effects of chronic inhalation exposure to volcanic ash under controlled laboratory conditions. Exposure-related lung changes comprised accelerated respiratory frequency; alveolar macrophage accumulation; interstitial reaction; lymphoreticular reaction in peribronchiolar regions and in mediastinal lymph nodes; alveolar proteinosis in the 50- mg/m3 ash- or quartz-exposed groups; increase in fresh lung weights; decreased body weight and increased mortality in the quartz-exposed group; and epidermoid carcinomas especially in the quartz-exposed females and, to a lesser extent, in the 50-mg/m3 ash-exposed females. The observed changes reflect significant dose-response and agent-response relationships. PMID:3732218

  7. Estimation of volcanic ash emission profiles using ceilometer measurements and transport models

    NASA Astrophysics Data System (ADS)

    Chan, Ka Lok; Geiß, Alexander; Gasteiger, Josef; Wagner, Frank; Wiegner, Matthias

    2016-04-01

    In recent years, the number of active remote sensing systems grows rapidly, since several national weather services initiated ceilometer networks. These networks are excellent tools to monitor the dispersion of volcanic ash clouds and to validate chemical transport models. Moreover, it is expected that the can be used to refine model calculations to better predict situations that might be dangerous for aviation. As a ceilometer can be considered as a simple single-wavelength backscatter lidar, quantitative aerosol profile information, i.e., the aerosol backscatter coefficient (βp) profile, can be derived provided that the ceilometer is calibrated. Volcanic ash concentration profile can then be estimated by using prior optical properties of volcanic ash. These profiles are then used for the inverse calculation of the emission profile of the volcanic eruption, thus, improving one of the most critical parameters of the numerical simulation. In this study, the Lagrangian particle dispersion model FLEXPART (FLEXible PARTicle dispersion model) is used to simulate the dispersion of volcanic ash. We simulate the distribution of ash for a given time/height grid, in order to compute the sensitivity functions for each measurements. As an example we use ceilometer measurements of the German weather service to reconstruct the temporal and spatial emission profile of Eyjafjallajökull eruption in April 2010. We have also examined the sensitivity of the retrieved emission profiles to different measurement parameters, e.g., geolocation of the measurement sites, total number of measurement sites, temporal and vertical resolution of the measurements, etc. The first results show that ceilometer measurements in principle are feasible for the inversion of volcanic ash emission profiles.

  8. Two contemporaneous processes of volcanic ash formation at Stromboli volcano, Italy

    NASA Astrophysics Data System (ADS)

    Kueppers, Ulrich; Andronico, Daniele; Taddeucci, Jacopo

    2014-05-01

    Explosive volcanic eruptions involve the fragmentation and ejection of pyroclasts. Volcanic ash is the smallest grain size fraction and can be generated by a plethora of processes inside the conduit, during the rise of the gas-particle mixture in the conduit or the eruption column as well as during the (sub)-horizontal transport before final deposition. Volcanic deposits are commonly used to infer for fragmentation and emplacement processes. Different fragmentation modes, eruption styles and emplacement dynamics can be deciphered. Additionally, the characterisation of clasts of different types is used to infer for the ratio of fresh magma to older/altered lava or significantly older country rocks. During a 10 days observation period in May 2013, The North-East Crater of Stromboli volcano (Italy) showed weak explosive eruptions every 10-30 minutes that emitted incandescent blocks and lapilli to heights of up to 200 m above the crater as well as large amounts of black scoriaceous ash. The larger clasts were landing in the vicinity of the crater and continued rolling down the Sciara del Fuoco. Immediately upon impact, light brown ash was lofted by the rolling blocks and dispersed by the wind. These two kinds of primary volcanic ash were deposited together. The black ash is more angular and generally exhibits a higher porosity (magma with the highest porosity) whereas the brown ash (abrasion of rolling lapilli and bombs) can be significantly denser. This quasi-contemporaneous generation of fresh volcanic ash by two distinctly different processes has to be taken into consideration when discerning the ratio of juvenile/lithic components at explosive volcanoes.

  9. A probabilistic assessment of volcanic ash hazard to aviation in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Whelley, Patrick; Taisne, Benoit; Newhall, Chris

    2014-05-01

    Southeast Asia is home to hundreds of active volcanoes, largely clustered over the island chains of the Philippines and Indonesia. The prominent large scale weather feature in this region is dominated by Monsoons. The prevailing winds during the monsoon seasons can drive volcanic ash clouds over the South China Sea. Since this region is a busy aviation corridor it is important to evaluate the risk to aviation operations. This study quantifies the long-term probability that this region will be adversely affected by volcanic ash, through calculating the probability of eruptions for a range of magnitudes as well as the trajectory of the resulting ash plumes. Approximately 750 active or potentially active volcanoes are identified in Southeast Asia. They are separated into five classes by their morphology and eruptive style. For each volcano class, the typical eruption magnitude and frequencies are determined. The volcanoes are further divided into 23 geographical zones and the likelihood of each magnitude eruption for all volcano zones is estimated. Dispersion modelling is employed to estimate the concentration and extent of volcanic ash plumes based on hypothetical eruptions of Volcano Explosivity Index of 3 to 8 and 3 years of historical meteorological data. Preliminary results show that in the next decade, there is a 30 to 60% chance that volcanic ash will affect any part of the air space above the South China Sea between 6096m to 10668m at a concentration exceeding 2mg/m3. Half of this region has a 43% or greater chance of containing more than 2mg/m3 of volcanic ash. This is largely in agreement with 30 years of observations, with the exception west of Sumatra, where more ash is predicted than has been observed. The findings in this study can be used to inform scenario planning and mitigation strategy for regional aviation industry.

  10. On-line coupling of volcanic ash and aerosols transport with multiscale meteorological models

    NASA Astrophysics Data System (ADS)

    Marti, Alejandro; Folch, Arnau; Jorba, Oriol

    2014-05-01

    Large explosive volcanic eruptions can inject significant amounts of tephra and aerosols (e.g. SO2) into the atmosphere inducing a multi-scale array of physical, chemical and biological feedbacks within the environment. Effective coupled Numerical Weather Prediction (NWP) models capable to forecast on-line the spatial and temporal distribution of volcanic ash and aerosols are necessary to assess the magnitude of these feedback effects. However, due to several limitations (users from different communities, operational constrains, computational power, etc.), tephra transport models and NWP models have evolved independently. Within the framework of NEMOH(an Initial Training Network of the European Commission FP7 Program), we aim to quantify the feedback effects of volcanic ash clouds and aerosols emitted during large-magnitude eruptions on regional meteorology. As a first step, we have focused on the differences between the off-line hypothesis, currently assumed by tephra transport models (e.g. FALL3D), and the on-line approach, where transport and sedimentation of volcanic ash is coupled on-line to the NMMB (Non-hydrostatic Multiscale Meteorological model on a B grid) meteorological model; the evolution of the WRF-NMME meteorological model. We compared the spatiotemporal transport of volcanic ash particles simulated with the on-line coupled FALL3D-NMMB/BSC-CTM model with those from the off-line FALL3D model, by using the 2011 Cordón-Caulle eruption as a test-case and validating results against satellite data. Additionally, this presentation introduces the forthcoming steps to implement a sulfate aerosol module within the chemical transport module of the FALL3D-NMMB/BSC-CTM model, in order to quantify the feedback effects on the atmospheric radiative budget, particularly during large-magnitude explosive volcanic eruptions. Keywords: volcanic ash, SO2, FALL3D, NMMB, meteorology, on-line coupling, NEMOH.

  11. Atmospheric ice nuclei in the Eyjafjallajökull volcanic ash plume

    NASA Astrophysics Data System (ADS)

    Bingemer, H.; Klein, H.; Ebert, M.; Haunold, W.; Bundke, U.; Herrmann, T.; Kandler, K.; Müller-Ebert, D.; Weinbruch, S.; Judt, A.; Wéber, A.; Nillius, B.; Ardon-Dryer, K.; Levin, Z.; Curtius, J.

    2012-01-01

    We have sampled atmospheric ice nuclei (IN) and aerosol in Germany and in Israel during spring 2010. IN were analyzed by the static vapor diffusion chamber FRIDGE, as well as by electron microscopy. During the Eyjafjallajökull volcanic eruption of April 2010 we have measured the highest ice nucleus number concentrations (>600 l-1) in our record of 2 yr of daily IN measurements in central Germany. Even in Israel, located about 5000 km away from Iceland, IN were as high as otherwise only during desert dust storms. The fraction of aerosol activated as ice nuclei at -18 °C and 119% rhice and the corresponding area density of ice-active sites per aerosol surface were considerably higher than what we observed during an intense outbreak of Saharan dust over Europe in May 2008. Pure volcanic ash accounts for at least 53-68% of the 239 individual ice nucleating particles that we collected in aerosol samples from the event and analyzed by electron microscopy. Volcanic ash samples that had been collected close to the eruption site were aerosolized in the laboratory and measured by FRIDGE. Our analysis confirms the relatively poor ice nucleating efficiency (at -18 °C and 119% ice-saturation) of such "fresh" volcanic ash, as it had recently been found by other workers. We find that both the fraction of the aerosol that is active as ice nuclei as well as the density of ice-active sites on the aerosol surface are three orders of magnitude larger in the samples collected from ambient air during the volcanic peaks than in the aerosolized samples from the ash collected close to the eruption site. From this we conclude that the ice-nucleating properties of volcanic ash may be altered substantially by aging and processing during long-range transport in the atmosphere, and that global volcanism deserves further attention as a potential source of atmospheric ice nuclei.

  12. Stratospheric volcanic ash emissions from the 13 February 2014 Kelut eruption

    NASA Astrophysics Data System (ADS)

    Kristiansen, N. I.; Prata, A. J.; Stohl, A.; Carn, S. A.

    2015-01-01

    Mount Kelut (Indonesia) erupted explosively around 15:50 UT on 13 February 2014 sending ash and gases into the stratosphere. Satellite ash retrievals and dispersion transport modeling are combined within an inversion framework to estimate the volcanic ash source term and to study ash transport. The estimated source term suggests that most of the ash was injected to altitudes of 16-17 km, in agreement with space-based lidar data. Modeled ash concentrations along the flight track of a commercial aircraft that encountered the ash cloud indicate that it flew under the main ash cloud and encountered maximum ash concentrations of 9 ± 3 mg m-3, mean concentrations of 2 ± 1 mg m-3over a period of 10-11 min of the flight, giving a dosage of 1.2 ± 0.3 g s m-3. Satellite data could not be used directly to observe the ash cloud encountered by the aircraft, whereas inverse modeling revealed its presence.

  13. Signal to Noise Ratio Estimations for a Volcanic ASH Detection Lidar. Case Study: The Met Office

    NASA Astrophysics Data System (ADS)

    Georgoussis, George; Adam, Mariana; Avdikos, George

    2016-06-01

    In this paper we calculate the Signal-to-Noise (SNR) ratio of a 3-channel commercial (Raymetics) volcanic ash detection system, (LR111-D300), already operating under Met Office organization. The methodology for the accurate estimation is presented for day and nighttime conditions. The results show that SNR values are higher than 10 for ranges up to 13 km for both nighttime and daytime conditions. This is a quite good result compared with other values presented in bibliography and proves that such system is able to detect volcanic ash over a range of 20 km.

  14. Volcanic ash layers illuminate the resilience of Neanderthals and early modern humans to natural hazards.

    PubMed

    Lowe, John; Barton, Nick; Blockley, Simon; Ramsey, Christopher Bronk; Cullen, Victoria L; Davies, William; Gamble, Clive; Grant, Katharine; Hardiman, Mark; Housley, Rupert; Lane, Christine S; Lee, Sharen; Lewis, Mark; MacLeod, Alison; Menzies, Martin; Müller, Wolfgang; Pollard, Mark; Price, Catherine; Roberts, Andrew P; Rohling, Eelco J; Satow, Chris; Smith, Victoria C; Stringer, Chris B; Tomlinson, Emma L; White, Dustin; Albert, Paul; Arienzo, Ilenia; Barker, Graeme; Boric, Dusan; Carandente, Antonio; Civetta, Lucia; Ferrier, Catherine; Guadelli, Jean-Luc; Karkanas, Panagiotis; Koumouzelis, Margarita; Müller, Ulrich C; Orsi, Giovanni; Pross, Jörg; Rosi, Mauro; Shalamanov-Korobar, Ljiljiana; Sirakov, Nikolay; Tzedakis, Polychronis C

    2012-08-21

    Marked changes in human dispersal and development during the Middle to Upper Paleolithic transition have been attributed to massive volcanic eruption and/or severe climatic deterioration. We test this concept using records of volcanic ash layers of the Campanian Ignimbrite eruption dated to ca. 40,000 y ago (40 ka B.P.). The distribution of the Campanian Ignimbrite has been enhanced by the discovery of cryptotephra deposits (volcanic ash layers that are not visible to the naked eye) in archaeological cave sequences. They enable us to synchronize archaeological and paleoclimatic records through the period of transition from Neanderthal to the earliest anatomically modern human populations in Europe. Our results confirm that the combined effects of a major volcanic eruption and severe climatic cooling failed to have lasting impacts on Neanderthals or early modern humans in Europe. We infer that modern humans proved a greater competitive threat to indigenous populations than natural disasters. PMID:22826222

  15. Volcanic ash layers illuminate the resilience of Neanderthals and early modern humans to natural hazards

    PubMed Central

    Lowe, John; Barton, Nick; Blockley, Simon; Ramsey, Christopher Bronk; Cullen, Victoria L.; Davies, William; Gamble, Clive; Grant, Katharine; Hardiman, Mark; Housley, Rupert; Lane, Christine S.; Lee, Sharen; Lewis, Mark; MacLeod, Alison; Menzies, Martin; Müller, Wolfgang; Pollard, Mark; Price, Catherine; Roberts, Andrew P.; Rohling, Eelco J.; Satow, Chris; Smith, Victoria C.; Stringer, Chris B.; Tomlinson, Emma L.; White, Dustin; Albert, Paul; Arienzo, Ilenia; Barker, Graeme; Borić, Dušan; Carandente, Antonio; Civetta, Lucia; Ferrier, Catherine; Guadelli, Jean-Luc; Karkanas, Panagiotis; Koumouzelis, Margarita; Müller, Ulrich C.; Orsi, Giovanni; Pross, Jörg; Rosi, Mauro; Shalamanov-Korobar, Ljiljiana; Sirakov, Nikolay; Tzedakis, Polychronis C.

    2012-01-01

    Marked changes in human dispersal and development during the Middle to Upper Paleolithic transition have been attributed to massive volcanic eruption and/or severe climatic deterioration. We test this concept using records of volcanic ash layers of the Campanian Ignimbrite eruption dated to ca. 40,000 y ago (40 ka B.P.). The distribution of the Campanian Ignimbrite has been enhanced by the discovery of cryptotephra deposits (volcanic ash layers that are not visible to the naked eye) in archaeological cave sequences. They enable us to synchronize archaeological and paleoclimatic records through the period of transition from Neanderthal to the earliest anatomically modern human populations in Europe. Our results confirm that the combined effects of a major volcanic eruption and severe climatic cooling failed to have lasting impacts on Neanderthals or early modern humans in Europe. We infer that modern humans proved a greater competitive threat to indigenous populations than natural disasters. PMID:22826222

  16. Volcanic ash detection and retrievals using MODIS data by means of neural networks

    NASA Astrophysics Data System (ADS)

    Picchiani, M.; Chini, M.; Corradini, S.; Merucci, L.; Sellitto, P.; Del Frate, F.; Stramondo, S.

    2011-12-01

    Volcanic ash clouds detection and retrieval represent a key issue for aviation safety due to the harming effects on aircraft. A lesson learned from the recent Eyjafjallajokull eruption is the need to obtain accurate and reliable retrievals on a real time basis. In this work we have developed a fast and accurate Neural Network (NN) approach to detect and retrieve volcanic ash cloud properties from the Moderate Resolution Imaging Spectroradiometer (MODIS) data in the Thermal InfraRed (TIR) spectral range. Some measurements collected during the 2001, 2002 and 2006 Mt. Etna volcano eruptions have been considered as test cases. The ash detection and retrievals obtained from the Brightness Temperature Difference (BTD) algorithm are used as training for the NN procedure that consists in two separate steps: ash detection and ash mass retrieval. The ash detection is reduced to a classification problem by identifying two classes: "ashy" and "non-ashy" pixels in the MODIS images. Then the ash mass is estimated by means of the NN, replicating the BTD-based model performances. A segmentation procedure has also been tested to remove the false ash pixels detection induced by the presence of high meteorological clouds. The segmentation procedure shows a clear advantage in terms of classification accuracy: the main drawback is the loss of information on ash clouds distal part. The results obtained are very encouraging; indeed the ash detection accuracy is greater than 90%, while a mean RMSE equal to 0.365 t km-2 has been obtained for the ash mass retrieval. Moreover, the NN quickness in results delivering makes the procedure extremely attractive in all the cases when the rapid response time of the system is a mandatory requirement.

  17. Volcanic ash detection and retrievals from MODIS data by means of Neural Networks

    NASA Astrophysics Data System (ADS)

    Picchiani, M.; Chini, M.; Corradini, S.; Merucci, L.; Sellitto, P.; Del Frate, F.; Stramondo, S.

    2011-05-01

    Volcanic ash clouds detection and retrieval represent a key issue for the aviation safety due to the harming effects they can provoke on aircrafts. A lesson learned from the recent Icelandic Eyjafjalla volcano eruption is the need to obtain accurate and reliable retrievals on a real time basis. The current most widely adopted procedures for ash detection and retrieval are based on the Brightness Temperature Difference (BTD) inversion observed at 11 and 12 μm that allows volcanic and meteo clouds discrimination. While ash cloud detection can be readily obtained, a reliable quantitative ash cloud retrieval can be so time consuming to prevent its utilization during the crisis phase. In this work a fast and accurate Neural Network (NN) approach to detect and retrieve volcanic ash cloud properties has been developed using multispectral IR measurements collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) over Mt. Etna volcano during 2001, 2002 and 2006 eruptive events. The procedure consists in two separate steps: the ash detection and ash mass retrieval. The detection is reduced to a classification problem by identifying two classes of "ashy" and "non-ashy" pixels in the MODIS images. Then the ash mass is estimated by means of the NN, replicating the BTD-based model performances. The results obtained from the entire procedure are very encouraging; indeed the confusion matrix for the test set has an accuracy greater than 90 %. Both ash detection and retrieval show a good agreement when compared to the results achieved by the BTD-based procedure. Moreover, the NN procedure is so fast to be extremely attractive in all the cases when the quick response time of the system is a mandatory requirement.

  18. Evaluation of physical health effects due to volcanic hazards: the use of experimental systems to estimate the pulmonary toxicity of volcanic ash

    SciTech Connect

    Martin, T.R.; Wehner, A.P.; Butler, J.

    1986-03-01

    Shortly after Mount St. Helens erupted in 1980, a number of laboratories began to investigate the effects of volcanic ash in a variety of experimental systems in attempts to predict effects that might occur in the lung of humans exposed to volcanic ash. The published results are remarkably consistent, despite the use of non-uniform ash samples and variability in the experimental approaches used. The data indicate that volcanic ash, even in high concentrations, causes little toxicity to lung cells in vitro and in vivo, as compared with effects of free crystalline silica, which is known to be highly fibrogenic. Volcanic ash does not appear to be entirely inert, however, possibly because of low concentrations of free crystalline silica in the ash. The published experimental studies suggest that inhaled volcanic ash is not likely to be harmful to the lungs of healthy humans, but the potential effects of volcanic ash in patients with pre-existing lung diseases are more difficult to ascertain from these studies.

  19. Evaluation of physical health effects due to volcanic hazards: the use of experimental systems to estimate the pulmonary toxicity of volcanic ash.

    PubMed

    Martin, T R; Wehner, A P; Butler, J

    1986-03-01

    Shortly after Mount St. Helens erupted in 1980, a number of laboratories began to investigate the effects of volcanic ash in a variety of experimental systems in attempts to predict effects that might occult in the lungs of humans exposed to volcanic ash. The published results are remarkably consistent, despite the use of non-uniform ash samples and variability in the experimental approaches used. The data indicate that volcanic ash, even in high concentrations, causes little toxicity to lung cells in vitro and in vivo, as compared with effects of free crystalline silica, which is known to be highly fibrogenic. Volcanic ash does not appear to be entirely inert, however, possibly because of low concentrations of free crystalline silica in the ash. The published experimental studies suggest that inhaled volcanic ash is not likely to be harmful to the lungs of healthy humans, but the potential effects of volcanic ash in patients with pre-existing lung diseases are more difficult to ascertain from these studies. PMID:3080911

  20. Automatic Estimation of Volcanic Ash Plume Height using WorldView-2 Imagery

    NASA Technical Reports Server (NTRS)

    McLaren, David; Thompson, David R.; Davies, Ashley G.; Gudmundsson, Magnus T.; Chien, Steve

    2012-01-01

    We explore the use of machine learning, computer vision, and pattern recognition techniques to automatically identify volcanic ash plumes and plume shadows, in WorldView-2 imagery. Using information of the relative position of the sun and spacecraft and terrain information in the form of a digital elevation map, classification, the height of the ash plume can also be inferred. We present the results from applying this approach to six scenes acquired on two separate days in April and May of 2010 of the Eyjafjallajokull eruption in Iceland. These results show rough agreement with ash plume height estimates from visual and radar based measurements.

  1. Improved space borne detection of volcanic ash for real-time monitoring using 3-Band method

    NASA Astrophysics Data System (ADS)

    Guéhenneux, Y.; Gouhier, M.; Labazuy, P.

    2015-02-01

    For over 25 years, thermal infrared data supplied by satellite-based sensors are used to detect and characterize volcanic ash clouds using a commonly accepted method: the 2-Band reverse absorption technique. This method is based on a two-channel difference model using the opposite extinction features of water-ice and ash particles at 11 and 12 μm wavelengths. Although quite efficient with the supervision of a user, this method shows however some limitations for reliable automated detection of volcanic ash in a real-time fashion. Here we explore a method dedicated to the operational monitoring of volcanic ash that combines the 11-12 μm brightness temperature difference (BTD11-12) with a second brightness temperature difference between channels 8.7 μm and 11 μm, (BTD8.7-11). We first achieve a detailed microphysics analysis of different atmospheric aerosols (volcanic ash, water/ice, sulfuric acid, mineral dust) using optical properties (e.g., extinction efficiency, single scattering albedo and asymmetry parameter) calculated by Mie theory, and showing that BTD8.7-11 can be particularly efficient to remove most of artifacts. Then, we tested this method for eight different eruptions between 2005 and 2011 from six different volcanoes (Mount Etna, Piton de la Fournaise, Karthala, Soufriere Hills, Eyjafjallajökull, and Grimsvötn) using data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board Meteosat Second Generation (MSG) geostationary satellite. We show that between 95.6% and 99.9% of ash-contaminated pixels erroneously identified by the BTD11-12 method (i.e., artifacts) were detected and removed by the 3-Band method. For all eruptions, the 3-Band method shows a high and constant reliability having a false alarm rate in the range 0.002-0.08%, hence allowing operational implementation for automated detection in case of a volcanic crisis.

  2. MAFALDA: An early warning modeling tool to forecast volcanic ash dispersal and deposition

    NASA Astrophysics Data System (ADS)

    Barsotti, S.; Nannipieri, L.; Neri, A.

    2008-12-01

    Forecasting the dispersal of ash from explosive volcanoes is a scientific challenge to modern volcanology. It also represents a fundamental step in mitigating the potential impact of volcanic ash on urban areas and transport routes near explosive volcanoes. To this end we developed a Web-based early warning modeling tool named MAFALDA (Modeling and Forecasting Ash Loading and Dispersal in the Atmosphere) able to quantitatively forecast ash concentrations in the air and on the ground. The main features of MAFALDA are the usage of (1) a dispersal model, named VOL-CALPUFF, that couples the column ascent phase with the ash cloud transport and (2) high-resolution weather forecasting data, the capability to run and merge multiple scenarios, and the Web-based structure of the procedure that makes it suitable as an early warning tool. MAFALDA produces plots for a detailed analysis of ash cloud dynamics and ground deposition, as well as synthetic 2-D maps of areas potentially affected by dangerous concentrations of ash. A first application of MAFALDA to the long-lasting weak plumes produced at Mt. Etna (Italy) is presented. A similar tool can be useful to civil protection authorities and volcanic observatories in reducing the impact of the eruptive events. MAFALDA can be accessed at http://mafalda.pi.ingv.it.

  3. What Controls the Sizes and Shapes of Volcanic Ash? Integrating Morphological, Textural and Geochemical Ash Properties to Decipher Eruptive Processes

    NASA Astrophysics Data System (ADS)

    Liu, E. J.; Cashman, K. V.; Rust, A.

    2015-12-01

    Volcanic ash particles encompass a diverse spectrum of shapes as a consequence of differences in the magma properties and the magma ascent and eruption conditions. We show how the quantitative analysis of ash particle shapes can be a valuable tool for deciphering magma fragmentation and transport processes. Importantly, integrating morphological data with ash texture (e.g. bubble and crystal sizes) and dissolved volatile data provides valuable insights into the physical and chemical controls on the resulting ash deposit. To explore the influence of magma-water interaction (MWI) on fine ash generation, we apply this multi-component characterisation to tephra from the 2500BC Hverfjall Fires, Iceland. Here, coeval fissure vents spanned sub-aerial to shallow lacustrine environments. Differences in the size and morphology of pyroclasts thus reflect fragmentation mechanisms under different near-surface conditions. Using shape parameters sensitive to both particle roughness and internal vesicularity, we quantify the relative proportions of dense fragments, bubble shards, and vesicular grains from 2-D SEM images. We show that componentry (and particle morphology) varies as a function of grain size, and that this variation can be related back to the bubble size distribution. Although both magmatic and hydromagmatic deposits exhibit similar component assemblages, they differ in how these assemblages change with grain size. These results highlight the benefits of characterising ash deposits over a wide range of grain sizes, and caution against inferring fragmentation mechanism from a narrow grain size range. Elevated matrix glass S concentrations in hydromagmatic ash (600-1500 ppm) compared to those in magmatic ash and scoria lapilli (200-500 ppm) indicate interrupted vesiculation. In contrast to the subaerial 'dry' deposits, fragmentation during MWI likely occurred over a greater range of depths with quench rates sufficient to prevent post-fragmentation degassing. High

  4. Soil and geomorphic evolution within the rolling red plains using pleistocene volcanic ash deposits

    NASA Astrophysics Data System (ADS)

    Carter, Brian J.; Ward, Phil A.; Shannon, Jean T.

    1990-09-01

    Pleistocene volcanic ash deposits are found within alluvium from the Arkansas river south to the Brazos river. This drainage area includes tributaries originating in the High Plains, the Raton volcanic field and the Rocky Mountain Front Range within the states of Colorado, New Mexico, Kansas, Texas, and Oklahoma. Thirteen ash deposits are dated from within the High Plains of Kansas and Texas eastward into central Oklahoma to understand the geomorphic history and improve soil and geologic mapping. Within the study area unsolidated Tertiary and Quaternary sediments deposited in a west to east direction overlie Triassic, Permian, and Pennsylvanian bedrock. Volcanic ash deposits are predominantly Early to Middle Pleistocene age. Volcanic ash deposits were dated by the fission track method on shards. The ash deposits are contained within four land resource regions, the Southern and Central High Plains, the High Plains Breaks, the Rolling Red Plains, and the Reddish Prairies. Extensive Middle Pleistocene constructional stream terrace surfaces occur within the Rolling Red Plains. Multiple stream terrace surfaces were recognized across the study area with the highest level being dated Early Pleistocene to Pliocene and the lowest bordering the Holocene floodplains. Topographic cross-sections (100 km long at 1:24,000 scale) transecting dated ash deposits and perpendicular to major river systems were used to distinguish terrace levels. Constructional terrace surfaces dated by ash deposits range from 21 to 100 m above and 1 to 16 km distance from present river channels. Soil orders formed in Quaternary alluvium are Entisols, Inceptisols, Mollisols, Alfisols and Vertisols. Ustic and udic soil moisture regimes and a thermic (15 to 22°C mean annual temperature) soil temperature regime dominate the study area. The same soil series is often mapped on terrace surfaces spanning Early to Middle Pleistocene age because current classification does not recognize differences in deeply

  5. Lung clearance of neutron-activated Mount St. Helens volcanic ash in the rat.

    PubMed

    Wehner, A P; Wilerson, C L; Stevens, D L

    1984-10-01

    To determine pulmonary deposition and clearance of inhaled volcanic ash, rats received a single 60-min, nose-only exposure to neutron-activated ash. Over a period of 128 days after exposure, the rats were sacrificed in groups of five animals. Lungs were analyzed for the radionuclide tracers 46Sc, 59Fe, and 60Co by gamma-ray spectrometry. The alveolar ash burdens, determined by the radionuclides 46Sc and 59Fe, are in good agreement for the majority of samples analyzed, indicating ash particulate levels in the lungs, rather than leached radionuclides. The ash deposition estimates based on 60Co were appreciably lower for the lungs, indicating that 60Co leached from the ash. Approximately 110 micrograms ash, or 6% of the inhaled ash, was initially retained in the deep lung. The biological half-time of the alveolar ash burden was 39 days. After 90 days, the mean lung burden had decreased to about 20% of its initial value; 128 days after exposure, about 10% remained. PMID:6489290

  6. Effects of Eyjafjallajökull Volcanic Ash on Innate Immune System Responses and Bacterial Growth in Vitro

    PubMed Central

    Baltrusaitis, Jonas; Powers, Linda S.; Borcherding, Jennifer A.; Caraballo, Juan C.; Mudunkotuwa, Imali; Peate, David W.; Walters, Katherine; Thompson, Jay M.; Grassian, Vicki H.; Gudmundsson, Gunnar; Comellas, Alejandro P.

    2013-01-01

    Background: On 20 March 2010, the Icelandic volcano Eyjafjallajökull erupted for the first time in 190 years. Despite many epidemiological reports showing effects of volcanic ash on the respiratory system, there are limited data evaluating cellular mechanisms involved in the response to ash. Epidemiological studies have observed an increase in respiratory infections in subjects and populations exposed to volcanic eruptions. Methods: We physicochemically characterized volcanic ash, finding various sizes of particles, as well as the presence of several transition metals, including iron. We examined the effect of Eyjafjallajökull ash on primary rat alveolar epithelial cells and human airway epithelial cells (20–100 µg/cm2), primary rat and human alveolar macrophages (5–20 µg/cm2), and Pseudomonas aeruginosa (PAO1) growth (3 µg/104 bacteria). Results: Volcanic ash had minimal effect on alveolar and airway epithelial cell integrity. In alveolar macrophages, volcanic ash disrupted pathogen-killing and inflammatory responses. In in vitro bacterial growth models, volcanic ash increased bacterial replication and decreased bacterial killing by antimicrobial peptides. Conclusions: These results provide potential biological plausibility for epidemiological data that show an association between air pollution exposure and the development of respiratory infections. These data suggest that volcanic ash exposure, while not seriously compromising lung cell function, may be able to impair innate immunity responses in exposed individuals. PMID:23478268

  7. The Persistence of Volcanic Ash in the Tropical Stratosphere after the Kelud Eruption

    NASA Astrophysics Data System (ADS)

    Vernier, J. P.; Fairlie, T. D.; Deshler, T.; Knepp, T. N.; Natarajan, M.; Foster, K.; Trepte, C. R.; Thomason, L. W.; Bedka, K. M.; Wienhold, F.

    2014-12-01

    An increase of volcanic activity over the past decade is thought to have contributed significantly to the global warming "hiatus". Thus, it is important to improve our understanding of the microphysical and optical properties of even small volcanic plumes as well as their associated climate impacts. On February 13th, 2014, the Mt Kelud volcano, located near 4°S on the island of Java (Indonesia), injected volcanic gases and ash into the tropical stratosphere. An overpass of the CALIPSO lidar during the active phase of the eruption showed volcanic materials reaching 26 km with the main volcanic cloud near 18-19 km. This is the highest altitude volcanic injection since Mt Pinatubo in 1991. CALIPSO has tracked the dispersion of the Kelud plume throughout the tropical lower stratosphere (~20N-20S) since then. Depolarization lidar measurements (0.3-0.4) indicate that the plume was likely composed of irregularly shaped ash particles during the first few days after the eruption, and that sulfate aerosol (spherical droplets) formed thereafter, gradually lowering the mean depolarization to 0.1-0.2. In May, 2014, we mounted a 2-week campaign to Darwin (Australia) to measure several profiles of backscatter in red and blue channels, and one profile of aerosol size distribution using two optical particle counters, one with an inlet heated to 200°C. The purpose was to characterize particle sizes, optical properties, and sulfate fraction from a relatively fresh volcanic plume in the low stratosphere. Preliminary results from the campaign suggest the persistence of ash particles at the bottom of the Kelud plume 3 months after the eruption. This is significant because the climate impact of ash is neglected in most climate models.

  8. Multi-Partner Experiment to Test Volcanic-Ash Ingestion by a Jet Engine

    NASA Technical Reports Server (NTRS)

    Lekki, John; Lyall, Eric; Guffanti, Marianne; Fisher, John; Erlund, Beth; Clarkson, Rory; van de Wall, Allan

    2013-01-01

    A research team of U.S. Government agencies and engine manufacturers are designing an experiment to test volcanic-ash ingestion by a NASA owned F117 engine that was donated by the U.S. Air Force. The experiment is being conducted under the auspices of NASA s Vehicle Integrated Propulsion Research (VIPR) Program and will take place in early 2014 at Edwards AFB in California as an on-ground, on-wing test. The primary objectives are to determine the effect on the engine of several hours of exposure to low to moderate ash concentrations, currently proposed at 1 and 10 mg/m3 and to evaluate the capability of engine health management technologies for detecting these effects. A natural volcanic ash will be used that is representative of distal ash clouds many 100's to approximately 1000 km from a volcanic source i.e., the ash should be composed of fresh glassy particles a few tens of microns in size. The glassy ash particles are expected to soften and become less viscous when exposed to the high temperatures of the combustion chamber, then stick to the nozzle guide vanes of the high-pressure turbine. Numerous observations and measurements of the engine s performance and degradation will be made during the course of the experiment, including borescope and tear-down inspections. While not intended to be sufficient for rigorous certification of engine performance when ash is ingested, the experiment should provide useful information to aircraft manufacturers, airline operators, and military and civil regulators in their efforts to evaluate the range of risks that ash hazards pose to aviation.

  9. The effect of Etna volcanic ash plumes on the Maltese Islands

    NASA Astrophysics Data System (ADS)

    Azzopardi, Francelle; Ellul, Raymond; Prestifilippo, Michele; Scollo, Simona; Coltelli, Mauro

    2013-04-01

    Research was carried out to gather information about Etna's eruptions which involved the Maltese Islands, starting with historical eruptions dating back to the 14th century to more recent ones. A statistical approach was utilized to provide tephra deposit load and ash concentration using PUFF - a model which simulates the transport, dispersion and sedimentation of volcanic ash. Three different eruptive scenarios that characterize Etna's recent activity were considered; the first scenario representing the 2001 eruption (S1), the second scenario representing the July 1998 eruption (S2) whilst the third scenario represents the recent activity in 2011-2012 (S3). We found that the time taken for the volcanic ash plume to reach the Maltese Islands when the wind direction is toward the south-west ranges from 4 to 8 hours. The effect of wind speed and direction was also studied and it emerged that the probability that an Etna volcanic plume reaches Malta during an eruption is around 13% per annum. The now calibrated model, which will daily produce deposit load and cumulative area of volcanic ash dispersal, will thus allow provision of adequate alerts to civil aviation authorities and Malta airport. This will be of direct use to local communities and aviation.

  10. INHALATION STUDIES OF MT. ST. HELENS VOLCANIC ASH IN ANIMALS. 1. INTRODUCTION AND EXPOSURE SYSTEM

    EPA Science Inventory

    Due to the lack of information on the effects of inhaled Mt. St. Helens volcanic ash and its potential interaction with sulfur dioxide (SO2), animal studies were performed to determine the acute and chronic health effects of a short-term exposure. This paper describes the inhalat...

  11. An "Adventure" of MBA Students in Europe: How Volcanic Ash Produced an Incidental Learning Experience

    ERIC Educational Resources Information Center

    Vazquez, Ana Claudia Souza; Ruas, Roberto Lima; Cervo, Clarissa S.; Hutz, Claudio Simon

    2013-01-01

    Because the volcanic ash that affected air travel in Western Europe in 2010 was considered as one of the most meaningful learning experiences by a group of MBA students, this article aims to outline the main aspects of an incidental learning situation, rarely described on management education literature. Incidental learning is an unsystematic…

  12. Automatic volcanic ash detection from MODIS observations using a back-propagation neural network

    NASA Astrophysics Data System (ADS)

    Gray, T. M.; Bennartz, R.

    2015-12-01

    Due to the climate effects and aviation threats of volcanic eruptions, it is important to accurately locate ash in the atmosphere. This study aims to explore the accuracy and reliability of training a neural network to identify cases of ash using observations from the Moderate Resolution Imaging Spectroradiometer (MODIS). Satellite images were obtained for the following eruptions: Kasatochi, Aleutian Islands, 2008; Okmok, Aleutian Islands, 2008; Grímsvötn, northeastern Iceland, 2011; Chaitén, southern Chile, 2008; Puyehue-Cordón Caulle, central Chile, 2011; Sangeang Api, Indonesia, 2014; and Kelut, Indonesia, 2014. The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to obtain ash concentrations for the same archived eruptions. Two back-propagation neural networks were then trained using brightness temperature differences as inputs obtained via the following band combinations: 12-11, 11-8.6, 11-7.3, and 11 μm. Using the ash concentrations determined via HYSPLIT, flags were created to differentiate between ash (1) and no ash (0) and SO2-rich ash (1) and no SO2-rich ash (0) and used as output. When neural network output was compared to the test data set, 93 % of pixels containing ash were correctly identified and 7 % were missed. Nearly 100 % of pixels containing SO2-rich ash were correctly identified. The optimal thresholds, determined using Heidke skill scores, for ash retrieval and SO2-rich ash retrieval were 0.48 and 0.47, respectively. The networks show significantly less accuracy in the presence of high water vapor, liquid water, ice, or dust concentrations. Significant errors are also observed at the edge of the MODIS swath.

  13. Automatic volcanic ash detection from MODIS observations using a back-propagation neural network

    NASA Astrophysics Data System (ADS)

    Gray, T. M.; Bennartz, R.

    2015-08-01

    Due to the climate effects and aviation threats of volcanic eruptions, it is important to accurately locate ash in the atmosphere. This study aims to explore the accuracy and reliability of training a neural network to identify cases of ash using observations from the Moderate Resolution Imaging Spectroradiometer (MODIS). Satellite images were obtained for the following eruptions: Kasatochi, Aleutian Islands, 2008; Okmok, Aleutian Islands, 2008; Grímsvötn, northeastern Iceland, 2011; Chaiteìn, southern Chile, 2008; Puyehue-Cordoìn Caulle, central Chile, 2011; Sangeang Api, Indonesia, 2014; and Kelut, Indonesia, 2014. The Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) was used to obtain ash concentrations for the same archived eruptions. Two back-propagation neural networks were then trained using brightness temperature differences as inputs obtained via the following band combinations: 12-11, 11-8.6, 11-7.3, and 11 μm. Using the ash concentrations determined via HYSPLIT, flags were created to differentiate between ash (1) and no ash (0) and SO2-rich ash (1) and no SO2-rich ash (0) and used as output. When neural network output was compared to the test dataset, 93 % of pixels containing ash were correctly identified and 7 % were missed. Nearly 100 % of pixels containing SO2-rich ash were correctly identified. The optimal thresholds, determined using Heidke skill scores, for ash retrieval and SO2-rich ash retrieval were 0.48 and 0.47, respectively. The networks show significantly less accuracy in the presence of high water vapor, liquid water, ice, or dust concentrations. Significant errors are also observed at the edge of the MODIS swath.

  14. Geospatial and statistical analysis of volcanic ash leachate data from Mt. St. Helens

    NASA Astrophysics Data System (ADS)

    Ayris, P. M.; Delmelle, P.; Pereira, B.; Damby, D. E.; Durant, A. J.; Maters, E. C.; Dingwell, D. B.

    2014-12-01

    Upon contact with water, freshly-fallen volcanic ash releases a pulse of readily soluble material, derived from dissolution of S-, Cl- and F-bearing salts formed on ash surfaces during transport through the volcanic eruption plume. Analysis of leachate solutions can provide insight into the spatial and temporal variations in surface salt loadings, and hence the processes by which they were emplaced, and the hazards which they may induce upon mobilisation within receiving environments. However, excluding a small number of publications from the 1970's and 1980's, leachate studies are often limited by the use of small datasets with an uncertain capacity to adequately represent their parent ash deposit. Here we illustrate the significance of such limitations through the compilation and interrogation of a database of 96 published leachate compositions from 6 studies which investigated the May 18th, 1980 eruption of Mt. St. Helens. Utilising statistical analysis techniques, we removed outliers and biases between studies by linear transformation in order to produce a useable ash leachate dataset. The corrected data were mapped by kriging method to derive the spatial distribution of soluble S and Cl concentrations downwind of the volcano. Our treatment highlighted spatial trends in leachate data which may reflect various volcanic and atmospheric processes. In order to be able to disentangle these processes, we emphasise the need to obtain a homogeneous spatial distribution when sampling ash for leaching purposes, and to conduct those analyses according to a standardized protocol.

  15. Experimental volcanic ash aggregation: Internal structuring of accretionary lapilli and the role of liquid bonding

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Kueppers, Ulrich; Ayris, Paul M.; Jacob, Michael; Dingwell, Donald B.

    2016-01-01

    Explosive volcanic eruptions can release vast quantities of pyroclastic material into Earth's atmosphere, including volcanic ash, particles with diameters less than two millimeters. Ash particles can cluster together to form aggregates, in some cases reaching up to several centimeters in size. Aggregation alters ash transport and settling behavior compared to un-aggregated particles, influencing ash distribution and deposit stratigraphy. Accretionary lapilli, the most commonly preserved type of aggregates within the geologic record, can exhibit complex internal stratigraphy. The processes involved in the formation and preservation of these aggregates remain poorly constrained quantitatively. In this study, we simulate the variable gas-particle flow conditions which may be encountered within eruption plumes and pyroclastic density currents via laboratory experiments using the ProCell Lab System® of Glatt Ingenieurtechnik GmbH. In this apparatus, solid particles are set into motion in a fluidized bed over a range of well-controlled boundary conditions (particle concentration, air flow rate, gas temperature, humidity, liquid composition). Experiments were conducted with soda-lime glass beads and natural volcanic ash particles under a range of experimental conditions. Both glass beads and volcanic ash exhibited the capacity for aggregation, but stable aggregates could only be produced when materials were coated with high but volcanically-relevant concentrations of NaCl. The growth and structure of aggregates was dependent on the initial granulometry, while the rate of aggregate formation increased exponentially with increasing relative humidity (12-45% RH), before overwetting promoted mud droplet formation. Notably, by use of a broad granulometry, we generated spherical, internally structured aggregates similar to some accretionary pellets found in volcanic deposits. Adaptation of a powder-technology model offers an explanation for the origin of natural accretionary

  16. The future of volcanic ash-aircraft interactions from technical and policy perspectives

    NASA Astrophysics Data System (ADS)

    Casadevall, T. J.; Guffanti, M.

    2010-12-01

    Since the advent of jet-powered flight in the 1960s, the threat of volcanic ash to aviation operations has become widely recognized and the mitigation of this threat has received concerted international attention. At the same time the susceptibility to operational disruption has grown. Technical improvements to airframes, engines, and avionic systems have been made in response to the need for improved fuel efficiency and the demand for increased capacity for passenger and freight traffic. Operational demands have resulted in the growth of extended overseas flight operations (ETOPS), increased flight frequency on air traffic routes, and closer spacing of aircraft on heavily traveled routes. The net result has been great advances in flight efficiency, but also increased susceptibility to flight disruption, especially in heavily traveled regions such as North Atlantic-Europe, North America, and the North Pacific. Advances in ash avoidance procedures, pilot and air manager training, and in detection of ash-related damage and maintenance of aircraft and engines have been spurred by noteworthy eruptions such as Galunggung, Indonesia, 1982; Redoubt, Alaska, 1989-1990; and Pinatubo, Philippines, 1991. Comparable advances have been made in the detection and tracking of volcanic ash clouds using satellite-based remote sensing and numerical trajectory forecast models. Following the April 2010 eruption of Eyjafjallajökull volcano, Iceland, the global aviation community again focused attention on the issue of safe air operations in airspace affected by volcanic ash. The enormous global disruption to air traffic in the weeks after the Eyjafjallajökull eruption has placed added emphasis for the global air traffic management system as well as on the equipment manufacturers to reevaluate air operations in ash-affected airspace. Under the leadership of the International Civil Aviation Organization and the World Meteorological Organization, efforts are being made to address this

  17. Effects of volcanic ash deposits on four functional groups of a coral reef

    NASA Astrophysics Data System (ADS)

    Vroom, Peter S.; Zgliczynski, Brian J.

    2011-12-01

    The immediate effects of pyroclastic deposits (ash fall) on reef communities after volcanic eruptions on remote tropical islands have never been critically examined. This study discusses findings from an interdisciplinary research expedition to the island of Anatahan (Commonwealth of the Northern Mariana Islands), 4 months after its first recorded volcanic eruption. Deep ash completely obliterated any trace of reef communities off the northeastern shores of the island; however, reefs in other areas, although still blanketed with ash deposits, fared better. Mean fish biomass recorded around Anatahan after the eruption was 0.22 kg 100 m-2, a value three times lower than at Sarigan, the closest neighbor island. Similarly, average percent cover of live coral (7.9%), crustose coralline red algal (7.7%), and macroalgal (14.3%) populations was 2.3, 1.4, and 3.0 times lower than at Sarigan, respectively.

  18. Ash iron mobilization through physicochemical processing in volcanic eruption plumes: a numerical modeling approach

    NASA Astrophysics Data System (ADS)

    Hoshyaripour, G. A.; Hort, M.; Langmann, B.

    2015-08-01

    It has been shown that volcanic ash fertilizes the Fe-limited areas of the surface ocean through releasing soluble iron. As ash iron is mostly insoluble upon the eruption, it is hypothesized that heterogeneous in-plume and in-cloud processing of the ash promote the iron solubilization. Direct evidences concerning such processes are, however, lacking. In this study, a 1-D numerical model is developed to simulate the physicochemical interactions of the gas-ash-aerosol in volcanic eruption plumes focusing on the iron mobilization processes at temperatures between 600 and 0 °C. Results show that sulfuric acid and water vapor condense at ~ 150 and ~ 50 °C on the ash surface, respectively. This liquid phase then efficiently scavenges the surrounding gases (> 95 % of HCl, 3-20 % of SO2 and 12-62 % of HF) forming an extremely acidic coating at the ash surface. The low pH conditions of the aqueous film promote acid-mediated dissolution of the Fe-bearing phases present in the ash material. We estimate that 0.1-33 % of the total iron available at the ash surface is dissolved in the aqueous phase before the freezing point is reached. The efficiency of dissolution is controlled by the halogen content of the erupted gas as well as the mineralogy of the iron at ash surface: elevated halogen concentrations and presence of Fe2+-carrying phases lead to the highest dissolution efficiency. Findings of this study are in agreement with the data obtained through leaching experiments.

  19. The in vitro respiratory toxicity of cristobalite-bearing volcanic ash.

    PubMed

    Damby, David E; Murphy, Fiona A; Horwell, Claire J; Raftis, Jennifer; Donaldson, Kenneth

    2016-02-01

    Ash from dome-forming volcanoes poses a unique hazard to millions of people worldwide due to an abundance of respirable cristobalite, a crystalline silica polymorph. Crystalline silica is an established respiratory hazard in other mixed dusts, but its toxicity strongly depends on sample provenance. Previous studies suggest that cristobalite-bearing volcanic ash is not as bio-reactive as may be expected for a dust containing crystalline silica. We systematically address the hazard posed by volcanic cristobalite by analysing a range of dome-related ash samples, and interpret the crystalline silica hazard according to the mineralogical nature of volcanic cristobalite. Samples are sourced from five well-characterized dome-forming volcanoes that span a range of magmatic compositions, specifically selecting samples rich in cristobalite (up to 16wt%). Isolated respirable fractions are used to investigate the in vitro response of THP-1 macrophages and A549 type II epithelial cells in cytotoxicity, cellular stress, and pro-inflammatory assays associated with crystalline silica toxicity. Dome-related ash is minimally reactive in vitro for a range of source compositions and cristobalite contents. Cristobalite-based toxicity is not evident in the assays employed, supporting the notion that crystalline silica provenance influences reactivity. Macrophages experienced minimal ash-induced cytotoxicity and intracellular reduction of glutathione; however, production of IL-1β, IL-6 and IL-8 were sample-dependent. Lung epithelial cells experienced moderate apoptosis, sample-dependent reduction of glutathione, and minimal cytokine production. We suggest that protracted interaction between particles and epithelial cells may never arise due to effective clearance by macrophages. However, volcanic ash has the propensity to incite a low, but significant, and sample-dependent response; the effect of this response in vivo is unknown and prolonged exposure may yet pose a hazard. PMID

  20. Deriving the concentration of airborne ash with a CAS-DPOL instrument: assessing uncertainties introduced by the instrument design

    NASA Astrophysics Data System (ADS)

    Spanu, Antonio; Weinzierl, Bernadett; Freudenthaler, Volker; Sauer, Daniel; Gasteiger, Josef

    2016-04-01

    Explosive volcanic eruptions inject large amounts of gas and particles into the atmosphere resulting in strong impacts on anthropic systems and climate. Fine ash particles in suspension, even if at low concentrations, are a serious aviation safety hazard. A key point to predict the dispersion and deposition of volcanic ash is the knowledge of emitted mass and its particle size distribution. Usually the deposit is used to characterize the source but a large uncertainty is present for fine and very fine ash particles which are usually not well preserved. Conversely, satellite observations provide only column-integrated information and are strongly sensitive to cloud conditions above the ash plumes. Consequently, in situ measurements are fundamental to extend our knowledge on ash clouds, their properties, and interactions over the vertical extent of the atmosphere. Different in-situ instruments are available covering different particle size ranges using a variety of measurement techniques. Depending on the measurement technique, artefacts due to instrument setup and ambient conditions can strongly modify the measured number concentration and size distribution of the airborne particles. It is fundamental to correct for those effects to quantify the uncertainty associated with the measurement. Here we evaluate the potential of our optical light-scattering spectrometer CAS-DPOL to detect airborne mineral dust and volcanic ash (in the size range between 0.7μm and 50μm) and to provide a reliable estimation of the mass concentration, investigating the associate uncertainty. The CAS-DPOL instrument sizes particles by detecting the light scattered off the particle into a defined angle. The associated uncertainty depends on the optical instrument design and on unknown particles characteristics such as shape and material. Indirect measurements of mass concentrations are statistically reconstructed using the air flow velocity. Therefore, the detected concentration is strongly

  1. Ash-flow tuffs of the Galiuro Volcanics in the northern Galiuro Mountains, Pinal County, Arizona

    USGS Publications Warehouse

    Krieger, Medora Louise Hooper

    1979-01-01

    The upper Oligocene and lower Miocene Galiuro Volcanics in the northern part of the Galiuro Mountains contains two distinctive major ash-flow tuff sheets, the Holy Joe and Aravaipa Members. These major ash-flows illustrate many features of ash-flow geology not generally exposed so completely. The Holy Joe Member, composed of a series of densely welded flows of quartz latite composition that make up a simple cooling unit. is a rare example of a cooling unit that has a vitrophyre at the top as well as at the base. The upper vitrophyre does not represent a cooling break. The Aravaipa Member. a rhyolite, is completely exposed in Aravaipa and other canyons and on Table Mountain. Remarkable exposures along Whitewash Canyon exhibit the complete change from a typical stacked-up interior zonation of an ash flow to a non welded distal margin. Vertical and horizontal changes in welding, crystallization, specific gravity, and lithology are exposed. The ash flow can be divided into six lithologic zones. The Holy Joe and Aravaipa Members of the Galiuro Volcanics are so well exposed and so clearly show characteristic features of ash-flow tuffs that they could be a valuable teaching aid and a source of theses for geology students.

  2. Quantification of L-band InSAR decorrelation in volcanic terrains using airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Sedze, M.; Heggy, E.; Jacquemoud, S.; Bretar, F.

    2011-12-01

    Repeat-pass InSAR LOS measurements of the Piton de La Fournaise (La Reunion Island, France) suffer from substantial phase decorrelation due to the occurrence of vegetation and ash deposits on the caldera and slopes of the edifice. To correct this deficiency, we combine normalized airborne LiDAR (Light Detection and Ranging) intensity data with spaceborne InSAR coherence images from ALOS PALSAR L-band acquired over the volcano in 2008 and 2009, following the 2007 major eruption. The fusion of the two data sets improves the calculation of coherence and the textural classification of different volcanic surfaces. For future missions considering both InSAR and/or LiDAR such as DESDynI (Deformation, Ecosystem Structure and Dynamics of Ice), such data fusion studies can provide a better analysis of the spatiotemporal variations in InSAR coherence in order to enhance the monitoring of pre-eruptive ground displacements. The airborne surveys conducted in 2008 and 2009, cover different types of vegetation and terrain roughness on the central and western parts of the volcano. The topographic data are first processed to generate a high-resolution digital terrain model (DTM) of the volcanic edifice with elevation accuracy better than 1 m. For our purposes, the phase variations caused by the surface relief can be eliminated using the LiDAR-derived DTM. Then normalized LiDAR intensities are correlated to the L-band polarimetric coherence for different zones of the volcano to assess the LiDAR-InSAR statistical behavior of different lava flows, pyroclastics, and vegetated surfaces. Results suggest that each volcanic terrain type is characterized by a unique LiDAR-InSAR histogram pattern. We identified four LiDAR-InSAR distinguished relations: (1) pahoehoe lava flow surfaces show an agglomerate histogram pattern which may be explained by low surface scattering and low wave penetration into the geological medium; (2) eroded a'a lava surfaces is characterized by high standard deviation

  3. Airborne crystalline silica concentrations at coal-fired power plants associated with coal fly ash.

    PubMed

    Hicks, Jeffrey; Yager, Janice

    2006-08-01

    This study presents measurements of airborne concentrations of respirable crystalline silica in the breathing zone of workers who were anticipated to encounter coal fly ash. Six plants were studied; two were fired with lignite coal, and the remaining four plants used bituminous and subbituminous coals. A total of 108 personal breathing zone respirable dust air samples were collected. Bulk samples were also collected from each plant site and subjected to crystalline silica analysis. Airborne dust particle size analysis was measured where fly ash was routinely encountered. The results from bituminous and subbituminous fired plants revealed that the highest airborne fly ash concentrations are encountered during maintenance activities: 0.008 mg/m3 to 96 mg/m3 (mean of 1.8 mg/m3). This group exceeded the threshold limit values (TLV) in 60% of the air samples. During normal production activities, airborne concentrations of crystalline silica ranged from nondetectable to 0.18 mg/m3 (mean value of 0.048 mg/m3). Air samples collected during these activities exceeded the current and proposed TLVs in approximately 54% and 65% of samples, respectively. Limited amounts of crystalline silica were detected in samples collected from lignite-fired plants, and approximately 20% of these air samples exceeded the current TLV. Particle size analysis in areas where breathing zone air samples were collected revealed mass median diameters typically between 3 microm and 8 microm. Bulk and air samples were analyzed for all of the common crystalline silica polymorphs, and only alpha quartz was detected. As compared with air samples, bulk samples from the same work areas consistently yielded lower relative amounts of quartz. Controls to limit coal fly ash exposures are indicated during some normal plant operations and during episodes of short term, but high concentrations of dust that may be encountered during maintenance activities, especially in areas where ash accumulations are present

  4. MODIS volcanic ash retrievals vs FALL3D transport model: a quantitative comparison

    NASA Astrophysics Data System (ADS)

    Corradini, S.; Merucci, L.; Folch, A.

    2010-12-01

    Satellite retrievals and transport models represents the key tools to monitor the volcanic clouds evolution. Because of the harming effects of fine ash particles on aircrafts, the real-time tracking and forecasting of volcanic clouds is key for aviation safety. Together with the security reasons also the economical consequences of a disruption of airports must be taken into account. The airport closures due to the recent Icelandic Eyjafjöll eruption caused millions of passengers to be stranded not only in Europe, but across the world. IATA (the International Air Transport Association) estimates that the worldwide airline industry has lost a total of about 2.5 billion of Euro during the disruption. Both security and economical issues require reliable and robust ash cloud retrievals and trajectory forecasting. The intercomparison between remote sensing and modeling is required to assure precise and reliable volcanic ash products. In this work we perform a quantitative comparison between Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of volcanic ash cloud mass and Aerosol Optical Depth (AOD) with the FALL3D ash dispersal model. MODIS, aboard the NASA-Terra and NASA-Aqua polar satellites, is a multispectral instrument with 36 spectral bands operating in the VIS-TIR spectral range and spatial resolution varying between 250 and 1000 m at nadir. The MODIS channels centered around 11 and 12 micron have been used for the ash retrievals through the Brightness Temperature Difference algorithm and MODTRAN simulations. FALL3D is a 3-D time-dependent Eulerian model for the transport and deposition of volcanic particles that outputs, among other variables, cloud column mass and AOD. Three MODIS images collected the October 28, 29 and 30 on Mt. Etna volcano during the 2002 eruption have been considered as test cases. The results show a general good agreement between the retrieved and the modeled volcanic clouds in the first 300 km from the vents. Even if the

  5. Electrical Properties Of Volcanic Ash Samples From Grímsvötn

    NASA Astrophysics Data System (ADS)

    Houghton, I. M.; Aplin, K. L.; Nicoll, K. A.; Green, O.; Mather, T. A.

    2012-12-01

    Recent Icelandic eruptions in 2012 and 2011 were associated with sustained charging of the ash plume (Harrison et al., 2010) and significant volcanic lightning (Bennett et al., 2010; Arason et al., 2012). The sustained charging suggests that some charging of the plume is independent of the eruption process, in addition to other electrification mechanisms such as triboelectric or fractoemission processes at the vent, the 'dirty thunderstorm' mechanism if ice forms in the plume, and the internal radioactivity of the plume (Mather and Harrison, 2006; James et al., 2008). We investigate the triboelectric charging of volcanic material using a charged particle apparatus, which allows the charged particles to fall under gravity in a screened metallic cylinder. This apparatus comprises two induction rings connected to sensitive electrometers, which detect charge induced by the falling ash, and a Faraday cup to measure the total ash charge. The release mechanism has been designed to facilitate only self charging of the ash, as is expected in the atmospheric plume. Previous work on triboelectric charging of single-material particle systems has shown that the charging is likely to be determined by the number size distribution (Lacks and Levandovsky, 2007). We present a mass distribution measurement for a sample of volcanic ash provided by the Icelandic Meteorological Office collected 70 km from the crater of the 2011 Grímsvötn eruption. This shows a high proportion of fine particles compared with the volumetric size distribution reported in Piper et al. (2012). Optical microscopy of the different size fractions of the Grímsvötn sample indicates that the composition varies with size. In addition to charge transfer as a function of size, the different substances will triboelectrically interact with each other, which complicates the nature of the charge interactions. To separate the dependence of particle charging on size from composition, particle charging experiments were

  6. Size- and Time-Resolved Composition of Volcanic Ash From Augustine Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Cahill, C. F.; Cahill, T. A.; Webley, P.; Wallace, K. L.; Dean, K. G.; Dehn, J.

    2006-12-01

    Augustine, an island volcano located approximately 275 km SSW of Anchorage, Alaska, produced thirteen discrete ash plumes during an explosive eruption phase that lasted from January 11 to January 28, 2006, followed by continuous ash emissions from January 29 to February 2. Immediately after the first two explosive eruptions on the morning of January 11, an eight-stage DRUM aerosol impactor was installed at Anchorage, Alaska, to collect size and time-resolved aerosols. On January 13th, the sampler was relocated, closer to the volcano, and installed at Homer, Alaska, a community approximately 110 km ENE of Augustine. At Homer, the sampler continuously collected aerosols in eight size fractions (35-5.0, 5.0-2.5, 2.5-1.15, 1.15-0.75, 0.75- 0.56, 0.56-0.34, 0.34-0.26 and 0.26-0.09 microns in aerodynamic diameter) between January 13 and February 11, 2006. The aerosols were analyzed with 3-hour resolution for mass using a beta-gauge, and for elemental composition (42 selected elements between sodium and lead) using synchrotron x-ray fluorescence. The aerosol time series at Homer shows that ash from Augustine impacted the site on numerous occasions during the eruption. The chemical composition and size distribution of the aerosols reaching Homer varied during the sampling period. The variations in the aerosol characteristics possibly reflect changes in the bulk chemistry of the erupting materials that are consistent with changes in coarse grained proximal tephra fall deposits. Volcanic ash plumes tracked using satellite data and the Puff ash dispersion model showed ash far beyond the neighborhood of the volcano. The trajectory models indicate and reports confirm that ash reached as far away as northern California. On January 31, during continuous ash emissions, the ash dispersion model forecast volcanic ash over Fairbanks, Alaska, a city located approximately 685 km NNE of Augustine. In response to the model's prediction, a three-stage DRUM aerosol impactor was deployed to

  7. Volcanic Ash and SO2 Monitoring Using Suomi NPP Direct Broadcast OMPS Data

    NASA Astrophysics Data System (ADS)

    Seftor, C. J.; Krotkov, N. A.; McPeters, R. D.; Li, J. Y.; Brentzel, K. W.; Habib, S.; Hassinen, S.; Heinrichs, T. A.; Schneider, D. J.

    2014-12-01

    NASA's Suomi NPP Ozone Science Team, in conjunction with Goddard Space Flight Center's (GSFC's) Direct Readout Laboratory, developed the capability of processing, in real-time, direct readout (DR) data from the Ozone Mapping and Profiler Suite (OMPS) to perform SO2 and Aerosol Index (AI) retrievals. The ability to retrieve this information from real-time processing of DR data was originally developed for the Ozone Monitoring Instrument (OMI) onboard the Aura spacecraft and is used by Volcano Observatories and Volcanic Ash Advisory Centers (VAACs) charged with mapping ash clouds from volcanic eruptions and providing predictions/forecasts about where the ash will go. The resulting real-time SO2 and AI products help to mitigate the effects of eruptions such as the ones from Eyjafjallajokull in Iceland and Puyehue-Cordón Caulle in Chile, which cause massive disruptions to airline flight routes for weeks as airlines struggle to avoid ash clouds that could cause engine failure, deeply pitted windshields impossible to see through, and other catastrophic events. We will discuss the implementation of real-time processing of OMPS DR data by both the Geographic Information Network of Alaska (GINA) and the Finnish Meteorological Institute (FMI), which provide real-time coverage over some of the most congested airspace and over many of the most active volcanoes in the world, and show examples of OMPS DR processing results from recent volcanic eruptions.

  8. Volcanic Ash and Aviation - the 2014 Eruptions of Kelut and Sangeang Api, Indonesia

    NASA Astrophysics Data System (ADS)

    Tupper, A. C.; Jansons, E.

    2014-12-01

    Two significant eruptions in Indonesia during the first part of 2014 have highlighted the continuing challenges of safe air traffic management around volcanic ash clouds. The stratospheric eruption of Kelut (also known as Kelud) in Java late on 13 February 2014 resulted in widespread aviation disruption over Indonesia and at least one serious volcanic ash encounter from an international airline. An upper-tropospheric eruption of Sangeang Api in the Lesser Sunda Islands on 30 May 2014 did not result in any known aircraft encounters, but did result in many delays and flight cancellations between Indonesia and Australia. In both cases, the eruption and resultant ash clouds were relatively well observed, if subject to the usual issues in characterising such clouds. For example, as tropical eruptions frequently reach 15 km amsl and above due to the height of the tropical tropopause, it is frequently very difficult to provide an accurate estimation of conditions at the cruising levels of aircraft, at 10-11 km (or lower for shorter domestic routes). More critically, the challenge of linking operational results from two scientific professions (volcanology and meteorology) with real-time aviation users remains strongly evident. Situational awareness of domestic and international airlines, ground-based monitoring and communications prior to and during the eruption, receiving and sharing pilot reports of volcanic ash, and appropriate flight responses all remain inadequate even in relatively fine conditions, with an unacceptable ongoing risk of serious aviation encounters should improvements not be made. Despite the extensive efforts of the International Civil Aviation Organization, World Meteorological Organization, and all partners in the International Airways Volcano Watch, and despite the acceleration of work on the issue since 2010, volcanic ash management remains sub-optimal.

  9. Modelling the resuspension of volcanic ash from the Valley of Ten Thousand Smokes

    NASA Astrophysics Data System (ADS)

    Schwaiger, H. F.; Wallace, K.

    2015-12-01

    The 1912 eruption of Novarupta-Katmai was the world's most voluminous eruption since the 1815 eruption of Tombora. The eruption produced 17 km3 of ashfall and 11 km3 of pyroclastic flow deposits that filled nearby valleys, creating what is today known as the Valley of Ten Thousand Smokes. These voluminous pyroclastic deposits continue to pose hazards when strong winds in the valley resuspend ash in times of low snow cover. These resuspension events may be confined to the valley and only recorded when there are local observations (web camera images, field crew). Occasionally, however, these events can loft ash up to altitudes of several kilometers and extend up to 250 km downwind, where it becomes an aviation hazard. A compilation of satellite observations and pilot reports indicate that such significant events occurred on at least 19 occasions since 2003. The longest duration events occurred in the autumn months of September and October. Predicting the resuspension of ash requires estimates of when the ash is exposed (low snow cover), the magnitude of surface wind gusts, and the threshold friction velocity (u*). Models of u* require a characterization of the source ash (density, grain-size distribution) as well as soil moisture. We have sampled source deposits and have installed instruments in the Katmai region to record the relevant meteorological parameters in order to better predict these resuspension events. Using real-time measurements coupled with high-resolution (6 km, 1 hour) meteorological forecast products and a reanalysis of conditions that produced historic events, we constrain the parameters applicable the resuspension of Novarupta ash thus improving our ability to forecast this potential ash hazard. The volcanic ash dispersion and deposition model, Ash3d, will be used to forecast the transport of the resuspended ash.

  10. Satellite SO2 retrievals from ash rich volcanic plumes: Comparison between different correction procedures

    NASA Astrophysics Data System (ADS)

    Corradini, S.; Pugnaghi, S.; Campion, R.; Arvani, B.; Guerrieri, L.; Merucci, L.

    2012-04-01

    Observations of volcanic degassing yield insights into the magmatic processes which control volcanic activity during both quiescent and eruptive phases. SO2 is an important volcanic gas because of its effects on the environment (e.g. acid rain, effects on plants and public health) and also because once it has reached high altitudes it can be transported over long distances, has a great residence time and can be oxidized to form sulphates. The sulphates are capable of reflecting solar radiation and causing surface cooling. For these reasons there is great interest in improving the quality and frequency of volcanic SO2 retrievals. Satellite observations have been used for a long time to monitor globally distributed volcanic activity because they offer a practical and safe source of valuable data. While no satellite sensor has been developed explicitly for volcanic observations, continuous technological improvement has achieved spatial resolutions and acquisition frequencies that allow increasingly detailed volcanological studies at local scales. Monitoring of volcanic SO2 is one of the key facilities offered by satellite remote sensing techniques both in the UV and in the TIR spectral range. During volcanic eruptions ash and gases can be emitted simultaneously. The plume ash particles (from 1 to 10 micron) tend to reduce the top of atmosphere radiance in the entire Thermal InfraRed spectral range (7-14 micron), including the channels used for the SO2 retrieval. The net effect is a significant SO2 column abundance overestimation. In this work three different ash correction procedures for SO2 volcanic plume retrieval are compared. These procedures, applied to MODIS and ASTER TIR measurements, has been used to retrieve the SO2 emission from the 2010 Eyjafjallajokull (Iceland) and the 2011 Mt. Etna (Italy) eruptions. The first procedure (P1), based on Corradini et al. 2009, needs the simultaneous presence of the 8.7 micron SO2 absorption bands, as well as the split

  11. Classification of volcanic ash particles from Sakurajima volcano using CCD camera image and cluster analysis

    NASA Astrophysics Data System (ADS)

    Miwa, T.; Shimano, T.; Nishimura, T.

    2012-12-01

    Quantitative and speedy characterization of volcanic ash particle is needed to conduct a petrologic monitoring of ongoing eruption. We develop a new simple system using CCD camera images for quantitatively characterizing ash properties, and apply it to volcanic ash collected at Sakurajima. Our method characterizes volcanic ash particles by 1) apparent luminance through RGB filters and 2) a quasi-fractal dimension of the shape of particles. Using a monochromatic CCD camera (Starshoot by Orion Co. LTD.) attached to a stereoscopic microscope, we capture digital images of ash particles that are set on a glass plate under which white colored paper or polarizing plate is set. The images of 1390 x 1080 pixels are taken through three kinds of color filters (Red, Green and Blue) under incident-light and transmitted-light through polarizing plate. Brightness of the light sources is set to be constant, and luminance is calibrated by white and black colored papers. About fifteen ash particles are set on the plate at the same time, and their images are saved with a bit map format. We first extract the outlines of particles from the image taken under transmitted-light through polarizing plate. Then, luminances for each color are represented by 256 tones at each pixel in the particles, and the average and its standard deviation are calculated for each ash particle. We also measure the quasi-fractal dimension (qfd) of ash particles. We perform box counting that counts the number of boxes which consist of 1×1 and 128×128 pixels that catch the area of the ash particle. The qfd is estimated by taking the ratio of the former number to the latter one. These parameters are calculated by using software R. We characterize volcanic ash from Showa crater of Sakurajima collected in two days (Feb 09, 2009, and Jan 13, 2010), and apply cluster analyses. Dendrograms are formed from the qfd and following four parameters calculated from the luminance: Rf=R/(R+G+B), G=G/(R+G+B), B=B/(R+G+B), and

  12. Computation of probabilistic hazard maps and source parameter estimation for volcanic ash transport and dispersion

    SciTech Connect

    Madankan, R.; Pouget, S.; Singla, P.; Bursik, M.; Dehn, J.; Jones, M.; Patra, A.; Pavolonis, M.; Pitman, E.B.; Singh, T.; Webley, P.

    2014-08-15

    Volcanic ash advisory centers are charged with forecasting the movement of volcanic ash plumes, for aviation, health and safety preparation. Deterministic mathematical equations model the advection and dispersion of these plumes. However initial plume conditions – height, profile of particle location, volcanic vent parameters – are known only approximately at best, and other features of the governing system such as the windfield are stochastic. These uncertainties make forecasting plume motion difficult. As a result of these uncertainties, ash advisories based on a deterministic approach tend to be conservative, and many times over/under estimate the extent of a plume. This paper presents an end-to-end framework for generating a probabilistic approach to ash plume forecasting. This framework uses an ensemble of solutions, guided by Conjugate Unscented Transform (CUT) method for evaluating expectation integrals. This ensemble is used to construct a polynomial chaos expansion that can be sampled cheaply, to provide a probabilistic model forecast. The CUT method is then combined with a minimum variance condition, to provide a full posterior pdf of the uncertain source parameters, based on observed satellite imagery. The April 2010 eruption of the Eyjafjallajökull volcano in Iceland is employed as a test example. The puff advection/dispersion model is used to hindcast the motion of the ash plume through time, concentrating on the period 14–16 April 2010. Variability in the height and particle loading of that eruption is introduced through a volcano column model called bent. Output uncertainty due to the assumed uncertain input parameter probability distributions, and a probabilistic spatial-temporal estimate of ash presence are computed.

  13. Modernization of the International Volcanic Ash Website - a global resource for ashfall preparedness and impact guidance.

    NASA Astrophysics Data System (ADS)

    Wallace, K.; Leonard, G.; Stewart, C.; Wilson, T. M.; Randall, M.; Stovall, W. K.

    2015-12-01

    The internationally collaborative volcanic ash website (http://volcanoes.usgs.gov/ash/) has been an important global information resource for ashfall preparedness and impact guidance since 2004. Recent volcanic ashfalls with significant local, regional, and global impacts highlighted the need to improve the website to make it more accessible and pertinent to users worldwide. Recently, the Volcanic Ash Impacts Working Group (Cities and Volcanoes Commission of IAVCEI) redesigned and modernized the website. Improvements include 1) a database-driven back end, 2) reorganized menu navigation, 3) language translation, 4) increased downloadable content, 5) addition of ash-impact case studies, 7) expanded and updated references , 8) an image database, and 9) inclusion of cooperating organization's logos. The database-driven platform makes the website more dynamic and efficient to operate and update. New menus provide information about specific impact topics (buildings, transportation, power, health, agriculture, water and waste water, equipment and communications, clean up) and updated content has been added throughout all topics. A new "for scientists" menu includes information on ash collection and analysis. Website translation using Google translate will significantly increase user base. Printable resources (e.g. checklists, pamphlets, posters) provide information to people without Internet access. Ash impact studies are used to improve mitigation measures during future eruptions, and links to case studies will assist communities' preparation and response plans. The Case Studies menu is intended to be a living topic area, growing as new case studies are published. A database of all images from the website allows users to access larger resolution images and additional descriptive details. Logos clarify linkages among key contributors and assure users that the site is authoritative and science-based.

  14. Computation of probabilistic hazard maps and source parameter estimation for volcanic ash transport and dispersion

    NASA Astrophysics Data System (ADS)

    Madankan, R.; Pouget, S.; Singla, P.; Bursik, M.; Dehn, J.; Jones, M.; Patra, A.; Pavolonis, M.; Pitman, E. B.; Singh, T.; Webley, P.

    2014-08-01

    Volcanic ash advisory centers are charged with forecasting the movement of volcanic ash plumes, for aviation, health and safety preparation. Deterministic mathematical equations model the advection and dispersion of these plumes. However initial plume conditions - height, profile of particle location, volcanic vent parameters - are known only approximately at best, and other features of the governing system such as the windfield are stochastic. These uncertainties make forecasting plume motion difficult. As a result of these uncertainties, ash advisories based on a deterministic approach tend to be conservative, and many times over/under estimate the extent of a plume. This paper presents an end-to-end framework for generating a probabilistic approach to ash plume forecasting. This framework uses an ensemble of solutions, guided by Conjugate Unscented Transform (CUT) method for evaluating expectation integrals. This ensemble is used to construct a polynomial chaos expansion that can be sampled cheaply, to provide a probabilistic model forecast. The CUT method is then combined with a minimum variance condition, to provide a full posterior pdf of the uncertain source parameters, based on observed satellite imagery. The April 2010 eruption of the Eyjafjallajökull volcano in Iceland is employed as a test example. The puff advection/dispersion model is used to hindcast the motion of the ash plume through time, concentrating on the period 14-16 April 2010. Variability in the height and particle loading of that eruption is introduced through a volcano column model called bent. Output uncertainty due to the assumed uncertain input parameter probability distributions, and a probabilistic spatial-temporal estimate of ash presence are computed.

  15. The relation between pre-eruptive bubble size distribution, ash particle morphology, and their internal density: Implications to volcanic ash transport and dispersion models

    NASA Astrophysics Data System (ADS)

    Proussevitch, Alexander

    2014-05-01

    Parameterization of volcanic ash transport and dispersion (VATD) models strongly depends on particle morphology and their internal properties. Shape of ash particles affects terminal fall velocities (TFV) and, mostly, dispersion. Internal density combined with particle size has a very strong impact on TFV and ultimately on the rate of ash cloud thinning and particle sedimentation on the ground. Unlike other parameters, internal particle density cannot be measured directly because of the micron scale sizes of fine ash particles, but we demonstrate that it varies greatly depending on the particle size. Small simple type ash particles (fragments of bubble walls, 5-20 micron size) do not contain whole large magmatic bubbles inside and their internal density is almost the same as that of volcanic glass matrix. On the other side, the larger compound type ash particles (>40 microns for silicic fine ashes) always contain some bubbles or the whole spectra of bubble size distribution (BSD), i.e. bubbles of all sizes, bringing their internal density down as compared to simple ash. So, density of the larger ash particles is a function of the void fraction inside them (magmatic bubbles) which, in turn, is controlled by BSD. Volcanic ash is a product of the fragmentation of magmatic foam formed by pre-eruptive bubble population and characterized by BSD. The latter can now be measured from bubble imprints on ash particle surfaces using stereo-scanning electron microscopy (SSEM) and BubbleMaker software developed at UNH, or using traditional high-resolution X-Ray tomography. In this work we present the mathematical and statistical formulation for this problem connecting internal ash density with particle size and BSD, and demonstrate how the TFV of the ash population is affected by variation of particle density.

  16. Lab-scale ash production by abrasion and collision experiments of porous volcanic samples

    NASA Astrophysics Data System (ADS)

    Mueller, S. B.; Lane, S. J.; Kueppers, U.

    2015-09-01

    In the course of explosive eruptions, magma is fragmented into smaller pieces by a plethora of processes before and during deposition. Volcanic ash, fragments smaller than 2 mm, has near-volcano effects (e.g. increasing mobility of PDCs, threat to human infrastructure) but may also cause various problems over long duration and/or far away from the source (human health and aviation matters). We quantify the efficiency of ash generation during experimental fracturing of pumiceous and scoriaceous samples subjected to shear and normal stress fields. Experiments were designed to produce ash by overcoming the yield strength of samples from Tenerife (Canary Islands, Spain), Sicily and Lipari Islands (Italy), with this study having particular interest in the < 355 μm fraction. Fracturing within volcanic conduits, plumes and pyroclastic density currents (PDCs) was simulated through a series of abrasion (shear) and collision (normal) experiments. An understanding of these processes is crucial as they are capable of producing very fine ash (< 10 μm). These particles can remain in the atmosphere for several days and may travel large distances (~ 1000s of km). This poses a threat to the aviation industry and human health. From the experiments we establish that abrasion produced the finest-grained material and up to 50% of the generated ash was smaller than 10 μm. In comparison, the collision experiments that applied mainly normal stress fields produced coarser grain sizes. Results were compared to established grain size distributions for natural fall and PDC deposits and good correlation was found. Energies involved in collision and abrasion experiments were calculated and showed an exponential correlation with ash production rate. Projecting these experimental results into the volcanic environment, the greatest amounts of ash are produced in the most energetic and turbulent regions of volcanic flows, which are proximal to the vent. Finest grain sizes are produced in PDCs

  17. [Analysis of volcanic-ash-based insoluble ingredients of facial cleansers].

    PubMed

    Ikarashi, Yoshiaki; Uchino, Tadashi; Nishimura, Tetsuji

    2011-01-01

    The substance termed "Shirasu balloons", produced by the heat treatment of volcanic silicates, is in the form of hollow glass microspheres. Recently, this substance has gained popularity as an ingredient of facial cleansers currently available in the market, because it lends a refreshing and smooth feeling after use. However, reports of eye injury after use of a facial cleanser containing a substance made from volcanic ashes are on the rise. We presumed that the shape and size of these volcanic-ash-based ingredients would be the cause of such injuries. Therefore, in this study, we first developed a method for extracting water-insoluble ingredients such as "Shirasu balloons" from the facial cleansers, and then, we examined their shapes and sizes. The insoluble ingredients extracted from the cleansers were mainly those derived from volcanic silicates. A part of the ingredients remained in the form of glass microspheres, but for the most part, the ingredients were present in various forms, such as fragments of broken glass. Some of the fragments were larger than 75 microm in length. Foreign objects having a certain hardness, shape, and size (e.g., size greater than 75 microm) can possibly cause eye injury. We further examined insoluble ingredients of facial scrubs, such as artificial mineral complexes, mud, charcoal, and polymers, except for volcanic-silicate-based ingredients. The amounts of insoluble ingredients extracted from these scrubs were small and did not have a sharp edge. Some scrubs had ingredients with particles larger than 75 microm in size, but their specific gravities were small and their hardness values were much lower than those of glass microspheres of ingredients such as "Shirasu balloons". Because the fragments of glass microspheres can possibly cause eye injury, the facial cleansers containing large insoluble ingredients derived from volcanic ashes should be avoided to use around eyes. PMID:22259848

  18. Volcanic ash modeling with the online NMMB/BSC-ASH-v1.0: A novel multiscale meteorological model for operational forecast

    NASA Astrophysics Data System (ADS)

    Marti, Alejandro; Folch, Arnau; Jorba, Oriol; Janjic, Zavisa

    2016-04-01

    Volcanic ash forecast became a research priority and a social concern as a consequence of the severe air-traffic disruptions caused by the eruptions of Eyjafjallajökull (Iceland, 2010) and Cordón Caulle (Chile, 2011) volcanoes. Significant progress has taken place in the aftermath of these dramatic events to improve the accuracy of Volcanic Ash Transport and Dispersal (VATD) models and lessen its associated uncertainties. Various levels of uncertainties affect both the quantification of the source term and the driving meteorological inputs. Substantial research is being performed to reduce and quantify epistemic and aleatoric uncertainties affecting the source term. However, uncertainties arising from the driving NWPMs and its coupling offline with the VATDMs have received little attention, even if the experience from other communities (e.g. air quality) highlights the importance of coupling online dispersal and meteorological modeling. Consequently, the need for integrated predictions to represent these two-way feedback effects of the volcanic pollutants on local-scale meteorology is timely. The aim of this talk is to present the NMMB/BSC-ASH, a new on-line multi-scale meteorological model to simulate the emission, transport and deposition of tephra particles released from volcanic eruptions. The model builds on the NMMB/BSC Chemical Transport Model (NMMB/BSC-CTM), which we have modified to account for the specifics of volcanic particles. The final objective in developing the NMMB/BSC-ASH model is two-fold. On one hand, at a research level, we aim at studying the differences between the online/offline approaches and quantify the two-way feedback effect of dense volcanic ash clouds on the radiative budget and regional meteorology. On the other hand, at an operational level, the low computational cost of the NMMB dynamic core suggests that NMMB/BSC-ASH could be applied in a future for more accurate online operational forecasting of volcanic ash clouds.

  19. Long-range hazard assessment of volcanic ash dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico): implications for civil aviation safety

    USGS Publications Warehouse

    Bonasia, Rosanna; Scaini, Chirara; Capra, Lucia; Nathenson, Manuel; Siebe, Claus; Arana-Salinas, Lilia; Folch, Arnau

    2013-01-01

    Popocatépetl is one of Mexico’s most active volcanoes threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene–Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude, the last two of which destroyed human settlements in pre-Hispanic times. Popocatépetl’s reawakening in 1994 produced a crisis that culminated with the evacuation of two villages on the northeastern flank of the volcano. Shortly after, a monitoring system and a civil protection contingency plan based on a hazard zone map were implemented. The current volcanic hazards map considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra hazard, especially related to atmospheric dispersal, has been performed. The presence of airborne volcanic ash at low and jet-cruise atmospheric levels compromises the safety of aircraft operations and forces re-routing of aircraft to prevent encounters with volcanic ash clouds. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is required. In this work, we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels, corresponding to the situation defined in Europe during 2010, and still under discussion. Tephra dispersal mode is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the “Ochre Pumice” Plinian eruption (4965 14C

  20. Long-range hazard assessment of volcanic ash dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico): implications for civil aviation safety

    NASA Astrophysics Data System (ADS)

    Bonasia, Rosanna; Scaini, Chiara; Capra, Lucia; Nathenson, Manuel; Siebe, Claus; Arana-Salinas, Lilia; Folch, Arnau

    2014-01-01

    Popocatépetl is one of Mexico's most active volcanoes threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene-Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude, the last two of which destroyed human settlements in pre-Hispanic times. Popocatépetl's reawakening in 1994 produced a crisis that culminated with the evacuation of two villages on the northeastern flank of the volcano. Shortly after, a monitoring system and a civil protection contingency plan based on a hazard zone map were implemented. The current volcanic hazards map considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra hazard, especially related to atmospheric dispersal, has been performed. The presence of airborne volcanic ash at low and jet-cruise atmospheric levels compromises the safety of aircraft operations and forces re-routing of aircraft to prevent encounters with volcanic ash clouds. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is required. In this work, we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels, corresponding to the situation defined in Europe during 2010, and still under discussion. Tephra dispersal mode is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the "Ochre Pumice" Plinian eruption (4965 14C yr BP

  1. Growth of volcanic ash aggregates in the presence of liquid water and ice: an experimental approach

    NASA Astrophysics Data System (ADS)

    Van Eaton, Alexa R.; Muirhead, James D.; Wilson, Colin J. N.; Cimarelli, Corrado

    2012-11-01

    Key processes influencing the aggregation of volcanic ash and hydrometeors are examined with an experimental method employing vibratory pan aggregation. Mechanisms of aggregation in the presence of hail and ice pellets, liquid water (≤30 wt%), and mixed water phases are investigated at temperatures of 18 and -20 °C. The experimentally generated aggregates, examined in hand sample, impregnated thin sections, SEM imagery, and X-ray microtomography, closely match natural examples from phreatomagmatic phases of the 27 ka Oruanui and 2010 Eyjafjallajökull eruptions. Laser diffraction particle size analysis of parent ash and aggregates is also used to calculate the first experimentally derived aggregation coefficients that account for changing liquid water contents and subzero temperatures. These indicate that dry conditions (<5-10 wt% liquid) promote strongly size selective collection of sub-63 μm particles into aggregates (given by aggregation coefficients >1). In contrast, liquid-saturated conditions (>15-20 wt% liquid) promote less size selective processes. Crystalline ice was also capable of preferentially selecting volcanic ash <31 μm under liquid-free conditions in a two-stage process of electrostatic attraction followed by ice sintering. However, this did not accumulate more than a monolayer of ash at the ice surface. These quantitative relationships may be used to predict the timescales and characteristics of aggregation, such as aggregate size spectra, densities, and constituent particle size characteristics, when the initial size distribution and water content of a volcanic cloud are known. The presence of an irregularly shaped, millimeter-scale vacuole at the center of natural aggregates was also replicated during interaction of ash and melting ice pellets, followed by sublimation. Fine-grained rims were formed by adding moist aggregates to a dry mixture of sub-31 μm ash, which adhered by electrostatic forces and sparse liquid bridges. From this, we

  2. Case Study on Combined Lidar-Photometer Retrieval of Volcanic ASH Properties

    NASA Astrophysics Data System (ADS)

    Gasteiger, Josef; Wiegner, Matthias; Toledano, Carlos; Groß, Silke; Freudenthaler, Volker

    2016-06-01

    We study the benefit of considering sun-/skyphotometer measurements in a microphysical lidar retrieval. Furthermore, to assess the importance of the aerosol model employed by the retrieval, we compare results obtained using a spheroid aerosol model with results using an advanced aerosol model that considers irregular particle shapes. Preliminary results are shown for the massextinction conversion factor and the single scattering albedo during a measurement case of long-range-transported volcanic ash.

  3. Histopathological reaction of the lung to Mount St. Helens volcanic ash

    SciTech Connect

    Sanders, C.L.

    1987-06-01

    The pulmonary toxicity of respirable particle size (count median diameter, 0.5 to 1.6 ..mu..m) Mount St. Helens volcanic ash was studied. Total particulate doses of 22 to 77 mg suspended in sterile 0.9% sodium chloride solution were given in 1 to 7 consecutive weekly intratracheal instillations. The lungs and mediastinal lymph nodes were histologically examined at intervals up to 400 days after instillation.

  4. Comenditic and pantelleritic ash-flow tuffs from Volcan Las Navajas, Nayarit, Mexico

    SciTech Connect

    Nelson, S.A.; Hebre, J.A.

    1985-01-01

    Two distinctive ash-flow tuffs occur around the base of Volcan Las Navajas, a Pleistocene trachyte - peralkaline rhyolite center located in the northwestern segment of the Mexican Volcanic belt. The lower ash-flow unit is locally up to 65 m thick, is lithic rich and contains pumice blocks of comenditic rhyolite. The unit is not extensively exposed, and thus its areal extent and volume cannot be determined. Its chemical characteristics and stratigraphic relationship to other products erupted from Las Navajas suggest that it is related to the formation of the older of the two calderas which occur on Las Navajas. Unconformably overlying this unwelded ash-flow is a pantelleritic airfall pumice unit which is locally welded. This airfall unit is conformably overlain by a welded as-flow tuff that contains fiamme of pantelleritic composition (72 %SiO/sub 2/, 8% FeO*, 900 ppm Zr, agpaitic index of 1.7) as well as pumice blocks that show evidence of various degrees of mixing between pantellerite and trachyte. This suggests eruption from a chemically zoned magma chamber. This unit is locally up to 20 m thick, although its top has been removed by erosion. It is found on all sides of Las Navajas except on the south where it may be covered by Volcan Sanganguey, a Pleistocene to Recent calc-alkaline volcano. The welded ash-flow has been dated by K - Ar at 0.2+/-0.1 m.y. Stratigraphically and chemically this ash-flow appears to be related to the formation of younger of the two calderas.

  5. Inversion Technique for Estimating Emissions of Volcanic Ash from Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Pelley, Rachel; Cooke, Michael; Manning, Alistair; Thomson, David; Witham, Claire; Hort, Matthew

    2014-05-01

    When using dispersion models such as NAME (Numerical Atmospheric-dispersion Modelling Environment) to predict the dispersion of volcanic ash, a source term defining the mass release rate of ash is required. Inversion modelling using observations of the ash plume provides a method of estimating the source term for use in NAME. Our inversion technique makes use of satellite retrievals, calculated using data from the SEVIRI (Spinning Enhanced Visible and Infrared Imager) instrument on-board the MSG (Meteosat Second Generation) satellite, as the ash observations. InTEM (Inversion Technique for Emission Modelling) is the UK Met Office's inversion modelling system. Recently the capability to estimate time and height varying source terms has been implemented and applied to volcanic ash. InTEM uses a probabilistic approach to fit NAME model concentrations to satellite retrievals. This is achieved by applying Bayes Theorem to give a cost function for the source term. Source term profiles with lower costs generate model concentrations that better fit the satellite retrievals. InTEM uses the global optimisation technique, simulated annealing, to find the minimum of the cost function. The use of a probabilistic approach allows the uncertainty in the satellite retrievals to be incorporated into the inversion technique. InTEM makes use of satellite retrievals of both ash column loadings and of cloud free regions. We present a system that allows InTEM to be used during an eruption. The system is automated and can produce source term updates up to four times a day. To allow automation hourly satellite retrievals of ash are routinely produced using conservative detection limits. The conservative detection limits provide good detection of the ash plume while limiting the number of false alarms. Regions which are flagged as ash contaminated or free from cloud (both meteorological and ash) are used in the InTEM system. This approach is shown to improve the concentrations in the

  6. Volcanic Ash and Daily Mortality in Sweden after the Icelandic Volcano Eruption of May 2011

    PubMed Central

    Oudin, Anna; Carlsen, Hanne K.; Forsberg, Bertil; Johansson, Christer

    2013-01-01

    In the aftermath of the Icelandic volcano Grimsvötn’s eruption on 21 May 2011, volcanic ash reached Northern Europe. Elevated levels of ambient particles (PM) were registered in mid Sweden. The aim of the present study was to investigate if the Grimsvötn eruption had an effect on mortality in Sweden. Based on PM measurements at 16 sites across Sweden, data were classified into an ash exposed data set (Ash area) and an unexposed data set (No ash area). Data on daily all-cause mortality were obtained from Statistics Sweden for the time period 1 April through 31 July 2011. Mortality ratios were calculated as the ratio between the daily number of deaths in the Ash area and the No ash area. The exposure period was defined as the week following the days with elevated particle concentrations, namely 24 May through 31 May. The control period was defined as 1 April through 23 May and 1 June through 31 July. There was no absolute increase in mortality during the exposure period. However, during the exposure period the mean mortality ratio was 2.42 compared with 2.17 during the control period, implying a relatively higher number of deaths in the Ash area than in the No ash area. The differences in ratios were mostly due to a single day, 31 May, and were not statistically significant when tested with a Mann-Whitney non-parametric test (p > 0.3). The statistical power was low with only 8 days in the exposure period (24 May through 31 May). Assuming that the observed relative differences were not due to chance, the results would imply an increase of 128 deaths during the exposure period 24–31 May. If 31 May was excluded, the number of extra deaths was reduced to 20. The results of the present study are contradicting and inconclusive, but may indicate that all-cause mortality was increased by the ash-fall from the Grimsvötn eruption. Meta-analysis or pooled analysis of data from neighboring countries might make it possible to reach sufficient statistical power to study

  7. Airborne studies of the emissions from the volcanic eruptions of Mount St. Helens

    SciTech Connect

    Hobbs, P.V.; Radke, L.F.; Eltgroth, M.W.; Hegg, D.A.

    1981-01-01

    The concentrations of particles less than 10 micrometers in diameter in the ash emissions from Mount St. Helens have been more than 1000 times greater than those in the ambient air. Mass loadings of particles less than 2 micrometers in diameter were generally several hundred micrograms per cubic meter. In the ash clouds, produced by the large eruption on 18 May 1980, the concentrations of several trace gases generally were low. In other emissions, significant, but variable, concentrations of sulfur gases were measured. The 18 May eruption produced nuees ardentes, lightning flashes, and volcanic hail.

  8. Hazard assessment of far-range volcanic ash dispersal from a violent Strombolian eruption at Somma-Vesuvius volcano, Naples, Italy: implications on civil aviation

    NASA Astrophysics Data System (ADS)

    Sulpizio, Roberto; Folch, Arnau; Costa, Antonio; Scaini, Chiara; Dellino, Pierfrancesco

    2012-11-01

    Long-range dispersal of volcanic ash can disrupt civil aviation over large areas, as occurred during the 2010 eruption of Eyjafjallajökull volcano in Iceland. Here we assess the hazard for civil aviation posed by volcanic ash from a potential violent Strombolian eruption of Somma-Vesuvius, the most likely scenario if eruptive activity resumed at this volcano. A Somma-Vesuvius eruption is of concern for two main reasons: (1) there is a high probability (38 %) that the eruption will be violent Strombolian, as this activity has been common in the most recent period of activity (between AD 1631 and 1944); and (2) violent Strombolian eruptions typically last longer than higher-magnitude events (from 3 to 7 days for the climactic phases) and, consequently, are likely to cause prolonged air traffic disruption (even at large distances if a substantial amount of fine ash is produced such as is typical during Vesuvius eruptions). We compute probabilistic hazard maps for airborne ash concentration at relevant flight levels using the FALL3D ash dispersal model and a statistically representative set of meteorological conditions. Probabilistic hazard maps are computed for two different ash concentration thresholds, 2 and 0.2 mg/m3, which correspond, respectively, to the no-fly and enhanced procedure conditions defined in Europe during the Eyjafjallajökull eruption. The seasonal influence of ash dispersal is also analysed by computing seasonal maps. We define the persistence of ash in the atmosphere as the time that a concentration threshold is exceeded divided by the total duration of the eruption (here the eruption phase producing a sustained eruption column). The maps of averaged persistence give additional information on the expected duration of the conditions leading to flight disruption at a given location. We assess the impact that a violent Strombolian eruption would have on the main airports and aerial corridors of the Central Mediterranean area, and this assessment

  9. Detection and characterization of volcanic ash plumes over Lille during the Eyjafjallajökull eruption

    NASA Astrophysics Data System (ADS)

    Mortier, A.; Goloub, P.; Podvin, T.; Deroo, C.; Chaikovsky, A.; Ajtai, N.; Blarel, L.; Tanre, D.; Derimian, Y.

    2013-04-01

    Routine sun-photometer and micro-lidar measurements were performed in Lille, northern France, in April and May 2010 during the Eyjafjallajökull volcanic eruption. The impact of such an eruption emphasized significance of hazards for human activities and importance of observations of the volcanic aerosol particles. This paper presents the main results of a joint micro-lidar/sun-photometer analysis performed in Lille, where volcanic ash plumes were observed during at least 22 days, whenever weather conditions permitted. Aerosol properties retrieved from automatic sun-photometer measurements (AERONET) were strongly changed during the volcanic aerosol plumes transport over Lille. In most cases, the aerosol optical depth (AOD) increased, whereas Ångström exponent decreased, thus indicating coarse-mode dominance in the volume size distribution. Moreover, the non-spherical fraction retrieved by AERONET significantly increased. The real part of the complex refractive index was up to 1.55 at 440 nm during the eruption, compared to background data of about 1.46 before the eruption. Collocated lidar data revealed that several aerosol layers were present between 2 and 5 km, all originating from the Iceland region as confirmed by backward trajectories. The volcanic ash AOD was derived from lidar extinction profiles and sun-photometer AOD, and its maximum was estimated around 0.37 at 532 nm on 18 April 2010. This value was observed at an altitude of 1700 m and corresponds to an ash mass concentration (AMC) slightly higher than 1000 μg m-3 (±50%). An effective lidar ratio of ash particles of 48 sr was retrieved at 532 nm for 17 April during the early stages of the eruption, a value which agrees with several other studies carried out on this topic. Even though the accuracy of the retrievals is not as high as that obtained from reference multiwavelength lidar systems, this study demonstrates the opportunity of micro-lidar and sun-photometer joint data processing for deriving

  10. Detection and characterization of volcanic ash plumes over Lille during the Eyjafjallajökull eruption

    NASA Astrophysics Data System (ADS)

    Mortier, A.; Goloub, P.; Podvin, T.; Deroo, C.; Chaikovsky, A.; Ajtai, N.; Blarel, L.; Tanre, D.; Derimian, Y.

    2012-12-01

    Routine sun-photometer and micro-LIDAR measurements were performed in Lille, northern France, in April and May 2010 during the Eyjafjallajökull volcanic eruption. The impact of such an eruption emphasized significance of hazards for human activities and importance of observarions of the volcanic aerosol particles. This paper presents the main results of a joint micro-LIDAR/sun-photometer analysis performed in Lille, where volcanic ash plumes were observed during at least 22 days, weather conditions permitting. Aerosol properties retrieved from automatic sun-photometer measurements (AERONET) were strongly changed during the volcanic aerosol plumes transport over Lille. In most cases, the Aerosol Optical Depth (AOD) was increased whereas Ångström exponent decreased thus indicating coarse mode dominance in the volume size distribution. Moreover, the retrieved by AERONET non spherical fraction was significantly increased. The Real part of the complex refractive index was up to 1.55 at 440 nm during the eruption time while typically was about 1.46 before the eruption. Collocated LIDAR data revealed that several aerosol layers were present between 2 and 5 km, all originating from Iceland region as confirmed by backward-trajectories. The volcanic ash AOD was derived from LIDAR extinction profiles and sun-photometer AOD, and was estimated of around 0.37 at 532 nm on 18 April 2010. This value was observed at an altitude of 1700 m and corresponded to an Ash Mass Concentration (AMC) slightly higher than 1000 μg m3 (±50%). The effective LIDAR Ratio of ash particles was 48 sr for 18 April during the early stages of the eruption, a value which agrees with several other studies carried out on this topic. Even though the accuracy of the retrievals is not as high as that obtained from reference multi-wavelength LIDAR systems, this study demonstrates the opportunity of micro-LIDAR and sun-photometer joint data processing for deriving volcanic AMC. It also outlines the fact that

  11. Physical and chemical properties of the volcanic ash aerosol from the Eyjafjoll volcano eruption (Invited)

    NASA Astrophysics Data System (ADS)

    Baltensperger, U.; Eyjafioll Volcano Atmospheric Observation Consortium

    2010-12-01

    The eruption of the Eyjafjoll volcano in Iceland has stalled flight traffic in large regions of Europe. Decision makers had to base their decisions mainly on model calculations for the volcanic plume dispersion. The damaging potential and thus the corresponding standard of the volcanic ash are related to mass concentration, which is difficult to measure directly in the air. This paper presents data from in situ measurements of the ash at the high mountain site Jungfraujoch, Switzerland (3580 m asl), where, among other variables, the size distribution, the mass concentration, as well as the light scattering and absorption coefficients were continuously determined. Based on these data the mass extinction efficiency, i.e., the relationship between the mass concentration of the volcanic ash and its extinction coefficient was determined for this site. The temporal evolution of the size distribution and mass concentrations with transport distance due to dilution, settling, secondary aerosol formation from SO2 etc. was modeled with a combination of state-of-the-art models, and the results were compared to available aircraft observations. In this way the mass extinction efficiency for numerous lidar sites in Europe were determined, which allowed for calculation of mass concentration profiles at these locations.

  12. Assimilating Aircraft-based measurements to improve the State of Distal Volcanic Ash Cloud

    NASA Astrophysics Data System (ADS)

    Fu, Guangliang; Lin, Hai Xiang; Heemink, Arnold; Segers, Arjo; Lu, Sha; Palsson, Thorgeir

    2015-04-01

    The sudden eruption at the 1666 m high, ice-capped Eyjafjallajökull volcano, in south Iceland during 14 April to 23 May 2010, had caused an unprecedented closure of the European and North Atlantic airspace resulting in global economic losses of US5 billion. This has initiated a lot of research on how to improve aviation advice after eruption onset. Good estimation of both the state of volcanic ash cloud and the emission of volcano are crucial for providing a successful aviation advice. Currently most of the approaches, employing satellite-based and ground-based measurements, are in the focus of improving the definition of Eruption Source Parameters (ESPs) such as plume height and mass eruption rate, which are certainly very important for estimating volcano emission and state of volcanic ash cloud near to the volcano. However, for ash cloud state in a far field, these approaches can hardly make improvements. This is mainly because the influence of ESPs on the ash plume becomes weaker as the distance to the volcano is getting farther, thus for a distal plume the information of ESPs will have little influence. This study aims to find an efficient way to improve the state of distal volcanic ash cloud. We use real-life aircraft-based observations, measured along Dutch border between Borken and Twist during the 2010 Eyjafjallajökull eruption, in an data assimilation system combining with a transport model to identify the potential benefit of this kind of observations and the influence on the ash state around Dutch border. We show that assimilating aircraft-based measurements can significantly improve the state of distal ash clouds, and further provide an improved aviation advice on distal ash plume. We compare the performances of different sequential data assimilation methods. The results show standard Ensemble Kalman Filter (EnKF) works better than others, which is because of the strong nonlinearity of the dynamics and the EnKF's resampling Gaussianity nature

  13. Volcanic ash in surficial sediments of the Kodiak shelf - An indicator of sediment dispersal patterns

    USGS Publications Warehouse

    Hampton, M.A.; Bouma, A.H.; Frost, T.P.; Colburn, I.P.

    1979-01-01

    Surficial sediments of the Kodiak shelf, Gulf of Alaska, contain various amounts of volcanic ash whose physical properties indicate that it originated from the 1912 Katmai eruption. The distribution of ash is related to the shelf physiography and represents redistribution by oceanic circulation rather than the original depositional pattern from the volcanic event. The ash distribution can be used, in conjunction with the distribution of grain sizes, as an indicator of present-day sediment dispersal patterns on the shelf. No significant modern input of sediment is occurring on the Kodiak shelf, which is mostly covered by Pleistocene glacial deposits. Coarse-grained sediments on flat portions of shallow banks apparently are being winnowed, with the removed ash-rich fine material being deposited in shallow depressions on the banks and in three of the four major troughs that cut transversely across the shelf. The other major trough seems to be experiencing a relatively high-energy current regime, with little deposition of fine material. ?? 1979.

  14. Lung changes in rats following inhalation exposure to volcanic ash for two years

    SciTech Connect

    Wehner, A.P.; Dagle, G.E.; Clark, M.L.; Buschbom, R.L.

    1986-08-01

    Rats were exposed by inhalation to 5 or 50 mg/m/sup 3/ Mount St. Helens volcanic ash, to 50 mg/m/sup 3/ quartz (positive controls), or to filtered room air (sham-exposed controls), for 6 hr/day, 5 days/week, for up to 24 months to investigate biological effects of chronic inhalation exposure to volcanic ash under controlled laboratory conditions. Exposure-related lung changes comprised accelerated respiratory frequency; alveolar macrophage accumulation; interstitial reaction; lymphoreticular reaction in peribronchiolar regions and in mediastinal lymph nodes; alveolar proteinosis in the 50- mg/m/sup 3/ ash- or quartz-exposed groups; increase in fresh lung weights; decreased body weight and increased mortality in the quartz-exposed group; and epidermoid carcinomas especially in the quartz-exposed females and, to a lesser extent, in the 50-mg/m/sup 3/ ash-exposed females. The observed changes reflect significant dose-response and agent-response relationships.

  15. Triboelectric charging of volcanic ash from the 2011 Grímsvötn eruption.

    PubMed

    Houghton, Isobel M P; Aplin, Karen L; Nicoll, Keri A

    2013-09-13

    The plume from the 2011 eruption of Grímsvötn was highly electrically charged, as shown by the considerable lightning activity measured by the United Kingdom Met Office's low-frequency lightning detection network. Previous measurements of volcanic plumes have shown that ash particles are electrically charged up to hundreds of kilometers away from the vent, which indicates that the ash continues to charge in the plume [R. G. Harrison, K. A. Nicoll, Z. Ulanowski, and T. A. Mather, Environ. Res. Lett. 5, 024004 (2010); H. Hatakeyama J. Meteorol. Soc. Jpn. 27, 372 (1949)]. In this Letter, we study triboelectric charging of different size fractions of a sample of volcanic ash experimentally. Consistently with previous work, we find that the particle size distribution is a determining factor in the charging. Specifically, our laboratory experiments demonstrate that the normalized span of the particle size distribution plays an important role in the magnitude of charging generated. The influence of the normalized span on plume charging suggests that all ash plumes are likely to be charged, with implications for remote sensing and plume lifetime through scavenging effects. PMID:24074123

  16. An Early-Warning System for Volcanic Ash Dispersal: The MAFALDA Procedure

    NASA Astrophysics Data System (ADS)

    Barsotti, S.; Nannipieri, L.; Neri, A.

    2006-12-01

    Forecasts of the dispersal of volcanic ash is a fundamental goal in order to mitigate its potential impact on urbanized areas and transport routes surrounding explosive volcanoes. To this aim we developed an early- warning procedure named MAFALDA (Modeling And Forecasting Ash Loading and Dispersal in the Atmosphere). Such tool is able to quantitatively forecast the atmospheric concentration of ash as well as the ground deposition as a function of time over a 3D spatial domain.\\The main features of MAFALDA are: (1) the use of the hybrid Lagrangian-Eulerian code VOL-CALPUFF able to describe both the rising column phase and the atmospheric dispersal as a function of weather conditions, (2) the use of high-resolution weather forecasting data, (3) the short execution time that allows to analyse a set of scenarios and (4) the web-based CGI software application (written in Perl programming language) that shows the results in a standard graphical web interface and makes it suitable as an early-warning system during volcanic crises.\\MAFALDA is composed by a computational part that simulates the ash cloud dynamics and a graphical interface for visualizing the modelling results. The computational part includes the codes for elaborating the meteorological data, the dispersal code and the post-processing programs. These produces hourly 2D maps of aerial ash concentration at several vertical levels, extension of "threat" area on air and 2D maps of ash deposit on the ground, in addition to graphs of hourly variations of column height.\\The processed results are available on the web by the graphical interface and the users can choose, by drop-down menu, which data to visualize. \\A first partial application of the procedure has been carried out for Mt. Etna (Italy). In this case, the procedure simulates four volcanological scenarios characterized by different plume intensities and uses 48-hrs weather forecasting data with a resolution of 7 km provided by the Italian Air Force.

  17. Airborne crystalline silica concentrations at coal-fired power plants associated with coal fly ash

    SciTech Connect

    Hicks, J.; Yager, J.

    2006-08-15

    This study presents measurements of airborne concentrations of respirable crystalline silica in the breathing zone of workers who were anticipated to encounter coal fly ash. Six plants were studied; two were fired with lignite coal, and the remaining four plants used bituminous and subbituminous coals. A total of 108 personal breathing zone respirable dust air samples were collected. Bulk samples were also collected from each plant site and subjected to crystalline silica analysis. Airborne dust particle size analysis was measured where fly ash was routinely encountered. The results from bituminous and subbituminous fired plants revealed that the highest airborne fly ash concentrations are encountered during maintenance activities: 0.008 mg/m{sup 3} to 96 mg/m{sup 3} (mean of 1.8 mg/m{sup 3}). This group exceeded the threshold limit values (TLV) in 60% of the air samples. During normal production activities, airborne concentrations of crystalline silica ranged from nondetectable to 0.18 mg/m{sup 3} (mean value of 0.048 mg/m{sup 3}). Air samples collected during these activities exceeded the current and proposed TLVs in approximately 54% and 65% of samples, respectively. Limited amounts of crystalline silica were detected in samples collected from lignite-fired plants, and approximately 20% of these air samples exceeded the current TLV. Particle size analysis in areas where breathing zone air samples were collected revealed mass median diameters typically between 3 {mu}m and 8 {mu}m. Bulk and air samples were analyzed for all of the common crystalline silica polymorphs, and only alpha quartz was detected.

  18. Volcanic degassing and secondary hydration of volcanic ash and scoria: Implications for paleoaltimetry and paleoclimate studies

    NASA Astrophysics Data System (ADS)

    Seligman, A. N.; Bindeman, I. N.

    2013-12-01

    The use of δD of ash as a reliable recorder of δD (and δ18O) values of paleoprecipitation in paleoclimate and paleoaltimetry research still requires experimental verification and testing. It is currently assumed that ash is deposited with a water content of no significance, and that within a few thousand years it becomes sufficiently (up to 4 wt.% H2O) hydrated, although the rate of hydration and whether or not the initial isotopic signature is held, are not well understood. We report analyses of δD and H2O of distal ash from recent eruptions (1980 Mount St. Helens, 1992 Mt. Spurr, and 1974 Volcán de Fuego) that were collected syneruption, in addition to scoria ranging in age from ~50 to 7300 years old from Klyuchevskoy volcano (Kamchatka, Russia), using the TC/EA - MAT 253 continuous flow system. Natural variability of studied samples in wt.% H2O (δD in ‰), with errors represented as 1 s.d. for the average, for recent ash eruptions, range from 0.1 × 0.07 (-102 × 4.7) for Volcán de Fuego up to 0.7 × 0.10 (-104 × 3.5) for Mount St. Helens. Ash from the Mt. Spurr eruption averaged 0.4 × 0.04 (-109 × 4.0), and we plan to also analyze ash from Mt. Pinatubo. The δD values are consistent with a magmatic degassing trend, where the last remaining water is depleted in deuterium, suggesting ash may be deposited with up to 0.7 wt.% H2O as primary magmatic water. Klyuchevskoy scoria (basaltic andesite) shows a general trend of increasing wt.% H2O with increasing age: the youngest samples (<2.0 ka) have ~0.2 wt.% water (-99 to -109 ‰), which is likely primary magmatic, while the older samples (4.7-7.3 ka) generally have a higher water concentration (~0.3-0.5 wt.%); likely local meteoric water based on δD values that are lower than degassed magmatic δD values and higher water content. The samples between ~2.3 and 3.6 ka (0.1 to 0.4 wt.% water) have variable water concentrations due to variations in porosity and therefore surface area between the different

  19. Effect of the volcanic ash type uncertainties on ash and SO2 retrievals from satellite multi-spectral measurements in the TIR spectral range

    NASA Astrophysics Data System (ADS)

    Corradini, Stefano; Merucci, Luca; Campion, Robin; Carboni, Elisa

    2013-04-01

    After the Eyjafjallajokull 2010 eruption the quantitative determination of the volcanic ash present in ash clouds has become more important because of the policy change from the previous zero tolerance to the new ash threshold based approach in the aviation hazard management. Volcanic SO2 has an impact on the environment and when injected at high altitudes can be oxidized to form sulphates capable of reflecting solar radiation then causing surface cooling. Observations of the volcanic degassing also yield insights into the magmatic processes which control volcanic activity during both quiescent and eruptive phases. During volcanic eruptions ash and gases are often emitted simultaneously. The plume ash particles reduce the top of atmosphere radiance in the entire thermal infrared (TIR) spectral range causing a significant SO2 columnar abundance overestimation. The ash optical properties are among the most critical parameters to set, their uncertainties cause meaningful errors on both ash and SO2 retrievals. In this work the effect effect of the volcanic ash type uncertainties on ash and SO2 retrievals from MODIS measurements in the TIR spectral range have been quantified. As test case some events of the 2010 Eyjafjallajokull (Iceland) eruption has been considered. The ash optical properties derive from the ARIA database of the Oxford University, while the MODIS SO2 and ash retrievals strategies are based on the BTD and minimization approaches using the channels centered at 8.7, 11 and 12 micron. The radiative transfer model simulations, needed for the retrievals schemes, are carried out by using MODTRAN [Corradini et al., 2009]. The MODIS SO2 retrievals have been also compared with the retrievals obtained by using IASI hyper-spectral and ASTER high spatial resolution data. The two procedures are considered less sensitive to the ash type: the ASTER retrieval scheme [Campion et al. 2010] consists of adjusting the SO2 column amount until the ratios of radiance

  20. The Volcanic Ash Strategic Initiative Team (VAST) - operational testing activities and exercises

    NASA Astrophysics Data System (ADS)

    Wotawa, Gerhard; Arnold, Delia; Eckhardt, Sabine; Kristiansen, Nina; Maurer, Christian; Prata, Fred; Stohl, Andreas; Zehner, Claus

    2013-04-01

    The project VAST performs its activities within an ESA (European Space Agency) initiative to enhance the use of Earth Observation (EO) data in volcanic ash monitoring and forecasting. The VAST project aims at further exploring the suitability of EO data for such activities and to improve volcanic ash atmospheric transport forecasting services through exercises and demonstration activities in operational environments. Previous to the in-house deployment of the demonstration service, several exercises on operations and communication exchange are needed and first results are presented here. These exercises include technical in-house settings and conceptual planning of the operations with procedure development, volcanic eruptions drills that trigger the acquiring of data and dispersion/forecasting calculations with preliminary estimates of source terms and finally, an international exercise that provides a test case volcanic event to evaluate response times and the usefulness of the different products obtained. Products also include ensemble dispersion forecasts, on one hand multi-input ensembles utilizing the ECMWF EPS system, and on the other hand multi-model ensembles based on different dispersion models driven with different input data. As part of the work, socio-economic aspects need to be taken into account as well. This includes also the identification of best practices on how results can be presented to the stakeholders, including national authorities and policy makers, and the general public.

  1. ASH REDISTRIBUTION FOLLOWING A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN

    SciTech Connect

    J. Pelletier; S. deLong; M.L. Cline; C. Harrington; G. Keating

    2005-08-29

    The redistribution of contaminated tephra by hillslope, fluvial, and pedologic processes is a poorly-constrained but important aspect of evaluating the radiological dose from an unlikely volcanic eruption at Yucca Mountain (YM). To better evaluate this hazard, we developed a spatially distributed, numerical model of tephra redistribution that integrates contaminated tephra from hill slopes and active channels, mixes it with clean sediment in the channel system, distributes it on the fan, and migrates it into the soil column. The model is coupled with an atmospheric dispersion model that predicts the deposition of radioactive waste-contaminated tephra at specified grid points. The redistribution model begins in the upper Fortymile Wash drainage basin where it integrates the tephra deposited on steep slopes and active channel beds within a GIS framework. The Fortymile Wash drainage basin is the focus of this model because tephra from only this basin reaches the Fortymile Wash alluvial fan by fluvial processes, and it is on this fan where the radiological dose to a hypothetical individual is compared to the regulatory standard (via additional biosphere models). The dilution effect of flood scour, mixing, and re-deposition within the upper basin is modeled using a dilution-mixing model widely used in the contaminant-transport literature. The accuracy of this model is established by comparing the model prediction with tephra concentrations measured in channels draining the Lathrop Wells volcanic center. The model combines the contaminated tephra transported from the upper basin with the tephra deposited directly on the fan as primary fallout. On the Fortymile Wash fan, channels and interchannel-divide areas are divided on the basis of soil-geomorphic mapping according to whether they are Holocene or Pleistocene in age. This approach allows the model to incorporate the effects of channel migration on the fan within the past 10,000 yr. The model treats the redistribution

  2. Ash Redistribution Following a Potential Volcanic Eruption at Yucca Mountain

    NASA Astrophysics Data System (ADS)

    Pelletier, J. D.; Delong, S. B.; Cline, M. L.; Harrington, C. D.; Keating, G.

    2005-12-01

    The redistribution of contaminated tephra by hillslope, fluvial, and pedologic processes is a poorly-constrained but important aspect of evaluating the radiological dose from an unlikely volcanic eruption at Yucca Mountain (YM). To better evaluate this hazard, we developed a spatially-distributed numerical model of tephra redistribution that integrates contaminated tephra from hill slopes and active channels, mixes it with clean sediment in the channel system, distributes it on the fan, and migrates it into the soil column. The model is coupled with an atmospheric dispersion model that predicts the deposition of radioactive waste-contaminated tephra at specified grid points. The redistribution model begins in the upper Fortymile Wash drainage basin where it integrates the tephra deposited on steep slopes and active channel beds within a spatially-distributed framework. The Fortymile Wash drainage basin is the focus of this model because tephra from only this basin reaches the Fortymile Wash alluvial fan by fluvial processes, and it is on this fan where the radiological dose to a hypothetical individual is compared to the regulatory standard (via additional biosphere models). The dilution effect of flood scour, mixing, and re-deposition within the upper basin is modeled using a dilution-mixing model widely used in the contaminant-transport literature. The accuracy of this model is established by comparing the model prediction with tephra concentrations measured in channels draining the Lathrop Wells volcanic center. The model combines the contaminated tephra transported from the upper basin with the tephra deposited directly on the fan as primary fallout. On the Fortymile Wash fan, channels and interchannel-divide areas are divided on the basis of soil-geomorphic mapping according to whether they are Holocene or Pleistocene in age. This approach allows the model to incorporate the effects of channel migration on the fan within the past 10,000 yr. The model treats

  3. Towards fast and routine analyses of volcanic ash morphometry for eruption surveillance applications

    NASA Astrophysics Data System (ADS)

    Leibrandt, Sébastien; Le Pennec, Jean-Luc

    2015-05-01

    The morphometry of volcanic ash produced by explosive eruptions yields ample information on fragmentation processes (e.g. magmatic vs magma-water interactions), and on transport and sedimentation mechanisms. Most previous works on volcanic clast morphometry focused on the Apparent (2D-)Projected shape of ASH grains, here termed APASH, to infer processes and eruptive styles. However, textural analyses of ash grains has remained a long and tedious task that made such approaches inappropriate for eruption surveillance duties. In this work we show that new technological advances on automated dispersion of granular materials imaged with a camera-coupled microscope and enhanced computer capabilities enable fast and high resolution image acquisition of thousands of ash grains that resolve this limitation. With a morpho-grainsizer designed for such fast and routine measurements we perform a series of APASH analyses on selected ash fractions of tephra deposits from known eruptive styles. We record the size, aspect ratio, circularity and convexity of APASH images and assess resolution, reproducibility, minimum population size, and total analytical duration, and offer recommendations for the reporting of APASH data for inter-laboratory comparisons. To avoid fractal geometry concerns, our analyses are carried out at constant size range (250-300 μm) and optical magnification (× 5) on ~ 3000 grains per samples collected from homogenized samples. Results from the andesitic 1999-ongoing eruption of Tungurahua volcano (Ecuador) show that ash particles from the moderate 2001 phase are relatively equant and convex in shape, while the stronger 2006 subplinian phase produced ash grains with more elongated, less circular and less convex APASH signatures. Ash grains from a basaltic scoria cone-forming eruption show even more ragged APASH characteristics. Overall, our protocol allows obtaining accurate and reproducible morphometric measurements that reveal subtle variations of the

  4. Towards fast and routine analyses of volcanic ash morphometry for eruption surveillance applications

    NASA Astrophysics Data System (ADS)

    Leibrandt, Sébastien; Le Pennec, Jean-Luc

    2015-04-01

    The morphometry of volcanic ash produced by explosive eruptions yields ample information on fragmentation processes (e.g. magmatic vs magma-water interactions), and on transport and sedimentation mechanisms. Most previous works on volcanic clast morphometry focused on the Apparent (2D-)Projected shape of ASH grains, here called APASH, to infer processes and eruptive styles. However, textural analyses of ash grains has remained a long and tedious task that made such approaches inappropriate for eruption surveillance duties. In this work we show that new technological advances on automated dispersion of granular materials imaged with a camera-coupled microscope and enhanced computer capabilities enable fast and high resolution image acquisition of thousands of ash grains that solve this limitation. With a morpho-grainsizer designed for such fast and routine measurements we perform a series of APASH analyses on selected ash fractions of tephra deposits from known eruptive styles. We record the size, aspect ratio, circularity and convexity of APASH images and assess resolution, reproducibility, minimum population size, and total analytical duration, and offer recommendations for the reporting of APASH data for interlaboratory comparisons. To avoid fractal geometry concerns, our analyses are carried out at constant size range (250-300 um) and optical magnification (x5) on ~3000 grains/samples collected from homogenized samples. Results from the andesitic 1999-ongoing eruption of Tungurahua volcano (Ecuador) show that ash particles from the moderate 2001 phase are relatively equant and convex in shape, while the stronger 2006 subplinian phase produced ash grains with more elongated, less circular and less convex APASH signatures. Ash grains from a basaltic scoria cone-forming eruption show even more ragged APASH characteristics. Overall, our protocol allows obtaining accurate and reproducible morphometric measurements that reveal subtle variations of the morphological

  5. Irreversibility of 2,4-Dichlorophenoxyacetic Acid Sorption onto a Volcanic Ash Soil

    NASA Astrophysics Data System (ADS)

    Mon, E.; Kawamoto, K.; Komatsu, T.; Moldrup, P.

    2008-12-01

    Pesticide sorption and desorption in soils are key processes governing fate and transport of pesticides in the soil environment. The irreversibility (or hysteresis) in the processes of pesticide sorption and desorption needs to be known to accurately predict behavior of pesticides in soil systems. 2,4-dichlorophenoxyacetic acid (2,4-D) is a widely used pesticide in agriculture fields. However, only few studies of 2,4-D adsorption onto Andosols (volcanic ash soils) have been published, and the knowledge of 2,4-D desorption onto Andosols is very limited. In this study, a volcanic ash soil sampled from a pasture site in Nishi-Tokyo, Japan was used as a sorbent in order to investigate the irreversibility of 2,4-D sorption. For comparison, a pure clay mineral (kaolinite) obtained from Clay Science Society of Japan (CSSJ) was also used. 2,4-D solutions with three concentrations (0.011, 0.022 and 0.045 mmol/L) were prepared in artificial rain water (ARW= 0.085mM NaCl + 0.015mM CaCl2) to simulate field conditions. To prepare the sample solutions, the solid mass/liquid volume ratio of 1:10 was used for both sorbents (volcanic ash soil and kaolinite). The experiments were conducted in triplicate using a batch method under different pH conditions to examine the effect of pH. Desorption was measured during a equilibration procedure: After removal of 7 mL of supernatant in the sorption step, 7 mL of ARW excluding 2,4-D was added to the sample solution after which, it was equilibrated and centrifuged. The procedure was performed sequentially three or four times to obtain a desorption isotherm. Sorption and desorption generally followed Freundlich isotherms. The results showed markedly effects of pH on 2,4-D sorption and desorption in both the soil and kaolinite, with the percentage of sorption increasing with decreasing pH whereas the percentage of desorption decreased. There was a larger adsorption-desorption hysteresis in the volcanic ash soil as compared to kaolinite

  6. Volcanic ash in feed coal and its influence on coal combustion products

    SciTech Connect

    Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.; Brownfield, I.K.; Hower, J.C.; Stricker, G.D.; O'Connor, J.T.

    2000-07-01

    The US Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana Utility to determine the physical and chemical properties of feed coal and coal combustion products (CCPs) from a coal-fired power plant. The plant utilizes a low-sulfur (.23--.47 weight percent S) coal from the Powder River Basin, Wyoming. Scanning Electron Microscope (SEM) and X-ray diffraction (XRD) analysis of feed coal samples identified two mineral suites. A primary suite (not authigenic) consisting of quartz (detrital and volcanic beta-form grains), biotite, and minor zircon and a secondary authigenic mineral suite containing calcite, alumino-phosphates (crandallite and gorceixite), kaolinite, quartz, anatase, barite, and pyrite. The authigenic minerals are attributed to air-fall and reworked volcanic ash that was deposited in peat-forming mires. The Powder River Basin feed coals contain higher amounts of Ba, Ca, Mg, Na, Sr, and P compared to other analyzed eastern coals. These elements are associated with alumino-phosphate, biotite, calcite, and clay minerals. The element associations are indicative of coal that incorporated volcanic ash during deposition. XRD analysis of CCPs revealed a predominance of glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals in the fly ash; and quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite in the bottom ash. Microprobe and SEM analysis of fly ash samples revealed quartz, zircon, monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, and rounded grains of wollastonite with periclase. The abundant Ca and Mg mineral phases in the fly ashes are related to the presence of carbonate, clay, and phosphate minerals in the feed coal. The Ca- and Mg-rich mineral phases in the CCPs can be attributed to volcanic minerals deposited in the

  7. Airborne magnetic mapping of volcanic areas - state-of-the-art and future perspectives

    NASA Astrophysics Data System (ADS)

    Supper, Robert; Paoletti, Valeria; Okuma, Shigeo

    2015-04-01

    Traditionally airborne magnetics surveys in volcanology are used for mapping regional geological features, fault zones and to develop a magnetic model of the volcanic subsurface. Within an Austrian-Italian-Japanese cooperation, several volcanic areas including Mt. Vesuvius, Ischia, Campi Flegreii and Aeolian Islands in Italy and Socorro Island in Mexico were mapped by high-resolution magnetic mapping during the last 15 years. In this paper, general conclusions from this long-term cooperation project on airborne magnetics in volcanic areas will be summarised. Basically the results showed the results from airborne magnetics could be used for three major purposes: 1. Developing a rough model for the magnetisation below the volcano down to several kilometres by applying advanced magnetic inversion algorithms helped to define the possible depth of the current or past magma chamber. Due to the complexity of the subsurface of volcanic areas, inversion of data was much dependent on constraints coming from other geoscientific disciplines. 2. After applying certain steps of reduction (topographic correction, field transformation) and a combination of source selective filtering, important regional structural trends could be derived from the alignment of the residual magnetic anomalies. 3. On the other hand during recent years, research has also focused on repeated measurements of the magnetic field of volcanic areas (differential in respect of time = differential magnetic measurements - DMM) using airborne sensors. Long-term temporal magnetic field variations in active volcanic areas can be caused by a changing size of the magma chamber or a general rise in temperature. This is caused by the fact that magnetization disappears, when a magnetic material is warmed up over a certain temperature (Curie- temperature). In consequence the resulting total magnetic field changes. Therefore, determining areas showing changes in the magnetic field could help to select areas where a

  8. Some field observations and experimental insights on volcanic ash aggregates (Invited)

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Del Bello, E.; Scarlato, P.

    2013-12-01

    The aggregation of ash- to dust-sized pyroclasts is a well-documented process that deeply impacts the internal dynamics and atmospheric dispersal of volcanic plumes, the geometry of the resulting fallout deposits, and the nature and occurrence of associated hazards. As such, studies of the aggregation processes have been actively promoted since decades, with an escalation after the civil aviation crisis from the 2010 Ejyafiallajokull eruption. Here we illustrate the potential of high-speed imaging in the study of ash aggregation and aggregates settling both in laboratory experiments and directly in the field. Under weak eruption plumes from the Ejyafiallajokull (Iceland), Yasur (Vanuatu), and Sakurajima (Japan) volcanoes, high-speed imaging systems captured the settling of ash-sized pyroclasts, both as individual particles and as aggregates. Relevant parameters such as the size and the settling velocity of the particles and aggregates are derived directly by image analysis, within the system spatial resolution limits. Field sampling and laboratory analyses of the imaged particles is then used to investigate their overall size distribution and textural-chemical features. In addition, the same high-speed imaging system is used to record the individual volcanic explosion, if discrete, or volcanic episode, for ongoing activity, from which the settling particles originated, potentially illuminating the sources of the ash and other relevant processes (e.g., eruption style, plume rise dynamics, electrification). In order to better constrain the observed phenomena, we are currently performing two sets of laboratory experiments. The first set of experiments aims to characterize the settling properties of individual particles, in order to allow distinguishing them from the aggregates in the field-based images. Such experiments, consisting in the imaging of free-falling individual particles, will also be used in the future to assess the simultaneous settling of large numbers

  9. Lab-scale ash production by abrasion and collision experiments of porous volcanic samples

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Lane, Steve J.; Kueppers, Ulrich

    2014-05-01

    In the course of explosive eruptions, magma is fragmented into smaller pieces by a plethora of processes before deposition. Volcanic ash, all fragments smaller than 2 mm, may have imminent and near-volcano effects but may also cause various problems over long duration and/or far away from the source. In an attempt to quantify the efficiency of ash generation, various experimental setups were applied on pumice and scoria samples. We used samples collected on Tenerife (Canary Islands, Spain), Sicily and Lipari Islands (both Italy) for experiments that generated shear or normal stress fields or combinations of these within the rock samples. Experiments were designed to overcome low yield strengths of samples and produce ash, with this study having particular interest in the < 355 µm fraction. By abrasion and collision experiments, the processes that are likely to happen within volcanic conduits, plumes or pyroclastic density currents (PDCs) were simulated. An understanding of these secondary fragmentation processes is crucial as they are capable of producing very fine ash, with size ranges from a few microns to few millimetres. These particles are known to remain in the atmosphere for several days and travel large distances (~ 100s of km). This poses threats to the aviation industry and human health. From the experiments we establish that abrasion setups produced the finest material and up to 50% of the generated ash was smaller than 10 µm. In comparison, the drop experiments that applied mainly normal stress fields produced coarser grain sizes. Results were compared to grain size distributions described in literature for natural fall and PDC deposits and good correlation was found. Energies involved in drop experiments were calculated and showed an exponential correlation with ash production rate. Projecting these results into the actual volcanic environment, highest amounts of ash are produced in most energetic and turbulent areas, which are proximal to the vent

  10. Long term exposure to respirable volcanic ash on Montserrat: a time series simulation

    NASA Astrophysics Data System (ADS)

    Hincks, T. K.; Aspinall, W. P.; Baxter, P. J.; Searl, A.; Sparks, R. S. J.; Woo, G.

    2006-01-01

    Frequent ash fallout from long-lived eruptions (with active phases greater than 5 years) may lead to local populations experiencing unacceptably high cumulative exposures to respirable particulate matter. Ash from Montserrat has been shown to contain significant levels of cristobalite and other reactive agents that are associated with an increased risk of developing pneumoconiosis (including silicosis) and other long-term health problems. There are a number of difficulties associated with estimating risks in populations due to uncertain and wide ranging individual exposures, change in behaviour with time and the natural variation in individual response. Present estimates of risk in workers and other population groups are simplifications based on a limited number of exposure measurements taken on Montserrat (1996-1999), and exposure-response curves from epidemiological studies of coal workers exposed to siliceous dust. In this paper we present a method for calculating the long-term cumulative exposure to cristobalite from volcanic ash by Monte Carlo simulation. Code has been written to generate synthetic time series for volcanic activity, rainfall, ash deposition and erosion to give daily ash deposit values and cristobalite fraction at a range of locations. The daily mean personal exposure for PM10 and cristobalite is obtained by sampling from a probability distribution, with distribution parameters dependent on occupation, ground deposit depth and daily weather conditions. Output from multiple runs is processed to calculate the exceedance probability for cumulative exposure over a range of occupation types, locations and exposure periods. Results are interpreted in terms of current occupational standards, and epidemiological exposure-response functions for silicosis are applied to quantify the long-term health risk. Assuming continuing volcanic activity, median risk of silicosis (profusion 1/0 or higher) for an average adult after 20 years continuous exposure is

  11. Geoethics implications in volcanic hazards in Argentina: 24 years of uninterrupted ash-fall

    NASA Astrophysics Data System (ADS)

    Rovere, Elizabeth I.; Violante, Roberto A.; Uber, Silvia M.; Vázquez Herrera, Marcelo

    2016-04-01

    The impact of falling ash reaches all human activities, has effects on human and animal health and is subject to climate and ecosystem of the affected regions. From 1991 until 2015 (24 years), more than 5 eruptions with VEI ≥ 4 in the Southern Volcanic Zone of the Andes occurred; pyroclastic, dust and volcanic ash were deposited (mostly) in Argentina. A recurring situation during eruptions of Hudson (1991), Chaiten (2008), Puyehue-Cordon Caulle (2011) and Calbuco (2015) volcanoes was the accumulation, storage and dump of volcanic ash in depressed areas, beaches, lakes, ditches, storm drains, areas of landfills and transfer stations. The issues that this practice has taken are varied: pollution of aquifers, changes in geomorphology and water courses, usually in "inconspicuous" zones, often in places where there are precarious population or high poverty settlements. The consequences are not immediate but the effects in the mid and long term bring serious drawbacks. On the contrary, a good example of intelligent management of the volcanic impact occurred many years before, during the eruption of Descabezado Grande (Quizapu) volcano in 1932. In that case, and as an example, the city of Trenque Lauquen, located nearly 770 km east of the volcano, decided a communitarian task of collection and burial of the ashfall in small areas, this was a very successful performance. The Quizapu ash plumes transported by the Westerlies (winds) covered with a blanket of volcanic ash the city, ashfall also reached the capital cities of Argentina (Buenos Aires) and Uruguay (Montevideo). Also, the bagging process of volcanic ash with reinforced plastics was an example of Good Practice in the management of the emergency. This allowed the entire affected community to take advantage of this "mineral resource" and contributes to achieving collective and participatory work leading to commercialization and sustainability of these products availed as fertilizers, granular base for ceramics and

  12. Operation of gas turbine engines in volcanic ash clouds

    SciTech Connect

    Dunn, M.G.; Baran, A.J.; Miatech, J.

    1996-10-01

    Results are reported for a technology program designed to determine the behavior of gas turbine engines when operating in particle-laden clouds. There are several ways that such clouds may be created, i.e., explosive volcanic eruption, sand storm, military conflict, etc. The response of several different engines, among them the Pratt and Whitney JT3D turbofan, the Pratt and Whitney J57 turbojet, a Pratt and Whitney engine of the JT9 vintage, and an engine of the General Electric CF6 vintage has been determined. The particular damage mode that will be dominant when an engine experiences a dust cloud depends upon the particular engine (the turbine inlet temperature at which the engine is operating when it encounters the dust cloud), the concentration of foreign material in the cloud, and the constituents of the foreign material (the respective melting temperature of the various constituents). Further, the rate at which engine damage will occur depends upon all of the factors given above, and the damage is cumulative with continued exposure. An important part of the Calspan effort has been to identify environmental warning signs and to determine which of the engine parameters available for monitoring by the flight crew can provide an early indication of impending difficulty. On the basis of current knowledge, if one knows the location of a particle-laden cloud, then that region should be avoided. However, if the cloud location is unknown, which is generally the case, then it is important to know how to recognize when an encounter has occurred and to understand how to operate safely, which is another part of the Calspan effort.

  13. Four-year prospective study of the respiratory effects of volcanic ash from Mt. St. Helens

    SciTech Connect

    Buist, A.S.; Vollmer, W.M.; Johnson, L.R.; Bernstein, R.S.; McCamant, L.E.

    1986-04-01

    This report describes the 4-yr follow-up of 712 loggers exposed over an extended period to varying levels of fresh volcanic ash from the 1980 eruptions of Mt. St. Helens. Concerns related to the irritant effect the ash might have on the airways and also to its fibrogenic potential if exposures were intense and continued over many years. Our subjects were divided into 3 groups: high, low, and no exposure. Baseline testing was begun in June 1980, 1 month after the major eruption, and follow-up testing continued on an annual basis through 1984; 88% of the loggers have been tested at least 3 times. Analysis of lung function data showed that a significant, exposure-related decline in FEV1 occurred during the first year after the eruption. The decline was short-lived, however, and by 1984 the differences between exposure groups were no longer significant. Self-reported symptoms of cough, phlegm, and wheeze showed a similar pattern. No ash-related changes were seen in chest roentgenograms taken in 1980 and in 1984. Our findings are consistent with the hypothesis that the inhaled ash caused mucus hypersecretion and/or airway inflammation that reversed when the exposure levels decreased. The ash levels to which the loggers were exposed were low compared with permissible occupational levels for nuisance dusts, but generally higher than the total suspended particulate levels permissible in ambient air.

  14. Dual-wavelength light scattering for selective detection of volcanic ash particles

    NASA Astrophysics Data System (ADS)

    Jurányi, Z.; Burtscher, H.; Loepfe, M.; Nenkov, M.; Weingartner, E.

    2015-08-01

    A new method is presented in this paper which analyses the scattered light of individual aerosol particles simultaneously at two different wavelengths in order to retrieve information on the particle type. We show that dust-like particles, such as volcanic ash, can be unambiguously discriminated from water droplets on a single particle level. As a future application of this method, the detection of volcanic ash particles should be possible in a humid atmosphere in the presence of cloud droplets. We show an example, how the characteristic behaviour of pure water's refractive index can be used to separate water droplets and dust-like particles which are commonly found in the micrometer size-range in the ambient air. The low real part of the water's refractive index around 2700-2800 nm results in low scattered light intensities compared to e.g. the visible wavelength range and this feature can be used for the particle identification. The two-wavelength measurement setup was theoretically and experimentally tested and studied. Theoretical calculations were done using Mie theory. Comparing the ratio of the scattered light at the two wavelengths (R value) for water droplets and different dust types (basalt, andesite, African mineral dust, sand, volcanic ash, pumice) showed at least 9 times higher values (on average 70 times) for water droplets than for the dust types at any diameter within the particle size range of 2-20 μm. The envisaged measurement setup was built up into a laboratory prototype and was tested with different types of aerosols. We generated aerosols from the following powders simulating dust-like particles: cement dust, ISO 12103-1 A1 Ultrafine Test Dust and Ash from the 2012 eruption of the Etna volcano. Our measurements verified the theoretical considerations, the median experimental R value is 8-21 times higher for water than for the "dust" particles.

  15. Airborne volcanic plume measurements using a FTIR spectrometer, Kilauea volcano, Hawaii

    USGS Publications Warehouse

    McGee, K.A.; Gerlach, T.M.

    1998-01-01

    A prototype closed-path Fourier transform infrared spectrometer system (FTIK), operating from battery power and with a Stirling engine microcooler for detector cooling, was successfully used for airborne measurements of sulfur dioxide at Kilauea volcano. Airborne profiles of the volcanic plume emanating from the erupting Pu'u 'O'o vent on the East Rift of Kilauea revealed levels of nearly 3 ppm SO2 in the core of the plume. An emission rate of 2,160 metric tons per day of sulfur dioxide was calculated from the FTIR data, which agrees closely with simultaneous measurements by a correlation spectrometer (COSPEC). The rapid spatial sampling possible from an airborne platform distinguishes the methodology described here from previous FTIR measurements.

  16. Volcanic Ash Cloud Observations with the DLR-Falcon over Europe during Airspace Closure

    NASA Astrophysics Data System (ADS)

    Schumann, Ulrich; Weinzierl, Bernadett; Reitebuch, Oliver; Minikin, Andreas; Schlager, Hans; Rahm, Stephan; Scheibe, Monika; Lichtenstern, Michael; Forster, Caroline

    2010-05-01

    At the time of the EGU conference, the volcano ash plume originating from the Eyjafjallajökull volcano eruption in Iceland was probed during 9 flights with the DLR Falcon research aircraft in the region between Germany and Iceland at 1-11 km altitudes between April 19 and May 3, 2010. The Falcon was instrumented with a downward looking, scanning 2-µm-Wind-Lidar (aerosol backscattering and horizontal wind, 100 m vertical resolution), and several in-situ instruments. The particle instrumentation, including wing station probes (PCASP, FSSP-300) cover particle number and size from 5 nm to some tens of µm. Further in-situ instruments measured O3, CO, SO2, H2O, and standard meteorological parameters. Flight planning was based on numerical weather forecasts, trajectory-based particle-dispersion models, satellite observations and ground based Lidar observations, from many sources. During the flight on April 19, 2010, layers of volcanic ash were detected first by Lidar and then probed in-situ. The horizontal and vertical distribution of the volcanic ash layers over Eastern Germany was highly variable at that time. Calculations with the particle dispersion model FLEXPART indicate that the volcanic ash plumes measured by the Falcon had an age of 4-5 days. The concentrations of large particles measured in the volcanic aerosol layers are comparable to concentrations measured typically in fresh (age < 2 days) Saharan dust plumes. An estimation of the particle mass concentration in the elevated volcanic ash plume probed as part of a vertical profile over Leipzig at about 4 km altitude yields 60 µg/m3 (possibly 100 µg/m3), with an uncertainty of factor two. Of the total mass only less than 10 percent was residing in the particle size range below 2.5 µm. This emphasizes the need for adequate instrumentation to fully capture the size distribution of volcanic ash. During April 29-May 3, a sequence of flights has been performed between Germany, Scotland, and Iceland. Lidar

  17. Airborne and groundbased measurements of ash particles on Iceland and over Germany during the Grímsvötn eruption May 2011

    NASA Astrophysics Data System (ADS)

    Vogel, A.; Weber, K.; Eliasson, J.; Palsson, A.; Moser, H. M.; Palsson, T.; von Löwis, S.; Fischer, C.

    2012-04-01

    The eruption of the Grimsvötn volcano in May 2010 posed with its ash plume a thread to the aviation in northern Europe. Because of ash plume forecasts of the VAAC London the airport of Keflavik in Iceland as well as airports in England, Scotland and Scandinavia were closed for some time, which caused the cancellation or change of about 500 flights in Europe. Even in Germany the airports of Bremen, Hamburg and Berlin were closed for several hours on 25 May 2011. During this eruption period in May 2011, a team of the Duesseldorf University of Applied Sciences, the University of Iceland, the University of Reykjavik and the IMO has performed airborne in-situ measurements over Iceland and Germany as well as ground based measurements in the south of Iceland. The ground based measurements were performed continuously during the whole eruption period at two significant positions (Skogar and Hvollsvöllur) with optical particle counters (OPCs). The measurement method was based on measuring the airborne concentrations of the classic aerosol components (PM10, PM2.5 and PM1) and TSP (total suspended particles) every 6 seconds. Additional measurement flights on Iceland were started already one day after the beginning of the eruption (twelve in-situ measurement flights) and marked the spatial and temporal spread of volcanic ash in the atmosphere. For the flights light slow flying piston engine powered airplanes where used. The flights over Iceland focused on the western part of Iceland in the region of Reykjavik and Keflavik and over the international airport in Keflavik and were mostly coordinated by ISAVIA. The measurement flights helped to keep Keflavik International Airport open for many additional hours despite of adverse predictions by the London VAAC model, because it was possible to observe the particle concentration on-line during the flights. In Germany a measurement flight was performed on 25 May 2012 over the northern part of Germany where the volcanic ash cloud was

  18. Revealing the aerosol radiative impact of volcanic ash on synoptic time scales

    NASA Astrophysics Data System (ADS)

    Walter, Carolin; Rieger, Daniel; Gasch, Philipp; Förstner, Jochen; Vogel, Bernhard

    2016-04-01

    Including the interactions of aerosols with radiation in weather forecast models often leads to perturbations of the temperature field even at locations not directly influenced by the regarded aerosols. They arise out of signals propagating with the speed of sound leading to abrupt changes in cloud cover. The temperature perturbations due to these changes hamper the quantification of the aerosol radiative impact as they can appear in the same order of magnitude. In order to reveal the aerosol radiative impact on synoptic time scales we introduce a new method to separate the aerosol induced temperature effect from atmospheric perturbations. We simulated the impact of volcanic ash aerosol on radiation with the new global to regional scale modelling system ICON-ART (ICOsahedral Nonhydrostatic - Aerosols and Reactive Trace gases; Rieger et al., 2015). Within ICON-ART the radiative fluxes and cooling rates are calculated with the RRTM (Rapid Radiative Transfer Model; Mlawer et al., 1997) for 30 longwave and shortwave bands. To determine the optical properties of the prognostic ash aerosol, Mie calculations were conducted for a compilation of ash refractive indices. We obtain a significant change in 2 m temperature of up to several Kelvin for the Puyehue-Cordon Caulle eruption in 2011. In addition to the temperature effect the atmospheric stability is modified and as a consequence the ash concentrations. The temperature effect during the Eyjafjallajökull eruption in 2010 over Europe is much less pronounced. Nevertheless, we are able to show the impact of volcanic ash on the state of the atmosphere by this eruption.

  19. Spain as an emergency air traffic hub during volcanic air fall events? Evidence of past volcanic ash air fall over Europe during the late Pleistocene

    NASA Astrophysics Data System (ADS)

    Hardiman, Mark; Lane, Christine; Blockley, Simon P. E.; Moreno, Ana; Valero-Garcés, Blas; Ortiz, José E.; Torres, Trino; Lowe, John J.; Menzies, Martin A.

    2010-05-01

    Past volcanic eruptions often leave visible ash layers in the geological record, for example in marine or lake sedimentary sequences. Recent developments, however, have shown that non-visible volcanic ash layers are also commonly preserved in sedimentary deposits. These augment the record of past volcanic events by demonstrating that past ash dispersals have been more numerous and widely disseminated in Europe than previously appreciated. The dispersal ‘footprints' of some large late Pleistocene European eruptions are examined here in the light of the recent Eyjafjallajökull eruption. For example, the Vedde Ash which was erupted from Iceland around 12 thousand years ago, delivered distal (and non-visible) glass deposits as far south as Switzerland and as far east as the Ural Mountains in Russia, with an overall European distribution remarkably similar to the dominant tracks of the recent Eyjafjallajökull plumes. The Eyjafjallajökull eruption has demonstrated that relatively small amounts of distal volcanic ash in the atmosphere can seriously disrupt aviation activity, with attendant economic and other consequences. It has raised fundamental questions about the likelihood of larger or more prolonged volcanic activity in the near future, and the possibility of even more serious consequences than those experienced recently. Given that there are several other volcanic centres that could cause such disruption in Europe (e.g. Campania and other volcanic centres in Italy; Aegean volcanoes), a key question is whether there are parts of Europe less prone to ash plumes and which could therefore operate as emergency air traffic hubs during times of ash dispersal. Although not generated to answer this question, the recent geological record might provide a basis for seeking the answer. For example, four palaeo-records covering the time frame of 8 - 40 Ka BP that are geographically distributed across Spain have been examined for non-visible distal ash content. All four have

  20. Volcanic Ash Image Products from MODIS for Aviation Safety and Natural Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Stephens, G.; Ellrod, G. P.; Im, J.

    2003-12-01

    Multi-spectral volcanic ash image products have been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) data from the NASA Terra spacecraft (Ellrod and Im 2003). Efforts are now underway to integrate these new products into the MODIS Data Retrieval System at NESDIS, for use in the operational Hazard Mapping System (HMS). The images will be used at the Washington Volcanic Ash Advisory Center (W-VAAC) in the issuance of volcanic ash advisory statements to aircraft. In addition, the images will be made available to users in the global volcano and emergency management community via the World Wide Web. During the development process, good results (high detection rate with low ­false alarms­") were obtained from a tri-spectral combination of MODIS Infrared (IR) bands centered near 8.6, 11.0 and 12.0 ŸYm (Bands 29, 31, and 32). Optimum Red-Green-Blue false color composite images were developed to provide information on ash cloud location, as well as cloud phase and surface characteristics, to aid in interpretation both day and night. Information on volcanic ash derived from the tri-spectral product was displayed using the red color gun. This information was combined with visible (0.6 ŸYm) and near-IR (1.6 ŸYm) data for green and blue, respectively, during daylight periods. At night, the 8.6 ­V 11.0 ŸYm combination and 11.0 ŸYm band were used for the green and blue colors in the RGB product. Currently, raw MODIS data in five minute ­granules­" are processed for the following regions: (1) southern Alaska, (2) Mexico, Central America and the Caribbean, and (3) northern Andes region of South America. Image products are converted to Geo-spatial Information System (GIS) compatible formats for use in the HMS, and to Man-Computer Interactive Data Access System (McIDAS) ­Area File­" format for use in currently configured W-VAAC display systems. The installation of a high speed, fiber optic line from NASA Goddard Space Flight Center to the World

  1. Uncertainty propagation analysis applied to volcanic ash dispersal at Mt. Etna by using a Lagrangian model

    NASA Astrophysics Data System (ADS)

    de'Michieli Vitturi, Mattia; Pardini, Federica; Spanu, Antonio; Neri, Augusto; Vittoria Salvetti, Maria

    2015-04-01

    Volcanic ash clouds represent a major hazard for populations living nearby volcanic centers producing a risk for humans and a potential threat to crops, ground infrastructures, and aviation traffic. Lagrangian particle dispersal models are commonly used for tracking ash particles emitted from volcanic plumes and transported under the action of atmospheric wind fields. In this work, we present the results of an uncertainty propagation analysis applied to volcanic ash dispersal from weak plumes with specific focus on the uncertainties related to the grain-size distribution of the mixture. To this aim, the Eulerian fully compressible mesoscale non-hydrostatic model WRF was used to generate the driving wind, representative of the atmospheric conditions occurring during the event of November 24, 2006 at Mt. Etna. Then, the Lagrangian particle model LPAC (de' Michieli Vitturi et al., JGR 2010) was used to simulate the transport of mass particles under the action of atmospheric conditions. The particle motion equations were derived by expressing the Lagrangian particle acceleration as the sum of the forces acting along its trajectory, with drag forces calculated as a function of particle diameter, density, shape and Reynolds number. The simulations were representative of weak plume events of Mt. Etna and aimed to quantify the effect on the dispersal process of the uncertainty in the particle sphericity and in the mean and variance of a log-normal distribution function describing the grain-size of ash particles released from the eruptive column. In order to analyze the sensitivity of particle dispersal to these uncertain parameters with a reasonable number of simulations, and therefore with affordable computational costs, response surfaces in the parameter space were built by using the generalized polynomial chaos technique. The uncertainty analysis allowed to quantify the most probable values, as well as their pdf, of the number of particles as well as of the mean and

  2. An extreme wind erosion event of the fresh Eyjafjallajökull 2010 volcanic ash

    PubMed Central

    Arnalds, Olafur; Thorarinsdottir, Elin Fjola; Thorsson, Johann; Waldhauserova, Pavla Dagsson; Agustsdottir, Anna Maria

    2013-01-01

    Volcanic eruptions can generate widespread deposits of ash that are subsequently subjected to erosive forces which causes detrimental effects on ecosystems. We measured wind erosion of the freshly deposited Eyjafjallajökull ash at a field site the first summer after the 2010 eruption. Over 30 wind erosion events occurred (June-October) at wind speeds > 10 m s−1 in each storm with gusts up to 38.7 m s−1. Surface transport over one m wide transect (surface to 150 cm height) reached > 11,800 kg m−1 during the most intense storm event with a rate of 1,440 kg m−1 hr−1 for about 6½ hrs. This storm is among the most extreme wind erosion events recorded on Earth. The Eyjafjallajökull wind erosion storms caused dust emissions extending several hundred km from the volcano affecting both air quality and ecosystems showing how wind erosion of freshly deposited ash prolongs impacts of volcanic eruptions. PMID:23409248

  3. An extreme wind erosion event of the fresh Eyjafjallajökull 2010 volcanic ash.

    PubMed

    Arnalds, Olafur; Thorarinsdottir, Elin Fjola; Thorsson, Johann; Waldhauserova, Pavla Dagsson; Agustsdottir, Anna Maria

    2013-01-01

    Volcanic eruptions can generate widespread deposits of ash that are subsequently subjected to erosive forces which causes detrimental effects on ecosystems. We measured wind erosion of the freshly deposited Eyjafjallajökull ash at a field site the first summer after the 2010 eruption. Over 30 wind erosion events occurred (June-October) at wind speeds > 10 m s(-1) in each storm with gusts up to 38.7 m s(-1). Surface transport over one m wide transect (surface to 150 cm height) reached > 11,800 kg m(-1) during the most intense storm event with a rate of 1,440 kg m(-1) hr(-1) for about 6½ hrs. This storm is among the most extreme wind erosion events recorded on Earth. The Eyjafjallajökull wind erosion storms caused dust emissions extending several hundred km from the volcano affecting both air quality and ecosystems showing how wind erosion of freshly deposited ash prolongs impacts of volcanic eruptions. PMID:23409248

  4. Neural-Network Approach to Hyperspectral Data Analysis for Volcanic Ash Clouds Monitoring

    NASA Astrophysics Data System (ADS)

    Piscini, Alessandro; Ventress, Lucy; Carboni, Elisa; Granger, Roy Gordon; Del Frate, Fabio

    2015-06-01

    In this study three artificial neural networks (ANN) were implemented in order to emulate a retrieval model and to estimate the ash Aerosol optical Depth (AOD), particle effective radius (reff) and cloud height from volcanic eruption using hyperspectral remotely sensed data. ANNs were trained using a selection of Infrared Atmospheric Sounding Interferometer (IASI) channels in Thermal Infrared (TIR) as inputs, and the corresponding ash parameters retrieved obtained using the Oxford retrievals as target outputs. The retrieval is demonstrated for the eruption of the Eyjafjallajokull volcano (Iceland) occurred in 2010. The results of validation provided root mean square error (RMSE) values between neural network outputs and targets lower than standard deviation (STD) of corresponding target outputs, therefore demonstrating the feasibility to estimate volcanic ash parameters using an ANN approach, and its importance in near real time monitoring activities, owing to its fast application. A high accuracy has been achieved for reff and cloud height estimation, while a decreasing in accuracy was obtained when applying the NN approach for AOD estimation, in particular for those values not well characterized during NN training phase.

  5. Volcanic-ash hazard to aviation during the 2003-2004 eruptive activity of Anatahan volcano, Commonwealth of the Northern Mariana Islands

    USGS Publications Warehouse

    Guffanti, M.; Ewert, J.W.; Gallina, G.M.; Bluth, G.J.S.; Swanson, G.L.

    2005-01-01

    Within the Commonwealth of the Northern Mariana Islands (CNMI), Anatahan is one of nine active subaerial volcanoes that pose hazards to major air-traffic routes from airborne volcanic ash. The 2003-2004 eruptive activity of Anatahan volcano affected the region's aviation operations for 3 days in May 2003. On the first day of the eruption (10 May 2003), two international flights from Saipan to Japan were cancelled, and several flights implemented ash-avoidance procedures. On 13 May 2003, a high-altitude flight through volcanic gas was reported, with no perceptible damage to the aircraft. TOMS and MODIS analysis of satellite data strongly suggests that no significant ash and only minor amounts of SO2 were involved in the incident, consistent with crew observations. On 23 May 2003, airport operations were disrupted when tropical-cyclone winds dispersed ash to the south, dusting Saipan with light ashfall and causing flight cancellations there and at Guam 320 km south of the volcano. Operational (near-real-time) monitoring of ash clouds produced by Anatahan has been conducted since the first day of the eruption on 10 May 2003 by the Washington Volcanic Ash Advisory Center (VAAC). The VAAC was among the first groups outside of the immediate area of the volcano to detect and report on the unexpected eruption of Anatahan. After being contacted about an unusual cloud by National Weather Service forecasters in Guam at 1235 UTC on 10 May 2003, the VAAC analyzed GOES 9 images, confirming Anatahan as the likely source of an ash cloud and estimating that the eruption began at about 0730 UTC. The VAAC issued its first Volcanic Ash Advisory for Anatahan at 1300 UTC on 10 May 2003 more than 5 h after the start of the eruption, the delay reflecting the difficulty of detecting and confirming a surprise eruption at a remote volcano with no in situ real-time geophysical monitoring. The initial eruption plume reached 10.7-13.4 km (35,000-44,000 ft), well into jet cruise altitudes

  6. Volcanic-ash hazard to aviation during the 2003 2004 eruptive activity of Anatahan volcano, Commonwealth of the Northern Mariana Islands

    NASA Astrophysics Data System (ADS)

    Guffanti, Marianne; Ewert, John W.; Gallina, Gregory M.; Bluth, Gregg J. S.; Swanson, Grace L.

    2005-08-01

    Within the Commonwealth of the Northern Mariana Islands (CNMI), Anatahan is one of nine active subaerial volcanoes that pose hazards to major air-traffic routes from airborne volcanic ash. The 2003-2004 eruptive activity of Anatahan volcano affected the region's aviation operations for 3 days in May 2003. On the first day of the eruption (10 May 2003), two international flights from Saipan to Japan were cancelled, and several flights implemented ash-avoidance procedures. On 13 May 2003, a high-altitude flight through volcanic gas was reported, with no perceptible damage to the aircraft. TOMS and MODIS analysis of satellite data strongly suggests that no significant ash and only minor amounts of SO 2 were involved in the incident, consistent with crew observations. On 23 May 2003, airport operations were disrupted when tropical-cyclone winds dispersed ash to the south, dusting Saipan with light ashfall and causing flight cancellations there and at Guam 320 km south of the volcano. Operational (near-real-time) monitoring of ash clouds produced by Anatahan has been conducted since the first day of the eruption on 10 May 2003 by the Washington Volcanic Ash Advisory Center (VAAC). The VAAC was among the first groups outside of the immediate area of the volcano to detect and report on the unexpected eruption of Anatahan. After being contacted about an unusual cloud by National Weather Service forecasters in Guam at 1235 UTC on 10 May 2003, the VAAC analyzed GOES 9 images, confirming Anatahan as the likely source of an ash cloud and estimating that the eruption began at about 0730 UTC. The VAAC issued its first Volcanic Ash Advisory for Anatahan at 1300 UTC on 10 May 2003 more than 5 h after the start of the eruption, the delay reflecting the difficulty of detecting and confirming a surprise eruption at a remote volcano with no in situ real-time geophysical monitoring. The initial eruption plume reached 10.7-13.4 km (35,000-44,000 ft), well into jet cruise altitudes

  7. Comparison of airborne and spaceborne TIR data for studying volcanic geothermal areas

    NASA Astrophysics Data System (ADS)

    Vaughan, R. G.; Heasler, H.; Jaworowski, C.; Bergfeld, D.; Evans, W.

    2015-12-01

    Mapping and quantifying the surface expression of geothermal heat flux in volcanic geothermal areas is important for establishing baseline thermal activity to better detect and understand any future changes that may be related to hydrothermal or volcanic processes, or human activities. Volcanic geothermal areas are often too large and inaccessible for only field-based thermal monitoring, so thermal infrared (TIR) remote sensing tools are also used. High resolution (sub-meter) airborne TIR imagery can be used for detailed, quantitative analyses of small, subtle geothermal features. Airborne data acquisitions have the advantage of being able to be acquired under ideal conditions (e.g., predawn, cloud-free), but the disadvantage of high costs - thus precluding high-frequency monitoring. Satellite-based TIR data from the Landsat 8 platform are freely available and can be acquired regularly for change detection, but are acquired with coarser spatial resolution (e.g., 100-m pixels), and thus are not as sensitive to subtle thermal characteristics. Two geothermal areas with clear, nighttime TIR data from nearly concurrent (within days) airborne and spaceborne instruments were investigated: Norris Geyser Basin in Yellowstone National Park, WY; and the Casa Diablo geothermal field, near Mammoth Lakes, CA. At Norris Geyser Basin, the area covered by high-resolution airborne TIR imagery is almost entirely geothermally heated ground, with hundreds of fumaroles, hot springs, and thermal drainages - although some non-geothermal background is exposed. With the coarser resolution Landsat 8 data, there are thermal variations within the smaller area covered by the airborne data, but the entire area appears to be thermally anomalous with respect to the non-geothermal background outside the basin. In the geothermal field around the Casa Diablo geothermal site, there are numerous, small areas of geothermal heating that are clearly distinguishable above the background by the high

  8. Iron dissolution from volcanic ash in low-pH atmospheric water: a key control on volcanic iron input to the surface ocean?

    NASA Astrophysics Data System (ADS)

    Maters, E.; Delmelle, P.; Ayris, P. M.; Opfergelt, S.

    2012-12-01

    A low concentration of dissolved iron (Fe) limits phytoplankton growth in approximately 30% of the ocean. The input of soluble Fe to these High-Nutrient Low-Chlorophyll (HNLC) regions has the potential to boost primary production and thereby enhance the drawdown of atmospheric carbon dioxide (CO2). Over geological timescales, volcanic activity may alter the flux of Fe to the surface ocean and so contribute to modulating atmospheric CO2 concentrations, ultimately impacting the global climate. Ocean Fe fertilisation has also recently been found to contribute to century-scale carbon sequestration via the export of biomass to the seafloor. Atmospherically deposited volcanic ash is now increasingly seen as an intermittent source of Fe to the surface ocean. Understanding the process of Fe release from ash in solution is key for assessing the potential for ash, particularly that produced by large but rare explosive eruptions or during sustained periods of intense volcanism, to fertilise the marine environment. Previous studies have measured the release of Fe from ash in near-neutral pH solution, but the influence of interaction between ash and acidic cloud- or rainwater during transport on Fe release is poorly understood. In this study, seven volcanic ash samples ranging from tephrite to rhyolite (49-74 wt.% SiO2) were leached in pH 1 H2SO4 in batch reactors for 336 h, at a 1:500 ash-to-solution ratio, to investigate Fe release under acidic conditions. Major element concentrations were measured by inductively coupled plasma- atomic emission spectroscopy (ICP-AES) across a time series of ash leachates. Changes in ash surface composition induced by contact with acid solution were assessed by X-ray photoelectron spectroscopy (XPS). The Fe2+/Fe3+ ratio in ash leachates was also determined for the first time, using the Ferrozine method. The ash samples released 42 to 411 μmol m-2 of Fe over 336 h of leaching. High initial Fe release rates (>1 μmol m-2 h-1) sustained for up

  9. Satellite Monitoring of Ash and Sulphur Dioxide for the mitigation of Aviation Hazards: Part I. Validation of satellite-derived Volcanic Ash Levels.

    NASA Astrophysics Data System (ADS)

    Koukouli, MariLiza; Balis, Dimitris; Simopoulos, Spiros; Siomos, Nikos; Clarisse, Lieven; Carboni, Elisa; Wang, Ping; Siddans, Richard; Marenco, Franco; Mona, Lucia; Pappalardo, Gelsomina; Spinetti, Claudia; Theys, Nicolas; Tampellini, Lucia; Zehner, Claus

    2014-05-01

    The 2010 eruption of the Icelandic volcano Eyjafjallajökull attracted the attention of the public and the scientific community to the vulnerability of the European airspace to volcanic eruptions. Major disruptions in European air traffic were observed for several weeks surrounding the two eruptive episodes, which had a strong impact on the everyday life of many Europeans as well as a noticable economic loss of around 2-3 billion Euros in total. The eruptions made obvious that the decision-making bodies were not informed properly and timely about the commercial aircraft capabilities to ash-leaden air, and that the ash monitoring and prediction potential is rather limited. After the Eyjafjallajökull eruptions new guidelines for aviation, changing from zero tolerance to newly established ash threshold values, were introduced. Within this spirit, the European Space Agency project Satellite Monitoring of Ash and Sulphur Dioxide for the mitigation of Aviation Hazards, called for the creation of an optimal End-to-End System for Volcanic Ash Plume Monitoring and Prediction . This system is based on improved and dedicated satellite-derived ash plume and sulphur dioxide level assessments, as well as an extensive validation using auxiliary satellite, aircraft and ground-based measurements. The validation of volcanic ash levels extracted from the sensors GOME-2/MetopA, IASI/MetopA and MODIS/Terra and MODIS/Aqua is presented in this work with emphasis on the ash plume height and ash optical depth levels. Co-located aircraft flights, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation [CALIPSO] soundings and well as European Aerosol Research Lidar Network [EARLINET] measurements were compared to the different satellite estimates for the those two eruptive episodes. The validation results are extremely promising with most satellite sensors performing quite well and within the estimated uncertainties compared to the comparative datasets. The findings are

  10. French airborne lidar measurements for Eyjafjallajökull ash plume survey

    NASA Astrophysics Data System (ADS)

    Chazette, P.; Dabas, A.; Sanak, J.; Lardier, M.; Royer, P.

    2012-08-01

    An Ultra-Violet Rayleigh-Mie lidar has been integrated aboard the French research aircraft Falcon20 in order to monitor the ash plume emitted by the Eyjafjallajökul volcano in April-May 2010. Three operational flights were carried out on 21 April, 12 and 16 May 2010 inside French, Spanish and British air spaces, respectively. The original purpose of the flights was to provide the French civil aviation authorities with objective information on the presence and location of the ash plume. The present paper presents the results of detailed analyses elaborated after the volcano crisis. They bear on the structure of the ash clouds and their optical properties such as the extinction coefficient and the lidar ratio. Lidar ratios were measured in the range of 43 to 50 sr, in good agreement with the ratios derived from ground-based lidar near Paris (France) in April 2010 (~48 sr). The ash signature in terms of particulate depolarization was consistent during all flights (between 34 ± 3 % and 38 ± 3%). Such a value seems to be a good identification parameter for volcanic ash. Using specific cross-sections between 0.19 and 1.1 m2 g-1, the minimum (maximal) mass concentrations in the ash plumes derived for the flights on 12 and 16 May were 140 (2300) and 250 (1500) μg m-3, respectively. It may be rather less than, or of the order of the critical level of damage (2 mg m-3) for the aircraft engines, but well above the 200 μg m-3 warning level.

  11. Data on Holocene Tephra (Volcanic Ash) Deposits in the Alaska Peninsula and Lower Cook Inlet Region of the Aleutian Volcanic Arc, Alaska

    USGS Publications Warehouse

    Riehle, J.R.; Meyer, C.E.; Miyaoka, Ronny T.

    1999-01-01

    Introduction This site provides information about the number, thickness, and grainsize of Holocene volcanic ash deposits at 50 localities in the eastern Aleutian volcanic arc. In addition, the major-element compositions of the glasses separated from more than 350 samples of tephra from these localities, determined by electron microprobe, are presented as a basis for correlating samples. Where known with reasonable certainty, the source of an analyzed sample is also identified for use in comparative studies of magma chemistry.

  12. An Appalachian isochron: a kaolinized Carboniferous air-fall volcanic-ash deposit (tonstein)

    USGS Publications Warehouse

    Lyons, P.C.

    1992-01-01

    The Fire Clay tonstein is a kaolinized, airfall volcanic ash bed that was deposited in a widespread late Carboniferous peat-forming mire. Eleven samples from Kentucky and West Virginia, spanning a distance of 200km, and two samples from Tennessee and Virginia indicate a characteristic mineralogical signature. A high-silica alkalic rhyolitic source is suggested by the geochemistry of immobile elements and by electron-probe analyses of glass inclusions. 40Ar/39Ar sanidine plateau dating indicates an age of 312??1 Ma for the Fire Clay tonstein, which is consistent with previous 40Ar/39Ar dates for this tonstein. A new isopachous map of the Fire Clay ash-fall deposit indicates an area of 37 000km2 and a probable source to the present-day southwest. -from Authors

  13. Volcanic ash-leachates: a review and recommendations for sampling methods

    NASA Astrophysics Data System (ADS)

    Witham, C. S.; Oppenheimer, C.; Horwell, C. J.

    2005-03-01

    Tephra in plumes can scavenge and thereby rapidly deposit volatiles including sulphur, halogen and metal species. These may then be leached (e.g. by rainfall), potentially releasing heavy loadings to soils and water bodies. Several eruptions have resulted in contamination of pasture, sometimes with serious impacts on livestock. Water quality has also been an issue in some areas affected by tephra fall. This work synthesises the literature on volcanic ash-leachates and considers the controls on volatile adsorption. General trends emerge for basaltic, intermediate and silicic tephra, as well as for variable particle size and transport distance. The applications of ash-leachate data to plume-gas geochemistry, calculation of volatile budgets and environmental impact assessment are evaluated. Comparisons for different eruptions are hampered by disparities in leachate analysis techniques. A standardised methodology is therefore proposed to facilitate future health impact assessment and volcanological interpretation of results from different sites.

  14. Explosions of andesitic volcanoes in Kamchatka and danger of volcanic ash clouds to aviation

    NASA Astrophysics Data System (ADS)

    Gordeev, E. I.; Girina, O. A.; Neal, C. A.

    2010-12-01

    There are 30 active volcanoes in Kamchatka and 4 of them continuously active. The explosions of andesitic volcanoes (Bezymianny and Sheveluch) produce strong and fast ash plumes, which can rich high altitude (up to 15 km) in short time. Bezymianny and Sheveluch are the most active volcanoes of Kamchatka. A growth of the lava dome of Bezymianny into the explosive crater continues from 1956 till present. Nine strong explosive eruptions of the volcano associated with the dome-building activity occurred for last 5 years in: 2005, January 11 and November 30; 2006, May 09 and December 24; 2007, May 11 and October 14-15; 2008, August 19; 2009, December 16-17 and 2010, May 31. Since 1980, a lava dome of Sheveluch has being growing at the bottom of the explosive crater, which has formed as the result of the catastrophic eruption in 1964. Strong explosive eruptions of the volcano associated with the dome-building activity occurred in: 1993, April 22; 2001, May 19-21; 2004, May 09; 2005, February 27 and September 22; 2006, December 25-26; 2007, March 29 and December 19; 2009, April 26-28 and September 10-11. Strong explosive eruption of andesitic volcanoes is the most dangerous for aircraft because in a few hours or days in the atmosphere and the stratosphere can produce about several cubic kilometers of volcanic ash and aerosols. Volcanic ash is an extremely abrasive, as it consists of acute-angled rock fragments and volcanic glass. Due to the high specific surface of andesitic ash particles are capable of retaining an electrostatic charge and absorb droplets of water and corrosive acids. Ash plumes and the clouds, depending on the power of the eruption, the strength and wind speed, can travel thousands of kilometers from the volcano for several days, remaining hazardous to aircraft, as the melting temperature of small particles of ash below the operating temperature of jet engines. To reduce the risk of collision of aircraft with ash clouds of Kamchatkan volcanoes, was

  15. Aviation response to a widely dispersed volcanic ash and gas cloud from the August 2008 eruption of Kasatochi, Alaska, USA

    USGS Publications Warehouse

    Guffanti, Marianne; Schneider, David J.; Wallace, Kristi L.; Hall, Tony; Bensimon, Dov R.; Salinas, Leonard J.

    2010-01-01

    The extensive volcanic cloud from Kasatochi's 2008 eruption caused widespread disruptions to aviation operations along Pacific oceanic, Canadian, and U.S. air routes. Based on aviation hazard warnings issued by the National Oceanic and Atmospheric Administration, U.S. Geological Survey, the Federal Aviation Administration, and Meteorological Service of Canada, air carriers largely avoided the volcanic cloud over a 5 day period by route modifications and flight cancellations. Comparison of time coincident GOES thermal infrared (TIR) data for ash detection with Ozone Monitoring Instrument (OMI) ultraviolet data for SO2 detection shows congruent areas of ash and gas in the volcanic cloud in the 2 days following onset of ash production. After about 2.5 days, the area of SO2 detected by OMI was more extensive than the area of ash indicated by TIR data, indicating significant ash depletion by fall out had occurred. Pilot reports of visible haze at cruise altitudes over Canada and the northern United States suggested that SO2 gas had converted to sulfate aerosols. Uncertain about the hazard potential of the aging cloud, airlines coped by flying over, under, or around the observed haze layer. Samples from a nondamaging aircraft encounter with Kasatochi's nearly 3 day old cloud contained volcanic silicate particles, confirming that some fine ash is present in predominantly gas clouds. The aircraft's exposure to ash was insufficient to cause engine damage; however, slightly damaging encounters with volcanic clouds from eruptions of Reventador in 2002 and Hekla in 2000 indicate the possibility of lingering hazards associated with old and/or diffuse volcanic clouds.

  16. Compton-Belkovich Volcanic Complex (CBVC): An ash flow caldera on the Moon

    NASA Astrophysics Data System (ADS)

    Chauhan, M.; Bhattacharya, S.; Saran, S.; Chauhan, P.; Dagar, A.

    2015-06-01

    Volcanic calderas are found on Earth, Mars, Venus and Io, and are rare, but unique volcanic structures in the Solar System. Compton-Belkovich Volcanic Complex (CBVC) (60.5°N-99.5°E) on the far side of the Moon is a unique non-mare feature due to its evolved lithology, regional tectonic setting, its location being near the north pole, far from the Procellarum KREEP Terrane (PKT) and its recent association with endogenic water. High-resolution remote sensing observations of several structural features at CBVC such as ring faults, radial faults, fractures manifested by various morphological features such as domes of varied sizes and shapes and pyroclastic ash flows characterize it to be a volcanic caldera. The loading of Humboldtianum basin with basalts and subsequent development of extensional structures outside it along with high-thorium anomaly and resulting silicic volcanism at CBVC producing central collapsed caldera could be considered as an analogy to silicic calderas on Earth formed in extensional tectonic regime even though the tectonic processes involved in these two cases are entirely different, the former being impact-related, whereas the latter involves rifting or hotspot-related activities associated with extensional plate tectonics. Presence of high-reflectance feature and its extension to the east-southeast of the topographic expression and its relation with pyroclastic dispersal have been supported by radar-based Mini-RF observations and high-resolution LROC-NAC imagery. It suggests the presence of a late-stage fine pyroclastic layer within the CBVC region. The diverse volcanic features that exist at the studied site indicate a series of deformation and eruption events associated with silicic magmatism and thus, CBVC could be considered as an ash flow caldera on the Moon. Here, we present a detailed appraisal of various volcanic and structural features detected at CBVC through high-resolution optical as well as radar observations. Based on the

  17. HCl uptake by volcanic ash in the high temperature eruption plume: mechanistic insights

    NASA Astrophysics Data System (ADS)

    Ayris, P. M.; Delmelle, P.; Cimarelli, C.; Maters, E. C.; Suzuki, Y.; Dingwell, D. B.

    2014-12-01

    The injection of HCl into the stratosphere by large volcanic eruptions is considered to be little importance, due to the efficient incorporation of the former into hydrometeors within the cooling plume. However, HCl is also adsorbed onto ash surfaces to form soluble -Cl salts within the high temperature core of the eruption plume, and the atmospheric and environmental significance of this process is uncertain. We investigate the capacity of volcanic glasses with tephrite, phonolite, dacite, and rhyolite compositions to adsorb HCl at temperatures of 200-800°C in the presence of SO2, CO2 and He. Experiments show that only tephrite and phonolite glasses are significantly reactive to HCl, exhibiting optimal uptake at 400-600°C. The primary reaction product formed during adsorption is NaCl, but Ca-, K-, Al- and Fe- chlorides are also identified. Uptake of HCl by glass surfaces is sustained by interdiffusion of Na+ and other Cl-reactive cations with H+. Diffusion coefficient calculations yield Na diffusion coefficients for the four glasses, suggesting that the structural role for Na within the glass network governs the capacity for HCl retention. The uptake of HCl under experimental conditions is limited above 500°C by a Cl-induced dehydroxylation process, but the presence of H2O in the hydrous eruption plume may sustain or enhance adsorption. The experimental data, combined with simulated plume cooling profiles, suggest that HCl adsorption can be a significant scavenging mechanism in large explosive eruptions, particularly in peralkaline systems. The fate of adsorbed HCl is variable; some may be retained on ash surfaces within pyroclastic flows, while chloride-coated ash in the stratosphere could promote the formation of reactive Cl species associated with O3 destruction. Additionally, Fe- and Cl-bearing salts emplaced on ash surfaces by HCl adsorption within the plume cores of large explosive eruptions may increase the ocean fertilising potential of such events.

  18. Terpenoid marker compounds derived from biogenic precursors in volcanic ash from Mount St. Helens, Washington

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.

    1983-01-01

    A volcanic-ash sample obtained after the 1980 eruption of Mount St. Helens, Washington, was analyzed for cyclic terpenoid organic compounds and polycyclic aromatic hydrocarbons using capillary gas chromatography-mass spectrometry-computer techniques. Various tricyclic diterpenoid acids and hydrocarbons were identified including dehydroabietic acid, dehydroabietin, dehydroabietane, simonellite, and retene. Preliminary evidence indicates that these compounds were derived from forest soils or atmospheric aerosols or both in the vicinity of coniferous forests. A diagenetic scheme involving three possible pathways for the conversion of abietic acid to retene is presented. ?? 1983.

  19. Influences of Farming Management on Quality and Quantity of Soil Organic Matter in Volcanic Ash Soil

    NASA Astrophysics Data System (ADS)

    Yoshikawa, M.; Tanaka, H.; Matsumura, S.; Shimizu, T.; Zhang, M.

    2013-12-01

    Storage of soil organic matter (SOM) in terrestrial ecosystem plays a significant role in reducing carbon flux to the atmosphere and thus prevents the earth from global warming. In agricultural field, farming management, such as manure application and/or reduced tillage, are known to be effective methods to stimulate SOM storage. Volcanic ash soil, categorized into Andosols, is a major type of upland soil in Japan, and the soil contains relatively high concentration of SOM, meaning that volcanic ash soil can play an important role in carbon storage in Japan. To investigate the influences of farming management on quality and quantity of SOM, an empirical study was carried out in an upland soil field derived from volcanic ash. Surface soil samples were taken every three months from the field and fractionated physically and chemically. As for the physical fractionation, 53 μm sieving was performed. SOM in the samples were sorted into particulate organic matter (POM) denoting organic matter with particle size greater than 53 μm and less than 2 mm, and mineral-associated organic matter (MOM) denoting less than 53 μm. In addition, both POM and MOM were further fractionated chemically by extraction with pyrophosphate buffer solutions at three different pH levels. The fractionated organic matter as well as unfractionated SOM were analyzed and quantified for organic carbon, nitrogen content. This study induced the following results and findings. The manure and/or reduced tillage treatments can significantly increase the particulate organic carbon (POC) and all chemically fractionated POC contents. Especially, POC extracted with the buffer solution at pH4 (POCpH4) and the differences between POC and POC extracted with the buffer solution at pH10 (POC-POCpH10) have strong correlations with SOC, and manure application can effectively increase POC-POCpH10 fraction. The results indicate that these fractionated organic carbons would contribute storage of organic matter in

  20. Evidence of Carboniferous volcanic ash in Pictou Group (West-phalian D), Sydney Coalfield, Nova Scotia, Canada

    SciTech Connect

    Lyons, P.C.; Outerbridge, W.F. ); Hacquebard, P.A. )

    1991-08-01

    Until now, Carboniferous-altered volcanic ash in North America was known only from the Middle Pennsylvanian (upper Westphalian A to lower Westphalian D) of the Appalachian basin. Now, however, mineralogical analysis of thin claystones (8-24 mm thick) in mineable bituminous coal (Hub and Harbour seams) form the P-boreholes in the Donkin submarine areas of the Sydney coalfield, Nova Scotia, indicates the presence of trace amounts of minerals probably derived from a volcanic ash fall of late Westphalian D age. Water-clear to cloudy quartz splinters and euhedral zircon with sharp crystal faces and edges, and length-to-width ratios up to 6:1 - which are typical of Appalachian altered acidic volcanic ash deposits (tonsteins) - were with a dominantly detrital (fluvial ) mineral suite. Fifty to 90% water-laid silt- to sand-size detrital grains of quartz, tourmaline( ), zircon, white mica, and other minerals are found in the HF residum after the removal of the dominant components: clay minerals, pyrite, and coal particles (spores, secretinite, etc.). The fine size of the volcanic minerals and their low concentration indicate a very distant volcanic ash source, perhaps western Europe, where volcanic activity extended into the Stephanian.

  1. Understanding volcanism at the PETM: Abundant volcanic ash layers in the Central Tertiary Basin of Spitsbergen, Svalbard

    NASA Astrophysics Data System (ADS)

    Jones, Morgan; Eliassen, Gauti; Svensen, Henrik; Jochmann, Malte; Friis, Bjarki; Jerram, Dougal; Planke, Sverre

    2014-05-01

    During the early Tertiary, Svalbard developed a fold-thrust belt on its western margin with an associated foreland basin in the central-south of what is now Spitsbergen. This Central Tertiary Basin (CTB) is a syn-orogenic sedimentary basin in a strike-slip regime. The CTB contains the ~1900 m thick Van Mijenfjorden group, a dominantly sandstone-shale succession that was deposited in a North-South extending basin. Sediments in this group display evidence of major transgressive-regressive cycles related to local tectonics and eustatic sea level change. This basin is ideal for study as it has been extensively cored for coal prospecting, allowing a suite of sedimentary logs across the basin to be considered. Prominent marker beds in this sedimentary sequence are 1-30 cm thick bentonites, formed from the chemical weathering of volcanic tuff deposits. In this study, we focus on 8 sedimentary logs across the CTB, spanning the Palaeocene to lower Eocene in age. Bentonites are common in the Palaeocene cores (Basilika and Grumantbyen formations), while rarer but still occasionally present in the Eocene Frysjaodden formation. The cores had between 3-12 observable bentonite layers that showed large variations in preservation and subsequent reworking. Roots and other finer organic material were common, especially when the bentonites were found next to coal seams. Geochemical affinities between ash layers were investigated to identify basin-wide depositional events, with the aim of elucidating the provenance of these ashes. This sedimentary sequence is of broader interest as it covers the Palaeocene-Eocene thermal maximum (PETM), an extreme global warming event driven by large releases to the atmosphere of CO2 and/or CH4, evidenced by a negative carbon isotope excursion in both the ocean and atmosphere. Potential sources include volcanism and associated gas release from intruded sediments, CH4 hydrate dissociation, and/or the oxidation of organic matter. These formations are

  2. Correlation and Analysis of Volcanic Ash in Marine Sediments From the Peru Margin: Explosive Volcanic Cycles of the North-Central Andes

    NASA Astrophysics Data System (ADS)

    Hart, D.; Miller, J.

    2003-12-01

    To decipher the episodicity of explosive volcanic activity in the North-Central Andes, we have measured the thickness and calculated the volume of ash layers from sites drilled along the Peru margin during Leg 201 of the Ocean Drilling Program (ODP). The geographic distribution of the sites (over 3 degrees of latitude and from 50 to 300 km offshore) and correlation of ash units between sites form the basis for minimal estimates of explosive volcanic activity in the region (only eruptions large enough to deposit ash in excess of 100 km from source are represented). Pouclet et al., (1990), estimated the minimum explosive activity along the Andean Arc from ash-bearing sediments and ash layers within cores from sites along the Peru margin collected during ODP Leg 112. As a result of higher recovery (as much as ten times more core recovery in many intervals) and decreased disturbance in cores recovered during Leg 201, our documentation of ash content in cores from Leg 201 has led to a more complete record of the explosive volcanic activity along the Andean Arc. For example, Pouclet, et al., (1990), reports four ash layers from Sites 680 and 684, whereas we have documented fourteen ash layers from cores recovered from the same locations (Sites 1228 and 1227, respectively). Our stratigraphic record agrees with Pouclet, et al., (1990), suggesting that explosive activity began in the early Eocene ( ˜35Ma) and continued with explosive pulses during the Miocene. The greatest explosive activity occurred within the past 5 million years, with peak activity in the late Pliocene to early Pleistocene. Based on petrographic and geochemical analysis, most of the volcanic ash within cores from Leg 201 was derived from the Andean volcanic arc. These plinian eruptions produced acidic glasses and ash layers with abundant feldspar, hornblende, and biotite. Pouclet, et al., (1990), reports a transition from andesitic volcanism in the Middle to Late Miocene to a more shoshonitic

  3. Fractionation and Mobility of Thallium in Volcanic Ashes after Eruption of Eyjafjallajökull (2010) in Iceland.

    PubMed

    Karbowska, Bozena; Zembrzuski, Wlodzimierz

    2016-07-01

    Volcanic ash contains thallium (Tl), which is highly toxic to the biosphere. The aim of this study was to determine the Tl concentration in fractions of volcanic ash samples originating from the Eyjafjallajökull volcano. A sequential extraction scheme allowed for a study of element migration in the environment. Differential pulse anodic stripping voltammetry using a flow measuring system was selected as the analytical method to determine Tl content. The highest average content of Tl in volcanic ash was determined in the fraction entrapped in the aluminosilicate matrix (0.329 µg g(-1)), followed by the oxidizable fraction (0.173 µg g(-1)). The lowest content of Tl was found in the water soluble fraction (0.001 µg g(-1)); however, this fraction is important due to the fact that Tl redistribution among all the fractions occurs through the aqueous phase. PMID:27209545

  4. Encounters of aircraft with volcanic ash clouds; A compilation of known incidents, 1953-2009

    USGS Publications Warehouse

    Guffanti, Marianne; Casadevall, Thomas J.; Budding, Karin

    2010-01-01

    Information about reported encounters of aircraft with volcanic ash clouds from 1953 through 2009 has been compiled to document the nature and scope of risks to aviation from volcanic activity. The information, gleaned from a variety of published and other sources, is presented in database and spreadsheet formats; the compilation will be updated as additional encounters occur and as new data and corrections come to light. The effects observed by flight crews and extent of aircraft damage vary greatly among incidents, and each incident in the compilation is rated according to a severity index. Of the 129 reported incidents, 94 incidents are confirmed ash encounters, with 79 of those having various degrees of airframe or engine damage; 20 are low-severity events that involve suspected ash or gas clouds; and 15 have data that are insufficient to assess severity. Twenty-six of the damaging encounters involved significant to very severe damage to engines and (or) airframes, including nine encounters with engine shutdown during flight. The average annual rate of damaging encounters since 1976, when reporting picked up, has been approximately 2 per year. Most of the damaging encounters occurred within 24 hours of the onset of ash production or at distances less than 1,000 kilometers from the source volcanoes. The compilation covers only events of relatively short duration for which aircraft were checked for damage soon thereafter; documenting instances of long-term repeated exposure to ash (or sulfate aerosols) will require further investigation. Of 38 source volcanoes, 8 have caused 5 or more encounters, of which the majority were damaging: Augustine (United States), Chaiten (Chile), Mount St. Helens (United States), Pacaya (Guatemala), Pinatubo (Philippines), Redoubt (United States), Sakura-jima (Japan), and Soufriere Hills (Montserrat, Lesser Antilles, United Kingdom). Aircraft have been damaged by eruptions ranging from small, recurring episodes to very large

  5. Ground-based microwave radar and optical lidar signatures of volcanic ash plumes: models, observations and retrievals

    NASA Astrophysics Data System (ADS)

    Mereu, Luigi; Marzano, Frank; Mori, Saverio; Montopoli, Mario; Cimini, Domenico; Martucci, Giovanni

    2013-04-01

    The detection and quantitative retrieval of volcanic ash clouds is of significant interest due to its environmental, climatic and socio-economic effects. Real-time monitoring of such phenomena is crucial, also for the initialization of dispersion models. Satellite visible-infrared radiometric observations from geostationary platforms are usually exploited for long-range trajectory tracking and for measuring low level eruptions. Their imagery is available every 15-30 minutes and suffers from a relatively poor spatial resolution. Moreover, the field-of-view of geostationary radiometric measurements may be blocked by water and ice clouds at higher levels and their overall utility is reduced at night. Ground-based microwave radars may represent an important tool to detect and, to a certain extent, mitigate the hazard from the ash clouds. Ground-based weather radar systems can provide data for determining the ash volume, total mass and height of eruption clouds. Methodological studies have recently investigated the possibility of using ground-based single-polarization and dual-polarization radar system for the remote sensing of volcanic ash cloud. A microphysical characterization of volcanic ash was carried out in terms of dielectric properties, size distribution and terminal fall speed, assuming spherically-shaped particles. A prototype of volcanic ash radar retrieval (VARR) algorithm for single-polarization systems was proposed and applied to S-band and C-band weather radar data. The sensitivity of the ground-based radar measurements decreases as the ash cloud is farther so that for distances greater than about 50 kilometers fine ash might be not detected anymore by microwave radars. In this respect, radar observations can be complementary to satellite, lidar and aircraft observations. Active remote sensing retrieval from ground, in terms of detection, estimation and sensitivity, of volcanic ash plumes is not only dependent on the sensor specifications, but also on

  6. A new method for GPS-based wind speed determinations during airborne volcanic plume measurements

    USGS Publications Warehouse

    Doukas, Michael P.

    2002-01-01

    Begun nearly thirty years ago, the measurement of gases in volcanic plumes is today an accepted technique in volcano research. Volcanic plume measurements, whether baseline gas emissions from quiescent volcanoes or more substantial emissions from volcanoes undergoing unrest, provide important information on the amount of gaseous output of a volcano to the atmosphere. Measuring changes in gas emission rates also allows insight into eruptive behavior. Some of the earliest volcanic plume measurements of sulfur dioxide were made using a correlation spectrometer (COSPEC). The COSPEC, developed originally for industrial pollution studies, is an upward-looking optical spectrometer tuned to the ultraviolet absorption wavelength of sulfur dioxide (Millán and Hoff, 1978). In airborne mode, the COSPEC is mounted in a fixed-wing aircraft and flown back and forth just underneath a volcanic plume, perpendicular to the direction of plume travel (Casadevall and others, 1981; Stoiber and others, 1983). Similarly, for plumes close to the ground, the COSPEC can be mounted in an automobile and driven underneath a plume if a suitable road system is available (Elias and others, 1998). The COSPEC can also be mounted on a tripod and used to scan a volcanic plume from a fixed location on the ground, although the effectiveness of this configuration declines with distance from the plume (Kyle and others, 1990). In the 1990’s, newer airborne techniques involving direct sampling of volcanic plumes with infrared spectrometers and electrochemical sensors were developed in order to measure additional gases such as CO2 and H2S (Gerlach and others, 1997; Gerlach and others, 1999; McGee and others, 2001). These methods involve constructing a plume cross-section from several measurement traverses through the plume in a vertical plane. Newer instruments such as open-path Fourier transform infrared (FTIR) spectrometers are now being used to measure the gases in volcanic plumes mostly from fixed

  7. Ground-based weather radar remote sensing of volcanic ash explosive eruptions

    NASA Astrophysics Data System (ADS)

    Marzano, F. S.; Marchiotto, S.; Barbieri, S.; Giuliani, G.; Textor, C.; Schneider, D. J.

    2009-04-01

    The explosive eruptions of active volcanoes with a consequent formation of ash clouds represent a severe threat in several regions of the urbanized world. During a Plinian or a sub-Plinian eruption the injection of large amounts of fine and coarse rock fragments and corrosive gases into the troposphere and lower stratosphere is usually followed by a long lasting ashfall which can cause a variety of damages. Volcanic ash clouds are an increasing hazard to aviation safety because of growing air traffic volumes that use more efficient and susceptible jet engines. Real-time and areal monitoring of a volcano eruption, in terms of its intensity and dynamics, is not always possible by conventional visual inspections, especially during worse visibility periods which are quite common during eruption activity. Remote sensing techniques both from ground and from space represent unique tools to be exploited. In this respect, microwave weather radars can gather three-dimensional information of atmospheric scattering volumes up several hundreds of kilometers, in all weather conditions, at a fairly high spatial resolution (less than a kilometer) and with a repetition cycle of few minutes. Ground-based radar systems represent one of the best methods for determining the height and volume of volcanic eruption clouds. Single-polarization Doppler radars can measure horizontally-polarized power echo and Doppler shift from which ash content and radial velocity can be, in principle, extracted. In spite of these potentials, there are still several open issues about microwave weather radar capabilities to detect and quantitatively retrieve ash cloud parameters. A major issue is related to the aggregation of volcanic ash particles within the eruption column of explosive eruptions which has been observed at many volcanoes. It influences the residence time of ash in the atmosphere and the radiative properties of the "umbrella" cloud. Numerical experiments are helpful to explore processes

  8. Toward speleothem tephrochronology: Experimental simulation of volcanic ash weathering in a karst setting

    NASA Astrophysics Data System (ADS)

    Baldwin, M.; Frappier, A. B.

    2008-12-01

    Speleothem studies are beginning to identify various geochemical signatures of tephra layers related to known explosive volcanic events. Frappier previously analyzed the trace elemental composition of a recent calcite stalagmite from Belize. A large increase in diverse trace elemental impurities was found to correspond to the regional ashfall from the April 1982 V.E.I. 5 eruption of El Chichon in Chiapas, Mexico. To establish a reliable speleothem tephrochronological absolute dating tool, researchers must develop a mechanistic understanding of the processes that govern the deposition, preservation, and geochemical composition of speleothem tephra marker horizons. In tracking the processes between ashfall and speleothem deposition, it is particularly vital to characterize the initial tephra weathering products and their modification in karst soils and carbonate seepage waters. Here we present results from an experimental simulation of early stage weathering of trachyandesitic tephra. Volcanic ash from the 1982 El Chichon eruption was obtained from the Smithsonian Institution for leaching experiments. Using a factorial design, aliquots of a weak nitric acid solution were exposed to fine (less than 64 micron) and bulk ash samples, both alone and in the presence of karst soil from Belize. Mixtures were filtered to separate the solid fraction from the leachate, and ICP-MS analysis was performed on the suite of leachate samples at Boston University. We discuss the experimental results with respect to the geochemical composition of the tephra and observed stalagmite cryptotephra layer. We also address implications for development of an absolute dating tool for Quaternary geochronolgy and paleoclimatology of speleothems.

  9. Aerosols Monitoring Network to Create a Volcanic ASH Risk Management System in Argentina and Chile

    NASA Astrophysics Data System (ADS)

    Quel, Eduardo; Sugimoto, Nobuo; Otero, Lidia; Jin, Yoshitaka; Ristori, Pablo; Nishizawa, Tomoaki; González, Francisco; Papandrea, Sebastián; Shimizu, Atsushi; Mizuno, Akira

    2016-06-01

    Two main decisions were made in Argentina to mitigate the impact of the recent volcanic activity in de country basically affected by the presence of volcanic ash in the air and deposited over the Argentinean territory. The first one was to create a risk management commission were this risk between others were studied, and second to develop new ground based remote sensing technologies to be able to identify and inform the risk close to the airports. In addition the Japanese government program for Science and Technology joint Research Partnership between Argentina, Chile and Japan for Sustainable Development (SATREPS) accepted to fund this cooperation due to the potential future utilization of the research outcomes to the benefit of the society. This work present the actual achievements and expected advance of these projects that try to joint efforts between national and international agencies as well as countries on behalf of a better understanding of the risks and a joint collaboration on the mitigation of suspended ashes impact over the aerial navigation.

  10. Improved volcanic ash detection based on a hybrid reverse absorption technique

    NASA Astrophysics Data System (ADS)

    Lee, Kwon Ho; Wong, Man Sing; Chung, Sung-Rae; Sohn, Eunha

    2014-06-01

    A noble volcanic ash (VA) detection method based on a hybrid reverse absorption technique was successfully applied in the analysis of major volcanic eruptions that occurred in Russia, Iceland, Chile, Italy, and Japan by using the MODerate-resolution Imaging Spectroradiometer (MODIS) observation data. Sensitivity studies using radiative-transfer simulations by using various environmental parameters such as ash loadings, sizes, layer heights, and surface emissions, revealed that VA effects on brightness temperatures (BT) can reach up to 40 K. The advantage of the hybrid algorithm is its ability to detect distinct VA pixels during the day and night from satellite observations. The results showed that the hybrid algorithm can minimize the false detection of VA pixels, while well-known reverse absorption methods show abundant false VA pixels over bright surfaces and cloud formations. Further, the time-and-space distribution of the VA pixels is in good agreement with the data pertaining to operational aerosol products obtained from the scanning imaging absorption spectrometer for atmospheric cartography (SCIAMACHY) instrument on board ESA's Envisat and the cloud-aerosol Lidar and infrared pathfinder satellite observations (CALIPSO). This novel algorithm is expected to provide a fine spatial and temporal resolution of VA monitoring from high spectral or geostationary satellite observation data.

  11. Interaction of Mount St. Helens' volcanic ash with cells of the respiratory epithelium.

    PubMed

    Adler, K B; Mossman, B T; Butler, G B; Jean, L M; Craighead, J E

    1984-12-01

    Respirable-sized dust from the Mount St. Helens (MSH) eruption of Spring 1980, and minerals similar to the major components of the volcanic ash, were examined comparatively for interactions with epithelial cells of rodent respiratory airways in vitro. MSH dust, Na feldspar, cristobalite, and alpha-quartz, in concentrations of 0.4 to 40 mg/ml, had neither significant effects on mucin release by tracheal explants nor acute toxic effects after exposure for 2 hr. Long-term incubation (1 and 3 weeks) of explants after a 1-hr exposure to MSH dust failed to elicit widespread toxic or proliferative changes in airway epithelial cells. In contrast, long-term exposure to Na feldspar, cristobalite, and alpha-quartz caused significant toxicity to the explants, although metaplastic changes were not observed. Ultrastructural evidence of associations (e.g., phagocytosis) between particulates and respiratory epithelium was not observed. The results of these studies suggest that volcanic ash from MSH interacts minimally with cells of the respiratory mucosa. PMID:6510386

  12. Volcanic ash layers in blue ice fields (Beardmore Glacier Area, Antarctica): Iridium enrichments

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian

    1988-01-01

    Dust bands on blue ice fields in Antarctica have been studied and have been identified to originate from two main sources: bedrock debris scraped up from the ground by the glacial movement (these bands are found predominantly at fractures and shear zones in the ice near moraines), and volcanic debris deposited on and incorporated in the ice by large-scale eruptions of Antarctic (or sub-Antractic) volcanoes. Ice core studies have revealed that most of the dust layers in the ice cores are volcanic (tephra) deposits which may be related to some specific volcanic eruptions. These eruptions have to be related to some specific volcanic eruptions. These eruptions have to be relatively recent (a few thousand years old) since ice cores usually incorporate younger ice. In contrast, dust bands on bare blue ice fields are much older, up to a few hundred thousand years, which may be inferred from the rather high terrestrial age of meteorites found on the ice and from dating the ice using the uranium series method. Also for the volcanic ash layers found on blue ice fields correlations between some specific volcanoes (late Cenozoic) and the volcanic debris have been inferred, mainly using chemical arguments. During a recent field expedition samples of several dust bands found on blue ice fields at the Lewis Cliff Ice Tongue were taken. These dust band samples were divided for age determination using the uranium series method, and chemical investigations to determine the source and origin of the dust bands. The investigations have shown that most of the dust bands found at the Ice Tongue are of volcanic origin and, for chemical and petrological reasons, may be correlated with Cenozoic volcanoes in the Melbourne volcanic province, Northern Victoria Land, which is at least 1500 km away. Major and trace element data have been obtained and have been used for identification and correlation purposes. Recently, some additional trace elements were determined in some of the dust band

  13. Quantifying distal dispersal and impact of volcanic ash from super-eruptions: an application to Campanian Ignimbrite

    NASA Astrophysics Data System (ADS)

    Costa, A.; Folch, A.; Macedonio, G.; Giaccio, B.; Isaia, R.; Smith, V. C.

    2012-04-01

    Distal and ultra-distal volcanic ash dispersal during a super-eruption was reconstructed for the first time, providing insights into eruption dynamics and the impact of these gigantic events. A novel computational methodology was applied to the ash fallout of the Campanian Ignimbrite (CI), the most powerful volcanic eruption in Europe in the last 200 kyrs. The method uses a 3D time-dependent computational ash dispersion model, an ensemble of wind fields, and hundreds of thickness observations of the CI tephra deposit. Results reveal that 250-300 km3 of fallout material was produced during the eruption, blanketing a region of ~3.7 million km2 with more than 5 mm of fine ash. The model also indicates that the column height was ~37-40 km, and the eruption lasted 2-4 days. The eruption would have caused a volcanic winter within the coldest and driest Heinrich event. Fluorine-bearing leachate from the volcanic ash and acid rain would have further affected food sources and severely impacted Late Middle Paleolithic groups in Southern and Eastern Europe.

  14. Early Eocene volcanic ashes on Greifswalder Oie and their depositional environment, with an overview of coeval ash-bearing deposits in northern Germany and Denmark

    NASA Astrophysics Data System (ADS)

    Obst, Karsten; Ansorge, Jörg; Matting, Sabine; Hüneke, Heiko

    2015-11-01

    Unconsolidated bentonites and carbonate-cemented volcanic ashes occur in northern Germany within the clay sequence of the Lamstedt and Schlieven Formations documented by several wells. Ash-bearing carbonate concretions (so-called cementstones) are also known from glacially transported rafts and erratic boulders on the Baltic Sea island Greifswalder Oie, representing the easternmost exposures of early Eocene sediments in the North Sea Basin. The ashes can be correlated with water-lain ashes of the Danish Fur and Ølst Formations (mo-clay) generated during the opening of the North Atlantic Ocean about 55 Ma ago. Two types of cementstones can be distinguished on the basis of the mineralogical composition, sedimentary features and fossil content. Greifswalder Oie type I contains a black, up to 12-cm-thick ash deposit that follows above two distinct thin grey ash layers. The major ash unit has a rather homogeneous lower part; only a very weak normal grading and faint lamination are discernible. In the upper part, however, intercalations with light mudstone, in part intensively bioturbated, together with parallel and cross-lamination suggest reworking of the ash in a shallow marine environment. Major and trace element compositions are used to correlate type I ashes with those of the Danish-positive series which represent rather uniform ferrobasalts of the Danish stage 4, probably related to the emergence of proto-Iceland. In contrast, type II ash comprises a single, normally graded, about 5-cm-thick layer of water-lain air-fall tuff, which is embedded in fine-grained sandstone to muddy siltstone. Type II ash is characterised by very high TiO2 but low MgO contents. Exceptional REE patterns with a pronounced positive Eu anomaly suggest intense leaching of the glass that hampers exact correlation with pyroclastic deposits within the North Atlantic Igneous Province.

  15. Integration between Satellite and Ground-Based Data for the Improvement of Volcanic Ash Retrievals and Eruption Characterization

    NASA Astrophysics Data System (ADS)

    Corradini, S.; Merucci, L.; Marzano, F. S.; Montopoli, M.; Vulpiani, G.; Ricci, M.; Guerrieri, L.; Pugnaghi, S.; Scollo, S.; Coltelli, M.; Stramondo, S.

    2014-12-01

    Due to the large emission of gas and ash particles into the atmosphere, volcanic eruptions are among the most important sources of natural pollution. The size, density and shape of volcanic ash particles determine their residence time in the atmosphere that varies from minutes (for particles with radius larger than 100 μm) to weeks (for particles smaller than 10 μm). The interest in determining the abundances of these particles is high because of their effects on the environment, climate, public health and aviation. A practical consequence after the recent 2010 Eyjafjallajökull (Iceland) eruption, was the introduction of a volcanic ash concentration threshold to reduce the level of flight disruption whilst ensuring the passenger safety. This requirement forces the scientific community to develop novel techniques to obtain reliable results in real time. On the other hand, from the research point of view, an accurate estimation of the volcanic ash emissions can also yield insights into magmatic processes which control volcanic activity during the eruptive phases.Worldwide volcanic activity is observed with a variety of ground and space-based instruments that offer advantages and drawbacks. Because doesn't exist a single system able to give a comprehensive description of a particular phenomenon, an integrated approach based on the use of different types of remote sensing data is required. This approach is the core of the Multi-platform volcanic Ash Cloud Estimation (MACE) procedure that will be developed within the European FP7-APHORISM project.In this is work the measurements obtained from the geostationary MSG-SEVIRI, the polar Terra/Aqua MODIS and the ground-based weather RADAR instruments are integrated thus blending infrared and microwave ash estimation techniques from space and ground platforms. The expected outcomes are the improvements of the volcanic ash retrievals (mass, aerosol optical depth, effective radius, concentration, size distribution, cloud

  16. Resonances of a Volcanic Conduit Triggered by Repetitive Injections of an Ash-laden gas

    NASA Astrophysics Data System (ADS)

    Molina, I.; Kumagai, H.; Yepes, H.

    2003-12-01

    Tungurahua Volcano, located at the center of the Ecuadorian Andes, entered in eruption characterized by ash emissions, vulcanian and strombolian activities in October 1999. There have been 7 to 10 short-period seismic stations and 1 broadband station to monitor the Tungurahua volcanic activity. Between December 5 and 11, 2001, a swarm of long-period (LP) events occurred. The LP waveform is characterized by screw-shaped harmonic oscillations. In this study, we used the LP waveforms to calculate temporal variations in their complex frequencies (frequency, f and quality factor, Q) to understand the source process associated with this activity. We applied the Sompi spectral method to 57 LP waveforms from the station RETU, which provided the best continuous data in the Tungurahua seismic network. We determined the temporal variations in the complex frequencies of the LP events, which indicated that the frequency gradually decreased from 3.5 to 2 Hz, whereas Q gradually increased from 100 to 400 with wide scatter along this trend. Based on the acoustic properties of a crack containing various types of magmatic and hydrothermal fluids, the observed high Q values can only be explained by a large velocity contrast between the surrounding rock and fluid. Such a high velocity contrast suggests ash-gas or water droplet-gas mixtures in a crack developed in the solid rock. Since the LP events are most probably located around 2 km below the summit, a water droplet (liquid water) may not exist at this source depth. We may therefore reasonably assume that the fluid at the source of the LP events is an ash-gas mixture. We propose that an ash-laden gas was injected into a closed conduit (pre-existing crack) just above the magmatic system, causing the resonance of the conduit or an LP event. This process repeatedly occurred and accumulated ash particles in the conduit, generating the temporal variations in the frequency and Q of the LP events. Finally, the conduit was almost filled

  17. HCl uptake by volcanic ash in the high temperature eruption plume: Mechanistic insights

    NASA Astrophysics Data System (ADS)

    Ayris, Paul M.; Delmelle, Pierre; Cimarelli, Corrado; Maters, Elena C.; Suzuki, Yujiro J.; Dingwell, Donald B.

    2014-11-01

    The injection of HCl into the stratosphere by large volcanic eruptions has long been considered to be of minor importance. This is due to the widespread assumption that any HCl will be efficiently taken up by hydrometeors in the cooling plume. However, this assumption does not account for the possibility that prior scavenging processes can act within the high temperature core of the eruption plume. The adsorption of HCl onto ash surfaces to form soluble -Cl salts is a hitherto unconstrained scavenging mechanism, and their fate within the atmosphere and environment is uncertain. Here, we investigate the capacity of volcanic glasses of tephrite, phonolite, dacite and rhyolite composition to adsorb HCl. The experiments are conducted in the presence of He-SO2-CO2 mixtures at temperatures of 200-800 °C. Our experimental findings show that only the tephrite and phonolite glasses exhibit significant reactivity to HCl, which show optimal efficiency of uptake at 400-600 °C. The primary reaction product formed during adsorption is halite (NaCl), in addition to minor quantities of Ca-, K-, Al- and Fe-bearing chlorides. Uptake of HCl by glass surfaces is sustained by the outward diffusion of Na+ and other Cl-reactive cations via exchange with H+. Simple mathematical models can be used to yield Na diffusion coefficients for the four experimental glasses, and suggest that a varying structural role for Na within the glass network governs the capacity for HCl retention. The uptake of HCl under experimental conditions is limited above 500 °C by a Cl-induced dehydroxylation process, but the presence of H2O in the hydrous plume may sustain or even enhance adsorption. The present experimental data, combined with cooling gradients obtained from established plume evolution models, lead us to conclude that HCl adsorption within the eruption plume core can be a more significant scavenging mechanism in large explosive eruptions than previously considered. We additionally highlight the

  18. Development of an automatic volcanic ash sampling apparatus for active volcanoes

    NASA Astrophysics Data System (ADS)

    Shimano, Taketo; Nishimura, Takeshi; Chiga, Nobuyuki; Shibasaki, Yoshinobu; Iguchi, Masato; Miki, Daisuke; Yokoo, Akihiko

    2013-12-01

    We develop an automatic system for the sampling of ash fall particles, to be used for continuous monitoring of magma ascent and eruptive dynamics at active volcanoes. The system consists of a sampling apparatus and cameras to monitor surface phenomena during eruptions. The Sampling Apparatus for Time Series Unmanned Monitoring of Ash (SATSUMA-I and SATSUMA-II) is less than 10 kg in weight and works automatically for more than a month with a 10-kg lead battery to obtain a total of 30 to 36 samples in one cycle of operation. The time range covered in one cycle varies from less than an hour to several months, depending on the aims of observation, allowing researchers to target minute-scale fluctuations in a single eruptive event, as well as daily to weekly trends in persistent volcanic activity. The latest version, SATSUMA-II, also enables control of sampling parameters remotely by e-mail commands. Durability of the apparatus is high: our prototypes worked for several months, in rainy and typhoon seasons, at windy and humid locations, and under strong sunlight. We have been successful in collecting ash samples emitted from Showa crater almost everyday for more than 4 years (2008-2012) at Sakurajima volcano in southwest Japan.

  19. Acute effects of volcanic ash from Mount Saint Helens on lung function in children.

    PubMed

    Buist, A S; Johnson, L R; Vollmer, W M; Sexton, G J; Kanarek, P H

    1983-06-01

    To evaluate the acute effects of volcanic ash from Mt. St. Helens on the lung function of children, we studied 101 children 8 to 13 yr of age who were attending a 2-wk summer camp for children with diabetes mellitus in an area where about 1.2 cm of ash had fallen after the June 12, 1980, eruption. The outcome variables used were forced vital capacity, forced expiratory volume in one second, their ratio and mean transit time. Total and respirable dust levels were measured using personal sampling pumps. The children were tested on arrival and twice (early morning [A.M.] and late afternoon [P.M.]) every second or third day during the session. A within-day effect was measured by the P.M./A.M. ratio for the lung function variables; a between-day effect was measured by the change in the P.M. measurements over the 2 wk of camp. We found no strong evidence of either a within-day or a between-day effect on lung function, even in a subgroup of children who had preexisting lung disease or symptoms, despite daytime dust/ash levels that usually exceeded the Environmental Protection Agency's significant harm level for particulate matter. PMID:6859654

  20. Volcanic Ash Hazards and Risk in Argentina: Scientific and Social Collaborative Approaches.

    NASA Astrophysics Data System (ADS)

    Rovere, E. I., II; Violante, R. A.; Vazquez Herrera, M. D.; Martinez Fernandez, M. D. L. P.

    2015-12-01

    Due to the absence of alerts or volcanic impacts during 60 years (from 1932, Quizapu-Descabezado Grande -one of the major eruptions of the XX Century- until 1991 Hudson eruption) there was mild remembrance of volcanic hazards in the collective memory of the Argentina citizens. Since then and until April 2015, the social perception changed according to different factors: age, location, education, culture, vulnerability. This variability produces a maze of challenges that go beyond the scientific knowledge. Volcanic health hazards began to be understood in 2008 after the eruption of Chaiten volcano. The particle size of ashfall (<10 μ) and the silica composition were the main factors of concern on epidemiological monitoring. In 2011 the volcanic complex Puyehue - Cordon Caulle eruption produced ashfall through plumes that reached densely populated cities like San Carlos de Bariloche and Buenos Aires. Farther away in South Africa and New Zealand ash plumes forced airlines to cancel local and international flights for several weeks. The fear of another eruption did not wait long when Calbuco volcano started activity in April 2015, it came at a time when Villarrica volcano was also in an eruptive phase, and the SERNAGEOMIN Chile, through the Observatory OVDAS of the Southern Andes, faced multiple natural disasters at the same time, 3 volcanoes in activity, lahars, pyroclastic flows and floods in the North. In Argentina, critical infrastructure, farming, livestock and primary supplies were affected mainly in the western region. Copahue volcano, is increasing unstability on seismic and geochemistry data since 2012. Caviahue resort village, distant only 8 Km. from the active vent happens to be a high vulnerable location. In 2014 GEVAS (Geology, Volcanoes, Environment and Health) Network ARGENTINA Civil Association started collaborative activities with SEGEMAR and in 2015 with the IAPG (Geoethics, Argentina), intending to promote Best Practices in volcanic and geological

  1. Modeling volcanic ash resuspension - application to the 14-18 October 2011 outbreak episode in central Patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Folch, A.; Mingari, L.; Osores, M. S.; Collini, E.

    2014-01-01

    Volcanic fallout deposits from the June 2011 Cordón Caulle eruption on central Patagonia were remobilized in several occasions months after their emplacement. In particular, during 14-18 October 2011, an intense outbreak episode generated widespread volcanic clouds that were dispersed across Argentina, causing multiple impacts in the environment, affecting the air quality and disrupting airports. Fine ash particles in volcanic fallout deposits can be resuspended under favorable meteorological conditions, particularly during strong wind episodes in arid environments with low soil moisture and poor vegetation coverage. As opposed to eruption-formed ash clouds, modeling of resuspension-formed ash clouds has received little attention. In consequence, there are no emission schemes specially developed and calibrated for resuspended volcanic ash, and few operational products exists to model and forecast the formation and dispersal of resuspension ash clouds. Here we implement three dust emission schemes of increasing complexity in the FALL3D tephra dispersal model and use the 14-18 October 2011 outbreak episode as a model test case. We calibrate the emission schemes and validate the results of the coupled WRF-ARW (Weather Research and Forecasting - Advanced Research WRF)/FALL3D modeling system using satellite imagery and measurements of visibility (a quantity related to total suspended particle concentration at the surface) and particulate matter (PM10) concentration at several meteorological and air quality stations located at Argentina and Uruguay. Our final goal is to test the capability of the modeling system to become, in the near future, an operational forecast product for volcanic ash resuspension events.

  2. FPLUME-1.0: An integral volcanic plume model accounting for ash aggregation

    NASA Astrophysics Data System (ADS)

    Folch, A.; Costa, A.; Macedonio, G.

    2016-02-01

    Eruption source parameters (ESP) characterizing volcanic eruption plumes are crucial inputs for atmospheric tephra dispersal models, used for hazard assessment and risk mitigation. We present FPLUME-1.0, a steady-state 1-D (one-dimensional) cross-section-averaged eruption column model based on the buoyant plume theory (BPT). The model accounts for plume bending by wind, entrainment of ambient moisture, effects of water phase changes, particle fallout and re-entrainment, a new parameterization for the air entrainment coefficients and a model for wet aggregation of ash particles in the presence of liquid water or ice. In the occurrence of wet aggregation, the model predicts an effective grain size distribution depleted in fines with respect to that erupted at the vent. Given a wind profile, the model can be used to determine the column height from the eruption mass flow rate or vice versa. The ultimate goal is to improve ash cloud dispersal forecasts by better constraining the ESP (column height, eruption rate and vertical distribution of mass) and the effective particle grain size distribution resulting from eventual wet aggregation within the plume. As test cases we apply the model to the eruptive phase-B of the 4 April 1982 El Chichón volcano eruption (México) and the 6 May 2010 Eyjafjallajökull eruption phase (Iceland). The modular structure of the code facilitates the implementation in the future code versions of more quantitative ash aggregation parameterization as further observations and experiment data will be available for better constraining ash aggregation processes.

  3. FPLUME-1.0: An integral volcanic plume model accounting for ash aggregation

    NASA Astrophysics Data System (ADS)

    Folch, Arnau; Costa, Antonio; Macedonio, Giovanni

    2016-04-01

    Eruption Source Parameters (ESP) characterizing volcanic eruption plumes are crucial inputs for atmospheric tephra dispersal models, used for hazard assessment and risk mitigation. We present FPLUME-1.0, a steady-state 1D cross-section averaged eruption column model based on the Buoyant Plume Theory (BPT). The model accounts for plume bending by wind, entrainment of ambient moisture, effects of water phase changes, particle fallout and re-entrainment, a new parameterization for the air entrainment coefficients and a model for wet aggregation of ash particles in presence of liquid water or ice. In the occurrence of wet aggregation, the model predicts an "effective" grain size distribution depleted in fines with respect to that erupted at the vent. Given a wind profile, the model can be used to determine the column height from the eruption mass flow rate or vice-versa. The ultimate goal is to improve ash cloud dispersal forecasts by better constraining the ESP (column height, eruption rate and vertical distribution of mass) and the "effective" particle grain size distribution resulting from eventual wet aggregation within the plume. As test cases we apply the model to the eruptive phase-B of the 4 April 1982 El Chichón volcano eruption (México) and the 6 May 2010 Eyjafjallajökull eruption phase (Iceland). The modular structure of the code facilitates the implementation in the future code versions of more quantitative ash aggregation parameterization as further observations and experiments data will be available for better constraining ash aggregation processes.

  4. 3D numerical simulations of dispersion of volcanic ash using a Lagrangian model

    NASA Astrophysics Data System (ADS)

    Suzuki, Yujiro; Koyaguchi, Takehiro

    2014-05-01

    Dispersion of volcanic ash largely depends on the atmospheric wind speed and eruption intensity. In general, when the atmospheric wind is weak and/or eruption intensity is strong (i.e., magma discharge rate is small), the volcanic plume is characterized by the formation of umbrella cloud and the particles (i.e., volcanic ashes) are transported by the gravity current of umbrella cloud. On the other hand, if the wind is strong and/or eruption intensity is weak, the volcanic plume tends to be distorted by wind and the particles are drifted mainly by the wind. Because these effects of gravity current and wind also change depending on the particle size, it is difficult to quantitatively predict the distributions of particles suspended in the atmosphere and those deposited on the ground. In this study, we are developing a 3-D numerical model which directly simulates the ash transport and deposition. The model is designed to simulate the injection of a mixture of solid pyroclasts and volcanic gas from a circular vent above a flat surface in a stratified atmosphere, using a combination of a pseudo-gas model for fluid motion and a Lagrangian model for particle motion. During fluid dynamics calculations, we ignore the separation of solid pyroclasts from the eruption cloud, treating an eruption cloud as a single gas with a density calculated using a mixing ratio between ejected material and entrained air (Suzuki et al., 2005, JGR). In order to calculate the location and movement of ash particles, we employ Lagrangian marker particles of various sizes and densities. The marker particles are ejected from the vent with the same velocity of the eruption cloud every 2 sec. The particles are accelerated or decelerated by the drag force on the spheres and fall to the ground with their terminal velocities. We carried out a simulation of a small-scale eruption in the strong wind fields with the magma discharge rate of 2.5 x 106 kg/s. The rising plume is largely distorted by wind and

  5. Fluidal deep-sea volcanic ash as an indicator of explosive volcanism (Invited)

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Portner, R. A.; Paduan, J. B.; Dreyer, B. M.

    2013-12-01

    Fluidal glassy lava fragments are now known to be abundant at sites of submarine eruptions including the mid-ocean ridge system, near-ridge seamount chains, mid-plate volcanoes and the submarine rifts of ocean islands, deep-sea (4200m) alkalic lava fields, back-arc spreading centers, and arc volcanoes. Fluidal fragments at these diverse settings have compositions including basanite, tholeiite, boninite, andesite, dacite, and rhyolite. Fragments include straight, bent, curved, and coiled Pele's hair; flat, curved, twisted, folded, bent, or keeled ribbons; and flat, curved, or intensely folded limu o Pele. Most of these morphologies attach to blocky glass fragments. The fluidal fragments from different settings and depths are strikingly similar in morphology with variable vesicularity and particle thickness. They have been sampled flat and steep, rocky to sediment-covered substrates. Two different mechanisms are proposed to explain their origin: magmatic-volatile fragmentation during eruption and sea floor lava-water interactions. Volatiles in the melts and ambient water are present in all submarine volcanic settings, making it difficult to separate their role in forming the fragments. Submarine bubble-burst (strombolian) activity has been observed in situ at an active vent at -1200m on West Mata Volcano. However, lava-water interaction at elevated pressure has not been observed to make such fluidal fragments except in laboratory simulations. Lava-water interaction models suggest that pore water in sediment trapped beneath advancing lava flows migrates into the overlying flow where it expands to steam, and the expanding steam bubble escapes explosively through the flow top to form the fluidal fragments. This is different from the hollow (water-filled) pillars that form in inflating flows as trapped water escapes. Pillars grow upwards at contacts between flow lobes, thus the water exiting through pillars never enters (or exits) the molten lava flow interior. Another

  6. Simultaneous SO2 and ash retrievals using the volcanic plume removal (VPR) procedure

    NASA Astrophysics Data System (ADS)

    Merucci, Luca; Corradini, Stefano; Pugnaghi, Sergio; Guerrieri, Lorenzo; Arvani, Barbara

    2013-04-01

    A novel procedure for the simultaneous retrieval of SO2 and ash abundances in a volcanic plume from MODIS thermal infrared (TIR) images is presented. The proposed procedure is simple, extremely fast and requires as inputs only the plume altitude and temperature. Here it is described and applied on two Mt. Etna (Italy) test case eruptions, but can be easily extended and applied to any volcano. The core of the volcanic plume removal (VPR) procedure is the calculation of the background radiance obtained by linear interpolation of the radiance measured in the area surrounding the plume. In this way the absorption effect of the volcanic plume can be removed from the image: the VPR procedure computes the radiances that would have been measured by the sensor if the plume was missing and reconstructs a new image without the plume. The difference of the new image and the original data highlights the plume area and allows the computation of the plume transmittance in three TIR-MODIS bands: 29, 31 and 32 (8.6, 11.0 and 12.0 μm). The procedure works very well when the surface under the plume is uniform, as it is often the case with plume widths of few tens of kilometers. As a consequence, it has no problems when the plume is above the sea, but still produces fairly good results in more challenging and not easily modeled conditions, such as images with land or uniform cloud layers under the plume. The plume transmittances are derived in two steps: (1) using a simple model with the plume at a fixed altitude and neglecting the layer of atmosphere above it; (2) refining the first result with polynomial relationships adapted for the geographical region. MODIS bands 31 and 32 are SO2 transparent and, from their transmittances, the ash particle effective radius (Re) and the aerosol optical depth at 550 nm (AOD550) are computed. A simple relation between the ash transmittances of bands 31 and 29 is demonstrated for the typical ash of Etna and used for the SO2 columnar content

  7. Airborne EM survey in volcanoes : Application to a volcanic hazards assessment

    NASA Astrophysics Data System (ADS)

    Mogi, T.

    2010-12-01

    Airborne electromagnetics (AEM) is a useful tool for investigating subsurface structures of volcanoes because it can survey large areas involving inaccessible areas. Disadvantages include lower accuracy and limited depth of investigation. AEM has been widely used in mineral exploration in frontier areas, and have been applying to engineering and environmental fields, particularly in studies involving active volcanoes. AEM systems typically comprise a transmitter and a receiver on an aircraft or in a towed bird, and although effective for surveying large areas, their penetration depth is limited because the distance between the transmitter and receiver is small and higher-frequency signals are used. To explore deeper structures using AEM, a semi-airborne system called GRounded Electrical source Airborne Transient ElectroMagnetics (GREATEM) has been developed. The system uses a grounded-electrical-dipole as the transmitter and generates horizontal electric fields. The GREATEM technology, first proposed by Mogi et al. (1998), has recently been improved and used in practical surveys (Mogi et al., 2009). The GREATEM survey system was developed to increase the depth of investigation possible using AEM. The method was tested in some volcanoes at 2004-2005. Here I will talk about some results of typical AEM surveys and GREATEM surveys in some volcanoes in Japan to mitigate hazards associated with volcano eruption. Geologic hazards caused by volcanic eruptions can be mitigated by a combination of prediction, preparedness and land-use control. Risk management depends on the identification of hazard zones and forecasting of eruptions. Hazard zoning involves the mapping of deposits which have formed during particular phases of volcanic activity and their extrapolation to identify the area which would be likely to suffer a similar hazard at some future time. The mapping is usually performed by surface geological surveys of volcanic deposits. Resistivity mapping by AEM is useful

  8. Multi-sensor satellite monitoring of ash and SO2 volcanic plume in support to aviation control

    NASA Astrophysics Data System (ADS)

    Brenot, Hugues; Theys, Nicolas; Clarisse, Lieven; van Geffen, Jos; van Gent, Jeroen; Van Roozendael, Michel; van der A, Ronald; Hurtmans, Daniel; Coheur, Pierre-Francois; Clerbaux, Cathy; Valks, Pieter; Hedelt, Pascal; Prata, Fred; Rasson, Olivier; Sievers, Klaus; Zehner, Claus

    2014-05-01

    The 'Support to Aviation Control Service' (SACS; http://sacs.aeronomie.be) is an ESA-funded project hosted by the Belgian Institute for Space Aeronomy since 2007. The service provides near real-time (NRT) global volcanic ash and SO2 observations, as well as notifications in case of volcanic eruptions (success rate >95% for ash and SO2). SACS is based on the combined use of UV-visible (OMI, GOME-2 MetOp-A, GOME-2 MetOp-B) and infrared (AIRS, IASI MetOp-A, IASI MetOp-B) satellite instruments. The SACS service is primarily designed to support the Volcanic Ash Advisory Centers (VAACs) in their mandate to gather information on volcanic clouds and give advice to airline and air traffic control organisations. SACS also serves other users that subscribe to the service, in particular local volcano observatories, research scientists and airliner pilots. When a volcanic eruption is detected, SACS issues a warning that takes the form of a notification sent by e-mail to users. The SACS notification points to a dedicated web page where all relevant information is available and can be visualised with user-friendly tools. Information about the volcanic plume height from GOME-2 (MetOp-A and MetOp-B) are also available. The strength of a multi-sensor approach relies in the use of satellite data with different overpasses times, minimising the time-lag for detection and enhancing the reliability of such alerts. This presentation will give an overview of the SACS service, and of the different techniques used to detect volcanic plumes (ash, SO2 and plume height). It will also highlight the strengths and limitations of the service and measurements, and some perspectives.

  9. Particle size distributions and the sequential fragmentation/transport theory applied to volcanic ash

    NASA Astrophysics Data System (ADS)

    Wohletz, K. H.; Sheridan, M. F.; Brown, W. K.

    1989-11-01

    The assumption that distributions of mass versus size interval for fragmented materials fit the log normal distribution is empirically based and has historical roots in the late 19th century. Other often used distributions (e.g., Rosin-Rammler, Weibull) are also empirical and have the general form for mass per size interval: n(l) = klα exp (-lβ), where n(l) represents the number of particles of diameter l, l is the normalized particle diameter, and k, α, and β are constants. We describe and extend the sequential fragmentation distribution to include transport effects upon observed volcanic ash size distributions. The sequential fragmentation/transport (SFT) distribution is also of the above mathematical form, but it has a physical basis rather than empirical. The SFT model applies to a particle-mass distribution formed by a sequence of fragmentation (comminution) and transport (size sorting) events acting upon an initial mass m': n(x, m) = C ∫∫ n(x', m')p(ξ)dx' dm', where x' denotes spatial location along a linear axis, C is a constant, and integration is performed over distance from an origin to the sample location and mass limits from 0 to m. We show that the probability function that models the production of particles of different size from an initial mass and sorts that distribution, p(ξ), is related to mg, where g (noted as γ for fragmentation processes) is a free parameter that determines the location, breadth, and skewness of the distribution; g(γ) must be greater than -1, and it increases from that value as the distribution matures with greater number of sequential steps in the fragmentation or transport process; γ is expected to be near -1 for "sudden" fragmentation mechanisms such as single-event explosions and transport mechanisms that are functionally dependent upon particle mass. This free parameter will be more positive for evolved fragmentation mechanisms such as ball milling and complex transport processes such as saltation. The SFT

  10. Estimating volcanic ash emissions by a chemical "Sequential Importance Resampling Smoother"

    NASA Astrophysics Data System (ADS)

    Franke, Philipp; Elbern, Hendrik

    2014-05-01

    The 2010 eruption of the Icelandic volcano Eyjafjallajökull instigated interest in the ability to increase the forecast skills of ash concentrations, which is of special interest for air traffic control, amongst others. To date, it is not possible for forecast models to make quantitative predictions of ash concentrations. The objective of this work is to develop a novel method to significantly reduce this problem by improving the emission parameters of volcanic eruptions. The method generalizes the Sequential Importance Resampling Filter algorithm to a smoother method to deal with time reversed observation-emission-relationships. For this reason, the EURAD-IM model is extended to an ensemble system. To handle the large requirements of computer power, this ensemble system is implemented on the JUQUEEN supercomputer at Forschungszentrum Jülich. The algorithm spawns the ensemble members according to their weights, which are proportional to the conditional probability of the observations given the model state. The smoother property is realized by adjoint integration back to the volcanic source and serves to combine multiple observations. The Sequential Importance Resampling Smoother was tested for April 14, 2010, which is the first eruption day of the Icelandic volcano Eyjafjallajökull. The test was performed with artificial observations, which were arranged according to the CALIPSO satellite, in an identical twin context. The system proofs to perform remarkably well. For the biased test case, which uses different emission heights as were used for the nature run, the RMSE of the weighted ensemble mean as well as the ensemble spread were reduced by 60 % and 95 %, respectively. The total emitted mass concentration of the a posteriori run differs slightly from the emitted mass concentrations of the nature run. The rank histograms of the a posteriori estimate show a flattened shape compared to a priori estimate, which indicates a reliable system for the test case. By

  11. Eifel maars: Quantitative shape characterization of juvenile ash particles (Eifel Volcanic Field, Germany)

    NASA Astrophysics Data System (ADS)

    Rausch, Juanita; Grobéty, Bernard; Vonlanthen, Pierre

    2015-01-01

    The Eifel region in western central Germany is the type locality for maar volcanism, which is classically interpreted to be the result of explosive eruptions due to shallow interaction between magma and external water (i.e. phreatomagmatic eruptions). Sedimentary structures, deposit features and particle morphology found in many maar deposits of the West Eifel Volcanic Field (WEVF), in contrast to deposits in the East Eifel Volcanic Field (EEVF), lack the diagnostic criteria of typical phreatomagmatic deposits. The aim of this study was to determine quantitatively the shape of WEVF and EEVF maar ash particles in order to infer the governing eruption style in Eifel maar volcanoes. The quantitative shape characterization was done by analyzing fractal dimensions of particle contours (125-250 μm sieve fraction) obtained from Scanning electron microscopy (SEM) and SEM micro-computed tomography (SEM micro-CT) images. The fractal analysis (dilation method) and the fractal spectrum technique confirmed that the WEVF and EEVF maar particles have contrasting multifractal shapes. Whereas the low small-scale dimensions of EEVF particles (Eppelsberg Green Unit) coincide with previously published values for phreatomagmatic particles, the WEVF particles (Meerfelder Maar, Pulvermaar and Ulmener Maar) have larger values indicating more complex small-scale features, which are characteristic for magmatic particles. These quantitative results are strengthening the qualitative microscopic observations, that the studied WEVF maar eruptions are rather dominated by magmatic processes. The different eruption styles in the two volcanic fields can be explained by the different geological and hydrological settings found in both regions and the different chemical compositions of the magmas.

  12. Atmospheric correction for satellite-based volcanic ash mapping and retrievals using ``split window'' IR data from GOES and AVHRR

    NASA Astrophysics Data System (ADS)

    Yu, Tianxu; Rose, William I.; Prata, A. J.

    2002-08-01

    Volcanic ash in volcanic clouds can be mapped in two dimensions using two-band thermal infrared data available from meteorological satellites. Wen and Rose [1994] developed an algorithm that allows retrieval of the effective particle size, the optical depth of the volcanic cloud, and the mass of fine ash in the cloud. Both the mapping and the retrieval scheme are less accurate in the humid tropical atmosphere. In this study we devised and tested a scheme for atmospheric correction of volcanic ash mapping and retrievals. The scheme utilizes infrared (IR) brightness temperature (BT) information in two infrared channels (both between 10 and 12.5 μm) and the brightness temperature differences (BTD) to estimate the amount of BTD shift caused by lower tropospheric water vapor. It is supported by the moderate resolution transmission (MODTRAN) analysis. The discrimination of volcanic clouds in the new scheme also uses both BT and BTD data but corrects for the effects of the water vapor. The new scheme is demonstrated and compared with the old scheme using two well-documented examples: (1) the 18 August 1992 volcanic cloud of Crater Peak, Mount Spurr, Alaska, and (2) the 26 December 1997 volcanic cloud from Soufriere Hills, Montserrat. The Spurr example represents a relatively ``dry'' subarctic atmospheric condition. The new scheme sees a volcanic cloud that is about 50% larger than the old. The mean optical depth and effective radii of cloud particles are lower by 22% and 9%, and the fine ash mass in the cloud is 14% higher. The Montserrat cloud is much smaller than Spurr and is more sensitive to atmospheric moisture. It also was located in a moist tropical atmosphere. For the Montserrat example the new scheme shows larger differences, with the area of the volcanic cloud being about 5.5 times larger, the optical depth and effective radii of particles lower by 56% and 28%, and the total fine particle mass in the cloud increased by 53%. The new scheme can be automated and

  13. The Detection, Characterization and Tracking of Recent Aleutian Island Volcanic Ash Plumes and the Assessment of Their Impact on Aviation

    NASA Technical Reports Server (NTRS)

    Murray, John J.; Hudnall, L. A.; Matus, A.; Krueger, A. J.; Trepte, C. r.

    2010-01-01

    The Aleutian Islands of Alaska are home to a number of major volcanoes which periodically present a significant hazard to aviation. During summer of 2008, the Okmok and Kasatochi volcanoes experienced moderate eruptive events. These were followed a dramatic, major eruption of Mount Redoubt in late March 2009. The Redoubt case is extensively covered in this paper. Volcanic ash and SO2 from each of these eruptions dispersed throughout the atmosphere. This created the potential for major problems for air traffic near the ash dispersions and at significant distances downwind. The NASA Applied Sciences Weather Program implements a wide variety of research projects to develop volcanic ash detection, characterization and tracking applications for NASA Earth Observing System and NOAA GOES and POES satellites. Chemistry applications using NASA AURA satellite Ozone Monitoring System (OMI) retrievals produced SO2 measurements to trace the dispersion of volcanic aerosol. This work was complimented by advanced multi-channel imager applications for the discrimination and height assignment of volcanic ash using NASA MODIS and NOAA GOES and POES imager data. Instruments similar to MODIS and OMI are scheduled for operational deployment on NPOESS. In addition, the NASA Calipso satellite provided highly accurate measurements of aerosol height and dispersion for the calibration and validation of these algorithms and for corroborative research studies. All of this work shortens the lead time for transition to operations and ensures that research satellite data and applications are operationally relevant and utilized quickly after the deployment of operational satellite systems. Introduction

  14. Volcanic Ash Cloud Altitude retrievals from passive satellite sensors: the 03-09 December 2015 Etna eruption.

    NASA Astrophysics Data System (ADS)

    corradini, stefano; merucci, luca; guerrieri, lorenzo; pugnaghi, sergio; mcgarragh, greg; carboni, elisa; ventress, lucy; grainger, roy; scollo, simona; pardini, federica; zaksek, klemen; langmann, baerbel; bancalá, severin; stelitano, dario

    2016-04-01

    The volcanic ash cloud altitude is one of the most important parameter needed for the volcanic ash cloud estimations (mass, effective radius and optical depth). It is essential by modelers to initialize the ash cloud transportation models, and by volcanologists to give insights into eruption dynamics. Moreover, it is extremely important in order to reduce the disruption to flights as a result of volcanic activity whilst still ensuring safe travel. In this work, the volcanic ash cloud altitude is computed from remote sensing passive satellite data (SEVIRI, MODIS, IASI and MISR) by using the most of the existing retrieval techniques. A novel approach, based on the CO2 slicing procedure, is also shown. The comparisons among different techniques are presented and advantages and drawbacks emphasized. As test cases Etna eruptions in the period between 03 and 09 December 2015 are considered. During this time four lava fountain events occurred at the Voragine crater, forming eruption columns higher than 12 km asl and producing copious tephra fallout on volcano flanks. These events, among the biggest of the last 20 years, produced emissions that reached the stratosphere and produced a circum-global transport throughout the northern hemisphere.

  15. Description and mineralogy of Tertiary volcanic ash partings and their relationship to coal seams, near Homer, Alaska

    SciTech Connect

    Reinink-Smith, L.M.

    1985-04-01

    Outcrops of Tertiary coal-bearing units in sea cliffs of the Kenai Peninsula provide an excellent study area for volcanic ash partings in coals. Twenty mid-to late-Miocene, 50-cm to 3-m thick coal seams exposed in the sea cliffs about 10 km west of Homer contain an average of 10 volcanic ash or lapilli tuff partings each. The bedding relationships of the coal with any one parting cannot be predicted, and the contacts of the partings with the coal range from very sharp to predominantly gradational. These bedding relationships provide clues about the surface on which the ashes fell and on which the coal was accumulating. For example, some ashes fell in standing water, others on irregular subaerial surfaces. The partings are in various stages of alteration to kaolinite and bentonite, and vary in thickness from a few millimeters to about 10 cm. The consistency and texture of the partings depend on the degree of alteration; the less altered partings display visible pumice fragments and euhedral feldspars, commonly within a finer grained matrix. Separate pumice fragments, excluding matrix, can also occur as partings in the coal. The more altered partings may be wet and plastic, or they may be well indurated claystones; the colors range from gray-yellow to dark brown. The indurated prints are more common in older part of the section. The coal seams may be capped by volcanic ash partings and are commonly underlain by a pencil shale of nonvolcanic origin.

  16. First airborne samples of a volcanic plume for δ13C of CO2 determinations

    NASA Astrophysics Data System (ADS)

    Fischer, Tobias P.; Lopez, Taryn M.

    2016-04-01

    Volcanic degassing is one of the main natural sources of CO2 to the atmosphere. Carbon isotopes of volcanic gases enable the determination of CO2 sources including mantle, organic or carbonate sediments, and atmosphere. Until recently, this work required sample collection from vents followed by laboratory analyses. Isotope ratio infrared analyzers now enable rapid analyses of plume δ13C-CO2, in situ and in real time. Here we report the first analyses of δ13C-CO2 from airborne samples. These data combined with plume samples from the vent area enable extrapolation to the volcanic source δ13C. We performed our experiment at the previously unsampled and remote Kanaga Volcano in the Western Aleutians. We find a δ13C source composition of -4.4‰, suggesting that CO2 from Kanaga is primarily sourced from the upper mantle with minimal contributions from subducted components. Our method is widely applicable to volcanoes where remote location or activity level precludes sampling using traditional methods.

  17. Volcanic monitoring from space using neural networks approach. Simultaneous ash and sulfur dioxide retrievals using multispectral measurements

    NASA Astrophysics Data System (ADS)

    Piscini, A.; Corradini, S.; Chini, M.; Merucci, L.; Stramondo, S.; Picchiani, M.; Del Frate, F.

    2012-04-01

    In this work a Multi Layer Perceptron Neural Networks (MLPNN) approach has been used for a simultaneous volcanic ash and sulfur dioxide retrievals considering the MODIS measurements. As test case the 2010 Eyjafjallajokull eruption have been considered. A network was built for each parameter to be retrieved. Additionally, for volcanic ash, a network for the classification of "ash image pixels" was implemented, which was then used to mask the estimates. Several network topologies were compared in terms of their performance. Concerning the training phase and networks testing, a set of MODIS images was selected covering the Eyjafjallajokull May events. The classification NNs were trained with the volcanic ash classification map obtained with the Brightness Temperature Difference algorithm, assumed as benchmark. The neural networks for the quantitative estimation of the parameters associated with volcanic ash, mass, effective radius, aerosol optical depth and SO2, were instead trained with maps obtained using consolidated estimation algorithms based on simulated radiances at the top of the atmosphere, generated in turn applying a radiative transfer model to remote sensing data. The networks proved to be very effective in solving the inversion problem related to the estimation of the parameters of the volcanic cloud, settling the crucial issue related to false alarms in the detection of volcanic ash. Furthermore, once the training phase is complete, NNs provide a faster inversion technique, useful for the applications. From this point of view the technique satisfies the need to respond quickly as a result of disastrous natural hazards, such as volcanic eruptions. Future activities include testing the effectiveness of the technique under different lighting conditions (night images) and on other types of multispectral data, such as that provided by high temporal resolution sensors like SEVIRI-MSG, on board the METEOSAT second Generation satellites. The latter would be

  18. Cloud, Aerosol, and Volcanic Ash Retrievals Using ASTR and SLSTR with ORAC

    NASA Astrophysics Data System (ADS)

    McGarragh, Gregory; Poulsen, Caroline; Povey, Adam; Thomas, Gareth; Christensen, Matt; Sus, Oliver; Schlundt, Cornelia; Stapelberg, Stefan; Stengel, Martin; Grainger, Don

    2015-12-01

    The Optimal Retrieval of Aerosol and Cloud (ORAC) is a generalized optimal estimation system that retrieves cloud, aerosol and volcanic ash parameters using satellite imager measurements in the visible to infrared. Use of the same algorithm for different sensors and parameters leads to consistency that facilitates inter-comparison and interaction studies. ORAC currently supports ATSR, AVHRR, MODIS and SEVIRI. In this proceeding we discuss the ORAC retrieval algorithm applied to ATSR data including the retrieval methodology, the forward model, uncertainty characterization and discrimination/classification techniques. Application of ORAC to SLSTR data is discussed including the additional features that SLSTR provides relative to the ATSR heritage. The ORAC level 2 and level 3 results are discussed and an application of level 3 results to the study of cloud/aerosol interactions is presented.

  19. Sakurajima volcano: a physico-chemical study of the health consequences of long-term exposure to volcanic ash

    NASA Astrophysics Data System (ADS)

    Hillman, S. E.; Horwell, C. J.; Densmore, A. L.; Damby, D. E.; Fubini, B.; Ishimine, Y.; Tomatis, M.

    2012-05-01

    Regular eruptions from Sakurajima volcano, Japan, repeatedly cover local urban areas with volcanic ash. The frequency of exposure of local populations to the ash led to substantial concerns about possible respiratory health hazards, resulting in many epidemiological and toxicological studies being carried out in the 1980s. However, very few mineralogical data were available for determination of whether the ash was sufficiently fine to present a respiratory hazard. In this study, we review the existing studies and carry out mineralogical, geochemical and toxicological analyses to address whether the ash from Sakurajima has the potential to cause respiratory health problems. The results show that the amount of respirable (<4 μm) material produced by the volcano is highly variable in different eruptions (1.1-18.8 vol.%). The finest samples derive from historical, plinian eruptions but considerable amounts of respirable material were also produced from the most recent vulcanian eruptive phase (since 1955). The amount of cristobalite, a crystalline silica polymorph which has the potential to cause chronic respiratory diseases, is ~3-5 wt.% in the bulk ash. Scanning electron microscope and transmission electron microscope imaging showed no fibrous particles similar to asbestos particles. Surface reactivity tests showed that the ash did not produce significant amounts of highly reactive hydroxyl radicals (0.09-1.35 μmol m-2 at 30 min.) in comparison to other volcanic ash types. A basic toxicology assay to assess the ability of ash to rupture the membrane of red blood cells showed low propensity for haemolysis. The findings suggest that the potential health hazard of the ash is low, but exposure and respiratory conditions should still be monitored given the high frequency and durations of exposure.

  20. Measurements of the complex refractive index of volcanic ash at 450, 546.7, and 650 nm

    NASA Astrophysics Data System (ADS)

    Ball, J. G. C.; Reed, B. E.; Grainger, R. G.; Peters, D. M.; Mather, T. A.; Pyle, D. M.

    2015-08-01

    The detection and quantification of volcanic ash is extremely important to the aviation industry, civil defense organizations, and those in peril from volcanic ashfall. To exploit the remote sensing techniques that are used to monitor a volcanic cloud and return information on its properties, the effective complex refractive index of the volcanic ash is required. This paper presents the complex refractive index determined in the laboratory at 450.0 nm, 546.7 nm, and 650.0 nm for volcanic ash samples from eruptions of Aso (Japan), Grímsvötn (Iceland), Chaitén (Chile), Etna (Italy), Eyjafjallajökull (Iceland), Tongariro (New Zealand), Askja (Iceland), Nisyros (Greece), Okmok (Alaska), Augustine (Alaska), and Spurr (Alaska). The Becke line method was used to measure the real part of the refractive index with an accuracy of 0.01. The values measured differed between eruptions and were in the range 1.51-1.63 at 450.0 nm, 1.50-1.61 at 546.7 nm, and 1.50-1.59 at 650.0 nm. A novel method is introduced to derive the imaginary part of the refractive index from the attenuation of light by ash. The method has a precision in the range 10-3-10-4. The values for the ash imaginary refractive index ranged 0.22-1.70 × 10-3 at 450.0 nm, 0.16-1.93 × 10-3 at 546.7 nm, and 0.15-2.08 × 10-3 at 650.0 nm. The accuracy of Becke and attenuation methods was assessed by measuring the complex refractive index of Hoya neutral density glass and found to have an accuracy of <0.01 and <2 × 10-5 for the real and imaginary parts of the refractive index, respectively.

  1. Coupling a Lagrangian Dispersion Model and Remote Sensing Data for Quantification of Volcanic Ash Transport and Deposition

    NASA Astrophysics Data System (ADS)

    Peterson, R. A.; Dean, K.

    2003-12-01

    Use of remote sensing techniques, particularly the band 4 (10.3-11.3 μ m) minus band 5 (11.5-12.5 μ m) "split-window", is the predominant method for monitoring the long-term movement of airborne volcanic emissions such as ash, water vapor, and other gases. The split-window technique works well for moderately concentrated clouds, and there are methods based on radiative transfer that may provide quantitative information about total mass and particle size (Wen and Rose, 1994). However atmospheric dispersion, sedimentation and wet deposition eventually lead to the loss of discernible signals in the split window. Fortunately, numerical dispersion models do not have a low-concentration limit and are capable of longer term tracking. Model simulations also provide relative concentration changes with time. Only after post-event analysis is it possible to obtain quantitative concentration information as a function of space and time. A new technique combining remote sensing data with model simulations which may help provide near real-time information of cloud concentrations has been developed. This technique uses information gathered from several relatively recent eruptions for which total eruption volume and fallout distributions have been determined. Using the fallout distribution measurements and model simulations, the deposition rates at a function of location and time can be calculated. Combining this information with net eruption volume, ash cloud concentrations can be quantified from the model simulations and further correlated with the remote sensing data. The low-concentration limit of the split-window technique can then be obtained. Using this information, cloud concentrations can be obtained from model simulations for cases when concentration levels are too low or remote sensing data is simply not available. Although the required data for this technique is somewhat scare, initial results are encouraging and will be discussed. The results from this technique will

  2. Future developments in modelling and monitoring of volcanic ash clouds: outcomes from the first IAVCEI-WMO workshop on Ash Dispersal Forecast and Civil Aviation

    NASA Astrophysics Data System (ADS)

    Bonadonna, Costanza; Folch, Arnau; Loughlin, Susan; Puempel, Herbert

    2012-01-01

    As a result of the serious consequences of the 2010 Eyjafjallajökull eruption (Iceland) on civil aviation, 52 volcanologists, meteorologists, atmospheric dispersion modellers and space and ground-based monitoring specialists from 12 different countries (including representatives from 6 Volcanic Ash Advisory Centres and related institutions) gathered to discuss the needs of the ash dispersal modelling community, investigate new data-acquisition strategies (i.e. quantitative measurements and observations) and discuss how to improve communication between the research community and institutions with an operational mandate. Based on a dedicated benchmark exercise and on 3 days of in-depth discussion, recommendations have been made for future model improvements, new strategies of ash cloud forecasting, multidisciplinary data acquisition and more efficient communication between different communities. Issues addressed in the workshop include ash dispersal modelling, uncertainty, ensemble forecasting, combining dispersal models and observations, sensitivity analysis, model variability, data acquisition, pre-eruption forecasting, first simulation and data assimilation, research priorities and new communication strategies to improve information flow and operational routines. As a main conclusion, model developers, meteorologists, volcanologists and stakeholders need to work closely together to develop new and improved strategies for ash dispersal forecasting and, in particular, to: (1) improve the definition of the source term, (2) design models and forecasting strategies that can better characterize uncertainties, (3) explore and identify the best ensemble strategies that can be adapted to ash dispersal forecasting, (4) identify optimized strategies for the combination of models and observations and (5) implement new critical operational strategies.

  3. Particle size distribution and PM10 of volcanic ashes in Guadeloupe during the major eruption of Soufrière Hills in February 2010

    NASA Astrophysics Data System (ADS)

    Molinie, Jack; Bernard, Marie-Lise; Komorowski, Jean-Christophe; Euphrasie-Clotilde, Lovely; Brute, France-Nor; Roussas, Andre

    2014-05-01

    On the 11 February 2010, fifteen minutes after midday, an explosive eruption of Soufriere Hills volcano sent tephra over the neighbour Caribbean islands. The volcanic ashes benefit from the vertical wind distribution of the moment to reach Guadeloupe island and cover it ground near 5 hours after the ash venting. Since the first ashes arrival over the town of Pointe-a-Pitre (located at 80 km at the South East of Soufriere hills volcano) to the end of the event, we measured the mean particle concentrations and particle size distributions every twenty minutes. Measurements were performed at a building roof of the town using an optical particles counter Lighthouse IAQ 3016 mainly used in indoor air quality studies and which provides up to 6 particle size channels of simultaneous counting with aerodynamic diameters classes ranging from 0.3 to >10 µm. The airborne particulate matter mass concentration, with equivalent aerodynamic diameters less than 10 µm (PM10) were measured by the local air quality network Gwad'air, in the vicinity of the site used to study this ash fall.. The maximum concentration of small particles with diameter lesser than 1µm (D0.3-1) was observed one hour before the larger particles. This result may imply a difference in shape and density between particles D0.3-1 and particles D1-10 (1volcanic ashes which impacts on the exposed population, especially their

  4. Forecasting volcanic ash dispersal and coeval resuspension during the April-May 2015 Calbuco eruption

    NASA Astrophysics Data System (ADS)

    Reckziegel, F.; Bustos, E.; Mingari, L.; Báez, W.; Villarosa, G.; Folch, A.; Collini, E.; Viramonte, J.; Romero, J.; Osores, S.

    2016-07-01

    Atmospheric dispersion of volcanic ash from explosive eruptions or from subsequent fallout deposit resuspension causes a range of impacts and disruptions on human activities and ecosystems. The April-May 2015 Calbuco eruption in Chile involved eruption and resuspension activities. We overview the chronology, effects, and products resulting from these events, in order to validate an operational forecast strategy for tephra dispersal. The modelling strategy builds on coupling the meteorological Weather Research and Forecasting (WRF/ARW) model with the FALL3D dispersal model for eruptive and resuspension processes. The eruption modelling considers two distinct particle granulometries, a preliminary first guess distribution used operationally when no field data was available yet, and a refined distribution based on field measurements. Volcanological inputs were inferred from eruption reports and results from an Argentina-Chilean ash sample data network, which performed in-situ sampling during the eruption. In order to validate the modelling strategy, results were compared with satellite retrievals and ground deposit measurements. Results indicate that the WRF-FALL3D modelling system can provide reasonable forecasts in both eruption and resuspension modes, particularly when the adjusted granulometry is considered. The study also highlights the importance of having dedicated datasets of active volcanoes furnishing first-guess model inputs during the early stages of an eruption.

  5. FPLUME-1.0: An integrated volcanic plume model accounting for ash aggregation

    NASA Astrophysics Data System (ADS)

    Folch, A.; Costa, A.; Macedonio, G.

    2015-09-01

    Eruption Source Parameters (ESP) characterizing volcanic eruption plumes are crucial inputs for atmospheric tephra dispersal models, used for hazard assessment and risk mitigation. We present FPLUME-1.0, a steady-state 1-D cross-section averaged eruption column model based on the Buoyant Plume Theory (BPT). The model accounts for plume bent over by wind, entrainment of ambient moisture, effects of water phase changes, particle fallout and re-entrainment, a new parameterization for the air entrainment coefficients and a model for wet aggregation of ash particles in presence of liquid water or ice. In the occurrence of wet aggregation, the model predicts an "effective" grain size distribution depleted in fines with respect to that erupted at the vent. Given a wind profile, the model can be used to determine the column height from the eruption mass flow rate or vice-versa. The ultimate goal is to improve ash cloud dispersal forecasts by better constraining the ESP (column height, eruption rate and vertical distribution of mass) and the "effective" particle grain size distribution resulting from eventual wet aggregation within the plume. As test cases we apply the model to the eruptive phase-B of the 4 April 1982 El Chichón volcano eruption (México) and the 6 May 2010 Eyjafjallajökull eruption phase (Iceland).

  6. Partial Collapse of Plinian Volcanic Jets and the Production of Multiply Layered Ash Clouds

    NASA Astrophysics Data System (ADS)

    Gilchrist, J. T.; Jellinek, M.

    2014-12-01

    Powerful explosive volcanic eruptions inject ash high into the atmosphere, which spreads as an intrusion to form characteristic umbrella-shaped clouds. An enigmatic feature of a number of recent eruption clouds (e.g. Popocatepetl, 2012; Soufriere Hills, 2010; Mt. St. Helens, 1980 and Puyehue, 2011) is that they are constructed of multiple layers (Figure 1, left). How such layering emerges within an advancing gravity current of initially well-mixed ash is unclear. Potential major controls include the strength and structure of the atmospheric density stratification, the particle size distribution within the ash cloud and the entrainment of ambient atmosphere into the rising plume. Accordingly, we conduct analog experiments in which saltwater jets with mono- and bi-disperse suspensions of fine and coarse silica particles are injected into a saltwater tank with a linear density stratification. Whereas classical umbrella clouds are produced for strong jets (low source Richardson number, -Ri0) under all particle-loading conditions, multiply layered clouds emerge for weak jets (high -Ri0) and relatively concentrated bi-disperse and coarse mono-disperse suspensions. In particular, at high -Ri0 coarse particles inhibit entrainment and enhance the partial collapse of rising jets to form gravity currents that intermittently descend along the jet margin and spread at varying neutral buoyancy heights to form layers. For high concentrations of coarse sand gravity currents can reach the tank floor. Collapse and compaction of this material to form a deposit expels buoyant interstitial fluid that rises to form additional layers below and within the overlying multiply layered cloud. One layer and multiply layered clouds have distinct depositional patterns and present unique risks to air traffic.

  7. Mount St. Helens eruptions: the acute respiratory effects of volcanic ash in a North American community.

    PubMed

    Baxter, P J; Ing, R; Falk, H; Plikaytis, B

    1983-01-01

    After the May 18, 1980 volcanic eruption of Mount St. Helens, increases were observed in the number of patients who, because of asthma or bronchitis, sought medical care at emergency rooms of major hospitals in areas of ashfall. An interview study of 39 asthma and 44 bronchitis patients who became sick during the 4 wk following the eruption and who attended the emergency rooms of two major hospitals in Yakima, Washington, and of healthy matched controls indicated that a history of asthma, and possibly of bronchitis, were risk factors for contracting respiratory problems. The interview study also indicated that the main exacerbating factor was the elevated level of airborne total suspended particulates (in excess of 30,000 micrograms/m3) after the eruption. An interview study of 97 patients who had chronic lung disease and who lived in the same area as the above-mentioned patients, but who did not go to a hospital, showed that the ashfall exacerbated the condition in about one-third of these. Emergency planners and their geologist advisers should be aware that special preventive measures are justified for people with a history of asthma or chronic lung disease who live in communities at risk to volcanic ashfalls. PMID:6870351

  8. Global multi-sensor satellite monitoring of volcanic SO2 and ash emissions in support to aviation control

    NASA Astrophysics Data System (ADS)

    Brenot, H.; Theys, N.; van Gent, J.; Van Roozendael, M.; van der A, R.; Clarisse, L.; Hurtmans, D.; Ngadi, Y.; Coheur, P.-F.; Clerbaux, C.

    2012-04-01

    The "Support to Aviation Control Service" (SACS; http://sacs.aeronomie.be) is an ESA-funded project hosted by the Belgian Institute for Space Aeronomy. The service provides near real-time (NRT) global SO2 and volcanic ash data, as well as alerts in case of volcanic eruptions. The SACS service is primarily designed to support the Volcanic Ash Advisory Centers (VAACs) in their mandate to gather information on volcanic clouds and give advice to airline and air traffic control organisations. SACS also serves other users that subscribe to the service, in particular local volcano observatories and research scientists. SACS is based on the combined use of UV-visible (SCIAMACHY, OMI, GOME-2) and infrared (AIRS, IASI) satellite instruments. When a volcanic eruption is detected, SACS issues an alert that takes the form of a notification sent by e-mail to users. This notification points to a dedicated web page where all relevant information is available and can be visualized with user-friendly tools. The strength of a multi-sensor approach relies in the use of satellite data with different overpasses times, minimizing the time-lag for detection and enhancing the reliability of such alerts. This paper will give a general presentation of the SACS service, different techniques used to detect volcanic plumes. It will also highlight the strengths and limitations of the service and measurements.

  9. Predicting and validating the tracking of a Volcanic Ash Cloud during the 2006 Eruption of Mt. Augustine Volcano

    SciTech Connect

    Webley, Peter W.; Atkinson, D.; Collins, Richard L.; Dean, K.; Fochesatto, J.; Sassen, Kenneth; Cahill, Catherine F.; Prata, A.; Flynn, Connor J.; Mizutani, K.

    2008-11-01

    On 11 January 2006, Mount Augustine volcano in southern Alaska began erupting after 20-year repose. The Anchorage Forecast Office of the National Weather Service (NWS) issued an advisory on 28 January for Kodiak City. On 31 January, Alaska Airlines cancelled all flights to and from Anchorage after multiple advisories from the NWS for Anchorage and the surrounding region. The Alaska Volcano Observatory (AVO) had reported the onset of the continuous eruption. AVO monitors the approximately 100 active volcanoes in the Northern Pacific. Ash clouds from these volcanoes can cause serious damage to an aircraft and pose a serious threat to the local communities, and to transcontinental air traffic throughout the Arctic and sub-Arctic region. Within AVO, a dispersion model has been developed to track the dispersion of volcanic ash clouds. The model, Puff, was used operational by AVO during the Augustine eruptive period. Here, we examine the dispersion of a volcanic ash cloud from Mount Augustine across Alaska from 29 January through the 2 February 2006. We present the synoptic meteorology, the Puff predictions, and measurements from aerosol samplers, laser radar (or lidar) systems, and satellites. UAF aerosol samplers revealed the presence of volcanic aerosols at the surface at sites where Puff predicted the ash clouds movement. Remote sensing satellite data showed the development of the ash cloud in close proximity to the volcano and a sulfur-dioxide cloud further from the volcano consistent with the Puff predictions. Lidars showed the presence of volcanic aerosol with consistent characteristics aloft over Alaska and were capable of detecting the aerosol, even in the presence of scattered clouds and where the cloud is too thin/disperse to be detected by remote sensing satellite data. The lidar measurements revealed the different trajectories of ash consistent with the Puff predictions. Dispersion models provide a forecast of volcanic ash cloud movement that might be

  10. Examining ash fall sequences in calk-alkaline subduction related volcanism, southern New Mexico

    NASA Astrophysics Data System (ADS)

    Rentz, S. P.; Michelfelder, G.; Salings, E. E.; Sikes, E. R.

    2015-12-01

    The Mogollon-Datil volcanic field (MDVF) is a 40-20 ma cluster of caldera activity in southern New Mexico tied to the subduction of oceanic lithosphere beneath the North American continental plate. The calk-alkaline magmatism of the three calderas in this field (Mogollon, Bursum, and Gila Cliff Dwellings) produced several voluminous regionally dispersed ash flow tuffs. This study will specifically examine the volcanic rocks: Cooney Formation (a compositionally zoned rhyolitic to quartz latite ash flow tuff containing quartz>k-feldspar>plagioclase>biotite, and pumice and lithic fragments. Rb ranges from 213-317ppm, Sr from 104-108ppm, and 87Sr/86Srm from 0.71326-0.71534), Davis Canyon Tuff (a phenocryst poor, high-silica rhyolite ash flow tuff containing sanidine>quartz>sodic plagioclase. Rb ranges from 214-230ppm, Sr from 42.2-63.2ppm, and 87Sr/86Srm from 0.71383-0.71464), and the Shelley Peak Tuff (a compositionally zoned, crystal-rich rhyolite tuff containing sodic plagioclase>minor sanidine>biotite>cpx. Rb ranges from 154-213ppm, Sr from 105-245ppm, and 87Sr/86Srm from 0.70944-0.7112) to further elucidate their petrogenic origins, attempt to determine if they may be of the same magmatic source, and yield data that could help model processes that would generate magma of these particular compositions. This study will examine compositional variation between the Davis Canyon, Shelley Peak and Cooney Tuffs and help with understanding the magma plumbing system during each eruption. More specifically, we will evaluate possible crustal components of these units, along with looking for geochemical signatures of arc or rift related magmatism. We will compare previous geochronology results (K-Ar and U-Pb fission track) and whole rock major and trace element geochemistry to data obtained via 40Ar/39Ar and U/Pb dates and new whole rock Sr, Nd and Pb isotopic ratios.

  11. Toxicity of volcanic-ash leachate to a blue-green alga. Results of a preliminary bioassay experiment

    USGS Publications Warehouse

    McKnight, Diane M.; Feder, G.L.; Stiles, E.A.

    1981-01-01

    To assess the possible effects of volcanic ash from the May 18,1980, eruption of Mt. St. Helens, Washington, on aquatic ecosystems, we conducted a bioassay experiment with a blue-green alga, Anabaena flos-aquae. Results showed that leachate (obtained by leaching 151 g of ash with 130 mL of simulated freshwater) was lethal to Anabaena flos-aquae cultures when diluted as much as 1:100 with culture medium. Cultures exposed to a 1:500 dilution grew, but a toxic effect was indicated by abnormalities in the Anabaena filaments. This study indicates that ash from the Mt. St. Helens volcano could have an effect on aquatic ecosystems in the areas of significant ashfall. Further study is needed to determine the toxic chemical constituents in the ash and also its possible effects on other aquatic organisms.

  12. Growth of cells in culture treated with the soluble component of volcanic ash from Mount St. Helens.

    PubMed

    Hosick, H L; Carrington, C A; Angello, J C; Zamora, P O

    1982-12-01

    Volcanic ash was collected immediately after the eruption of Mount St. Helens on May 18, 1980. This ash was extracted with water. The elemental composition of the extracted portion was determined by atomic absorption spectrometry. The aqueous extract was applied at high concentrations (up to 37.5 micrograms/ml) to non-confluent mixed cultures of mouse lung cells. Even after treatment for up to 10 days, cell number was typically unaffected by the ash extract. Cell viability was also unaltered, and no grossly observable changes were noted in the cells by light microscopy. We conclude that the water-soluble portion of the ash we tested does not markedly affect growth of the cells most at risk, those of the lung. PMID:6926312

  13. Two pools of old carbon in a volcanic-ash soil revealed by sequential density fractionation

    NASA Astrophysics Data System (ADS)

    Wagai, R.; Shirato, Y.; Uchida, M.; Hiradate, S.

    2010-12-01

    Volcanic-ash soils are often darker and hold significantly greater amounts of organic matter (OM) than non-volcanic soils presumably because inorganic constituents unique to such soil (e.g., poorly-crystalline minerals and dissolved aluminum) have high capacity to stabilize OM. It has been shown that carbon (C) in Japanese volcanic-ash soils can be quite old (>1000 yr) even at surface horizons. Yet little information is available on how the old C is stabilized in soil matrix. Fractionation of soil according to particle density is an effective approach to distinguish the OM of different degrees of mineral associations and to elucidate SOM stabilization processes. Here we examined a surface (Ap) horizon of an allophanic Andisol in central Japan by isolating six density fractions (from F1: <1.6 g/cc to F6: >2.5 g/cc). Almost half of total C was distributed to F4 (2.0-2.25 g/cc), 26% of total C to F3 (1.8-2.0 g/cc), 10-12% to F2 (1.6-1.8 g/cc) and F5 (2.25-2.5 g/cc), and 3-4% to F1 and F6, respectively. The concentration of allophane was also highest in F4 then F3, implying that allophane-OM association is the main form of OM present in this soil. In accord with the reports on other soil types, C-14 age generally increased with particle density from F1 (modern) to F5 (1300 yr libby age) and slightly declined to F6 (1000 yr). The clear exception to this trend was the old C age (1300 yr) of 1.6-1.8 g/cc fraction. Following results suggested the presence of char in this fraction: (i) C:N ratio was the highest (22), (ii) aromatic-C:O-alkyl-C ratio nearly doubled from F1 to F2, and (iii) large numbers of small, dark fragments were microscopically observed along with plant detritus fragments. In contrast to F2, equally-old C in F5 (2.25-2.5 g/cc) appear to be strongly altered by microbial process and bound to mineral particles. F5 had lower C:N ratio of 9.7 and was more enriched in N-15 (+5 per mill) and C-13 (+2 per mill) compared to F2. The presence of contrasting forms of

  14. Adsorption of glyphosate on variable-charge, volcanic ash-derived soils.

    PubMed

    Cáceres-Jensen, L; Gan, J; Báez, M; Fuentes, R; Escudey, M

    2009-01-01

    Glyphosate (N-phosphonometylglycine) is widely used due to its broad spectrum of activity and nonselective mode of action. In Chile it is the most used herbicide, but its adsorption behavior in the abundant and widespread variable charge soils is not well understood. In this study, three volcanic ash-derived soils were selected, including Andisols (Nueva Braunau and Diguillin) and Ultisols (Collipulli), to evaluate the adsorption kinetics, equilibrium isotherms, and the effect of pH in glyphosate adsorption. The influence of glyphosate on soil phosphorus retention was also studied. Glyphosate was rapidly and strongly adsorbed on the selected soils, and adsorption isotherms were well described by the Freundlich relationship with strong nonlinearity (n(fads) < 0.5). The n(fads) values were consistently higher than n(fdes) values, suggesting strong hysteresis. Adsorption (K(ads)) increased strongly when pH decreased. The presence of glyphosate (3200 mug mL(-1)) changed the adsorption behavior of phosphate at its maximum adsorption capacity. Andisol soils without the addition of glyphosate had similar mean K(ads) values for Nueva Braunau (5.68) and Diguillin (7.38). Collipulli had a mean K(ads) value of 31.58. During the successive desorption steps, glyphosate at the highest level increased K(ads) values for phosphate in the Andisol soils but had little effect in the Ultisol soil. This different behavior was probably due to the irreversible occupation of some adsorption sites by glyphosate in the Ultisol soil attributed to the dominant Kaolinite mineral. Results from this study suggest that in the two types of volcanic soils, different mechanisms are involved in glyphosate and phosphate adsorption and that long-term use of glyphosate may impose different effects on the retention and availability of phosphorus. Volcanic ash-derived soils have a particular environmental behavior in relation to the retention of organic contaminants, representing an environmental substrate

  15. Magnetic properties of volcanic ash at Yasur, Vanuatu: Variations with time and implications for devitrification processes

    NASA Astrophysics Data System (ADS)

    Kelley, J. L.; Ferré, E. C.; Bani, P.

    2007-05-01

    Yasur is a small stratovolcano located on Tanna Island in the New Hebrides island arc of the SW Pacific. This volcano has experienced nearly continuous strombolian and vulcanian eruptions for at least the past 1,000 years. The cone height is 365 m with three vents that erupt identical magma. The ash deposits form regular subhorizontal strata in a nearby plain where they have been deeply incised by erosional gulleys. Thirty-three specimens have been collected across a 17 m-thick profile, sampling volcanic activity over a period of about 1,000 years. The regional climate has been hot and humid for thousands of years and hence favorable to rapid devitrification. As the age of ash deposits increases with depth, the degree of devitrification is also expected to increase. During devitrification, new crystallites are formed gradually from the volcanic glass. The present study aims to determine the origin of magnetic properties of the deposits and whether the new crystallites include magnetic minerals such as pyroxene or titanomagnetite, or consist just of feldspars. The magnetic susceptibilities of the samples, measured in low field and in increasing low field, range from 3.6 x 10-3 to 1.3 x 10-2 [SI]. Thermomagnetic experiments reveal the presence of a titanomagnetite component with low Curie temperature. All specimens exhibit a strong ferromagnetic behavior characterized by hysteresis properties typical of pseudo-single domain magnetic grain sizes. First Order Reversal Curve (FORC) analysis provides additional information on magnetic grain size distribution. Temperature- and frequency- dependent, and high field measurements will supplement the magnetic dataset and aid interpretation. Degree of devitrification will be assessed by performing XRD and IR spectroscopic analysis. Since magnetic measurements are strongly grain-size dependent and increasing devitrification leads to an increase in grain size, a magnetic granulometry analysis compared with degree of

  16. Volcanic Gas

    MedlinePlus

    ... Hazards Tephra/Ash Lava Flows Lahars Volcanic Gas Climate Change Pyroclastic Flows Volcanic Landslides Preparedness Volcano Hazard Zones ... Please see our discussion of volcanic gases and climate change for additional information. Hydrogen sulfide (H 2 S) is ...

  17. Soluble iron inputs to the Southern Ocean through recent andesitic to rhyolitic volcanic ash eruptions from the Patagonian Andes

    NASA Astrophysics Data System (ADS)

    Simonella, L. E.; Palomeque, M. E.; Croot, P. L.; Stein, A.; Kupczewski, M.; Rosales, A.; Montes, M. L.; Colombo, F.; García, M. G.; Villarosa, G.; Gaiero, D. M.

    2015-08-01

    Patagonia, due to its geographic position and the dominance of westerly winds, is a key area that contributes to the supply of nutrients to the Southern Ocean, both through mineral dust and through the periodic deposits of volcanic ash. Here we evaluate the characteristics of Fe dissolved (into soluble and colloidal species) from volcanic ash for three recent southern Andes volcanic eruptions having contrasting features and chemical compositions. Contact between cloud waters (wet deposition) and end-members of andesitic (Hudson volcano) and rhyolitic (Chaitén volcano) materials was simulated. Results indicate higher Fe release and faster liberation rates in the andesitic material. Fe release during particle-seawater interaction (dry deposition) has higher rates in rhyolitic-type ashes. Rhyolitic ashes under acidic conditions release Fe in higher amounts and at a slower rate, while in those samples containing mostly glass shards, Fe release was lower and faster. The 2011 Puyehue eruption was observed by a dust monitoring station. Puyehue-type eruptions can contribute soluble Fe to the ocean via dry or wet deposition, nearly reaching the limit required for phytoplankton growth. In contrast, the input of Fe after processing by an acidic eruption plume could raise the amount of dissolved Fe in surface ocean waters several times, above the threshold required to initiate phytoplankton blooms. A single eruption like the Puyehue one represents more than half of the yearly Fe flux contributed by dust.

  18. Episodic Eruptions of Volcanic Ash Trigger a Reversible Cascade of Nuisance Species Outbreaks in Pristine Coral Habitats

    PubMed Central

    Schils, Tom

    2012-01-01

    Volcanically active islands abound in the tropical Pacific and harbor complex coral communities. Whereas lava streams and deep ash deposits are well-known to devastate coral communities through burial and smothering, little is known about the effect of moderate amounts of small particulate ash deposits on reef communities. Volcanic ash contains a diversity of chemical compounds that can induce nutrient enrichments triggering changes in benthic composition. Two independently collected data sets on the marine benthos of the pristine and remote reefs around Pagan Island, Northern Mariana Islands, reveal a sudden critical transition to cyanobacteria-dominated communities in 2009–2010, which coincides with a period of continuous volcanic ash eruptions. Concurrently, localized outbreaks of the coral-killing cyanobacteriosponge Terpios hoshinota displayed a remarkable symbiosis with filamentous cyanobacteria, which supported the rapid overgrowth of massive coral colonies and allowed the sponge to colonize substrate types from which it has not been documented before. The chemical composition of tephra from Pagan indicates that the outbreak of nuisance species on its reefs might represent an early succession stage of iron enrichment (a.k.a. “black reefs”) similar to that caused by anthropogenic debris like ship wrecks or natural events like particulate deposition from wildfire smoke plumes or desert dust storms. Once Pagan's volcanic activity ceased in 2011, the cyanobacterial bloom disappeared. Another group of well-known nuisance algae in the tropical Pacific, the pelagophytes, did not reach bloom densities during this period of ash eruptions but new species records for the Northern Mariana Islands were documented. These field observations indicate that the study of population dynamics of pristine coral communities can advance our understanding of the resilience of tropical reef systems to natural and anthropogenic disturbances. PMID:23056381

  19. Episodic eruptions of volcanic ash trigger a reversible cascade of nuisance species outbreaks in pristine coral habitats.

    PubMed

    Schils, Tom

    2012-01-01

    Volcanically active islands abound in the tropical Pacific and harbor complex coral communities. Whereas lava streams and deep ash deposits are well-known to devastate coral communities through burial and smothering, little is known about the effect of moderate amounts of small particulate ash deposits on reef communities. Volcanic ash contains a diversity of chemical compounds that can induce nutrient enrichments triggering changes in benthic composition. Two independently collected data sets on the marine benthos of the pristine and remote reefs around Pagan Island, Northern Mariana Islands, reveal a sudden critical transition to cyanobacteria-dominated communities in 2009-2010, which coincides with a period of continuous volcanic ash eruptions. Concurrently, localized outbreaks of the coral-killing cyanobacteriosponge Terpios hoshinota displayed a remarkable symbiosis with filamentous cyanobacteria, which supported the rapid overgrowth of massive coral colonies and allowed the sponge to colonize substrate types from which it has not been documented before. The chemical composition of tephra from Pagan indicates that the outbreak of nuisance species on its reefs might represent an early succession stage of iron enrichment (a.k.a. "black reefs") similar to that caused by anthropogenic debris like ship wrecks or natural events like particulate deposition from wildfire smoke plumes or desert dust storms. Once Pagan's volcanic activity ceased in 2011, the cyanobacterial bloom disappeared. Another group of well-known nuisance algae in the tropical Pacific, the pelagophytes, did not reach bloom densities during this period of ash eruptions but new species records for the Northern Mariana Islands were documented. These field observations indicate that the study of population dynamics of pristine coral communities can advance our understanding of the resilience of tropical reef systems to natural and anthropogenic disturbances. PMID:23056381

  20. The bioreactivity of the sub-10 μm component of volcanic ash: Soufrière Hills volcano, Montserrat.

    PubMed

    Jones, Timothy; Bérubé, Kelly

    2011-10-30

    With the recent eruption of the Icelandic volcano Eyafallajökull and resulting ash cloud over much of Europe there was considerable concern about possible respiratory hazards. Volcanic ash can contain minerals that are known human respiratory health hazards such as cristobalite. Short-term ash exposures can cause skin sores, respiratory and ocular irritations and exacerbation of pre-existing lung conditions such as asthma. Long-term occupational level exposures to crystalline silicon dioxide can cause lung inflammation, oedema, fibrosis and cancer. The potential health effects would be dependent on factors including mineralogy, surface chemistry, size, and levels and duration of exposure. Bulk ash from the Soufrière Hills volcano was sourced and inhalable (<2.5 μm) ash samples prepared and physicochemically characterised. The fine ash samples were tested for bioreactivity by SDS-PAGE which determined the strength of binding between mineral grains and lung proteins. Selected proteins bound tightly to cristobalite, and bound loosely to other ash components. A positive correlation was seen between the amount of SiO(2) in the sample and the strength of the binding. The strength of binding is a function of the mineral's bioreactivity, and therefore, a potential geo-biomarker of respiratory risk. PMID:21872393

  1. Densification kinetics of glassy and crystalline volcanic ash and subsequent predictability associated with its fragmentation

    NASA Astrophysics Data System (ADS)

    Vasseur, Jeremie; Wadsworth, Fabian; Lavallée, Yan; Hess, Kai-Uwe; Dingwell, Donald

    2014-05-01

    Explosive volcanism is one of the most catastrophic material failure phenomenon. During magma ascent fragmentation produces particulate magma which, if deposited above the glass transition of the interstitial melt, will sinter viscously. In-conduit tuffisites, conduit wall breccias and ash deposited from exceptionally hot pyroclastic flows are scenarios in which sintering by viscous flow is possible. Therefore, understanding the kinetics of sintering and the characteristic timescales over which magma densifies are critical to understanding the degassing timeframe in conduits and deposits. Viscous sintering is accompanied by a recovery of material strength toward that of a pore-free magma. Understanding damage mechanisms and seismic behaviour prior to failure of sintered volcanic products are also crucial for the application of micromechanical models and material failure forecasting laws. Powdered standard glass (NIST 717a) and natural volcanic ash have been used to explore sintering mechanisms at ambient pressure conditions and temporal evolution of connected and isolated pore-structure. We observed that sintering under low axial stress is essentially grain-size, surface tension and melt viscosity controlled. We found that the timescale over which the bulk density and the strength approaches that of pore-free melt at a given temperature is dependent on the grain-contact surface area, which can be estimated from the particle shape, the packing type and the initial total porosity. Granulometric constraint on the starting material indicates that the fraction of finer particles controls the rate of sintering as they cluster in pore spaces between larger particles and have a higher driving force for sintering due to their higher surface energy to volume ratio. In a volcano, newly formed sintering material will then further contribute to magma-plugging of the conduit and its mechanical properties will affect magma rupture and its associated precursory signals. This

  2. Gigantic Ordovician volcanic ash fall in North America and Europe: Biological, tectonomagmatic, and event-stratigraphic significance

    SciTech Connect

    Huff, W.D. ); Bergstroem, S.M. ); Kolata, D.R. )

    1992-10-01

    Biostratigraphical, geochemical, isotopic, and paleogeographic data suggest that the Millbrig K-bentonite, one of the thickest and most widespread Ordovician volcanic ash beds in eastern North America, is the same as the so-called 'Big Bentonite' in Baltoscandia. This is the first time that the same K-bentonite has been identified in both North America and Europe, and it serves as a unique event-stratigraphic marker over a large portion of the Northern Hemisphere. This eruption produced at least 340 km[sup 3] of dense-rock-equivalent ash that was deposited in a layer up to 1-2 m thick over several million square kilometers. As much as 800 km[sup 3] of additional ash may have fallen into the Iapetus Ocean, for a total of 1,140 km[sup 3]. Trace element geochemistry shows that the ash was derived from a felsic calc-alkalic magmatic source characteristic of volcanism in a continental crust-based, destructive plate-margin setting. This is one of the largest, if not the largest, ash falls recorded in Earth's Phanerozoic stratigraphic record, but its recognizable effect on faunas and floras was minimal, and it did not result in a global extinction event. The Millbrig-Big Bentonite bed provides accurate time control for sedimentologic, paleoecologic, and paleogeographic reconstructions across plates positioned in tropical (Laurentia) and temperate (Baltica) latitudes during Middle Ordovician time.

  3. Soil Properties Affecting the Reductive Capacity of Volcanic Ash Soils in Korea

    NASA Astrophysics Data System (ADS)

    Chon, C.; Ahn, J.; Kim, K.; Park, K.

    2008-12-01

    Volcanic ash soils or Andisols have distinct chemical and mineralogical properties. The unique chemical properties of Andisols are due to their Al-rich elemental composition, the highly reactive nature of their colloidal fractions, and their large surface area. The soils that developed from volcanic ash on Jeju Island, Korea, were classified as typical Andisols. The soils had an acidic pH, high water content, high organic matter, and clay-silty texture. The crystalline minerals in the samples were mainly ferromagnesian minerals, such as olivine and pyroxene, and iron oxides, such as magnetite and hematite derived from basaltic materials. A large amount of gibbsite was found in the subsurface horizon as a secondary product of the migration of excess Al. In addition, we found that considerable amounts of poorly ordered minerals like allophane and ferrihydrite were present in the Jeju soils. The SiO2 contents were lower than those of other soil orders, while the Al2O3 and Fe2O3 contents were higher. These results reflect some of the important chemical properties of Andisols. The chromium (VI/III) redox couple was used in the reductive capacity measurement. The mean reductive capacity of the Jeju soils was 6.53 mg/L reduced Cr(VI), which is 5.1 times higher than that of non-volcanic ash soils from inland Korea. The reductive capacity of the inland soils was correlated with the total carbon content. Such a high capacity for the reduction of soluble Cr(VI) must also be due to the relatively high carbon contents of the Jeju soils. Nevertheless, despite having 20 times higher total carbon contents, there was no correlation between the reductive capacity of the Jeju soils and the carbon content. These results imply that the reductive capacity of Jeju soils is not only controlled by the carbon content, but is also affected by other soil properties. Correlations of the reductive capacity with major elements showed that Al and Fe were closely connected to the reductive

  4. Influence of management practices on C stabilization pathways in agricultural volcanic ash soils (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Hernandez, Zulimar; María Álvarez, Ana; Carral, Pilar; de Figueiredo, Tomas; Almendros, Gonzalo

    2014-05-01

    Although C stabilization mechanisms in agricultural soils are still controversial [1], a series of overlapped pathways has been suggested [2] such as: i) insolubilization of low molecular weight precursors of soil organic matter (SOM) with reactive minerals through physical and chemical bonding, ii) selective accumulation of biosynthetic substances which are recalcitrant because of its inherent chemical composition, and iii) preservation and furter diagenetic transformation of particulate SOM entrapped within resistant microaggregates, where diffusion of soil enzymes is largely hampered. In some environments where carbohydrate and N compounds are not readily biodegraded, e.g., with water saturated micropores, an ill-known C stabilization pathway may involve the formation of Maillard's reaction products [3]. In all cases, these pathways converge in the formation of recalcitrant macromolecular substances, sharing several properties with the humic acid (HA) fraction [4]. In template forests, the selective preservation and further microbial reworking of plant biomass has been identified as a prevailing mechanism in the accumulation of recalcitrant SOM forms [5]. However, in volcanic ash soils with intense organomineral interactions, condensation reactions of low molecular weight precursors with short-range minerals may be the main mechanism [6]. In order to shed some light about the effect of agricultural management on soil C stabilization processes on volcanic ash soils, the chemical composition of HA and some structural proxies of SOM informing on its origin and potential resistance to biodegradation, were examined in 30 soils from Canary Islands (Spain) by visible, infrared (IR) and 13C nuclear magnetic resonance (NMR) spectroscopies, elementary analysis and pyrolytic techniques. The results of multivariate treatments, suggested at least three simultaneous C stabilization biogeochemical trends: i) diagenetic alteration of plant biomacromolecules in soils receiving

  5. Investigating the use of the Saharan dust index as a tool for the detection of volcanic ash in SEVIRI imagery

    NASA Astrophysics Data System (ADS)

    Taylor, Isabelle; Mackie, Shona; Watson, Matthew

    2015-10-01

    Despite the similar spectral signatures of ash and desert dust, relatively little has been done to explore the application of dust detection techniques to the problem of volcanic ash detection. The Saharan dust index (SDI) is routinely implemented for dust monitoring at some centres and could be utilised for volcanic ash detection with little computational expense, thereby providing a product that forecasters already have some familiarity with to complement the suite of existing ash detection tools. We illustrate one way in which the index could be implemented for the purpose of ash detection by applying it to three scenes containing volcanic ash from the 2010 Eyjafjallajökull eruption, Iceland and the 2011 eruption of Puyehue, Chile. It was also applied to an image acquired over Etna in January 2011, where a volcanic plume is clearly visible but is unlikely to contain any ash. These examples demonstrate the potential of the SDI as a tool for ash monitoring under different environmental and atmospheric conditions. In addition to presenting a valuable qualitative product to aid monitoring, this work includes a quantitative assessment of the detection skill using a manually constructed expert ash mask. The optimum implementation of any technique is likely to be dependent on both atmospheric conditions and on the properties of the imaged ash (which is often unknown in a real-time situation). Here we take advantage of access to a 'truth' rarely available in a real-time situation and calculate an ash mask based on the optimum threshold for the specific scene, which is then used to demonstrate the potential of the SDI. The SDI mask is compared to masks calculated from a simplistic implementation of the more traditional split window method, again exploiting our access to the 'truth' to set the most appropriate threshold for each scene, and to a probabilistic method that is implemented without reference to the 'truth' and which provides useful insights into the likely

  6. Evaluation of blends tincal waste, volcanic tuff, bentonite and fly ash for use as a cement admixture.

    PubMed

    Abali, Y; Bayca, S U; Targan, S

    2006-04-17

    The evaluation of blends tincal waste (TW), fly ash (FA), bentonite (BE), volcanic tuff (VT) for use as a cement admixture was investigated. The properties examined include setting time, expansion, water requirement, specific surface and compressive strength of cement mixtures. The results revealed that the early compressive strength decrease with increasing tincal waste, due to tincal waste increasing initial setting time of the cement. The tincal waste and volcanic tuff of cement mixtures increased and there was reduction in compressive strength. The more the tincal waste increased the greater retardation there was initial setting time this may be attributed to containing high amount B2O3 and MgO content. The tincal waste and fly ash increased with expansion increased. Water requirement increased as the Blaine fineness of the cement mixtures increased. The results obtained were compared with standards and five batches were advised as suitable for the standard. PMID:16314042

  7. Performance of volcanic ash and pumice based blended cement concrete in mixed sulfate environment

    SciTech Connect

    Hossain, K.M.A. . E-mail: ahossain@ryerson.ca; Lachemi, M.

    2006-06-15

    The deterioration of concrete structures due to the presence of mixed sulfate in soils, groundwater and marine environments is a well-known phenomenon. The use of blended cements incorporating supplementary cementing materials and cements with low C{sub 3}A content is becoming common in such aggressive environments. This paper presents the results of an investigation on the performance of 12 volcanic ash (VA) and finely ground volcanic pumice (VP) based ASTM Type I and Type V (low C{sub 3}A) blended cement concrete mixtures with varying immersion period of up to 48 months in environments characterized by the presence of mixed magnesium-sodium sulfates. The concrete mixtures comprise a combination of two Portland cements (Type I and Type V) and four VA/VP based blended cements with two water-to-binder ratio of 0.35 and 0.45. Background experiments (in addition to strength and fresh properties) including X-ray diffraction (XRD), Differential scanning calorimetry (DSC), mercury intrusion porosimetry (MIP) and rapid chloride permeability (RCP) were conducted on all concrete mixtures to determine phase composition, pozzolanic activity, porosity and chloride ion resistance. Deterioration of concrete due to mixed sulfate attack and corrosion of reinforcing steel were evaluated by assessing concrete weight loss and measuring corrosion potentials and polarization resistance at periodic intervals throughout the immersion period of 48 months. Plain (Type I/V) cement concretes, irrespective of their C{sub 3}A content performed better in terms of deterioration and corrosion resistance compared to Type I/V VA/VP based blended cement concrete mixtures in mixed sulfate environment.

  8. Requirements and Implementation Feasibility for a CubeSat Thermal Infrared Imaging System to Monitor the Structure of Volcanic Ash Clouds

    NASA Astrophysics Data System (ADS)

    Thorsen, D.; Carroll, R.; Webley, P.; Hawkins, J.

    2014-12-01

    The 2010 eruption of the Eyjafjallajökull volcano in Iceland caused the cancellation of approximately 108,000 flights over an 8-day period, disrupted air traffic worldwide, and cost the airline industry more than $400 million per day. The inconvenience and economic impact of this and similar events, such as Puyehue-Cordon-Caulle in 2011, have heightened the interest in developing improved satellite remote sensing techniques for monitoring volcanic plumes and drifting clouds. For aviation safety, the operational/research community has started to move towards classifying the concentrations within volcanic plumes and clouds. Additionally, volcanic ash transport and dispersion (VATD) models are often used for forecasting ash cloud locations and they require knowledge of the structure of the erupting column to improve their ash simulations and also downwind 3-D maps of the ash cloud to calibrate/validate their modeling output. Existing remote sensing satellites utilize a brightness temperature method with thermal infrared (TIR) measurements from 10 - 12 μm to determine mass loading of volcanic ash along a single line of sight, but they have infrequent revisit times and they cannot resolve the three-dimensional structure of the ash clouds. A cluster of CubeSats dedicated to the monitoring of volcanic ash and plumes could provide both more frequent updates and the multi-aspect images needed to resolve the density structure of volcanic ash clouds and plumes. In this presentation, we discuss the feasibility and requirements for a CubeSat TIR imaging system and the associated on-board image processing that would be required to monitor the structure of volcanic ash clouds from Low Earth Orbit.

  9. Examining the influence of meteorological simulations forced by different initial and boundary conditions in volcanic ash dispersion modelling

    NASA Astrophysics Data System (ADS)

    Mulena, Gabriela C.; Allende, David G.; Puliafito, Salvador E.; Lakkis, Susan G.; Cremades, Pablo G.; Ulke, Ana G.

    2016-07-01

    The performance of the combination of the FALL3D ash dispersion model with the Weather Research and Forecast (WRF) meteorological model in the southern cone of South America under two initial and boundary conditions was evaluated. ERA-Interim and NCEP-GFS datasets were used as dynamic conditions by WRF to simulate meteorological fields for FALL3D. As a study case, we used the eruption of the Puyehue-Cordón Caulle Volcanic Complex occurred in Chile in June 2011. The simulated meteorological results were compared with the horizontal wind direction, meridional and zonal wind components, air and dew point temperatures of 7 radio sounding stations using a set of error indicators. In addition, the ash mass load simulated by FALL3D for a day of maximum dispersion of volcanic ash was evaluated using the Moderate Resolution Imaging Spectroradiometer (MODIS) data, on which the Prata algorithm was applied. As well as this, the WRF-dominant physical processes with both dynamic conditions were analyzed for that same date. Meteorological results indicated that the simulation performed with WRF and NCEP-GFS shows the lowest errors at levels between 925 and 300 hPa. Ash dispersion simulated with FALL3D and WRF in both dynamic conditions shows a different perfomance, which from the synoptic and dynamic viewpoint can be explained for the result of wind intensity and geopotential height. Moreover, WRF intiliazed with NCEP-GFS and FALL3D has a higher degree of concordance with the MODIS image. Based on the analysis and results, it was concluded that for the southern cone of South America, 1) it was not trivial for the simulation of volcanic ash dispersion to use one dynamic condition or another in WRF; 2) in that sense, meteorological variables that influenced the differences in volcanic ash dispersion were horizontal wind intensity and direction and geopotential heights; 3) the system generated from the combination of the WRF model initialized with NCEP-GFS and the FALL3D dispersion

  10. Field-based study of volcanic ash via visible and thermal high-speed imaging of explosive eruptions

    NASA Astrophysics Data System (ADS)

    Tournigand, Pierre-Yves; Taddeucci, Jacopo; Scarlato, Piergiorgio; Gaudin, Damien; Del Bello, Elisabetta

    2015-04-01

    Subaerial explosive volcanic activity ejects a mixture of gas-ash-pyroclasts in the atmosphere. Parameterizing the physical processes responsible for ash injection and plume dynamics is crucial to constrain numerical models and forecasts of potentially hazardous ash dispersal events. In this study we present preliminary results from a new method based on visible and thermal high-speed video processing from Strombolian and Vulcanian explosions. High-speed videos were recorded by a Optronis CR600x2 camera (1280x1024 pixels definition, 500 Hz frame rate) for the visible and by a FLIR SC655 (640x480 pixels definition, 50 Hz frame rate) for the thermal. Qualitatively, different dynamics of ash injection and dispersal can be identified. High speed cameras allow us to observe all the different phases during volcanic plume dispersion with a very good time resolution. Multiple features were already observed about volcanic plumes, but this tool give a better accuracy to our observations and allow us to better define previously observed features and to be able to identify new ones. Quantitatively before using our videos a pre-processing is needed which aim is to isolate the plume from the background by using different types of filters without altering the data, to allow us to use automated procedures to track volcanic plumes. In this study we extract data from these videos (plume height, velocity, temperature, mass, volume,...) using different software tools. Doing this allow us to be able to define and constrain main parameters and processes in function of the observed volcano and explosion type, but also to find correlations between parameters and establish empirical relations. We define range of values for each parameter and their respective impact on plume dynamics and stability, to be able to obtain characteristic fields of values for each case and link it to explosions type and evolution.

  11. ASHEE-1.0: a compressible, equilibrium-Eulerian model for volcanic ash plumes

    NASA Astrophysics Data System (ADS)

    Cerminara, M.; Esposti Ongaro, T.; Berselli, L. C.

    2016-02-01

    A new fluid-dynamic model is developed to numerically simulate the non-equilibrium dynamics of polydisperse gas-particle mixtures forming volcanic plumes. Starting from the three-dimensional N-phase Eulerian transport equations for a mixture of gases and solid dispersed particles, we adopt an asymptotic expansion strategy to derive a compressible version of the first-order non-equilibrium model, valid for low-concentration regimes (particle volume fraction less than 10-3) and particle Stokes number (St - i.e., the ratio between relaxation time and flow characteristic time) not exceeding about 0.2. The new model, which is called ASHEE (ASH Equilibrium Eulerian), is significantly faster than the N-phase Eulerian model while retaining the capability to describe gas-particle non-equilibrium effects. Direct Numerical Simulation accurately reproduces the dynamics of isotropic, compressible turbulence in subsonic regimes. For gas-particle mixtures, it describes the main features of density fluctuations and the preferential concentration and clustering of particles by turbulence, thus verifying the model reliability and suitability for the numerical simulation of high-Reynolds number and high-temperature regimes in the presence of a dispersed phase. On the other hand, Large-Eddy Numerical Simulations of forced plumes are able to reproduce the averaged and instantaneous flow properties. In particular, the self-similar Gaussian radial profile and the development of large-scale coherent structures are reproduced, including the rate of turbulent mixing and entrainment of atmospheric air. Application to the Large-Eddy Simulation of the injection of the eruptive mixture in a stratified atmosphere describes some of the important features of turbulent volcanic plumes, including air entrainment, buoyancy reversal and maximum plume height. For very fine particles (St → 0, when non-equilibrium effects are negligible) the model reduces to the so-called dusty-gas model. However

  12. Paleocene and Early Eocene volcanic ash layers in the Schlieren Flysch, Switzerland: U-Pb dating and Hf-isotopes of zircons, pumice geochemistry and origin

    NASA Astrophysics Data System (ADS)

    Koch, Simone; Winkler, Wilfried; Von Quadt, Albrecht; Ulmer, Peter

    2015-11-01

    Thin mm to cm thick bentonite layers of Paleocene to Early Eocene age in the Tonsteinschichten of the Schlieren Flysch represent volcanic ash layers. Heavy mineral analysis of the layers indicates basic to acidic volcanic sources. U/Pb dating of single zircon crystals of a Paleocene layer (WW1948) by LA-ICP-MS points to an eruption at 59.87 ± 0.41 Ma, whereas ID-TIMS shows an eruption age of 60.96 ± 0.07 Ma. Taking into account the external precision of LA-ICP-MS analyses of 1-2% both ages are overlapping and indicate an apparent minimal durations of zircon crystallization of 350 ka. Hf-isotope analysis of the same zircon crystals reveals the hybrid character of the source magma. The geochemical composition of the pumice grains of all bentonite layers is strongly affected by alteration. Nevertheless, the original character of the volcanic source can be evaluated. The Paleocene ashes (Lower Tonsteinschichten, LT) show a more fractionated multi-element pattern than the ashes of Early Eocene (Upper Tonsteinschichten, UT). The LT ash series are of rhyodacite to dacite character whereas the UT ashes fall in the field of alkali basalts. Both ash series seem to originate from a within-plate volcanic setting according to their trace element concentrations. Geochemical and temporary counterparts can be found in ash layers from Anthering (Austria) and the Danish Basin. As proposed for those ashes, volcanism connected to the opening of the North Atlantic might be the source as well for the ashes in the Schlieren Flysch. By comparison of the composition of rocks from the British Paleogene Igneous Province BPIP and the Schlieren Flysch ashes many correlations can be drawn which supports the suggestion of a North Atlantic origin of the Alpine ashes.

  13. Long-term reactivity of lung and mediastinal lymph nodes following intratracheal instillation of sandy loam soil or Mount St. Helens volcanic ash

    SciTech Connect

    Sanders, C.L.; Rhoads, K.; Mahaffey, J.A.

    1983-01-01

    The effects of Ritzville sandy loam soil and Mount St. Helens volcanic ash particles on the lung and mediastinal lymph nodes of Fischer rats were studied about 400 days after intratracheal instillation. A total of 22 or 77 mg of soil or ash was given in two or seven equally divided, consecutive, weekly intervals as a suspension in 0.5 ml saline. Significantly elevated levels of lipid-phosphorus and protein were found in lung lavages of rats given ash compared to those given soil. An enhanced histological degree of granulomatous reactivity, lipoproteinosis, fibrosis, and bronchiolar hyperplasia was seen in ash-exposed rats as compared to soil-exposed rats. Mediastinal lymph nodes of ash-exposed rats were 8-18 times larger than those of soil-exposed rats due to abundant cellular microgranuloma formation and early fibrosis. Mount St. Helens volcanic ash is apparently more biologically reactive than soil particles commonly found in eastern Washington.

  14. Long-term reactivity of lung and mediastinal lymph nodes following intratracheal instillation of sandy loam soil or Mount St. Helens volcanic ash.

    PubMed

    Sanders, C L; Rhoads, K; Mahaffey, J A

    1983-10-01

    The effects of Ritzville sandy loam soil and Mount St. Helens volcanic ash particles on the lung and mediastinal lymph nodes of Fischer rats were studied about 400 days after intratracheal instillation. A total of 22 or 77 mg of soil or ash was given in two or seven equally divided, consecutive, weekly intervals as a suspension in 0.5 ml saline. Significantly elevated levels of lipid-phosphorus and protein were found in lung lavages of rats given ash compared to those given soil. An enhanced histological degree of granulomatous reactivity, lipoproteinosis, fibrosis, and bronchiolar hyperplasia was seen in ash-exposed rats as compared to soil-exposed rats. Mediastinal lymph nodes of ash-exposed rats were 8-18 times larger than those of soil-exposed rats due to abundant cellular microgranuloma formation and early fibrosis. Mount St. Helens volcanic ash is apparently more biologically reactive than soil particles commonly found in eastern Washington. PMID:6617611

  15. Chemical signature of two Permian volcanic ash deposits within a bentonite bed from Melo, Uruguay.

    PubMed

    Calarge, Liane M; Meunier, Alain; Lanson, Bruno; Formoso, Milton L L

    2006-09-01

    A Permian bentonite deposit at Melo, Uruguay is composed of a calcite-cemented sandstone containing clay pseudomorphs of glass shards (0-0.50 m) overlying a pink massive clay deposit (0.50-2.10 m). The massive bed is composed of two layers containing quartz and smectite or pure smectite respectively. The smectite is remarkably homogeneous throughout the profile: it is a complex mixed layer composed of three layer types whose expandability with ethylene glycol (2EG 1EG or 0EG sheets in the interlayer zone which correspond to low-, medium- and high-charge layers respectively) varies with the cation saturating the interlayer zone. The smectite homogeneity through the profile is the signature of an early alteration process in a lagoonal water which was over saturated with respect to calcite. Compaction during burial has made the bentonite bed a K-depleted closed system in which diagenetic illitization was inhibited. Variations in major, REE and minor element abundances throughout the massive clay deposit suggest that it originated from two successive ash falls. The incompatible element abundances are consistent with that of a volcanic glass fractionated from a rhyolite magma formed in a subduction/collision geological context. PMID:16936941

  16. Particle size distributions and the sequential fragmentation/transport theory applied to volcanic ash

    SciTech Connect

    Wohletz, K.H. ); Sheridan, M.F. ); Brown, W.K. )

    1989-11-10

    The assumption that distributions of mass versus size interval for fragmented materials fit the log normal distribution is empirically based and has historical roots in the late 19th century. Other often used distributions (e.g., Rosin-Rammler, Weibull) are also empirical and have the general form for mass per size interval: {ital n}({ital l})={ital kl}{sup {alpha}} exp(-{ital l}{beta}), where {ital n}({ital l}) represents the number of particles of diameter {ital l}, {ital l} is the normalized particle diameter, and {ital k}, {alpha}, and {beta} are constants. We describe and extend the sequential fragmentation distribution to include transport effects upon observed volcanic ash size distributions. The sequential fragmentation/transport (SFT) distribution is also of the above mathematical form, but it has a physical basis rather than empirical. The SFT model applies to a particle-mass distribution formed by a sequence of fragmentation (comminution) and transport (size sorting) events acting upon an initial mass {ital m}{prime}: {ital n}({ital x}, {ital m})={ital C} {integral}{integral} {ital n}({ital x}{prime}, {ital m}{prime}){ital p}({xi}) {ital dx}{prime} {ital dm}{prime}, where {ital x}{prime} denotes spatial location along a linear axis, {ital C} is a constant, and integration is performed over distance from an origin to the sample location and mass limits from 0 to {ital m}.

  17. Sulfate adsorption and surface precipitation on a volcanic ash soil (allophanic andisol).

    PubMed

    Ishiguro, Munehide; Makino, Tomoyuki; Hattori, Yasunobu

    2006-08-15

    Sulfate strongly adsorbs on metal oxides and soils with variable charges. However, its surface precipitation has not been clearly evaluated and its adsorption mechanism has been in dispute. In the present study, an allophanic andisol, a typical volcanic ash soil having both negative and positive variable charges, was used to identify the adsorption mechanism of sulfate. Sulfate adsorption isotherms were obtained by a batch method at pH values of 4, 5, 6, and 7 in a wide range of concentrations in an Na-H-SO(4)-OH system. Theoretical isotherms were applied to the measured values for the evaluation. The surface precipitation was detected by the measured adsorption isotherms, and the BET isotherm confirmed the presence of multilayer adsorption. Stronger and weaker adsorption sites were suggested by using the Langmuir isotherm for the monolayer adsorption. The adsorption energies obtained from the Langmuir equation and recent spectroscopic analysis suggested that the stronger adsorption corresponded to an inner-sphere surface complex and that the weaker adsorption corresponded to outer-sphere surface complexation. The BET and Langmuir equations showed three types of adsorption mechanisms for the sulfate adsorption on the soil. PMID:16750540

  18. Imaginary refractive index and other microphysical properties of volcanic ash, Sarahan dust, and other mineral aerosols

    NASA Astrophysics Data System (ADS)

    Rocha Lima, A.; Martins, J.; Krotkov, N. A.; Artaxo, P.; Todd, M.; Ben Ami, Y.; Dolgos, G.; Espinosa, R.

    2013-12-01

    Aerosol properties are essential to support remote sensing measurements, atmospheric circulation and climate models. This research aims to improve the understanding of the optical and microphysical properties of different types of aerosols particles. Samples of volcanic ash, Saharan dust and other mineral aerosols particles were analyzed by different techniques. Ground samples were sieved down to 45um, de-agglomerated and resuspended in the laboratory using a Fluidized Bed Aerosol Generator (FBAG). Particles were collected on Nuclepore filters into PM10, PM2.5, or PM1.0. and analyzed by different techniques, such as Scanning Electron Microscopy (SEM) for determination of size distribution and shape, spectral reflectance for determination of the optical absorption properties as a function of the wavelength, material density, and X-Ray fluorescence for the elemental composition. The spectral imaginary part of refractive index from the UV to the short wave infrared (SWIR) wavelength was derived empirically from the measurements of the spectral mass absorption coefficient, size distribution and density of the material. Some selected samples were also analyzed with the Polarized Imaging Nephelometer (PI-Neph) instrument for the characterization of the aerosol polarized phase function. This work compares results of the spectral refractive index of different materials obtained by our methodology with those available in the literature. In some cases there are significant differences both in magnitude and spectral dependence of the imaginary refractive index. These differences are evaluated and discussed in this work.

  19. Distal volcanic ash layers in the Lateglacial Interstadial (GI-1): problems of stratigraphic discrimination

    NASA Astrophysics Data System (ADS)

    Pyne-O'Donnell, S. D. F.; Blockley, S. P. E.; Turney, C. S. M.; Lowe, J. J.

    2008-01-01

    A new Icelandic ash layer has been detected in mid-Interstadial sediments in a number of Scottish Lateglacial sequences and has been named the Penifiler Tephra. It is rhyolitic in composition and possesses a chemistry, which is similar to the Borrobol Tephra of early Lateglacial Interstadial age, which also occurs in a number of these same sequences. Where the Borrobol Tephra has been identified in these sequences it consistently exhibits a diffuse distribution accompanied in some cases by stratigraphic bimodality. A number of sedimentological and taphonomic factors are considered in order to account for this distribution. One possibility is that these distributions are produced by taphonomic factors. Another possibility is that the Borrobol Tephra may not be the product of a single Icelandic eruption, but of two events closely spaced in time. In at least two of the sequences investigated in this study, basaltic shards were found in association with the Penifiler and Borrobol tephras, suggesting either a basaltic phase associated with these eruptions, or coincident eruptions from a separate basaltic volcanic centre. The discovery of the new Penifiler Tephra makes a contribution to the regional tephrostratigraphic framework, and provides an additional isochron for assessing the synchroneity of palaeoenvironmental changes during the Interstadial. The true stratigraphic nature and age of the Borrobol Tephra, however, remains unresolved and, therefore, its use as an isochron is more problematic. The possible occurrence of basaltic populations may strengthen correlations with basaltic tephras recently detected in the NGRIP ice-core.

  20. A retrospective study on acute health effects due to volcanic ash exposure during the eruption of Mount Etna (Sicily) in 2002

    PubMed Central

    2013-01-01

    Background Mount Etna, located in the eastern part of Sicily (Italy), is the highest and most active volcano in Europe. During the sustained eruption that occurred in October-November 2002 huge amounts of volcanic ash fell on a densely populated area south-east of Mount Etna in Catania province. The volcanic ash fall caused extensive damage to infrastructure utilities and distress in the exposed population. This retrospective study evaluates whether or not there was an association between ash fall and acute health effects in exposed local communities. Methods We collected the number and type of visits to the emergency department (ED) for diseases that could be related to volcanic ash exposure in public hospitals of the Province of Catania between October 20 and November 7, 2002. We compared the magnitude of differences in ED visits between the ash exposure period in 2002 and the same period of the previous year 2001. Results We observed a significant increase of ED visits for acute respiratory and cardiovascular diseases, and ocular disturbances during the ash exposure time period. Conclusions There was a positive association between exposure to volcanic ash from the 2002 eruption of Mount Etna and acute health effects in the Catania residents. This study documents the need for public health preparedness and response initiatives to protect nearby populations from exposure to ash fall from future eruptions of Mount Etna. PMID:23924394

  1. Volcanic ash particulate matter from the 2010 Eyjafjallajökull eruption in dust deposition at Prague, central Europe

    NASA Astrophysics Data System (ADS)

    Navrátil, Tomáš; Hladil, Jindřich; Strnad, Ladislav; Koptíková, Leona; Skála, Roman

    2013-06-01

    Particles originating from the last major Eyjafjallajökull volcano eruption in April 2010 were subsequently found in settled dust samples collected in a suburban area of Prague, Czech Republic. These dust samples contained predominantly non-volcanic particulate matter of super-regional but mainly local origin. The highest proportion of the Eyjafjallajökull material recorded in the Prague daily dust samples reached 12% of the total lithic component mass. Volcanogenic particles, mostly glasses, were concentrated in particle size classes from 2.5 to 25 μm, but rare fragments of volcanic glasses up to 50 μm in diameter were also found. The most effective method for detection and identification of the volcanic ash particles were morpho-textural observations combined with energy dispersive and wavelength dispersive analysis of individual grains and X-ray powder diffraction. Because of the low percentage of volcanic ash particles in the total samples, the geochemical signal was rather weak although detectable in terms of selected trace elements and REE distributions. The mineralogy, particle size distributions, and geochemical compositions of the Prague samples were compared with reference materials sampled near the Eyjafjallajökull volcano.

  2. What is the role of pyroclastic density currents in volcanic ash aggregation? Perspectives from a phreatoplinian eruption deposit, New Zealand

    NASA Astrophysics Data System (ADS)

    Van Eaton, A. R.; Wilson, C. J.

    2012-12-01

    This study documents the processes and products of volcanic ash aggregation within individual phases of the 25.4 ka Oruanui super-eruption from Taupo volcano, New Zealand. Textural and stratigraphic relationships of aggregates are examined in seven of the ten erupted units, which range from relatively dry styles of eruption and deposition (fall units 2, 5) to mixed (units 6, 7, 8) and dominantly wet (unit 3). Aggregate structures and grain size distributions shift abruptly over vertical scales of cm to dm within and between eruptive units, providing diagnostic features that identify deposits emplaced as vertical fallout or pyroclastic density currents (PDCs). The six categories of ash aggregates documented here are used to infer distinct volcanic and meteorological interactions in the eruption cloud related to dispersal characteristics and mode of emplacement. Our field observations support the notion that deposits bearing matrix-supported accretionary lapilli with complex internal layering and abundant rim fragments are associated with emplacement of PDCs. However, on the basis of grain size distributions and field relationships, it is inferred that these types of ash aggregates formed their ultrafine (<10 μm ash) outer layers in the overriding fine ash cloud elutriated from PDCs, not during transport within the basal portion of ground-hugging currents. The propagation of voluminous PDCs beneath an overriding buoyant plume - whether coignimbrite or vent-derived in origin - is proposed to generate the observed, concentrically layered accretionary lapilli by producing wedge-like updrafts of convectively unstable, ash-laden air. The apparent coarsening of mean grain size with distance from source, which is observed in the aggregate-bearing fall deposits, reflects a combination of multi-level plume transport and preferential scavenging of fine ash <250 μm. Proximal fallout and melting of ice in the clouds was likely to have contributed a key source of liquid water

  3. Visualizing the hazard of volcanic ash encounters with the aviation community using Virtual Globes: special cases from Mt. Galunggung and Mt. Redoubt

    NASA Astrophysics Data System (ADS)

    Webley, P.; Dean, K. G.

    2009-12-01

    Volcanic ash clouds are a major hazard to all aviation that pass across a volcanic region. For example, in Alaska in the past 30 years, there have been over 200 separate volcanic ash clouds reaching 20,000 ft or 6 km above mean sea level. This is around 1 per month, on average for 30 years. International Civil Aviation Organization (ICAO) state there have been over 80 encounters between ash clouds and aircraft, generally with a low severity and acrid odor in the cabin and no notable damage to the exterior and interior. In recent years, the worldwide number of encounters between ash clouds and aircraft has dramatically reduced, in thanks due to the volcanic ash advisory centers, local volcano observatories and ICAO. In the 1980’s, two significant and severe encounters occurred, from Mt. Galunggung, Indonesia in 1982 and Mt. Redoubt, Alaska, USA in 1989. The Mt. Redoubt encounter was given the most severe encounter rating by ICAO, where it had an in-flight loss of power. Volcanic ash transport and dispersion (VATD) models can be used to simulate the movement of the ash clouds and provide information for ash advisories. Here, we will display through Google Earth, the aircraft tracks in time with respect to the Puff VATD model simulation of the eruption clouds. Through this analysis in the virtual globe environment, we will illustrate an improved understanding of each encounter in terms of the time the aircraft encountered the ash cloud and the ash clouds concentration. This in-depth analysis and improved visualization of these two events provides a four-dimension viewpoint of the encounters, not possible without the application of Virtual Globes.

  4. Combination of Methods for the Fractionation, Investigation, and Analysis of Micro/Nano Particles in Volcanic Ash

    NASA Astrophysics Data System (ADS)

    Valeriy, Shkinev; Michail, Ermolin; Peter, Fedotov; Aleksander, Rudnev; Nikolay, Bulychev; Vitaliy, Linnik; Gerardo, Moreno

    2013-04-01

    Micro and nanoparticles play a very important role in environment, in biology and medicine, in various technologies. The investigation of particles is often based on the fractionation according to particle size, density and charge followed by the analysis of the separated fractions. Such studies are needed in the analysis of environmental samples (natural and waste waters, soils, sediments, ashes) to assess the soil formation processes as well as distribution, transport, and biological uptake of pollutants. Recently, the review dealing with the fractionation and investigation of particles in liquid media has been published [Anal. Bioanal. Chem., 2011, v. 400, no 6, p. 1787-1804]. The present report gives a brief overview of the state-of-the-art and describes some new methods, approaches, and devices developed in the Laboratory for Concentration Methods of Vernadsky Institute for the studies of volcanic ash samples. The ash is attributed to the volcanic activity of Cordón Caulle. Puyehue and Cordón Caulle (40°35'25″S -72°07'02″W) are two coalesced volcanic vents that form a major mountain massif in Puyehue National Park in the Andes of Ranco Province, Chile. In volcanology, this group is known under the name of Puyehue-Cordón Caulle Volcanic Complex. Four different volcanoes constitute the volcanic group or complex, the Cordillera Nevada caldera, the Pliocene Mencheca volcano, Cordón Caulle fissure vents, and the Puyehue stratovolcano. Most stratovolcanoes on the Southern Volcanic Zone of the Andes, Puyehue and Cordón Caulle are located along the intersection of traverse fault with the larger north-south Liquiñe-Ofqui Fault. A new eruption started on 04 June 2011. By 15 June a dense column of ash (9 km height) was still erupting into the air, with the ash cloud spreading across the Southern Hemisphere. Actually the volcano activity continues. The samples were collected before and after the acidic rain which occurred due to the release of sulfur gases

  5. Volcanic sintering and densification of glassy and crystalline ash: Kinetics, strength recovery and seismogenicity

    NASA Astrophysics Data System (ADS)

    Vasseur, J.; Wadsworth, F. B.; Lavallee, Y.; Hess, K.; Dingwell, D. B.

    2013-12-01

    Explosive volcanism is one of the most catastrophic material failure phenomenon. During magma ascent fragmentation produces particulate magma which, if deposited above the glass transition of the interstitial melt, will sinter viscously. In-conduit tuffisites, conduit wall breccias and ash deposited from exceptionally hot pyroclastic flows are scenarios in which sintering by viscous flow is possible. Therefore, understanding the kinetics of sintering and the characteristic timescales over which magma densifies are critical to understanding the degassing timeframe in conduits and deposits. Viscous sintering is accompanied by a recovery of material strength toward that of a pore-free magma. Understanding damage mechanisms and seismic behaviour prior to failure of sintered volcanic products are also crucial for the application of micromechanical models and material failure forecasting laws. Powdered standard glass (NIST 717a) and natural obsidians have been used to explore sintering mechanisms at ambient pressure conditions and temporal evolution of connected and isolated pore-structure. We observed that sintering under low axial stress is essentially grain-size, surface tension and melt viscosity controlled. We found that the timescale over which the bulk density and the strength approaches that of pore-free melt at a given temperature is dependent on the grain-contact surface area, which can be estimated from the particle shape, the packing type and the initial total porosity. Granulometric constraint on the starting material indicates that the fraction of finer particles controls the rate of sintering as they cluster in pore spaces between larger particles and have a higher driving force for sintering due to their higher surface energy to volume ratio. In a volcano, newly formed sintering material will then further contribute to magma-plugging of the conduit and its mechanical properties will affect magma rupture and its associated precursory signals. This

  6. Dual-wavelength light-scattering technique for selective detection of volcanic ash particles in the presence of water droplets