Science.gov

Sample records for airborne weather radar

  1. Airborne Differential Doppler Weather Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Bidwell, S.; Liao, L.; Rincon, R.; Heymsfield, G.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Precipitation Radar aboard the Tropical Rain Measuring Mission (TRMM) Satellite has shown the potential for spaceborne sensing of snow and rain by means of an incoherent pulsed radar operating at 13.8 GHz. The primary advantage of radar relative to passive instruments arises from the fact that the radar can image the 3-dimensional structure of storms. As a consequence, the radar data can be used to determine the vertical rain structure, rain type (convective/stratiform) effective storm height, and location of the melting layer. The radar, moreover, can be used to detect snow and improve the estimation of rain rate over land. To move toward spaceborne weather radars that can be deployed routinely as part of an instrument set consisting of passive and active sensors will require the development of less expensive, lighter-weight radars that consume less power. At the same time, the addition of a second frequency and an upgrade to Doppler capability are features that are needed to retrieve information on the characteristics of the drop size distribution, vertical air motion and storm dynamics. One approach to the problem is to use a single broad-band transmitter-receiver and antenna where two narrow-band frequencies are spaced apart by 5% to 10% of the center frequency. Use of Ka-band frequencies (26.5 GHz - 40 GHz) affords two advantages: adequate spatial resolution can be attained with a relatively small antenna and the differential reflectivity and mean Doppler signals are directly related to the median mass diameter of the snow and raindrop size distributions. The differential mean Doppler signal has the additional property that this quantity depends only on that part of the radial speed of the hydrometeors that is drop-size dependent. In principle, the mean and differential mean Doppler from a near-nadir viewing radar can be used to retrieve vertical air motion as well as the total mean radial velocity. In the paper, we present theoretical calculations for the

  2. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  3. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  4. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  5. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  6. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  7. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  8. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  9. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  10. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  11. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  12. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  13. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  14. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  15. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  16. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  17. Simulation of a weather radar display for over-water airborne radar approaches

    NASA Technical Reports Server (NTRS)

    Clary, G. R.

    1983-01-01

    Airborne radar approach (ARA) concepts are being investigated as a part of NASA's Rotorcraft All-Weather Operations Research Program on advanced guidance and navigation methods. This research is being conducted using both piloted simulations and flight test evaluations. For the piloted simulations, a mathematical model of the airborne radar was developed for over-water ARAs to offshore platforms. This simulated flight scenario requires radar simulation of point targets, such as oil rigs and ships, distributed sea clutter, and transponder beacon replies. Radar theory, weather radar characteristics, and empirical data derived from in-flight radar photographs are combined to model a civil weather/mapping radar typical of those used in offshore rotorcraft operations. The resulting radar simulation is realistic and provides the needed simulation capability for ongoing ARA research.

  18. Demonstration of radar reflector detection and ground clutter suppression using airborne weather and mapping radar

    NASA Technical Reports Server (NTRS)

    Anderson, D. J.; Bull, J. S.; Chisholm, J. P.

    1982-01-01

    A navigation system which utilizes minimum ground-based equipment is especially advantageous to helicopters, which can make off-airport landings. Research has been conducted in the use of weather and mapping radar to detect large radar reflectors overland for navigation purposes. As initial studies have not been successful, investigations were conducted regarding a new concept for the detection of ground-based radar reflectors and eliminating ground clutter, using a device called an echo processor (EP). A description is presented of the problems associated with detecting radar reflectors overland, taking into account the EP concept and the results of ground- and flight-test investigations. The echo processor concept was successfully demonstrated in detecting radar reflectors overland in a high-clutter environment. A radar reflector target size of 55 dBsm was found to be adequate for detection in an urban environment.

  19. Flight investigation of helicopter IFR approaches to oil rigs using airborne weather and mapping radar

    NASA Technical Reports Server (NTRS)

    Bull, J. S.; Hegarty, D. M.; Phillips, J. D.; Sturgeon, W. R.; Hunting, A. W.; Pate, D. P.

    1979-01-01

    Airborne weather and mapping radar is a near-term, economical method of providing 'self-contained' navigation information for approaches to offshore oil rigs and its use has been rapidly expanding in recent years. A joint NASA/FAA flight test investigation of helicopter IFR approaches to offshore oil rigs in the Gulf of Mexico was initiated in June 1978 and conducted under contract to Air Logistics. Approximately 120 approaches were flown in a Bell 212 helicopter by 15 operational pilots during the months of August and September 1978. The purpose of the tests was to collect data to (1) support development of advanced radar flight director concepts by NASA and (2) aid the establishment of Terminal Instrument Procedures (TERPS) criteria by the FAA. The flight test objectives were to develop airborne radar approach procedures, measure tracking errors, determine accpetable weather minimums, and determine pilot acceptability. Data obtained will contribute significantly to improved helicopter airborne radar approach capability and to the support of exploration, development, and utilization of the Nation's offshore oil supplies.

  20. Investigation of Advanced Radar Techniques for Atmospheric Hazard Detection with Airborne Weather Radar

    NASA Technical Reports Server (NTRS)

    Pazmany, Andrew L.

    2014-01-01

    In 2013 ProSensing Inc. conducted a study to investigate the hazard detection potential of aircraft weather radars with new measurement capabilities, such as multi-frequency, polarimetric and radiometric modes. Various radar designs and features were evaluated for sensitivity, measurement range and for detecting and quantifying atmospheric hazards in wide range of weather conditions. Projected size, weight, power consumption and cost of the various designs were also considered. Various cloud and precipitation conditions were modeled and used to conduct an analytic evaluation of the design options. This report provides an overview of the study and summarizes the conclusions and recommendations.

  1. The pulse-pair algorithm as a robust estimator of turbulent weather spectral parameters using airborne pulse Doppler radar

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.; Lee, Jonggil

    1991-01-01

    The pulse pair method for spectrum parameter estimation is commonly used in pulse Doppler weather radar signal processing since it is economical to implement and can be shown to be a maximum likelihood estimator. With the use of airborne weather radar for windshear detection, the turbulent weather and strong ground clutter return spectrum differs from that assumed in its derivation, so the performance robustness of the pulse pair technique must be understood. Here, the effect of radar system pulse to pulse phase jitter and signal spectrum skew on the pulse pair algorithm performance is discussed. Phase jitter effect may be significant when the weather return signal to clutter ratio is very low and clutter rejection filtering is attempted. The analysis can be used to develop design specifications for airborne radar system phase stability. It is also shown that the weather return spectrum skew can cause a significant bias in the pulse pair mean windspeed estimates, and that the poly pulse pair algorithm can reduce this bias. It is suggested that use of a spectrum mode estimator may be more appropriate in characterizing the windspeed within a radar range resolution cell for detection of hazardous windspeed gradients.

  2. Estimation of sea-surface winds using backscatter cross-section measurements from airborne research weather radar

    SciTech Connect

    Hildebrand, P.H. . Remote Sensing Facility)

    1994-01-01

    A technique is presented for estimation of sea-surface winds using backscatter cross-section measurements from an airborne research weather radar. The technique is based on an empirical relation developed for use with satellite-borne microwave scatterometers which derives sea-surface winds from radar backscatter cross-section measurements. Unlike a scatterometer, the airborne research weather radar is a Doppler radar designed to measure atmospheric storm structure and kinematics. Designed to scan the atmosphere, the radar also scans the ocean surface over a wide range of azimuths, with the incidence angle and polarization angle changing continuously during each scan. The new sea-surface wind estimation technique accounts for these variations in incidence angle and polarization and derives the atmospheric surface winds. The technique works well over the range of wind conditions over which the wind speed-backscatter cross-section relation holds, about 2--20 m/s. The problems likely to be encountered with this new technique are evaluated and it is concluded that most problems are those which are endemic to any microwave scatterometer wind estimation technique. The new technique will enable using the research weather radar to provide measurements which would otherwise require use of a dedicated scatterometer.

  3. Analysis of airborne Doppler lidar, Doppler radar and tall tower measurements of atmospheric flows in quiescent and stormy weather

    NASA Technical Reports Server (NTRS)

    Bluestein, H. B.; Doviak, R. J.; Eilts, M. D.; Mccaul, E. W.; Rabin, R.; Sundara-Rajan, A.; Zrnic, D. S.

    1986-01-01

    The first experiment to combine airborne Doppler Lidar and ground-based dual Doppler Radar measurements of wind to detail the lower tropospheric flows in quiescent and stormy weather was conducted in central Oklahoma during four days in June-July 1981. Data from these unique remote sensing instruments, coupled with data from conventional in-situ facilities, i.e., 500-m meteorological tower, rawinsonde, and surface based sensors, were analyzed to enhance understanding of wind, waves and turbulence. The purposes of the study were to: (1) compare winds mapped by ground-based dual Doppler radars, airborne Doppler lidar, and anemometers on a tower; (2) compare measured atmospheric boundary layer flow with flows predicted by theoretical models; (3) investigate the kinematic structure of air mass boundaries that precede the development of severe storms; and (4) study the kinematic structure of thunderstorm phenomena (downdrafts, gust fronts, etc.) that produce wind shear and turbulence hazardous to aircraft operations. The report consists of three parts: Part 1, Intercomparison of Wind Data from Airborne Lidar, Ground-Based Radars and Instrumented 444 m Tower; Part 2, The Structure of the Convective Atmospheric Boundary Layer as Revealed by Lidar and Doppler Radars; and Part 3, Doppler Lidar Observations in Thunderstorm Environments.

  4. Range profiling of the rain rate by an airborne weather radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Nakamura, Kenji

    1990-01-01

    A class of methods based on a measure of path attenuation that is used to constrain the Hitschfeld-Bordan solution is investigated. Such methods are investigated for lidar, radar, and combined radar-radiometer applications. Their function is to allocate the attenuation in proportion to the strength of the measured reflectivity. A description is provided of four estimates of rain rate that have been tested using data from a dual-wavelength airborne radar at 10 GHz and 35 GHz. It is concluded, that when attenuation is significant, the estimates are generally more accurate than those without attenuation correction. Thus, such methodologies can be utilized to extend the effective dynamic range of the radar to higher rain rates.

  5. Airborne derivation of microburst alerts from ground-based Terminal Doppler Weather Radar information: A flight evaluation

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1993-01-01

    An element of the NASA/FAA windshear program is the integration of ground-based microburst information on the flight deck, to support airborne windshear alerting and microburst avoidance. NASA conducted a windshear flight test program in the summer of 1991 during which airborne processing of Terminal Doppler Weather Radar (TDWR) data was used to derive microburst alerts. Microburst information was extracted from TDWR, transmitted to a NASA Boeing 737 in flight via data link, and processed to estimate the windshear hazard level (F-factor) that would be experienced by the aircraft in each microburst. The microburst location and F-factor were used to derive a situation display and alerts. The situation display was successfully used to maneuver the aircraft for microburst penetrations, during which atmospheric 'truth' measurements were made. A total of 19 penetrations were made of TDWR-reported microburst locations, resulting in 18 airborne microburst alerts from the TDWR data and two microburst alerts from the airborne reactive windshear detection system. The primary factors affecting alerting performance were spatial offset of the flight path from the region of strongest shear, differences in TDWR measurement altitude and airplane penetration altitude, and variations in microburst outflow profiles. Predicted and measured F-factors agreed well in penetrations near microburst cores. Although improvements in airborne and ground processing of the TDWR measurements would be required to support an airborne executive-level alerting protocol, the practicality of airborne utilization of TDWR data link data has been demonstrated.

  6. Adaptive clutter rejection filters for airborne Doppler weather radar applied to the detection of low altitude windshear

    NASA Technical Reports Server (NTRS)

    Keel, Byron M.

    1989-01-01

    An optimum adaptive clutter rejection filter for use with airborne Doppler weather radar is presented. The radar system is being designed to operate at low-altitudes for the detection of windshear in an airport terminal area where ground clutter returns may mask the weather return. The coefficients of the adaptive clutter rejection filter are obtained using a complex form of a square root normalized recursive least squares lattice estimation algorithm which models the clutter return data as an autoregressive process. The normalized lattice structure implementation of the adaptive modeling process for determining the filter coefficients assures that the resulting coefficients will yield a stable filter and offers possible fixed point implementation. A 10th order FIR clutter rejection filter indexed by geographical location is designed through autoregressive modeling of simulated clutter data. Filtered data, containing simulated dry microburst and clutter return, are analyzed using pulse-pair estimation techniques. To measure the ability of the clutter rejection filters to remove the clutter, results are compared to pulse-pair estimates of windspeed within a simulated dry microburst without clutter. In the filter evaluation process, post-filtered pulse-pair width estimates and power levels are also used to measure the effectiveness of the filters. The results support the use of an adaptive clutter rejection filter for reducing the clutter induced bias in pulse-pair estimates of windspeed.

  7. Designing clutter rejection filters with complex coefficients for airborne pulsed Doppler weather radar

    NASA Technical Reports Server (NTRS)

    Jamora, Dennis A.

    1993-01-01

    Ground clutter interference is a major problem for airborne pulse Doppler radar operating at low altitudes in a look-down mode. With Doppler zero set at the aircraft ground speed, ground clutter rejection filtering is typically accomplished using a high-pass filter with real valued coefficients and a stopband notch centered at zero Doppler. Clutter spectra from the NASA Wind Shear Flight Experiments of l991-1992 show that the dominant clutter mode can be located away from zero Doppler, particularly at short ranges dominated by sidelobe returns. Use of digital notch filters with complex valued coefficients so that the stopband notch can be located at any Doppler frequency is investigated. Several clutter mode tracking algorithms are considered to estimate the Doppler frequency location of the dominant clutter mode. From the examination of night data, when a dominant clutter mode away from zero Doppler is present, complex filtering is able to significantly increase clutter rejection over use of a notch filter centered at zero Doppler.

  8. Enhanced Weather Radar (EWxR) System

    NASA Technical Reports Server (NTRS)

    Kronfeld, Kevin M. (Technical Monitor)

    2003-01-01

    An airborne weather radar system, the Enhanced Weather Radar (EWxR), with enhanced on-board weather radar data processing was developed and tested. The system features additional weather data that is uplinked from ground-based sources, specialized data processing, and limited automatic radar control to search for hazardous weather. National Weather Service (NWS) ground-based Next Generation Radar (NEXRAD) information is used by the EWxR system to augment the on-board weather radar information. The system will simultaneously display NEXRAD and on-board weather radar information in a split-view format. The on-board weather radar includes an automated or hands-free storm-finding feature that optimizes the radar returns by automatically adjusting the tilt and range settings for the current altitude above the terrain and searches for storm cells near the atmospheric 0-degree isotherm. A rule-based decision aid was developed to automatically characterize cells as hazardous, possibly-hazardous, or non-hazardous based upon attributes of that cell. Cell attributes are determined based on data from the on-board radar and from ground-based radars. A flight path impact prediction algorithm was developed to help pilots to avoid hazardous weather along their flight plan and their mission. During development the system was tested on the NASA B757 aircraft and final tests were conducted on the Rockwell Collins Sabreliner.

  9. Spaceborne weather radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kozu, Toshiaki

    1990-01-01

    The present work on the development status of spaceborne weather radar systems and services discusses radar instrument complementarities, the current forms of equations for the characterization of such aspects of weather radar performance as surface and mirror-image returns, polarimetry, and Doppler considerations, and such essential factors in spaceborne weather radar design as frequency selection, scanning modes, and the application of SAR to rain detection. Attention is then given to radar signal absorption by the various atmospheric gases, rain drop size distribution and wind velocity determinations, and the characteristics of clouds, as well as the range of available estimation methods for backscattering, single- and dual-wavelength attenuation, and polarimetric and climatological characteristics.

  10. Polarimetric Doppler Weather Radar

    NASA Astrophysics Data System (ADS)

    Bringi, V. N.; Chandrasekar, V.

    2001-10-01

    This work provides a detailed introduction to the principles of Doppler and polarimetric radar, focusing in particular on their use in the analysis of weather systems. The authors first discuss underlying topics such as electromagnetic scattering, polarization, and wave propagation. They then detail the engineering aspects of pulsed Doppler polarimetric radar, before examining key applications in meteorology and remote sensing. The book is aimed at graduate students of electrical engineering and atmospheric science as well as practitioners involved in the applications of polarimetric radar.

  11. New weather radar coming

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    What would you call the next generation of radar for severe weather prediction? NEXRAD, of course. A prototype for the new system was recently completed in Norman, Okla., and by the early 1990s up to 195 stations around the United States will be tracking dangerous weather and sending faster, more accurate, and more detailed warnings to the public.NEXRAD is being built for the Departments of Commerce, Transportation, and Defense by the Unisys Corporation under a $450 million contract signed in December 1987. Th e system will be used by the National Weather Service, the Federal Aviation Administration (FAA), and the U.S. Air Force and Navy. The NEXRAD radar tower in Norman is expected to be operational in October.

  12. The design and development of signal-processing algorithms for an airborne x-band Doppler weather radar

    NASA Technical Reports Server (NTRS)

    Nicholson, Shaun R.

    1994-01-01

    Improved measurements of precipitation will aid our understanding of the role of latent heating on global circulations. Spaceborne meteorological sensors such as the planned precipitation radar and microwave radiometers on the Tropical Rainfall Measurement Mission (TRMM) provide for the first time a comprehensive means of making these global measurements. Pre-TRMM activities include development of precipitation algorithms using existing satellite data, computer simulations, and measurements from limited aircraft campaigns. Since the TRMM radar will be the first spaceborne precipitation radar, there is limited experience with such measurements, and only recently have airborne radars become available that can attempt to address the issue of the limitations of a spaceborne radar. There are many questions regarding how much attenuation occurs in various cloud types and the effect of cloud vertical motions on the estimation of precipitation rates. The EDOP program being developed by NASA GSFC will provide data useful for testing both rain-retrieval algorithms and the importance of vertical motions on the rain measurements. The purpose of this report is to describe the design and development of real-time embedded parallel algorithms used by EDOP to extract reflectivity and Doppler products (velocity, spectrum width, and signal-to-noise ratio) as the first step in the aforementioned goals.

  13. Terminal Doppler weather radar

    NASA Astrophysics Data System (ADS)

    Michelson, M.; Shrader, W. W.; Wieler, J. G.

    1990-02-01

    The terminal Doppler weather radar (TDWR) system, now under development, will provide automatic detection of microbursts and low-level wind shear. This paper discusses the TDWR performance parameters and describes its structural elements, including the antenna subsystem, the transmitter, the receiver/exciter, the digital signal processor, and the radar product generator/remote monitoring subsystem. Attention is also given to the processes of the base data formation, point target removal, signal-to-noise thresholding, and velocity de-aliasing and to the TDWR algorithms and displays. A schematic diagram of the TDWR system is presented.

  14. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  15. The Next Generation Airborne Polarimetric Doppler Radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Lee, Wen-Chau; Loew, Eric; Salazar, Jorge; Chandrasekar, V.

    2013-04-01

    NCAR's Electra Doppler radar (ELDORA) with a dual-beam slotted waveguide array using dual-transmitter, dual-beam, rapid scan and step-chirped waveform significantly improved the spatial scale to 300m (Hildebrand et al. 1996). However, ELDORA X-band radar's penetration into precipitation is limited by attenuation and is not designed to collect polarimetric measurements to remotely estimate microphysics. ELDORA has been placed on dormancy because its airborne platform (P3 587) was retired in January 2013. The US research community has strongly voiced the need to continue measurement capability similar to the ELDORA. A critical weather research area is quantitative precipitation estimation/forecasting (QPE/QPF). In recent years, hurricane intensity change involving eye-eyewall interactions has drawn research attention (Montgomery et al., 2006; Bell and Montgomery, 2006). In the case of convective precipitation, two issues, namely, (1) when and where convection will be initiated, and (2) determining the organization and structure of ensuing convection, are key for QPF. Therefore collocated measurements of 3-D winds and precipitation microphysics are required for achieving significant skills in QPF and QPE. Multiple radars in dual-Doppler configuration with polarization capability estimate dynamical and microphysical characteristics of clouds and precipitation are mostly available over land. However, storms over complex terrain, the ocean and in forest regions are not observable by ground-based radars (Bluestein and Wakimoto, 2003). NCAR/EOL is investigating potential configurations for the next generation airborne radar that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. ELDORA's slotted waveguide array radar is not compatible for dual-polarization measurements. Therefore, the new design has to address both dual-polarization capability and platform requirements to replace the ELDORA system. NCAR maintains a C-130

  16. Maximum-likelihood spectral estimation and adaptive filtering techniques with application to airborne Doppler weather radar. Thesis Technical Report No. 20

    NASA Technical Reports Server (NTRS)

    Lai, Jonathan Y.

    1994-01-01

    This dissertation focuses on the signal processing problems associated with the detection of hazardous windshears using airborne Doppler radar when weak weather returns are in the presence of strong clutter returns. In light of the frequent inadequacy of spectral-processing oriented clutter suppression methods, we model a clutter signal as multiple sinusoids plus Gaussian noise, and propose adaptive filtering approaches that better capture the temporal characteristics of the signal process. This idea leads to two research topics in signal processing: (1) signal modeling and parameter estimation, and (2) adaptive filtering in this particular signal environment. A high-resolution, low SNR threshold maximum likelihood (ML) frequency estimation and signal modeling algorithm is devised and proves capable of delineating both the spectral and temporal nature of the clutter return. Furthermore, the Least Mean Square (LMS) -based adaptive filter's performance for the proposed signal model is investigated, and promising simulation results have testified to its potential for clutter rejection leading to more accurate estimation of windspeed thus obtaining a better assessment of the windshear hazard.

  17. Hydrologic applications of weather radar

    NASA Astrophysics Data System (ADS)

    Seo, Dong-Jun; Habib, Emad; Andrieu, Hervé; Morin, Efrat

    2015-12-01

    By providing high-resolution quantitative precipitation information (QPI), weather radars have revolutionized hydrology in the last two decades. With the aid of GIS technology, radar-based quantitative precipitation estimates (QPE) have enabled routine high-resolution hydrologic modeling in many parts of the world. Given the ever-increasing need for higher-resolution hydrologic and water resources information for a wide range of applications, one may expect that the use of weather radar will only grow. Despite the tremendous progress, a number of significant scientific, technological and engineering challenges remain to realize its potential. New challenges are also emerging as new areas of applications are discovered, explored and pursued. The purpose of this special issue is to provide the readership with some of the latest advances, lessons learned, experiences gained, and science issues and challenges related to hydrologic applications of weather radar. The special issue features 20 contributions on various topics which reflect the increasing diversity as well as the areas of focus in radar hydrology today. The contributions may be grouped as follows: Radar QPE (Kwon et al.; Hall et al.; Chen and Chandrasekar; Seo and Krajewski; Sandford).

  18. Summary of Turbulence Data Obtained During United Air Lines Flight Evaluation of an Experimental C Band (5.5 cm) Airborne Weather Radar

    NASA Technical Reports Server (NTRS)

    Coe, E. C.; Fetner, M. W.

    1954-01-01

    Data on atmospheric turbulence in the vicinity of thunderstorms obtained during a flight evaluation of an experimental C band (5.5 cm) airborne radar are summarized. The turbulence data were obtained with an NACA VGH recorder installed in a United Air Lines DC-3 airplane.

  19. Efficient Ways to Learn Weather Radar Polarimetry

    ERIC Educational Resources Information Center

    Cao, Qing; Yeary, M. B.; Zhang, Guifu

    2012-01-01

    The U.S. weather radar network is currently being upgraded with dual-polarization capability. Weather radar polarimetry is an interdisciplinary area of engineering and meteorology. This paper presents efficient ways to learn weather radar polarimetry through several basic and practical topics. These topics include: 1) hydrometeor scattering model…

  20. Mapping of airborne Doppler radar data

    SciTech Connect

    Lee, W.; Dodge, P.; Marks, F.D. Jr.; Hildebrand, P.H. NOAA, Miami, FL )

    1994-04-01

    Two sets of equations are derived to (1) map airborne Doppler radar data from an aircraft-relative coordinate system to an earth-relative coordinate system, and (2) remove the platform motion from the observed Doppler velocities. These equations can be applied to data collected by the National Oceanic and Atmospheric Administration WP-3D system, the National Center for Atmospheric Research Electra Doppler Radar (ELDORA) system, and other airborne radar systems.

  1. Real-time simulation of an airborne radar for overwater approaches

    NASA Technical Reports Server (NTRS)

    Karmarkar, J.; Clark, D.

    1982-01-01

    Software developed to provide a real time simulation of an airborne radar for overwater approaches to oil rig platforms is documented. The simulation is used to study advanced concepts for enhancement of airborne radar approaches (ARA) in order to reduce crew workload, improve approach tracking precision, and reduce weather minimums. ARA's are currently used for offshore helicopter operations to and from oil rigs.

  2. A theoretical model for airborne radars

    NASA Astrophysics Data System (ADS)

    Faubert, D.

    1989-11-01

    This work describes a general theory for the simulation of airborne (or spaceborne) radars. It can simulate many types of systems including Airborne Intercept and Airborne Early Warning radars, airborne missile approach warning systems etc. It computes the average Signal-to-Noise ratio at the output of the signal processor. In this manner, one obtains the average performance of the radar without having to use Monte Carlo techniques. The model has provision for a waveform without frequency modulation and one with linear frequency modulation. The waveform may also have frequency hopping for Electronic Counter Measures or for clutter suppression. The model can accommodate any type of encounter including air-to-air, air-to-ground (look-down) and rear attacks. It can simulate systems with multiple phase centers on receive for studying advanced clutter or jamming interference suppression techniques. An Airborne Intercept radar is investigated to demonstrate the validity and the capability of the model.

  3. Comparison of TRMM Precipitation Radar and Airborne Radar Data.

    NASA Astrophysics Data System (ADS)

    Durden, S. L.; Im, E.; Haddad, Z. S.; Li, L.

    2003-06-01

    The first spaceborne weather radar is the precipitation radar (PR) on the Tropical Rainfall Measuring Mission (TRMM), which was launched in 1997. As part of the TRMM calibration and validation effort, an airborne rain-mapping radar (ARMAR) was used to make underflights of TRMM during the B portion of the Texas and Florida Underflights (TEFLUN-B) and the third Convection and Moisture Experiment (CAMEX-3) in 1998 and the Kwajalein Experiment (KWAJEX) in 1999. The TRMM PR and ARMAR both operate at 14 GHz, and both instruments use a downward-looking, cross-track scanning geometry, which allows direct comparison of data. Nearly simultaneous PR and ARMAR data were acquired in seven separate cases. These data are compared to examine the effects of larger resolution volume and lower sensitivity in the PR data relative to ARMAR. The PR and ARMAR data show similar structures, although the PR data tend to have lower maximum reflectivities and path attenuations because of nonuniform beam-filling effects. Nonuniform beam filling can also cause a bias in the observed path attenuation relative to that corresponding to the beam-averaged rain rate. The PR rain-type classification is usually consistent with the ARMAR data.

  4. Description and availability of airborne Doppler radar data

    NASA Technical Reports Server (NTRS)

    Harrah, S. D.; Bracalente, E. M.; Schaffner, P. R.; Baxa, E. G.

    1993-01-01

    An airborne, forward-looking, pulse, Doppler radar has been developed in conjunction with the joint FAA/NASA Wind Shear Program. This radar represents a first in an emerging technology. The radar was developed to assess the applicability of an airborne radar to detect low altitude hazardous wind shears for civil aviation applications. Such a radar must be capable of looking down into the ground clutter environment and extracting wind estimates from relatively low reflectivity weather targets. These weather targets often have reflectivities several orders of magnitude lower than the surrounding ground clutter. The NASA radar design incorporates numerous technological and engineering achievements in order to accomplish this task. The basic R/T unit evolved from a standard Collins 708 weather radar, which supports specific pulse widths of 1-7 microns and Pulse Repetition Frequencies (PRF) of less than 1-10 kHz. It was modified to allow for the output of the first IF signal, which fed a NASA developed receiver/detector subsystem. The NASA receiver incorporated a distributed, high-speed digital attenuator, producing a range bin to range bin automatic gain control system with 65 dB of dynamic range. Using group speed information supplied by the aircraft's navigation system, the radar signal is frequency demodulated back to base band (zero Doppler relative to stationary ground). The In-phase & Quadrature-phase (I/Q) components of the measured voltage signal are then digitized by a 12-bit A-D converter (producing an additional 36 dB of dynamic range). The raw I/Q signal for each range bin is then recorded (along with the current radar & aircraft state parameters) by a high-speed Kodak tape recorder.

  5. Research relative to weather radar measurement techniques

    NASA Technical Reports Server (NTRS)

    Smith, Paul L.

    1992-01-01

    This grant provides for some investigations related to weather radar measurement techniques applicable to meteorological radar systems in Thailand. Quality data are needed from those systems to support TRMM and other scientific investigations. Activities carried out during a trip to the radar facilities at Phuket are described.

  6. Research relative to weather radar measurement techniques

    NASA Technical Reports Server (NTRS)

    Smith, Paul L.

    1992-01-01

    Research relative to weather radar measurement techniques, which involves some investigations related to measurement techniques applicable to meteorological radar systems in Thailand, is reported. A major part of the activity was devoted to instruction and discussion with Thai radar engineers, technicians, and meteorologists concerning the basic principles of radar meteorology and applications to specific problems, including measurement of rainfall and detection of wind shear/microburst hazards. Weather radar calibration techniques were also considered during this project. Most of the activity took place during two visits to Thailand, in December 1990 and February 1992.

  7. Wideband radar for airborne minefield detection

    NASA Astrophysics Data System (ADS)

    Clark, William W.; Burns, Brian; Dorff, Gary; Plasky, Brian; Moussally, George; Soumekh, Mehrdad

    2006-05-01

    Ground Penetrating Radar (GPR) has been applied for several years to the problem of detecting both antipersonnel and anti-tank landmines. RDECOM CERDEC NVESD is developing an airborne wideband GPR sensor for the detection of minefields including surface and buried mines. In this paper, we describe the as-built system, data and image processing techniques to generate imagery, and current issues with this type of radar. Further, we will display images from a recent field test.

  8. Robust Sparse Sensing Using Weather Radar

    NASA Astrophysics Data System (ADS)

    Mishra, K. V.; Kruger, A.; Krajewski, W. F.; Xu, W.

    2014-12-01

    The ability of a weather radar to detect weak echoes is limited by the presence of noise or unwanted echoes. Some of these unwanted signals originate externally to the radar system, such as cosmic noise, radome reflections, interference from co-located radars, and power transmission lines. The internal source of noise in microwave radar receiver is mainly thermal. The thermal noise from various microwave devices in the radar receiver tends to lower the signal-to-noise ratio, thereby masking the weaker signals. Recently, the compressed sensing (CS) technique has emerged as a novel signal sampling paradigm that allows perfect reconstruction of signals sampled at frequencies lower than the Nyquist rate. Many radar and remote sensing applications require efficient and rapid data acquisition. The application of CS to weather radars may allow for faster target update rates without compromising the accuracy of target information. In our previous work, we demonstrated recovery of an entire precipitation scene from its compressed-sensed version by using the matrix completion approach. In this study, we characterize the performance of such a CS-based weather radar in the presence of additive noise. We use a signal model where the precipitation signals form a low-rank matrix that is corrupted with (bounded) noise. Using recent advances in algorithms for matrix completion from few noisy observations, we reconstruct the precipitation scene with reasonable accuracy. We test and demonstrate our approach using the data collected by Iowa X-band Polarimetric (XPOL) weather radars.

  9. Airborne Radar Interferometric Repeat-Pass Processing

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Michel, Thierry R.; Jones, Cathleen E.; Muellerschoen, Ronald J.; Chapman, Bruce D.; Fore, Alexander; Simard, Marc; Zebker, Howard A.

    2011-01-01

    Earth science research often requires crustal deformation measurements at a variety of time scales, from seconds to decades. Although satellites have been used for repeat-track interferometric (RTI) synthetic-aperture-radar (SAR) mapping for close to 20 years, RTI is much more difficult to implement from an airborne platform owing to the irregular trajectory of the aircraft compared with microwave imaging radar wavelengths. Two basic requirements for robust airborne repeat-pass radar interferometry include the ability to fly the platform to a desired trajectory within a narrow tube and the ability to have the radar beam pointed in a desired direction to a fraction of a beam width. Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is equipped with a precision auto pilot developed by NASA Dryden that allows the platform, a Gulfstream III, to nominally fly within a 5 m diameter tube and with an electronically scanned antenna to position the radar beam to a fraction of a beam width based on INU (inertial navigation unit) attitude angle measurements.

  10. Flight test evaluation of a video tracker for enhanced offshore airborne radar approach capability

    NASA Technical Reports Server (NTRS)

    Clary, G. R.; Cooper, P. G.

    1982-01-01

    As a part of NASA's Rotorcraft All-Weather Operations Research Program, advanced airborne radar approach (ARA) concepts are being investigated. Since data from previous NASA/FAA flight tests showed significant ARA limitations, a research program was initiated at NASA Ames Research Center to determine the benefit that could be derived by automating certain radar functions and superimposing course display data on the radar display. To evaluate these concepts, a newly developed video tracking system which interfaces with weather radar was acquired. After the pilot designates a destination target, the system tracks the target video as it moves on the radar indicator. Using a small, efficient microprocessor, the autotracker presents valuable approach data on the radar screen and automatically adjusts the radar gain and tilt. Results of a limited flight test evaluation of the autotracker show that the course display concept, combined with automated gain and tilt functions, is effective for improving ARA's and reducing radar operator workload.

  11. Removing interfering clutter associated with radar pulses that an airborne radar receives from a radar transponder

    DOEpatents

    Ormesher, Richard C.; Axline, Robert M.

    2008-12-02

    Interfering clutter in radar pulses received by an airborne radar system from a radar transponder can be suppressed by developing a representation of the incoming echo-voltage time-series that permits the clutter associated with predetermined parts of the time-series to be estimated. These estimates can be used to estimate and suppress the clutter associated with other parts of the time-series.

  12. Performance of the NASA Airborne Radar with the Windshear Database for Forward-Looking Systems

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Britt, Charles L.

    1996-01-01

    This document describes the simulation approach used to test the performance of the NASA airborne windshear radar. An explanation of the actual radar hardware and processing algorithms provides an understanding of the parameters used in the simulation program. This report also contains a brief overview of the NASA airborne windshear radar experimental flight test results. A description of the radar simulation program shows the capabilities of the program and the techniques used for certification evaluation. Simulation of the NASA radar is comprised of three steps. First, the choice of the ground clutter data must be made. The ground clutter is the return from objects in or nearby an airport facility. The choice of the ground clutter also dictates the aircraft flight path since ground clutter is gathered while in flight. The second step is the choice of the radar parameters and the running of the simulation program which properly combines the ground clutter data with simulated windshear weather data. The simulated windshear weather data is comprised of a number of Terminal Area Simulation System (TASS) model results. The final step is the comparison of the radar simulation results to the known windshear data base. The final evaluation of the radar simulation is based on the ability to detect hazardous windshear with the aircraft at a safe distance while at the same time not displaying false alerts.

  13. Millimeter-wave radar sensing of airborne chemicals.

    SciTech Connect

    Gopalsami, N.; Raptis, A. C.; Energy Technology

    2001-04-01

    This paper discusses the development of a millimeter-wave radar chemical sensor for applications in environmental monitoring and arms-control treaty verification. The purpose of this paper is to investigate the use of fingerprint-type molecular rotational signatures in the millimeter-wave spectrum to sense airborne chemicals. The millimeter-wave sensor, operating in the frequency range of 225-315 GHz, can work under all weather conditions and in smoky and dusty environments. The basic configuration of the millimeter-wave sensor is a monostatic swept-frequency radar that consists of a millimeter-wave sweeper, a hot-electron bolometer or Schottky barrier detector, and a corner-cube reflector. The chemical plume to be detected is situated between the transmitter/detector and reflector. Millimeter-wave absorption spectra of chemicals in the plume are determined by measuring the swept-frequency radar return signals with and without the plume in the beam path. The problem of pressure broadening, which hampered open-path spectroscopy in the past, has been mitigated in this paper by designing a fast sweeping source over a broad frequency range. The heart of the system is a backward-wave oscillator (BWO) tube that can be tuned over 220-350 GHz. Using the BWO tube, we built a millimeter-wave radar system and field-tested it at the Department of Energy Nevada Test Site, Frenchman Flat, near Mercury, NV, at a standoff distance of 60 m, The millimeter-wave system detected chemical plumes very well; detection sensitivity for polar molecules such as methylchloride was down to 12 ppm for a 4-m two-way pathlength.

  14. Identification of human motion signature using airborne radar data

    NASA Astrophysics Data System (ADS)

    McDonald, Michael; Damini, Anthony

    2013-09-01

    Data containing the radar signature of amoving person on the groundwere collected at ranges of up to 30 kmfroma moving airborne platform using the DRDC Ottawa X-bandWideband Experimental Airborne Radar (XWEAR). The human target radar echo returns were found to possess a characteristic amplitude modulated (AM) and frequency modulated (FM) signature which could be usefully characterized in terms of conventional AM and FM modulation parameters. Human detection performance after space time adaptive processing is frequently limited by false alarms arising from incomplete cancellation of large radar cross-section discretes during the whitening step. However, the clutter discretes possess different modulation characteristics from the human targets discussed above. The ability of pattern classification techniques to use this parameter measurement space to distinguish between human targets and clutter discretes is explored and preliminary results presented.

  15. 77 FR 21834 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... Federal Aviation Administration Airborne Radar Altimeter Equipment (For Air Carrier Aircraft) AGENCY..., Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). SUMMARY: This is a confirmation notice of the cancellation of TSO-C67, Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). The...

  16. Weather radar research at the USA's storm laboratory

    NASA Technical Reports Server (NTRS)

    Doviak, R. J.

    1982-01-01

    Radar research that is directed toward improving storm forecasts and hazard warnings and studying lightning is discussed. The two moderately sensitive Doppler weather radars in central Oklahoma, with their wide dynamic range, have demonstrated the feasibility of mapping wind fields in all weather conditions from the clear skies of quiescent air and disturbed prestorm air near the earth's surface to the optically opaque interior of severe and sometimes tornadic thunderstorms. Observations and analyses of Doppler weather radar data demonstrate that improved warning of severe storm phenomena and improved short-term forecast of storms may be available when Doppler techniques are well integrated into the national network of weather radars. When used in combination with other sensors, it provides an opportunity to learn more about the complex interrelations between the wind, water, and electricity in storms.

  17. INTEGRATED CONTROL OF COMBINED SEWER REGULATORS USING WEATHER RADAR

    EPA Science Inventory

    Integrated operation was simulated of ten dynamic combined sewer regulators on a Montreal interceptor. Detailed review of digital recording weather radar capabilities indicated that it is potentially the best rainfall estimation means for accomplishing the runoff prediction that ...

  18. The NASA Airborne Synthetic Aperture Radar System

    NASA Technical Reports Server (NTRS)

    Lou, Yunling; Kim, Yunjin; van Zyl, Jakob

    1996-01-01

    None given. (From introduction): ...we will briefly describe the instrument characteristics, the evolution of the various radar modes, the instrument performance and improvement in the knowledge of the positioning and attitude information of the radar. In addition, we will summarize the [rogress of the data processing effort, especially in the interferometry processing. Finally, we will address the issue of processing and calibrating the cross-track interferometry (XTI) data.

  19. Phase noise effects on turbulent weather radar spectrum parameter estimation

    NASA Technical Reports Server (NTRS)

    Lee, Jonggil; Baxa, Ernest G., Jr.

    1990-01-01

    Accurate weather spectrum moment estimation is important in the use of weather radar for hazardous windshear detection. The effect of the stable local oscillator (STALO) instability (jitter) on the spectrum moment estimation algorithm is investigated. Uncertainty in the stable local oscillator will affect both the transmitted signal and the received signal since the STALO provides transmitted and reference carriers. The proposed approach models STALO phase jitter as it affects the complex autocorrelation of the radar return. The results can therefore by interpreted in terms of any source of system phase jitter for which the model is appropriate and, in particular, may be considered as a cumulative effect of all radar system sources.

  20. Crop classification using airborne radar and LANDSAT data. [Colby, Kansas

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Li, R. Y.; Shanmugam, K. S.

    1981-01-01

    Airborne radar data acquired with a 13.3 GHz scatterometer over a test-site near Colby, Kansas were used to investigate the statistical properties of the scattering coefficient of three types of vegetation cover and of bare soil. A statistical model for radar data was developed that incorporates signal-fading and natural within-field variabilities. Estimates of the within-field and between-field coefficients of variation were obtained for each cover-type and compared with similar quantities derived from LANDSAT images of the same fields. The classification accuracy provided by LANDSAT alone, radar alone, and both sensors combined was investigated. The results indicate that the addition of radar to LANDSAT improves the classification accuracy by about 10; percentage-points when the classification is performed on a pixel basis and by about 15 points when performed on a field-average basis.

  1. Characterizing Englacial and Subglacial Temperature Structure Using Airborne Radar Sounding

    NASA Astrophysics Data System (ADS)

    Schroeder, D. M.; Seroussi, H. L.

    2015-12-01

    The temperature structure of ice sheet and glaciers is a fundamental control on ice flow, rheology, and stability. However, it is difficult to observationally constrain temperature structures at the catchment to ice-sheet scale. The englacial attenuation of radar sounding data is strongly dependent on the temperature structure of the ice sheets. Therefore, echo strength profiles from airborne radar sounding observation do contain temperature information. However, direct interpretation of englacial attenuation rates from radar sounding profiles is often difficult or impossible due to the ambiguous contribution the geometric and material properties of the bed to echo strength variations. To overcome this challenge, we presents techniques that treat radar sounding echo strength and ice thickness profiles as continuous signals, taking advantage of along-profile ice thickness and echo strength variations to constrain the spatial pattern of englacial attenuation and basal reflectivity. We then apply these techniques to an airborne radar sounding survey in order to characterize the englacial and subglacial temperature structure of the Thwaites Glacier catchment in West Antarctic. We then interpreted this structure in context of local ice sheet velocity, advection, force balance, and bed conditions using the ISSM ice sheet model.

  2. Proceedings of the Third Airborne Synthetic Aperture Radar (AIRSAR) Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob J. (Editor)

    1991-01-01

    The Third Airborne Synthetic Aperture Radar (AIRSAR) Workshop was held on 23-24 May 1991 at JPL. Thirty oral presentations were made and 18 poster papers displayed during the workshop. Papers from these 25 presentations are presented which include analyses of AIRSAR operations and studies in SAR remote sensing, ecology, hydrology, soil science, geology, oceanography, volcanology, and SAR mapping and data handling. Results from these studies indicate the direction and emphasis of future orbital radar-sensor missions that will be launched during the 1990's.

  3. The NASA/JPL Airborne Synthetic Aperture Radar System

    NASA Technical Reports Server (NTRS)

    Lou, Yunling; Kim,Yunjin; vanZyl, Jakob

    1996-01-01

    In this paper we will briefly describe the instrument characteristics, the evolution of various radar modes, the instrument performance and improvement in the knowledge of the positioning and attitude information of the NASA/JPL airborne synthetic aperture radar (SAR). This system operates in the fully polarimetric mode in the P, L, and C band simultaneously or in the interferometric mode in both the L and C band simultaneously. We also summarize the progress of the data processing effort, especially in the interferometry processing and we address the issue of processing and calibrating the cross-track interferometry data.

  4. Hydrometeor discrimination in melting layer using multiparameter airborne radar measurement

    NASA Technical Reports Server (NTRS)

    Kumagai, H.; Meneghini, R.; Kozu, T.

    1992-01-01

    Results from a multiparameter airborne radar/radiometer experiment (the Typhoon experiment) are presented. The experiment was conducted in the western Pacific with the NASA DC-8 aircraft, in which a dual-wavelength at X-band and Ka-band and dual-polarization at X-band radar was installed. The signatures of dBZ(X), dBZ(Ka), LDR (linear depolarization ratio) at X-band and DZ=dBZ(X)-dBZ(Ka) are discussed for the data obtained in the penetration of the typhoon Flo. With emphasis on discrimination of hydrometeor particles, some statistical features of the brightband in stratiform rain are discussed.

  5. Development and flight test of a weather radar precision approach concept

    NASA Technical Reports Server (NTRS)

    Clary, G. R.; Anderson, D. J.; Chisholm, J. P.

    1984-01-01

    In order to make full use of the helicopter's unique capability of remote-site, off-airport landings, it would be desirable to employ a self-contained navigation system requiring minimum groundable-based equipment. For this reason, research is being conducted with the aim to develop the use of airborne weather radar as a primary navigation aid for helicopter approach and landing in instrument flight rules (IFR) conditions. Anderson et al. (1982) have reported about the first phase of this effort, taking into account the detection of passive ground-based corner reflectors with the aid of an 'echo processor'. The technology of passive-reflector detection in the overland environment provides the pilot with the range and bearing to the landing site. The present investigation is concerned with a second research phase, which was undertaken with the objective to develop and demonstrate the feasibility of a weather radar-based precision approach concept. Preliminary flight test results are considered.

  6. Mapping wintering waterfowl distributions using weather surveillance radar.

    PubMed

    Buler, Jeffrey J; Randall, Lori A; Fleskes, Joseph P; Barrow, Wylie C; Bogart, Tianna; Kluver, Daria

    2012-01-01

    The current network of weather surveillance radars within the United States readily detects flying birds and has proven to be a useful remote-sensing tool for ornithological study. Radar reflectivity measures serve as an index to bird density and have been used to quantitatively map landbird distributions during migratory stopover by sampling birds aloft at the onset of nocturnal migratory flights. Our objective was to further develop and validate a similar approach for mapping wintering waterfowl distributions using weather surveillance radar observations at the onset of evening flights. We evaluated data from the Sacramento, CA radar (KDAX) during winters 1998-1999 and 1999-2000. We determined an optimal sampling time by evaluating the accuracy and precision of radar observations at different times during the onset of evening flight relative to observed diurnal distributions of radio-marked birds on the ground. The mean time of evening flight initiation occurred 23 min after sunset with the strongest correlations between reflectivity and waterfowl density on the ground occurring almost immediately after flight initiation. Radar measures became more spatially homogeneous as evening flight progressed because birds dispersed from their departure locations. Radars effectively detected birds to a mean maximum range of 83 km during the first 20 min of evening flight. Using a sun elevation angle of -5° (28 min after sunset) as our optimal sampling time, we validated our approach using KDAX data and additional data from the Beale Air Force Base, CA (KBBX) radar during winter 1998-1999. Bias-adjusted radar reflectivity of waterfowl aloft was positively related to the observed diurnal density of radio-marked waterfowl locations on the ground. Thus, weather radars provide accurate measures of relative wintering waterfowl density that can be used to comprehensively map their distributions over large spatial extents. PMID:22911816

  7. Mapping wintering waterfowl distributions using weather surveillance radar

    USGS Publications Warehouse

    Buler, Jeffrey J.; Randall, Lori A.; Fleskes, Joseph P.; Barrow, Wylie C.; Bogart, Tianna; Kluver, Daria

    2012-01-01

    The current network of weather surveillance radars within the United States readily detects flying birds and has proven to be a useful remote-sensing tool for ornithological study. Radar reflectivity measures serve as an index to bird density and have been used to quantitatively map landbird distributions during migratory stopover by sampling birds aloft at the onset of nocturnal migratory flights. Our objective was to further develop and validate a similar approach for mapping wintering waterfowl distributions using weather surveillance radar observations at the onset of evening flights. We evaluated data from the Sacramento, CA radar (KDAX) during winters 1998–1999 and 1999–2000. We determined an optimal sampling time by evaluating the accuracy and precision of radar observations at different times during the onset of evening flight relative to observed diurnal distributions of radio-marked birds on the ground. The mean time of evening flight initiation occurred 23 min after sunset with the strongest correlations between reflectivity and waterfowl density on the ground occurring almost immediately after flight initiation. Radar measures became more spatially homogeneous as evening flight progressed because birds dispersed from their departure locations. Radars effectively detected birds to a mean maximum range of 83 km during the first 20 min of evening flight. Using a sun elevation angle of -5° (28 min after sunset) as our optimal sampling time, we validated our approach using KDAX data and additional data from the Beale Air Force Base, CA (KBBX) radar during winter 1998–1999. Bias-adjusted radar reflectivity of waterfowl aloft was positively related to the observed diurnal density of radio-marked waterfowl locations on the ground. Thus, weather radars provide accurate measures of relative wintering waterfowl density that can be used to comprehensively map their distributions over large spatial extents.

  8. Multifrequency and multipolarization radar scatterometry of sand dunes and comparison with spaceborne and airborne radar images

    NASA Technical Reports Server (NTRS)

    Blom, Ronald; Elachi, Charles

    1987-01-01

    Airborne radar scatterometer data on sand dunes, acquired at multiple frequencies and polarizations, are reported. Radar backscatter from sand dunes is very sensitive to the imaging geometry. At small incidence angles the radar return is mainly due to quasi-specular reflection from dune slopes favorably oriented toward the radar. A peak return usually occurs at the incidence angle equal to the angle of repose for the dunes. The peak angle is the same at all frequencies as computed from specular reflection theory. At larger angles the return is significantly weaker. The scatterometer measurements verified observations made with airborne and spaceborne radar images acquired over a number of dune fields in the U.S., central Africa, and the Arabian peninsula. The imaging geometry constraints indicate that possible dunes on other planets, such as Venus, will probably not be detected in radar images unless the incidence angle is less than the angles of repose of such dunes and the radar look direction is approximately orthogonal to the dune trends.

  9. The evolutionary trend in airborne and satellite radar altimeters

    NASA Technical Reports Server (NTRS)

    Fedor, L. S.; Walsh, E. J.

    1984-01-01

    The manner in which airborne and satellite radar altimeters developed and where the trend is leading was investigated. The airborne altimeters have progressed from a broad beamed, narrow pulsed, nadir looking instrument, to a pulse compressed system that is computer controlled, to a scanning pencil beamed system which produce a topographic map of the surface beneath the aircraft in real time. It is suggested that the airborne systems lie in the use of multiple frequencies. The satellite altimeters evolve towards multifrequency systems with narrower effective pulses and higher pulse compression ratios to reduce peak transmitted power while improving resolution. Applications indicate wide swath systems using interferometric techniques or beam limited systems using 100 m diameter antennas.

  10. A wing pod-based millimeter wavelength airborne cloud radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Ellis, S.; Tsai, P.; Loew, E.; Lee, W. C.; Emmett, J.; Dixon, M.; Burghart, C.; Rauenbuehler, S.

    2015-04-01

    This paper describes a novel, airborne pod-based millimeter wavelength radar. Its frequency of operation is 94 GHz (3 mm wavelength). The radar has been designed to fly on the NCAR Gulfstream V HIAPER aircraft; however, it could be deployed on other similarly equipped aircraft. The pod-based configuration occupies minimum cabin space and maximizes scan coverage. The radar system is capable of collecting observations in a staring mode between zenith and nadir or in a scanning mode. Standard pulse-pair estimates of moments and raw time series of backscattered signals are recorded. The radar system design and characteristics, as well as techniques for calibrating reflectivity and correcting Doppler velocity for aircraft attitude and motion are described. The radar can alternatively be deployed in a ground-based configuration, housed in the 20 ft shipping container it shares with the High Spectral Resolution Lidar (HSRL). The radar was tested both on the ground and in flight. Preliminary measurements of Doppler and polarization measurements were collected and examples are presented.

  11. A wing pod-based millimeter wavelength airborne cloud radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Ellis, S.; Tsai, P.; Loew, E.; Lee, W.-C.; Emmett, J.; Dixon, M.; Burghart, C.; Rauenbuehler, S.

    2015-08-01

    This paper describes a novel, airborne pod-based millimeter (mm) wavelength radar. Its frequency of operation is 94 GHz (3 mm wavelength). The radar has been designed to fly on the NCAR Gulfstream V HIAPER aircraft; however, it could be deployed on other similarly equipped aircraft. The pod-based configuration occupies minimum cabin space and maximizes scan coverage. The radar system is capable of collecting observations in a staring mode between zenith and nadir or in a scanning mode. Standard pulse-pair estimates of moments and raw time series of backscattered signals are recorded. The radar system design and characteristics as well as techniques for calibrating reflectivity and correcting Doppler velocity for aircraft attitude and motion are described. The radar can alternatively be deployed in a ground-based configuration, housed in the 20 ft shipping container it shares with the High Spectral Resolution Lidar (HSRL). The radar was tested both on the ground and in flight. Preliminary measurements of Doppler and polarization measurements were collected and examples are presented.

  12. Airborne Doppler radar detection of low altitude windshear

    NASA Technical Reports Server (NTRS)

    Bracalente, Emedio M.; Jones, William R.; Britt, Charles L.

    1990-01-01

    As part of an integrated windshear program, the Federal Aviation Administration, jointly with NASA, is sponsoring a research effort to develop airborne sensor technology for the detection of low altitude windshear during aircraft take-off and landing. One sensor being considered is microwave Doppler radar operating at X-band or above. Using a Microburst/Clutter/Radar simulation program, a preliminary feasibility study was conducted to assess the performance of Doppler radars for this application. Preliminary results from this study are presented. Analysis show, that using bin-to-bin Automatic Gain Control (AGC), clutter filtering, limited detection range, and suitable antenna tilt management, windshear from a wet microburst can be accurately detected 10 to 65 seconds (.75 to 5 km) in front of the aircraft. Although a performance improvement can be obtained at higher frequency, the baseline X-band system that was simulated detected the presence of a windshear hazard for the dry microburst. Although this study indicates the feasibility of using an airborne Doppler radar to detect low altitude microburst windshear, further detailed studies, including future flight experiments, will be required to completely characterize the capabilities and limitations.

  13. Ground clutter measurements using the NASA airborne doppler radar: Description of clutter at the Denver and Philadelphia airports

    NASA Technical Reports Server (NTRS)

    Harrah, Steven D.; Delnore, Victor E.; Goodrich, Michael S.; Vonhagel, Chris

    1992-01-01

    Detection of hazardous wind shears from an airborne platform, using commercial sized radar hardware, has been debated and researched for several years. The primary concern has been the requirement for 'look-down' capability in a Doppler radar during the approach and landing phases of flight. During 'look-down' operation, the received signal (weather signature) will be corrupted by ground clutter returns. Ground clutter at and around urban airports can have large values of Normalized Radar Cross Section (NRCS) producing clutter returns which could saturate the radar's receiver, thus disabling the radar entirely, or at least from its intended function. The purpose of this research was to investigate the NRCS levels in an airport environment (scene), and to characterize the NRCS distribution across a variety of radar parameters. These results are also compared to results of a similar study using Synthetic Aperture Radar (SAR) images of the same scenes. This was necessary in order to quantify and characterize the differences and similarities between results derived from the real-aperature system flown on the NASA 737 aircraft and parametric studies which have previously been performed using the NASA airborne radar simulation program.

  14. Analysis and improved design considerations for airborne pulse Doppler radar signal processing in the detection of hazardous windshear

    NASA Technical Reports Server (NTRS)

    Lee, Jonggil

    1990-01-01

    High resolution windspeed profile measurements are needed to provide reliable detection of hazardous low altitude windshear with an airborne pulse Doppler radar. The system phase noise in a Doppler weather radar may degrade the spectrum moment estimation quality and the clutter cancellation capability which are important in windshear detection. Also the bias due to weather return Doppler spectrum skewness may cause large errors in pulse pair spectral parameter estimates. These effects are analyzed for the improvement of an airborne Doppler weather radar signal processing design. A method is presented for the direct measurement of windspeed gradient using low pulse repetition frequency (PRF) radar. This spatial gradient is essential in obtaining the windshear hazard index. As an alternative, the modified Prony method is suggested as a spectrum mode estimator for both the clutter and weather signal. Estimation of Doppler spectrum modes may provide the desired windshear hazard information without the need of any preliminary processing requirement such as clutter filtering. The results obtained by processing a NASA simulation model output support consideration of mode identification as one component of a windshear detection algorithm.

  15. Comparison Between Radar and Automatic Weather Station Refractivity Variability

    NASA Astrophysics Data System (ADS)

    Hallali, Ruben; Dalaudier, Francis; Parent du Chatelet, Jacques

    2016-08-01

    Weather radars measure changes in the refractive index of air in the atmospheric boundary layer. The technique uses the phase of signals from ground targets located around the radar to provide information on atmospheric refractivity related to meteorological quantities such as temperature, pressure and humidity. The approach has been successfully implemented during several field campaigns using operational S-band radars in Canada, UK, USA and France. In order to better characterize the origins of errors, a recent study has simulated temporal variations of refractivity based on Automatic Weather Station (AWS) measurements. This reveals a stronger variability of the refractivity during the summer and in the afternoon when the refractivity is the most sensitive to humidity, probably because of turbulence close to the ground. This raises the possibility of retrieving information on the turbulent state of the atmosphere from the variability in radar refractivity. An analysis based on a 1-year dataset from the operational C-band radar at Trappes (near Paris, France) and AWS refractivity variability measurements was used to measure those temporal and spatial variabilities. Particularly during summer, a negative bias increasing with range is observed between radar and AWS estimations, and is well explained by a model based on Taylor's hypotheses. The results demonstrate the possibility of establishing, depending on season, a quantitative and qualitative link between radar and AWS refractivity variability that reflects low-level coherent turbulent structures.

  16. Comparison Between Radar and Automatic Weather Station Refractivity Variability

    NASA Astrophysics Data System (ADS)

    Hallali, Ruben; Dalaudier, Francis; Parent du Chatelet, Jacques

    2016-03-01

    Weather radars measure changes in the refractive index of air in the atmospheric boundary layer. The technique uses the phase of signals from ground targets located around the radar to provide information on atmospheric refractivity related to meteorological quantities such as temperature, pressure and humidity. The approach has been successfully implemented during several field campaigns using operational S-band radars in Canada, UK, USA and France. In order to better characterize the origins of errors, a recent study has simulated temporal variations of refractivity based on Automatic Weather Station (AWS) measurements. This reveals a stronger variability of the refractivity during the summer and in the afternoon when the refractivity is the most sensitive to humidity, probably because of turbulence close to the ground. This raises the possibility of retrieving information on the turbulent state of the atmosphere from the variability in radar refractivity. An analysis based on a 1-year dataset from the operational C-band radar at Trappes (near Paris, France) and AWS refractivity variability measurements was used to measure those temporal and spatial variabilities. Particularly during summer, a negative bias increasing with range is observed between radar and AWS estimations, and is well explained by a model based on Taylor's hypotheses. The results demonstrate the possibility of establishing, depending on season, a quantitative and qualitative link between radar and AWS refractivity variability that reflects low-level coherent turbulent structures.

  17. Airborne radar technology for windshear detection

    NASA Technical Reports Server (NTRS)

    Hibey, Joseph L.; Khalaf, Camille S.

    1988-01-01

    The objectives and accomplishments of the two-and-a-half year effort to describe how returns from on-board Doppler radar are to be used to detect the presence of a wind shear are reported. The problem is modeled as one of first passage in terms of state variables, the state estimates are generated by a bank of extended Kalman filters working in parallel, and the decision strategy involves the use of a voting algorithm for a series of likelihood ratio tests. The performance issue for filtering is addressed in terms of error-covariance reduction and filter divergence, and the performance issue for detection is addressed in terms of using a probability measure transformation to derive theoretical expressions for the error probabilities of a false alarm and a miss.

  18. Comparison of retracking algorithms using airborne radar and laser altimeter measurements of the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Ferraro, Ellen J.; Swift, Calvin T.

    1995-05-01

    In 1991, NASA conducted a multisensor airborne altimetry experiment over the Greenland ice sheet. The experiment consisted of ten flights. Four types of radar altimeter retracking algorithms which include the Advanced Application Flight Experiment (AAFE) Ku-band altimeter, the NASA Airborne Oceanographic Lidar (AOL), the NASA Airborne Terrain Laser Altimeter System (ATLAS) and the NASA Ka-band Surface Contour Radar (SCR) were used. In this paper, these four continental ice sheet radar altimeter tracking algorithms were compared.

  19. ASSIMILATION OF DOPPLER RADAR DATA INTO NUMERICAL WEATHER MODELS

    SciTech Connect

    Chiswell, S.; Buckley, R.

    2009-01-15

    During the year 2008, the United States National Weather Service (NWS) completed an eight fold increase in sampling capability for weather radars to 250 m resolution. This increase is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current NWS operational model domains utilize grid spacing an order of magnitude larger than the radar data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of radar reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution was investigated under a Laboratory Directed Research and Development (LDRD) 'quick hit' grant to determine the impact of improved data resolution on model predictions with specific initial proof of concept application to daily Savannah River Site operations and emergency response. Development of software to process NWS radar reflectivity and radial velocity data was undertaken for assimilation of observations into numerical models. Data values within the radar data volume undergo automated quality control (QC) analysis routines developed in support of this project to eliminate empty/missing data points, decrease anomalous propagation values, and determine error thresholds by utilizing the calculated variances among data values. The Weather Research and Forecasting model (WRF) three dimensional variational data assimilation package (WRF-3DVAR) was used to incorporate the QC'ed radar data into input and boundary conditions. The lack of observational data in the vicinity of SRS available to NWS operational models signifies an important data void where radar observations can provide significant input. These observations greatly enhance the knowledge of storm structures and the environmental conditions which influence their development. As the increase in computational power and availability has made higher

  20. Doppler weather radar with predictive wind shear detection capabilities

    NASA Technical Reports Server (NTRS)

    Kuntman, Daryal

    1991-01-01

    The status of Bendix research on Doppler weather radar with predictive wind shear detection capability is given in viewgraph form. Information is given on the RDR-4A, a fully coherent, solid state transmitter having Doppler turbulence capability. Frequency generation data, plans, modifications, system characteristics and certification requirements are covered.

  1. Observations of Florida Convective Storms using Dual Wavelength Airborne Radar

    NASA Technical Reports Server (NTRS)

    Heymsfield, G. M.; Heymsfield, A. J.; Belcher, L.

    2004-01-01

    NASA conducted the Cirrus Regional Study of Tropical Anvils and Cirrus Layers (CRYSTAL) Florida Area Cirrus Experiment (FACE) during July 2002 for improved understanding of tropical cirrus. One of the goals was to improve the understanding of cirrus generation by convective updrafts. The reasons why some convective storms produce extensive cirrus anvils is only partially related to convective instability and the vertical transport ice mass by updrafts. Convective microphysics must also have an important role on cirrus generation, for example, there are hypotheses that homogeneous nucleation in convective updrafts is a major source of anvil ice particles. In this paper, we report on one intense CRYSTAL-FACE convective case on 16 July 2002 that produced extensive anvil. During CRYSTAL-FACE, up to 5 aircraft flying from low- to high-altitudes, were coordinated for the study of thunderstorm-generated cirrus. The NASA high-altitude (20 km) ER-2 aircraft with remote sensing objectives flew above the convection, and other aircraft such as the WB-57 performing in situ measurements flew below the ER-2. The ER-2 remote sensing instruments included two nadir viewing airborne radars. The CRS 94 GHz radar and the EDOP 9.6 GHz radar were flown together for the first time during CRYSTAL-FACE and they provided a unique opportunity to examine the structure of 16 July case from a dual-wavelength perspective. EDOP and CRS are complementary for studying convection and cirrus since CRS is more sensitive than EDOP for cirrus, and EDOP is considerably less attenuating in convective regions. In addition to the aircraft, coordinated ground-based radar measurements were taken with the NPOL S-Band (3 GHz) multiparameter radar. One of the initial goals was to determine whether dual-wavelength airborne measurements could identify supercooled water regions.

  2. Remote Sensing of Snow-covered Sea Ice with Ultra-wideband Airborne Radars

    NASA Astrophysics Data System (ADS)

    Yan, S.; Gogineni, P. S.; Gomez-Garcia, D.; Leuschen, C.; Hale, R.; Rodriguez-Morales, F.; Paden, J. D.; Li, J.

    2015-12-01

    The extent and thickness of sea ice and snow play a critical role in the Earth's climate system. Both sea ice and snow have high albedo and control the heat exchange between the atmosphere and ocean and atmosphere and land. In terms of hydrology, the presence of sea ice and snow modulates the flow and the salinity of ocean water. This in turn can modify the weather patterns around the globe. Understanding the formation, coverage and the properties of sea ice and snow are important for both short-term and long-term climate modeling. The advancements in high-frequency electronics and digital signal processing enabled the development of ultra-wideband radars by the Center for Remote Sensing of Ice Sheets (CReSIS) for airborne measurements of snow and ice properties over large areas. CReSIS recently developed and deployed two ultra-wideband airborne radars, namely the Multichannel Coherent Radar Depth Sounder/Imager (MCoRDS/I) and the Snow Radar. The MCoRDS/I is designed to operate over the frequency range of 180-450 MHz for sounding land ice and imaging its ice-bed interface. We also took advantage of the deployment to explore the potential of UWB MCoRDS/I in sounding sea ice and collected data on flight lines flown as part of NASA Operation IceBridge mission during Spring 2015. Preliminary results show we sounded sea ice under favorable conditions. We will perform detailed processing and analysis of data over the next few months and we will compare results obtained are compared with existing altimetry-derived data products. The new snow radar, on the other hand, operating from 2 to 18 GHz, was deployed on the NRL Twin Otter aircraft in Barrow, AK. It was shown to have a vertical resolution of down to 1.5 cm which opens up the potential for thin snow measurement on both sea ice and land. Both of these new radars will be further optimized for future airborne missions to demonstrate their capabilities for sea ice and snow measurements. We will also show new technical

  3. Radar Scan Strategies for the Patrick Air Force Base Weather Surveillance Radar, Model-74C, Replacement

    NASA Technical Reports Server (NTRS)

    Short, David

    2008-01-01

    The 45th Weather Squadron (45 WS) is replacing the Weather Surveillance Radar, Model 74C (WSR-74C) at Patrick Air Force Base (PAFB), with a Doppler, dual polarization radar, the Radtec 43/250. A new scan strategy is needed for the Radtec 43/250, to provide high vertical resolution data over the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) launch pads, while taking advantage of the new radar's advanced capabilities for detecting severe weather phenomena associated with convection within the 45 WS area of responsibility. The Applied Meteorology Unit (AMU) developed several scan strategies customized for the operational needs of the 45 WS. The AMU also developed a plan for evaluating the scan strategies in the period prior to operational acceptance, currently scheduled for November 2008.

  4. The NASA/JPL Airborne Synthetic Aperture Radar System

    NASA Technical Reports Server (NTRS)

    Kim, Yun-Jin; Lou, Yun-Ling; vanZyl, Jakob

    1996-01-01

    The NASA/JPL airborne SAR (AIRSAR) system operates in the fully polarimetric mode at P-, L- and C-band simultaneously or in the interferometric mode in both L- and C-band simultaneously. The system became operational in late 1987 and flew its first mission aboard a DC-8 aircraft operated by NASA's Ames Research Center in Mountain View, California. Since then, the AIRSAR has flown missions every year and acquired images in North, Central and South America, Europe and Australia. In this paper, we will briefly describe the instrument characteristics, the evolution of the various radar modes, the instrument performance, and improvement in the knowledge of the positioning and attitude information of the radar. In addition, we will summarize the progress of the data processing effort especially in the interferometry processing. Finally, we will address the issue of processing and calibrating the cross-track interferometry (XTI) data.

  5. Algorithms for airborne Doppler radar wind shear detection

    NASA Technical Reports Server (NTRS)

    Gillberg, Jeff; Pockrandt, Mitch; Symosek, Peter; Benser, Earl T.

    1992-01-01

    Honeywell has developed algorithms for the detection of wind shear/microburst using airborne Doppler radar. The Honeywell algorithms use three dimensional pattern recognition techniques and the selection of an associated scanning pattern forward of the aircraft. This 'volumetric scan' approach acquires reflectivity, velocity, and spectral width from a three dimensional volume as opposed to the conventional use of a two dimensional azimuthal slice of data at a fixed elevation. The algorithm approach is based on detection and classification of velocity patterns which are indicative of microburst phenomenon while minimizing the false alarms due to ground clutter return. Simulation studies of microburst phenomenon and x-band radar interaction with the microburst have been performed and results of that study are presented. Algorithm performance indetection of both 'wet' and 'dry' microbursts is presented.

  6. Airborne Radar Observations of Severe Hailstorms: Implications for Future Spaceborne Radar

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; McLinden, Matthew; Cervantes, Jaime I.

    2013-01-01

    A new dual-frequency (Ku and Ka band) nadir-pointing Doppler radar on the high-altitude NASA ER-2 aircraft, called the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), has collected data over severe thunderstorms in Oklahoma and Kansas during the Midlatitude Continental Convective Clouds Experiment (MC3E). The overarching motivation for this study is to understand the behavior of the dualwavelength airborne radar measurements in a global variety of thunderstorms and how these may relate to future spaceborne-radar measurements. HIWRAP is operated at frequencies that are similar to those of the precipitation radar on the Tropical Rainfall Measuring Mission (Ku band) and the upcoming Global Precipitation Measurement mission satellite's dual-frequency (Ku and Ka bands) precipitation radar. The aircraft measurements of strong hailstorms have been combined with ground-based polarimetric measurements to obtain a better understanding of the response of the Ku- and Ka-band radar to the vertical distribution of the hydrometeors, including hail. Data from two flight lines on 24 May 2011 are presented. Doppler velocities were approx. 39m/s2at 10.7-km altitude from the first flight line early on 24 May, and the lower value of approx. 25m/s on a second flight line later in the day. Vertical motions estimated using a fall speed estimate for large graupel and hail suggested that the first storm had an updraft that possibly exceeded 60m/s for the more intense part of the storm. This large updraft speed along with reports of 5-cm hail at the surface, reflectivities reaching 70 dBZ at S band in the storm cores, and hail signals from polarimetric data provide a highly challenging situation for spaceborne-radar measurements in intense convective systems. The Ku- and Ka-band reflectivities rarely exceed approx. 47 and approx. 37 dBZ, respectively, in these storms.

  7. Using TRMM and GPM precipitation radar for calibration of weather radars in the Philippines

    NASA Astrophysics Data System (ADS)

    Crisologo, Irene; Bookhagen, Bodo; Smith, Taylor; Heistermann, Maik

    2016-04-01

    Torrential and sustained rainfall from tropical cyclones, monsoons, and thunderstorms frequently impact the Philippines. In order to predict, assess, and measure storm impact, it is imperative to have a reliable and accurate monitoring system in place. In 2011, the Philippine Atmospheric, Geophysical, and Astronomical Services Administration (PAGASA) established a weather radar network of ten radar devices, eight of which are single-polarization S-band radars and two dual-polarization C-band radars. Because of a low-density hydrometeorological monitoring networks in the Philippines, calibration of weather radars becomes a challenging, but important task. In this study, we explore the potential of scrutinizing the calibration of ground radars by using the observations from the Tropical Rainfall Measuring Mission (TRMM). For this purpose, we compare different TRMM level 1 and 2 orbital products from overpasses over the Philippines, and compare these products to reflectivities observed by the Philippine ground radars. Differences in spatial resolution are addressed by computing adequate zonal statistics of the local radar bins located within the corresponding TRMM cell in space and time. The wradlib package (Heistermann et al. 2013; Heistermann et al. 2015) is used to process the data from the Subic S-band single-polarization weather radar. These data will be analyzed in conjunction with TRMM data for June to August 2012, three months of the wet season. This period includes the enhanced monsoon of 2012, locally called Habagat 2012, which brought sustained intense rainfall and massive floods in several parts of the country including the most populated city of Metro Manila. References Heistermann, M., Jacobi, S., Pfaff, T. (2013): Technical Note: An open source library for processing weather radar data (wradlib). Hydrol. Earth Syst. Sci., 17, 863-871, doi: 10.5194/hess-17-863-2013. Heistermann, M., S. Collis, M. J. Dixon, S. Giangrande, J. J. Helmus, B. Kelley, J

  8. Beam Propagator for Weather Radars, Modules 1 and 2

    2013-10-08

    This program simulates the beam propagation of weather radar pulses under particular and realistic atmospheric conditions (without using the assumption of standard refraction conditions). It consists of two modules: radiosondings_refract_index_many.pro (MAIN MODULE) beam_propagation_function.pro(EXTERNAL FUNCTION) FOR THE MAIN MODULE, THE CODE DOES OUTPUT--INTO A FILE--THE BEAM HEIGHT AS A FUNCTION OF RANGE. THE RADIOSONDE INPUT FILES SHOULD BE ALREADY AVAILABLE BY THE USER. FOR EXAMPLE, RADIOSONDE OBSERVATION FILES CAN BE OBTAINED AT: RADIOSONDE OBSERVATIONS DOWNLOADED ATmore » "http://weather.uwyo.edu/upperair/soounding.html" OR "http://jervis.pyr.ec.gc.ca" THE EXTERNAL FUNCTION DOES THE ACTUAL COMPUTATION OF BEAM PROPAGATION. IT INCLUDES CONDITIONS OF ANOMALOUS PROPAGATION AND NEGATIVE ELEVATION ANGLES. THE EQUATIONS USED HERE WERE DERIVED BY EDWIN CAMPOS, BASED ON THE SNELL-DESCARTES LAW OF REFRACTION, CONSIDERING THE EARTH CURVATURE. THE PROGRAM REQUIRES A COMPILER FOR THE INTERACTIVE DATA LANGUAGE (IDL). DESCRIPTION AND VALIDATION DETAILS HAVE BEEN PUBLISHED IN THE PEER-REVIEWED SCIENTIFIC LITERATURE, AS FOLLOWS: Campos E. 2012. Estimating weather radar coverage over complex terrain, pp.26-32, peer reviewed, in Weather Radar and Hydrology, edited by Moore RJ, Cole SJ and Illingworth AJ. International Association of Hydrological Sciences (IAHS) Press, IAHS Publ. 351. ISBN 978-1-907161-26-1.« less

  9. Beam Propagator for Weather Radars, Modules 1 and 2

    SciTech Connect

    Ortega, Edwin Campos

    2013-10-08

    This program simulates the beam propagation of weather radar pulses under particular and realistic atmospheric conditions (without using the assumption of standard refraction conditions). It consists of two modules: radiosondings_refract_index_many.pro (MAIN MODULE) beam_propagation_function.pro(EXTERNAL FUNCTION) FOR THE MAIN MODULE, THE CODE DOES OUTPUT--INTO A FILE--THE BEAM HEIGHT AS A FUNCTION OF RANGE. THE RADIOSONDE INPUT FILES SHOULD BE ALREADY AVAILABLE BY THE USER. FOR EXAMPLE, RADIOSONDE OBSERVATION FILES CAN BE OBTAINED AT: RADIOSONDE OBSERVATIONS DOWNLOADED AT "http://weather.uwyo.edu/upperair/soounding.html" OR "http://jervis.pyr.ec.gc.ca" THE EXTERNAL FUNCTION DOES THE ACTUAL COMPUTATION OF BEAM PROPAGATION. IT INCLUDES CONDITIONS OF ANOMALOUS PROPAGATION AND NEGATIVE ELEVATION ANGLES. THE EQUATIONS USED HERE WERE DERIVED BY EDWIN CAMPOS, BASED ON THE SNELL-DESCARTES LAW OF REFRACTION, CONSIDERING THE EARTH CURVATURE. THE PROGRAM REQUIRES A COMPILER FOR THE INTERACTIVE DATA LANGUAGE (IDL). DESCRIPTION AND VALIDATION DETAILS HAVE BEEN PUBLISHED IN THE PEER-REVIEWED SCIENTIFIC LITERATURE, AS FOLLOWS: Campos E. 2012. Estimating weather radar coverage over complex terrain, pp.26-32, peer reviewed, in Weather Radar and Hydrology, edited by Moore RJ, Cole SJ and Illingworth AJ. International Association of Hydrological Sciences (IAHS) Press, IAHS Publ. 351. ISBN 978-1-907161-26-1.

  10. Probing Shallow Aquifers in Northern Kuwait Using Airborne Sounding Radars

    NASA Astrophysics Data System (ADS)

    Heggy, E.; Fadlelmawla, A.; Farr, T. G.; Al-Rashed, M.

    2011-12-01

    Most of the global warming observations, scientific interest and data analyses have concentrated on the earth Polar Regions and forested areas, as they provide direct measurable impacts of large scale environmental changes. Unfortunately, the arid environments, which represent ~20% of the earth surface, have remained poorly studied. Yet water rarity and freshness, drastic changes in rainfall, flash floods, high rates of aquifer discharge and an accelerated large-scale desertification process are all alarming signs that suggest a substantial large-scale climatic variation in those areas that can be correlated to the global change that is affecting the volatile dynamic in arid zones. Unfortunately the correlations, forcings and feedbacks between the relevant processes (precipitation, surface fresh water, aquifer discharge, sea water rise and desertification) in these zones remain poorly observed, modeled, let alone understood. Currently, local studies are often oriented toward understanding small-scale or regional water resources and neither benefit from nor feedback to the global monitoring of water vapor, precipitation and soil moisture in arid and semi-arid areas. Furthermore techniques to explore deep subsurface water on a large scale in desertic environments remain poorly developed making current understanding of earth paleo-environment, water assessment and exploration efforts poorly productive and out-phased with current and future needs to quantitatively understand the evolution of earth water balance. To address those deficiencies we performed a comprehensive test mapping of shallow subsurface hydro-geological structures in the western Arabic peninsula in Kuwait, using airborne low frequency sounding radars with the main objectives to characterize shallow fossil aquifers in term of depth, sizes and water freshness. In May 2011, an experimental airborne radar sounder operating at 50 MHz was deployed in Kuwait and demonstrated an ability to penetrate down to

  11. wradlib - An Open Source Library for Weather Radar Data Processing

    NASA Astrophysics Data System (ADS)

    Heistermann, M.; Pfaff, Th.; Jacobi, S.

    2012-04-01

    Weather radar data is potentially useful in meteorology, hydrology, disaster prevention and mitigation. Its ability to provide information on precipitation with high spatial and temporal resolution over large areas makes it an invaluable tool for short term weather forecasting or flash flood forecasting. The indirect method of measuring the precipitation field, however, leads to a significant number of data artifacts, which usually must be removed or dealt with before the data can be used with acceptable quality. Data processing requires e.g. the transformation of measurements from polar to cartesian coordinates and from reflectivity to rainfall intensity, the composition of data from several radar sites in a common grid, clutter identification and removal, attenuation and VPR corrections, gauge adjustment and visualization. The complexity of these processing steps is a major obstacle for many potential users in science and practice. Adequate tools are available either only at significant costs with no access to the uncerlying source code, or they are incomplete, insufficiently documented and intransparent. The wradlib project has been initiated in order to lower the barrier for potential users of weather radar data in the geosciences and to provide a common platform for research on new algorithms. wradlib is an open source library for the full range of weather radar related processing algorithms, which is well documented and easy to use. The main parts of the library are currently implemented in the python programming language. Python is well known both for its ease of use as well as its ability to integrate code written in other programming languages like Fortran or C/C++. The well established Numpy and Scipy packages are used to provide decent performance for pure Python implementations of algorithms. We welcome contributions written in any computer language and will try to make them accessible from Python. We would like to present the current state of this

  12. Characterizing Subglacial Interfaces With Airborne Radar Sounding Techniques

    NASA Astrophysics Data System (ADS)

    Peters, M. E.; Blankenship, D. D.; Morse, D. L.

    2004-12-01

    Ice sheets are sensitive indicators of global change including sea-level rise. An ice sheet's subglacial interface is an important factor controlling its dynamic behavior. In particular, the grounding zones of ice streams and subglacial lakes are complex systems involving the interaction of the moving ice mass with underlying materials such as liquid water, saturated lubricating tills, and rough or frozen bedrock sticky spots. Imaging and characterizing the subglacial environment of ice sheets is fundamental to understanding these complex systems. Airborne radar sounding is a powerful and well-known technique for studying ice sheets and glaciers and their contiguous underlying environments. We present results from data acquired in 2001 over the ice stream C grounding zone in West Antarctica, as well as over a hypothesized subglacial lake near the South Pole. These data were acquired using a uniquely configured coherent airborne radar system. Our focus has been to characterize the subglacial interface through radar echo analysis based on reflection and scattering theory. The radar system uses a programmable signal source linked to a 10 kW transmitter and a dual-channel coherent down-conversion receiver. The radar operates in chirped pulse mode at 60 MHz with 15 MHz bandwidth. High and low-gain channels allow for recording a wide dynamic range of echoes simultaneously and without range-dependent gain control. Data acquisition includes integrations of 16 returned radar signals about every 15 cm along-track. Pulse compression and synthetic aperture radar (SAR) processing were components of data analysis. Subglacial echoes are influenced by the physical properties of the interface such as the composition and roughness of the materials at the interface. Other important factors include dielectric losses and volumetric scattering losses from propagation through the ice as well as transmission and refraction at the air-ice interface. Unfocussed SAR narrows the along

  13. Recent Airborne Radar Depth Sounding of Recovery Glacier

    NASA Astrophysics Data System (ADS)

    Li, Jilu; Gogineni, Sivaprasad; Yan, Stephen; Mahmood, Ali; Awasthi, Abhishek; Rodriguez-Morales, Fernando

    2015-04-01

    Recovery Glacier in East Antarctica drains a large volume of ice into Filchner Ice Shelf towards Weddell Sea. The existence of several subglacial lakes beneath the channel has been speculated based on satellite observations of elevation changes on the ice surface. Because of its important role in East Antarctic ice mass balance and its unique function in the ice-flow dynamics of Recovery Ice Stream, two NASA Operation IceBridge (OIB) missions have been flown over Recovery Glacier, the first in October 2012 and the second in October 2014. The airborne radar depth sounder (RDS) data collected during these two missions by the Center for Remote Sensing of Ice Sheets (CReSIS) Multi-channel Coherent Radar Depth Sounder/Imager (MCoRDS/I) have revealed both the presence of a very deep channel and its complex shape, data that contribute to the study of the ice-flow dynamics of the glacier and estimations of its mass balance. In this paper, we will report the results of measurements collected during the 2014 Antarctica DC-8 mission for OIB. Data were collected using an improved version of the CReSIS MCoRDS/I. We increased transmit power to each element of the transmit-array from about 200 W to 1000 W and increased the chirp bandwidth to 50 MHz, compared to 9.5 MHz used in earlier OIB missions. These improvements have led to a more complete mapping of the deepest part of the channel, which is more than 3.7 km deep, and fine-resolution mapping of internal layers. Our preliminary analysis of radar echoes does not indicate the presence of water or a wet surface in subglacier lakes. This paper presents an overview of the radar system, results from our recent measurements, and analysis of these results.

  14. Development of High Altitude UAV Weather Radars for Hurricane Research

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald; Li, Li-Hua

    2005-01-01

    A proposed effort within NASA called (ASHE) over the past few years was aimed at studying the genesis of tropical disturbances off the east coast of Africa. This effort was focused on using an instrumented Global Hawk UAV with high altitude (%Ok ft) and long duration (30 h) capability. While the Global Hawk availability remains uncertain, development of two relevant instruments, a Doppler radar (URAD - UAV Radar) and a backscatter lidar (CPL-UAV - Cloud Physics Lidar), are in progress. The radar to be discussed here is based on two previous high-altitude, autonomously operating radars on the NASA ER-2 aircraft, the ER-2 Doppler Radar (EDOP) at X-band (9.6 GHz), and the Cloud Radar System (CRS) at W- band (94 GHz). The nadir-pointing EDOP and CRS radars profile vertical reflectivity structure and vertical Doppler winds in precipitation and clouds, respectively. EDOP has flown in all of the CAMEX flight series to study hurricanes over storms such as Hurricanes Bonnie, Humberto, Georges, Erin, and TS Chantal. These radars were developed at Goddard over the last decade and have been used for satellite algorithm development and validation (TRMM and Cloudsat), and for hurricane and convective storm research. We describe here the development of URAD that will measure wind and reflectivity in hurricanes and other weather systems from a top down, high-altitude view. URAD for the Global Hawk consists of two subsystems both of which are at X-band (9.3-9.6 GHz) and Doppler: a nadir fixed-beam Doppler radar for vertical motion and precipitation measurement, and a Conical scanning radar for horizontal winds in cloud and at the surface, and precipitation structure. These radars are being designed with size, weight, and power consumption suitable for the Global Hawk and other UAV's. The nadir radar uses a magnetron transmitter and the scanning radar uses a TWT transmitter. With conical scanning of the radar at a 35" incidence angle over an ocean surface in the absence of

  15. Lithological and textural controls on radar and diurnal thermal signatures of weathered volcanic deposits, Lunar Crater region, Nevada

    NASA Technical Reports Server (NTRS)

    Plaut, Jeffrey J.; Rivard, Benoit

    1992-01-01

    Radar backscatter intensity as measured by calibrated synthetic aperture radar (SAR) systems is primarily controlled by three factors: local incidence angle, wavelength-scale roughness, and dielectric permittivity of surface materials. Radar observations may be of limited use for geological investigations of surface composition, unless the relationships between lithology and the above characteristics can be adequately understood. In arid terrains, such as the Southwest U.S., weathering signatures (e.g. soil development, fracturing, debris grain size and shape, and hill slope characteristics) are controlled to some extent by lithologic characteristics of the parent bedrock. These textural features of outcrops and their associated debris will affect radar backscatter to varying degrees, and the multiple-wavelength capability of the JPL Airborne SAR (AIRSAR) system allows sampling of textures at three distinct scales. Diurnal temperature excursions of geologic surfaces are controlled primarily by the thermal inertia of surface materials, which is a measure of the resistance of a material to a change in temperature. Other influences include albedo, surface slopes affecting insolation, local meteorological conditions and surface emissivity at the relevant thermal wavelengths. To first order, thermal inertia variations on arid terrain surfaces result from grain size distribution and porosity differences, at scales ranging from micrometers to tens of meters. Diurnal thermal emission observations, such as those made by the JPL Thermal Infrared Multispectral Scanner (TIMS) airborne instrument, are thus influenced by geometric surface characteristics at scales comparable to those controlling radar backscatter. A preliminary report on a project involving a combination of field, laboratory and remote sensing observations of weathered felsic-to basaltic volcanic rock units exposed in the southern part of the Lunar Crater Volcanic Field, in the Pancake Range of central Nevada is

  16. Charge-coupled device data processor for an airborne imaging radar system

    NASA Technical Reports Server (NTRS)

    Arens, W. E. (Inventor)

    1977-01-01

    Processing of raw analog echo data from synthetic aperture radar receiver into images on board an airborne radar platform is discussed. Processing is made feasible by utilizing charge-coupled devices (CCD). CCD circuits are utilized to perform input sampling, presumming, range correlation and azimuth correlation in the analog domain. These radar data processing functions are implemented for single-look or multiple-look imaging radar systems.

  17. Simulation of multistatic and backscattering cross sections for airborne radar

    NASA Astrophysics Data System (ADS)

    Biggs, Albert W.

    1986-07-01

    In order to determine susceptibilities of airborne radar to electronic countermeasures and electronic counter-countermeasures simulations of multistatic and backscattering cross sections were developed as digital modules in the form of algorithms. Cross section algorithms are described for prolate (cigar shape) and oblate (disk shape) spheroids. Backscattering cross section algorithms are also described for different categories of terrain. Backscattering cross section computer programs were written for terrain categorized as vegetation, sea ice, glacial ice, geological (rocks, sand, hills, etc.), oceans, man-made structures, and water bodies. PROGRAM SIGTERRA is a file for backscattering cross section modules of terrain (TERRA) such as vegetation (AGCROP), oceans (OCEAN), Arctic sea ice (SEAICE), glacial snow (GLASNO), geological structures (GEOL), man-made structures (MAMMAD), or water bodies (WATER). AGCROP describes agricultural crops, trees or forests, prairies or grassland, and shrubs or bush cover. OCEAN has the SLAR or SAR looking downwind, upwind, and crosswind at the ocean surface. SEAICE looks at winter ice and old or polar ice. GLASNO is divided into a glacial ice and snow or snowfields. MANMAD includes buildings, houses, roads, railroad tracks, airfields and hangars, telephone and power lines, barges, trucks, trains, and automobiles. WATER has lakes, rivers, canals, and swamps. PROGRAM SIGAIR is a similar file for airborne targets such as prolate and oblate spheroids.

  18. Studies of ice clouds using 95 GHz airborne radar

    NASA Astrophysics Data System (ADS)

    Wolde, Mengistu Yirdaw

    2000-12-01

    This study presents results from analyses of 95 GHz airborne polarimetric radar measurements and other in situ data in a variety of ice clouds. Measurements were made in winter clouds over Wyoming and Colorado. Radar parameters analyzed were the differential reflectivity factor (ZDR) and the linear depolarization ratio (LDR). Examination of the specific signatures for different crystal forms, and the dependence of the signatures on beam angle, led to a diagnostic matrix in terms ZDR and LDR values. Planar crystals, columnar crystals, and melting particles can be differentiated based on combined ZDR and LDR measurements at various radar elevation angles. Unique LDR signatures were also observed in Cu con. clouds containing large graupel particles and high concentrations of small particles. It is also shown that among planar crystals P1a and P1d types can be differentiated from P1e types. Overall, the frequencies of occurrence of significant polarimetric signatures were only few percent in the cloud volumes examined, but can approach near 100% in certain clouds. Polarimetric signatures were found to be most frequent in the temperature interval -10 to -18°C due to plate-like crystals growing there. The presence of significant polarimetric signatures is associated with the absence of riming and provides a means of identifying cloud regions where diffusional crystal growth dominates. In the second part of the dissertation, cloud structure and crystal growth in Ns clouds sampled in Wyoming and Oregon are presented. In spite of differences in location and time, the two Ns data sets have shown similar features. In both cases, generating cells were present near cloud top and the melting layer was well defined in the radar images. Thin dry layers just above the melting layer were also observed in both cases. In accordance with earlier studies, particle spectra in these clouds are adequately described by exponential relationships. The slope and intercept parameters of the

  19. Image processing for hazard recognition in on-board weather radar

    NASA Technical Reports Server (NTRS)

    Kelly, Wallace E. (Inventor); Rand, Timothy W. (Inventor); Uckun, Serdar (Inventor); Ruokangas, Corinne C. (Inventor)

    2003-01-01

    A method of providing weather radar images to a user includes obtaining radar image data corresponding to a weather radar image to be displayed. The radar image data is image processed to identify a feature of the weather radar image which is potentially indicative of a hazardous weather condition. The weather radar image is displayed to the user along with a notification of the existence of the feature which is potentially indicative of the hazardous weather condition. Notification can take the form of textual information regarding the feature, including feature type and proximity information. Notification can also take the form of visually highlighting the feature, for example by forming a visual border around the feature. Other forms of notification can also be used.

  20. Spectrum Modal Analysis for the Detection of Low-Altitude Windshear with Airborne Doppler Radar

    NASA Technical Reports Server (NTRS)

    Kunkel, Matthew W.

    1992-01-01

    A major obstacle in the estimation of windspeed patterns associated with low-altitude windshear with an airborne pulsed Doppler radar system is the presence of strong levels of ground clutter which can strongly bias a windspeed estimate. Typical solutions attempt to remove the clutter energy from the return through clutter rejection filtering. Proposed is a method whereby both the weather and clutter modes present in a return spectrum can be identified to yield an unbiased estimate of the weather mode without the need for clutter rejection filtering. An attempt will be made to show that modeling through a second order extended Prony approach is sufficient for the identification of the weather mode. A pattern recognition approach to windspeed estimation from the identified modes is derived and applied to both simulated and actual flight data. Comparisons between windspeed estimates derived from modal analysis and the pulse-pair estimator are included as well as associated hazard factors. Also included is a computationally attractive method for estimating windspeeds directly from the coefficients of a second-order autoregressive model. Extensions and recommendations for further study are included.

  1. 78 FR 19063 - Airworthiness Approval for Aircraft Forward-Looking Windshear and Turbulence Radar Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ..., Airborne Weather Radar Equipment. The objective is to leverage the installation specific guidance from the... previously addressed as additional functionality added to TSO-C63c, Airborne Weather and Ground...

  2. MARA (Multimode Airborne Radar Altimeter) system documentation. Volume 1: MARA system requirements document

    NASA Technical Reports Server (NTRS)

    Parsons, C. L. (Editor)

    1989-01-01

    The Multimode Airborne Radar Altimeter (MARA), a flexible airborne radar remote sensing facility developed by NASA's Goddard Space Flight Center, is discussed. This volume describes the scientific justification for the development of the instrument and the translation of these scientific requirements into instrument design goals. Values for key instrument parameters are derived to accommodate these goals, and simulations and analytical models are used to estimate the developed system's performance.

  3. Application of vector analysis on study of illuminated area and Doppler characteristics of airborne pulse radar

    NASA Astrophysics Data System (ADS)

    Wang, Haijiang; Yang, Ling

    2014-12-01

    In this paper, the application of vector analysis tool in the illuminated area and the Doppler frequency distribution research for the airborne pulse radar is studied. An important feature of vector analysis is that it can closely combine the geometric ideas with algebraic calculations. Through coordinate transform, the relationship between the frame of radar antenna and the ground, under aircraft motion attitude, is derived. Under the time-space analysis, the overlap area between the footprint of radar beam and the pulse-illuminated zone is obtained. Furthermore, the Doppler frequency expression is successfully deduced. In addition, the Doppler frequency distribution is plotted finally. Using the time-space analysis results, some important parameters of a specified airborne radar system are obtained. Simultaneously, the results are applied to correct the phase error brought by attitude change in airborne synthetic aperture radar (SAR) imaging.

  4. Ice island detection and characterization with airborne synthetic aperture radar

    SciTech Connect

    Jeffries, M.O.; Sackinger, W.M. )

    1990-04-15

    A 1:300,000 scale airborne synthetic aperture radar (SAR) image of an area of the Arctic Ocean adjacent to the Queen Elizabeth Islands, Canadian High Arctic, is examined to determine the number and characteristics of ice islands in the image and to assess the capability of airborne and satellite SAR to detect ice islands. Twelve ice islands have been identified, and their dimensions range from as large as 5.7 km by 8.7 km to as small as 0.15 km by 0.25 km. A significant SAR characteristic of the shelf ice portions of ice islands is a return with a ribbed texture of alternating lighter and darker grey tones resulting from the indulating shelf ice surfaces of the ice islands. The appearance of the ribbed texture varies according to the ice islands' orientation relative to the illumination direction and consequently the incidence angle. Some ice islands also include extensive areas of textureless dark tone attached to the shelf ice. The weak returns correspond to (1) multiyear landfast sea ice that was attached to the front of the Ward Hunt Ice Shelf at the time of calving and which has remained attached since then and (2) multiyear pack ice that has become attached and consolidated since the calving, indicating that ice islands can increase their area and mass significantly as they drift. Ice islands are easily discernible in SAR images and for the future SAR represents a promising technique to obtain a census of ice islands in the Arctic Ocean. However, any SAR-based census probably will be conservative because ice islands smaller than 300-400 m across are likely to remain undetected, particularly in areas of heavy ice ridging which produces strong SAR clutter.

  5. Airborne Synthetic Aperature Radar (AIRSAR) on left rear fuselage of DC-8 Airborne Laboratory

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A view of the Airborne Synthetic Aperature Radar (AIRSAR) antenna on the left rear fuselage of the DC-8. The AIRSAR captures images of the ground from the side of the aircraft and can provide precision digital elevation mapping capabilities for a variety of studies. The AIRSAR is one of a number of research systems that have been added to the DC-8. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  6. wradlib - an Open Source Library for Weather Radar Data Processing

    NASA Astrophysics Data System (ADS)

    Pfaff, Thomas; Heistermann, Maik; Jacobi, Stephan

    2014-05-01

    Even though weather radar holds great promise for the hydrological sciences, offering precipitation estimates with unrivaled spatial and temporal resolution, there are still problems impeding its widespread use, among which are: almost every radar data set comes with a different data format with public reading software being available only rarely. standard products as issued by the meteorological services often do not serve the needs of original research, having either too many or too few corrections applied. Especially when new correction methods are to be developed, researchers are often forced to start from scratch having to implement many corrections in addition to those they are actually interested in. many algorithms published in the literature cannot be recreated using the corresponding article only. Public codes, providing insight into the actual implementation and how an approach deals with possible exceptions are rare. the radial scanning setup of weather radar measurements produces additional challenges, when it comes to visualization or georeferencing of this type of data. Based on these experiences, and in the hope to spare others at least some of these tedious tasks, wradlib offers the results of the author's own efforts and a growing number of community-supplied methods. wradlib is designed as a Python library of functions and classes to assist users in their analysis of weather radar data. It provides solutions for all tasks along a typical processing chain leading from raw reflectivity data to corrected, georeferenced and possibly gauge adjusted quantitative precipitation estimates. There are modules for data input/output, data transformation including Z/R transformation, clutter identification, attenuation correction, dual polarization and differential phase processing, interpolation, georeferencing, compositing, gauge adjustment, verification and visualization. The interpreted nature of the Python programming language makes wradlib an ideal tool

  7. Bird migration flight altitudes studied by a network of operational weather radars.

    PubMed

    Dokter, Adriaan M; Liechti, Felix; Stark, Herbert; Delobbe, Laurent; Tabary, Pierre; Holleman, Iwan

    2011-01-01

    A fully automated method for the detection and quantification of bird migration was developed for operational C-band weather radar, measuring bird density, speed and direction as a function of altitude. These weather radar bird observations have been validated with data from a high-accuracy dedicated bird radar, which was stationed in the measurement volume of weather radar sites in The Netherlands, Belgium and France for a full migration season during autumn 2007 and spring 2008. We show that weather radar can extract near real-time bird density altitude profiles that closely correspond to the density profiles measured by dedicated bird radar. Doppler weather radar can thus be used as a reliable sensor for quantifying bird densities aloft in an operational setting, which--when extended to multiple radars--enables the mapping and continuous monitoring of bird migration flyways. By applying the automated method to a network of weather radars, we observed how mesoscale variability in weather conditions structured the timing and altitude profile of bird migration within single nights. Bird density altitude profiles were observed that consisted of multiple layers, which could be explained from the distinct wind conditions at different take-off sites. Consistently lower bird densities are recorded in The Netherlands compared with sites in France and eastern Belgium, which reveals some of the spatial extent of the dominant Scandinavian flyway over continental Europe. PMID:20519212

  8. Wave-measurement capabilities of the surface contour radar and the airborne oceanographic lidar

    NASA Technical Reports Server (NTRS)

    Walsh, Edward J.; Hancock, David W., III; Hines, Donald E.; Swift, Robert N.; Scott, John F.

    1987-01-01

    The 36-gigahertz surface contour radar and the airborne oceanographic lidar were used in the SIR-B underflight mission off the coast of Chile in October 1984. The two systems and some of their wave-measurement capabilities are described. The surface contour radar can determine the directional wave spectrum and eliminate the 180-degree ambiguity in wave propagation direction that is inherent in some other techniques such as stereophotography and the radar ocean wave spectrometer. The Airborne Oceanographic Lidar can acquire profile data on the waves and produce a spectrum that is close to the nondirectional ocean-wave spectrum for ground tracks parallel to the wave propagation direction.

  9. Development of Weather Radar Mosaic Products in the U.S. National Weather Service

    NASA Astrophysics Data System (ADS)

    Kitzmiller, D. H.; Guan, S.; Mello, C.; Dai, J.

    2002-05-01

    The Weather Surveillance Radar 1988 (Doppler) (WSR-88D) network contains 142 units within the conterminous United States, 7 units in Alaska, and 4 units in Hawaii. The units are maintained by several agencies of the federal government, including the National Weather Service, the Federal Aviation Administration, and the Department of Defense. Many users of the data require access to observations from multiple radars simultaneously, and various mechanisms have beendevised to create national- and regional-scale geographic composites. Within the National Weather Service, creation of mosaics at local forecast offices can take up a substantial portion of available computing resources. The Meteorological Development Laboratory has undertaken the development of a system that will centrally produce and disseminate a set of mosaic products covering the conterminous United States, thus reducing the need for local production of the products. The effort has been made possible by the recent completion of communications network upgrades that permit rapid central collection of data from all sites within the WSR-88D network. A review of the radar product suite will be presented. The suite presently includes reflectivity, precipitation ccumulation estimates, vertically-integrated liquid water estimates, 18-dBZ echo top heights, and convective storm cell information such as hail indications and Doppler indications of mesocyclones and tornadoes. The operational goal is the production of mosaics at approximately 2-km spatial resolution for reflectivity and 4-km resolution for other fields, on a 5-minute update cycle. Some products are currently made available in graphical format via the World-Wide Web. Substantial progress has been made in developing an automated procedure to identify nonprecipitation echoes, including birds, insects, ground clutter, and anomalous propagation. Tests comparing the outcome of automated target identification with manual identification will be presented.

  10. Effects of Multiple Scattering for Millimeter-Wavelength Weather Radars

    NASA Technical Reports Server (NTRS)

    Kobayashi, Satoru; Tanelli, Simone; Im, Eastwood

    2004-01-01

    Effects of multiple scattering on the reflectivity measurement for millimeter-wavelength weather radars are studied, in which backscattering enhancement may play an important role. In the previous works, the backscattering enhancement has been studied for plane wave injection, the reflection of which is received at the infinite distance. In this paper, a finite beam width of a Gaussian antenna pattern along with spherical wave is taken into account. A time-independent second order theory is derived for a single layer of clouds of a uniform density. The ordinary second-order scattering (ladder term) and the second-order backscattering enhancement (cross term) are derived for both the copolarized and cross-polarized waves.

  11. The MST radar technique: Requirements for operational weather forecasting

    NASA Technical Reports Server (NTRS)

    Larsen, M. F.

    1983-01-01

    There is a feeling that the accuracy of mesoscale forecasts for spatial scales of less than 1000 km and time scales of less than 12 hours can be improved significantly if resources are applied to the problem in an intensive effort over the next decade. Since the most dangerous and damaging types of weather occur at these scales, there are major advantages to be gained if such a program is successful. The interest in improving short term forecasting is evident. The technology at the present time is sufficiently developed, both in terms of new observing systems and the computing power to handle the observations, to warrant an intensive effort to improve stormscale forecasting. An assessment of the extent to which the so-called MST radar technique fulfills the requirements for an operational mesoscale observing network is reviewed and the extent to which improvements in various types of forecasting could be expected if such a network is put into operation are delineated.

  12. Bird migration flight altitudes studied by a network of operational weather radars

    PubMed Central

    Dokter, Adriaan M.; Liechti, Felix; Stark, Herbert; Delobbe, Laurent; Tabary, Pierre; Holleman, Iwan

    2011-01-01

    A fully automated method for the detection and quantification of bird migration was developed for operational C-band weather radar, measuring bird density, speed and direction as a function of altitude. These weather radar bird observations have been validated with data from a high-accuracy dedicated bird radar, which was stationed in the measurement volume of weather radar sites in The Netherlands, Belgium and France for a full migration season during autumn 2007 and spring 2008. We show that weather radar can extract near real-time bird density altitude profiles that closely correspond to the density profiles measured by dedicated bird radar. Doppler weather radar can thus be used as a reliable sensor for quantifying bird densities aloft in an operational setting, which—when extended to multiple radars—enables the mapping and continuous monitoring of bird migration flyways. By applying the automated method to a network of weather radars, we observed how mesoscale variability in weather conditions structured the timing and altitude profile of bird migration within single nights. Bird density altitude profiles were observed that consisted of multiple layers, which could be explained from the distinct wind conditions at different take-off sites. Consistently lower bird densities are recorded in The Netherlands compared with sites in France and eastern Belgium, which reveals some of the spatial extent of the dominant Scandinavian flyway over continental Europe. PMID:20519212

  13. Dual-Frequency Airborne Scanning Rain Radar Antenna System

    NASA Technical Reports Server (NTRS)

    Hussein, Ziad A.; Green, Ken

    2004-01-01

    A compact, dual-frequency, dual-polarization, wide-angle-scanning antenna system has been developed as part of an airborne instrument for measuring rainfall. This system is an upgraded version of a prior single-frequency airborne rain radar antenna system and was designed to satisfy stringent requirements. One particularly stringent combination of requirements is to generate two dual-polarization (horizontal and vertical polarizations) beams at both frequencies (13.405 and 35.605 GHz) in such a way that the beams radiated from the antenna point in the same direction, have 3-dB angular widths that match within 25 percent, and have low sidelobe levels over a wide scan angle at each polarization-and-frequency combination. In addition, the system is required to exhibit low voltage standing-wave ratios at both frequencies. The system (see figure) includes a flat elliptical scanning reflector and a stationary offset paraboloidal reflector illuminated by a common-aperture feed system that comprises a corrugated horn with four input ports one port for each of the four frequency-and-polarization combinations. The feed horn is designed to simultaneously (1) under-illuminate the reflectors 35.605 GHz and (2) illuminate the reflectors with a 15-dB edge taper at 13.405 GHz. The scanning mirror is rotated in azimuth to scan the antenna beam over an angular range of 20 in the cross-track direction for wide swath coverage, and in elevation to compensate for the motion of the aircraft. The design of common-aperture feed horn makes it possible to obtain the required absolute gain and low side-lobe levels in wide-angle beam scanning. The combination of the common-aperture feed horn with the small (0.3) focal-length-to-diameter ratio of the paraboloidal reflector makes it possible for the overall system to be compact enough that it can be mounted on a DC-8 airplane.

  14. Measurement of backscattering from sea with an airborne radar at L band

    NASA Astrophysics Data System (ADS)

    Luo, Xianyun; Zhang, Zhongzhi; Yin, Zhiying; Sun, Fang; Kang, Shifeng; Wang, Laibu; Yu, Yunchao; Wen, Fangru

    1998-08-01

    Measurements of electromagnetic backscattering from sea surface at L band have been done with airborne side-looking radar system. Several flights are made for various sea states. Coherent radar data ta HH polarization and some truth data such as wave height, wind velocity and direction, temperature of sea water are recorded. Corner reflectors and active backscattering coefficient can be derived from the radar data and the cinematic data. The result presented in this paper include scattering coefficient and statistical analysis of radar echo with typical probability distribution functions such as Rayleigh, Weibull, Log-normal and K distribution.

  15. Digital signal processing of data from conventional weather radar: The DISPLACE method

    NASA Astrophysics Data System (ADS)

    Terblanche, Deon Etienne

    1997-09-01

    This thesis describes the development, testing and implementation of a new method to process the output from a weather radar's logarithmic receiver. The processing method, called DISPLACE, has proven to have many applications, and is computationally efficient and accurate. Its applications include the processing of digitized logarithmic receiver output in order to simulate different receiver transfer functions, the processing of multi-parameter radar measurements and the filtering of ground clutter. It facilitates the computation of CAPPI's and radar-rainfall accumulation. The thesis also deals with the upgrading of South African weather radars since about 1990 through the in-house developed radar data acquisition system and the procedures established to ensure accurate calibrations. In addition, the hydrometeorological infrastructure deployed in the Bethlehem research are is used in an integrated manner to verify data obtained using the new method. This work is well timed to address the needs that are now emerging in South Africa and clearly illustrate the role the NPRP played in reviving radar meteorology. The DISPLACE method is proving once again that the potential of conventional weather radar has not been fully exploited. It has also stimulated the interest of young technicians and scientists in the field of radar meteorology. This augurs well for the future use of weather radar in South Africa, both in the field of rainfall stimulation and as an integral part of systems designed to forecast and to help manage the effects of severe weather conditions.

  16. Potential use of weather radar to study movements of wintering waterfowl

    USGS Publications Warehouse

    Randall, Lori A.; Diehl, Robert H.; Wilson, Barry C.; Barrow, Wylie C.; Jeske, Clinton W.

    2011-01-01

    To protect and restore wintering waterfowl habitat, managers require knowledge of routine wintering waterfowl movements and habitat use. During preliminary screening of Doppler weather radar data we observed biological movements consistent with routine foraging flights of wintering waterfowl known to occur near Lacassine National Wildlife Refuge (NWR), Louisiana. During the winters of 2004–2005 and 2005–2006, we conducted field surveys to identify the source of the radar echoes emanating from Lacassine NWR. We compared field data to weather radar reflectivity data. Spatial and temporal patterns consistent with foraging flight movements appeared in weather radar data on all dates of field surveys. Dabbling ducks were the dominant taxa flying within the radar beam during the foraging flight period. Using linear regression, we found a positive log-linear relationship between average radar reflectivity (Z) and number of birds detected over the study area (P r2 = 0.62, n = 40). Ground observations and the statistically significant relationship between radar data and field data confirm that Doppler weather radar recorded the foraging flights of dabbling ducks. Weather radars may be effective tools for wintering waterfowl management because they provide broad-scale views of both diurnal and nocturnal movements. In addition, an extensive data archive enables the study of wintering waterfowl response to habitat loss, agricultural practices, wetland restoration, and other research questions that require multiple years of data.

  17. Processing of High Resolution, Multiparametric Radar Data for the Airborne Dual-Frequency Precipitation Radar APR-2

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Meagher, Jonathan P.; Durden, Stephen L.; Im, Eastwood

    2004-01-01

    Following the successful Precipitation Radar (PR) of the Tropical Rainfall Measuring Mission, a new airborne, 14/35 GHz rain profiling radar, known as Airborne Precipitation Radar - 2 (APR-2), has been developed as a prototype for an advanced, dual-frequency spaceborne radar for a future spaceborne precipitation measurement mission. . This airborne instrument is capable of making simultaneous measurements of rainfall parameters, including co-pol and cross-pol rain reflectivities and vertical Doppler velocities, at 14 and 35 GHz. furthermore, it also features several advanced technologies for performance improvement, including real-time data processing, low-sidelobe dual-frequency pulse compression, and dual-frequency scanning antenna. Since August 2001, APR-2 has been deployed on the NASA P3 and DC8 aircrafts in four experiments including CAMEX-4 and the Wakasa Bay Experiment. Raw radar data are first processed to obtain reflectivity, LDR (linear depolarization ratio), and Doppler velocity measurements. The dataset is then processed iteratively to accurately estimate the true aircraft navigation parameters and to classify the surface return. These intermediate products are then used to refine reflectivity and LDR calibrations (by analyzing clear air ocean surface returns), and to correct Doppler measurements for the aircraft motion. Finally, the the melting layer of precipitation is detected and its boundaries and characteristics are identifIed at the APR-2 range resolution of 30m. The resulting 3D dataset will be used for validation of other airborne and spaceborne instruments, development of multiparametric rain/snow retrieval algorithms and melting layer characterization and statistics.

  18. A model for forming airborne synthetic aperture radar images of underground targets

    SciTech Connect

    Doerry, A.W.

    1994-01-01

    Synthetic Aperture Radar (SAR) from an airborne platform has been proposed for imaging targets beneath the earth`s surface. The propagation of the radar`s energy within the ground, however, is much different than in the earth`s atmosphere. The result is signal refraction, echo delay, propagation losses, dispersion, and volumetric scattering. These all combine to make SAR image formation from an airborne platform much more challenging than a surface imaging counterpart. This report treats the ground as a lossy dispersive half-space, and presents a model for the radar echo based on measurable parameters. The model is then used to explore various imaging schemes, and image properties. Dynamic range is discussed, as is the impact of loss on dynamic range. Modified window functions are proposed to mitigate effects of sidelobes of shallow targets overwhelming deeper targets.

  19. Users guide for an Airborne Windshear Doppler Radar Simulation (AWDRS) program

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.

    1990-01-01

    A description is provided of the Airborne Windshear Doppler Radar Simulation (AWDRS) program developed for NASA-Langley by the Research Triangle Institute. The radar simulation program is a comprehensive calculation of the signal characteristics and expected outputs of an airborne coherent pulsed Doppler radar system viewing a low level microburst along or near the approach path of the aircraft. The detailed nature of the simulation permits the quick evaluation of proposed trade-offs in radar system parameters and the evaluation of the performance of proposed configurations in various microburst/clutter environments. The simulation also provides a test bed for various proposed signal processing techniques for minimizing the effects of noise, phase jitter, and ground clutter and maximizing the useful information derived for avoidance of microburst windshear by aircraft.

  20. Doppler radar results

    NASA Technical Reports Server (NTRS)

    Bracalente, Emedio M.

    1992-01-01

    The topics are covered in viewgraph form and include the following: (1) a summary of radar flight data collected; (2) a video of combined aft cockpit, nose camera, and radar hazard displays; (3) a comparison of airborne radar F-factor measurements with in situ and Terminal Doppler Weather Radar (TDWR) F-factors for some sample events; and (4) a summary of wind shear detection performance.

  1. Quality-based generation of weather radar Cartesian products

    NASA Astrophysics Data System (ADS)

    Osrodka, K.; Szturc, J.

    2015-05-01

    Weather radar data volumes are commonly processed to obtain various 2-D Cartesian products based on the transfer from polar to Cartesian representations through a certain interpolation method. In this research an algorithm of the spatial interpolation of polar reflectivity data employing quality index data is applied to find the Cartesian reflectivity as plan position indicator products. On this basis, quality-based versions of standard algorithms for the generation of the following products have been developed: ETOP (echo top), MAX (maximum of reflectivity), and VIL (vertically integrated liquid water). Moreover, as an example of a higher-level product, a CONVECTION (detection of convection) has been defined as a specific combination of the above-listed standard products. A corresponding quality field is determined for each generated product, taking into account the quality of the pixels from which a given product was determined and how large a fraction of the investigated heights was scanned. Examples of such quality-based products are presented in the paper.

  2. Ground-based microwave weather radar observations and retrievals during the 2014 Holuhraun eruption (Bárðarbunga, Iceland)

    NASA Astrophysics Data System (ADS)

    Mereu, Luigi; Silvio Marzano, Frank; Barsotti, Sara; Montopoli, Mario; Yeo, Richard; Arngrimsson, Hermann; Björnsson, Halldór; Bonadonna, Costanza

    2015-04-01

    Retrieval (VARR) algorithm for single-polarization and double-polarization systems, shown in previous work, has been applied to C-band and X-band weather radar data. In this work we show radar based estimations of eruptive source parameters for Holuhraun events in the fall of 2014. This extremely gas-rich eruption was characterized by sustained lava fountaining in the first months. At the same time some ash-rich episodes were reported from the field together with minor tephra fallout occurring close to the eruption site. Since the beginning of the eruption, the Icelandic Meteorological Office (IMO) monitored the volcanic plume using two ground-based radars: a C-band weather radar (5.5 GHz) in Egilsstaðir and an X-band polarimetric mobile radar (9.4 GHz) located at Vaðalda, about 20 km away from the eruption site. The VARR algorithm has been applied to few specific events and the radar products, such as top plume height, concentration, ash load and mass flow rate, derived from the two radars, are here discussed in terms of retrievals and inter-comparisons with available in-situ information. Both radar-based estimations show a presence of volcanic particles in the observed plume. Also, airborne fine ash particles are identified at low levels of plume probably due to a wind-induced re-suspension of dust and ancient volcanic ash deposited in the area around Holuhraun.

  3. Mapping diverse forest cover with multipolarization airborne radar

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Wickland, D. E.; Sharitz, R. R.

    1985-01-01

    Imaging radar backscatter in continuously forested areas contains information about the forest canopy; it also contains data about topography, landforms, and terrain texture. For purposes of radar image interpretation and geologic mapping researchers were interested in identifying and separating forest canopy effects from geologic or geomorphic effects on radar images. The objectives of this investigation was to evaluate forest canopy variables in multipolarization radar images under conditions where geologic and topographic variables are at a minimum. A subsidiary objective was to compare the discriminatory capabilities of the radar images with corresponding optical images of similar spatial resolution. It appears that the multipolarization images discriminate variation in tree density, but no evidence was found for discrimination between evergreen and deciduous forest types.

  4. Estimating reflectivity values from wind turbines for analyzing the potential impact on weather radar services

    NASA Astrophysics Data System (ADS)

    Angulo, I.; Grande, O.; Jenn, D.; Guerra, D.; de la Vega, D.

    2015-05-01

    The World Meteorological Organization (WMO) has repeatedly expressed concern over the increasing number of impact cases of wind turbine farms on weather radars. Current signal processing techniques to mitigate wind turbine clutter (WTC) are scarce, so the most practical approach to this issue is the assessment of the potential interference from a wind farm before it is installed. To do so, and in order to obtain a WTC reflectivity model, it is crucial to estimate the radar cross section (RCS) of the wind turbines to be built, which represents the power percentage of the radar signal that is backscattered to the radar receiver. For the proposed model, a representative scenario has been chosen in which both the weather radar and the wind farm are placed on clear areas; i.e., wind turbines are supposed to be illuminated only by the lowest elevation angles of the radar beam. This paper first characterizes the RCS of wind turbines in the weather radar frequency bands by means of computer simulations based on the physical optics theory and then proposes a simplified model to estimate wind turbine RCS values. This model is of great help in the evaluation of the potential impact of a certain wind farm on the weather radar operation.

  5. On the potential use of radar-derived information in operational numerical weather prediction

    NASA Technical Reports Server (NTRS)

    Mcpherson, R. D.

    1986-01-01

    Estimates of requirements likely to be levied on a new observing system for mesoscale meteonology are given. Potential observing systems for mesoscale numerical weather prediction are discussed. Thermodynamic profiler radiometers, infrared radiometer atmospheric sounders, Doppler radar wind profilers and surveillance radar, and moisture profilers are among the instruments described.

  6. Measurements of Ocean Surface Scattering Using an Airborne 94-GHz Cloud Radar: Implication for Calibration of Airborne and Spaceborne W-band Radars

    NASA Technical Reports Server (NTRS)

    Li, Li-Hua; Heymsfield, Gerald M.; Tian, Lin; Racette, Paul E.

    2004-01-01

    Scattering properties of the Ocean surface have been widely used as a calibration reference for airborne and spaceborne microwave sensors. However, at millimeter-wave frequencies, the ocean surface backscattering mechanism is still not well understood, in part, due to the lack of experimental measurements. During the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE), measurements of ocean surface backscattering were made using a 94-GHz (W-band) cloud radar onboard a NASA ER-2 high-altitude aircraft. The measurement set includes the normalized Ocean surface cross section over a range of the incidence angles under a variety of wind conditions. Analysis of the radar measurements shows good agreement with a quasi-specular scattering model. This unprecedented dataset enhances our knowledge about the Ocean surface scattering mechanism at 94 GHz. The results of this work support the proposition of using the Ocean surface as a calibration reference for airborne millimeter-wave cloud radars and for the ongoing NASA CloudSat mission, which will use a 94-GHz spaceborne cloud radar for global cloud measurements.

  7. Multiparametric airborne radar observations of the melting layer during the Wakasa Bay experiment

    NASA Technical Reports Server (NTRS)

    Tanelli, S.; Meagher, J.; Durden, S. L.; Im, E.

    2003-01-01

    The NASA/JPL airborne precipitation radar APR-2 (cross-track scanning, dual-frequency - 14 and 35 GHz, Doppler and dual polarization, see Sadowy et al. (2003) for detailed description of the instrument) was operated on the NASA P-3 aircraft during the Wakasa Bay experiment.

  8. Feasibility of inter-comparing airborne and spaceborne observations of radar backscattering coefficients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper investigates the feasibility of using an airborne synthetic aperture radar (SAR) to validate spaceborne SAR data. This is directed at soil moisture sensing and the recently launched Soil Moisture Active Passive (SMAP) satellite. The value of this approach is related to the fact that vicar...

  9. Recent advances in airborne terrestrial remote sensing with the NASA airborne visible/infrared imaging spectrometer (AVIRIS), airborne synthetic aperture radar (SAR), and thermal infrared multispectral scanner (TIMS)

    NASA Technical Reports Server (NTRS)

    Vane, Gregg; Evans, Diane L.; Kahle, Anne B.

    1989-01-01

    Significant progress in terrestrial remote sensing from the air has been made with three NASA-developed sensors that collectively cover the solar-reflected, thermal infrared, and microwave regions of the electromagnetic spectrum. These sensors are the airborne visible/infrared imaging spectrometer (AVIRIS), the thermal infrared mapping spectrometer (TIMS) and the airborne synthetic aperture radar (SAR), respectively. AVIRIS and SAR underwent extensive in-flight engineering testing in 1987 and 1988 and are scheduled to become operational in 1989. TIMS has been in operation for several years. These sensors are described.

  10. Validation of Airborne FMCW Radar Measurements of Snow Thickness Over Sea Ice in Antarctica

    NASA Technical Reports Server (NTRS)

    Galin, Natalia; Worby, Anthony; Markus, Thorsten; Leuschen, Carl; Gogineni, Prasad

    2012-01-01

    Antarctic sea ice and its snow cover are integral components of the global climate system, yet many aspects of their vertical dimensions are poorly understood, making their representation in global climate models poor. Remote sensing is the key to monitoring the dynamic nature of sea ice and its snow cover. Reliable and accurate snow thickness data are currently a highly sought after data product. Remotely sensed snow thickness measurements can provide an indication of precipitation levels, predicted to increase with effects of climate change in the polar regions. Airborne techniques provide a means for regional-scale estimation of snow depth and distribution. Accurate regional-scale snow thickness data will also facilitate an increase in the accuracy of sea ice thickness retrieval from satellite altimeter freeboard estimates. The airborne data sets are easier to validate with in situ measurements and are better suited to validating satellite algorithms when compared with in situ techniques. This is primarily due to two factors: better chance of getting coincident in situ and airborne data sets and the tractability of comparison between an in situ data set and the airborne data set averaged over the footprint of the antennas. A 28-GHz frequency modulated continuous wave (FMCW) radar loaned by the Center for Remote Sensing of Ice Sheets to the Australian Antarctic Division is used to measure snow thickness over sea ice in East Antarctica. Provided with the radar design parameters, the expected performance parameters of the radar are summarized. The necessary conditions for unambiguous identification of the airsnow and snowice layers for the radar are presented. Roughnesses of the snow and ice surfaces are found to be dominant determinants in the effectiveness of layer identification for this radar. Finally, this paper presents the first in situ validated snow thickness estimates over sea ice in Antarctica derived from an FMCW radar on a helicopterborne platform.

  11. Impacts of 4D-VAR Assimilation of Airborne Doppler Radar Observations on Numerical Simulations of the Genesis of Typhoon Nuri (2008)

    NASA Astrophysics Data System (ADS)

    Pu, Z.; Li, Z.

    2014-12-01

    The Weather Research and Forecasting model and its four-dimensional variational data assimilation system are employed to examine the impact of airborne Doppler radar observations on predicting the genesis of Typhoon Nuri (2008). The ELDORA airborne radar data, collected during the Office of Naval Research-sponsored Tropical Cyclone Structure 2008 field experiment, are used for data assimilation experiments. Two assimilation methods are evaluated and compared, namely, the direct assimilation of radar-measured radial velocity and the assimilation of three-dimensional wind analysis derived from the radar radial velocity. Results show that direct assimilation of radar radial velocity leads to better intensity forecasts, as it enhances the development of convective systems and improves the inner core structure of Nuri, whereas assimilation of the radar-retrieved wind analysis is more beneficial for tracking forecasts, as it results in improved environmental flows. The assimilation of both the radar-retrieved wind and the radial velocity can lead to better forecasts in both intensity and tracking, if the radial velocity observations are assimilated first and the retrieved winds are then assimilated in the same data assimilation window. In addition, experiments with and without radar data assimilation lead to developing and nondeveloping disturbances for Nuri's genesis in the numerical simulations. The improved initial conditions and forecasts from the data assimilation imply that the enhanced midlevel vortex and moisture conditions are favorable for the development of deep convection in the center of the pouch and eventually contribute to Nuri's genesis. The improved simulations of the convection and associated environmental conditions produce enhanced upper-level warming in the core region and lead to the drop in sea-level pressure.

  12. Description, characteristics and testing of the NASA airborne radar

    NASA Technical Reports Server (NTRS)

    Jones, W. R.; Altiz, O.; Schaffner, P.; Schrader, J. H.; Blume, H. J. C.

    1991-01-01

    Presented here is a description of a coherent radar scattermeter and its associated signal processing hardware, which have been specifically designed to detect microbursts and record their radar characteristics. Radar parameters, signal processing techniques and detection algorithms, all under computer control, combine to sense and process reflectivity, clutter, and microburst data. Also presented is the system's high density, high data rate recording system. This digital system is capable of recording many minutes of the in-phase and quadrature components and corresponding receiver gains of the scattered returns for selected spatial regions, as well as other aircraft and hardware related parameters of interest for post-flight analysis. Information is given in viewgraph form.

  13. UAVSAR: Airborne L-band Radar for Repeat Pass Interferometry

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.

    2009-01-01

    The primary objectives of the UAVSAR Project were to: a) develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for use on an unmanned aerial vehicle (UAV) or piloted vehicle. b) develop the associated processing algorithms for repeat-pass differential interferometric measurements using a single antenna. c) conduct measurements of geophysical interest, particularly changes of rapidly deforming surfaces such as volcanoes or earthquakes. Two complete systems were developed. Operational Science Missions began on February 18, 2009 ... concurrent development and testing of the radar system continues.

  14. Characterization of wetland, forest, and agricultural ecosystems in Belize with airborne radar (AIRSAR)

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.; Rey-Benayas, Jose Maria; Paris, Jack F.

    1992-01-01

    The Shuttle Imaging Radar-C/X-SAR (Synthetic Aperture Radar) Experiment includes the study of wetland dynamics in the seasonal tropics. In preparation for these wetland studies, airborne P, L, and C band radar (AIRSAR) data of Belize, Guatemala, and Mexico acquired by NASA and JPL in March 1990 were analyzed. The first phase of our study focuses on AIRSAR data from the Gallon Jug test site in northwestern Belize, for which ground data were also collected during the three days prior to the overflight. One of the main objectives of the Gallon Jug study is to develop a method for characterizing wetland vegetation types and their flooding status with multifrequency polarimetric radar data.

  15. Polarization differences in airborne ground penetrating radar performance for landmine detection

    NASA Astrophysics Data System (ADS)

    Dogaru, Traian; Le, Calvin

    2016-05-01

    The U.S. Army Research Laboratory (ARL) has investigated the ultra-wideband (UWB) radar technology for detection of landmines, improvised explosive devices and unexploded ordnance, for over two decades. This paper presents a phenomenological study of the radar signature of buried landmines in realistic environments and the performance of airborne synthetic aperture radar (SAR) in detecting these targets as a function of multiple parameters: polarization, depression angle, soil type and burial depth. The investigation is based on advanced computer models developed at ARL. The analysis includes both the signature of the targets of interest and the clutter produced by rough surface ground. Based on our numerical simulations, we conclude that low depression angles and H-H polarization offer the highest target-to-clutter ratio in the SAR images and therefore the best radar performance of all the scenarios investigated.

  16. Definition and fabrication of an airborne scatterometer radar signal processor

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A hardware/software system which incorporates a microprocessor design and software for the calculation of normalized radar cross section in real time was developed. Interface is provided to decommutate the NASA ADAS data stream for aircraft parameters used in processing and to provide output in the form of strip chart and pcm compatible data recording.

  17. Comparative study of tracking performance in an airborne tracking radar simulator using global positioning system versus monopulse radar techniques

    NASA Astrophysics Data System (ADS)

    Nguyen, Joseph H.; Holley, William D.; Gagnon, Garry

    1993-10-01

    This paper attempts to address the tracking accuracy between the two systems under test. A monopulse radar model was developed to theoretically calculate the would-be measured angle and angle variances. Essentially, measurements of the target's angle, angle variances, range and range rate from the monopulse radar receiver of an aircraft are assessed against the tracking performance of an airborne simulator which uses the time, space, position information (TSPI) delivered from a global positioning system (GPS) system. The accuracy of measurements from a monopulse radar primarily depends on the signal-to-noise ratio (SNR), distance from target in this case, but information received from the GPS Space Vehicle would be virtually jamfree, and independent of distance. Tracking using GPS data however requires good data link between airborne participants. The simulation fidelity becomes an issue when the target is in close range track. The monopulse random slope error and target glint become significant, while the resolution from GPS data links remains the same.

  18. Towards a Semantic Interpretation of Urban Areas with Airborne Synthetic Aperture Radar Tomography

    NASA Astrophysics Data System (ADS)

    D'Hondt, O.; Guillaso, S.; Hellwich, O.

    2016-06-01

    In this paper, we introduce a method to detect and reconstruct building parts from tomographic Synthetic Aperture Radar (SAR) airborne data. Our approach extends recent works in two ways: first, the radiometric information is used to guide the extraction of geometric primitives. Second, building facades and roofs are extracted thanks to geometric classification rules. We demonstrate our method on a 3 image L-Band airborne dataset over the city of Dresden, Germany. Experiments show how our technique allows to use the complementarity between the radiometric image and the tomographic point cloud to extract buildings parts in challenging situations.

  19. Signal processing for airborne doppler radar detection of hazardous wind shear as applied to NASA 1991 radar flight experiment data

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.

    1992-01-01

    Radar data collected during the 1991 NASA flight tests have been selectively analyzed to support research directed at developing both improved as well as new algorithms for detecting hazardous low-altitude windshear. Analysis of aircraft attitude data from several flights indicated that platform stability bandwidths were small compared to the data rate bandwidths which should support an assumption that radar returns can be treated as short time stationary. Various approaches at detection of weather returns in the presence of ground clutter are being investigated. Non-coventional clutter rejection through spectrum mode tracking and classification algorithms is a subject of continuing research. Based upon autoregressive modeling of the radar return time sequence, this approach may offer an alternative to overcome errors in conventional pulse-pair estimates. Adaptive filtering is being evaluated as a means of rejecting clutter with emphasis on low signal-to-clutter ratio situations, particularly in the presence of discrete clutter interference. An analysis of out-of-range clutter returns is included to illustrate effects of ground clutter interference due to range aliasing for aircraft on final approach. Data are presented to indicate how aircraft groundspeed might be corrected from the radar data as well as point to an observed problem of groundspeed estimate bias variation with radar antenna scan angle. A description of how recorded clutter return data are mixed with simulated weather returns is included. This enables the researcher to run controlled experiments to test signal processing algorithms. In the summary research efforts involving improved modelling of radar ground clutter returns and a Bayesian approach at hazard factor estimation are mentioned.

  20. Annual Greenland accumulation rates (2009-2012) from airborne Snow Radar

    NASA Astrophysics Data System (ADS)

    Koenig, L. S.; Ivanoff, A.; Alexander, P. M.; MacGregor, J. A.; Fettweis, X.; Panzer, B.; Paden, J. D.; Forster, R. R.; Das, I.; McConnell, J.; Tedesco, M.; Leuschen, C.; Gogineni, P.

    2015-12-01

    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet (GrIS) through increasing surface melt, emphasizing the need to closely monitor surface mass balance (SMB) in order to improve sea-level rise predictions. Here, we quantify accumulation rates, the largest component of GrIS SMB, at a higher spatial resolution than currently available, using Snow Radar stratigraphy. We use a semi-automated method to derive annual-net accumulation rates from airborne Snow Radar data collected by NASA's Operation IceBridge from 2009 to 2012. An initial comparison of the accumulation rates from the Snow Radar and the outputs of a regional climate model (MAR) shows that, in general, the radar-derived accumulation matches closely with MAR in the interior of the ice sheet but MAR estimates are high over the southeast GrIS. Comparing the radar-derived accumulation with contemporaneous ice cores reveals that the radar captures the annual and long-term mean. The radar-derived accumulation rates resolve large-scale patterns across the GrIS with uncertainties of up to 11 %, attributed mostly to uncertainty in the snow/firn density profile.

  1. Airborne Doppler radar velocity measurements of precipitation seen in ocean surface reflection

    NASA Technical Reports Server (NTRS)

    Atlas, D.; Matejka, T. J.

    1985-01-01

    The use of airborne or spaceborne radars to observe precipitation simultaneously directly and in reflection could provide significant new opportunities for measuring the properties of the precipitation, wind field, and ocean surface. Atlas and Meneghini (1983) have proposed that the difference between direct and reflected precipitation echo intensities observed with a nadir-directed beam is a measure of two-way attenuation and thus of path average rain rate, taking into account an employment of direct and reflected echoes from very near the ocean surface to normalize for ocean surface scatter. In the present paper, some key meteorological and oceanographic research applications are illustrated, giving particular attention to airborne Doppler radar velocity measurements of the precipitation.

  2. 77 FR 37470 - Technical Standard Order (TSO)-C65a, Airborne Doppler Radar Ground Speed and/or Drift Angle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... Federal Aviation Administration Technical Standard Order (TSO)-C65a, Airborne Doppler Radar Ground Speed... Doppler radar ground speed and/or drift angle measuring equipment (for air carrier aircraft). SUMMARY: This notice announces the FAA's intent to cancel TSO-C65a, Airborne Doppler radar ground speed...

  3. Ice-type classifications from airborne pulse-limited radar altimeter return waveform characteristics

    NASA Technical Reports Server (NTRS)

    Fedor, L. S.; Hayne, G. S.; Walsh, E. J.

    1989-01-01

    During mid-March 1978, the NASA C-130 aircraft was deployed to Eielson Air Force Base in Fairbanks, Alaska, to make a series of flights over ice in the Beaufort Sea. The radar altimeter data analyzed were obtained northeast of Mackenzie Bay on March 14th in the vicinity of 69.9 deg N, 134.2 deg W. The data were obtained with a 13.9 GHz radar altimeter developed under the NASA Advanced Applications Flight Experiments (AAFE) Program. This airborne radar was built as a forerunner of the Seasat radar altimeter, and utilized the same pulse compression technique. Pulse-limited radar data taken with the altimeter from 1500-m altitude over sea ice are registered to high-quality photography. The backscattered power is statistically related the surface conductivity and to the number of facets whose surface normal is directed towards the radar. The variations of the radar return waveform shape and signal level are correlated with the variation of the ice type determined from photography. The AAFE altimeter has demonstrated that the return waveform shape and signal level of an airborne pulse-limited altimeter at 13.9 GHz respond to sea ice type. The signal level responded dramatically to even a very small fracture in the ice, as long as it occurred directly at the altimeter nadir point. Shear zones and regions of significant compression ridging consistently produced low signal levels. The return waveforms frequently evidenced the characteristics of both specular and diffuse scattering, and there was an indication that the power backscattered at 3 deg off-nadir in a shear zone was actually somewhat higher than that from nadir.

  4. Clutter filter design considerations for Airborne Doppler radar detection of windshear

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.

    1990-01-01

    The problem of clutter rejection when processing down-looking Doppler radar returns from a low altitude airborne platform is a paramount problem. With radar as a remote sensor for detecting and predicting windshear in the vicinity of an urban airport, dynamic range requirements can exceed 50 dB because of high clutter to signal ratios. This presentation describes signal processing considerations in the presence of distributed and/or discrete clutter interference. Previous analyses have considered conventional range cell processing of radar returns from a rigidly mounted radar platform using either the Fourier or the pulse-pair method to estimate average windspeed and windspeed variation within a cell. Clutter rejection has been based largely upon analyzing a particular environment in the vicinity of the radar and employing a variety of techniques to reduce interference effects including notch filtering, Fourier domain line editing, and use of clutter maps. For the airborne environment the clutter characteristics may be somewhat different. Conventional clutter rejection methods may have to be changed and new methods will probably be required to provide useful signal to noise ratios. Various considerations are described. A major thrust has been to evaluate the effect of clutter rejection filtering upon the ability to derive useful information from the post-filter radar data. This analysis software is briefly described. Finally, some ideas for future analysis are considered including the use of adaptive filtering for clutter rejection and the estimation of windspeed spatial gradient directly from radar returns as a means of reducing the effects of clutter on the determination of a windshear hazard.

  5. Network connectivity paradigm for the large data produced by weather radar systems

    NASA Astrophysics Data System (ADS)

    Guenzi, Diego; Bechini, Renzo; Boraso, Rodolfo; Cremonini, Roberto; Fratianni, Simona

    2014-05-01

    The traffic over Internet is constantly increasing; this is due in particular to social networks activities but also to the enormous exchange of data caused especially by the so-called "Internet of Things". With this term we refer to every device that has the capability of exchanging information with other devices on the web. In geoscience (and, in particular, in meteorology and climatology) there is a constantly increasing number of sensors that are used to obtain data from different sources (like weather radars, digital rain gauges, etc.). This information-gathering activity, frequently, must be followed by a complex data analysis phase, especially when we have large data sets that can be very difficult to analyze (very long historical series of large data sets, for example), like the so called big data. These activities are particularly intensive in resource consumption and they lead to new computational models (like cloud computing) and new methods for storing data (like object store, linked open data, NOSQL or NewSQL). The weather radar systems can be seen as one of the sensors mentioned above: it transmit a large amount of raw data over the network (up to 40 megabytes every five minutes), with 24h/24h continuity and in any weather condition. Weather radar are often located in peaks and in wild areas where connectivity is poor. For this reason radar measurements are sometimes processed partially on site and reduced in size to adapt them to the limited bandwidth currently available by data transmission systems. With the aim to preserve the maximum flow of information, an innovative network connectivity paradigm for the large data produced by weather radar system is here presented. The study is focused on the Monte Settepani operational weather radar system, located over a wild peak summit in north-western Italy.

  6. A study on weather radar data assimilation for numerical rainfall prediction

    NASA Astrophysics Data System (ADS)

    Liu, J.; Bray, M.; Han, D.

    2012-09-01

    Mesoscale NWP model is gaining more attention in providing high-resolution rainfall forecasts at the catchment scale for real-time flood forecasting. The model accuracy is however negatively affected by the "spin-up" effect and errors in the initial and lateral boundary conditions. Synoptic studies in the meteorological area have shown that the assimilation of operational observations especially the weather radar data can improve the reliability of the rainfall forecasts from the NWP models. This study aims at investigating the potential of radar data assimilation in improving the NWP rainfall forecasts that have direct benefits for hydrological applications. The Weather Research and Forecasting (WRF) model is adopted to generate 10 km rainfall forecasts for a 24 h storm event in the Brue catchment (135.2 km2) located in Southwest England. Radar reflectivity from the lowest scan elevation of a C-band weather radar is assimilated by using the three dimensional variational (3D-Var) data assimilation technique. Considering the unsatisfactory quality of radar data compared to the rain gauges, the radar data is assimilated in both the original form and an improved form based on a real-time correction ratio developed according to the rain gauge observations. Traditional meteorological observations including the surface and upper-air measurements of pressure, temperature, humidity and wind speed are also assimilated as a bench mark to better evaluate and test the potential of radar data assimilation. Four modes of data assimilation are thus carried out on different types or combinations of observations: (1) traditional meteorological data; (2) radar reflectivity; (3) corrected radar reflectivity; (4) a combination of the original reflectivity and meteorological data; and (5) a combination of the corrected reflectivity and meteorological data. The WRF rainfall forecasts before and after different modes of data assimilation is evaluated by examining the rainfall cumulative

  7. Estimating reflectivity values from wind turbines for analyzing the potential impact on weather radar services

    NASA Astrophysics Data System (ADS)

    Angulo, I.; Grande, O.; Jenn, D.; Guerra, D.; de la Vega, D.

    2015-02-01

    The World Meteorological Organization (WMO) has repeatedly expressed concern over the increasing number of impact cases of wind turbine farms on weather radars. Since nowadays signal processing techniques to mitigate Wind Turbine Clutter (WTC) are scarce, the most practical approach to this issue is the assessment of the potential interference from a wind farm before it is installed. To do so, and in order to obtain a WTC reflectivity model, it is crucial to estimate the Radar Cross Section (RCS) of the wind turbines to be built, which represents the power percentage of the radar signal that is backscattered to the radar receiver. This paper first characterizes the RCS of wind turbines in the weather radar frequency bands by means of computer simulations based on the Physical Optics theory, and then proposes a simplified model to estimate wind turbine RCS values. This model is of great help in the evaluation of the potential impact of a certain wind farm on the weather radar operation.

  8. Correlation of S-Band Weather Radar Reflectivity and ACTS Propagation Data in Florida

    NASA Technical Reports Server (NTRS)

    Wolfe, Eric E.; Flikkema, Paul G.; Henning, Rudolf E.

    1997-01-01

    Previous work has shown that Ka-band attenuation due to rainfall and corresponding S-band reflectivity are highly correlated. This paper reports on work whose goal is to determine the feasibility of estimation and, by extension, prediction of one parameter from the other using the Florida ACTS propagation terminal (APT) and the nearby WSR-88D S-band Doppler weather radar facility operated by the National Weather Service. This work is distinguished from previous efforts in this area by (1) the use of a single-polarized radar, preventing estimation of the drop size distribution (e.g., with dual polarization) and (2) the fact that the radar and APT sites are not co-located. Our approach consists of locating the radar volume elements along the satellite slant path and then, from measured reflectivity, estimating the specific attenuation for each associated path segment. The sum of these contributions yields an estimation of the millimeter-wave attenuation on the space-ground link. Seven days of data from both systems are analyzed using this procedure. The results indicate that definite correlation of S-band reflectivity and Ka-band attenuation exists even under the restriciton of this experiment. Based on these results, it appears possible to estimate Ka-band attenuation using widely available operational weather radar data. Conversely, it may be possible to augment current radar reflectivity data and coverage with low-cost attenuation or sky temperature data to improve the estimation of rain rates.

  9. Wideband Waveform Design principles for Solid-state Weather Radars

    SciTech Connect

    Bharadwaj, Nitin; Chandrasekar, V.

    2012-01-01

    The use of solid-state transmitter is becoming a key part of the strategy to realize a network of low cost electronically steered radars. However, solid-state transmitters have low peak powers and this necessitates the use of pulse compression waveforms. In this paper a frequency diversity wideband waveforms design is proposed to mitigate low sensitivity of solid-state transmitters. In addition, the waveforms mitigate the range eclipsing problem associated with long pulse compression. An analysis of the performance of pulse compression using mismatched compression filters designed to minimize side lobe levels is presented. The impact of range side lobe level on the retrieval of Doppler moments are presented. Realistic simulations are performed based on CSU-CHILL radar data and Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) Integrated Project I (IP1) radar data.

  10. Operational Wind Retrieval Within the Frame of the French Weather Radar Network

    NASA Astrophysics Data System (ADS)

    Bousquet, O.; Tabary, P.; Parent-Du-Châtelet, J.; Périer, L.

    2008-12-01

    The recent deployment of an innovative triple-PRT Doppler scheme within the French operational radar network, named ARAMIS, allows collecting reflectivity and radial velocity measurements simultaneously up to a range of 250 km with no ambiguity. This achievement brings new perspectives in terms of exploitation of operational radar measurements such as the long-anticipated capability to perform multiple-Doppler wind retrieval in a fully operational framework. Accordingly, and for the first time ever, a method allowing to consistently retrieve complete wind vector fields (u, v, w) in real-time from operational radar systems is being tested by the French national weather service since early 2007. This study proposes to describe the experimental setup relied upon to operationally retrieve multiple-Doppler winds in the frame of ARAMIS, as well as to investigate the potential of this new product for weather forecast applications. Using high resolution numerical wind forecasts in a variety of weather situations, we also show that these radar-derived wind fields compose unprecedented datasets to evaluate and further improve high-resolution numerical weather prediction systems being currently deployed by many national weather services.

  11. Detection and discrimination of fauna in the aerosphere using Doppler weather surveillance radar.

    PubMed

    Gauthreaux, Sidney A; Livingston, John W; Belser, Carroll G

    2008-07-01

    Organisms in the aerosphere have been detected by radar since its development in the 1940s. The national network of Doppler weather radars (WSR-88D) in the United States can readily detect birds, bats, and insects aloft. Level-II data from the radar contain information on the reflectivity and radial velocity of targets and on width of the spectrum (SD of radial velocities in a radar pulse volume). Information on reflectivity can be used to quantify density of organisms aloft and radial velocity can be used to discriminate different types of targets based on their air speeds. Spectral width can also provide some useful information when organisms with very different air speeds are aloft. Recent work with dual-polarization radar suggests that it may be useful for discriminating birds from insects in the aerosphere, but more development and biological validation are required. PMID:21669769

  12. Analysis of volcanic surface morphology on Venus from comparison of Arecibo, Magellan, and terrestrial airborne radar data

    NASA Technical Reports Server (NTRS)

    Campbell, Bruce A.; Campbell, Donald B.

    1992-01-01

    The paper compares Arecibo Observatory and Magellan radar data for Venus to airborne radar images for potential terrestrial analog surfaces. Volcanic deposits in western Eistla Regio and northern Sedna Planitia are characterized. It is shown that the expected-sense circularly polarized echoes in the 'dark plains' and broad flow aprons of Eistla Regio decrease rapidly with incidence angle. This angular scattering behavior implies surfaces no rougher than terrestrial pahoehoe flows. Polarization ratio comparisons show that the extensive lava flows in Western Eistla Regio and Sedna Planitia are generally consistent with the properties of terrestrial pahoehoe flows, with only limited occurrences of a'a morphology. Three scenarios are suggested. Many of the large flow units in the two study regions were emplaced as complexes of low-effusion rate pahoehoe flows, rather than as higher eruption rate events which might be expected to produce a'a surface textures; the long lava flows were originally emplaced as a'a but have since weathered to a smoother texture; or a combination of atmospheric and magma compositional effects combine to inhibit a'a formation even at high volume eruption rates.

  13. Annual Greenland accumulation rates (2009-2012) from airborne snow radar

    NASA Astrophysics Data System (ADS)

    Koenig, Lora S.; Ivanoff, Alvaro; Alexander, Patrick M.; MacGregor, Joseph A.; Fettweis, Xavier; Panzer, Ben; Paden, John D.; Forster, Richard R.; Das, Indrani; McConnell, Joesph R.; Tedesco, Marco; Leuschen, Carl; Gogineni, Prasad

    2016-08-01

    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor its surface mass balance in order to improve sea-level rise predictions. Snow accumulation is the largest component of the ice sheet's surface mass balance, but in situ observations thereof are inherently sparse and models are difficult to evaluate at large scales. Here, we quantify recent Greenland accumulation rates using ultra-wideband (2-6.5 GHz) airborne snow radar data collected as part of NASA's Operation IceBridge between 2009 and 2012. We use a semiautomated method to trace the observed radiostratigraphy and then derive annual net accumulation rates for 2009-2012. The uncertainty in these radar-derived accumulation rates is on average 14 %. A comparison of the radar-derived accumulation rates and contemporaneous ice cores shows that snow radar captures both the annual and long-term mean accumulation rate accurately. A comparison with outputs from a regional climate model (MAR) shows that this model matches radar-derived accumulation rates in the ice sheet interior but produces higher values over southeastern Greenland. Our results demonstrate that snow radar can efficiently and accurately map patterns of snow accumulation across an ice sheet and that it is valuable for evaluating the accuracy of surface mass balance models.

  14. Monitoring of space weather and radioactivity using small airborne platforms

    NASA Astrophysics Data System (ADS)

    Harrison, R. Giles; Lidgard, Jeffrey; Aplin, Karen L.; Nicoll, Keri A.

    2013-04-01

    Space Weather is increasingly considered as a hazard to society's technological systems, but the effects of energetic particles within the atmosphere - with a potential implication for climate - also present an area in which new scientific knowledge needs to be developed. Routine measurements of energetic particle fluxes made above the surface have been made by the Lebedev Institute, undertaking continuous balloon-carried measurements since 1957. An underexploited measurement opportunity is presented by the conventional weather balloons (radiosondes) launched regularly globally by meteorological services, which could potentially provide a cost-effective alternative to custom balloon flights, as well as the ability to make measurements of particle fluxes at a wide range of latitudes. This work describes the development of a small disposable ionisation sensor, exploiting the well-known response of inexpensive semiconductor devices (e.g. PIN photodiodes) to ionising radiation. Such a Photodiode Radiation Detector (PRD) is particularly suitable for balloon use, as, unlike previous Geiger tube detector systems, only low bias voltages are required, which simplifies the circuitry required, reduces power consumption and entirely removes any high voltage hazard. In addition to providing count rate information, basic energy spectrum information is in principle available from pulse amplitudes generated. We discuss the evaluation and deployment considerations for the use of a PRD on a standard radiosonde platform, to operate within and alongside the existing operational meteorological requirements.

  15. Worldwide Weather Radar Imagery May Allow Substantial Increase in Meteorite Fall Recovery

    NASA Technical Reports Server (NTRS)

    Fries, Marc; Matson, Robert; Schaefer, Jacob; Fries, Jeffery; Hankey, Mike; Anderson, Lindsay

    2014-01-01

    Weather radar imagery is a valuable new technique for the rapid recovery of meteorite falls, to include falls which would not otherwise be recovered (e.g. Battle Mountain). Weather radar imagery reveals about one new meteorite fall per year (18 falls since 1998), using weather radars in the United States alone. However, an additional 75 other nations operate weather radar networks according to the UN World Meteorological Organization (WMO). If the imagery of those radars were analyzed, the current rate of meteorite falls could be improved considerably, to as much as 3.6 times the current recovery rate based on comparison of total radar areal coverage. Recently, the addition of weather radar imagery, seismometry and internet-based aggregation of eyewitness reports has improved the speed and accuracy of fresh meteorite fall recovery [e.g. 1,2]. This was demonstrated recently with the radar-enabled recovery of the Sutter's Mill fall [3]. Arguably, the meteorites recovered via these methods are of special scientific value as they are relatively unweathered, fresh falls. To illustrate this, a recent SAO/NASA ADS search using the keyword "meteorite" shows that all 50 of the top search results included at least one named meteorite recovered from a meteorite fall. This is true even though only 1260 named meteorite falls are recorded among the >49,000 individual falls recorded in the Meteoritical Society online database. The US NEXRAD system used thus far to locate meteorite falls covers most of the United States' surface area. Using a WMO map of the world's weather radars, we estimate that the total coverage of the other 75 national weather radar networks equals about 3.6x NEXRAD's coverage area. There are two findings to draw from this calculation: 1) For the past 16 years during which 18 falls are seen in US radar data, there should be an additional 65 meteorite falls recorded in worldwide radar imagery. Also: 2) if all of the world's radar data could be analyzed, the

  16. Airborne Radar Sounding and Ice Thickness Measurements over Lake Vostok, East Antarctica

    NASA Astrophysics Data System (ADS)

    Peters, M. E.; Blankenship, D. D.; Morse, D. L.; Holt, J. W.; Kempf, S. D.; Richter, T. G.; Falola, B.; Oliason, S.

    2002-05-01

    Lake Vostok was discovered using airborne ice-sounding radar in East Antarctica during the mid 1970's, but interest in this largest known subglacial lake has increased in recent years. Frozen microbial discoveries from ice cores taken just above Lake Vostok suggest its potential for being an isolated biological ecosystem. Also, the lake's unique combination of glaciologic, hydrologic and geological processes make it a possible terrestrial analogue for sub-ice water on other planetary bodies. Satellite radar has mapped the spatial extent of the lake from surface topography, and Russian ground traverses have gathered radar and seismic data along select profiles, but the full subglacial environment has remained uncharted. In response to a proposal by R.E. Bell and M. Studinger at Lamont Doherty Earth Observatory, the University of Texas Institute for Geophysics (UTIG) conducted an airborne geophysical survey over Lake Vostok and its surroundings during the 2000/01 field season. The survey included 21,000 line-km of geophysical observations with a line spacing of 7.5 km and a tie-line spacing of 11.25 or 22.5 km. The instrument suite included incoherent ice-sounding radar, laser altimetry, and precise GPS positioning and navigation, as well as airborne gravity and magnetics measurements. The radar system consisted of a 60 MHz, 8000 watt peak power transmitter operating in pulsed continuous-wave mode at 12.5 kHz (with 250 ns pulse width), a log-detection incoherent receiver (with 80 dB dynamic range), and a signal digitizer with a unique capability to average signals rapidly. Incoherent radar observations constructed from 2048 averaged transmissions occurred roughly every 12 m along-track. Ice thicknesses in excess of 4000 m were routinely sounded over Lake Vostok using this system. In addition to the incoherent radar, a new acquisition system was developed on an experimental basis to coherently integrate radar signals utilizing synthetic aperture radar techniques

  17. MicroRadarNet: A network of weather micro radars for the identification of local high resolution precipitation patterns

    NASA Astrophysics Data System (ADS)

    Turso, S.; Paolella, S.; Gabella, M.; Perona, G.

    2013-01-01

    In this paper, MicroRadarNet, a novel micro radar network for continuous, unattended meteorological monitoring is presented. Key aspects and constraints are introduced. Specific design strategies are highlighted, leading to the technological implementations of this wireless, low-cost, low power consumption sensor network. Raw spatial and temporal datasets are processed on-board in real-time, featuring a consistent evaluation of the signals from the sensors and optimizing the data loads to be transmitted. Network servers perform the final post-elaboration steps on the data streams coming from each unit. Final network products are meteorological mappings of weather events, monitored with high spatial and temporal resolution, and lastly served to the end user through any Web browser. This networked approach is shown to imply a sensible reduction of the overall operational costs, including management and maintenance aspects, if compared to the traditional long range monitoring strategy. Adoption of the TITAN storm identification and nowcasting engine is also here evaluated for in-loop integration within the MicroRadarNet data processing chain. A brief description of the engine workflow is provided, to present preliminary feasibility results and performance estimates. The outcomes were not so predictable, taking into account relevant operational differences between a Western Alps micro radar scenario and the long range radar context in the Denver region of Colorado. Finally, positive results from a set of case studies are discussed, motivating further refinements and integration activities.

  18. Weather Information System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    WxLink is an aviation weather system based on advanced airborne sensors, precise positioning available from the satellite-based Global Positioning System, cockpit graphics and a low-cost datalink. It is a two-way system that uplinks weather information to the aircraft and downlinks automatic pilot reports of weather conditions aloft. Manufactured by ARNAV Systems, Inc., the original technology came from Langley Research Center's cockpit weather information system, CWIN (Cockpit Weather INformation). The system creates radar maps of storms, lightning and reports of surface observations, offering improved safety, better weather monitoring and substantial fuel savings.

  19. Microphysical Retrievals Over Stratiform Rain Using Measurements from an Airborne Dual-Wavelength Radar-Radiometer

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kumagai, Hiroshi; Wang, James R.; Iguchi, Toshio; Kozu, Toshiaki

    1997-01-01

    The need to understand the complementarity of the radar and radiometer is important not only to the Tropical Rain Measuring Mission (TRMM) program but to a growing number of multi-instrumented airborne experiment that combine single or dual-frequency radars with multichannel radiometers. The method of analysis used in this study begins with the derivation of dual-wavelength radar equations for the estimation of a two-parameter drop size distribution (DSD). Defining a "storm model" as the set of parameters that characterize snow density, cloud water, water vapor, and features of the melting layer, then to each storm model there will usually correspond a set of range-profiled drop size distributions that are approximate solutions of the radar equations. To test these solutions, a radiative transfer model is used to compute the brightness temperatures for the radiometric frequencies of interest. A storm model or class of storm models is considered optimum if it provides the best reproduction of the radar and radiometer measurements. Tests of the method are made for stratiform rain using simulated storm models as well as measured airborne data. Preliminary results show that the best correspondence between the measured and estimated radar profiles usually can be obtained by using a moderate snow density (0.1-0.2 g/cu cm), the Maxwell-Garnett mixing formula for partially melted hydrometeors (water matrix with snow inclusions), and low to moderate values of the integrated cloud liquid water (less than 1 kg/sq m). The storm-model parameters that yield the best reproductions of the measured radar reflectivity factors also provide brightness temperatures at 10 GHz that agree well with the measurements. On the other hand, the correspondence between the measured and modeled values usually worsens in going to the higher frequency channels at 19 and 34 GHz. In searching for possible reasons for the discrepancies, It is found that changes in the DSD parameter Mu, the radar

  20. Recalibration of cumulative rainfall estimates by weather radar over a large area

    NASA Astrophysics Data System (ADS)

    Mazza, Alessandro; Antonini, Andrea; Melani, Samantha; Ortolani, Alberto

    2015-01-01

    The real-time measurement of rainfall is a primary information source for many purposes, such as weather forecasting, flood risk assessment, and landslide prediction and prevention. In this perspective, remote sensing techniques to monitor rainfall fields by means of radar measurements are very useful. In this work, a technique is proposed for the estimation of cumulative rainfall fields averaged over a large area, applied on the Tuscany region using the Italian weather radar network. In order to assess the accuracy of radar-based rainfall estimates, they are compared with coincident spatial rain gauge measurements. Observations are compared with average rainfall over areas as large as a few tens of kilometers. An ordinary block kriging method is applied for rain gauge data spatialization. The comparison between the two types of estimates is used for recalibrating the radar measurements. As a main result, this paper proposes a recalibrated relationship for retrieving precipitation from radar data. The accuracy of the estimate increases when considering larger areas: an area of 900 km2 has a standard deviation of less than few millimeters. This is of interest in particular for extending recalibrated radar relationships over areas where rain gauges are not available. Many applications could benefit from it, from nowcasting for civil protection activities, to hydrogeological risk mitigation or agriculture.

  1. Ice-volcano interactions during the 2010 Eyjafjallajökull eruption, as revealed by airborne imaging radar

    NASA Astrophysics Data System (ADS)

    Magnússon, E.; Gudmundsson, M. T.; Roberts, M. J.; Sigurã°Sson, G.; HöSkuldsson, F.; Oddsson, B.

    2012-07-01

    During the eruption of the ice-covered Eyjafjallajökull volcano, a series of images from an airborne Synthetic Aperture Radar (SAR) were obtained by the Icelandic Coast Guard. Cloud obscured the summit from view during the first three days of the eruption, making the weather-independent SAR a valuable monitoring resource. Radar images revealed the development of ice cauldrons in a 200 m thick ice cover within the summit caldera, as well as the formation of cauldrons to the immediate south of the caldera. Additionally, radar images were used to document the subglacial and supraglacial passage of floodwater to the north and south of the eruption site. The eruption breached the ice surface about four hours after its onset at about 01:30 UTC on 14 April 2010. The first SAR images, obtained between 08:55 and 10:42 UTC, show signs of limited supraglacial drainage from the eruption site. Floodwater began to drain from the ice cap almost 5.5 h after the beginning of the eruption, implying storage of meltwater at the eruption site due to initially constricted subglacial drainage from the caldera. Heat transfer rates from magma to ice during early stages of cauldron formation were about 1 MW m-2 in the radial direction and about 4 MW m-2 vertically. Meltwater release was characterized by accumulation and drainage with most of the volcanic material in the ice cauldrons being drained in hyperconcentrated floods. After the third day of the eruption, meltwater generation at the eruption site diminished due to an insulating lag of tephra.

  2. Airborne profiling of ice thickness using a short pulse radar

    NASA Technical Reports Server (NTRS)

    Vickers, R. S.; Heighway, J. E.; Gedney, R.

    1973-01-01

    The acquisition and interpretation of ice thickness data from a mobile platform has for some time been a goal of the remote sensing community. Such data, once obtainable, is of value in monitoring the changes in ice thickness over large areas, and in mapping the potential hazards to traffic in shipping lanes. Measurements made from a helicopter-borne ice thickness profiler of ice in Lake Superior, Lake St. Clair and the St. Clair river as part of NASA's program to develop an ice information system are described. The profiler described is a high resolution, non-imaging, short pulse radar, operating at a carrier frequency of 2.7 GHz. The system can resolve reflective surfaces separated by as little as 10 cm. and permits measurement of the distance between resolvable surfaces with an accuracy of about 1 cm. Data samples are given for measurements both in a static (helicopter hovering), and a traverse mode. Ground truth measurements taken by an ice auger team traveling with the helicopter are compared with the remotely sensed data and the accuracy of the profiler is discussed based on these measurements.

  3. A geologic analysis of the Side-Looking Airborne Radar imagery of southern New England

    USGS Publications Warehouse

    Banks, Paul T.

    1975-01-01

    Analysis of the side looking airborn radar imagery of Massachusetts, Connecticut and Rhode Island indicates that radar shows the topography in great detail. Since bedrock geologic features are frequently expressed in the topography the radar lends itself to geologic interpretation. The radar was studied by comparisons with field mapped geologic data first at a scale of approximately 1:125,000 and then at a scale of 1:500,000. The larger scale comparison revealed that faults, minor faults, joint sets, bedding and foliation attitudes, lithology and lithologic contacts all have a topographic expression interpretable on the imagery. Surficial geologic features were far less visible on the imagery over most of the area studied. The smaller scale comparisons revealed a pervasive, near orthogonal fracture set cutting all types and ages of rock and trending roughly N40?E and N30?W. In certain places the strike of bedding and foliation attitudes and some lithologic Contacts were visible in addition to the fractures. Fracturing in southern New England is apparently far more important than has been previously recognized. This new information, together with the visibility of many bedding and foliation attitudes and lithologic contacts, indicates the importance of radar imagery in improving the geologic interpretation of an area.

  4. Annual Greenland Accumulation Rates (2009-2012) from Airborne Snow Radar

    NASA Technical Reports Server (NTRS)

    Koenig, Lora S.; Ivanoff, Alvaro; Alexander, Patrick M.; MacGregor, Joseph A.; Fettweis, Xavier; Panzer, Ben; Paden, John D.; Forster, Richard R.; Das, Indrani; McConnell, Joseph R.; Tedesco, Marco; Leuschen, Carl; Gogineni, Prasad

    2016-01-01

    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor its surface mass balance in order to improve sea-level rise predictions. Snow accumulation is the largest component of the ice sheet's surface mass balance, but in situ observations thereof are inherently sparse and models are difficult to evaluate at large scales. Here, we quantify recent Greenland accumulation rates using ultra-wideband (2-6.5 gigahertz) airborne snow radar data collected as part of NASA's Operation IceBridge between 2009 and 2012. We use a semi-automated method to trace the observed radiostratigraphy and then derive annual net accumulation rates for 2009-2012. The uncertainty in these radar-derived accumulation rates is on average 14 percent. A comparison of the radarderived accumulation rates and contemporaneous ice cores shows that snow radar captures both the annual and longterm mean accumulation rate accurately. A comparison with outputs from a regional climate model (MAR - Modele Atmospherique Regional for Greenland and vicinity) shows that this model matches radar-derived accumulation rates in the ice sheet interior but produces higher values over southeastern Greenland. Our results demonstrate that snow radar can efficiently and accurately map patterns of snow accumulation across an ice sheet and that it is valuable for evaluating the accuracy of surface mass balance models.

  5. Terminal Doppler Weather Radar (TDWR) system characteristics and design constraints

    NASA Astrophysics Data System (ADS)

    Wieler, J. G.; Shrader, W. W.

    TDWR features two scan strategies: hazardous weather mode and monitor mode; the system has redundant transmitters, receiver/exciters, and signal processing channels. The data processing system features data base formation/conditioning, clutter residue editing, point target removal, signal-to-noise thresholding, velocity dealiasing, and a pulse-repetition frequency selection/deobscuration algorithm.

  6. Ku band airborne radar altimeter observations of marginal sea ice during the 1984 Marginal Ice Zone Experiment

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.

    1991-01-01

    Pulse-limited, airborne radar data taken in June and July 1984 with a 13.8-GHz altimeter over the Fram Strait marginal ice zone are analyzed with the aid of large-format aerial photography, airborne synthetic aperture radar data, and surface observations. Variations in the radar return pulse waveforms are quantified and correlated with ice properties recorded during the Marginal Ice Zone Experiment. Results indicate that the wide-beam altimeter is a flexible instrument, capable of identifying the ice edge with a high degree of accuracy, calculating the ice concentration, and discriminating a number of different ice classes. This suggests that microwave radar altimeters have a sensitivity to sea ice which has not yet been fully exploited. When fused with SSM/I, AVHRR and ERS-1 synthetic aperture radar imagery, future ERS-1 altimeter data are expected to provide some missing pieces to the sea ice geophysics puzzle.

  7. A comparison of airborne and ground-based radar observations with rain gages during the CaPE experiment

    NASA Technical Reports Server (NTRS)

    Satake, Makoto; Short, David A.; Iguchi, Toshio

    1992-01-01

    The vicinity of KSC, where the primary ground truth site of the Tropical Rainfall Measuring Mission (TRMM) program is located, was the focal point of the Convection and Precipitation/Electrification (CaPE) experiment in Jul. and Aug. 1991. In addition to several specialized radars, local coverage was provided by the C-band (5 cm) radar at Patrick AFB. Point measurements of rain rate were provided by tipping bucket rain gage networks. Besides these ground-based activities, airborne radar measurements with X- and Ka-band nadir-looking radars on board an aircraft were also recorded. A unique combination data set of airborne radar observations with ground-based observations was obtained in the summer convective rain regime of central Florida. We present a comparison of these data intending a preliminary validation. A convective rain event was observed simultaneously by all three instrument types on the evening of 27 Jul. 1991. The high resolution aircraft radar was flown over convective cells with tops exceeding 10 km and observed reflectivities of 40 to 50 dBZ at 4 to 5 km altitude, while the low resolution surface radar observed 35 to 55 dBZ echoes and a rain gage indicated maximum surface rain rates exceeding 100 mm/hr. The height profile of reflectivity measured with the airborne radar show an attenuation of 6.5 dB/km (two way) for X-band, corresponding to a rainfall rate of 95 mm/hr.

  8. A comparison of airborne and ground-based radar observations with rain gages during the CaPE experiment

    NASA Technical Reports Server (NTRS)

    Satake, Makoto; Short, David A.; Iguchi, Toshio

    1992-01-01

    The vicinity of KSC, where the primary ground truth site of the Tropical Rainfall Measuring Mission (TRMM) program is located, was the focal point of the Convection and Precipitation/Electrification (CaPE) experiment in July and Aug. 1991. In addition to several specialized radars, local coverage was provided by the C-band (5 cm) radar at Patrick AFB. Point measurements of rain rate were provided by tipping bucket rain gage networks. Besides these ground-based activities, airborne radar measurements with X- and Ka-band nadir-looking radars on board an aircraft were also recorded. A unique combination data set of airborne radar observations with ground-based observations was obtained in the summer convective rain regime of central Florida. We present a comparison of these data intending a preliminary validation. A convective rain event was observed simultaneously by all three instrument types on the evening of 27 July 1991. The high resolution aircraft radar was flown over convective cells with tops exceeding 10 km and observed reflectivities of 40 to 50 dBZ at 4 to 5 km altitude, while the low resolution surface radar observed 35 to 55 dBZ echoes and a rain gage indicated maximum surface rain rates exceeding 100 mm/hr. The height profile of reflectivity measured with the airborne radar show an attenuation of 6.5 dB/km (two way) for X-band, corresponding to a rainfall rate of 95 mm/hr.

  9. Navigation errors encountered using weather-mapping radar for helicopter IFR guidance to oil rigs

    NASA Technical Reports Server (NTRS)

    Phillips, J. D.; Bull, J. S.; Hegarty, D. M.; Dugan, D. C.

    1980-01-01

    In 1978 a joint NASA-FAA helicopter flight test was conducted to examine the use of weather-mapping radar for IFR guidance during landing approaches to oil rig helipads. The following navigation errors were measured: total system error, radar-range error, radar-bearing error, and flight technical error. Three problem areas were identified: (1) operational problems leading to pilot blunders, (2) poor navigation to the downwind final approach point, and (3) pure homing on final approach. Analysis of these problem areas suggests improvement in the radar equipment, approach procedure, and pilot training, and gives valuable insight into the development of future navigation aids to serve the off-shore oil industry.

  10. Analysis of Airborne Radar Altimetry Measurements of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.

    1994-01-01

    This dissertation presents an analysis of airborne altimetry measurements taken over the Greenland ice sheet with the 13.9 GHz Advanced Application Flight Experiment (AAFE) pulse compression radar altimeter. This Ku-band instrument was refurbished in 1990 by the Microwave Remote Sensing Laboratory at the University of Massachusetts to obtain high-resolution altitude measurements and to improve the tracking, speed, storage and display capabilities of the radar. In 1991 and 1993, the AAFE altimeter took part in the NASA Multisensor Airborne Altimetry Experiments over Greenland, along with two NASA laser altimeters. Altitude results from both experiments are presented along with comparisons to the laser altimeter and calibration passes over the Sondrestroem runway in Greenland. Although it is too early to make a conclusion about the growth or decay of the ice sheet, these results show that the instrument is capable of measuring small-scale surface changes to within 14 centimeters. In addition, results from these experiments reveal that the radar is sensitive to the different diagenetic regions of the ice sheet. Return waveforms from the wet- snow, percolation and dry-snow zones show varying effects of both surface scattering and sub-surface or volume scattering. Models of each of the diagenetic regions of Greenland are presented along with parameters such as rms surface roughness, rms surface slope and attenuation coefficient of the snow pack obtained by fitting the models to actual return waveforms.

  11. Simulation of airborne radar observations of precipitating systems at various frequency bands

    NASA Astrophysics Data System (ADS)

    Louf, Valentin; Pujol, Olivier; Riedi, Jérôme

    2013-05-01

    The choice of the microwave frequency is of considerable importance for precipitating system observations by airborne radar. Currently, these radars operate at X-band (f = 10 GHz), although other frequency bands, may be used jointly or not. Since the measured reflectivity Zm is f-depending, different physical information about precipitating systems could be obtained. Herein, a comparison of reflectivity fields at different frequency bands is presented. A realistic and flexible model of precipitating systems is presented and simulations of airborne radar observations are performed. Simulated reflectivity fields are degraded as/increases because of Mie effects and microwave attenuation. At S, C and X-bands, attenuation is weak and Mie effects slightly increase the backscattered signal such that they can compensate attenuation at X and Ku bands. The Ka and W-bands suffer from a strong attenuation and significant Mie effects which seriously alter Zm-fields. For a squall line, the closer convective tower hides the farther ones, which is problematic for a pilot to estimate hazard at long distance. In addition, because hail is the main meteorological hazard for civil aviation, hail-rain discrimination is discussed and clarified for convective systems. It appears that S, C, and X-bands are the best ones, but the significant size of antenna used is prohibitive. Higher frequencies are more difficult to use on civil aviation due to high ambiguities and a too strongly attenuated microwave signal.

  12. The Federal Aviation Administration/Massachusetts Institute of Technology (FAA/MIT) Lincoln Laboratory Doppler weather radar program

    NASA Technical Reports Server (NTRS)

    Evans, James E.

    1988-01-01

    The program focuses on providing real-time information on hazardous aviation weather to end users such as air traffic control and pilots. Existing systems will soon be replaced by a Next Generation Weather Radar (NEXRAD), which will be concerned with detecting such hazards as heavy rain and hail, turbulence, low-altitude wind shear, and mesocyclones and tornadoes. Other systems in process are the Central Weather Processor (CWP), and the terminal Doppler weather radar (TDWR). Weather measurements near Memphis are central to ongoing work, especially in the area of microbursts and wind shear.

  13. Long-term accounting for raindrop size distribution variations improves quantitative precipitation estimation by weather radar

    NASA Astrophysics Data System (ADS)

    Hazenberg, Pieter; Leijnse, Hidde; Uijlenhoet, Remko

    2016-04-01

    Weather radars provide information on the characteristics of precipitation at high spatial and temporal resolution. Unfortunately, rainfall measurements by radar are affected by multiple error sources. The current study is focused on the impact of variations of the raindrop size distribution on radar rainfall estimates. Such variations lead to errors in the estimated rainfall intensity (R) and specific attenuation (k) when using fixed relations for the conversion of the observed reflectivity (Z) into R and k. For non-polarimetric radar, this error source has received relatively little attention compared to other error sources. We propose to link the parameters of the Z-R and Z-k relations directly to those of the normalized gamma DSD. The benefit of this procedure is that it reduces the number of unknown parameters. In this work, the DSD parameters are obtained using 1) surface observations from a Parsivel and Thies LPM disdrometer, and 2) a Monte Carlo optimization procedure using surface rain gauge observations. The impact of both approaches for a given precipitation type is assessed for 45 days of summertime precipitation observed in The Netherlands. Accounting for DSD variations using disdrometer observations leads to an improved radar QPE product as compared to applying climatological Z-R and Z-k relations. This especially holds for situations where widespread stratiform precipitation is observed. The best results are obtained when the DSD parameters are optimized. However, the optimized Z-R and Z-k relations show an unrealistic variability that arises from uncorrected error sources. As such, the optimization approach does not result in a realistic DSD shape but instead also accounts for uncorrected error sources resulting in the best radar rainfall adjustment. Therefore, to further improve the quality of preciptitation estimates by weather radar, usage should either be made of polarimetric radar or by extending the network of disdrometers.

  14. Estimation of Design Rainfall from Weather Radar Data - a Case Study for the Hannover Area

    NASA Astrophysics Data System (ADS)

    Haberlandt, U.; Berndt, C.

    2015-12-01

    The estimation of design rainfall requires long-term precipitation observations in high temporal resolution. Those data are available only with poor spatial density, which usually entails regionalization for their practical application. An alternative would be to utilize the high spatial resolution of weather radar for the estimation of design rainfall. Meanwhile the observation length of many operational radar instruments extend over a time period of 10 years, which suggests to analyze their benefits for estimating design rainfall. In this study, 13 years of observations from the Hannover radar station located in Northern Germany are analyzed together with about 50 recording rain gauges in the observation range of the regarding their reproduction of extreme rainfall statistics. Pure radar data and radar-station merging products are analyzed for rainfall durations from 5 minutes to 6 hours and return periods from 1 year to 30 years. Partial duration series of the extremes were derived from the data and probability distributions fitted. The performance of the design rainfall estimates is assessed based on cross validations for observed station points, which are used as reference. For design rainfall estimation using the pure radar data, the pixel value at station location is taken; for the merging products, spatial interpolation methods are applied. The results show, that pure radar data are not suitable for the estimation of extremes. They usually lead to an overestimation compared to the observations, which is opposite to the usual behavior of radar rainfall for average intensities. However, some of the merging products between radar and station data can provide a better estimate for extremes as the station data alone, especially for the longer durations. Main condition for a good performance is that the radar data are adjusted to daily observed rainfall sums prior to their application.

  15. Using raindrop size distributions from different types of disdrometer to establish weather radar algorithms

    NASA Astrophysics Data System (ADS)

    Baldini, Luca; Adirosi, Elisa; Roberto, Nicoletta; Vulpiani, Gianfranco; Russo, Fabio; Napolitano, Francesco

    2015-04-01

    Radar precipitation retrieval uses several relationships that parameterize precipitation properties (like rainfall rate and liquid water content and attenuation (in case of radars at attenuated frequencies such as those at C- and X- band) as a function of combinations of radar measurements. The uncertainty in such relations highly affects the uncertainty precipitation and attenuation estimates. A commonly used method to derive such relationships is to apply regression methods to precipitation measurements and radar observables simulated from datasets of drop size distributions (DSD) using microphysical and electromagnetic assumptions. DSD datasets are determined both by theoretical considerations (i.e. based on the assumption that the radar always samples raindrops whose sizes follow a gamma distribution) or from experimental measurements collected throughout the years by disdrometers. In principle, using long-term disdrometer measurements provide parameterizations more representative of a specific climatology. However, instrumental errors, specific of a disdrometer, can affect the results. In this study, different weather radar algorithms resulting from DSDs collected by diverse types of disdrometers, namely 2D video disdrometer, first and second generation of OTT Parsivel laser disdrometer, and Thies Clima laser disdrometer, in the area of Rome (Italy) are presented and discussed to establish at what extent dual-polarization radar algorithms derived from experimental DSD datasets are influenced by the different error structure of the different type of disdrometers used to collect the data.

  16. Use of weather radar for flood forecasting in the Sieve River Basin: A sensitivity analysis

    SciTech Connect

    Pessoa, M.L.; Bras, R.L.; Williams, E.R. )

    1993-03-01

    Weather radar, in combination with a distributed rainfall-runoff model, promises to significantly improve real-time flood forecasting. This paper investigates the value of radar-derived precipitation in forecasting streamflow in the Sieve River basin, near Florence, Italy. The basin is modeled with a distributed rainfall-runoff model that exploits topographic information available from digital elevation maps. The sensitivity of the flood forecast to various properties of the radar-derived rainfall is studied. It is found that use of the proper radar reflectivity-rainfall intensity (Z-R) relationship is the most crucial factor in obtaining correct flood hydrographs. Errors resulting from spatially averaging radar rainfall are acceptable, but the use of discrete point information (i.e. raingage) can lead to serious problems. Reducing the resolution of the 5-min radar signal by temporally averaging over 15 and 30 min does not lead to major errors. Using 3-bit radar data (rather than the usual 8-bit data) to represent intensities results in significant operational savings without serious problems in hydrograph accuracy. 24 refs., 28 figs., 2 tabs.

  17. The structure of a microburst - As observed by ground-based and airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Mueller, C. K.; Hildebrand, P. H.

    1983-01-01

    Attention is given to the microburst observed near Denver, CO, on June 29, 1982, in the course of the Joint Airport Weather Study (JAWS). The JAWS ground radar network was specifically established to furnish high spatial and temporal resolution multiple Doppler data for microburst observations. The data, which were collected from directly above the microburst, permitted direct measurements of vertical velocities to be made. P-3 surveillance aircraft Doppler data was also available for this microburst, whose considerable complexity is noted.

  18. Comparison of Retracking Algorithms Using Airborne Radar and Laser Altimeter Measurements of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.; Swift, Calvin T.

    1995-01-01

    This paper compares four continental ice sheet radar altimeter retracking algorithms using airborne radar and laser altimeter data taken over the Greenland ice sheet in 1991. The refurbished Advanced Application Flight Experiment (AAFE) airborne radar altimeter has a large range window and stores the entire return waveform during flight. Once the return waveforms are retracked, or post-processed to obtain the most accurate altitude measurement possible, they are compared with the high-precision Airborne Oceanographic Lidar (AOL) altimeter measurements. The AAFE waveforms show evidence of varying degrees of both surface and volume scattering from different regions of the Greenland ice sheet. The AOL laser altimeter, however, obtains a return only from the surface of the ice sheet. Retracking altimeter waveforms with a surface scattering model results in a good correlation with the laser measurements in the wet and dry-snow zones, but in the percolation region of the ice sheet, the deviation between the two data sets is large due to the effects of subsurface and volume scattering. The Martin et al model results in a lower bias than the surface scattering model, but still shows an increase in the noise level in the percolation zone. Using an Offset Center of Gravity algorithm to retrack altimeter waveforms results in measurements that are only slightly affected by subsurface and volume scattering and, despite a higher bias, this algorithm works well in all regions of the ice sheet. A cubic spline provides retracked altitudes that agree with AOL measurements over all regions of Greenland. This method is not sensitive to changes in the scattering mechanisms of the ice sheet and it has the lowest noise level and bias of all the retracking methods presented.

  19. Application of weather radar CAPPI data to verify NWP rainfall accumulation data

    NASA Astrophysics Data System (ADS)

    Bassan, José Marcio; Martins, João Eduardo Machado Perea; Sugahara, Shigetoshi; da Silveira, Reinaldo Bomfim

    2015-12-01

    This study presents a method for using the CAPPI data from a weather radar to verify forecasts of 24 h accumulated precipitation from a numerical weather prediction (NWP) model, during 2010-2012. The radar used in this study consisted of a 2° beam width, Doppler and single polarization, S-band radar, located at the Meteorological Research Institute (IPMET) of Sao Paulo State University, Bauru, Sao Paulo, Brazil. A tuned version of the Eta model was used in the verification, though any model could be used with a few minor adaptations. The model, used actively at IPMET, had a horizontal grid spacing of 10 km, and was defined with the lateral boundary conditions from the Global Circulation Model of the Center for Weather Forecasting and Climate Research of the Brazilian Institute for Space Research. A linear correction was applied to the radar data, using selected rain gauges from the state of Sao Paulo's meteorological observation network, to create a reference series for both radar and NWP quantitative precipitation estimates. The reference data were used to verify the rainfall rates forecasted with the NWP, in terms of both their spatial distribution and the rainfall quantity at ground level. The results agreed well with the specific ranges of rainfall values, but there were situations where the radar data presented limitations for the verification. Ways in which to improve the methodology presented here are discussed. The current study provides an opportunity to use a high-resolution data set to verify predicted rainfall across a large spatial coverage, particularly in places which lack rain observational data.

  20. The application of airborne imaging radars (L and X-band) to earth resources problems

    NASA Technical Reports Server (NTRS)

    Drake, B.; Shuchman, R. A.; Bryan, M. L.; Larson, R. W.; Liskow, C. L.; Rendleman, R. A.

    1974-01-01

    A multiplexed synthetic aperture Side-Looking Airborne Radar (SLAR) that simultaneously images the terrain with X-band (3.2 cm) and L-band (23.0 cm) radar wavelengths was developed. The Feasibility of using multiplexed SLAR to obtain useful information for earth resources purposes. The SLAR imagery, aerial photographs, and infrared imagery are examined to determine the qualitative tone and texture of many rural land-use features imaged. The results show that: (1) Neither X- nor L-band SLAR at moderate and low depression angles can directly or indirectly detect pools of water under standing vegetation. (2) Many of the urban and rural land-use categories present in the test areas can be identified and mapped on the multiplexed SLAR imagery. (3) Water resources management can be done using multiplexed SLAR. (4) Drainage patterns can be determined on both the X- and L-band imagery.

  1. Indoor experimental facility for airborne synthetic aperture radar (SAR) configurations - rail-SAR

    NASA Astrophysics Data System (ADS)

    Kirose, Getachew; Phelan, Brian R.; Sherbondy, Kelly D.; Ranney, Kenneth I.; Koenig, Francois; Narayanan, Ram M.

    2014-05-01

    The Army Research Laboratory (ARL) is developing an indoor experimental facility to evaluate and assess airborne synthetic-aperture-radar-(SAR)-based detection capabilities. The rail-SAR is located in a multi-use facility that also provides a base for research and development in the area of autonomous robotic navigation. Radar explosive hazard detection is one key sensordevelopment area to be investigated at this indoor facility. In particular, the mostly wooden, multi-story building houses a two (2) story housing structure and an open area built over a large sandbox. The housing structure includes reconfigurable indoor walls which enable the realization of multiple See-Through-The-Wall (STTW) scenarios. The open sandbox, on the other hand, allows for surface and buried explosive hazard scenarios. The indoor facility is not rated for true explosive hazard materials so all targets will need to be inert and contain surrogate explosive fills. In this paper we discuss the current system status and describe data collection exercises conducted using canonical targets and frequencies that may be of interest to designers of ultra-wideband (UWB) airborne, ground penetrating SAR systems. A bi-static antenna configuration will be used to investigate the effects of varying airborne SAR parameters such as depression angle, bandwidth, and integration angle, for various target types and deployment scenarios. Canonical targets data were used to evaluate overall facility capabilities and limitations. These data is analyzed and summarized for future evaluations. Finally, processing techniques for dealing with RF multi-path and RFI due to operating inside the indoor facility are described in detail. Discussion of this facility and its capabilities and limitations will provide the explosive hazard community with a great airborne platform asset for sensor to target assessment.

  2. An Efficient Adaptive Angle-Doppler Compensation Approach for Non-Sidelooking Airborne Radar STAP.

    PubMed

    Shen, Mingwei; Yu, Jia; Wu, Di; Zhu, Daiyin

    2015-01-01

    In this study, the effects of non-sidelooking airborne radar clutter dispersion on space-time adaptive processing (STAP) is considered, and an efficient adaptive angle-Doppler compensation (EAADC) approach is proposed to improve the clutter suppression performance. In order to reduce the computational complexity, the reduced-dimension sparse reconstruction (RDSR) technique is introduced into the angle-Doppler spectrum estimation to extract the required parameters for compensating the clutter spectral center misalignment. Simulation results to demonstrate the effectiveness of the proposed algorithm are presented. PMID:26053755

  3. Least square spline decomposition in time-frequency analysis of weather radar signals

    NASA Astrophysics Data System (ADS)

    Shelevytska, K. I.; Semenova, O. S.; Shelevytsky, I. V.; Yanovsky, F. J.

    2011-10-01

    Meteorology plays an important role in aviation, as it enables to predict weather conditions and detect flight dangerous meteorological phenomena. Meteorological radar is used to detect the intensity and possible location of precipitation and dangerous zones in them. Doppler radar systems are able to measure the speed of scatteres that constitute meteorological formations and phenomena. The tasks of measurement accuracy increasing and reliability rise of hazardous meteorological phenomena detection become much more relevant after establishing new flight control system CNS ATM adopted by ICAO - the International Civil Aviation Organization.

  4. A videoSAR mode for the x-band wideband experimental airborne radar

    NASA Astrophysics Data System (ADS)

    Damini, A.; Balaji, B.; Parry, C.; Mantle, V.

    2010-04-01

    DRDC has been involved in the development of airborne SAR systems since the 1980s. The current system, designated XWEAR (X-band Wideband Experimental Airborne Radar), is an instrument for the collection of SAR, GMTI and maritime surveillance data at long ranges. VideoSAR is a land imaging mode in which the radar is operated in the spotlight mode for an extended period of time. Radar data is collected persistently on a target of interest while the aircraft is either flying by or circling it. The time span for a single circular data collection can be on the order of 30 minutes. The spotlight data is processed using synthetic apertures of up to 60 seconds in duration, where consecutive apertures can be contiguous or overlapped. The imagery is formed using a back-projection algorithm to a common Cartesian grid. The DRDC VideoSAR mode noncoherently sums the images, either cumulatively, or via a sliding window of, for example, 5 images, to generate an imagery stream presenting the target reflectivity as a function of viewing angle. The image summation results in significant speckle reduction which provides for increased image contrast. The contrast increases rapidly over the first few summed images and continues to increase, but at a lesser rate, as more images are summed. In the case of cumulative summation of the imagery, the shadows quickly become filled in. In the case of a sliding window, the summation introduces a form of persistence into the VideoSAR output analogous to the persistence of analog displays from early radars.

  5. Retrieval of Snow and Rain From Combined X- and W-B and Airborne Radar Measurements

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert; Tian, Lin; Heymsfield, Gerald M.

    2008-01-01

    Two independent airborne dual-wavelength techniques, based on nadir measurements of radar reflectivity factors and Doppler velocities, respectively, are investigated with respect to their capability of estimating microphysical properties of hydrometeors. The data used to investigate the methods are taken from the ER-2 Doppler radar (X-band) and Cloud Radar System (W-band) airborne Doppler radars during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment campaign in 2002. Validity is assessed by the degree to which the methods produce consistent retrievals of the microphysics. For deriving snow parameters, the reflectivity-based technique has a clear advantage over the Doppler-velocity-based approach because of the large dynamic range in the dual-frequency ratio (DFR) with respect to the median diameter Do and the fact that the difference in mean Doppler velocity at the two frequencies, i.e., the differential Doppler velocity (DDV), in snow is small relative to the measurement errors and is often not uniquely related to Do. The DFR and DDV can also be used to independently derive Do in rain. At W-band, the DFR-based algorithms are highly sensitive to attenuation from rain, cloud water, and water vapor. Thus, the retrieval algorithms depend on various assumptions regarding these components, whereas the DDV-based approach is unaffected by attenuation. In view of the difficulties and ambiguities associated with the attenuation correction at W-band, the DDV approach in rain is more straightforward and potentially more accurate than the DFR method.

  6. Airborne and spaceborne radar images for geologic and environmental mapping in the Amazon rain forest, Brazil

    NASA Technical Reports Server (NTRS)

    Ford, John P.; Hurtak, James J.

    1986-01-01

    Spaceborne and airborne radar image of portions of the Middle and Upper Amazon basin in the state of Amazonas and the Territory of Roraima are compared for purposes of geological and environmental mapping. The contrasted illumination geometries and imaging parameters are related to terrain slope and surface roughness characteristics for corresponding areas that were covered by each of the radar imaging systems. Landforms range from deeply dissected mountain and plateau with relief up to 500 m in Roraima, revealing ancient layered rocks through folded residual mountains to deeply beveled pediplain in Amazonas. Geomorphic features provide distinct textural signatures that are characteristic of different rock associations. The principle drainages in the areas covered are the Rio Negro, Rio Branco, and the Rio Japura. Shadowing effects and low radar sensitivity to subtle linear fractures that are aligned parallel or nearly parallel to the direction of radar illumination illustrate the need to obtain multiple coverage with viewing directions about 90 degrees. Perception of standing water and alluvial forest in floodplains varies with incident angle and with season. Multitemporal data sets acquired over periods of years provide an ideal method of monitoring environmental changes.

  7. The Coplane Analysis Technique for Three-Dimensional Wind Retrieval Using the HIWRAP Airborne Doppler Radar

    NASA Technical Reports Server (NTRS)

    Didlake, Anthony C., Jr.; Heymsfield, Gerald M.; Tian, Lin; Guimond, Stephen R.

    2015-01-01

    The coplane analysis technique for mapping the three-dimensional wind field of precipitating systems is applied to the NASA High Altitude Wind and Rain Airborne Profiler (HIWRAP). HIWRAP is a dual-frequency Doppler radar system with two downward pointing and conically scanning beams. The coplane technique interpolates radar measurements to a natural coordinate frame, directly solves for two wind components, and integrates the mass continuity equation to retrieve the unobserved third wind component. This technique is tested using a model simulation of a hurricane and compared to a global optimization retrieval. The coplane method produced lower errors for the cross-track and vertical wind components, while the global optimization method produced lower errors for the along-track wind component. Cross-track and vertical wind errors were dependent upon the accuracy of the estimated boundary condition winds near the surface and at nadir, which were derived by making certain assumptions about the vertical velocity field. The coplane technique was then applied successfully to HIWRAP observations of Hurricane Ingrid (2013). Unlike the global optimization method, the coplane analysis allows for a transparent connection between the radar observations and specific analysis results. With this ability, small-scale features can be analyzed more adequately and erroneous radar measurements can be identified more easily.

  8. GEOLOGIC APPLICATIONS OF SIDE-LOOKING AIRBORNE RADAR DATA IN THE CENTRAL APPALACHIAN MOUNTAINS.

    USGS Publications Warehouse

    Pohn, Howard A.; Southworth, C. Scott

    1984-01-01

    Side-looking airborne radar has provided a sufficiently detailed synoptic view of the central Appalachian Mountains that the images give an unparalleled representation of the size and nature of the folds within the Valley and Ridge province. The radar data show that fold wavelengths decrease abruptly south of the region of the Pennsylvania, Maryland, and West Virginia State lines. Concomittantly, this decrease in fold wavelength is accompanied by an increase in both frequency and length of disturbed zones. The model predicted by the combination of the radar images and field observations suggests a broad lateral ramp, perpendicular to the strike of the fold-belt, connecting a deeper decollement level north of the Pennsylvania, Maryland and West Virginia State lines with a shallower decollement to the south. Recently, the first author has located a field example of a lateral ramp approximately one kilometer north of Mathias, West Virginia. This lateral ramp shows an up-to-the-north configuration and the extensions both northwestward and southeastward can be seen on the radar images as a series of cross-strike lineaments.

  9. Surface Clutter Removal in Airborne Radar Sounding Data from the Dry Valleys, Antarctica

    NASA Technical Reports Server (NTRS)

    Holt, J. W.; Blankenship, D. D.; Morse, D. L.; Peters, M. E.; Kempf, S. D.

    2005-01-01

    We have collected roughly 1,000 line-km of airborne radar sounding data over glaciers, rock/ice glaciers, permafrost, subsurface ice bodies, ice-covered saline lakes, and glacial deposits in Taylor and Beacon Valley. These data are being analyzed in order to develop techniques for discriminating between subsurface and off-nadir echoes and for detecting and characterizing subsurface interfaces. The identification of features on Mars exhibiting morphologies consistent with ice/rock mixtures, near-surface ice bodies and near-surface liquid water, and the importance of such features to the search for water on Mars, highlights the need for appropriate terrestrial analogs and analysis techniques in order to prepare for radar sounder missions to Mars. Climatic, hydrological, and geological conditions in the Dry Valleys of Antarctica are analogous in many ways to those on Mars. A crucial first step in the data analysis process is the discrimination of echo sources in the radar data. The goal is to identify all returns from the surface of off-nadir topography in order to positively identify subsurface echoes. This process will also be critical for radar data that will be collected in areas of Mars exhibiting significant topography, so that subsurface echoes are identified unambiguously. The positive detection and characterization of subsurface (including sub-ice) water is a primary goal of NASA's Mars exploration program. Our data over the Dry Valleys provides an opportunity to implement techniques we are developing to accomplish these goals.

  10. STORM: A New Airborne Polarimetric Real-Aperture Radar for Earth Observations

    NASA Astrophysics Data System (ADS)

    Podvin, D. Hauser. T.; Dechambre, M.; Valentin, R.; Caudal, G.; Daloze, J.-F.

    2003-04-01

    The successful launch of the Envisat in March 2002 offers new possibilities for estimating geophysical quantities characterizing continental or sea surface using the multi-polarization ASAR. In addition, in the context of the preparation of future missions which will embark polarimetric SAR (e.g. RADARSAT2) it is important to better assess the benefit of multi-polarization or polarimetric SAR systems. Airborne radar systems remain a very useful way to validate satellite measurements and to develop or validate algorithms needed to retrieve geophysical quantities from the radar measurements. CETP has designed and developed a new airborne radar called STORM] , which has a full polarimetric capability. STORM is derived from two previous versions of airborne radars developed at CETP, namely RESSAC (Hauser et al, JGR 1992) and RENE (Leloch-Duplex et al, Annales of Telecommunications, 1996). STORM is a real-aperture, C-Band system with a FM/CW transmission and with a rotating antenna to explore in azimuth. It offers a polarization diversity, receiving the complex signal in amplitude and phase simultaneously in H and V polarizations, which makes it possible to analyze the radar cross-section in HH, VV, HV, and other cross-polarized terms related to the scattering matrix. The antenna are pointed towards the surface with a mean incidence angle of 20° and a 3-dB aperture of about 30° in elevation and 8° in azimuth. The backscattered signal is analyzed from nadir to about 35° along the look-direction in 1012 range gates every 1.53m. The first tests with this system have been carried out in October 2001 over corner reflectors , over grass and ocean. In this workshop, we will present a validation of this system based on the results obtained with this first data set. In particular, we will present the calibration method of the complex signal (amplitude, phase), and distribution of phase differences (HH/VV, HV/VH) obtained over the different scatters (corner reflectors, grass

  11. A data assimilation experiment of RASTA airborne cloud radar data during HyMeX IOP16

    NASA Astrophysics Data System (ADS)

    Saussereau, Gaël; Caumont, Olivier; Delanoë, Julien

    2015-04-01

    The main goal of HyMeX first special observing period (SOP1), which took place from 5 September to 5 November 2012, was to document the heavy precipitation events and flash floods that regularly affect the north-western Mediterranean coastal areas. In the two-month campaign, around twenty rainfall events were documented in France, Italy, and Spain. Among the instrumental platforms that were deployed during SOP1, the Falcon 20 of the Safire unit (http://www.safire.fr/) made numerous flights in storm systems so as to document their thermodynamic, microphysical, and dynamical properties. In particular, the RASTA cloud radar (http://rali.projet.latmos.ipsl.fr/) was aboard this aircraft. This radar measures vertical profiles of reflectivity and Doppler velocity above and below the aircraft. This unique instrument thus allows us to document the microphysical properties and the speed of wind and hydrometeors in the clouds, quasi-continuously in time and at a 60-m vertical resolution. For this field campaign, a special version of the numerical weather prediction (NWP) Arome system was developed to cover the whole north-western Mediterranean basin. This version, called Arome-WMed, ran in real time during the SOP in order to, notably, schedule the airborne operations, especially in storm systems. Like the operational version, Arome-WMed delivers forecasts at a horizontal resolution of 2.5 km with a one-moment microphysical scheme that predicts the evolution of six water species: water vapour, cloud liquid water, rainwater, pristine ice, snow, and graupel. Its three-dimensional variational (3DVar) data assimilation (DA) system ingests every three hours (at 00 UTC, 03 UTC, etc.) numerous observations (radiosoundings, ground automatic weather stations, radar, satellite, GPS, etc.). In order to provide improved initial conditions to Arome-WMed, especially for heavy precipitation events, RASTA data were assimilated in Arome-WMed 3DVar DA system for IOP16 (26 October 2012), to

  12. Identification of Aviation Weather Hazards Based on the Integration of Radar and Lightning Data.

    NASA Astrophysics Data System (ADS)

    Stern, Andrew D.; Brady, Raymond H., III; Moore, Patrick D.; Carter, Gary M.

    1994-12-01

    The National Weather Service Eastern Region is carrying out a national risk-reduction exercise at the Baltimore-Washington Forecast Office in Sterling, Virginia. The primary objective of this project is to integrate information from remote sensor technologies to produce comprehensive state-of-the-atmosphere reports that promote aviation safety. Techniques have been developed and tested to identify aviation-oriented hazardous weather based on data from conventional radars, a national lightning detection network, and collateral observations from new Automated Surface Observing System (ASOS) sites that are being deployed throughout the nation. From July through September 1993, an experimental observational product to identify convective activity within 30 n mi of six airports from southern Virginia to Delaware was transmitted three times each hour to personnel at Weather Service Offices and Center Weather Service Units and to the meteorologists and flight dispatchers of five major air carriers. This user-oriented evaluation and the associated statistical analysis has provided important feedback to assess the utility of the product as a supplement to ASOS. Integration of information from several products generated by the new Doppler radar at Sterling with lightning network data is being pursued for the second phase of the project. The National Weather Service will determine the viability of this approach to generate products to routinely supplement the information provided by ASOS on either a national or a local basis.

  13. Fuzzy detection and classification of dangerous weather phenomena using dual-polarimetric radar measurements

    NASA Astrophysics Data System (ADS)

    Tho Dang, Van; Yanovsky, F. J.

    2009-06-01

    A fuzzy detector and classifier of dangerous weather phenomena based on polarimetric radar measurements are described in this paper. Five polarimetric radar measurands, namely, horizontal reflectivity factor, differential reflectivity factor, linear depolarization ratio, specific differential phase, cross-correlation coefficient and altitude of resolution volume serve as inputs of the fuzzy detector and classifier. The output of the fuzzy detector and classifier is one of 8 possible classes: 0) No dangerous weather phenomenon is detected; 1) Lightning; 2) Aircraft icing; 3) Hail; 4) Hail+rain; 5) Heavy rain; 6) Wet snow; 7) Dense snow. A neural network backpropagation algorithm is also considered for training the fuzzy detector and classifier in case of having verified data.

  14. A High-Resolution 3D Weather Radar, MSG, and Lightning Sensor Observation Composite

    NASA Astrophysics Data System (ADS)

    Diederich, Malte; Senf, Fabian; Wapler, Kathrin; Simmer, Clemens

    2013-04-01

    Within the research group 'Object-based Analysis and SEamless prediction' (OASE) of the Hans Ertel Centre for Weather Research programme (HerZ), a data composite containing weather radar, lightning sensor, and Meteosat Second Generation observations is being developed for the use in object-based weather analysis and nowcasting. At present, a 3D merging scheme combines measurements of the Bonn and Jülich dual polarimetric weather radar systems (data provided by the TR32 and TERENO projects) into a 3-dimensional polar-stereographic volume grid, with 500 meters horizontal, and 250 meters vertical resolution. The merging takes into account and compensates for various observational error sources, such as attenuation through hydrometeors, beam blockage through topography and buildings, minimum detectable signal as a function of noise threshold, non-hydrometeor echos like insects, and interference from other radar systems. In addition to this, the effect of convection during the radar 5-minute volume scan pattern is mitigated through calculation of advection vectors from subsequent scans and their use for advection correction when projecting the measurements into space for any desired timestamp. The Meteosat Second Generation rapid scan service provides a scan in 12 spectral visual and infrared wavelengths every 5 minutes over Germany and Europe. These scans, together with the derived microphysical cloud parameters, are projected into the same polar stereographic grid used for the radar data. Lightning counts from the LINET lightning sensor network are also provided for every 2D grid pixel. The combined 3D radar and 2D MSG/LINET data is stored in a fully documented netCDF file for every 5 minute interval, and is made ready for tracking and object based weather analysis. At the moment, the 3D data only covers the Bonn and Jülich area, but the algorithms are planed to be adapted to the newly conceived DWD polarimetric C-Band 5 minute interval volume scan strategy. An

  15. Evaluation of polarimetric parameters from a new dual-polarization C-band weather radar in an alpine region

    NASA Astrophysics Data System (ADS)

    Paulitsch, H.; Teschl, F.; Teschl, R.

    2009-04-01

    The first weather radar with dual polarization capabilities was recently installed in Austria. In contrast to conventional weather radars, where the reflectivity is measured in one polarization plane only, a dual polarization radar provides transmission in either horizontal, vertical, or both polarizations while receiving both the horizontal and vertical channels simultaneously. The back-scatter from precipitation particles is different for horizontal and vertical polarization, because these particles are usually far from being spherical. Information on size, shape, and material density of precipitation particles is obtained by comparing the reflected horizontal and vertical power returns and their ratio and correlation. The use of polarimetric radar variables can therefore increase the accuracy of the rain rate estimation compared to standard Z-R relationship of non-polarimetric radars. For the new weather radar different polarimetric rain rate estimators, which are based on the horizontal polarization radar reflectivity, Zh, the differential reflectivity, Zdr, and the specific differential phase shift, Kdp, are used. The rain rate estimators are further combined with an attenuation correction schema. In this study several radar observations of rainfall events are used to test the rain rate estimators and the attenuation correction. The results of the different algorithm are presented and a comparison with rain gauge measurements is made. Also the operational quality of the radar parameters is discussed and the implication of radar measurement errors on the accuracy of polarimetric rain rate estimations is shown.

  16. Optimizing weather radar observations using an adaptive multiquadric surface fitting algorithm

    NASA Astrophysics Data System (ADS)

    Martens, Brecht; Cabus, Pieter; De Jongh, Inge; Verhoest, Niko

    2013-04-01

    Real time forecasting of river flow is an essential tool in operational water management. Such real time modelling systems require well calibrated models which can make use of spatially distributed rainfall observations. Weather radars provide spatial data, however, since radar measurements are sensitive to a large range of error sources, often a discrepancy between radar observations and ground-based measurements, which are mostly considered as ground truth, can be observed. Through merging ground observations with the radar product, often referred to as data merging, one may force the radar observations to better correspond to the ground-based measurements, without losing the spatial information. In this paper, radar images and ground-based measurements of rainfall are merged based on interpolated gauge-adjustment factors (Moore et al., 1998; Cole and Moore, 2008) or scaling factors. Using the following equation, scaling factors (C(xα)) are calculated at each position xα where a gauge measurement (Ig(xα)) is available: Ig(xα)+-? C (xα) = Ir(xα)+ ? (1) where Ir(xα) is the radar-based observation in the pixel overlapping the rain gauge and ? is a constant making sure the scaling factor can be calculated when Ir(xα) is zero. These scaling factors are interpolated on the radar grid, resulting in a unique scaling factor for each pixel. Multiquadric surface fitting is used as an interpolation algorithm (Hardy, 1971): C*(x0) = aTv + a0 (2) where C*(x0) is the prediction at location x0, the vector a (Nx1, with N the number of ground-based measurements used) and the constant a0 parameters describing the surface and v an Nx1 vector containing the (Euclidian) distance between each point xα used in the interpolation and the point x0. The parameters describing the surface are derived by forcing the surface to be an exact interpolator and impose that the sum of the parameters in a should be zero. However, often, the surface is allowed to pass near the observations (i

  17. Quantitative precipitation estimation for an X-band weather radar network

    NASA Astrophysics Data System (ADS)

    Chen, Haonan

    Currently, the Next Generation (NEXRAD) radar network, a joint effort of the U.S. Department of Commerce (DOC), Defense (DOD), and Transportation (DOT), provides radar data with updates every five-six minutes across the United States. This network consists of about 160 S-band (2.7 to 3.0 GHz) radar sites. At the maximum NEXRAD range of 230 km, the 0.5 degree radar beam is about 5.4 km above ground level (AGL) because of the effect of earth curvature. Consequently, much of the lower atmosphere (1-3 km AGL) cannot be observed by the NEXRAD. To overcome the fundamental coverage limitations of today's weather surveillance radars, and improve the spatial and temporal resolution issues, the National Science Foundation Engineering Center (NSF-ERC) for Collaborative Adaptive Sensing of the Atmosphere (CASA) was founded to revolutionize weather sensing in the lower atmosphere by deploying a dense network of shorter-range, low-power X-band dual-polarization radars. The distributed CASA radars are operating collaboratively to adapt the changing atmospheric conditions. Accomplishments and breakthroughs after five years operation have demonstrated the success of CASA program. Accurate radar quantitative precipitation estimation (QPE) has been pursued since the beginning of weather radar. For certain disaster prevention applications such as flash flood and landslide forecasting, the rain rate must however be measured at a high spatial and temporal resolution. To this end, high-resolution radar QPE is one of the major research activities conducted by the CASA community. A radar specific differential propagation phase (Kdp)-based QPE methodology has been developed in CASA. Unlike the rainfall estimation based on the power terms such as radar reflectivity (Z) and differential reflectivity (Zdr), Kdp-based QPE is less sensitive to the path attenuation, drop size distribution (DSD), and radar calibration errors. The CASA Kdp-based QPE system is also immune to the partial beam

  18. Forward Looking Radar Imaging by Truncated Singular Value Decomposition and Its Application for Adverse Weather Aircraft Landing.

    PubMed

    Huang, Yulin; Zha, Yuebo; Wang, Yue; Yang, Jianyu

    2015-01-01

    The forward looking radar imaging task is a practical and challenging problem for adverse weather aircraft landing industry. Deconvolution method can realize the forward looking imaging but it often leads to the noise amplification in the radar image. In this paper, a forward looking radar imaging based on deconvolution method is presented for adverse weather aircraft landing. We first present the theoretical background of forward looking radar imaging task and its application for aircraft landing. Then, we convert the forward looking radar imaging task into a corresponding deconvolution problem, which is solved in the framework of algebraic theory using truncated singular decomposition method. The key issue regarding the selecting of the truncated parameter is addressed using generalized cross validation approach. Simulation and experimental results demonstrate that the proposed method is effective in achieving angular resolution enhancement with suppressing the noise amplification in forward looking radar imaging. PMID:26094627

  19. Forward Looking Radar Imaging by Truncated Singular Value Decomposition and Its Application for Adverse Weather Aircraft Landing

    PubMed Central

    Huang, Yulin; Zha, Yuebo; Wang, Yue; Yang, Jianyu

    2015-01-01

    The forward looking radar imaging task is a practical and challenging problem for adverse weather aircraft landing industry. Deconvolution method can realize the forward looking imaging but it often leads to the noise amplification in the radar image. In this paper, a forward looking radar imaging based on deconvolution method is presented for adverse weather aircraft landing. We first present the theoretical background of forward looking radar imaging task and its application for aircraft landing. Then, we convert the forward looking radar imaging task into a corresponding deconvolution problem, which is solved in the framework of algebraic theory using truncated singular decomposition method. The key issue regarding the selecting of the truncated parameter is addressed using generalized cross validation approach. Simulation and experimental results demonstrate that the proposed method is effective in achieving angular resolution enhancement with suppressing the noise amplification in forward looking radar imaging. PMID:26094627

  20. Meteorite Falls Observed in U.S. Weather Radar Data in 2015 and 2016 (To Date)

    NASA Technical Reports Server (NTRS)

    Fries, Marc; Fries, Jeffrey; Hankey, Mike; Matson, Robert

    2016-01-01

    To date, over twenty meteorite falls have been located in the weather radar imagery of the National Oceanic and Atmospheric Administration (NOAA)'s NEXRAD radar network. We present here the most prominent events recorded since the last Meteoritical Society meeting, covering most of 2015 and early 2016. Meteorite Falls: The following events produced evidence of falling meteorites in radar imagery and resulted in meteorites recovered at the fall site. Creston, CA (24 Oct 2015 0531 UTC): This event generated 218 eyewitness reports submitted to the American Meteor Society (AMS) and is recorded as event #2635 for 2015 on the AMS website. Witnesses reported a bright fireball with fragmentation terminating near the city of Creston, CA, north of Los Angeles. Sonic booms and electrophonic noise were reported in the vicinity of the event. Weather radar imagery records signatures consistent with falling meteorites in data from the KMUX, KVTX, KHNX and KVBX. The Meteoritical Society records the Creston fall as an L6 meteorite with a total recovered mass of 688g. Osceola, FL (24 Jan 2016 1527 UTC): This daytime fireball generated 134 eyewitness reports on AMS report number 266 for 2016, with one credible sonic boom report. The fireball traveled roughly NE to SW with a terminus location north of Lake City, FL in sparsely populated, forested countryside. Radar imagery shows distinct and prominent evidence of a significant meteorite fall with radar signatures seen in data from the KJAX and KVAX radars. Searchers at the fall site found that recoveries were restricted to road sites by the difficult terrain, and yet several meteorites were recovered. Evidence indicates that this was a relatively large meteorite fall where most of the meteorites are unrecoverable due to terrain. Osceola is an L6 meteorite with 991 g total mass recovered to date. Mount Blanco, TX (18 Feb 2016 0343 UTC): This event produced only 39 eyewitness reports and is recorded as AMS event #635 for 2016. No

  1. Wind Retrieval Algorithms for the IWRAP and HIWRAP Airborne Doppler Radars with Applications to Hurricanes

    NASA Technical Reports Server (NTRS)

    Guimond, Stephen Richard; Tian, Lin; Heymsfield, Gerald M.; Frasier, Stephen J.

    2013-01-01

    Algorithms for the retrieval of atmospheric winds in precipitating systems from downward-pointing, conically-scanning airborne Doppler radars are presented. The focus in the paper is on two radars: the Imaging Wind and Rain Airborne Profiler(IWRAP) and the High-altitude IWRAP (HIWRAP). The IWRAP is a dual-frequency (Cand Ku band), multi-beam (incidence angles of 30 50) system that flies on the NOAAWP-3D aircraft at altitudes of 2-4 km. The HIWRAP is a dual-frequency (Ku and Kaband), dual-beam (incidence angles of 30 and 40) system that flies on the NASA Global Hawk aircraft at altitudes of 18-20 km. Retrievals of the three Cartesian wind components over the entire radar sampling volume are described, which can be determined using either a traditional least squares or variational solution procedure. The random errors in the retrievals are evaluated using both an error propagation analysis and a numerical simulation of a hurricane. These analyses show that the vertical and along-track wind errors have strong across-track dependence with values of 0.25 m s-1 at nadir to 2.0 m s-1 and 1.0 m s-1 at the swath edges, respectively. The across-track wind errors also have across-track structure and are on average, 3.0 3.5 m s-1 or 10 of the hurricane wind speed. For typical rotated figure four flight patterns through hurricanes, the zonal and meridional wind speed errors are 2 3 m s-1.Examples of measured data retrievals from IWRAP during an eyewall replacement cycle in Hurricane Isabel (2003) and from HIWRAP during the development of Tropical Storm Matthew (2010) are shown.

  2. Measuring Geophysical Parameters of the Greenland Ice Sheet using Airborne Radar Altimetry

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.; Swift. Calvin T.

    1995-01-01

    This paper presents radar-altimeter scattering models for each of the diagenetic zones of the Greenland ice sheet. AAFE radar- altimeter waveforms obtained during the 1991 and 1993 NASA multi-sensor airborne altimetry experiments over Greenland reveal that the Ku-band return pulse changes significantly with the different diagenetic zones. These changes are due to varying amounts of surface and volume scattering in the return waveform. In the ablation and soaked zones, where surface scattering dominates the AAFE return, geophysical parameters such as rms surface height and rms surface slope are obtained by fitting the waveforms to a surface-scattering model. Waveforms from the percolation zone show that the sub-surface ice features have a much more significant effect on the return pulse than the surrounding snowpack. Model percolation waveforms, created using a combined surface- and volume-scattering model and an ice-feature distribution obtained during the 1993 field season, agree well with actual AAFE waveforms taken in the same time period. Using a combined surface- and volume-scattering model for the dry-snow-zone return waveforms, the rms surface height and slope and the attenuation coefficient of the snowpack are obtained. These scattering models not only allow geophysical parameters of the ice sheet to be measured but also help in the understanding of satellite radar-altimeter data.

  3. Improving crop classification through attention to the timing of airborne radar acquisitions

    NASA Technical Reports Server (NTRS)

    Brisco, B.; Ulaby, F. T.; Protz, R.

    1984-01-01

    Radar remote sensors may provide valuable input to crop classification procedures because of (1) their independence of weather conditions and solar illumination, and (2) their ability to respond to differences in crop type. Manual classification of multidate synthetic aperture radar (SAR) imagery resulted in an overall accuracy of 83 percent for corn, forest, grain, and 'other' cover types. Forests and corn fields were identified with accuracies approaching or exceeding 90 percent. Grain fields and 'other' fields were often confused with each other, resulting in classification accuracies of 51 and 66 percent, respectively. The 83 percent correct classification represents a 10 percent improvement when compared to similar SAR data for the same area collected at alternate time periods in 1978. These results demonstrate that improvements in crop classification accuracy can be achieved with SAR data by synchronizing data collection times with crop growth stages in order to maximize differences in the geometric and dielectric properties of the cover types of interest.

  4. Detection of Digital Elevation Model Errors Using X-band Weather Radar

    NASA Technical Reports Server (NTRS)

    Young, Steven D.; deHaag, Maatren Uijt

    2007-01-01

    Flight in Instrument Meteorological Conditions requires pilots to manipulate flight controls while referring to a Primary Flight Display. The Primary Flight Display indicates aircraft attitude along with, in some cases, many other state variables such as altitude, speed, and guidance cues. Synthetic Vision Systems have been proposed that overlay the traditional information provided on Primary Flight Displays onto a scene depicting the location of terrain and other geo-spatial features.Terrain models used by these displays must have sufficient quality to avoid providing misleading information. This paper describes how X-band radar measurements can be used as part of a monitor, and/or maintenance system, to quantify the integrity of terrain models that are used by systems such as Synthetic Vision. Terrain shadowing effects, as seen by the radar, are compared in a statistical manner against estimated shadow feature elements extracted from the stored terrain model from the perspective of the airborne observer. A test statistic is defined that enables detection of errors as small as the range resolution of the radar. Experimental results obtained from two aircraft platforms hosting certified commercial-off-the-shelf X-band radars test the premise and illustrate its potential.

  5. Identifying Precipitation Types Using Dual-Polarization-Based Radar and Numerical Weather Prediction Model Data

    NASA Astrophysics Data System (ADS)

    Seo, B. C.; Bradley, A.; Krajewski, W. F.

    2015-12-01

    The recent upgrade of dual-polarization with NEXRAD radars has assisted in improving the characterization of microphysical processes in precipitation and thus has enabled precipitation estimation based on the identified precipitation types. While this polarimetric capability promises the potential for the enhanced accuracy in quantitative precipitation estimation (QPE), recent studies show that the polarimetric estimates are still affected by uncertainties arising from the radar beam geometry/sampling space associated with the vertical variability of precipitation. The authors, first of all, focus on evaluating the NEXRAD hydrometeor classification product using ground reference data (e.g., ASOS) that provide simple categories of the observed precipitation types (e.g., rain, snow, and freezing rain). They also investigate classification uncertainty features caused by the variability of precipitation between the ground and the altitudes where radar samples. Since this variability is closely related to the atmospheric conditions (e.g., temperature) at near surface, useful information (e.g., critical thickness and temperature profile) that is not available in radar observations is retrieved from the numerical weather prediction (NWP) model data such as Rapid Refresh (RAP)/High Resolution Rapid Refresh (HRRR). The NWP retrieved information and polarimetric radar data are used together to improve the accuracy of precipitation type identification at near surface. The authors highlight major improvements and discuss limitations in the real-time application.

  6. Overview of the Greater Lyon weather radar advances from 90's to 2008

    NASA Astrophysics Data System (ADS)

    Renard, F.; Comby, J.

    2010-03-01

    The local weather radar of Lyon, part of the Aramis network of Meteo-France, is currently located 40 km from the urban community. The measurement quality of this tool is subjected to constant improvements from Meteo-France. Indeed, its hydrological measurement quality has steadily evolved from the early 90's until today. This article, therefore, proposes a return on these innovations, assessing measurement quality over the territory of Greater Lyon. This study is based on two successive radar locations, and also on raw reflectivity data and on rain accumulation over the past 15 min (Hydram) or 5 min (Panthere). The measurement performed on the site Satolas was unsatisfactory because of too many ground clutters; and therefore the radar was moved to Saint-Nizier. This new location associated with radar Hydram rain accumulation has reduced the problem of ground clutters. These rain accumulation data have given correct results in comparison with local data of the raingauge network of Greater Lyon, after a global and spatially uniform correction, based on these gauges. The latest generation of radar rain accumulation (Panthere) has, nearly completely, eliminated the problem of ground clutter in the urban area and provides very satisfactory measurements, especially during intense rain events.

  7. Improved wet weather wastewater influent modelling at Viikinmäki WWTP by on-line weather radar information.

    PubMed

    Heinonen, M; Jokelainen, M; Fred, T; Koistinen, J; Hohti, H

    2013-01-01

    Municipal wastewater treatment plant (WWTP) influent is typically dependent on diurnal variation of urban production of liquid waste, infiltration of stormwater runoff and groundwater infiltration. During wet weather conditions the infiltration phenomenon typically increases the risk of overflows in the sewer system as well as the risk of having to bypass the WWTP. Combined sewer infrastructure multiplies the role of rainwater runoff in the total influent. Due to climate change, rain intensity and magnitude is tending to rise as well, which can already be observed in the normal operation of WWTPs. Bypass control can be improved if the WWTP is prepared for the increase of influent, especially if there is some storage capacity prior to the treatment plant. One option for this bypass control is utilisation of on-line weather-radar-based forecast data of rainfall as an input for the on-line influent model. This paper reports the Viikinmäki WWTP wet weather influent modelling project results where gridded exceedance probabilities of hourly rainfall accumulations for the next 3 h from the Finnish Meteorological Institute are utilised as on-line input data for the influent model. PMID:23925175

  8. Correction of Sampling Errors in Ocean Surface Cross-Sectional Estimates from Nadir-Looking Weather Radar

    NASA Technical Reports Server (NTRS)

    Caylor, I. Jeff; Meneghini, R.; Miller, L. S.; Heymsfield, G. M.

    1997-01-01

    The return from the ocean surface has a number of uses for airborne meteorological radar. The normalized surface cross section has been used for radar system calibration, estimation of surface winds, and in algorithms for estimating the path-integrated attenuation in rain. However, meteorological radars are normally optimized for observation of distributed targets that fill the resolution volume, and so a point target such as the surface can be poorly sampled, particularly at near-nadir look angles. Sampling the nadir surface return at an insufficient rate results in a negative bias of the estimated cross section. This error is found to be as large as 4 dB using observations from a high-altitude airborne radar. An algorithm for mitigating the error is developed that is based upon the shape of the surface echo and uses the returned signal at the three range gates nearest the peak surface echo.

  9. An application of space-time adaptive processing to airborne and spaceborne monostatic and bistatic radar systems

    NASA Astrophysics Data System (ADS)

    Czernik, Richard James

    A challenging problem faced by Ground Moving Target Indicator (GMTI) radars on both airborne and spaceborne platforms is the ability to detect slow moving targets due the presence of non-stationary and heterogeneous ground clutter returns. Space-Time Adaptive Processing techniques process both the spatial signals from an antenna array as well as radar pulses simultaneously to aid in mitigating this clutter which has an inherent Doppler shift due to radar platform motion, as well as spreading across Angle-Doppler space attributable to a variety of factors. Additional problems such as clutter aliasing, widening of the clutter notch, and range dependency add additional complexity when the radar is bistatic in nature, and vary significantly as the bistatic radar geometry changes with respect to the targeted location. The most difficult situation is that of a spaceborne radar system due to its high velocity and altitude with respect to the earth. A spaceborne system does however offer several advantages over an airborne system, such as the ability to cover wide areas and to provide access to areas denied to airborne platforms. This dissertation examines both monostatic and bistatic radar performance based upon a computer simulation developed by the author, and explores the use of both optimal STAP and reduced dimension STAP architectures to mitigate the modeled clutter returns. Factors such as broadband jamming, wind, and earth rotation are considered, along with their impact on the interference covariance matrix, constructed from sample training data. Calculation of the covariance matrix in near real time based upon extracted training data is computer processor intensive and reduced dimension STAP architectures relieve some of the computation burden. The problems resulting from extending both monostatic and bistatic radar systems to space are also simulated and studied.

  10. Recent ice sheet snow accumulation and firn storage of meltwater inferred by ground and airborne radars

    NASA Astrophysics Data System (ADS)

    Miege, Clement

    Recent surface mass balance changes in space and time over the polar ice sheets need to be better constrained in order to estimate the ice-sheet contribution to sea-level rise. The mass balance of any ice body is obtained by subtracting mass losses from mass gains. In response to climate changes of the recent decades, ice-sheet mass losses have increased, making ice-sheet mass balance negative and raising sea level. In this work, I better quantify the mass gained by snowfall across the polar ice sheets; I target specific regions over both Greenland and West Antarctica where snow accumulation changes are occurring due to rising air temperature. Southeast Greenland receives 30% of the total snow accumulation of the Greenland ice sheet. In this work, I combine internal layers observed in ice-penetrating radar data with firn cores to derive the last 30 years of accumulation and to measure the spatial pattern of accumulation toward the southeast coastline. Below 1800 m elevation, in the percolation zone, significant surface melt is observed in the summer, which challenges both firn-core dating and internal-layer tracing. While firn-core drilling at 1500 m elevation, liquid water was found at ˜20-m depth in a firn aquifer that persisted over the winter. The presence of this water filling deeper pore space in the firn was unexpected, and has a significant impact on the ice sheet thermal state and the estimate of mass balance made using satellite altimeters. Using a 400-MHz ice-penetrating radar, the extent of this widespread aquifer was mapped on the ground, and also more extensively from the air with a 750-MHz airborne radar as part of the NASA Operation IceBridge mission. Over three IceBridge flight campaigns (2011-2013), based on radar data, the firn aquifer is estimated to cover ˜30,000 km2 area within the wet-snow zone of the ice sheet. I use repeated flightlines to understand the temporal variability of the water trapped in the firn aquifer and to simulate its

  11. Volume of water equivalent estimates in Central Chilean glaciers, derived from airborne radar surveys

    NASA Astrophysics Data System (ADS)

    Oberreuter, J.; Gacitúa, G.; Uribe, J.; Rivera, A.; Zamora, R.; Loriaux, T.

    2013-12-01

    Central Chilean glaciers (33-35°S) are an important melt water resource for human consumption, agriculture, mining and industrial activities in this, the most populated region of the country. These glaciers have been retreating and shrinking during recent decades, in response to ongoing climatic changes. As a result, there is increasing concern about future water availability especially during dry summers, when glaciers are thought to have the maximum contribution to runoff. In spite of their importance, very little is known about the total volume of water equivalent storage in these glaciers. In order to improve our knowledge about this issue, we have utilized a new airborne radar system, which was developed at CECs, specially designed to penetrate temperate and cold ice, which is working at central frequencies between 20 and 60 MHz, depending on the penetration range capacity at each glacier. This system has been installed on helicopters, where the metal structure antenna (receptor and transmitter) is carried as a hanging load while flying along pre designated tracks, enabling to survey steep and remote glacier areas, many of them without any ice thickness data up to date. The helicopter is geo-located using dual frequency GPS receivers and an inertial navigation unit installed onboard, and each measurement is geo referenced using a pointing laser located at the radar antenna. The antenna must be flown at 40 m above the glacier surface at an air speed of 40 knots. This system has been successfully used on 24 glaciers representing 16% of the total glacier area of the Aconcagua, Maipo and Rapel basins. A mean ice thickness of 168 m and a maximum of 342 m were detected among the surveyed glaciers. Crossing points between overlapping surveyed tracks resulted in mean differences of near 20 m (less than 10% of the total ice thickness). Subsequent ice volumes were calculated by interpolating radar data collected along tracks. These volumetric estimations correlated

  12. Detecting Rainfall Extreme Fields and Their Scaling Using Weather Radar Data

    NASA Astrophysics Data System (ADS)

    Hamidi, A.; Devineni, N.; Zahraei, A.; Khanbilvardi, R.

    2014-12-01

    Information on the probability of extreme rainfall events of various durations is required for hydraulic design in order to control storm runoff. Such information is usually expressed as a relationship between Intensity-Duration-Frequency (IDF) of extreme rainfall. The general IDF curve approach assumes a stationary climate and typically is regionalized based on small number of gauges. However, with the ongoing accumulation of weather radar records, radar-rainfall data represent an alternative to gauging data providing much needed spatial resolution. A clear understanding of the space-time rainfall patterns for events or for a season will enable in assessing the spatial distribution of areas likely to have a high/low inundation potential for each type of rainfall forcing. The Next Generation Weather Radar system (NEXRAD) comprises of 160 Weather Surveillance Radar-1988 Doppler (WSR-88D) sites throughout the United States and at selected overseas locations. Stage IV is a national multi-sensor radar product from NCEP, mosaicked from the regional multi-sensor analyses with 4km×4km and 1h resolution of space and time respectively. In the current study, 11 years of HRAP (Hydrologic Rainfall Analysis Project) gridded Stage IV radar data is employed to generate a relationship between intensity, duration, frequency and the storm exposed area of New York Metropolitan area covering almost 30,000 km2 of the most populous cities at the east part of United States. We investigate the statistical properties of the spatial manifestation of the rainfall exceedances and present the scaling phenomena of contiguous flooded areas as a result of large scale organization of storms. This can be used for spatially distributed flood risk assessment conditional on a particular rainfall scenario. Statistical models for spatio-temporal loss simulation including model uncertainty to support regional analysis can be developed. In this project, we explore a non-parametric multivariate approach

  13. Offshore next generation weather radar (NEXRAD) test and evaluation master plan (TEMP)

    NASA Astrophysics Data System (ADS)

    Martinez, Radame; Cranston, Robert; Porcello, John

    1995-01-01

    This document provides the test philosophy and approach for the Offshore Next Generation Weather Radar (NEXRAD) Test and Evaluation Master Plan (TEMP). The NEXRAD differs from the typical Federal Aviation Administration (FAA) weather radar acquisition in that it is jointly funded by the Department of Defense (DOD), the Department of Commerce (DOC), and the Department of Transportation (DOT). These three agencies chartered the Joint System Program Office (JSPO) to manage the NEXRAD development and subsequent test programs. JSPO has deployed 70 single-channel radar systems across the continental United States (CONUS). The FAA is deploying NEXRAD systems at non-CONUS (offshore) locations such as Alaska, Hawaii, and the Caribbean. The FAA Offshore NEXRAD will have a redundant configuration and a Remote Monitoring Subsystem (EMS). A total of 14 Offshore NEXRAD's will be procured under this acquisition: 3 in the Caribbean, 4 in Hawaii, and 7 in Alaska. Funding constraints will limit the acquisition to seven NEXRAD's in the 1994-1995 timeframe.

  14. Turbulence as observed by concurrent measurements made at NSSL using weather radar, Doppler radar, Doppler lidar and aircraft

    NASA Technical Reports Server (NTRS)

    Lee, Jean T.

    1987-01-01

    As air traffic increases and aircraft capability increases in range and operating altitude, the exposure to weather hazards increases. Turbulence and wind shears are two of the most important of these hazards that must be taken into account if safe flight operations are to be accomplished. Beginning in the early 1960's, Project Rough Rider began thunderstorm investigations. Past and present efforts at the National Severe Storm Laboratory (NSSL) to measure these flight safety hazards and to describe the use of Doppler radar to detect and qualify these hazards are summarized. In particular, the evolution of the Doppler-measured radial velocity spectrum width and its applicability to the problem of safe flight is presented.

  15. Airborne radar surveys of snow depth over Antarctic sea ice during Operation IceBridge

    NASA Astrophysics Data System (ADS)

    Panzer, B.; Gomez-Garcia, D.; Leuschen, C.; Paden, J. D.; Gogineni, P. S.

    2012-12-01

    Over the last decade, multiple satellite-based laser and radar altimeters, optimized for polar observations, have been launched with one of the major objectives being the determination of global sea ice thickness and distribution [5, 6]. Estimation of sea-ice thickness from these altimeters relies on freeboard measurements and the presence of snow cover on sea ice affects this estimate. Current means of estimating the snow depth rely on daily precipitation products and/or data from passive microwave sensors [2, 7]. Even a small uncertainty in the snow depth leads to a large uncertainty in the sea-ice thickness estimate. To improve the accuracy of the sea-ice thickness estimates and provide validation for measurements from satellite-based sensors, the Center for Remote Sensing of Ice Sheets deploys the Snow Radar as a part of NASA Operation IceBridge. The Snow Radar is an ultra-wideband, frequency-modulated, continuous-wave radar capable of resolving snow depth on sea ice from 5 cm to more than 2 meters from long-range, airborne platforms [4]. This paper will discuss the algorithm used to directly extract snow depth estimates exclusively using the Snow Radar data set by tracking both the air-snow and snow-ice interfaces. Prior work in this regard used data from a laser altimeter for tracking the air-snow interface or worked under the assumption that the return from the snow-ice interface was greater than that from the air-snow interface due to a larger dielectric contrast, which is not true for thick or higher loss snow cover [1, 3]. This paper will also present snow depth estimates from Snow Radar data during the NASA Operation IceBridge 2010-2011 Antarctic campaigns. In 2010, three sea ice flights were flown, two in the Weddell Sea and one in the Amundsen and Bellingshausen Seas. All three flight lines were repeated in 2011, allowing an annual comparison of snow depth. In 2011, a repeat pass of an earlier flight in the Weddell Sea was flown, allowing for a

  16. Rainfall resolution from weather radars and their application in urban drainage modelling

    NASA Astrophysics Data System (ADS)

    Bruni, G.; ten Veldhuis, J. A. E.; Otto, T.; Leijnse, H.

    2012-04-01

    Urban hydrological modelling requires high resolution rainfall data to be able to simulate fast runoff processes and related short response times. Over the last three decades, rainfall input into urban hydrological and hydrodynamic models has often been restricted to a single rain gauge in or near the catchment, rendering rainfall input one of the main sources of uncertainty in model calculations. In recent years, rainfall data from weather radars that provide space-time estimates of rainfall are becoming increasingly available. C-band and S-band radars have been used for operational precipitation measurements and offer spatial resolutions of 1km2 to several km2. This resolution is still insufficient to meet the relevant scales of urban hydrology (e.g. Berne et al. 2004; Emmanuel et al., 2011, Schellart et al., in press). Higher spatial resolution rainfall measurements can be provided by X-band radars, especially at short range where attenuation is not yet a major factor. At the Cabauw Experimental Site for Atmospheric Research (CESAR), an X-band Doppler polarimetric radar has been installed as well as a dense network of rain gauges (Leijnse et al., 2010). Data from the C-band Doppler radar at 25 km distance are also available for this site. A network of 11 rain gauges is to be installed in the city area as well as a network of water level sensors in the stormwater sewers. A selection of rain events is analysed based on the available rainfall measurement instruments for this site. The events are used as input into a hydrodynamic model of the sewer system of the city of Utrecht, located between CESAR and the C-band radar site. The effect of different spatial rainfall data resolutions and of rainfall data uncertainty on hydrological response will be analysed for various sizes of catchments within the Utrecht sewer system.

  17. Operations Manager Tim Miller checks out software for the Airborne Synthetic Aperature Radar (AIRSAR

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Tim Miller checks out software for the Airborne Synthetic Aperture Radar (AIRSAR). He was the AIRSAR operations manager for NASA's Jet Propulsion Laboratory. The AIRSAR produces imaging data for a range of studies conducted by the DC-8. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  18. DATA ACQUISITION AND APPLICATIONS OF SIDE-LOOKING AIRBORNE RADAR IN THE U. S. GEOLOGICAL SURVEY.

    USGS Publications Warehouse

    Jones, John Edwin; Kover, Allan N.

    1985-01-01

    The Side-Looking Airborne Radar (SLAR) program encompasses a multi-discipline effort involving geologists, hydrologists, engineers, geographers, and cartographers of the U. S. Geological Survey (USGS). Since the program began in 1980, more than 520,000 square miles of aerial coverage of SLAR data in the conterminous United States and Alaska have been acquired or contracted for acquisition. The Geological Survey has supported more than 60 research and applications projects addressing the use of this technology in the earth sciences since 1980. These projects have included preparation of lithographic reproductions of SLAR mosaics, research to improve the cartographic uses of SLAR, research for use of SLAR in assessing earth hazards, and studies using SLAR for energy and mineral exploration through improved geologic mapping.

  19. Comparison of surface wind stress measurements - Airborne radar scatterometer versus sonic anemometer

    NASA Technical Reports Server (NTRS)

    Brucks, J. T.; Leming, T. D.; Jones, W. L.

    1980-01-01

    Sea surface wind stress measurements recorded by a sonic anemometer are correlated with airborne scatterometer measurements of ocean roughness (cross section of radar backscatter) to establish the accuracy of remotely sensed data and assist in the definition of geophysical algorithms for the scatterometer sensor aboard Seasat A. Results of this investigation are as follows: Comparison of scatterometer and sonic anemometer wind stress measurements are good for the majority of cases; however, a tendency exists for scatterometer wind stress to be somewhat high for higher wind conditions experienced in this experiment (6-9 m/s). The scatterometer wind speed algorithm tends to overcompute the higher wind speeds by approximately 0.5 m/s. This is a direct result of the scatterometer overestimate of wind stress from which wind speeds are derived. Algorithmic derivations of wind speed and direction are, in most comparisons, within accuracies defined by Seasat A scatterometer sensor specifications.

  20. Exploring single polarization X-band weather radar potentials for local meteorological and hydrological applications

    NASA Astrophysics Data System (ADS)

    Lo Conti, Francesco; Francipane, Antonio; Pumo, Dario; Noto, Leonardo V.

    2015-12-01

    The aim of this study is to evaluate the potential use of a low-cost single polarization X-band weather radar, verified by a disdrometer and a dense rain gauge network, installed as a supporting tool for hydrological applications and for monitoring the urban area of Palermo (Italy). Moreover, this study focuses on studying the temporal variability of the Z-R relation for Mediterranean areas. The radar device is provided with an automatic operational ground-clutter filter developed by the producer. Attention has been paid to the development of blending procedures between radar measurements and other auxiliary instruments and to their suitability for both meteorological and hydrological applications. A general scheme enveloping these procedures and achieving the combination of data retrieved from the weather radar, the optical disdrometer, and the rain gauge network distributed within the monitored area has been designed. The first step of the procedure consists in the calibration of the radar equation by comparing the match between the radar raw data and the disdrometer reflectivity. The second step is the calibration of the Z-R relationship based on the retrieval of parameters that optimize the transformation of disdrometer reflectivity into rainfall intensity, starting from the disdrometer rainfall intensity measurements. The Z-R calibration has been applied to the disdrometer measurements retrieved during a 1 year observation period, after a preliminary segmentation into separated rainfall events. This analysis allows for the characterization of the variability of the Z-R relationship from event to event, deriving some considerations about its predictability as well. Results obtained from this analysis provide a geographical specific record, for the Mediterranean area, for the study of the spatial variability of the Z-R relationship. Finally, the set of operational procedures also includes a correction procedure of radar estimates based on rain gauge data. Each

  1. Enhanced Feature Based Mosaicing Technique for Visually and Geometrically Degraded Airborne Synthetic Aperture Radar Images

    NASA Astrophysics Data System (ADS)

    Manikandan, S.; Vardhini, J. P.

    2015-11-01

    In airborne synthetic aperture radar (SAR), there was a major problem encountered in the area of image mosaic in the absence of platform information and sensor information (geocoding), when SAR is applied in large-scale scene and the platform faces large changes. In order to enhance real-time performance and robustness of image mosaic, enhancement based Speeded-Up Robust Features (SURF) mosaic method for airborne SAR is proposed in this paper. SURF is a novel scale-invariant and rotation-invariant feature. It is perfect in its high computation, speed and robustness. In this paper, When the SAR image is acquired, initially the image is enhanced by using local statistic techniques and SURF is applied for SAR image matching accord to its characteristic, and then acquires its invariant feature for matching. In the process of image matching, the nearest neighbor rule for initial matching is used, and the wrong points of the matches are removed through RANSAC fitting algorithm. The proposed algorithm is implemented in different SAR images with difference in scale change, rotation change and noise. The proposed algorithm is compared with other existing algorithms and the quantitative and qualitative measures are calculated and tabulated. The proposed algorithm is robust to changes and the threshold is varied accordingly to increase the matching rate more than 95 %.

  2. Airborne Ground Penetrating Radar (GPR) for peat analyses in the Canadian Northern wetlands study

    NASA Technical Reports Server (NTRS)

    Pelletier-Travis, Ramona E.

    1991-01-01

    The study was conducted as part of the NASA Biospherics Research on Emissions from Wetlands (BREW) program. An important aspect of the program is to investigate the terrestrial production and atmospheric distribution of methane and other gases contributing to global warming. Multi-kilometer transects of airborne (helicopter) Ground Penetrating Radar (GPR) data were collected periodically along the 100 km distance from the coast inland so as to obtain a regional trend in peat depth and related parameters. Global Positioning System (GPS) data were simultaneously collected from the helicopter to properly georeference the GPR data. Additional 50 m ground-based transects of GPR data were also collected as a source of ground truthing, as a calibration aid for the airborne data sets, and as a source of higher resolution data for characterizing the strata within the peat. In situ peat depth probing and soil characterizations from excavated soil pits were used to verify GPR findings. Results from the ground-based data are presented.

  3. EcoSAR: NASA's P-band fully polarimetric single pass interferometric airborne radar

    NASA Astrophysics Data System (ADS)

    Osmanoglu, B.; Rincon, R. F.; Fatoyinbo, T. E.; Lee, S. K.; Sun, G.; Daniyan, O.; Harcum, M. E.

    2014-12-01

    EcoSAR is a new airborne synthetic aperture radar imaging system, developed at the NASA Goddard Space Flight Center. It is a P-band sensor that employs a non-conventional and innovative design. The EcoSAR system was designed as a multi-disciplinary instrument to image the 3-dimensional surface of the earth from a single pass platform with two antennas. EcoSAR's principal mission is to penetrate the forest canopy to return vital information about the canopy structure and estimate biomass. With a maximum bandwidth of 200 MHz in H and 120 MHz in V polarizations it can provide sub-meter resolution imagery of the study area. EcoSAR's dual antenna, 32 transmit and receive channel architecture provides a test-bed for developing new algorithms in InSAR data processing such as single pass interferometry, full polarimetry, post-processing synthesis of multiple beams, simultaneous measurement over both sides of the flight track, selectable resolution and variable incidence angle. The flexible architecture of EcoSAR will create new opportunities in radar remote sensing of forest biomass, permafrost active layer thickness, and topography mapping. EcoSAR's first test flight occurred between March 27th and April 1st, 2014 over the Andros Island in Bahamas and Corcovado and La Selva National Parks in Costa Rica. The 32 channel radar system collected about 6 TB of radar data in about 12 hours of data collection. Due to the existence of radio and TV communications in the operational frequency band, acquired data contains strong radar frequency interference, which had to be removed prior to beamforming and focusing. Precise locations of the antennas are tracked using high-rate GPS and inertial navigation units, which provide necessary information for accurate processing of the imagery. In this presentation we will present preliminary imagery collected during the test campaign, show examples of simultaneous dual track imaging, as well as a single pass interferogram. The

  4. Sever Hazards Prediction Method by Using Phased Array Weather Radar (PAWR)

    NASA Astrophysics Data System (ADS)

    Michimoto, K.

    2014-12-01

    We are now research several sever hazards of meteorological phenomena, for example, thunderstorm, hail, heavy rain-fall, tornado, etc., by using Phased Array Weather Radar (PAWR). In this paper, we present our analyses between PAWRs echo data temporal variations and thunderstorms lightning activity, hail fall and/or heavy rain-fall rate, etc. We will develop nowcast and/or forecast methods of sever hazards and, in near future, we will prepare new prediction numerical model of sever hazards by using CReSS (Cloud Resolving Storm Simulator).

  5. Estimating subcatchment runoff coefficients using weather radar and a downstream runoff sensor.

    PubMed

    Ahm, Malte; Thorndahl, Søren; Rasmussen, Michael R; Bassø, Lene

    2013-01-01

    This paper presents a method for estimating runoff coefficients of urban drainage subcatchments based on a combination of high resolution weather radar data and flow measurements from a downstream runoff sensor. By utilising the spatial variability of the precipitation it is possible to estimate the runoff coefficients of the separate subcatchments. The method is demonstrated through a case study of an urban drainage catchment (678 ha) located in the city of Aarhus, Denmark. The study has proven that it is possible to use corresponding measurements of the relative rainfall distribution over the catchment and downstream runoff measurements to identify the runoff coefficients at subcatchment level. PMID:24056426

  6. Cockpit weather radar display demonstrator and ground-to-air sferics telemetry system

    NASA Technical Reports Server (NTRS)

    Nickum, J. D.; Mccall, D. L.

    1982-01-01

    The results of two methods of obtaining timely and accurate severe weather presentations in the cockpit are detailed. The first method described is a course up display of uplinked weather radar data. This involves the construction of a demonstrator that will show the feasibility of producing a course up display in the cockpit of the NASA simulator at Langley. A set of software algorithms was designed that could easily be implemented, along with data tapes generated to provide the cockpit simulation. The second method described involves the uplinking of sferic data from a ground based 3M-Ryan Stormscope. The technique involves transfer of the data on the CRT of the Stormscope to a remote CRT. This sferic uplink and display could also be included in an implementation on the NASA cockpit simulator, allowing evaluation of pilot responses based on real Stormscope data.

  7. Ground-based weather radar remote sensing of volcanic ash explosive eruptions

    NASA Astrophysics Data System (ADS)

    Marzano, F. S.; Marchiotto, S.; Barbieri, S.; Giuliani, G.; Textor, C.; Schneider, D. J.

    2009-04-01

    The explosive eruptions of active volcanoes with a consequent formation of ash clouds represent a severe threat in several regions of the urbanized world. During a Plinian or a sub-Plinian eruption the injection of large amounts of fine and coarse rock fragments and corrosive gases into the troposphere and lower stratosphere is usually followed by a long lasting ashfall which can cause a variety of damages. Volcanic ash clouds are an increasing hazard to aviation safety because of growing air traffic volumes that use more efficient and susceptible jet engines. Real-time and areal monitoring of a volcano eruption, in terms of its intensity and dynamics, is not always possible by conventional visual inspections, especially during worse visibility periods which are quite common during eruption activity. Remote sensing techniques both from ground and from space represent unique tools to be exploited. In this respect, microwave weather radars can gather three-dimensional information of atmospheric scattering volumes up several hundreds of kilometers, in all weather conditions, at a fairly high spatial resolution (less than a kilometer) and with a repetition cycle of few minutes. Ground-based radar systems represent one of the best methods for determining the height and volume of volcanic eruption clouds. Single-polarization Doppler radars can measure horizontally-polarized power echo and Doppler shift from which ash content and radial velocity can be, in principle, extracted. In spite of these potentials, there are still several open issues about microwave weather radar capabilities to detect and quantitatively retrieve ash cloud parameters. A major issue is related to the aggregation of volcanic ash particles within the eruption column of explosive eruptions which has been observed at many volcanoes. It influences the residence time of ash in the atmosphere and the radiative properties of the "umbrella" cloud. Numerical experiments are helpful to explore processes

  8. Dual-polarization C-band weather radar algorithms for rain rate estimation and hydrometeor classification in an alpine region

    NASA Astrophysics Data System (ADS)

    Paulitsch, H.; Teschl, F.; Randeu, W. L.

    2009-03-01

    Dual polarization is becoming the standard for new weather radar systems. In contrast to conventional weather radars, where the reflectivity is measured in one polarization plane only, a dual polarization radar provides transmission in either horizontal, vertical, or both polarizations while receiving both the horizontal and vertical channels simultaneously. Since hydrometeors are often far from being spherical, the backscatter and propagation are different for horizontal and vertical polarization. Comparing the reflected horizontal and vertical power returns and their ratio and correlation, information on size, shape, and material density of cloud and precipitation particles can be obtained. The use of polarimetric radar variables can therefore increase the accuracy of the rain rate estimation compared to standard Z-R relationships of non-polarimetric radars. It is also possible to derive the type of precipitation from dual polarization parameters, although this is not an easy task, since there is no clear discrimination between the different values. Fuzzy logic approaches have been shown to work well with overlapping conditions and imprecisely defined class output. In this paper the implementation of different polarization algorithms for the new Austrian weather radar on Mt. Valluga is described, and first results from operational use are presented. This study also presents first observations of rain events in August 2007 during the test run of the radar. Further, the designated rain rate estimation and hydrometeor classification algorithms are explained.

  9. Precipitation thresholds and debris flow warning: comparing gauge versus weather radar detection

    NASA Astrophysics Data System (ADS)

    Marra, Francesco; Borga, Marco; Creutin, Jean-Dominique

    2013-04-01

    estimates based on weather radar for debris flows warning.

  10. Situational awareness sensor management of space-based EO/IR and airborne GMTI radar for road targets tracking

    NASA Astrophysics Data System (ADS)

    El-Fallah, A.; Zatezalo, A.; Mahler, R.; Mehra, R. K.; Pham, K.

    2010-04-01

    Dynamic sensor management of heterogeneous and distributed sensors presents a daunting theoretical and practical challenge. We present a Situational Awareness Sensor Management (SA-SM) algorithm for the tracking of ground targets moving on a road map. It is based on the previously developed information-theoretic Posterior Expected Number of Targets of Interest (PENTI) objective function, and utilizes combined measurements form an airborne GMTI radar, and a space-based EO/IR sensor. The resulting filtering methods and techniques are tested and evaluated. Different scan rates for the GMTI radar and the EO/IR sensor are evaluated and compared.

  11. Super-resolution technologies for all-weather sense and avoidance (SAA) radar

    NASA Astrophysics Data System (ADS)

    Zhang, Yan Rockee; Li, Zhengzheng; Wang, Shang; Pan, Yu; Suarez, Hernan

    2011-06-01

    The sense and avoidance (SAA) and due-regard radar systems have strict requirements on size, weight and power (SWaP) and target localization accuracies. Also, the multi-mission capabilities with both weather and hard targets are critical to the survivability of unmanned aerial vehicles (UAV) in the next generation national airspace. The aperture limitations of the aircraft sensor installation, however, have prevented large antennas/arrays to be used. The tradeoffs among frequencies, resolutions and detection range/accuracies have not been fully addressed. Innovative concepts of overcoming the aperture limitation by using a special type of super-resolution technology are introduced. The first technique is based on a combination of thinned antenna array, an extension to the traditional Multiple Signal Classification (MUSIC) technique, and applying a two-dimensional sidelobe mitigation technique. To overcome the degradation of MUSIC-type of approach due to coherent radar signals, a special waveform optimization procedure is used. The techniques for mitigating artifacts due to "thinned" array are also introduced. Simulated results of super-resolution techniques are discussed and evaluated, and the capability of separating multiple targets within aperture-constrained beamwidth is demonstrated. Moreover, the potential capabilities of autonomous weather hazard avoidance are also analyzed.

  12. Proposed adopted environmental assessment for the next generation weather radar facility at Brookhaven National Laboratory

    SciTech Connect

    Not Available

    1992-06-01

    The US Department of Commerce (DOC) completed an environmental impact assessment review, under the National Environmental Policy Act (NEPA), on its decisions for the nationwide Next Generation Weather Radar (NEXRAD) program of 150 radar units and for the site specific assessments of impacts. The DOC published a Programmatic Enviornmental Impact Statement on NEXRAD in November 1984. It completed a site-specific Environmental Assessment (EA) on the proposed NEXRAD facility at DOE`s Brookhaven National Laboratory (BNL) in November 1991 and issued a Finding of No Significant Impact (FONSI) on March 12, 1992. The DOC EA is included. The Department of Energy (DOE) proposes to adopt, in its entirety, the November 1991 site-specific EA prepared by the DOC for construction and operation of the NEXRAD facility and a National Weather Service (NWS) office building at BNL. The DOE`s decision is whether or not to lease a tract of land on DOE property to the DOC for use by the NWS. The DOE has performed an an in-depth review of the DOC EA to verify its accuracy and completeness, and to ensure that it encompasses the environmental issues at BNL relevant to the DOE proposed action for lease of land to the DOC. The DOE, therefore, proposes to adopt the DOC EA in its entirety by preparation of this brief addendum to assess the impacts.

  13. Characteristics of velocity ambiguity for CINRAD-SA Doppler weather radars

    NASA Astrophysics Data System (ADS)

    Chu, Zhigang; Yin, Yan; Gu, Songshan

    2014-02-01

    The velocity ambiguity in Doppler weather radars has inhibited the application of wind field data for long time. One effective solution is software-based velocity dealiasing algorithm. In this paper, in order to better design, optimize and validate velocity dealiasing algorithms for CINRAD-SA, data from operational radars were used to statistically characterize velocity ambiguity. The analyzed characteristic parameters included occurrence rate, and inter-station, inter-type, temporal, and spatial distributions. The results show that 14.9% of cloud-rain files and 0.3% of clear-air files from CINRADSA radars are ambiguous. It is also found that echoes of weak convections have the highest occurrence rate of velocity ambiguity than any other cloud types, and the probability of ambiguity is higher in winter than in summer. A detailed inspection of the occurrence of ambiguity in various cases indicates that ambiguous points usually occur in areas with an elevation angle of 6.0°, an azimuth of 70° or 250°, radial distance of 50-60 km, and height of 5-6 km, and that 99.4% of ambiguous points are in the 1st-folding interval. Suggestions for performing dealiasing at different locations and different time points are provided.

  14. Predictability of heavy sub-hourly precipitation amounts for a weather radar based nowcasting system

    NASA Astrophysics Data System (ADS)

    Bech, Joan; Berenguer, Marc

    2015-04-01

    Heavy precipitation events and subsequent flash floods are one of the most dramatic hazards in many regions such as the Mediterranean basin as recently stressed in the HyMeX (HYdrological cycle in the Mediterranean EXperiment) international programme. The focus of this study is to assess the quality of very short range (below 3 hour lead times) precipitation forecasts based on weather radar nowcasting system. Specific nowcasting amounts of 10 and 30 minutes generated with a nowcasting technique (Berenguer et al 2005, 2011) are compared against raingauge observations and also weather radar precipitation estimates observed over Catalonia (NE Spain) using data from the Meteorological Service of Catalonia and the Water Catalan Agency. Results allow to discuss the feasibility of issuing warnings for different precipitation amounts and lead times for a number of case studies, including very intense convective events with 30minute precipitation amounts exceeding 40 mm (Bech et al 2005, 2011). As indicated by a number of verification scores single based radar precipitation nowcasts decrease their skill quickly with increasing lead times and rainfall thresholds. This work has been done in the framework of the Hymex research programme and has been partly funded by the ProFEWS project (CGL2010-15892). References Bech J, N Pineda, T Rigo, M Aran, J Amaro, M Gayà, J Arús, J Montanyà, O van der Velde, 2011: A Mediterranean nocturnal heavy rainfall and tornadic event. Part I: Overview, damage survey and radar analysis. Atmospheric Research 100:621-637 http://dx.doi.org/10.1016/j.atmosres.2010.12.024 Bech J, R Pascual, T Rigo, N Pineda, JM López, J Arús, and M Gayà, 2007: An observational study of the 7 September 2005 Barcelona tornado outbreak. Natural Hazards and Earth System Science 7:129-139 http://dx.doi.org/10.5194/nhess-7-129-2007 Berenguer M, C Corral, R Sa0nchez-Diezma, D Sempere-Torres, 2005: Hydrological validation of a radar based nowcasting technique. Journal of

  15. NEXRAD Weather Radar Observations of the 2006 Augustine Volcanic Eruption Clouds

    NASA Astrophysics Data System (ADS)

    Schneider, D. J.; Scott, C.; Wood, J.; Hall, T.

    2006-12-01

    The 2006 eruption of Augustine Volcano, Alaska provided an exceptional opportunity to detect and measure explosive volcanic events and to track drifting volcanic clouds using WRS-88D (NEXRAD) weather radar data. Radar data complemented the real-time seismic monitoring by providing rapid confirmation of ash generation and cloud height. The explosive phase of the eruption consisted of thirteen discrete Vulcanian explosions from January 11 to 28, with seismic durations that ranged from one to eleven minutes. The ash columns and drifting clouds from all of the events were observed via a NEXRAD located 185 km NE of the volcano on the Kenai Peninsula (site PAHG). The radar was operated in both precipitation and clear air modes, resulting in a temporal resolution of 4.1 to 10 minutes per complete scan, respectively. Scan elevation angles for the radar beam centroid varied slightly depending upon mode of operation, but values of 0.5, 1.5, 2.5, and 3.5 degrees were typically used, corresponding to altitudes over the volcano of 3.8, 7.2, 10.5, and 13.8 km above sea level. Estimates of eruption cloud height were made by the National Weather Service (NWS) Anchorage Forecast Office using range-height indication cross-sections and radar echo tops (the altitude of the +18.5 dBZ reflectance surface). The observed cloud heights typically ranged from 7.5 to 10.5 km above sea level, with the exception of the January 17 event which briefly had an echo top of about 14 km. Most of the eruption clouds reached their maximum height in the first scan in which they were visible, suggesting an energetic and impulsive initial event, and were at lower heights in subsequent views. These height estimates may be minimum values because very fine-grained ash at the top of eruption clouds has low radar reflectance, and thus may not be observed. Height estimates were rapidly communicated to the NWS Alaska Aviation Weather Unit and the Alaska Volcano Observatory for use in hazard statements and related

  16. Intercomparison of single-frequency methods for retrieving a vertical rain profile from airborne or spaceborne radar data

    NASA Technical Reports Server (NTRS)

    Iguchi, Toshio; Meneghini, Robert

    1994-01-01

    This paper briefly reviews several single-frequency rain profiling methods for an airborne or spaceborne radar. The authors describe the different methods from a unified point of view starting from the basic differential equation. This facilitates the comparisons between the methods and also provides a better understanding of the physical and mathematical basis of the methods. The application of several methods to airborne radar data taken during the Convective and Precipitation/Electrification Experiment is shown. Finally, the authors consider a hybrid method that provides a smooth transition between the Hitschfeld-Bordan method, which performs well at low attenuations, and the surface reference method, for which the relative error decreases with increasing path attenuation.

  17. Ranger© - An Affordable, Advanced, Next-Generation, Dual-Pol, X-Band Weather Radar

    NASA Astrophysics Data System (ADS)

    Stedronsky, Richard

    2014-05-01

    The Enterprise Electronics Corporation (EEC) Ranger© system is a new generation, X-band (3 cm), Adaptive Polarization Doppler Weather Surveillance Radar that fills the gap between high-cost, high-power traditional radar systems and the passive ground station weather sensors. Developed in partnership with the University of Oklahoma Advanced Radar Research Center (ARRC), the system uses relatively low power solid-state transmitters and pulse compression technology to attain nearly the same performance capabilities of much more expensive traditional radar systems. The Ranger© also employs Adaptive Dual Polarization (ADP) techniques to allow Alternating or Simultaneous Dual Polarization capability with total control over the transmission polarization state using dual independent coherent transmitters. Ranger© has been designed using the very latest technology available in the industry and the technical and manufacturing experience gained through over four decades of successful radar system design and production at EEC. The entire Ranger© design concept emphasizes precision, stability, reliability, and value using proven solid state technology combined with the most advanced motion control system ever conceived for weather radar. Key applications include meteorology, hydrology, aviation, offshore oil/gas drilling, wind energy, and outdoor event situational awareness.

  18. Evaluation of radar and automatic weather station data assimilation for a heavy rainfall event in southern China

    NASA Astrophysics Data System (ADS)

    Hou, Tuanjie; Kong, Fanyou; Chen, Xunlai; Lei, Hengchi; Hu, Zhaoxia

    2015-07-01

    To improve the accuracy of short-term (0-12 h) forecasts of severe weather in southern China, a real-time storm-scale forecasting system, the Hourly Assimilation and Prediction System (HAPS), has been implemented in Shenzhen, China. The forecasting system is characterized by combining the Advanced Research Weather Research and Forecasting (WRF-ARW) model and the Advanced Regional Prediction System (ARPS) three-dimensional variational data assimilation (3DVAR) package. It is capable of assimilating radar reflectivity and radial velocity data from multiple Doppler radars as well as surface automatic weather station (AWS) data. Experiments are designed to evaluate the impacts of data assimilation on quantitative precipitation forecasting (QPF) by studying a heavy rainfall event in southern China. The forecasts from these experiments are verified against radar, surface, and precipitation observations. Comparison of echo structure and accumulated precipitation suggests that radar data assimilation is useful in improving the short-term forecast by capturing the location and orientation of the band of accumulated rainfall. The assimilation of radar data improves the short-term precipitation forecast skill by up to 9 hours by producing more convection. The slight but generally positive impact that surface AWS data has on the forecast of near-surface variables can last up to 6-9 hours. The assimilation of AWS observations alone has some benefit for improving the Fractions Skill Score (FSS) and bias scores; when radar data are assimilated, the additional AWS data may increase the degree of rainfall overprediction.

  19. Progress report on the NASA/JPL airborne synthetic aperture radar system

    NASA Technical Reports Server (NTRS)

    Lou, Y.; Imel, D.; Chu, A.; Miller, T.; Moller, D.; Skotnicki, W.

    2001-01-01

    AIRSAR has served as a test-bed for both imaging radar techniques and radar technologies for over a decade. In fact, the polarimetric, cross-track interferometric, and along-track introferometric radar techniques were all developed using AIRSAR.

  20. Weather elements, chemical air pollutants and airborne pollen influencing asthma emergency room visits in Szeged, Hungary: performance of two objective weather classifications

    NASA Astrophysics Data System (ADS)

    Makra, László; Puskás, János; Matyasovszky, István; Csépe, Zoltán; Lelovics, Enikő; Bálint, Beatrix; Tusnády, Gábor

    2015-09-01

    Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999-2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different.

  1. Weather elements, chemical air pollutants and airborne pollen influencing asthma emergency room visits in Szeged, Hungary: performance of two objective weather classifications.

    PubMed

    Makra, László; Puskás, János; Matyasovszky, István; Csépe, Zoltán; Lelovics, Enikő; Bálint, Beatrix; Tusnády, Gábor

    2015-09-01

    Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999-2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different. PMID:25504051

  2. 77 FR 53962 - Technical Standard Order (TSO)-C65a, Airborne Doppler Radar Ground Speed and/or Drift Angle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... of TSO-C65a as published in 77 FR 37470, June 21, 2012, produced no comments. Conclusion TSO-C65a is... TRANSPORTATION Federal Aviation Administration Technical Standard Order (TSO)-C65a, Airborne Doppler Radar Ground... Doppler Radar Ground Speed and/or Drift Angle Measuring Equipment (For Air Carrier Aircraft)....

  3. Visualization and Nowcasting for Aviation using online verified ensemble weather radar extrapolation.

    NASA Astrophysics Data System (ADS)

    Kaltenboeck, Rudolf; Kerschbaum, Markus; Hennermann, Karin; Mayer, Stefan

    2013-04-01

    Nowcasting of precipitation events, especially thunderstorm events or winter storms, has high impact on flight safety and efficiency for air traffic management. Future strategic planning by air traffic control will result in circumnavigation of potential hazardous areas, reduction of load around efficiency hot spots by offering alternatives, increase of handling capacity, anticipation of avoidance manoeuvres and increase of awareness before dangerous areas are entered by aircraft. To facilitate this rapid update forecasts of location, intensity, size, movement and development of local storms are necessary. Weather radar data deliver precipitation analysis of high temporal and spatial resolution close to real time by using clever scanning strategies. These data are the basis to generate rapid update forecasts in a time frame up to 2 hours and more for applications in aviation meteorological service provision, such as optimizing safety and economic impact in the context of sub-scale phenomena. On the basis of tracking radar echoes by correlation the movement vectors of successive weather radar images are calculated. For every new successive radar image a set of ensemble precipitation fields is collected by using different parameter sets like pattern match size, different time steps, filter methods and an implementation of history of tracking vectors and plausibility checks. This method considers the uncertainty in rain field displacement and different scales in time and space. By validating manually a set of case studies, the best verification method and skill score is defined and implemented into an online-verification scheme which calculates the optimized forecasts for different time steps and different areas by using different extrapolation ensemble members. To get information about the quality and reliability of the extrapolation process additional information of data quality (e.g. shielding in Alpine areas) is extrapolated and combined with an extrapolation

  4. The evaluation of satellite-borne weather radar system designs using real ground-based radar data

    NASA Technical Reports Server (NTRS)

    Dobson, E. B.; Kalshoven, J. E., Jr.

    1977-01-01

    The paper presents method of evaluating proposed satellite radar systems using real radar data, and discusses methods of displaying the results which will hopefully facilitate easy comparison of systems. A single pencil beam pulsed radar system is considered while the precipitation data base comes from six rain days observed by SPANDAR. The many additional factors that must be considered in the radar equation such as attenuation and scattering (Mie and Rayleigh) are discussed along with some indication where possible errors lie.

  5. LDAR observations of a developing thunderstorm correlated with field mill, ground strike location, and weather radar data including the first report of the design and capabilities of a new, time-of-arrival Ground-strike Location System (GSLS)

    NASA Technical Reports Server (NTRS)

    Poehler, H. A.

    1978-01-01

    An experiment designed to observe and measure a thunderstorm prior to, during, and after its development over the Kennedy Space Center was successful. Correlated measurements of airborne field strength, ground-based field strength, LDAR lightning discharge location in the clouds, weather radar percipitation echoes, plus ground strike location with the new KSC Ground Strike Location System (GSLS) were gathered, and reported. This test marks the first operational use of the GSLS System, and this report contains the first report of its design and capabilities.

  6. UAVSAR - A New Airborne L-Band Radar for Repeat Pass Interferometry

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.; Lou, Yunling

    2009-01-01

    NASA/JPL has developed a new airborne Synthetic Aperture Radar (SAR) which has become available for use by the scientific community in January, 2009. Pod mounted, the UAVSAR was designed to be portable among a variety of aircraft, including unmanned aerial systems (UAS). The instrument operates in the L-Band, has a resolution under 2m from a GPS altitude of 12Km and a swath width of approximately 20Km. UAVSAR currently flies on a modified Gulfstream-III aircraft, operated by NASA s Dryden Flight Research Center at Edwards, California. The G-III platform enables repeat-pass interferometric measurements, by using a modified autopilot and precise kinematic differential GPS to repeatedly fly the aircraft within a specified 10m tube. The antenna is electronically steered along track to assure that the antenna beam can be directed independently, regardless of speed and wind direction. The instrument can be controlled remotely, AS AN OPTION, using the Research Environment for Vehicle Embedded Analysis on Linux (REVEAL). This allows simulation of the telepresence environment necessary for flight on UAS. Potential earth science research and applications include surface deformation, volcano studies, ice sheet dynamics, and vegetation structure.

  7. Air-Sea Spray Airborne Radar Profiler Characterizes Energy Fluxes in Hurricanes

    NASA Technical Reports Server (NTRS)

    Durden, Stephen L.; Esteban-Fermandez, D.

    2010-01-01

    A report discusses ASAP (Air-sea Spray Airborne Profiler), a dual-wavelength radar profiler that provides measurement information about the droplet size distribution (DSD) of sea-spray, which can be used to estimate heat and moisture fluxes for hurricane research. Researchers have recently determined that sea spray can have a large effect on the magnitude and distribution of the air-sea energy flux at hurricane -force wind speeds. To obtain information about the DSD, two parameters of the DSD are required; for example, overall DSD amplitude and DSD mean diameter. This requires two measurements. Two frequencies are used, with a large enough separation that the differential frequency provides size information. One frequency is 94 GHz; the other is 220 GHz. These correspond to the Rayleigh and Mie regions. Above a surface wind speed of 10 m/ s, production of sea spray grows exponentially. Both the number of large droplets and the altitude they reach are a function of the surface wind speed.

  8. Winter precipitation fields in the Southeastern Mediterranean area as seen by the Ku-band spaceborne weather radar and two C-band ground-based radars

    NASA Astrophysics Data System (ADS)

    Gabella, M.; Morin, E.; Notarpietro, R.; Michaelides, S.

    2013-01-01

    The spaceborne weather radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite can be used to adjust Ground-based Radar (GR) echoes, as a function of the range from the GR site. The adjustment is based on the average linear radar reflectivity in circular rings around the GR site, for both the GR and attenuation-corrected NearSurfZ TRMM Precipitation Radar (TPR) images. In previous studies, it was found that in winter, for the lowest elevation of the Cyprus C-band radar, the GR/TPR equivalent rain rate ratio was decreasing, on average, of approximately 8 dB per decade. In this paper, the same analysis has been applied to another C-band radar in the southeastern Mediterranean area. For the lowest elevation of the "Shacham" radar in Israel, the GR/TPR equivalent rain rate ratio is found to decrease of approximately 6 dB per decade. The average departure at the "reference", intermediate range is related to the calibration of the GR. The negative slope of the range dependence is considered to be mainly caused by an overshooting problem (increasing sampling volume of the GR with range combined with non-homogeneous beam filling and, on average, a decreasing vertical profile of radar reflectivity). To check this hypothesis, we have compared the same NearSurfZ TPR images versus GR data acquired using the second elevation. We expected these data to be affected more by overshooting, especially at distant ranges: the negative slope of the range dependence was in fact found to be more evident than in the case of the lowest GR elevation for both the Cypriot and Israeli radar.

  9. A characterization of autumn nocturnal migration detected by weather surveillance radars in the northeastern USA.

    PubMed

    Farnsworth, Andrew; Van DOREN, Benjamin M; Hochachka, Wesley M; Sheldon, Daniel; Winner, Kevin; Irvine, Jed; Geevarghese, Jeffrey; Kelling, Steve

    2016-04-01

    Billions of birds migrate at night over North America each year. However, few studies have described the phenology of these movements, such as magnitudes, directions, and speeds, for more than one migration season and at regional scales. In this study, we characterize density, direction, and speed of nocturnally migrating birds using data from 13 weather surveillance radars in the autumns of 2010 and 2011 in the northeastern USA. After screening radar data to remove precipitation, we applied a recently developed algorithm for characterizing velocity profiles with previously developed methods to document bird migration. Many hourly radar scans contained windborne "contamination," and these scans also exhibited generally low overall reflectivities. Hourly scans dominated by birds showed nightly and seasonal patterns that differed markedly from those of low reflectivity scans. Bird migration occurred during many nights, but a smaller number of nights with large movements of birds defined regional nocturnal migration. Densities varied by date, time, and location but peaked in the second and third deciles of night during the autumn period when the most birds were migrating. Migration track (the direction to which birds moved) shifted within nights from south-southwesterly to southwesterly during the seasonal migration peaks; this shift was not consistent with a similar shift in wind direction. Migration speeds varied within nights, although not closely with wind speed. Airspeeds increased during the night; groundspeeds were highest between the second and third deciles of night, when the greatest density of birds was migrating. Airspeeds and groundspeeds increased during the fall season, although groundspeeds fluctuated considerably with prevailing winds. Significant positive correlations characterized relationships among bird densities at southern coastal radar stations and northern inland radar stations. The quantitative descriptions of broadscale nocturnal migration

  10. HF Radar Observations of Space Weather Effects in the Low and Mid-latitude Ionosphere

    NASA Astrophysics Data System (ADS)

    Menk, F. W.

    2015-12-01

    The ionosphere is dynamically coupled to the magnetosphere and hence diurnal and seasonal processes in the ionosphere are strongly influenced by space weather effects. These may vary the electron density distribution and cause changes in the reflection and absorption of HF radio signals. Other consequences include the formation of enhanced convective flows and irregularity features which may contribute to Doppler clutter. While there has been much discussion on the ionospheric signatures of magnetic storms at high latitudes, this presentation focuses on effects detected using mid- and low-latitude HF radars which examine field lines mapping to the vicinity of the ring current. Characteristic features include travelling ionospheric disturbances, high velocity flows and sustained irregular and quasi-sinusoidal 5 - 20 mHz waves recorded near the plasmapause. Such observations provide new insight on complex M-I coupling dynamics.

  11. Multi-frequency fine resolution imaging radar instrumentation and data acquisition. [side-looking radar for airborne imagery

    NASA Technical Reports Server (NTRS)

    Rendleman, R. A.; Champagne, E. B.; Ferris, J. E.; Liskow, C. L.; Marks, J. M.; Salmer, R. J.

    1974-01-01

    Development of a dual polarized L-band radar imaging system to be used in conjunction with the present dual polarized X-band radar is described. The technique used called for heterodyning the transmitted frequency from X-band to L-band and again heterodyning the received L-band signals back to X-band for amplification, detection, and recording.

  12. Hands-On Learning Modules for Interdisciplinary Environments: An Example with a Focus on Weather Radar Applications

    ERIC Educational Resources Information Center

    Chilson, P. B.; Yeary, M. B.

    2012-01-01

    Learning modules provide an effective means of encouraging cognition and active learning. This paper discusses several such modules that have been developed within a course on weather radar applications intended for students from Electrical Engineering and Meteorology. The modules were designed both to promote interdisciplinary exchange between…

  13. The New Weather Radar for America's Space Program in Florida: A Temperature Profile Adaptive Scan Strategy

    NASA Technical Reports Server (NTRS)

    Carey, L. D.; Petersen, W. A.; Deierling, W.; Roeder, W. P.

    2009-01-01

    A new weather radar is being acquired for use in support of America s space program at Cape Canaveral Air Force Station, NASA Kennedy Space Center, and Patrick AFB on the east coast of central Florida. This new radar replaces the modified WSR-74C at Patrick AFB that has been in use since 1984. The new radar is a Radtec TDR 43-250, which has Doppler and dual polarization capability. A new fixed scan strategy was designed to best support the space program. The fixed scan strategy represents a complex compromise between many competing factors and relies on climatological heights of various temperatures that are important for improved lightning forecasting and evaluation of Lightning Launch Commit Criteria (LCC), which are the weather rules to avoid lightning strikes to in-flight rockets. The 0 C to -20 C layer is vital since most generation of electric charge occurs within it and so it is critical in evaluating Lightning LCC and in forecasting lightning. These are two of the most important duties of 45 WS. While the fixed scan strategy that covers most of the climatological variation of the 0 C to -20 C levels with high resolution ensures that these critical temperatures are well covered most of the time, it also means that on any particular day the radar is spending precious time scanning at angles covering less important heights. The goal of this project is to develop a user-friendly, Interactive Data Language (IDL) computer program that will automatically generate optimized radar scan strategies that adapt to user input of the temperature profile and other important parameters. By using only the required scan angles output by the temperature profile adaptive scan strategy program, faster update times for volume scans and/or collection of more samples per gate for better data quality is possible, while maintaining high resolution at the critical temperature levels. The temperature profile adaptive technique will also take into account earth curvature and refraction

  14. Assessment of bird response to the Migratory Bird Habitat Initiative using weather-surveillance radar

    USGS Publications Warehouse

    Sieges, Mason L.; Smolinsky, Jaclyn A.; Baldwin, Michael J.; Barrow, Wylie C.; Randall, Lori A.; Buler, Jeffrey J.

    2014-01-01

    In response to the Deepwater Horizon oil spill in spring 2010, the Natural Resources Conservation Service implemented the Migratory Bird Habitat Initiative (MBHI) to provide temporary wetland habitat for migrating and wintering waterfowl, shorebirds, and other birds along the northern Gulf of Mexico via managed flooding of agricultural lands. We used weather-surveillance radar to conduct broad regional assessments of bird response to MBHI activities within the Mississippi Alluvial Valley and the West Gulf Coastal Plain. Across both regions, birds responded positively to MBHI management by exhibiting greater relative bird densities within sites relative to pre-management conditions in prior years and relative to surrounding non-flooded agricultural lands. Bird density at MBHI sites was generally greatest during winter for both regions. Unusually high flooding in the years prior to implementation of the MBHI confounded detection of overall changes in remotely sensed soil wetness across sites. The magnitude of bird response at MBHI sites compared to prior years and to non-flooded agricultural lands was generally related to the surrounding landscape context: proximity to areas of high bird density, amount of forested wetlands, emergent marsh, non-flooded agriculture, or permanent open water. However, these relationships varied in strength and direction between regions and seasons, a finding which we attribute to differences in seasonal bird composition and broad regional differences in landscape configuration and composition. We detected greater increases in relative bird use at sites in closer proximity to areas of high bird density during winter in both regions. Additionally, bird density was greater during winter at sites with more emergent marsh in the surrounding landscape. Thus, bird use of managed wetlands could be maximized by enrolling lands located near areas of known bird concentration and within a mosaic of existing wetlands. Weather-radar observations

  15. Polarimetric rainfall retrieval from a C-Band weather radar in a tropical environment (The Philippines)

    NASA Astrophysics Data System (ADS)

    Crisologo, I.; Vulpiani, G.; Abon, C. C.; David, C. P. C.; Bronstert, A.; Heistermann, Maik

    2014-11-01

    We evaluated the potential of polarimetric rainfall retrieval methods for the Tagaytay C-Band weather radar in the Philippines. For this purpose, we combined a method for fuzzy echo classification, an approach to extract and reconstruct the differential propagation phase, Φ DP , and a polarimetric self-consistency approach to calibrate horizontal and differential reflectivity. The reconstructed Φ DP was used to estimate path-integrated attenuation and to retrieve the specific differential phase, K DP . All related algorithms were transparently implemented in the Open Source radar processing software wradlib. Rainfall was then estimated from different variables: from re-calibrated reflectivity, from re-calibrated reflectivity that has been corrected for path-integrated attenuation, from the specific differential phase, and from a combination of reflectivity and specific differential phase. As an additional benchmark, rainfall was estimated by interpolating the rainfall observed by rain gauges. We evaluated the rainfall products for daily and hourly accumulations. For this purpose, we used observations of 16 rain gauges from a five-month period in the 2012 wet season. It turned out that the retrieval of rainfall from K DP substantially improved the rainfall estimation at both daily and hourly time scales. The measurement of reflectivity apparently was impaired by severe miscalibration while K DP was immune to such effects. Daily accumulations of rainfall retrieved from K DP showed a very low estimation bias and small random errors. Random scatter was, though, strongly present in hourly accumulations.

  16. Greenland annual accumulation along the EGIG line, 1959-2004, from ASIRAS airborne radar and neutron-probe density measurements

    NASA Astrophysics Data System (ADS)

    Overly, Thomas B.; Hawley, Robert L.; Helm, Veit; Morris, Elizabeth M.; Chaudhary, Rohan N.

    2016-08-01

    We report annual snow accumulation rates from 1959 to 2004 along a 250 km segment of the Expéditions Glaciologiques Internationales au Groenland (EGIG) line across central Greenland using Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) radar layers and high resolution neutron-probe (NP) density profiles. ASIRAS-NP-derived accumulation rates are not statistically different (95 % confidence interval) from in situ EGIG accumulation measurements from 1985 to 2004. ASIRAS-NP-derived accumulation increases by 20 % below 3000 m elevation, and increases by 13 % above 3000 m elevation for the period 1995 to 2004 compared to 1985 to 1994. Three Regional Climate Models (PolarMM5, RACMO2.3, MAR) underestimate snow accumulation below 3000 m by 16-20 % compared to ASIRAS-NP from 1985 to 2004. We test radar-derived accumulation rates sensitivity to density using modeled density profiles in place of NP densities. ASIRAS radar layers combined with Herron and Langway (1980) model density profiles (ASIRAS-HL) produce accumulation rates within 3.5 % of ASIRAS-NP estimates in the dry snow region. We suggest using Herron and Langway (1980) density profiles to calibrate radar layers detected in dry snow regions of ice sheets lacking detailed in situ density measurements, such as those observed by the Operation IceBridge campaign.

  17. Topographic analyses of K*lauea Volcano, Hawai'i, from interferometric airborne radar

    NASA Astrophysics Data System (ADS)

    Rowland, Scott K.; MacKay, Mary E.; Garbeil, Harold; Mouginis-Mark, Peter J.

    We analyze digital topographic data collected in September 1993 over a 500-km2 portion of K*lauea Volcano, Hawai'i, by the C-band (5.6-cm wavelength) topographic synthetic aperture radar (TOPSAR) airborne interferometric radar. Field surveys covering an 1-km2 area of the summit caldera and the distal end of an 8-m-thick 'a'* flow indicate that the 10-m spatial resolution TOPSAR data have a vertical accuracy of 1-2m over a variety of volcanic surfaces. After conversion to a common datum, TOPSAR data agree favorably with a digital elevation model (DEM) produced by the U.S. Geological Survey (USGS), with the important exception of the region of the ongoing eruption (which postdates the USGS DEM). This DEM comparison gives us confidence that subtracting the USGS data from TOPSAR data will produce a reasonable estimate of the erupted volume as of September 1993. This subtraction produces dense rock equivalent (DRE) volumes of 392, 439, and 90×106m3 for the Pu'u '*'*, K*pa'ianah*, and episode 50-53 stages of the eruption, respectively. These are 124, 89, and 94% of the volumes calculated by staff of the Hawaiian Volcano Observatory (HVO) but do not include lava of K*pa'ianah* and episodes 50-53 that flowed into the ocean and are thus invisible to TOPSAR. Accounting for this lava increases the TOPSAR volumes to 124, 159, and 129% of the HVO volumes. Including the +/-2-m uncertainty derived from the field surveys produces TOPSAR-derived volumes for the eruption as a whole that range between 81 and 125% of the USGS-derived values. The vesicularity- and ocean-corrected TOPSAR volumes yield volumetric eruption rates of 4.5, 4.5, and 2.7m3/s for the three stages of the eruption, which compare with HVO-derived values of 3.6, 2.8, and 2.1m3/s, respectively. Our analysis shows that care must be taken when vertically registering the TOPSAR and USGS DEMs to a common datum because C-band TOPSAR penetrates only partially into thick forest and therefore produces a DEM within the tree

  18. The Utility and Validity of Kinematic GPS Positioning for the Geosar Airborne Terrain Mapping Radar System

    NASA Technical Reports Server (NTRS)

    Freedman, Adam; Hensley, Scott; Chapin, Elaine; Kroger, Peter; Hussain, Mushtaq; Allred, Bruce

    1999-01-01

    GeoSAR is an airborne, interferometric Synthetic Aperture Radar (IFSAR) system for terrain mapping, currently under development by a consortium including NASA's Jet Propulsion Laboratory (JPL), Calgis, Inc., a California mapping sciences company, and the California Department of Conservation (CaIDOC), with funding provided by the U.S. Army Corps of Engineers Topographic Engineering Center (TEC) and the U.S. Defense Advanced Research Projects Agency (DARPA). IFSAR data processing requires high-accuracy platform position and attitude knowledge. On 9 GeoSAR, these are provided by one or two Honeywell Embedded GPS Inertial Navigation Units (EGI) and an Ashtech Z12 GPS receiver. The EGIs provide real-time high-accuracy attitude and moderate-accuracy position data, while the Ashtech data, post-processed differentially with data from a nearby ground station using Ashtech PNAV software, provide high-accuracy differential GPS positions. These data are optimally combined using a Kalman filter within the GeoSAR motion measurement software, and the resultant position and orientation information are used to process the dual frequency (X-band and P-band) radar data to generate high-accuracy, high -resolution terrain imagery and digital elevation models (DEMs). GeoSAR requirements specify sub-meter level planimetric and vertical accuracies for the resultant DEMS. To achieve this, platform positioning errors well below one meter are needed. The goal of GeoSAR is to obtain 25 cm or better 3-D positions from the GPS systems on board the aircraft. By imaging a set of known point target corner-cube reflectors, the GeoSAR system can be calibrated. This calibration process yields the true position of the aircraft with an uncertainty of 20- 50 cm. This process thus allows an independent assessment of the accuracy of our GPS-based positioning systems. We will present an overview of the GeoSAR motion measurement system, focusing on the use of GPS and the blending of position data from the

  19. Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Poellot, Michael R.; Kucera, Paul A.

    2004-01-01

    This report describes the work performed by the University of North Dakota (UND) under NASA Grant NAG5-11509, titled Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE. This work focused on the collection of data by two key platforms: the UND Citation II research aircraft and the NASA NPOL radar system. The CRYSTAL-FACE (C-F) mission addresses several key issues from the NASA Earth System Enterprise, including the variability of water in the atmosphere, the forcing provided by tropical cirrus and the response of the Earth system to this forcing. In situ measurements and radar observations of tropical convection, cirrus clouds and their environment are core elements of C-F. One of the primary issues that C-F is addressing is the relationship of tropical cirrus anvils to precipitating deep convection. The in situ measurements from C-F are being used to validate remote sensing of Earth-Atmosphere properties, increase our knowledge of upper tropospheric water vapor and its distribution, and increase our knowledge of tropical cirrus cloud morphology and composition. Radar measurements, especially polarimetric diversity observations available fiom the NASA NPOL radar, are providing essential information about the initiation, modulation, and dissipation of convective cores and the generation of associated anvils in tropical convection. Specifically, NPOL radar measurements contain information about convective intensity and its vertical structure for comparison with thermodynamic and kinematic environmental measurements observed from soundings. Because of the polarimetric diversity of MOL, statistics on bulk microphysical properties can be retrieved and compared to the other characteristics of convection and associated cirrus anvils. In summary, the central objectives of this proposal were to deploy the UND Citation research aircraft as an in situ sensing platform for this mission and to provide collaborative

  20. Terminal Fall Velocity From Airborne Doppler Radar : Application To The Frontal Cyclones of Fastex

    NASA Astrophysics Data System (ADS)

    Protat, A.; Lemaitre, Y.; Bouniol, D.

    Knowledge of water drop and ice crystal terminal velocities is particularly important for an adequate representation of particle sedimentation in cloud-resolving, opera- tional forecast and climate models. A new method is proposed in the present study to retrieve terminal fall velocity from airborne Doppler radar observations. To extract the terminal fall velocity from the Doppler information, statistical considerations are introduced, stating that for a long sampling time span (a whole aircraft mission, for in- stance) and for moderate the mean vertical air motions vanish with respect to the mean terminal fall velocity. This underlying hypothesis of the method is validated with in- situ data, in-situ microphysical VT-Z relationships in rain, and averages of convective- scale retrievals of the vertical wind component. A detailed analysis of the statistical relationships obtained in liquid and ice phases for 6 frontal cyclones sampled during FASTEX at different stages of development shows that an SuniversalT VT-Z rain rela- & cedil;tionship can be proposed for the North-Atlantic frontal cyclones at mature stage. In ice phase, such an SuniversalT relationship is not found. It is nevertheless suggested that & cedil;a general relationship can be derived if the frontal cyclones are split into categories depending on their stage of development. These VT-Z SuniversalT relationships can & cedil;be introduced in model parameterisation schemes in order to better describe sedimen- tation of ice and water and dynamical-microphysical interactions occurring within the North-Atlantic frontal cyclones.

  1. Preliminary evaluation of polarimetric parameters from a new dual-polarization C-band weather radar in an alpine region

    NASA Astrophysics Data System (ADS)

    Paulitsch, H.; Teschl, F.; Randeu, W. L.

    2010-05-01

    The first operational weather radar with dual polarization capabilities was recently installed in Austria. The use of polarimetric radar variables rises several expectations: an increased accuracy of the rain rate estimation compared to standard Z-R relationships, a reliable use of attenuation correction methods, and finally hydrometeor classification. In this study the polarimetric variables of precipitation events are investigated and the operational quality of the parameters is discussed. For the new weather radar also several polarimetric rain rate estimators, which are based on the horizontal polarization radar reflectivity, ZH, the differential reflectivity, ZDR, and the specific differential propagation phase shift, KDP, have been tested. The rain rate estimators are further combined with an attenuation correction scheme. A comparison between radar and rain gauge indicates that ZDR based rain rate algorithms show an improvement over the traditional Z-R estimate. KDP based estimates do not provide reliable results, mainly due to the fact, that the observed KDP parameters are quite noisy. Furthermore the observed rain rates are moderate, where KDP is less significant than in heavy rain.

  2. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  3. Simulation of Tornado over Brahmanbaria on 22 March 2013 using Doppler Weather Radar and WRF Model

    NASA Astrophysics Data System (ADS)

    Das, M. K.; Chowdhury, M.; Das, S.

    2013-12-01

    A tornado accompanied with thunderstorm, rainfall and hailstorm affected Brahmanbaria of Bangladesh in the afternoon of 22 March 2013. The tornadic storms are studied based on field survey, ground and radar observations. Low level moisture influx by southerly flow from the Bay of Bengal coupled with upper level westerly jet stream causing intense instability and shear in the wind fields triggered a series of storms for the day. The exact time and locations of the storms are investigated by using the Agartala and Cox's Bazar Doppler Weather Radar (DWR). Subsequently, the storms are simulated by using the WRF-ARW model at 1 km horizontal resolution based on 6 hourly analyses and boundary conditions of NCEP-FNL. Among the typical characteristics of the storms, the CAPE, surface wind speed, flow patterns, T-Φ gram, rainfall, sea level pressure, vorticity and vertical velocity are studied. Results show that while there are differences of 2-3 hours between the observed and simulated time of the storms, the distances between observed and simulated locations of the storms are several tens of kilometers. The maximum CAPE was generally above 2400 J kg-1 in the case. The maximum intensity of surface wind speed simulated by the model was only 38 m sec-1. This seems to be underestimated. The highest vertical velocity (updraft) simulated by the model was 250 m sec-1 around 800-950 hPa. The updraft reached up to 150 hPa. It seems that the funnel vortex reached the ground, and might have passed some places a few meters above the surface. According to the Fujita Pearson scale, this tornado can be classified as F-2 with estimated wind speed of 50-70 ms-1. Keywords: Tornado, DWR, NCEP-FNL, T-Φ gram, CAPE.

  4. Evolving subglacial water systems in East Antarctica from airborne radar sounding

    NASA Astrophysics Data System (ADS)

    Carter, Sasha Peter

    The cold, lightless, and high pressure aquatic environment at the base of the East Antarctic Ice Sheet is of interest to a wide range of disciplines. Stable subglacial lakes and their connecting channels remain perennially liquid three kilometers below some of the coldest places on Earth. The presence of subglacial water impacts flow of the overlying ice and provides clues to the geologic properties of the bedrock below, and may harbor unique life forms which have evolved out of contact with the atmosphere for millions of years. Periodic release of water from this system may impact ocean circulation at the margins of the ice sheet. This research uses airborne radar sounding, with its unique ability to infer properties within and at the base of the ice sheet over large spatial scales, to locate and characterize this unique environment. Subglacial lakes, the primary storage mechanism for subglacial water, have been located and classified into four categories on the basis of the radar reflection properties from the sub-ice interface: Definite lakes are brighter than their surroundings by at least two decibels (relatively bright), and are both consistently reflective (specular) and have a reflection coefficient greater than -10 decibels (absolutely bright). Dim lakes are relatively bright and specular but not absolutely bright, possibly indicating non-steady dynamics in the overlying ice. Fuzzy lakes are both relatively and absolutely bright, but not specular, and may indicate saturated sediments or high frequency spatially heterogeneous distributions of sediment and liquid water (i.e. a braided steam). Indistinct lakes are absolutely bright and specular but no brighter than their surroundings. Lakes themselves and the different classes of lakes are not arranged randomly throughout Antarctica but are clustered around ice divides, ice stream onsets and prominent bedrock troughs, with each cluster demonstrating a different characteristic lake classification distribution

  5. Application of wind-profiling radar data to the analysis of dust weather in the Taklimakan Desert.

    PubMed

    Wang, Minzhong; Wei, Wenshou; Ruan, Zheng; He, Qing; Ge, Runsheng

    2013-06-01

    The Urumqi Institute of Desert Meteorology of the China Meteorological Administration carried out an atmospheric scientific experiment to detect dust weather using a wind-profiling radar in the hinterland of the Taklimakan Desert in April 2010. Based on the wind-profiling data obtained from this experiment, this paper seeks to (a) analyze the characteristics of the horizontal wind field and vertical velocity of a breaking dust weather in a desert hinterland; (b) calculate and give the radar echo intensity and vertical distribution of a dust storm, blowing sand, and floating dust weather; and (c) discuss the atmosphere dust counts/concentration derived from the wind-profiling radar data. Studies show that: (a) A wind-profiling radar is an upper-air atmospheric remote sensing system that effectively detects and monitors dust. It captures the beginning and ending of a dust weather process as well as monitors the sand and dust being transported in the air in terms of height, thickness, and vertical intensity. (b) The echo intensity of a blowing sand and dust storm weather episode in Taklimakan is about -1~10 dBZ while that of floating dust -1~-15 dBZ, indicating that the dust echo intensity is significantly weaker than that of precipitation but stronger than that of clear air. (c) The vertical shear of horizontal wind and the maintenance of low-level east wind are usually dynamic factors causing a dust weather process in Taklimakan. The moment that the low-level horizontal wind field finds a shear over time, it often coincides with the onset of a sand blowing and dust storm weather process. (d) When a blowing sand or dust storm weather event occurs, the atmospheric vertical velocity tends to be of upward motion. This vertical upward movement of the atmosphere supported with a fast horizontal wind and a dry underlying surface carries dust particles from the ground up to the air to form blown sand or a dust storm. PMID:23099859

  6. TRMM Precipitation Radar Reflectivity Profiles Compared to High-Resolution Airborne and Ground-Based Radar Measurements

    NASA Technical Reports Server (NTRS)

    Heymsfield, G. M.; Geerts, B.; Tian, L.

    1999-01-01

    In this paper, TRMM (Tropical Rainfall Measuring Mission Satellite) Precipitation Radar (PR) products are evaluated by means of simultaneous comparisons with data from the high-altitude ER-2 Doppler Radar (EDOP), as well as ground-based radars. The comparison is aimed primarily at the vertical reflectivity structure, which is of key importance in TRMM rain type classification and latent heating estimation. The radars used in this study have considerably different viewing geometries and resolutions, demanding non-trivial mapping procedures in common earth-relative coordinates. Mapped vertical cross sections and mean profiles of reflectivity from the PR, EDOP, and ground-based radars are compared for six cases. These cases cover a stratiform frontal rainband, convective cells of various sizes and stages, and a hurricane. For precipitating systems that are large relative to the PR footprint size, PR reflectivity profiles compare very well to high-resolution measurements thresholded to the PR minimum reflectivity, and derived variables such as bright band height and rain types are accurate, even at high PR incidence angles. It was found that for, the PR reflectivity of convective cells small relative to the PR footprint is weaker than in reality. Some of these differences can be explained by non-uniform beam filling. For other cases where strong reflectivity gradients occur within a PR footprint, the reflectivity distribution is spread out due to filtering by the PR antenna illumination pattern. In these cases, rain type classification may err and be biased towards the stratiform type, and the average reflectivity tends to be underestimated. The limited sensitivity of the PR implies that the upper regions of precipitation systems remain undetected and that the PR storm top height estimate is unreliable, usually underestimating the actual storm top height. This applies to all cases but the discrepancy is larger for smaller cells where limited sensitivity is compounded

  7. Evaluating storm-scale groundwater recharge dynamics with coupled weather radar data and unsaturated zone modeling

    NASA Astrophysics Data System (ADS)

    Nasta, P.; Gates, J. B.; Lock, N.; Houston, A. L.

    2013-12-01

    Groundwater recharge rates through the unsaturated zone emerge from complex interactions within the soil-vegetation-atmosphere system that derive from nonlinear relationships amongst atmospheric boundary conditions, plant water use and soil hydraulic properties. While it is widely recognized that hydrologic models must capture soil water dynamics in order to provide reliable recharge estimates, information on episodic recharge generation remains uncommon, and links between storm-scale weather patterns and their influence on recharge is largely unexplored. In this study, the water balance of a heterogeneous one-dimensional soil domain (3 m deep) beneath a typical rainfed corn agro-ecosystem in eastern Nebraska was numerically simulated in HYDRUS-1D for 12 years (2001-2012) on hourly time steps in order to assess the relationships between weather events and episodic recharge generation. WSR-88D weather radar reflectivity data provided both rainfall forcing data (after estimating rain rates using the z/r ratio method) and a means of storm classification on a scale from convective to stratiform using storm boundary characteristics. Individual storm event importance to cumulative recharge generation was assessed through iterative scenario modeling (773 total simulations). Annual cumulative recharge had a mean value of 9.19 cm/yr (about 12 % of cumulative rainfall) with coefficient of variation of 73%. Simulated recharge generation events occurred only in late winter and spring, with a peak in May (about 35% of total annual recharge). Recharge generation is observed primarily in late spring and early summer because of the combination of high residual soil moisture following a winter replenishment period, heavy convective storms, and low to moderate potential evapotranspiration rates. During the growing season, high rates of root water uptake cause rapid soil water depletion, and the concurrent high potential evapotranspiration and low soil moisture prevented recharge

  8. Characteristics of Deep Tropical and Subtropical Convection from Nadir-Viewing High-Altitude Airborne Doppler Radar

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Heymsfield, Andrew J.; Li, Lihua; Guimond, Stephen

    2010-01-01

    This paper presents observations of deep convection characteristics in the tropics and subtropics that have been classified into four categories: tropical cyclone, oceanic, land, and sea breeze. Vertical velocities in the convection were derived from Doppler radar measurements collected during several NASA field experiments from the nadir-viewing high-altitude ER-2 Doppler radar (EDOP). Emphasis is placed on the vertical structure of the convection from the surface to cloud top (sometimes reaching 18-km altitude). This unique look at convection is not possible from other approaches such as ground-based or lower-altitude airborne scanning radars. The vertical motions from the radar measurements are derived using new relationships between radar reflectivity and hydrometeor fall speed. Various convective properties, such as the peak updraft and downdraft velocities and their corresponding altitude, heights of reflectivity levels, and widths of reflectivity cores, are estimated. The most significant findings are the following: 1) strong updrafts that mostly exceed 15 m/s, with a few exceeding 30 m/s, are found in all the deep convection cases, whether over land or ocean; 2) peak updrafts were almost always above the 10-km level and, in the case of tropical cyclones, were closer to the 12-km level; and 3) land-based and sea-breeze convection had higher reflectivities and wider convective cores than oceanic and tropical cyclone convection. In addition, the high-resolution EDOP data were used to examine the connection between reflectivity and vertical velocity, for which only weak linear relationships were found. The results are discussed in terms of dynamical and microphysical implications for numerical models and future remote sensors.

  9. ESTIMATING RAINFALL INTENSITIES FROM WEATHER RADAR DATA: THE SCALE DEPENDENCY PROBLEM 1490

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Meteorological radar is a remote sensing system that provides rainfall estimations at high spatial and temporal resolution. The radar-based rainfall intensities (R) are calculated from the observed radar reflectivities (Z). In this paper we explore scale-dependency of the power-law Z-R parameters w...

  10. Simulation tests to assess occupational exposure to airborne asbestos from artificially weathered asphalt-based roofing products.

    PubMed

    Sheehan, Patrick; Mowat, Fionna; Weidling, Ryan; Floyd, Mark

    2010-11-01

    Historically, asbestos-containing roof cements and coatings were widely used for patching and repairing leaks. Although fiber releases from these materials when newly applied have been studied, there are virtually no useful data on airborne asbestos fiber concentrations associated with the repair or removal of weathered roof coatings and cements, as most studies involve complete tear-out of old roofs, rather than only limited removal of the roof coating or cement during a repair job. This study was undertaken to estimate potential chrysotile asbestos fiber exposures specific to these types of roofing products following artificially enhanced weathering. Roof panels coated with plastic roof cement and fibered roof coating were subjected to intense solar radiation and daily simulated precipitation events for 1 year and then scraped to remove the weathered materials to assess chrysotile fiber release and potential worker exposures. Analysis of measured fiber concentrations for hand scraping of the weathered products showed 8-h time-weighted average concentrations that were well below the current Occupational Safety and Health Administration permissible exposure limit for asbestos. There was, however, visibly more dust and a few more fibers collected during the hand scraping of weathered products compared to the cured products previously tested. There was a notable difference between fibers released from weathered and cured roofing products. In weathered samples, a large fraction of chrysotile fibers contained low concentrations of or essentially no magnesium and did not meet the spectral, mineralogical, or morphological definitions of chrysotile asbestos. The extent of magnesium leaching from chrysotile fibers is of interest because several researchers have reported that magnesium-depleted chrysotile fibers are less toxic and produce fewer mesothelial tumors in animal studies than normal chrysotile fibers. PMID:20923966

  11. Echo Source Discrimination in Airborne Radar Sounding Data From the Dry Valleys, Antarctica, for Mars Analog Studies

    NASA Astrophysics Data System (ADS)

    Holt, J. W.; Blankenship, D. D.; Peters, M. E.; Kempf, S. D.; Williams, B. J.

    2003-12-01

    The identification of features on Mars exhibiting morphologies consistent with ice/rock mixtures, near-surface ice bodies and near-surface liquid water, and the importance of such features to the search for water on Mars highlights the need for appropriate terrestrial analogs in order to prepare for upcoming radar missions targeting these and other water-related features. Climatic, hydrological, and geological conditions in the McMurdo Dry Valleys of Antarctica are analogous in many ways to those on Mars, and a number of ice-related features in the Dry Valleys may have direct morphologic and compositional counterparts on Mars. We have collected roughly 1,000 line-km of airborne radar sounding data in the Dry Valleys for Mars analog studies. A crucial first step in the data analysis process is the discrimination of echo sources in the radar data. The goal is to identify all returns from the surface of surrounding topography in order to positively identify subsurface echoes. This process will also be critical for radar data that will be collected in areas of Mars exhibiting significant topography, so that subsurface echoes are identified unambiguously. Using a Twin Otter airborne platform, data were collected in three separate flights during the austral summers of 1999-2000 and 2001-2002 using multiple systems, including a chirped 52.5 - 67.5 MHz coherent radar operating at 750 W and 8 kW peak power (with multiple receivers) and 1 - 2 microsecond pulse width, and a 60 MHz pulsed, incoherent radar operating at 8 kW peak power with 60 ns and 250 ns pulse width. The chirped, coherent data are suitable for the implementation of advanced pulse compression algorithms and SAR focusing. Flight elevation was nominally 500 m above the surface. Targets included permafrost, subsurface ice bodies, rock/ice glaciers, ice-covered saline lakes, and glacial deposits in Taylor and Beacon Valleys. A laser altimeter (fixed relative to the aircraft frame) was also used during both

  12. Dual polarisation C-band weather radar imagery of the 6 August 2012 Te Maari Eruption, Mount Tongariro, New Zealand

    NASA Astrophysics Data System (ADS)

    Crouch, John F.; Pardo, Natalia; Miller, Craig A.

    2014-10-01

    The 6 August 2012 eruption of Mt. Tongariro from Upper Te Maari Crater in the central North Island of New Zealand was the first volcanic eruption observed by an operational weather radar in New Zealand, and is believed to be one of only a small number of eruptions observed by a dual-polarisation radar worldwide. The eruption was also observed by a GeoNet webcam, and detailed ash deposit studies have permitted analysis of the plume characteristics. A combination of radar and webcam imagery show 5 pulses within the first 13 min of the eruption, and also the subsequent ash transport downwind. Comparison with ash samples show the radar was likely detecting ash particles down to about 0.5 mm diameter. The maximum plume height estimated by the radar is 7.8 ± 1.0 km above mean sea level (amsl), although it is possible this may be a slight under estimation if very small ash particles not detected by the radar rose higher and comprised the very top of the plume. The correlation coefficient and differential reflectivity fields that are additionally measured by the dual polarisation radar provide extra information about the structure and composition of the eruption column and ash cloud. The correlation coefficient easily discriminates between the eruption column and the ash plume, and provides some information about the diversity of ash particle size within both the ash plume and the subsequent detached ash cloud drifting downwind. The differential reflectivity shows that the larger ash particles are falling with a horizontal orientation, and indicates that ice nucleation and aggregation of fine ash particles was probably occurring at high altitudes within 20-25 min of the eruption.

  13. Application of the Doppler weather radar in real-time quality control of hourly gauge precipitation in eastern China

    NASA Astrophysics Data System (ADS)

    Zhong, Lingzhi; Zhang, Zhiqiang; Chen, Lin; Yang, Jinhong; Zou, Fengling

    2016-05-01

    The current real-time operational quality control method for hourly rain gauge records at meteorological stations of China is primarily based on a comparison with historical extreme records, and the spatial and temporal consistencies of rain records. However, this method might make erroneous judgments for heavy precipitation because of its remarkable inhomogeneous features. In this study, we develop a Radar Supported Operational Real-time Quality Control (RS_ORQC) method to improve hourly gauge precipitation records in eastern China by using Doppler weather radar data and national automatic rain-gauge network in JJA (i.e., June, July and August) between 2010 and 2011. According to the probability density function (PDF) and cumulative probability density function (CDF), we establish the statistic relationships between NSN precipitation records under 7 radar coverage and radar quantitative precipitation estimation (QPE). The other NSN records under 5 radar coverage are used for the verification. The results show that the correct rate of this radar-supported new method in judging gauge precipitation is close to 99.95% when the hourly rainfall rate is below 10 mm h- 1 and is 96.21% when the rainfall intensity is above 10 mm h- 1. Moreover, the improved quality control method is also applied to evaluate the quality of provincial station network (PSN) precipitation records over eastern China. The correct rate of PSN precipitation records is 99.92% when the hourly rainfall rate is below 10 mm h- 1, and it is 93.33% when the hourly rainfall rate is above 10 mm h- 1. Case studies also exhibit that the radar-supported method can make correct judgments for extreme heavy rainfall.

  14. An analysis of the economic impact of the AN/APS-134 FLAR (Forward Looking Airborne Radar) retrofit on Coast Guard HC-130 aircraft

    NASA Astrophysics Data System (ADS)

    Dunn, R. E.

    1984-12-01

    Concern over the growing drug smuggling problem and improved national defense capability are manifest in the need for a new forward looking airborne radar (FLAR) for Coast Guard HC-130 aircraft, with a capability of detecting a target of 1 square meter radar cross section. This thesis reexamines the analysis that selected the AN/APS-134 FLAR over other contenders based on mission need, radar performance and life cycle cost criteria. This thesis presents a better understanding of the resulting HC-130 force structure based on the impact of FLAR technology.

  15. Retrieve Optically Thick Ice Cloud Microphysical Properties by Using Airborne Dual-Wavelength Radar Measurements

    NASA Technical Reports Server (NTRS)

    Wang, Zhien; Heymsfield, Gerald M.; Li, Lihua; Heymsfield, Andrew J.

    2005-01-01

    An algorithm to retrieve optically thick ice cloud microphysical property profiles is developed by using the GSFC 9.6 GHz ER-2 Doppler Radar (EDOP) and the 94 GHz Cloud Radar System (CRS) measurements aboard the high-altitude ER-2 aircraft. In situ size distribution and total water content data from the CRYSTAL-FACE field campaign are used for the algorithm development. To reduce uncertainty in calculated radar reflectivity factors (Ze) at these wavelengths, coincident radar measurements and size distribution data are used to guide the selection of mass-length relationships and to deal with the density and non-spherical effects of ice crystals on the Ze calculations. The algorithm is able to retrieve microphysical property profiles of optically thick ice clouds, such as, deep convective and anvil clouds, which are very challenging for single frequency radar and lidar. Examples of retrieved microphysical properties for a deep convective clouds are presented, which show that EDOP and CRS measurements provide rich information to study cloud structure and evolution. Good agreement between IWPs derived from an independent submillimeter-wave radiometer, CoSSIR, and dual-wavelength radar measurements indicates accuracy of the IWC retrieved from the two-frequency radar algorithm.

  16. Whirl Wind Detection and Identification in Indonesia Utilizing Single Polarization Doppler Weather Radar Volumetric Data

    NASA Astrophysics Data System (ADS)

    Ali, Abdullah; Hidayati, Sabitul

    2016-06-01

    Whirl wind occurrence frequency in Indonesia tends increasing in the last five years. Geospatial data from National Agency for Disaster Management (BNPB) recorded 72 cases with the impact of the two victims died, ten injured, 485 people were evacuated, and 1285 buildings were destroyed at period of January-June 2015. Based on the impact, early warning through remote sensing by using single polarization Doppler weather radar is need to be efforted. Whirl wind detection is done by identifying the characteristic pattern of the rotating convective cloud system by hook echo, analyzing the exsistance of vortex and rotation, and the strength of turbulence. The results show horizontal wind profile with a rotational pattern at CAPPI (V) and HWIND (V) by the altitude of 0.5 km, strong turbulence through product CAPPI (W) 0.5 km ranged of 1.75-2.05 ms-1, the vertical wind profile by product VVP (V) with a maximum value updraft reaches more than 20 knots at a 100-200 meters height, strong horizontal wind shear through HSHEAR (V) and CAPPI (HSHEAR) altitude of 0.5 km with a range of 6.23 to 10.12 ms-1/km. SWI and SSA show that the cloud base height is very low ranged from 200-600 meters with a maximum reflectivity reached 61.5 dBZ by top cloud height reached 14 km, while the product CAPPI (Z) 0.5 km and CMAX (Z) is very difficult to identify patterns hook echo. The results of remote sensing are very representative with the physical properties of whirl wind even whirl wind in a smaller scale.

  17. A survey of airborne radar systems for deployment on a High Altitude Powered Platform (HAPP)

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Leung, K. C.

    1979-01-01

    A survey was conducted to find out the system characteristics of commercially available and unclassified military radars suitable for deployment on a stationary platform. A total of ten domestic and eight foreign manufacturers of the radar systems were identified. Questionnaires were sent to manufacturers requesting information concerning the system characteristics: frequency, power used, weight, volume, power radiated, antenna pattern, resolution, display capabilities, pulse repetition frequency, and sensitivity. A literature search was also made to gather the system characteristics information. Results of the survey are documented and comparisons are made among available radar systems.

  18. Internal wave observations made with an airborne synthetic aperture imaging radar

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Apel, J. R.

    1976-01-01

    Synthetic aperture L-band radar flown aboard the NASA CV-990 has observed periodic striations on the ocean surface off the coast of Alaska which have been interpreted as tidally excited oceanic internal waves of less than 500 m length. These radar images are compared to photographic imagery of similar waves taken from Landsat 1. Both the radar and Landsat images reveal variations in reflectivity across each wave in a packet that range from low to high to normal. The variations point to the simultaneous existence of two mechanisms for the surface signatures of internal waves: roughening due to wave-current interactions, and smoothing due to slick formation.

  19. Challenges to Airborne and Orbital Radar Sounding in the Presence of Surface Clutter: Lessons Learned (so far) from the Dry Valleys of Antarctica

    NASA Astrophysics Data System (ADS)

    Holt, J. W.; Peters, M. E.; Kempf, S. D.; Morse, D. L.; Blankenship, D. D.

    2005-12-01

    The search for life and in-situ resources for exploration on Mars targets both liquid and solid water, whether distributed or in reservoirs. Massive surface ice may cover potential habitats or other features of great interest. Ice-rich layering in the high latitudes holds clues to the climatic history of the planet. Multiple geophysical methods will clearly be necessary to fully characterize these various states of water (and other forms of ice), but radar sounding will be a critical component of the effort. Orbital radar sounders are already being employed and plans for surface-based and suborbital, above-surface radar sounders are being discussed. The difficulties in interpreting data from each type of platform are quite different. Given the lack of existing orbital radar sounding data from any planetary body, the analysis of airborne radar sounding data is quite useful for assessing the advantages and disadvantages of above-surface radar sounding on Mars. In addition to over 300,000 line-km of data collected over the Antarctic ice sheet by airborne radar sounding, we have recently analyzed data from the Dry Valleys of Antarctica where conditions and features emulate Mars in several respects. These airborne radar sounding data were collected over an ice-free area of Taylor Valley, ice-covered lakes, Taylor Glacier, and Beacon Valley. The pulsed radar (52.5 - 67.5 MHz chirp) was coherently recorded. Pulse compression and unfocused SAR processing were applied. One of the most challenging aspects of above-surface radar sounding is the determination of echo sources. This can, of course, be problematic for surface-based radar sounders given possible subsurface scattering geometries, but it is most severe for above-surface sounders because echoes from cross-track surface topography (surface clutter) can have similar time delays to those from the subsurface. We have developed two techniques to accomplish the identification of this surface clutter in single-pass airborne

  20. Intercomparison of snowfall estimates derived from the CloudSat Cloud Profiling Radar and the ground based weather radar network over Sweden

    NASA Astrophysics Data System (ADS)

    Norin, L.; Devasthale, A.; L'Ecuyer, T. S.; Wood, N. B.; Smalley, M.

    2015-08-01

    To be able to estimate snowfall accurately is important for both weather and climate applications. Ground-based weather radars and space-based satellite sensors are often used as viable alternatives to rain-gauges to estimate precipitation in this context. The Cloud Profiling Radar (CPR) onboard CloudSat is especially proving to be a useful tool to map snowfall globally, in part due to its high sensitivity to light precipitation and ability to provide near-global vertical structure. The importance of having snowfall estimates from CloudSat/CPR further increases in the high latitude regions as other ground-based observations become sparse and passive satellite sensors suffer from inherent limitations. Here we intercompared snowfall estimates from two observing systems, CloudSat and Swerad, the Swedish national weather radar network. Swerad offers one of the best calibrated data sets of precipitation amount at very high latitudes that are anchored to rain-gauges and that can be exploited to evaluate usefulness of CloudSat/CPR snowfall estimates in the polar regions. In total 7.2×105 matchups of CloudSat and Swerad over Sweden were inter-compared covering all but summer months (October to May) from 2008 to 2010. The intercomparison shows encouraging agreement between these two observing systems despite their different sensitivities and user applications. The best agreement is observed when CloudSat passes close to a Swerad station (46-82 km), when the observational conditions for both systems are comparable. Larger disagreements outside this range suggest that both platforms have difficulty with shallow snow but for different reasons. The correlation between Swerad and CloudSat degrades with increasing distance from the nearest Swerad station as Swerad's sensitivity decreases as a function of distance and Swerad also tends to overshoots low level precipitating systems further away from the station, leading to underestimation of snowfall rate and occasionally missing

  1. Intercomparison of snowfall estimates derived from the CloudSat Cloud Profiling Radar and the ground-based weather radar network over Sweden

    NASA Astrophysics Data System (ADS)

    Norin, L.; Devasthale, A.; L'Ecuyer, T. S.; Wood, N. B.; Smalley, M.

    2015-12-01

    Accurate snowfall estimates are important for both weather and climate applications. Ground-based weather radars and space-based satellite sensors are often used as viable alternatives to rain gauges to estimate precipitation in this context. In particular, the Cloud Profiling Radar (CPR) on board CloudSat is proving to be a useful tool to map snowfall globally, in part due to its high sensitivity to light precipitation and its ability to provide near-global vertical structure. CloudSat snowfall estimates play a particularly important role in the high-latitude regions as other ground-based observations become sparse and passive satellite sensors suffer from inherent limitations. In this paper, snowfall estimates from two observing systems - Swerad, the Swedish national weather radar network, and CloudSat - are compared. Swerad offers a well-calibrated data set of precipitation rates with high spatial and temporal resolution, at very high latitudes. The measurements are anchored to rain gauges and provide valuable insights into the usefulness of CloudSat CPR's snowfall estimates in the polar regions. In total, 7.2 × 105 matchups of CloudSat and Swerad observations from 2008 through 2010 were intercompared, covering all but the summer months (June to September). The intercomparison shows encouraging agreement between the two observing systems despite their different sensitivities and user applications. The best agreement is observed when CloudSat passes close to a Swerad station (46-82 km), where the observational conditions for both systems are comparable. Larger disagreements outside this range suggest that both platforms have difficulty with shallow snow but for different reasons. The correlation between Swerad and CloudSat degrades with increasing distance from the nearest Swerad station, as Swerad's sensitivity decreases as a function of distance. Swerad also tends to overshoot low-level precipitating systems further away from the station, leading to an

  2. Cockpit weather information needs

    NASA Technical Reports Server (NTRS)

    Scanlon, Charles H.

    1992-01-01

    The primary objective is to develop an advanced pilot weather interface for the flight deck and to measure its utilization and effectiveness in pilot reroute decision processes, weather situation awareness, and weather monitoring. Identical graphical weather displays for the dispatcher, air traffic control (ATC), and pilot crew should also enhance the dialogue capabilities for reroute decisions. By utilizing a broadcast data link for surface observations, forecasts, radar summaries, lightning strikes, and weather alerts, onboard weather computing facilities construct graphical displays, historical weather displays, color textual displays, and other tools to assist the pilot crew. Since the weather data is continually being received and stored by the airborne system, the pilot crew has instantaneous access to the latest information. This information is color coded to distinguish degrees of category for surface observations, ceiling and visibilities, and ground radar summaries. Automatic weather monitoring and pilot crew alerting is accomplished by the airborne computing facilities. When a new weather information is received, the displays are instantaneously changed to reflect the new information. Also, when a new surface or special observation for the intended destination is received, the pilot crew is informed so that information can be studied at the pilot's discretion. The pilot crew is also immediately alerted when a severe weather notice, AIRMET or SIGMET, is received. The cockpit weather display shares a multicolor eight inch cathode ray tube and overlaid touch panel with a pilot crew data link interface. Touch sensitive buttons and areas are used for pilot selection of graphical and data link displays. Time critical ATC messages are presented in a small window that overlays other displays so that immediate pilot alerting and action can be taken. Predeparture and reroute clearances are displayed on the graphical weather system so pilot review of weather along

  3. Azimuthal Signature of Coincidental Brightness Temperature and Normalized Radar Cross-Section Obtained Using Airborne PALS Instrument

    NASA Technical Reports Server (NTRS)

    Colliander, Andreas; Kim, Seungbum; Yueh, Simon; Cosh, Mike; Jackson, Tom; Njoku, Eni

    2010-01-01

    Coincidental airborne brightness temperature (TB) and normalized radar-cross section (NRCS) measurements were carried out with the PALS (Passive and Active L- and S-band) instrument in the SMAPVEX08 (SMAP Validation Experiment 2008) field campaign. This paper describes results obtained from a set of flights which measured a field in 45(sup o) steps over the azimuth angle. The field contained mature soy beans with distinct row structure. The measurement shows that both TB and NRCS experience modulation effects over the azimuth as expected based on the theory. The result is useful in development and validation of land surface parameter forward models and retrieval algorithms, such as the soil moisture algorithm for NASA's SMAP (Soil Moisture Active and Passive) mission. Although the footprint of the SMAP will not be sensitive to the small resolution scale effects as the one presented in this paper, it is nevertheless important to understand the effects at smaller scale.

  4. The development of a power spectral density processor for C and L band airborne radar scatterometer sensor systems

    NASA Technical Reports Server (NTRS)

    Harrison, D. A., III; Chladek, J. T.

    1983-01-01

    A real-time signal processor was developed for the NASA/JSC L-and C-band airborne radar scatterometer sensor systems. The purpose of the effort was to reduce ground data processing costs. Conversion of two quadrature channels of data (like and cross polarized) was made to obtain Power Spectral Density (PSD) values. A chirp-z transform (CZT) approach was used to filter the Doppler return signal and improved high frequency and angular resolution was realized. The processors have been tested with record signals and excellent results were obtained. CZT filtering can be readily applied to scatterometers operating at other wavelengths by altering the sample frequency. The design of the hardware and software and the results of the performance tests are described in detail.

  5. Jigsaw phase III: a miniaturized airborne 3-D imaging laser radar with photon-counting sensitivity for foliage penetration

    NASA Astrophysics Data System (ADS)

    Vaidyanathan, Mohan; Blask, Steven; Higgins, Thomas; Clifton, William; Davidsohn, Daniel; Carson, Ryan; Reynolds, Van; Pfannenstiel, Joanne; Cannata, Richard; Marino, Richard; Drover, John; Hatch, Robert; Schue, David; Freehart, Robert; Rowe, Greg; Mooney, James; Hart, Carl; Stanley, Byron; McLaughlin, Joseph; Lee, Eui-In; Berenholtz, Jack; Aull, Brian; Zayhowski, John; Vasile, Alex; Ramaswami, Prem; Ingersoll, Kevin; Amoruso, Thomas; Khan, Imran; Davis, William; Heinrichs, Richard

    2007-04-01

    Jigsaw three-dimensional (3D) imaging laser radar is a compact, light-weight system for imaging highly obscured targets through dense foliage semi-autonomously from an unmanned aircraft. The Jigsaw system uses a gimbaled sensor operating in a spot light mode to laser illuminate a cued target, and autonomously capture and produce the 3D image of hidden targets under trees at high 3D voxel resolution. With our MIT Lincoln Laboratory team members, the sensor system has been integrated into a geo-referenced 12-inch gimbal, and used in airborne data collections from a UH-1 manned helicopter, which served as a surrogate platform for the purpose of data collection and system validation. In this paper, we discuss the results from the ground integration and testing of the system, and the results from UH-1 flight data collections. We also discuss the performance results of the system obtained using ladar calibration targets.

  6. Combined VHF Dopplar radar and airborne (CV-990) measurements of atmospheric winds on the mesoscale

    NASA Technical Reports Server (NTRS)

    Fairall, Christopher W.; Thomson, Dennis W.

    1989-01-01

    Hourly measurements of wind speed and direction obtained using two wind profiling Doppler radars during two prolonged jet stream occurrences over western Pennsylvania were analyzed. In particular, the time-variant characteristics of derived shear profiles were examined. To prevent a potential loss of structural detail and retain statistical significance, data from both radars were stratified into categories based on the location data from the Penn State radar were also compared to data from Pittsburgh radiosondes. Profiler data dropouts were studied in an attempt to determine possible reasons for the apparently reduced performance of profiling radars operating beneath a jet stream. Temperature profiles for the radar site were obtained using an interpolated temperature and dewpoint temperature sounding procedure developed at Penn State. The combination of measured wind and interpolated temperature profiles allowed Richardson number profiles to be generated for the profiler sounding volume. Both Richardson number and wind shear statistics were then examined along with pilot reports of turbulence in the vicinity of the profiler.

  7. Concentration and size distribution of total airborne microbes in hazy and foggy weather.

    PubMed

    Dong, Lijie; Qi, Jianhua; Shao, Congcong; Zhong, Xi; Gao, Dongmei; Cao, Wanwan; Gao, Jiawei; Bai, Ran; Long, Gaoyuan; Chu, Congcong

    2016-01-15

    Atmospheric bioaerosol particles were collected using a bioaerosol sampler from Oct. 2013 to Aug. 2014 in the coastal region of Qingdao. The total microbes were measured using an epifluorescence microscope after staining with DAPI (4',6-diamidino-2-phenylindole). The concentration of total airborne microbes showed seasonal variation, with the highest value in winter and the lowest in summer. The mean concentration of total microbes was 6.55 × 10(5)Cells/m(3) on non-hazy days. The total microbe concentration increased to 7.09 × 10(5) and 9.00 × 10(5)Cells/m(3) on hazy and foggy days, respectively. The particle sizes of the total microbes presented a bimodal distribution on sunny days, with one peak at 1.1-2.1 μm and another at 4.7-7.0 μm. The size distribution of total microbes showed an increase in the fine fraction on hazy days and an increase in the coarse fraction on foggy days. However, the size distribution became unimodal during a heating period. Spearman correlation analysis showed that temperature and O3 had a significant negative correlation with the airborne microbe concentration, while PM2.5, SO2, NO2, CO and the air quality index (AQI) had significant positive correlations with the airborne microbe concentration during hazy days. The increased number of airborne microbes will affect the air quality on hazy days. PMID:26473703

  8. An optical radar for airborne use over natural waters. [for underwater target detection

    NASA Technical Reports Server (NTRS)

    Levis, C. A.; Swarner, W. G.; Prettyman, C.; Reinhardt, G. W.

    1975-01-01

    An optical radar for detecting targets in natural waters was built and tested in the Gulf of Mexico. The transmitter consists of a Q switched neodymium glass laser, with output amplified and doubled in KDP to 0.53 micrometer wavelength. The receiver incorporates a noval optical spatial filter to reduce the dynamic range required of the photodetector to a reasonable value. Detection of targets to a depth of 26 meters (84 feet) was achieved with a considerable sensitivity margin. The sensitivity of the radar is highly dependent on the optical attenuation coefficient. In general, measured returns fell between the values predicted on the basis of monopath and multipath attenuation. By means of simple physical arguments, a radar equation for the system was derived. To validate this theoretical model, measurements of optical attenuation and of water surface behavior were also instrumented, and some of these results are given.

  9. The USGS Side-Looking Airborne Radar (SLAR) program: CD-ROMs expand potential for petroleum exploration

    SciTech Connect

    Kover, A.N.; Schoonmaker, J.W. Jr.; Pohn. H.A. )

    1991-03-01

    The United States Geological Survey (USGS) began the systematic collection of Side-Looking Airborne Radar (SLAR) data in 1980. The SLAR image data, useful for many geologic applications including petroleum exploration, are compiled into mosaics using the USGS 1:250,000-scale topographic map series for format and control. Mosaics have been prepared for over 35% of the United States. Image data collected since 1985 are also available as computer compatible tapes (CCTs) for digital analysis. However, the use of tapes is often cumbersome. To make digital data more readily available for use on a microcomputer, the USGS has started to prepare compact discs-read only memory (CD-ROM). Several experimental discs have been compiled to demonstrate the utility of the medium to make available very large data sets. These discs include necessary nonproprietary software text, radar, and other image data. The SLAR images selected for these discs show significantly different geologic features and include the Long Valley caldera, a section of the San Andreas fault in the Monterey area, the Grand Canyon, and glaciers in southeastern Alaska. At present, several CD-ROMs are available as standard products distributed by the USGS EROS Data Center in Sioux Falls, South Dakota 57198. This is also the source for all USGS SLAR photographic and digital material.

  10. Measurement of Attenuation with Airborne and Ground-Based Radar in Convective Storms Over Land and Its Microphysical Implications

    NASA Technical Reports Server (NTRS)

    Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.; Starr, D. OC. (Technical Monitor)

    2001-01-01

    Observations by the airborne X-band Doppler radar (EDOP) and the NCAR S-band polarimetric (S-POL) radar from two field experiments are used to evaluate the Surface ref'ercnce technique (SRT) for measuring the path integrated attenuation (PIA) and to study attenuation in deep convective storms. The EDOP, flying at an altitude of 20 km, uses a nadir beam and a forward pointing beam. It is found that over land, the surface scattering cross-section is highly variable at nadir incidence but relatively stable at forward incidence. It is concluded that measurement by the forward beam provides a viable technique for measuring PIA using the SRT. Vertical profiles of peak attenuation coefficient are derived in vxo deep convective storms by the dual-wavelength method. Using the measured Doppler velocity, the reflectivities at. the two wavelengths, the differential reflectivity and the estimated attenuation coefficients, it is shown that: supercooled drops and dry ice particles probably co-existed above the melting level in regions of updraft, that water-coated partially melted ice particles probably contributed to high attenuation below the melting level, and that the data are not readil explained in terms of a gamma function raindrop size distribution.

  11. The US Geological Survey's side-looking airborne radar acquisition program: Image data from the Rocky Mountains to the Pacific

    SciTech Connect

    Kovar, A.N.; Schoonmaker, J.W. Jr. )

    1993-04-01

    The US Geological Survey (USGS) has been systematically collecting side-looking airborne radar (SLAR) image data for the US since 1980. The image strip swaths, ranging in width from 20 to 46 km, are acquired commercially by X-band (3 cm) radar systems. Data are acquired with 60 percent side-lap for better mosaic preparation and stereoscopic capability. The image strips are assembled into 1[degree] x 2[degree] mosaic quadrangles that are based on the USGS 1:250,000-topographic map series for control, format, and nomenclature. These mosaics present the data in a broad synoptic view that facilitates geologic interpretation. SLAR image mosaics have been prepared for more than 35 percent of the US west of the Rocky Mountain front. In addition to quadrangle mosaics, regional composite mosaics have been prepared as value-added products. These include Pacific Northwest (14 quadrangles), southern California Coastal (from San Francisco to San Diego), Reno-Walker (includes parts of Yellowstone and Grand Teton National Parks), Uinta Basin (Salt Lake City, Price and Grand Junction), and Salton Sea Region (San Diego, Santa Ana, El Centro and Salton Sea). Most of the image data are available on computer compatible tapes and photographic products. To make the data more accessible and reasonably priced, the strip images are being processed into CD-ROM (compact disc, read-only memory). One demonstration CD-ROM includes the mosaics of Las Vegas, Mariposa, Ritzville, Walla Walla, and Pendleton quadrangles.

  12. Measurement of Attenuation with Airborne and Ground-Based Radar in Convective Storms Over Land Its Microphysical Implications

    NASA Technical Reports Server (NTRS)

    Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.; O'C.Starr, D. (Technical Monitor)

    2001-01-01

    Observations by the airborne X-band Doppler radar (EDOP) and the NCAR S-band polarimetric (S-Pol) radar from two field experiments are used to evaluate the surface reference technique (SRT) for measuring the path integrated attenuation (PIA) and to study attenuation in deep convective storms. The EDOP, flying at an altitude of 20 km, uses a nadir beam and a forward pointing beam. It is found that over land, the surface scattering cross-section is highly variable at nadir incidence but relatively stable at forward incidence. It is concluded that measurement by the forward beam provides a viable technique for measuring PIA using the SRT. Vertical profiles of peak attenuation coefficient are derived in two deep convective storms by the dual-wavelength method. Using the measured Doppler velocity, the reflectivities at the two wavelengths, the differential reflectivity and the estimated attenuation coefficients, it is shown that: supercooled drops and (dry) ice particles probably co-existed above the melting level in regions of updraft, that water-coated partially melted ice particles probably contributed to high attenuation below the melting level.

  13. Multi-Frequency Airborne Radar Measurements of Outlet Glaciers and Ice Streams

    NASA Astrophysics Data System (ADS)

    Gogineni, P. S.; Braaten, D. A.; Rodriguez-Morales, F.; Li, J.; Leuschen, C.; Paden, J. D.; Hale, R.; Arnold, E.; Panzer, B.; Gomez-Garcia, D.; Crowe, R.; Patel, A. E.; Yan, J.

    2012-12-01

    Outlet glaciers and ice streams in Greenland and Antarctica are important delivery systems of inland ice to the oceans. Satellite observations are showing that parts of the Antarctic and Greenland ice sheets are undergoing rapid changes, including both speed-up of several glaciers in Greenland and erratic behavior of Antarctic glaciers buttressed by ice shelves. While satellite sensors provide data on the surface flow speed and document the rapid changes the ice sheets are undergoing, they do not provide the essential information needed to understand the ice dynamics driving these changes or a detailed assessment of mass balance. In particular, a more complete knowledge of ice thickness, bed topography, and basal conditions are needed to better understand the dynamic processes causing rapid changes, assess outlet glacier discharge, and assess future discharge potential. Simultaneous measurements of snow accumulation from internal layering over the glacier catchment provide an assessment of temporally-varying surface mass balance. We developed a radar instrumentation package that can be operated both on long-range and short-range aircraft. This package includes four radars operating over a frequency range of about 180 MHz to 18 GHz. These are: (1) a wideband radar depth sounder that operates at a center frequency of 195 MHz to sound and image ice; (2) an ultra-wideband radar that operates over a frequency range of 600 to 900 MHz to map near-surface internal layers in polar firn and ice; (3) an ultra-wideband microwave radar that operates over a frequency range of about 2 to 8 GHz to measure the thickness of snow cover over sea ice and map near-surface internal layers in polar firn with fine resolution of about 5 cm; and (4) a radar altimeter that operates over a frequency range of 12 to 18 GHz for high-precision surface elevation measurements. During the last three years, these radars have been flown on several different aircraft over the Greenland and Antarctic ice

  14. 77 FR 3323 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... [Federal Register Volume 77, Number 14 (Monday, January 23, 2012)] [Notices] [Pages 3323-3324] [FR... Engineering Division, Aircraft Certification Service. [FR Doc. 2012-1243 Filed 1-20-12; 8:45 am] BILLING CODE... cancelling TSO-C67. Please note that TSO-C87, Airborne Low Range Radio Altimeter, is currently used for...

  15. Polarimetric X-band weather radar measurements in the tropics: radome and rain attenuation correction

    NASA Astrophysics Data System (ADS)

    Schneebeli, M.; Sakuragi, J.; Biscaro, T.; Angelis, C. F.; Carvalho da Costa, I.; Morales, C.; Baldini, L.; Machado, L. A. T.

    2012-09-01

    A polarimetric X-band radar has been deployed during one month (April 2011) for a field campaign in Fortaleza, Brazil, together with three additional laser disdrometers. The disdrometers are capable of measuring the raindrop size distributions (DSDs), hence making it possible to forward-model theoretical polarimetric X-band radar observables at the point where the instruments are located. This set-up allows to thoroughly test the accuracy of the X-band radar measurements as well as the algorithms that are used to correct the radar data for radome and rain attenuation. For the campaign in Fortaleza it was found that radome attenuation dominantly affects the measurements. With an algorithm that is based on the self-consistency of the polarimetric observables, the radome induced reflectivity offset was estimated. Offset corrected measurements were then further corrected for rain attenuation with two different schemes. The performance of the post-processing steps was analyzed by comparing the data with disdrometer-inferred polarimetric variables that were measured at a distance of 20 km from the radar. Radome attenuation reached values up to 14 dB which was found to be consistent with an empirical radome attenuation vs. rain intensity relation that was previously developed for the same radar type. In contrast to previous work, our results suggest that radome attenuation should be estimated individually for every view direction of the radar in order to obtain homogenous reflectivity fields.

  16. Hydrological appraisal of operational weather radar rainfall estimates in the context of different modelling structures

    NASA Astrophysics Data System (ADS)

    Zhu, D.; Xuan, Y.; Cluckie, I.

    2014-01-01

    Radar rainfall estimates have become increasingly available for hydrological modellers over recent years, especially for flood forecasting and warning over poorly gauged catchments. However, the impact of using radar rainfall as compared with conventional raingauge inputs, with respect to various hydrological model structures, remains unclear and yet to be addressed. In the study presented by this paper, we analysed the flow simulations of the upper Medway catchment of southeast England using the UK NIMROD radar rainfall estimates, using three hydrological models based upon three very different structures (e.g. a physically based distributed MIKE SHE model, a lumped conceptual model PDM and an event-based unit hydrograph model PRTF). We focused on the sensitivity of simulations in relation to the storm types and various rainfall intensities. The uncertainty in radar rainfall estimates, scale effects and extreme rainfall were examined in order to quantify the performance of the radar. We found that radar rainfall estimates were lower than raingauge measurements in high rainfall rates; the resolutions of radar rainfall data had insignificant impact at this catchment scale in the case of evenly distributed rainfall events but was obvious otherwise for high-intensity, localised rainfall events with great spatial heterogeneity. As to hydrological model performance, the distributed model had consistent reliable and good performance on peak simulation with all the rainfall types tested in this study.

  17. Hydrological appraisal of operational weather radar rainfall estimates in the context of different modelling structures

    NASA Astrophysics Data System (ADS)

    Zhu, D.; Xuan, Y.; Cluckie, I.

    2013-08-01

    Radar rainfall estimates have become increasingly available for hydrological modellers over recent years, especially for flood forecasting and warning over poorly gauged catchments. However, the impact of using radar rainfall as compared with conventional raingauge inputs, with respect to various hydrological model structures, remains unclear and yet to be addressed. In the study presented by this paper, we analysed the flow simulations of the Upper Medway catchment of Southeast England using the UK NIMROD radar rainfall estimates using three hydrological models based upon three very different structures, e.g. a physically based distributed MIKE SHE model, a lumped conceptual model PDM and an event-based unit hydrograph model PRTF. We focused on the sensitivity of simulations in relation to the storm types and various rainfall intensities. The uncertainty in radar-rainfall estimates, scale effects and extreme rainfall were examined in order to quantify the performance of the radar. We found that radar rainfall estimates were lower than raingauge measurements in high rainfall rates; the resolutions of radar rainfall data had insignificant impact at this catchment scale in the case of evenly distributed rainfall events but was obvious otherwise for high-intensity, localised rainfall events with great spatial heterogeneity. As to hydrological model performance, the distributed model had consistent reliable and good performance on peak simulation with all the rainfall types tested in this study.

  18. CBSIT 2009: Airborne Validation of Envisat Radar Altimetry and In Situ Ice Camp Measurements Over Arctic Sea Ice

    NASA Technical Reports Server (NTRS)

    Connor, Laurence; Farrell, Sinead; McAdoo, David; Krabill, William; Laxon, Seymour; Richter-Menge, Jacqueline; Markus, Thorsten

    2010-01-01

    The past few years have seen the emergence of satellite altimetry as valuable tool for taking quantitative sea ice monitoring beyond the traditional surface extent measurements and into estimates of sea ice thickness and volume, parameters that arc fundamental to improved understanding of polar dynamics and climate modeling. Several studies have now demonstrated the use of both microwave (ERS, Envisat/RA-2) and laser (ICESat/GLAS) satellite altimeters for determining sea ice thickness. The complexity of polar environments, however, continues to make sea ice thickness determination a complicated remote sensing task and validation studies remain essential for successful monitoring of sea ice hy satellites. One such validation effort, the Arctic Aircraft Altimeter (AAA) campaign of2006. included underflights of Envisat and ICESat north of the Canadian Archipelago using NASA's P-3 aircraft. This campaign compared Envisat and ICESat sea ice elevation measurements with high-resolution airborne elevation measurements, revealing the impact of refrozen leads on radar altimetry and ice drift on laser altimetry. Continuing this research and validation effort, the Canada Basin Sea Ice Thickness (CBSIT) experiment was completed in April 2009. CBSIT was conducted by NOAA. and NASA as part of NASA's Operation Ice Bridge, a gap-filling mission intended to supplement sea and land ice monitoring until the launch of NASA's ICESat-2 mission. CBIST was flown on the NASA P-3, which was equipped with a scanning laser altimeter, a Ku-band snow radar, and un updated nadir looking photo-imaging system. The CB5IT campaign consisted of two flights: an under flight of Envisat along a 1000 km track similar to that flown in 2006, and a flight through the Nares Strait up to the Lincoln Sea that included an overflight of the Danish GreenArc Ice Camp off the coast of northern Greenland. We present an examination of data collected during this campaign, comparing airborne laser altimeter measurements

  19. Feasibility of inter-comparing airborne and spaceborne obsevations of radar backscattering coefficients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) mission will provide global soil moisture products that will facilitate new science and application areas. The SMAP mission, scheduled for launch in November 2014, will offer synthetic aperture radar (SAR) measurements of backscattering coefficients for the re...

  20. Developing Dual Polarization Applications For 45th Weather Squadron's (45 WS) New Weather Radar: A Cooperative Project With The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    Roeder, W.P.; Peterson, W.A.; Carey, L.D.; Deierling, W.; McNamara, T.M.

    2009-01-01

    A new weather radar is being acquired for use in support of America s space program at Cape Canaveral Air Force Station, NASA Kennedy Space Center, and Patrick AFB on the east coast of central Florida. This new radar includes dual polarization capability, which has not been available to 45 WS previously. The 45 WS has teamed with NSSTC with funding from NASA Marshall Spaceflight Flight Center to improve their use of this new dual polarization capability when it is implemented operationally. The project goals include developing a temperature profile adaptive scan strategy, developing training materials, and developing forecast techniques and tools using dual polarization products. The temperature profile adaptive scan strategy will provide the scan angles that provide the optimal compromise between volume scan rate, vertical resolution, phenomena detection, data quality, and reduced cone-of-silence for the 45 WS mission. The mission requirements include outstanding detection of low level boundaries for thunderstorm prediction, excellent vertical resolution in the atmosphere electrification layer between 0 C and -20 C for lightning forecasting and Lightning Launch Commit Criteria evaluation, good detection of anvil clouds for Lightning Launch Commit Criteria evaluation, reduced cone-of-silence, fast volume scans, and many samples per pulse for good data quality. The training materials will emphasize the appropriate applications most important to the 45 WS mission. These include forecasting the onset and cessation of lightning, forecasting convective winds, and hopefully the inference of electrical fields in clouds. The training materials will focus on annotated radar imagery based on products available to the 45 WS. Other examples will include time sequenced radar products without annotation to simulate radar operations. This will reinforce the forecast concepts and also allow testing of the forecasters. The new dual polarization techniques and tools will focus on

  1. High resolution fire danger modeling : integration of quantitative precipitation amount estimates derived from weather radars as an input of FWI

    NASA Astrophysics Data System (ADS)

    Cloppet, E.; Regimbeau, M.

    2009-09-01

    Fire meteo indices provide efficient guidance tools for the prevention, early warning and surveillance of forest fires. The indices are based on meteorological input data. The underlying approach is to exploit meteorological information as fully as possible to model the soil water content, biomass condition and fire danger. Fire meteorological danger is estimated by Météo-France at national level through the use of Fire Weather Index. The fire index services developed within the PREVIEW project (2005-2008) offer for the first time very high resolution mapping of forest fire risk. The high resolution FWI has been implemented in France complementary to the existing EFFIS operated by the Joint Research Center. A new method (ANTILOPE method) of combining precipitation data originating from different sources like rain gauges and weather radar measurements has been applied in the new service. Some of the advantages of this new service are: · Improved detection of local features of fire risk · More accurate analysis of meteorological input data used in forest fire index models providing added value for forest fire risk forecasts · Use of radar precipitation data "as is” utilizing the higher resolution, i.e. avoiding averaging operations The improved accuracy and spatial resolution of the indices provide a powerful early warning tool for national and regional civil protection and fire fighting authorities to alert and initiate forest fire fighting actions and measures.

  2. Proposed adopted environmental assessment for the next generation weather radar facility at Brookhaven National Laboratory. [NEXRAD Facility

    SciTech Connect

    Not Available

    1992-06-01

    The US Department of Commerce (DOC) completed an environmental impact assessment review, under the National Environmental Policy Act (NEPA), on its decisions for the nationwide Next Generation Weather Radar (NEXRAD) program of 150 radar units and for the site specific assessments of impacts. The DOC published a Programmatic Enviornmental Impact Statement on NEXRAD in November 1984. It completed a site-specific Environmental Assessment (EA) on the proposed NEXRAD facility at DOE's Brookhaven National Laboratory (BNL) in November 1991 and issued a Finding of No Significant Impact (FONSI) on March 12, 1992. The DOC EA is included. The Department of Energy (DOE) proposes to adopt, in its entirety, the November 1991 site-specific EA prepared by the DOC for construction and operation of the NEXRAD facility and a National Weather Service (NWS) office building at BNL. The DOE's decision is whether or not to lease a tract of land on DOE property to the DOC for use by the NWS. The DOE has performed an an in-depth review of the DOC EA to verify its accuracy and completeness, and to ensure that it encompasses the environmental issues at BNL relevant to the DOE proposed action for lease of land to the DOC. The DOE, therefore, proposes to adopt the DOC EA in its entirety by preparation of this brief addendum to assess the impacts.

  3. Study of a Winter Monsoon Front and a Squall Line over the South China Sea by Synergetic Use of Synthetic Aperture and Weather Radar Data

    NASA Astrophysics Data System (ADS)

    Alpers, Werner; Cheng, Choming; Chan, Pakwai; Wong, Waikin; Dagestad, Knut-Frode

    2013-01-01

    Synthetic aperture radar (SAR) images acquired by the Advanced Synthetic Aperture Radar (ASAR) onboard the European Envisat satellite and weather radar images of the Hong Kong Observatory (HKO) are used to study a winter monsoon front and a squall line over the South China Sea (SCS). The atmospheric front was generated by a freshening of the northeast monsoon caused by the merging of two high pressure areas over the Chinese Continent. The high-resolution SAR image reveals finescale structures of the front which cannot be obtained by other spaceborne sensors. This front is further investigated by using other satellite data and by comparing the observational data with model data. Squall lines are lines of organized convective rain cells accompanied by wind shear and high wind gusts. It is shown that the synergetic use of high-resolution SAR and weather radar data provides a comprehensive view of the three-dimensional wind flow associated with the squall line.

  4. A Methodology for Determining Statistical Performance Compliance for Airborne Doppler Radar with Forward-Looking Turbulence Detection Capability. Second Corrected Copy Issued May 23, 2011

    NASA Technical Reports Server (NTRS)

    Bowles, Roland L.; Buck, Bill K.

    2009-01-01

    The objective of the research developed and presented in this document was to statistically assess turbulence hazard detection performance employing airborne pulse Doppler radar systems. The FAA certification methodology for forward looking airborne turbulence radars will require estimating the probabilities of missed and false hazard indications under operational conditions. Analytical approaches must be used due to the near impossibility of obtaining sufficient statistics experimentally. This report describes an end-to-end analytical technique for estimating these probabilities for Enhanced Turbulence (E-Turb) Radar systems under noise-limited conditions, for a variety of aircraft types, as defined in FAA TSO-C134. This technique provides for one means, but not the only means, by which an applicant can demonstrate compliance to the FAA directed ATDS Working Group performance requirements. Turbulence hazard algorithms were developed that derived predictive estimates of aircraft hazards from basic radar observables. These algorithms were designed to prevent false turbulence indications while accurately predicting areas of elevated turbulence risks to aircraft, passengers, and crew; and were successfully flight tested on a NASA B757-200 and a Delta Air Lines B737-800. Application of this defined methodology for calculating the probability of missed and false hazard indications taking into account the effect of the various algorithms used, is demonstrated for representative transport aircraft and radar performance characteristics.

  5. An investigation of a new dual-polarization weather radar data model for lightning nowcasting and warning

    NASA Astrophysics Data System (ADS)

    Ruzanski, Evan; Chandrasekar, Venkatachalam

    2016-04-01

    Accurate and extended short-term automated forecasting (nowcasting) of lightning is important for the preservation of life and resources in many applications. A new dual-polarization weather radar data model for lightning nowcasting and warning is presented and described. Previous research has shown that a simplified radar-based ice mass estimator provides value in lightning nowcasting and warning. This new product estimates the mass of graupel aloft, a quantity shown to be a key component in the atmospheric electrification process. The mass of graupel in the charge region of the storm is estimated by a model comprised of integrated reflectivity above the environmental freezing level, classification of graupel regions by a new hydrometeor classification algorithm, and coefficients determined by bulk microphysics studies. Data from storm events collected by the KFWS WSR-88D and National Lightning Detection Network in the Dallas-Fort Worth urban area in 2014 are used for analysis. Nowcasting is done using an area-based approach called the Dynamic and Adaptive Radar Tracking of Storms, where storm motion is estimated using a Fourier-based linear model. Nowcasts are then generated by advecting the data fields ahead in time according to these estimated motion vectors. Warning verification in the 0-1 h lead time frame is performed using a grid-based approach that discerns the performance of first-lightning flash nowcasting at each grid point.

  6. Attenuation of Weather Radar Signals Due to Wetting of the Radome by Rainwater or Incomplete Filling of the Beam Volume

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.; Ward, Jennifer G.

    2000-01-01

    A search of scientific literature, both printed and electronic, was undertaken to provide quantitative estimates of attenuation effects of rainfall on weather radar radomes. The emphasis was on C-band (5 cm) and S-Band (10 cm) wavelengths. An empirical model was developed to estimate two-way wet radome losses as a function of frequency and rainfall rate for both standard and hydrophobic radomes. The model fits most of the published data within +/- 1 dB at both target wavelengths for rain rates from less than ten to more than 200 mm/hr. Rainfall attenuation effects remain under 1 dB at both frequencies regardless of radome type for rainfall rates up to 10 mm/hr. S-Band losses with a hydrophobic radome such as that on the WSR-88D remain under 1 dB up to 100 mm/hr. C-Band losses on standard radomes such as that on the Patrick AFB (Air Force Base) WSR-74C can reach as much as 5 dB at 50 mm/hr. In addition, calculations were performed to determine the reduction in effective reflectivity, Z, when a radar target is smaller than the sampling volume of the radar. Results are presented for both the Patrick Air Force Base WSR-74C and the WSR-88D as a function of target size and range.

  7. Some case studies of ocean wave physical processes utilizing the GSFC airborne radar ocean wave spectrometer

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.

    1984-01-01

    The NASA K sub u band Radar Ocean Wave Spectrometer (ROWS) is an experimental prototype of a possible future satellite instrument for low data rate global waves measurements. The ROWS technique, which utilizes short pulse radar altimeters in a conical scan mode near vertical incidence to map the directional slope spectrum in wave number and azimuth, is briefly described. The potential of the technique is illustrated by some specific case studies of wave physical processes utilizing the aircraft ROWS data. These include: (1) an evaluation of numerical hindcast model performance in storm sea conditions, (2) a study of fetch limited wave growth, and (3) a study of the fully developed sea state. Results of these studies, which are briefly summarized, show how directional wave spectral observations from a mobile platform can contribute enormously to our understanding of wave physical processes.

  8. Airborne radar imaging of subaqueous channel evolution in Wax Lake Delta, Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Shaw, John B.; Ayoub, Francois; Jones, Cathleen E.; Lamb, Michael P.; Holt, Benjamin; Wagner, R. Wayne; Coffey, Thomas S.; Chadwick, J. Austin; Mohrig, David

    2016-05-01

    Shallow coastal regions are among the fastest evolving landscapes but are notoriously difficult to measure with high spatiotemporal resolution. Using Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data, we demonstrate that high signal-to-noise L band synthetic aperture radar (SAR) can reveal subaqueous channel networks at the distal ends of river deltas. Using 27 UAVSAR images collected between 2009 and 2015 from the Wax Lake Delta in coastal Louisiana, USA, we show that under normal tidal conditions, planform geometry of the distributary channel network is frequently resolved in the UAVSAR images, including ~700 m of seaward network extension over 5 years for one channel. UAVSAR also reveals regions of subaerial and subaqueous vegetation, streaklines of biogenic surfactants, and what appear to be small distributary channels aliased by the survey grid, all illustrating the value of fine resolution, low noise, L band SAR for mapping the nearshore subaqueous delta channel network.

  9. Airborne Ku-Band Polarimetric Radar Remote Sensing of Terrestrial Snow Cover

    NASA Technical Reports Server (NTRS)

    Yueh, Simon; Cline, Donald; Elder, Kelly

    2008-01-01

    Preliminary analyses of the POLSCAT data acquired from the CLPX-II in winter 2006-2007 are described in this paper. The data showed the response of the Ku-band radarechoes to snowpack changes for various types of background vegetation. We observed about 0.2 to 0.4 dB increases in backscatter for every 1 cm SWE accumulation for sage brush and agricultural fields. The co-polarized VV and HH radar resposnes are similar, while the corss-polarized (VH or HV) echoes showedgreater resposne to the change of SWE. The data also showed the impact of surface hoar growth and freeze/thaw cycles, whichcreated large snow grain sizes and ice lenses, respectively, and consequently increased the radar signals by a few dBs.

  10. Wave observation at sea with the Dutch Side-Looking Airborne Radar (SLAR)

    NASA Astrophysics Data System (ADS)

    Peters, H. C.

    1984-03-01

    Theoretical limits for sea wave observation with SLAR systems were investigated by modeling the interaction between microwave radiation and the sea surface. A description of the SLAR, in which three-dimensional spatial wave extension, two-dimensional antenna variations, pulse modulation, and platform movements are assimilated is given. A two-dimensional collection of equidistant point objects for microwave scattering at the rough sea surface is given. Resolution characteristics and speckle behavior were analyzed. Spatial resolution in range and azimuth is limited by pulse width and azimuth aperture angle of the antenna. As the modulation transfer function amplitude has a low value, small variations are lost in noise and speckle. Image error as a result of the observation of moving wave patterns with a flying radar are discussed. Recommendations to improve the radar characteristics are given.

  11. Airborne pollen assemblages and weather regime in the central-eastern Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Li, Yuecong; Ge, Yawen; Xu, Qinghai; Bunting, Jane M.; Lv, Suqing; Wang, Junting; Li, Zetao

    2015-04-01

    This paper presents the results of pollen trapping studies designed to quantify the pollen assemblages carried in the winds of the Loess Plateau in Luochuan and Hunyuan. The one-year-collection samples analysis results show that pollen assemblages can be more sensitive to the change of climate than the vegetation composition, because of the change of pollen production. The analysis results of pollen traps in different weather regimes indicate that the pollen influx coming from dust weather contribute more to the total pollen influx than that coming from non-dust weather. The wind speed is the most important influenced factor to pollen assemblages, then the mean temperature and the mean relative humidity, the wind direction also contributes some. Strong wind coming from dust direction can make the percent and influx of Artemisia and Chenopodiaceae increase obviously with averagely higher than over 2.7 times in dust weather than in non-dust samples. The influences of wind speed and wind direction are not serious to some arboreal pollen such as Rosaceae, Quercus, Betula, Pinus and Ostryopsis, which are mainly influenced by temperature or the relative humidity such as Salix, Hippophae, Carpinus, Brassicaceae, Cupressaceae, Fabaceae.

  12. Integration of Weather Avoidance and Traffic Separation

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Chamberlain, James P.; Wilson, Sara R.

    2011-01-01

    This paper describes a dynamic convective weather avoidance concept that compensates for weather motion uncertainties; the integration of this weather avoidance concept into a prototype 4-D trajectory-based Airborne Separation Assurance System (ASAS) application; and test results from a batch (non-piloted) simulation of the integrated application with high traffic densities and a dynamic convective weather model. The weather model can simulate a number of pseudo-random hazardous weather patterns, such as slow- or fast-moving cells and opening or closing weather gaps, and also allows for modeling of onboard weather radar limitations in range and azimuth. The weather avoidance concept employs nested "core" and "avoid" polygons around convective weather cells, and the simulations assess the effectiveness of various avoid polygon sizes in the presence of different weather patterns, using traffic scenarios representing approximately two times the current traffic density in en-route airspace. Results from the simulation experiment show that the weather avoidance concept is effective over a wide range of weather patterns and cell speeds. Avoid polygons that are only 2-3 miles larger than their core polygons are sufficient to account for weather uncertainties in almost all cases, and traffic separation performance does not appear to degrade with the addition of weather polygon avoidance. Additional "lessons learned" from the batch simulation study are discussed in the paper, along with insights for improving the weather avoidance concept. Introduction

  13. A seamless flash-flood early warning tool based on IDF-curves and coupling of weather-radar with numerical weather predictions

    NASA Astrophysics Data System (ADS)

    Liechti, Kaethi; Knechtl, Valentin; Andres, Norina; Sideris, Ioannis; Zappa, Massimiliano

    2014-05-01

    A flash-flood is a flood that develops rapidly after a heavy precipitation event. Flash-flood forecasting is an important field of research because flash floods cause a lot of fatalities and damage. A flash-flood early warning tool is developed based on precipitation statistics. Our target areas are small ungauged areas of southern-Switzerland. A total of 759 sub-cathcments was considered. In a first intensity-duration-frequency (IDF) curves for each catchment have been calculated basin on: A) Gridded precipitation products for the period 1961 to 2012 and B) gridded reforecast of the COSMO-LEPS NWP for the period 1971-2000. These different IDF-curves at the catchment level in combination with precipitation forecasts are the basis for the flash-flood early warning tool. The forecast models used are COSMO-2 (deterministic, updated every three hours and with a lead time of 24 hours) and COSMO-LEPS (probabilistic, 16 member and with a lead time of five days). In operational mode COSMO-2 is nudged to real-time data of a weather-radar precipitation obtained by blending the radar qpe with information from a national network of precipitation data. This product is called COMBIPRECIP. The flash-flood early warning tool has been evaluated against observed events. These events are either discharge peaks in gauged sub-areas or reports of damages caused by flash-flood events. The hypothesis that it is possible to detect hydrological events with the flash-flood early warning tool can be partly confirmed. The highest skill is obtained if the return-period of weather radar QPE is assessed at hourly time scale. With this it was possible to confirm most of the damage events occurred in 2010 and 2011. The prototype tool is affected by several false alarms. This is because initial conditions of the soils are not considered. Further steps will be therefore focussed on the addition of real-time hydrological information as obtained from the application of high resolution distributed

  14. Methods of Attenuation Correction for Dual-Wavelength and Dual-Polarization Weather Radar Data

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Liao, L.

    2007-01-01

    In writing the integral equations for the median mass diameter and number concentration, or comparable parameters of the raindrop size distribution, it is apparent that the forms of the equations for dual-polarization and dual-wavelength radar data are identical when attenuation effects are included. The differential backscattering and extinction coefficients appear in both sets of equations: for the dual-polarization equations, the differences are taken with respect to polarization at a fixed frequency while for the dual-wavelength equations, the differences are taken with respect to frequency at a fixed polarization. An alternative to the integral equation formulation is that based on the k-Z (attenuation coefficient-radar reflectivity factor) parameterization. This-technique was originally developed for attenuating single-wavelength radars, a variation of which has been applied to the TRMM Precipitation Radar data (PR). Extensions of this method have also been applied to dual-polarization data. In fact, it is not difficult to show that nearly identical equations are applicable as well to dualwavelength radar data. In this case, the equations for median mass diameter and number concentration take the form of coupled, but non-integral equations. Differences between this and the integral equation formulation are a consequence of the different ways in which attenuation correction is performed under the two formulations. For both techniques, the equations can be solved either forward from the radar outward or backward from the final range gate toward the radar. Although the forward-going solutions tend to be unstable as the attenuation out to the range of interest becomes large in some sense, an independent estimate of path attenuation is not required. This is analogous to the case of an attenuating single-wavelength radar where the forward solution to the Hitschfeld-Bordan equation becomes unstable as the attenuation increases. To circumvent this problem, the

  15. Multi-temporal airborne synthetic aperture radar data for crop classification

    NASA Technical Reports Server (NTRS)

    Foody, G. M.; Curran, P. J.; Groom, G. B.; Munro, D. C.

    1989-01-01

    This paper presents an approach to the classification of crop type using multitemporal airborne SAR data. Following radiometric correction of the data, the accuracy of a per-field crop classification reached 90 percent for three classes using data acquired on four dates. A comparable accuracy of 88 percent could be obtained for a classification of the same classes using data acquired on only two dates. Increasing the number of classes from three to seven reduced the classification accuracies to 55 percent and 69 percent when using data from two and four dates respectively.

  16. Weather.

    ERIC Educational Resources Information Center

    Web Feet K-8, 2000

    2000-01-01

    This subject guide to weather resources includes Web sites, CD-ROMs and software, videos, books, audios, magazines, and professional resources. Related disciplines are indicated, age levels are specified, and a student activity is included. (LRW)

  17. Microradarnet: AN Innovative High-Resolution Low-Cost X-Band Weather Radar Network

    NASA Astrophysics Data System (ADS)

    Turso, S.; Zambotto, M.; Gabella, M.; Orione, F.; Notarpietro, R.; Perona, G.

    2009-09-01

    In this paper, an innovative micro radar network for meteorological purposes has been presented. The key aspects of this network, named MicroRadarNet (MRN), are a short range strategy (about thirty kilometers) and the implementation of effective enhancing techniques. High resolution spatial and temporal data is processed in real-time, yielding a synthetic and consistent evaluation of the information coming from the sensor network. This approach implies in turn a sensible reduction of the overall operational costs, including management and maintenance aspects, if compared to the traditional long range C-band approach.

  18. Echo Source Discrimination in Airborne Radar Sounding Data for Mars Analog Studies, Dry Valleys, Antarctica

    NASA Technical Reports Server (NTRS)

    Holt, J. W.; Blankenship, D. D.; Peters, M. E.; Kempf, S. D.; Morse, D. L.; Williams, B. J.

    2003-01-01

    The recent identification of features on Mars exhibiting morphologies consistent with ice/rock mixtures, near-surface ice bodies and near-surface liquid water [1,2], and the importance of such features to the search for water on Mars, highlights the need for appropriate terrestrial analogs in order to prepare for upcoming radar missions targeting these and other water-related features. Climatic, hydrological, and geological conditions in the McMurdo Dry Valleys of Antarctica are analogous in many ways to those on Mars, and a number of ice-related features in the Dry Valleys may have direct morphologic and compositional counterparts on Mars.

  19. The use of weather radars to estimate hail damage to automobiles: an exploratory study in Switzerland

    NASA Astrophysics Data System (ADS)

    Hohl, Roman; Schiesser, Hans-Heinrich; Knepper, Ingeborg

    As the first of its kind, this study presents damage functions between two damage variables of hail-damaged automobiles and radar-derived hail kinetic energy for a total of 12 severe hailstorms that have occurred over the Swiss Mittelland (1992-1998). Hail kinetic energy is calculated from C-band Doppler radar CAPPIs at low storm level (1.5 km MSL) and is integrated per radar element ( EKINPIX) for entire hail cells. Hail damage claim data were available per Swiss community on a daily basis and transformed (Delaunay triangulation) along with EKINPIX to a regular 3×3 km grid, thereafter allowing cross-correlation between the variables. The results show nonlinear relationships between EKINPIX and both loss ratios and mean damages per hail-damaged car, differing between high hail season storms (15 June-15 August) and storms that occurred during the low season (before and after). A weighted logistic function provides correlation coefficients between EKINPIX and loss ratios of 0.71 (0.79) for high (low) season storms and 0.76 (0.40) for mean damages of high (low) season hailstorms. Maximally possible loss ratios reach 60% (40%) in high (low) season storms with maximum mean damages of CHF 6000 (CHF 3000) and average values around CHF 3100 (CHF 2100). Seasonal differences in hailfall intensities are discussed in terms of atmospheric conditions favoring convective activity and the likelihood of higher numbers of large hailstones (>20 mm in diameter) that induce more severe damage to cars during the high storm season. The results suggest that radar-derived hail kinetic energy could be used by insurance companies in the future to (1) assess hail damage to cars immediately after a storm has passed over a radar observation area and (2) to estimate potential maximal hail losses to car portfolios for parts of central Europe.

  20. Doppler weather radar observations of the 2009 eruption of Redoubt Volcano, Alaska

    USGS Publications Warehouse

    Schneider, David J.; Hoblitt, Richard P.

    2013-01-01

    The U.S. Geological Survey (USGS) deployed a transportable Doppler C-band radar during the precursory stage of the 2009 eruption of Redoubt Volcano, Alaska that provided valuable information during subsequent explosive events. We describe the capabilities of this new monitoring tool and present data captured during the Redoubt eruption. The MiniMax 250-C (MM-250C) radar detected seventeen of the nineteen largest explosive events between March 23 and April 4, 2009. Sixteen of these events reached the stratosphere (above 10 km) within 2–5 min of explosion onset. High column and proximal cloud reflectivity values (50 to 60 dBZ) were observed from many of these events, and were likely due to the formation of mm-sized accretionary tephra-ice pellets. Reflectivity data suggest that these pellets formed within the first few minutes of explosion onset. Rapid sedimentation of the mm-sized pellets was observed as a decrease in maximum detection cloud height. The volcanic cloud from the April 4 explosive event showed lower reflectivity values, due to finer particle sizes (related to dome collapse and related pyroclastic flows) and lack of significant pellet formation. Eruption durations determined by the radar were within a factor of two compared to seismic and pressure-sensor derived estimates, and were not well correlated. Ash dispersion observed by the radar was primarily in the upper troposphere below 10 km, but satellite observations indicate the presence of volcanogenic clouds in the stratosphere. This study suggests that radar is a valuable complement to traditional seismic and satellite monitoring of explosive eruptions.

  1. COSMO-SkyMed measurements in precipitation over the sea: analysis of Louisiana summer thunderstorms by simultaneous weather radar observations

    NASA Astrophysics Data System (ADS)

    Roberto, N.; Baldini, L.; Gorgucci, E.; Facheris, L.; Chandrasekar, V.

    2012-04-01

    Radar signatures of rain cells are investigated using X-band synthetic aperture radar (X-SAR) images acquired from COSMO-SkyMed constellation over oceans off the coast of Louisiana in summer 2010 provided by ASI archive. COSMO-SkyMed (CSK) monitoring of Deepwater Horizon oil spill provided a big amount of data during the period April-September 2010 and in July-August when several thunderstorms occurred in that area. In X-SAR images, radar signatures of rain cells over the sea usually consist of irregularly shaped bright and dark patches. These signatures originate from 1) the scattering and attenuation of radiation by hydrometers in the rain cells and 2) the modification of the sea roughness induced by the impact of raindrops and by wind gusts associated with rain cell. However, the interpretation of precipitation signatures in X-SAR images is not completely straightforward, especially over sea. Coincident measurements from ground based radars and an electromagnetic (EM) model predicting radar returns from the sea surface corrugated by rainfall are used to support the analysis. A dataset consisting of 4 CSK images has been collected over Gulf of Mexico while a WSR-88D NEXRAD S-band Doppler radar (KLIX) located in New Orleans was scanning the nearby portion of ocean. Terrestrial measurements have been used to reconstruct the component of X-SAR returns due to precipitation by modifying the known technique applied on measurements over land (Fritz et al. 2010, Baldini et al. 2011). Results confirm that the attenuation signature in X-SAR images collected over land, particularly pronounced in the presence of heavy precipitation cells, can be related to the S-band radar reflectivity integrated along the same path. The Normalized Radar Cross Section (NRCS) of land is considered to vary usually up to a few dBs in case of rain but with strong dependency on the specific type and conditions of land cover. While the NRCS of sea surface in clear weather condition can be

  2. Time-dependent Second Order Scattering Theory for Weather Radar with a Finite Beam Width

    NASA Technical Reports Server (NTRS)

    Kobayashi, Satoru; Tanelli, Simone; Im, Eastwood; Ito, Shigeo; Oguchi, Tomohiro

    2006-01-01

    Multiple scattering effects from spherical water particles of uniform diameter are studied for a W-band pulsed radar. The Gaussian transverse beam-profile and the rectangular pulse-duration are used for calculation. An second-order analytical solution is derived for a single layer structure, based on a time-dependent radiative transfer theory as described in the authors' companion paper. When the range resolution is fixed, increase in footprint radius leads to increase in the second order reflectivity that is defined as the ratio of the second order return to the first order one. This feature becomes more serious as the range increases. Since the spaceborne millimeter-wavelength radar has a large footprint radius that is competitive to the mean free path, the multiple scattering effect must be taken into account for analysis.

  3. Automatic detection of low altitude wind shear due to gust fronts in the terminal Doppler weather radar operational demonstration

    NASA Technical Reports Server (NTRS)

    Klingle-Wilson, Diana

    1990-01-01

    A gust front is the leading edge of the cold air outflow from a thunderstorm. Wind shears and turbulence along the gust front may produce potentially hazardous conditions for an aircraft on takeoff or landing such that runway operations are significantly impacted. The Federal Aviation Administration (FAA) has therefore determined that the detection of gust fronts in the terminal environment be an integral part of the Terminal Doppler Weather Radar (TDWR) system. Detection of these shears by the Gust Front Algorithm permits the generation of warnings that can be issued to pilots on approach and departure. In addition to the detection capability, the algorithm provides an estimate of the wind speed and direction following the gust front (termed wind shift) and the forecasted location of the gust front up to 20 minutes before it impacts terminal operations. This has shown utility as a runway management tool, alerting runway supervisors to approaching wind shifts and the possible need to change runway configurations. The formation and characteristics of gust fronts and their signatures in Doppler radar data are discussed. A brief description of the algorithm and its products for use by Air Traffic Control (ATC), along with an assessment of the algorithm's performance during the 1988 Operational Test and Evaluation, is presented.

  4. The gust-front detection and wind-shift algorithms for the Terminal Doppler Weather Radar system

    NASA Technical Reports Server (NTRS)

    Hermes, Laurie G.; Witt, Arthur; Smith, Steven D.; Klingle-Wilson, Diana; Morris, Dale; Stumpf, Gregory J.; Eilts, Michael D.

    1993-01-01

    The Federal Aviation Administration's (FAA) Terminal Doppler Weather Radar (TDWR) system was primarily designed to address the operational needs of pilots in the avoidance of low-altitude wind shears upon takeoff and landing at airports. One of the primary methods of wind-shear detection for the TDWR system is the gust-front detection algorithm. The algorithm is designed to detect gust fronts that produce a wind-shear hazard and/or sustained wind shifts. It serves the hazard warning function by providing an estimate of the wind-speed gain for aircraft penetrating the gust front. The gust-front detection and wind-shift algorithms together serve a planning function by providing forecasted gust-front locations and estimates of the horizontal wind vector behind the front, respectively. This information is used by air traffic managers to determine arrival and departure runway configurations and aircraft movements to minimize the impact of wind shifts on airport capacity. This paper describes the gust-front detection and wind-shift algorithms to be fielded in the initial TDWR systems. Results of a quantitative performance evaluation using Doppler radar data collected during TDWR operational demonstrations at the Denver, Kansas City, and Orlando airports are presented. The algorithms were found to be operationally useful by the FAA airport controllers and supervisors.

  5. Using X-band Weather Radar Measurements to Monitor the Integrity of Digital Elevation Models for Synthetic Vision Systems

    NASA Technical Reports Server (NTRS)

    Young, Steve; UijtdeHaag, Maarten; Sayre, Jonathon

    2003-01-01

    Synthetic Vision Systems (SVS) provide pilots with displays of stored geo-spatial data representing terrain, obstacles, and cultural features. As comprehensive validation is impractical, these databases typically have no quantifiable level of integrity. Further, updates to the databases may not be provided as changes occur. These issues limit the certification level and constrain the operational context of SVS for civil aviation. Previous work demonstrated the feasibility of using a realtime monitor to bound the integrity of Digital Elevation Models (DEMs) by using radar altimeter measurements during flight. This paper describes an extension of this concept to include X-band Weather Radar (WxR) measurements. This enables the monitor to detect additional classes of DEM errors and to reduce the exposure time associated with integrity threats. Feature extraction techniques are used along with a statistical assessment of similarity measures between the sensed and stored features that are detected. Recent flight-testing in the area around the Juneau, Alaska Airport (JNU) has resulted in a comprehensive set of sensor data that is being used to assess the feasibility of the proposed monitor technology. Initial results of this assessment are presented.

  6. Quantification of Shear-Relative Asymmetries in Eyewall Slope Using Airborne Doppler Radar Composites

    NASA Astrophysics Data System (ADS)

    Hazelton, A.; Rogers, R.; Hart, R. E.

    2013-12-01

    Recently, it has become apparent that typical methods for analyzing tropical cyclones (TCs), such as track and intensity, are insufficient for evaluating TC structural evolution and numerical model forecasts of that evolution. Many studies have analyzed different metrics related to TC inner-core structure in an attempt to better understand the processes that drive changes in core structure. One important metric related to vertical TC structure is the slope of the eyewall. Hazelton and Hart (2013) discussed azimuthal mean eyewall slope based on radar reflectivity data, and its relationship with TC intensity and core structure. That study also noted significant azimuthal variation in slopes, but did not significantly explore reasons for this variation. Accordingly, in this study, we attempt to quantify the role of vertical wind shear in causing azimuthal variance of slope, using research quality Doppler radar composites from the NOAA Hurricane Research Division (HRD). We analyze the slope of the 20 dBZ surface as in Hazelton and Hart (2013), and also look at azimuthal variation in other measures of eyewall slope, such as the slope of the radius of maximum winds (RMW), which has been analyzed in an azimuthal mean sense by Stern and Nolan (2009), and an angular momentum surface. The shear-relative slopes are quantified by separating the radar data into four quadrants relative to the vertical shear vector: Downshear Left (DSL), Upshear Left (USL), Upshear Right (USR), and Downshear Right (DSR). This follows the method employed in shear-relative analyses of other aspects of TC core structure, such as Rogers et al. (2013) and Reasor et al. (2013). The data suitable for use in this study consist of 36 flights into 15 different TCs (14 Atlantic, 1 Eastern Pacific) between 1997 and 2010. Preliminary results show apparent shear-induced asymmetries in eyewall slope. The slope of the RMW shows an asymmetry due to the tilt of the vortex approximately along the shear vector, with

  7. Quantifying monthly to decadal subsidence and assessing collapse potential near the Wink sinkholes, west Texas, using airborne lidar, radar interferometry, and microgravity

    NASA Astrophysics Data System (ADS)

    Paine, J. G.; Collins, E.; Yang, D.; Andrews, J. R.; Averett, A.; Caudle, T.; Saylam, K.

    2014-12-01

    We are using airborne lidar and satellite-based radar interferometry (InSAR) to quantify short-term (months to years) and longer-term (decades) subsidence in the area surrounding two large (100- to 200-m diameter) sinkholes that formed above Permian bedded salt in 1980 and 2002 in the Wink area, west Texas. Radar interferograms constructed from synthetic aperture radar data acquired between 2008 and 2011 with the ALOS PALSAR L-band satellite-borne instrument reveal local areas that are subsiding at rates that reach a few cm per month. Subsiding areas identified on radar interferograms enable labor-intensive ground investigations (such as microgravity surveys) to focus on areas where subsidence is occurring and shallow-source mass deficits might exist that could be sites of future subsidence or collapse. Longer-term elevation changes are being quantified by comparing digital elevation models (DEMs) constructed from high-resolution airborne lidar data acquired over a 32-km2 area in 2013 with older, lower-resolution DEMs constructed from data acquired during the NASA- and NGA-sponsored Shuttle Radar Topographic Mission in February 2000 and from USGS aerial photogrammetry-derived topographic data from the 1960s. Total subsidence reaches more than 10 m over 45 years in some areas. Maximum rates of subsidence measured on annual (from InSAR) and decadal (from lidar) time scales are about 0.25 m/yr. In addition to showing the extent and magnitude of subsidence at the 1980 and 2002 sinkholes, comparison of the 2013 lidar-derived DEM with the 1960s photogrammetry-derived DEM revealed other locations that have undergone significant (more than 1 m) elevation change since the 1960s, but show no evidence of recent (2008 to 2011) ground motion from satellite radar interferograms. Regional coverage obtained by radar interferometry and local coverage obtained with airborne lidar show that areas of measurable subsidence are all within a few km of the 1980 and 2002 sinkholes.

  8. Airborne synthetic aperture radar observations and simulations for waves in ice

    NASA Technical Reports Server (NTRS)

    Vachon, Paris W.; Olsen, Richard B.; Krogstad, Harald E.; Liu, Antony K.

    1993-01-01

    The Canada Centre for Remote Sensing CV-580 aircraft collected C-band SAR data over the marginal ice zone off the east coast of Newfoundland during the Labrador Ice Margin Experiment (LIMEX) in March 1989. One component of the LIMEX '89 program was the study of ocean waves penetrating the marginal ice zone. We consider nearly coincidental observations of waves in ice by airborne SAR and wave-induced ice motion measurements. We explain the wave patterns observed in the SAR imagery, and the corresponding SAR image spectra, in terms of SAR wave imaging models. These include the well-known tilt cross-section modulation, linear, quasi-linear, and nonlinear velocity bunching forward mapping models (FMMs), and the assertion that the concept of coherence time limitation applies differently to the cases of waves in ice and open water. We modify the concept of the scene coherence time to include two parts: first, a decorrelation time deduced from the inherent azimuth cutoff in the nonlinear velocity bunching FMM; and second, the intrinsic scene coherence time which is a measure of the time scale over which an open water Bragg scattering patch retains its phase structure. Either of these coherence time scales could dominate the SAR image formation process, depending upon the environmental conditions (the wave spectrum and the wind speed, for example). Observed SAR image spectra and forward mapped ice motion package spectra are favorably compared.

  9. Antarctic Firn Compaction Rates from Repeat-Track Airborne Radar Data: I. Methods

    NASA Technical Reports Server (NTRS)

    Medley, B.; Ligtenberg, S. R. M.; Joughin, I.; Van Den Broeke, M. R.; Gogineni, S.; Nowicki, S.

    2015-01-01

    While measurements of ice-sheet surface elevation change are increasingly used to assess mass change, the processes that control the elevation fluctuations not related to ice-flow dynamics (e.g. firn compaction and accumulation) remain difficult to measure. Here we use radar data from the Thwaites Glacier (West Antarctica) catchment to measure the rate of thickness change between horizons of constant age over different time intervals: 2009-10, 2010-11 and 2009-11. The average compaction rate to approximately 25m depth is 0.33ma(exp -1), with largest compaction rates near the surface. Our measurements indicate that the accumulation rate controls much of the spatio-temporal variations in the compaction rate while the role of temperature is unclear due to a lack of measurements. Based on a semi-empirical, steady-state densification model, we find that surveying older firn horizons minimizes the potential bias resulting from the variable depth of the constant age horizon. Our results suggest that the spatiotemporal variations in the firn compaction rate are an important consideration when converting surface elevation change to ice mass change. Compaction rates varied by up to 0.12ma(exp -1) over distances less than 6km and were on average greater than 20% larger during the 2010-11 interval than during 2009-10.

  10. Greenland annual accumulation along the EGIG line, 1959-2004, from ASIRAS airborne radar and detailed neutron-probe density measurements

    NASA Astrophysics Data System (ADS)

    Overly, T. B.; Hawley, R. L.; Helm, V.; Morris, E. M.; Chaudhary, R. N.

    2015-12-01

    We report annual snow accumulation rates from 1959 to 2004 along a 250 km segment of the Expéditions Glaciologiques Internationales au Groenland (EGIG) line across central Greenland using Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) radar layers and detailed neutron-probe (NP) density profiles. ASIRAS-NP accumulation rates are not statistically different (C.I. 95 %) from in situ EGIG accumulation measurements from 1985 to 2004. Below 3000 m elevation, ASIRAS-NP increases by 20 % for the period 1995 to 2004 compared to 1985 to 1994. Above 3000 m elevation, accumulation increases by 13 % for 1995-2004 compared to 1985-1994. Model snow accumulation results from the calibrated Fifth Generation Mesoscale Model modified for polar climates (Polar MM5) underestimate mean annual accumulation by 16 % compared to ASIRAS-NP from 1985 to 2004. We test radar-derived accumulation rates sensitivity to density using modelled density profiles in place of detailed NP data. ASIRAS radar layers combined with Herron and Langway (1980) model density profiles (ASIRAS-HL) produce accumulation rates within 3.5 % of ASIRAS-NP estimates. We suggest using Herron and Langway (1980) density profiles to calibrate radar layers detected in dry snow regions of ice sheets lacking detailed in situ density measurements, such as those observed by the IceBridge campaign.

  11. Nexrad-In-Space - A Geostationary Satellite Doppler Weather Radar for Hurricane Studies

    NASA Astrophysics Data System (ADS)

    Im, E.; Chandrasekar, V.; Chen, S. S.; Holland, G. J.; Kakar, R.; Lewis, W. E.; Marks, F. D.; Smith, E. A.; Tanelli, S.; Tripoli, G. J.

    2007-12-01

    The Nexrad-In-Space (NIS) is a revolutionary atmospheric radar observation concept from the geostationary orbiting platform. It was developed over the last 4 years under the auspices of NASA's Earth Science Instrument Incubator Program (IIP). The NIS radar would provide Ka-band (35 GHz) reflectivity and line-of-sight Doppler velocity profiles over a circular Earth region of approximately 5200 km in diameter with a 12-km horizontal resolution, and a minimum detectable signal of 5 dBZ. The NIS radar achieves its superb sampling capabilities by use of a 35-m diameter, deployable antenna made from lightweight membrane material. The antenna has two transmit-receive array pairs that create a dual-beam, spiral-feed combined profile image of both reflectivity and Doppler velocity approximately every 60 minutes. This sampling time can be shortened even further by increasing the number of transmit-receive array pairs. It is generally recognized that the processes important in governing hurricane intensity and structure span a wide range of spatial and temporal scales. The environmental forcing considerations require a large domain. The vortex response to the environmental forcing ultimately involves convection on small horizontal scales in the eyewall and rainband regions. Resolving this environment-vortex-convection feedback in a numerical model requires observations on the space and time scales necessary to unambiguously define these structures within and surrounding the tropical cyclone. Because the time and space scales of these processes are small, continuous 3-dimensional independent observations of the 3-dimensional wind and precipitation structures will be needed to initialize numerical models critical for this purpose. The proposed NIS Doppler radar would be the first instrument capable of accomplishing this feat at time scales less than hours, and would create the opportunity for hurricane science to enter a new era of understanding and improved prediction. This

  12. Joint NASA/USAF Airborne Field Mill Program - Operation and safety considerations during flights of a Lear 28 airplane in adverse weather

    NASA Technical Reports Server (NTRS)

    Fisher, Bruce D.; Phillips, Michael R.; Maier, Launa M.

    1992-01-01

    A NASA Langley Research Center Learjet 28 research airplane was flown in various adverse weather conditions in the vicinity of the NASA Kennedy Space Center from 1990-1992 to measure airborne electric fields during the Joint NASA/USAF Airborne Field Mill Program. The objective of this program was to characterize the electrical activity in various weather phenomena common to the NASA-Kennedy area in order to refine Launch Commit Criteria for natural and triggered lightning. The purpose of the program was to safely relax the existing launch commit criteria, thereby increasing launch availability and reducing the chance for weather holds and delays. This paper discusses the operational conduct of the flight test, including environmental/safety considerations, aircraft instrumentation and modification, test limitations, flight procedures, and the procedures and responsibilities of the personnel in the ground station. Airborne field mill data were collected for all the Launch Commit Criteria during two summer and two winter deployments. These data are now being analyzed.

  13. Marsh dieback, loss, and recovery mapped with satellite optical, airborne polarimetric radar, and field data

    USGS Publications Warehouse

    Ramsey, Elijah W., III; Rangoonwala, Amina; Chi, Zhaohui; Jones, Cathleen E.; Bannister, Terri

    2014-01-01

    Landsat Thematic Mapper and Satellite Pour l'Observation de la Terre (SPOT) satellite based optical sensors, NASA Uninhabited Aerial Vehicle synthetic aperture radar (UAVSAR) polarimetric SAR (PolSAR), and field data captured the occurrence and the recovery of an undetected dieback that occurred between the summers of 2010, 2011, and 2012 in the Spartina alterniflora marshes of coastal Louisiana. Field measurements recorded the dramatic biomass decrease from 2010 to 2011 and a biomass recovery in 2012 dominated by a decrease of live biomass, and the loss of marsh as part of the dieback event. Based on an established relationship, the near-infrared/red vegetation index (VI) and site-specific measurements delineated a contiguous expanse of marsh dieback encompassing 6649.9 ha of 18,292.3 ha of S. alterniflora marshes within the study region. PolSAR data were transformed to variables used in biophysical mapping, and of this variable suite, the cross-polarization HV (horizontal send and vertical receive) backscatter was the best single indicator of marsh dieback and recovery. HV backscatter exhibited substantial and significant changes over the dieback and recovery period, tracked measured biomass changes, and significantly correlated with the live/dead biomass ratio. Within the context of regional trends, both HV and VI indicators started higher in pre-dieback marshes and exhibited substantially and statistically higher variability from year to year than that exhibited in the non-dieback marshes. That distinct difference allowed the capturing of the S. alterniflora marsh dieback and recovery; however, these changes were incorporated in a regional trend exhibiting similar but more subtle biomass composition changes.

  14. NASA's DC-8 With Rain Mapping Radar

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In a joint venture between NASA and Japan's NASDA, scientists have been using satellites, airplanes, and boats to measure rain physics in and under thunderstorms over open water. This Quick Time movie shows NASA's DC-8 jet with the instruments like the airborne rain mapping radar, i.e., the Advanced Microwave Precipitation Radiometer (AMPR) and a lightening imaging sensor. Earth science and weather studies are an important ongoing function of NASA and its affiliates.

  15. Quasi-real time estimation of intense rainfall rates from weather radar

    NASA Astrophysics Data System (ADS)

    Libertino, Andrea; Allamano, Paola; Claps, Pierluigi; Cremonini, Roberto; Laio, Francesco

    2015-04-01

    Rainfall intensity estimation from radar is known to be prone to different sources of uncertainty, both in the detection and in the processing phase. These sources of uncertainty are especially relevant when severe rainfall rates are considered, thus calling for the adoption of advanced methods for the estimation of the rainfall rate from radar observations. We introduce a quasi-real time procedure for the adaptive estimation of the coefficients of the Z-R relation that links radar reflectivity to rainfall rate. The proposed quasi-real time calibration can grant Z-R relationships consistent with the evolution of the event while the use of a spatially adaptive approach makes the technique amenable to be applied in large areas with complex orography. The aim is to define a simple and operative methodology suitable for a systematic and possibly unsupervised application, capable to reconstruct the whole spectrum of intensities occurred during an intense rainfall event. We propose to readjust the power-law equation commonly used to transform reflectivity to rainfall intensity at each time step, calibrating its parameters by means of Z-R pairs collected in the time proximity of the considered instant. Z-R data are filtered with a reflectivity threshold, which varies in time, in order to discriminate between the presence and absence of rainfall. For every location, the spatial calibration domain is limited to the rain gauges belonging to a neighbourhood. Z-R coefficients are estimated for each location and each time step by minimizing the standard deviation between observed and estimated rainfall, through a non-linear procedure. The case study includes a set of 16 severe rainfall events occurred in the north-west of Italy. The technique outperforms the classical estimation methods for most of the analysed events and shows significant potential for operational uses. The determination coefficient undergoes up to 30% improvements and the BIAS values are reduced, for

  16. Spaced-antenna wind estimation using an X-band active phased-array weather radar

    NASA Astrophysics Data System (ADS)

    Venkatesh, Vijay

    Over the past few decades, several single radar methods have been developed to probe the kinematic structure of storms. All these methods trade angular-resolution to retrieve the wind-field. To date, the spaced-antenna method has been employed for profiling the ionosphere and the precipitation free lower atmosphere. This work focuses on applying the spaced-antenna method on an X-band active phased-array radar for high resolution horizontal wind-field retrieval from precipitation echoes. The ability to segment the array face into multiple displaced apertures allows for flexible spaced-antenna implementations. The methodology employed herein comprises of Monte-Carlo simulations to optimize the spaced-antenna system design and analysis of real data collected with the designed phased-array system. The contribution that underpins this dissertation is the demonstration of qualitative agreement between spaced-antenna and Doppler beam swinging retrievals based on real data. First, simulations of backscattered electric fields at the antenna array elements are validated using theoretical expressions. Based on the simulations, the degrees of freedom in the spaced-antenna system design are optimized for retrieval of mean baseline wind. We show that the designed X-band spaced-antenna system has lower retrieval uncertainty than the existing S-band spaced-antenna implementation on the NWRT. This is because of the flexibility to synthesize small overlapping apertures and the ability to obtain statistically independent samples at a faster rate at X-band. We then demonstrate a technique to make relative phase-center displacement measurements based on simulations and real data from the phased-array spaced-antenna system. This simple method uses statistics of precipitation echoes and apriori beamwidth measurements to make field repeatable phase-center displacement measurements. Finally, we test the hypothesis that wind-field curvature effects are common to both the spaced-antenna and

  17. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1991-01-01

    Papers presented at the conference on airborne wind shear detection and warning systems are compiled. The following subject areas are covered: terms of reference; case study; flight management; sensor fusion and flight evaluation; Terminal Doppler Weather Radar data link/display; heavy rain aerodynamics; and second generation reactive systems.

  18. The impact of reflectivity correction and conversion methods to improve precipitation estimation by weather radar for an extreme low-land Mesoscale Convective System

    NASA Astrophysics Data System (ADS)

    Hazenberg, Pieter; Leijnse, Hidde; Uijlenhoet, Remko

    2014-05-01

    Between 25 and 27 August 2010 a long-duration mesoscale convective system was observed above the Netherlands. For most of the country this led to over 15 hours of near-continuous precipitation, which resulted in total event accumulations exceeding 150 mm in the eastern part of the Netherlands. Such accumulations belong to the largest sums ever recorded in this country and gave rise to local flooding. Measuring precipitation by weather radar within such mesoscale convective systems is known to be a challenge, since measurements are affected by multiple sources of error. For the current event the operational weather radar rainfall product only estimated about 30% of the actual amount of precipitation as measured by rain gauges. In the current presentation we will try to identify what gave rise to such large underestimations. In general weather radar measurement errors can be subdivided into two different groups: 1) errors affecting the volumetric reflectivity measurements taken, and 2) errors related to the conversion of reflectivity values in rainfall intensity and attenuation estimates. To correct for the first group of errors, the quality of the weather radar reflectivity data was improved by successively correcting for 1) clutter and anomalous propagation, 2) radar calibration, 3) wet radome attenuation, 4) signal attenuation and 5) the vertical profile of reflectivity. Such consistent corrections are generally not performed by operational meteorological services. Results show a large improvement in the quality of the precipitation data, however still only ~65% of the actual observed accumulations was estimated. To further improve the quality of the precipitation estimates, the second group of errors are corrected for by making use of disdrometer measurements taken in close vicinity of the radar. Based on these data the parameters of a normalized drop size distribution are estimated for the total event as well as for each precipitation type separately (convective

  19. Extraction of convective cloud parameters from Doppler Weather Radar MAX(Z) product using Image Processing Technique

    NASA Astrophysics Data System (ADS)

    Arunachalam, M. S.; Puli, Anil; Anuradha, B.

    2016-07-01

    In the present work continuous extraction of convective cloud optical information and reflectivity (MAX(Z) in dBZ) using online retrieval technique for time series data production from Doppler Weather Radar (DWR) located at Indian Meteorological Department, Chennai has been developed in MATLAB. Reflectivity measurements for different locations within the DWR range of 250 Km radii of circular disc area can be retrieved using this technique. It gives both time series reflectivity of point location and also Range Time Intensity (RTI) maps of reflectivity for the corresponding location. The Graphical User Interface (GUI) developed for the cloud reflectivity is user friendly; it also provides the convective cloud optical information such as cloud base height (CBH), cloud top height (CTH) and cloud optical depth (COD). This technique is also applicable for retrieving other DWR products such as Plan Position Indicator (Z, in dBZ), Plan Position Indicator (Z, in dBZ)-Close Range, Volume Velocity Processing (V, in knots), Plan Position Indicator (V, in m/s), Surface Rainfall Intensity (SRI, mm/hr), Precipitation Accumulation (PAC) 24 hrs at 0300UTC. Keywords: Reflectivity, cloud top height, cloud base, cloud optical depth

  20. Second-order multiple-scattering theory associated with backscattering enhancement for a millimeter wavelength weather radar with a finite beam width

    NASA Technical Reports Server (NTRS)

    Kobayashi, Satoru; Tanelli, Simone; Im, Eastwood

    2005-01-01

    Effects of multiple scattering on reflectivity are studied for millimeter wavelength weather radars. A time-independent vector theory, including up to second-order scattering, is derived for a single layer of hydrometeors of a uniform density and a uniform diameter. In this theory, spherical waves with a Gaussian antenna pattern are used to calculate ladder and cross terms in the analytical scattering theory. The former terms represent the conventional multiple scattering, while the latter terms cause backscattering enhancement in both the copolarized and cross-polarized components. As the optical thickness of the hydrometeor layer increases, the differences from the conventional plane wave theory become more significant, and essentially, the reflectivity of multiple scattering depends on the ratio of mean free path to radar footprint radius. These results must be taken into account when analyzing radar reflectivity for use in remote sensing.

  1. Application of airborne laser scanner measurements of ocean roughness to the calibration and validation of a satellite bistatic radar experiment

    NASA Astrophysics Data System (ADS)

    Parrin, J.; Garrison, J. L.

    2006-12-01

    A high-resolution airborne laser scanner, from the National Center for Airborne Laser Mapping (NCALM) was used to profile the ocean surface in an attempt to experimentally measure the ocean height spectrum down to wavelengths as small as a few centimetres. In October of 2005, three data collections were scheduled, during overpasses of the UK-DMC satellite, off the coast of Virginia. UK-DMC carries an experimental bistatic radar receiver, which uses Global Navigation Satellite System (GNSS) signals as illumination sources. Most models for reflected GNSS signals relate the shape of the signal correlation waveforms to the ocean roughness, parameterized as a probability distribution (PDF) of surface slopes. This statistical description of the ocean surface must first be filtered to wavelengths greater than some fraction of the GNSS wavelength of 19 cm. Past experimental campaigns have used more common in-situ measurements, such as wind speed, for comparison with GNSS waveforms. These types of measurements will require the assumption of some empirical model for the ocean height spectrum, allowing the computation of the filtered slope statistics. Proposed applications of reflected GNSS signals include the correction of ocean roughness effects in passive microwave radiometry. To evaluate the feasibility of GNSS reflections for this measurement, it is important to make a more direct measurement of the ocean surface slope statistics, without the assumption of a spectrum model. In these experiments, a direct measurement of this spectrum was attempted, using the NCALM system. The laser scanner was operated on a low altitude (500 m) aircraft, at the highest sample rate (33KHz), generating ocean height measurements with an along-track separation of a few millimetres. The laser illuminates a spot on the ocean surface that is smaller than 10 cm, however, limiting the smallest resolvable wavelength to something on that order. Laser data were collected along multiple flight lines

  2. Surface contour radar observations of the directional wave spectrum during Fasinex

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.; Hancock, D. W., III; Hines, D. E.; Swift, R. N.; Scott, J. F.

    1988-01-01

    The surface control radar (SCR), a 36-GHz computer-controlled airborne radar which generates a false-color coded elevation map of the sea surface below the aircraft in real time, is described. The SCR turned out to be ideal for documenting the wave spectra during Fasinex (the Frontal Air-Sea Interaction Experiment) due to its high spatial resolution and rapid mapping capability over extensive areas. Synoptic weather maps for February 15-18, 1986 are presented.

  3. Mapping Weathering and Alteration Minerals in the Comstock and Geiger Grade Areas using Visible to Thermal Infrared Airborne Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Vaughan, Greg R.; Calvin, Wendy M.

    2005-01-01

    To support research into both precious metal exploration and environmental site characterization a combination of high spatial/spectral resolution airborne visible, near infrared, short wave infrared (VNIR/SWIR) and thermal infrared (TIR) image data were acquired to remotely map hydrothermal alteration minerals around the Geiger Grade and Comstock alteration regions, and map the mineral by-products of weathered mine dumps in Virginia City. Remote sensing data from the Airborne Visible Infrared Imaging Spectrometer (AVIRIS), SpecTIR Corporation's airborne hyperspectral imager (HyperSpecTIR), the MODIS-ASTER airborne simulator (MASTER), and the Spatially Enhanced Broadband Array Spectrograph System (SEBASS) were acquired and processed into mineral maps based on the unique spectral signatures of image pixels. VNIR/SWIR and TIR field spectrometer data were collected for both calibration and validation of the remote data sets, and field sampling, laboratory spectral analyses and XRD analyses were made to corroborate the surface mineralogy identified by spectroscopy. The resulting mineral maps show the spatial distribution of several important alteration minerals around each study area including alunite, quartz, pyrophyllite, kaolinite, montmorillonite/muscovite, and chlorite. In the Comstock region the mineral maps show acid-sulfate alteration, widespread propylitic alteration and extensive faulting that offsets the acid-sulfate areas, in contrast to the larger, dominantly acid-sulfate alteration exposed along Geiger Grade. Also, different mineral zones within the intense acid-sulfate areas were mapped. In the Virginia City historic mining district the important weathering minerals mapped include hematite, goethite, jarosite and hydrous sulfate minerals (hexahydrite, alunogen and gypsum) located on mine dumps. Sulfate minerals indicate acidic water forming in the mine dump environment. While there is not an immediate threat to the community, there are clearly sources of

  4. Regional estimation of torrent hazards by analysing weather radar data and catchment characteristics

    NASA Astrophysics Data System (ADS)

    Pistotnik, G.; Klebinder, K.; Chifflard, P.; Kirnbauer, R.; Haiden, T.

    2009-04-01

    Torrent hazards in mountain areas in the eastern part of Lower Austria are mostly triggered by convective rainfall events during thunderstorms. The Austrian Avalanche and Torrent Control Service commissioned a project for a regional analysis of torrent hazard potential in the region Bucklige Welt / Wechselland as the basis for detailed investigations and torrent control measures which will be planned later, taking into account the hazard potential of individual streams, the most dangerous first, the less dangerous later. Thus, the following problems had to be analysed: Are there any typical points of origin of convective storms in or near the project region? Are there any typical tracks of these storms endangering the region, and what is their extent and lifetime? Which catchments generate more and which less runoff caused by the same precipitation amount? For approaching the meteorological part of the integrated problem the precipitation is estimated from radar data on a 15 minutes basis with a spatial resolution of 1 km, because no sufficient precipitation measurements are available. Within the nowcasting system INCA (Integrated Nowcasting through Comprehensive Analysis) of the Central Institute for Meteorology and Geodynamics (ZAMG) these radar data are combined with satellite data, ground data, model data from the meteorological local area model "ALADIN Vienna" and with a digital terrain model of 1 km grid space. Thus, a continuous set of precipitation fields were calculated for the years 2003 to 2007 with a temporal resolution of 15 minutes and a local resolution of 1 km. Based on this data set convective cells were identified and their tracks analysed. If a precipitation intensity of 3,8 mm/15 min was exceeded, in accordance with experiences of the meteorological remote sensing group of the ZAMG, it was a-priori assumed that this was a convective storm. According to this threshold nearly 350 convective events were automatically extracted. After discarding

  5. Heavy rains over Chennai and surrounding areas as captured by Doppler weather radar during Northeast Monsoon 2015: a case study

    NASA Astrophysics Data System (ADS)

    Kamaljit, Ray; Kannan, B. A. M.; Stella, S.; Sen, Bikram; Sharma, Pradip; Thampi, S. B.

    2016-05-01

    During the Northeast monsoon season, India receives about 11% of its annual rainfall. Many districts in South Peninsula receive 30-60% of their annual rainfall. Coastal Tamil Nadu receives 60% of its annual rainfall and interior districts about 40-50 %. During the month of November, 2015, three synoptic scale weather systems affected Tamil Nadu and Pondicherry causing extensive rainfall activity over the region. Extremely heavy rains occurred over districts of Chennai, Thiruvallur and Kancheepuram, due to which these 3 districts were fully inundated. 122 people in Tamil Nadu were reported to have died due to the flooding, while over 70,000 people had been rescued. State government reported flood damage of the order of around Rs 8481 Crores. The rainfall received in Chennai district during 1.11.2015 to 5.12.2015 was 1416.8 mm against the normal of 408.4 mm. The extremely heavy rains were found to be associated with strong wind surges at lower tropospheric levels, which brought in lot of moisture flux over Chennai and adjoining area. The subtropical westerly trough at mid-tropospheric levels extended much southwards than its normal latitude, producing favorable environment for sustained rising motions ahead of approaching trough over coastal Tamil Nadu. Generated strong upward velocities in the clouds lifted the cloud tops to very high levels forming deep convective clouds. These clouds provided very heavy rainfall of the order of 150-200 mm/hour. In this paper we have used radar data to examine and substantiate the cloud burst that led to these torrential rains over Chennai and adjoining areas during the Northeast Monsoon period, 2015.

  6. Development and Testing of the VAHIRR Radar Product

    NASA Technical Reports Server (NTRS)

    Barrett, Joe III; Miller, Juli; Charnasky, Debbie; Gillen, Robert; Lafosse, Richard; Hoeth, Brian; Hood, Doris; McNamara, Todd

    2008-01-01

    Lightning Launch Commit Criteria (LLCC) and Flight Rules (FR) are used for launches and landings at government and commercial spaceports. They are designed to avoid natural and triggered lightning strikes to space vehicles, which can endanger the vehicle, payload, and general public. The previous LLCC and FR were shown to be overly restrictive, potentially leading to costly launch delays and scrubs. A radar algorithm called Volume Averaged Height Integrated Radar Reflectivity (VAHIRR), along with new LLCC and FR for anvil clouds, were developed using data collected by the Airborne Field Mill II research program. VAHIRR is calculated at every horizontal position in the coverage area of the radar and can be displayed similar to a two-dimensional derived reflectivity product, such as composite reflectivity or echo tops. It is the arithmetic product of two quantities not currently generated by the Weather Surveillance Radar 1988 Doppler (WSR-88D): a volume average of the reflectivity measured in dBZ and the average cloud thickness based on the average echo top height and base height. This presentation will describe the VAHIRR algorithm, and then explain how the VAHIRR radar product was implemented and tested on a clone of the National Weather Service's (NWS) Open Radar Product Generator (ORPG-clone). The VAHIRR radar product was then incorporated into the Advanced Weather Interactive Processing System (AWIPS), to make it more convenient for weather forecasters to utilize. Finally, the reliability of the VAHIRR radar product was tested with real-time level II radar data from the WSR-88D NWS Melbourne radar.

  7. Polarimetric Measurements Over the Sea-Surface with the Airborne STORM Radar in the Context of the Geophysical Validation of the ENVISAT ASAR

    NASA Astrophysics Data System (ADS)

    Podvin, D. Hauser. T.; Dechambre, M.; Valentin, R.; Caudal, G.; Daloze, J.-F.; Mouche, A.

    2003-04-01

    Among the new specificities of the ENVISAT/ASAR particular polarization diversity make the instrument very promising, but require complementary studies in addition to those already completed with the ERS data. Moreover, in the context of the preparation of other missions which will embark polarimetric SAR (e.g. RADARSAT2) it is important to better assess the benefit of multi-polarization or polarimetric SAR systems. In particular, over the ocean the question remains open regarding the estimate of wind speed, directional spectra of surface ocean waves and maybe other parameters related to wave breaking. CETP has designed and developed a new airborne radar called STORM], which has a full polarimetric capability. STORM is a new-version of the RESSAC airborne radar already used in previous experiments (Hauser et al, JGR 1992). STORM is a real-aperture, C-Band system with a FM/CW transmission and with a rotating antenna to explore in azimuth. In addition to RESSAC (which was mono-polarized) it offers a polarization diversity (receiving simultaneously in H and V polarizations) which enables us to analyze the radar cross- section in HH, VV, HV, and other cross-polarized terms related to the scattering matrix. In the context of the validation of the ASAR wave mode of ENVISAT, a field experiment will be carried out in October and November 2002 over the ocean (offshore the coasts of Brittany, France), with STORM] embarked on the MERLIN-IV aircraft of Meteo-France. We intend to perform about 20 flights under the ENVISAT SAR swath during a one-month experiment, with overpasses over a directional wave buoy also equipped with wind measurements. The ASAR image mode (in HH or VV) or alternating polarization mode will be requested during these flights. STORM will be used in a mode which will permit to measure the full complex scattering matrix over the sea surface at incidence angles ranging from 10 to 35°. In addition to conventional analysis of the radar cross-sections in HH

  8. The response of the high-latitude ionosphere to the coronal mass ejection event of April 6, 2000: A practical demonstration of space weather nowcasting with the Super Dual Auroral Radar Network HF radars

    NASA Astrophysics Data System (ADS)

    Ruohoniemi, J. M.; Barnes, R. J.; Greenwald, R. A.; Shepherd, S. G.

    2001-12-01

    The ionosphere at high latitudes is the site of important effects in space weather. These include strong electrical currents that may disrupt power systems through induced currents and density irregularities that can degrade HF and satellite communication links. With the impetus provided by the National Space Weather Program, the radars of the Super Dual Auroral Radar Network have been applied to the real-time specification (``nowcasting'') of conditions in the high-latitude ionosphere. A map of the plasma convection in the northern high-latitude ionosphere is continually generated at the Johns Hopkins University Applied Physics Laboratory (JHU/APL) SuperDARN web site using data downloaded in real time from the radars via Internet connections. Other nowcast items include information on the conditions of HF propagation, the spatial extent of auroral effects, and the total cross polar cap potential variation. Time series of various parameters and an animated replay of the last 2 hours of convection patterns are also available for review. By comparing with simultaneous measurements from an upstream satellite, it is possible to infer the effective delay from the detection of changes in the solar wind at the satellite to the arrival of related effects in the high-latitude ionosphere. We discuss the space weather products available from the JHU/APL SuperDARN web site and their uses by simulating a nowcast of the ionosphere on April 6, 2000, during the arrival of a coronal mass ejection (CME) -related shock. The nowcast convection pattern in particular satisfies a critical need for timely, comprehensive information on ionospheric electric fields.

  9. A comparison of airborne GEMS/SAR with satellite-borne Seasat/SAR radar imagery - The value of archived multiple data sets

    NASA Technical Reports Server (NTRS)

    Hanson, Bradford C.; Dellwig, Louis F.

    1988-01-01

    In a study concerning the value of using radar imagery from systems with diverse parameters, X-band images of the Northern Louisiana Salt dome area generated by the airborne Goodyear electronic mapping system (GEMS) are analyzed in conjunction with imagery generated by the satelliteborne Seasat/SAR. The GEMS operated with an incidence angle of 75 to 85 deg and a resolution of 12 m, whereas the Seasat/SAR operated with an incidence angle of 23 deg and a resolution of 25 m. It is found that otherwise unattainable data on land management activities, improved delineation of the drainage net, better definition of surface roughness in cleared areas, and swamp identification, became accessible when adjustments for the time lapse between the two missions were made and supporting ground data concerning the physical and vegetative characteristics of the terrain were acquired.

  10. Flight evaluation of a radar cursor technique

    NASA Astrophysics Data System (ADS)

    Perez, J.

    1980-03-01

    Preliminary results are presented of a flight test evaluation of a radar cursor technique to be used as an aid in acquiring and tracking the desired ground track during airborne radar approaches. The test was performed using a Sikorsky CH-53A helicopter. The airborne radar system used was a BENDIX RDR-1400A modified to electronically produce a radar cursor display of course error. Airborne radar approaches were made to an offshore and an airport test environment. The specific purpose of the test was to evaluate the practical utility of the radar cursor as an aid to performing airborne radar approaches. The preliminary conclusion of this test is that the use of the radar cursor improved course acquisition and ground tracking significantly with pilotage errors and total system cross-track errors reduced by one-half or better. The radar cursor technique shows potential in reducing airspace requirements for airborne radar approaches.

  11. Fusing enhanced radar precipitation, in-situ hydrometeorological measurements and airborne LIDAR snowpack estimates in a hyper-resolution hydrologic model to improve seasonal water supply forecasts

    NASA Astrophysics Data System (ADS)

    Gochis, D. J.; Busto, J.; Howard, K.; Mickey, J.; Deems, J. S.; Painter, T. H.; Richardson, M.; Dugger, A. L.; Karsten, L. R.; Tang, L.

    2015-12-01

    Scarcity of spatially- and temporally-continuous observations of precipitation and snowpack conditions in remote mountain watersheds results in fundamental limitations in water supply forecasting. These limitationsin observational capabilities can result in strong biases in total snowmelt-driven runoff amount, the elevational distribution of runoff, river basin tributary contributions to total basin runoff and, equally important for water management, the timing of runoff. The Upper Rio Grande River basin in Colorado and New Mexico is one basin where observational deficiencies are hypothesized to have significant adverse impacts on estimates of snowpack melt-out rates and on water supply forecasts. We present findings from a coordinated observational-modeling study within Upper Rio Grande River basin whose aim was to quanitfy the impact enhanced precipitation, meteorological and snowpack measurements on the simulation and prediction of snowmelt driven streamflow. The Rio Grande SNOwpack and streamFLOW (RIO-SNO-FLOW) Prediction Project conducted enhanced observing activities during the 2014-2015 water year. Measurements from a gap-filling, polarimetric radar (NOXP) and in-situ meteorological and snowpack measurement stations were assimilated into the WRF-Hydro modeling framework to provide continuous analyses of snowpack and streamflow conditions. Airborne lidar estimates of snowpack conditions from the NASA Airborne Snow Observatory during mid-April and mid-May were used as additional independent validations against the various model simulations and forecasts of snowpack conditions during the melt-out season. Uncalibrated WRF-Hydro model performance from simulations and forecasts driven by enhanced observational analyses were compared against results driven by currently operational data inputs. Precipitation estimates from the NOXP research radar validate significantly better against independent in situ observations of precipitation and snow-pack increases

  12. Linking the Annual Variation of Snow Radar-derived Accumulation in West Antarctica to Long-term Automatic Weather Station Measurements

    NASA Astrophysics Data System (ADS)

    Feng, B.; Braaten, D. A.; Gogineni, P.; Paden, J. D.; Leuschen, C.; Purdon, K.

    2013-12-01

    Understanding the snow accumulation rate on polar ice sheets is important in assessing mass balance and ice sheet contribution to sea level rise. Measuring annual accumulation on a regional scale and extending back in time several decades has been accomplished using the Center for Remote Sensing of Ice Sheets (CReSIS) Snow Radar on the NASA DC-8 that is part of NASA's Ice-Bridge project. The Snow Radar detects and maps near-surface internal layers in polar firn, operating from 2- 6 GHz and providing a depth resolution of ~4 cm. During November 2011, Snow Radar data were obtained for large areas of West Antarctica, including a flight segment that passed within ~70 km of Byrd Station (80°S, 119°W). Byrd Station has a very long automatic weather station (AWS) record, extending from present to 1980, with 3 relatively brief gaps in the record. The AWS data for Byrd Station were obtained from the Antarctic Meteorological Research Center (AMRC) at the University of Wisconsin. The L1B Snow Radar data products, available from the National Snow and Ice Data Center (NSIDC), were analyzed using layer picking software to obtain the depth of reflectors in the firn that are detected by the radar. These reflectors correspond to annual markers in the firn, and allow annual accumulation to be determined. Using the distance between the reflectors and available density profiles from ice cores, water equivalent accumulation for each annual layer back to 1980 is obtained. We are analyzing spatial variations of accumulation along flight lines, as well as variations in the time series of annual accumulation. We are also analyzing links between annual accumulation and surface weather observations from the Byrd Station AWS. Our analyses of surface weather observations have focused on annual temperature, atmospheric pressure and wind extremes (e.g. 5th and 95th percentiles) and links to annual snow accumulation. We are also examining satellite-derived sea ice extent records for the

  13. Evolution of a highly dilatant fault zone in the grabens of Canyonlands National Park, Utah, USA - integrating fieldwork, ground-penetrating radar and airborne imagery analysis

    NASA Astrophysics Data System (ADS)

    Kettermann, M.; Grützner, C.; van Gent, H. W.; Urai, J. L.; Reicherter, K.; Mertens, J.

    2015-07-01

    The grabens of Canyonlands National Park are a young and active system of sub-parallel, arcuate grabens, whose evolution is the result of salt movement in the subsurface and a slight regional tilt of the faulted strata. We present results of ground-penetrating radar (GPR) surveys in combination with field observations and analysis of high-resolution airborne imagery. GPR data show intense faulting of the Quaternary sediments at the flat graben floors, implying a more complex fault structure than visible at the surface. Direct measurements of heave and throw at several locations to infer fault dips at depth, combined with observations of primary joint surfaces in the upper 100 m, suggest a highly dilatant fault geometry. Sinkholes observed in the field as well as in airborne imagery give insights in local dilatancy and show where water and sediments are transported underground. Based on correlations of paleosols observed in outcrops and GPR profiles, we argue that either the grabens in Canyonlands National Park are older than previously assumed or that sedimentation rates were much higher in the Pleistocene.

  14. Cloud and Precipitation Radar

    NASA Astrophysics Data System (ADS)

    Hagen, Martin; Höller, Hartmut; Schmidt, Kersten

    Precipitation or weather radar is an essential tool for research, diagnosis, and nowcasting of precipitation events like fronts or thunderstorms. Only with weather radar is it possible to gain insights into the three-dimensional structure of thunderstorms and to investigate processes like hail formation or tornado genesis. A number of different radar products are available to analyze the structure, dynamics and microphysics of precipitation systems. Cloud radars use short wavelengths to enable detection of small ice particles or cloud droplets. Their applications differ from weather radar as they are mostly orientated vertically, where different retrieval techniques can be applied.

  15. The value of weather radar data for the estimation of design storms - an analysis for the Hannover region

    NASA Astrophysics Data System (ADS)

    Haberlandt, Uwe; Berndt, Christian

    2016-05-01

    Pure radar rainfall, station rainfall and radar-station merging products are analysed regarding extreme rainfall frequencies with durations from 5 min to 6 h and return periods from 1 year to 30 years. Partial duration series of the extremes are derived from the data and probability distributions are fitted. The performance of the design rainfall estimates is assessed based on cross validations for observed station points, which are used as reference. For design rainfall estimation using the pure radar data, the pixel value at the station location is taken; for the merging products, spatial interpolation methods are applied. The results show, that pure radar data are not suitable for the estimation of extremes. They usually lead to an overestimation compared to the observations, which is opposite to the usual behaviour of the radar rainfall. The merging products between radar and station data on the other hand lead usually to an underestimation. They can only outperform the station observations for longer durations. The main problem for a good estimation of extremes seems to be the poor radar data quality.

  16. Radar Range Sidelobe Reduction Using Adaptive Pulse Compression Technique

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Coon, Michael; McLinden, Matthew

    2013-01-01

    technique could bring significant impact on future radar development. The novel feature of this innovation is the non-linear FM (NLFM) waveform design. The traditional linear FM has the limit (-20 log BT -3 dB) for achieving ultra-low-range sidelobe in pulse compression. For this study, a different combination of 20- or 40-microsecond chirp pulse width and 2- or 4-MHz chirp bandwidth was used. These are typical operational parameters for airborne or spaceborne weather radars. The NLFM waveform design was then implemented on a FPGA board to generate a real chirp signal, which was then sent to the radar transceiver simulator. The final results have shown significant improvement on sidelobe performance compared to that obtained using a traditional linear FM chirp.

  17. Estimating lava volume by precision combination of multiple baseline spaceborne and airborne interferometric synthetic aperture radar: The 1997 eruption of Okmok Volcano, Alaska

    USGS Publications Warehouse

    Lu, Zhiming; Fielding, E.; Patrick, M.R.; Trautwein, C.M.

    2003-01-01

    Interferometric synthetic aperture radar (InSAR) techniques are used to calculate the volume of extrusion at Okmok volcano, Alaska by constructing precise digital elevation models (DEMs) that represent volcano topography before and after the 1997 eruption. The posteruption DEM is generated using airborne topographic synthetic aperture radar (TOPSAR) data where a three-dimensional affine transformation is used to account for the misalignments between different DEM patches. The preeruption DEM is produced using repeat-pass European Remote Sensing satellite data; multiple interferograms are combined to reduce errors due to atmospheric variations, and deformation rates are estimated independently and removed from the interferograms used for DEM generation. The extrusive flow volume associated with the 1997 eruption of Okmok volcano is 0.154 ?? 0.025 km3. The thickest portion is approximately 50 m, although field measurements of the flow margin's height do not exceed 20 m. The in situ measurements at lava edges are not representative of the total thickness, and precise DEM data are absolutely essential to calculate eruption volume based on lava thickness estimations. This study is an example that demonstrates how InSAR will play a significant role in studying volcanoes in remote areas.

  18. Integration of airborne altimetry and in situ radar measurements to estimate marine ice thickness beneath the Larsen C ice shelf, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    McGrath, D.; Steffen, K.; Rodriguez Lagos, J.

    2010-12-01

    Observed atmospheric and oceanic warming is driving significant retreat and / or collapse of ice shelves along the Antarctic Peninsula totaling over 25,000 km2 in the past five decades. Basal melting of meteoric ice can occur near the grounding line of deep glacier inflows if the ocean water is above the pressure melting point. Buoyant meltwater will develop thermohaline circulation, rising beneath the ice shelf, where it may become supercooled and subsequently refreeze in ice draft minima. Marine ice, due to its warm and thus relatively viscous nature, is hypothesized to suture parallel flow bands, increasing ice shelf stability by arresting fracture propagation and controlling iceberg calving dimensions. Thus efforts to model ice shelf stability require accurate estimates of marine ice location and thickness. Ice thickness of a floating ice shelf can be determined in two manners: (1) from measurements of ice elevation above sea level and the calculation of ice thickness from assumptions of hydrostatic equilibrium, and (2) from radar echo measurements of the ice-water interface. Marine ice can confound the latter because its high dielectric constant and strong absorptive properties attenuate the radar energy, often preventing a return signal from the bottom of the ice shelf. These two methods are complementary for determining the marine ice component though because positive anomalies in (1) relative to (2) suggest regions of marine ice accretion. Nearly 350 km of ice penetrating radar (25 MHz) surveys were collected on the Larsen C ice shelf, in conjunction with kinematic GPS measurements and collocated with surface elevation data from the NASA Airborne Topographic Mapper (ATM) as part of the ICE Bridge mission in 2009. Basal ice topography and total ice thickness is accurately mapped along the survey lines and compared with calculated ice thickness from both the kinematic GPS and ATM elevation data. Positive anomalies are discussed in light of visible imagery and

  19. The use of airborne radar reflectometry to characterize near-surface snow/firn stratigraphy on Devon Ice Cap, Canadian Arctic: A path to identifying refrozen melt layers

    NASA Astrophysics Data System (ADS)

    Rutishauser, A.; Grima, C.; Sharp, M. J.; Blankenship, D. D.; Young, D. A.; Dowdeswell, J. A.

    2015-12-01

    Under present warming conditions, summer surface melt has been observed to intensify and shift towards higher elevations in the accumulation zones of Canadian Arctic ice caps. Consequently, more meltwater percolates into the near surface snow and firn, and refreezes as ice layers. This process can lead to a significant increase in firn densification rates. Knowledge of spatiotemporal variations of the near-surface firn density, especially the distribution of ice layer formation is of great importance when assessing mass change estimates from repeat altimetry measurements. Here, we present an approach for characterizing the near-surface firn stratigraphy and determining the spatial distribution of refrozen melt layers on Devon Ice Cap, using the surface echo from airborne radio-echo sounding (RES) measurements. The RES surface echo is affected by the upper few meters of snow/firn/ice and thus contains information about the near-surface properties. More specifically, the radar surface return is a combination of a coherent (Pc) and a scattering signal component (Pn). Pc is related to the dielectric constant of the probed surface, whereas Pn is related to the near surface roughness. Hence, different near-surface snow/firn properties can be investigated by analyzing the signal components Pc and Pn and their spatial variability. The Radar Statistical Reconnaissance (RSR) methodology [1] allows the extraction of Pc and Pn from the surface radar return, which then can be used to compute near-surface roughness and firn density estimates. We apply the RSR method to RES data collected on Devon Ice Cap and determine Pc and Pn values. We then compare the results to ground based RES measurements and shallow firn cores (~11 m deep) collected along the airborne RES flight lines. This comparison shows that variations in the scattering coefficient Pn correlate to changes in the pattern of near-surface firn stratigraphy revealed by the ground based RES data and firn cores. Based on

  20. The use of airborne radar reflectometry to establish snow/firn density distribution on Devon Ice Cap, Canadian Arctic: A path to understanding complex heterogeneous internal layering patterns

    NASA Astrophysics Data System (ADS)

    Rutishauser, A.; Grima, C.; Sharp, M. J.; Blankenship, D. D.; Young, D. A.; Dowdeswell, J. A.

    2014-12-01

    The internal layer stratigraphy of polar ice sheets revealed by airborne radio-echo sounding (RES) contains valuable information about past ice sheet mass balance and dynamics. Internal layers in the Antarctic and Greenland ice sheets are considered to be isochrones and are continuous over several hundreds of kilometres. In contrast, internal layers in Canadian Arctic ice caps appear to be very heterogeneous and fragmentary, consisting of highly discontinuous layers that can be traced over only a few to several tens of kilometres. Internal layers most likely relate to former ice surfaces (the upper few meters of snow/firn), the properties which are directly influenced by atmospheric conditions including the air temperature, precipitation rate, and prevailing wind pattern. We hypothesize that the heterogeneous and complex nature of layers in the Canadian Arctic results from highly variable snow and firn conditions at the surface. Characterizing surface properties such as variations in the snow/firn density from dry to wet snow/firn, as well as high-density shallow ice layers and lenses of refrozen water can help to elucidate the complex internal layer pattern in the Canadian Arctic ice caps. Estimates of the snow/firn surface density and roughness can be derived from reflectance and scattering information using the surface radar returns from RES measurements. Here we present estimates of the surface snow/firn density distribution over Devon Ice Cap in the Canadian Arctic derived by the Radar Statistical Reconnaissance (RSR) methodology (Grima et al., 2014, Planetary & Space Sciences) using data collected by recent airborne radar sounding programs. The RSR generates estimates of the statistical distribution of surface echo amplitudes over defined areas along a survey transect. The derived distributions are best-fitted with a theoretical stochastic envelope, parameterized with the signal reflectance and scattering, in order to separate those two components. Finally

  1. News and Views: Airborne radar reveals fault rupture detail; Rhapsody in blue, not red; Ammunition for dark skies activists

    NASA Astrophysics Data System (ADS)

    2010-08-01

    Satellite synthetic aperture radar is a valuable tool for understanding the deformation of the surface of the Earth at earthquake faults; now NASA scientists have used SAR on planes to get an altogether closer look at quake effects. A campaign in Texas to raise awareness of light pollution has produced resources including a video, highlighting causes, effect and solutions, available online.

  2. NASA airborne radar wind shear detection algorithm and the detection of wet microbursts in the vicinity of Orlando, Florida

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.; Bracalente, Emedio M.

    1992-01-01

    The algorithms used in the NASA experimental wind shear radar system for detection, characterization, and determination of windshear hazard are discussed. The performance of the algorithms in the detection of wet microbursts near Orlando is presented. Various suggested algorithms that are currently being evaluated using the flight test results from Denver and Orlando are reviewed.

  3. Structure of precipitating systems over Taiwan’s complex terrain during Typhoon Morakot (2009) as revealed by weather radar and rain gauge observations

    NASA Astrophysics Data System (ADS)

    Liou, Yu-Chieng; Wang, Tai-Chi Chen; Tsai, Yi-Chun; Tang, Yu-Shuang; Lin, Pay-Liam; Lee, Yung-An

    2013-12-01

    This study documents from an observational perspective the structure of precipitation systems over the complex topography of Taiwan as Typhoon Morakot (2009) impinged on the island on 8 August 2009. An advanced multiple-Doppler radar synthesis technique particularly designed for dealing with non-flat surfaces is applied to analyze the three-dimensional wind fields over the ocean and terrain. In the northern and southern portion of the analysis domain where the mountain slope is relatively gentle and steep, respectively, the radar reflectivity measurements indicate that the precipitation systems exhibit very distinct features, namely, horizontal translation in the north and abrupt intensification in the south. While still far from the southern mountainous region, a north-south oscillation of an east-west-oriented band of strong radar reflectivity (>40 dBZ) with a horizontal span of 20 km is observed. Along the mountain slopes, the band of strong radar reflectivity has a much wider north-south extent. Both the radar and rain gauge observations show that the major precipitation is primarily confined to the windward side of the mountains. An analysis of the saturated Brunt-Väisälä frequency reveals that the upstream atmosphere is statically unstable, which implies that the lifting of the incoming convective cells by the topography will easily trigger precipitation. Thus, most of the moisture will be consumed before the air reaches the leeward side of the mountains. The long duration and the wide range of heavy precipitation in the mountainous regions resulted in a record-breaking average (over the gauges) rainfall amount of 2000 mm over 4 days. The prevailing winds approaching the mountains are from the west. The cross-barrier wind speed has a maximum (∼40 m s-1) above the mountain crest that can be reasonably explained by a simplified shallow water model. The capability of applying the weather radar to provide a reliable quantitative estimate of the rainfall over

  4. Contribution of long-term accounting for raindrop size distribution variations on quantitative precipitation estimation by weather radar: Disdrometers vs parameter optimization

    NASA Astrophysics Data System (ADS)

    Hazenberg, P.; Uijlenhoet, R.; Leijnse, H.

    2015-12-01

    Volumetric weather radars provide information on the characteristics of precipitation at high spatial and temporal resolution. Unfortunately, rainfall measurements by radar are affected by multiple error sources, which can be subdivided into two main groups: 1) errors affecting the volumetric reflectivity measurements (e.g. ground clutter, vertical profile of reflectivity, attenuation, etc.), and 2) errors related to the conversion of the observed reflectivity (Z) values into rainfall intensity (R) and specific attenuation (k). Until the recent wide-scale implementation of dual-polarimetric radar, this second group of errors received relatively little attention, focusing predominantly on precipitation type-dependent Z-R and Z-k relations. The current work accounts for the impact of variations of the drop size distribution (DSD) on the radar QPE performance. We propose to link the parameters of the Z-R and Z-k relations directly to those of the normalized gamma DSD. The benefit of this procedure is that it reduces the number of unknown parameters. In this work, the DSD parameters are obtained using 1) surface observations from a Parsivel and Thies LPM disdrometer, and 2) a Monte Carlo optimization procedure using surface rain gauge observations. The impact of both approaches for a given precipitation type is assessed for 45 days of summertime precipitation observed within The Netherlands. Accounting for DSD variations using disdrometer observations leads to an improved radar QPE product as compared to applying climatological Z-R and Z-k relations. However, overall precipitation intensities are still underestimated. This underestimation is expected to result from unaccounted errors (e.g. transmitter calibration, erroneous identification of precipitation as clutter, overshooting and small-scale variability). In case the DSD parameters are optimized, the performance of the radar is further improved, resulting in the best performance of the radar QPE product. However

  5. Stability of the U.S. weather radar network and its implications for TRMM and GPM ground validation

    NASA Astrophysics Data System (ADS)

    Morris, K. R.; Schwaller, M.; Marks, D. A.; Wolff, D. B.; Petersen, W. A.; Pippitt, J. L.

    2013-12-01

    Ground validation of rainfall and reflectivity measurements from the Precipitation Radar (PR) on the Tropical Rainfall Measuring Mission (TRMM) satellite has relied on comparisons to measurements from ground radars (GR), in particular to those from the WSR-88D radar network over the U.S. In support of TRMM PR validation and in preparation for validation of the Dual-frequency Precipitation Radar for the upcoming Global Precipitation Measurement (GPM) mission, NASA established a Validation Network (VN) of 21 WSR-88D sites in the southeastern U.S. Quality-controlled data from these sites have been used to perform reflectivity and rain rate comparisons to TRMM PR continually since mid-2006. VN data were used to assess the stability and calibration accuracy of the WSR-88D radars. The PR-GR reflectivity and rain rate comparisons are based on a technique of 3-D volume and resolution matching between the two radar observation systems, where each matching volume is characterized by location, rain type, proximity to the bright band, and quality of the matchup in terms of beam filling and uniformity. Calibration differences between PR and GR are evaluated by inspecting stratiform rain samples above the bright band, where PR attenuation and reflectivity gradient effects are minimal. Time series of GR-PR mean reflectivity differences reveal site-specific trends in GR calibration, under the assumption that the PR calibration is stable and well known. Recent changes in the baseline calibration differences between PR and GR have occurred coincident with upgrades to dual-polarization capability at several VN WSR-88D sites. Overall, 16 of the 21 WSR-88D radars in the GPM Validation Network were found to be running measurably 'cooler' following the dual polarization upgrade, when compared to TRMM PR. These changes are evident in the long-term trend of PR-GR reflectivity comparisons, and in specific examples of short-term anomalies in WSR 88D calibration. Additional, independent

  6. Coherent Doppler Laser Radar: Technology Development and Applications

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    headwind minimization. In addition to the airborne and space platforms, a coherent Doppler laser radar system in an unmanned aerial vehicle (UAV) could provide battlefield weather and target identification.

  7. The Weather Radar Toolkit, National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center's support of interoperability and the Global Earth Observation System of Systems (GEOSS)

    NASA Astrophysics Data System (ADS)

    Ansari, S.; Del Greco, S.

    2006-12-01

    In February 2005, 61 countries around the World agreed on a 10 year plan to work towards building open systems for sharing geospatial data and services across different platforms worldwide. This system is known as the Global Earth Observation System of Systems (GEOSS). The objective of GEOSS focuses on easy access to environmental data and interoperability across different systems allowing participating countries to measure the "pulse" of the planet in an effort to advance society. In support of GEOSS goals, NOAA's National Climatic Data Center (NCDC) has developed radar visualization and data exporter tools in an open systems environment. The NCDC Weather Radar Toolkit (WRT) loads Weather Surveillance Radar 1988 Doppler (WSR-88D) volume scan (S-band) data, known as Level-II, and derived products, known as Level-III, into an Open Geospatial Consortium (OGC) compliant environment. The application is written entirely in Java and will run on any Java- supported platform including Windows, Macintosh and Linux/Unix. The application is launched via Java Web Start and runs on the client machine while accessing these data locally or remotely from the NCDC archive, NOAA FTP server or any URL or THREDDS Data Server. The WRT allows the data to be manipulated to create custom mosaics, composites and precipitation estimates. The WRT Viewer provides tools for custom data overlays, Web Map Service backgrounds, animations and basic filtering. The export of images and movies is provided in multiple formats. The WRT Data Exporter allows for data export in both vector polygon (Shapefile, Well-Known Text) and raster (GeoTIFF, ESRI Grid, VTK, NetCDF, GrADS) formats. By decoding the various Radar formats into the NetCDF Common Data Model, the exported NetCDF data becomes interoperable with existing software packages including THREDDS Data Server and the Integrated Data Viewer (IDV). The NCDC recently partnered with NOAA's National Severe Storms Lab (NSSL) to decode Sigmet C-band Doppler

  8. Investigation of image enhancement techniques for the development of a self-contained airborne radar navigation system

    NASA Technical Reports Server (NTRS)

    Phatak, A. V.; Karmali, M. S.

    1983-01-01

    This study was devoted to an investigation of the feasibility of applying advanced image processing techniques to enhance radar image characteristics that are pertinent to the pilot's navigation and guidance task. Millimeter (95 GHz) wave radar images for the overwater (i.e., offshore oil rigs) and overland (Heliport) scenario were used as a data base. The purpose of the study was to determine the applicability of image enhancement and scene analysis algorithms to detect and improve target characteristics (i.e., manmade objects such as buildings, parking lots, cars, roads, helicopters, towers, landing pads, etc.) that would be helpful to the pilot in determining his own position/orientation with respect to the outside world and assist him in the navigation task. Results of this study show that significant improvements in the raw radar image may be obtained using two dimensional image processing algorithms. In the overwater case, it is possible to remove the ocean clutter by thresholding the image data, and furthermore to extract the target boundary as well as the tower and catwalk locations using noise cleaning (e.g., median filter) and edge detection (e.g., Sobel operator) algorithms.

  9. A Wing Pod-based Millimeter Wave Cloud Radar on HIAPER

    NASA Astrophysics Data System (ADS)

    Vivekanandan, Jothiram; Tsai, Peisang; Ellis, Scott; Loew, Eric; Lee, Wen-Chau; Emmett, Joanthan

    2014-05-01

    One of the attractive features of a millimeter wave radar system is its ability to detect micron-sized particles that constitute clouds with lower than 0.1 g m-3 liquid or ice water content. Scanning or vertically-pointing ground-based millimeter wavelength radars are used to study stratocumulus (Vali et al. 1998; Kollias and Albrecht 2000) and fair-weather cumulus (Kollias et al. 2001). Airborne millimeter wavelength radars have been used for atmospheric remote sensing since the early 1990s (Pazmany et al. 1995). Airborne millimeter wavelength radar systems, such as the University of Wyoming King Air Cloud Radar (WCR) and the NASA ER-2 Cloud Radar System (CRS), have added mobility to observe clouds in remote regions and over oceans. Scientific requirements of millimeter wavelength radar are mainly driven by climate and cloud initiation studies. Survey results from the cloud radar user community indicated a common preference for a narrow beam W-band radar with polarimetric and Doppler capabilities for airborne remote sensing of clouds. For detecting small amounts of liquid and ice, it is desired to have -30 dBZ sensitivity at a 10 km range. Additional desired capabilities included a second wavelength and/or dual-Doppler winds. Modern radar technology offers various options (e.g., dual-polarization and dual-wavelength). Even though a basic fixed beam Doppler radar system with a sensitivity of -30 dBZ at 10 km is capable of satisfying cloud detection requirements, the above-mentioned additional options, namely dual-wavelength, and dual-polarization, significantly extend the measurement capabilities to further reduce any uncertainty in radar-based retrievals of cloud properties. This paper describes a novel, airborne pod-based millimeter wave radar, preliminary radar measurements and corresponding derived scientific products. Since some of the primary engineering requirements of this millimeter wave radar are that it should be deployable on an airborne platform

  10. The study and real-time implementation of attenuation correction for X-band dual-polarization weather radars

    NASA Astrophysics Data System (ADS)

    Liu, Yuxiang

    Attenuation of electromagnetic radiation due to rain or other wet hydrometeors along the propagation path has been studied extensively in the radar meteorology community. Recently, use of short range dual-polarization X-band radar systems has gained momentum due to lower system cost compared with the much more expensive S-band systems. Advances in dual-polarization radar research have shown that the specific attenuation and differential attenuation between horizontal and vertical polarized waves caused by oblate, highly oriented raindrops can be estimated using the specific differential phase. This advance leads to correction of the measured reflectivity (Zh) and the differential reflectivity (Zdr) due to path attenuation. This thesis addresses via theory, simulations and data analyses the accuracy and optimal estimation of attenuation-correction procedures at X-band frequency. Real-time implementation of the correction algorithm was developed for the first generation of X-band dual-polarized Doppler radar network (Integration Project 1, IP1) operated by the NSF Center for Collaborate Adaptive Sensing of the Atmosphere (CASA). We evaluate the algorithm for correcting the Zh, and the Zdr for rain attenuation using simulations and X-band radar data under ideal and noisy situations. Our algorithm is able to adjust the parameters according to the changes in temperature, drop shapes, and a certain class of drop size distributions (DSD) with very fast convergence. The X-band radar data were obtained from the National Institute of Earth Science and Disaster Prevention (NIED), Japan, and from CASA IP1. The algorithm accurately corrects NIED's data when compared with ground truth calculated from in situ disdrometer-based DSD measurements for a Typhoon event. We have implemented, in real-time, the algorithm in all the CASA IP1 radar nodes. We also evaluate our preliminary method that separately estimates rain and wet ice attenuation using microphysical outputs from a

  11. Radar monitoring of oil pollution

    NASA Technical Reports Server (NTRS)

    Guinard, N. W.

    1970-01-01

    Radar is currently used for detecting and monitoring oil slicks on the sea surface. The four-frequency radar system is used to acquire synthetic aperature imagery of the sea surface on which the oil slicks appear as a nonreflecting area on the surface surrounded by the usual sea return. The value of this technique was demonstrated, when the four-frequency radar system was used to image the oil spill of tanker which has wrecked. Imagery was acquired on both linear polarization (horizontal, vertical) for frequencies of 428, 1228, and 8910 megahertz. Vertical returns strongly indicated the presence of oil while horizontal returns failed to detect the slicks. Such a result is characteristic of the return from the sea and cannot presently be interpreted as characteristics of oil spills. Because an airborne imaging radar is capable of providing a wide-swath coverage under almost all weather conditions, it offers promise in the development of a pollution-monitoring system that can provide a coastal watch for oil slicks.

  12. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  13. Comparison between weather radar and rain gauges data of precipitations that triggered debris flows in the Dolomites (North Eastern Italian Alps)

    NASA Astrophysics Data System (ADS)

    Bernard, Martino; Gregoretti, Carlo

    2016-04-01

    High intensity and short duration (usually 15-30 minutes) rainfalls are able to generate sudden and abundant runoff in rocky cliffs that can entrain large quantities of sediments and originate debris flow phenomena. A rain gauge network has been set up in two different areas of Dolomites (North Eastern Italian Alps) far each other about 15 km: Fiames (Cortina d'Ampezzo) and Rovina di Cancia (Borca di Cadore). The first network is composed of 9 rain gauges in an area of 1 km2, while the second is composed of 6 rain gauges in an area of 2 km2. In both the areas, the rain gauges are positioned both upstream and downstream the initiation areas of the occurring debris flows. Another single rain gauge is positioned close to the initiation area of Rudavoi debris flow (Auronzo di Cadore) and is far about 5 km from the Fiames rain gauges network. All the rain gauges sample precipitation depth at 5 minutes intervals. In the years 2009-2015 records of rainfalls that triggered 22 debris flows were taken. In most cases, the recorded rainfalls show an higher variability both along distance (200-500 m) and along altitude (200-600 m). Precipitation data recorded by the rain gauges are then compared with those estimated by means of a C-Band weather radar about 70 km away from there, to verify the possible interchangeability of the two measurement systems. Rainfall depths estimated by radar are provided with the temporal interval of the rain gauges (5 minutes) but with a different spatial scale (500 x 500 m raster resolution). To avoid the observation scale gap between the different techniques, in addition to standard comparisons between point gauge and radar rainfall measures, mean areal precipitations were derived from rain gauge network and compared with radar data. Results seem to demonstrate that radar tends to underestimate precipitation evaluated from rain gauges network, both on different measurement scales and on mean spatial data. On average, underestimation regards both

  14. Joint Variability of Airborne Passive Microwave and Ground-based Radar Observations Obtained in the TRMM Kwajalein Experiment

    NASA Astrophysics Data System (ADS)

    Yuter, S. E.; Kingsmill, D. E.

    2007-12-01

    The Tropical Rainfall Measuring Mission (TRMM) Kwajalein Experiment (KWAJEX) held July-September 1999 in the west Pacific was designed to obtain an empirical physical characterization of precipitating convective clouds over the tropical ocean. The majority of the precipitation was from mixed-phase clouds. Coordinated data sets were obtained from aircraft and ground-based sensors including passive microwave measurements by the Advanced Microwave Precipitation Radiometer (AMPR) instrument on the NASA DC-8 aircraft and S-band volumetric radar data by the KPOL radar. The AMPR and KPOL data sets were processed to yield a set of 25,049 matching observations at ~ 2 km x 2 km horizontal spatial resolution and within 6 min. The TRMM satellite Microwave Imager (TMI) has a similar set of channels to AMPR but coarser spatial resolution (19 GHz: 35 km, 85 GHz: 7.7 km). During KWAJEX, the 0 deg C level height was nearly constant at ~ 4800 m. Hence, two potential sources of uncertainty in relating passive microwave brightness temperatures (Tbs) to surface precipitation, inhomogeneous beam filling and variations in depth of the rain layer are much smaller sources of error in the KWAJEX data set than for TMI. TRMM was originally designed to yield monthly rainfall estimates over 5 deg x 5 deg grid boxes. The use of these data to yield instantaneous rainrate products at smaller spatial scales is more sensitive to the detailed characteristics of the joint distributions of passive microwave Tbs versus rain rate. KWAJEX data sets reveal poor correlations, very wide scatter, and weak modes in these distributions. The spread of emission Tb values for a given rain-layer reflectivity (e.g., 75 K at 30 dBZ for 19 GHz) is similar or larger within convective compared to stratiform precipitation regions. This result implies that the enhancement in emission Tbs associated with partially melted ice particles can occur whether the particles are concentrated within a thin layer in stratiform

  15. Probing the Architecture of the Weathering Zone in a Tropical System in the Rio Icacos Watershed (Puerto Rico) With Drilling and Ground Penetrating Radar (GPR)

    NASA Astrophysics Data System (ADS)

    Orlando, J.; Comas, X.; Mount, G. J.; Brantley, S. L.

    2012-12-01

    Weathering processes in rapidly eroding systems such as humid tropical environments are complex and not well understood. The interface between weathered material (regolith) and non-weathered material (bedrock) is particularly important in these systems as it influences water infiltration and groundwater flow paths and movement. Furthermore, the spatial distribution of this interface is highly heterogeneous and difficult to image with conventional techniques such as direct coring and drilling. In this work we present results from a preliminary geophysical study in the Luquillo Critical Zone Observatory (LCZO) located in the rain forest in the Luquillo Mountains of northeastern Puerto Rico. The Luquillo Mountains are composed of volcaniclastic rocks which have been uplifted and metamorphosed by the Tertiary Rio Blanco quartz diorite intrusion. The Rio Blanco quartz diorite weathers spheroidally, creating corestones of relatively unweathered material that are surrounded by weathered rinds. A number of boreholes were drilled near the top of the Rio Icacos watershed, where the corestones are thought to be in the primary stages of formation, to constrain the regolith/bedrock interface and to provide an understanding of the depth to which corestones form. The depth of the water table was also a target goal in the project. Drilling reveals that corestones are forming in place, separated by fractures, even to depths of 10s of meters below ground surface. One borehole was drilled to a depth of about 25 meters and intersected up to 7 bedrock blocks (inferred to be incipient corestones) and the water table was measured at about 15 meters. Ground Penetrating Radar surveys were conducted in the same location to determine if GPR images variable thicknesses of saprolite overlying corestones. GPR common offset measurements and common midpoint surveys with 50, 100, and 200 MHz antenna frequencies were combined with borehole drillings in order to constrain geophysical results. We

  16. An Integrated Navigation System using GPS Carrier Phase for Real-Time Airborne Synthetic Aperture Radar (SAR)

    SciTech Connect

    Fellerhoff, J. Rick; Kim, Theodore J.; Kohler, Stewart M.

    1999-06-24

    A Synthetic Aperture Radar (SAR) requires accu- rate measurement of the motion of the imaging plat- form to produce well-focused images with minimal absolute position error. The motion measurement (MoMeas) system consists of a inertial measurement unit (IMU) and a P-code GPS receiver that outputs corrected ephemeris, L1 & L2 pseudoranges, and L1 & L2 carrier phase measurements. The unknown initial carrier phase biases to the GPS satellites are modeled as states in an extended Kalman filter and the resulting integrated navigation solution has po- sition errors that change slowly with time. Position error drifts less than 1- cm/sec have been measured from the SAR imagery for various length apertures.

  17. Study of a Winter Monsoon Front over the South China Sea by Multi-Sensor Satellite and Weather Radar Data, and a Numerical Model

    NASA Astrophysics Data System (ADS)

    Alpers, Werner; Wong, Wai Kin; Dagestad, Knut-Frode; Chan, Pak Wai

    2013-03-01

    An atmospheric frontal system over the South China Sea (SCS) arising from the replenishment of the northeast monsoon is investigated by using multi-sensor satellite data, weather radar data, and a numerical model. The replenishment or freshening of the northeast monsoon results from the merging of high pressure areas over the Chinese Continent. The near-sea surface wind field associated with this event was measured by the Advanced Scatterometer (ASCAT) onboard the European MetOp satellite and the Advanced Synthetic Aperture Radar (ASAR) onboard the European Envisat satellite. The high resolution ASAR image reveals that the frontal line separating this wind field from the synoptic-scale ambient wind field is as sharp as in the case of a cold air outbreak and contains embedded rain cells. Furthermore, it shows that this replenishment was associated with northeasterly winds with speeds of up to 13 ms-1 over the SCS at offshore distances larger than 60 km, but only with speeds of around 6 ms-1 near the coast. The comparison of the observational data with model results of the pre-operational version of the AIR (Atmospheric Integrated Rapid-cycle) forecast model of the Hong Kong Observatory shows that the AIR model can successfully simulate the time evolution of the frontal system and the wind field over the open ocean, but fails to simulate the wind field near the coast.

  18. New software methods in radar ornithology using WSR-88D weather data and potential application to monitoring effects of climate change on bird migration

    USGS Publications Warehouse

    Mead, Reginald; Paxton, John; Sojda, Richard S.

    2010-01-01

    Radar ornithology has provided tools for studying the movement of birds, especially related to migration. Researchers have presented qualitative evidence suggesting that birds, or at least migration events, can be identified using large broad scale radars such as the WSR-88D used in the NEXRAD weather surveillance system. This is potentially a boon for ornithologists because such data cover a large portion of the United States, are constantly being produced, are freely available, and have been archived since the early 1990s. A major obstacle to this research, however, has been that identifying birds in NEXRAD data has required a trained technician to manually inspect a graphically rendered radar sweep. A single site completes one volume scan every five to ten minutes, producing over 52,000 volume scans in one year. This is an immense amount of data, and manual classification is infeasible. We have developed a system that identifies biological echoes using machine learning techniques. This approach begins with training data using scans that have been classified by experts, or uses bird data collected in the field. The data are preprocessed to ensure quality and to emphasize relevant features. A classifier is then trained using this data and cross validation is used to measure performance. We compared neural networks, naive Bayes, and k-nearest neighbor classifiers. Empirical evidence is provided showing that this system can achieve classification accuracies in the 80th to 90th percentile. We propose to apply these methods to studying bird migration phenology and how it is affected by climate variability and change over multiple temporal scales.

  19. Thermal structure and radar backscatter

    NASA Astrophysics Data System (ADS)

    Topliss, B. J.; Stepanczak, M.; Guymer, Trevor H.; Cotton, David P.

    1994-12-01

    Infrared (IR) remote sensing from satellites is a well-proven technique for measuring sea surface temperature (SST) and for detecting and monitoring oceanographic features which have strong thermal contrast. Unfortunately, cloud cover often limits the continuity of the datasets and therefore their usefulness. There is some evidence that radar backscatter can be modified by sea surface temperature structure which raises the possibility that sensors such as synthetic aperture radar, scatterometers and altimeters could provide an all-weather complement to those operating in the IR. As a background, the results of a project which used coincident airborne radar and IR measurements of an eddy system in the Tyrrhenian Sea during October 1989 are briefly described. During a 5-day period, variations in radar backscatter of several dB occurred in a region where SST varied by 2 - 3 degree(s)C. The correlation between normalized radar cross section, sigma naught ((sigma) 0 or sigma-0) and SST appeared to depend on the ambient wind. Unfortunately, no satellite radar data were available during the experiment, since Geosat had just failed and ERS-1 was not due for launch until 1991. Building on this work, a study has commenced in which preliminary analyses of ERS-1 altimeter data, from tracks which repeat every 3 days, have been conducted for a section of the Gulf Stream after it has separated from the US coast. The along track variation of sigma naught has been compared with contemporaneous NOAA AVHRR-2 imagery and the relationship between SST structure and sigma naught for individual passes is discussed in terms of environmental parameters such as the local wind field and ocean currents. The possibility of the interaction of environmental parameters such as waves and currents are explored and some evidence for both wave enhancement and attenuation at the north wall of the Gulf Stream is illustrated. Tentative explanations for relationships observed by the various analysis

  20. Application of Radar Data to Remote Sensing and Geographical Information Systems

    NASA Technical Reports Server (NTRS)

    vanZyl, Jakob J.

    2000-01-01

    The field of synthetic aperture radar changed dramatically over the past decade with the operational introduction of advance radar techniques such as polarimetry and interferometry. Radar polarimetry became an operational research tool with the introduction of the NASA/JPL AIRSAR system in the early 1980's, and reached a climax with the two SIR-C/X-SAR flights on board the space shuttle Endeavour in April and October 1994. Radar interferometry received a tremendous boost when the airborne TOPSAR system was introduced in 1991 by NASA/JPL, and further when data from the European Space Agency ERS-1 radar satellite became routinely available in 1991. Several airborne interferometric SAR systems are either currently operational, or are about to be introduced. Radar interferometry is a technique that allows one to map the topography of an area automatically under all weather conditions, day or night. The real power of radar interferometry is that the images and digital elevation models are automatically geometrically resampled, and could be imported into GIS systems directly after suitable reformatting. When combined with polarimetry, a technique that uses polarization diversity to gather more information about the geophysical properties of the terrain, a very rich multi-layer data set is available to the remote sensing scientist. This talk will discuss the principles of radar interferometry and polarimetry with specific application to the automatic categorization of land cover. Examples will include images acquired with the NASA/JPL AIRSAR/TOPSAR system in Australia and elsewhere.

  1. An operational all-weather Great Lakes ice information system

    NASA Technical Reports Server (NTRS)

    Gedney, R. T.

    1975-01-01

    A description is given of the NASA developed all-weather ice information system for the Great Lakes winter navigation program. The system utilizes an X-band side looking airborne radar (SLAR) for determining type, location, and areal distribution of the ice cover in the Great Lakes and an airborne, S band, down looking short pulse radar for obtaining ice thickness. Digitized SLAR data are relayed in real time via the NOAA-GOES satellite in geosynchronous orbit. The SLAR images along with hand drawn interpretative ice charts for various Great Lakes winter shipping areas are broadcast to facsimile recorders aboard vessles is the area via the MARAD marine VHF-FM radio network. These data assist such vessels in navigating both through and around the ice.

  2. Radar remote sensing in biology

    USGS Publications Warehouse

    Moore, Richard K.; Simonett, David S.

    1967-01-01

    The present status of research on discrimination of natural and cultivated vegetation using radar imaging systems is sketched. The value of multiple polarization radar in improved discrimination of vegetation types over monoscopic radars is also documented. Possible future use of multi-frequency, multi-polarization radar systems for all weather agricultural survey is noted.

  3. Airborne radar evidence for tributary flow switching in Institute Ice Stream, West Antarctica: Implications for ice sheet configuration and dynamics

    NASA Astrophysics Data System (ADS)

    Winter, Kate; Woodward, John; Ross, Neil; Dunning, Stuart A.; Bingham, Robert G.; Corr, Hugh F. J.; Siegert, Martin J.

    2015-09-01

    Despite the importance of ice streaming to the evaluation of West Antarctic Ice Sheet (WAIS) stability we know little about mid- to long-term dynamic changes within the Institute Ice Stream (IIS) catchment. Here we use airborne radio echo sounding to investigate the subglacial topography, internal stratigraphy, and Holocene flow regime of the upper IIS catchment near the Ellsworth Mountains. Internal layer buckling within three discrete, topographically confined tributaries, through Ellsworth, Independence, and Horseshoe Valley Troughs, provides evidence for former enhanced ice sheet flow. We suggest that enhanced ice flow through Independence and Ellsworth Troughs, during the mid-Holocene to late Holocene, was the source of ice streaming over the region now occupied by the slow-flowing Bungenstock Ice Rise. Although buckled layers also exist within the slow-flowing ice of Horseshoe Valley Trough, a thicker sequence of surface-conformable layers in the upper ice column suggests slowdown more than ~4000 years ago, so we do not attribute enhanced flow switch-off here, to the late Holocene ice-flow reorganization. Intensely buckled englacial layers within Horseshoe Valley and Independence Troughs cannot be accounted for under present-day flow speeds. The dynamic nature of ice flow in IIS and its tributaries suggests that recent ice stream switching and mass changes in the Siple Coast and Amundsen Sea sectors are not unique to these sectors, that they may have been regular during the Holocene and may characterize the decline of the WAIS.

  4. Radar applications overview

    NASA Astrophysics Data System (ADS)

    Greenspan, Marshall

    1996-06-01

    During the fifty years since its initial development as a means of providing early warning of airborne attacks against allied countries during World War II, radar systems have developed to the point of being highly mobile and versatile systems capable of supporting a wide variety of remote sensing applications. Instead of being tied to stationary land-based sites, radar systems have found their way into highly mobile land vehicles as well as into aircraft, missiles, and ships of all sizes. Of all these applications, however, the most exciting revolution has occurred in the airborne platform arena where advanced technology radars can be found in all shapes and sizes...ranging from the large AWACS and Joint STARS long range surveillance and targeting systems to small millimeter wave multi-spectral sensors on smart weapons that can detect and identify their targets through the use of highly sophisticated digital signal processing hardware and software. This paper presents an overview of these radar applications with the emphasis on modern airborne sensors that span the RF spectrum. It will identify and describe the factors that influence the parameters of low frequency and ultra wide band radars designed to penetrate ground and dense foliage environments and locate within them buried mines, enemy armor, and other concealed or camouflaged weapons of war. It will similarly examine the factors that lead to the development of airborne radar systems that support long range extended endurance airborne surveillance platforms designed to detect and precision-located both small high speed airborne threats as well as highly mobile time critical moving and stationary surface vehicles. The mission needs and associated radar design impacts will be contrasted with those of radar systems designed for high maneuverability rapid acquisition tactical strike warfare platforms, and shorter range cued air-to-surface weapons with integral smart radar sensors.

  5. Airborne laser scan measurements of winter snow accumulation in high alpine catchments - hydrological implications and verification by ground penetrating radar at glacier surface

    NASA Astrophysics Data System (ADS)

    Helfricht, K.; Keuschnig, M.; Heilig, A.; Mayer, C.; Kuhn, M.

    2012-04-01

    The snow cover as storage of winter precipitation is a substantial source for runoff generation in high mountain catchments. Redistribution of solid precipitation, caused by wind and gravity, leads to a characteristic spatial distribution of snow accumulation which differs from simple model assumption of a homogenous snowpack increasing with altitude. Both, the distinct distribution of snow accumulation and the total amount of SWE stored in the snow cover, affect the magnitude and seasonality of melt water runoff. Complex relations exist between the spatial pattern of snow accumulation and the presence of glaciers and vice versa. For proper hydrological modeling in high mountain catchments, knowledge about snow cover distribution is an important requirement. To date, to evaluate modeling results, spatially insufficient point data on snow depths and SWE are usually available. On catchment scale, optical space-borne remote sensing techniques deliver areal extent of snow cover, but no snow depths and hence no volume of snow cover. Multi-temporal airborne laser scanning (ALS) is an active remote sensing method to obtain elevation changes extensively even in inaccessible alpine terrain. Before the start and at the end of accumulation season of winter 2010/2011, two airborne laser scan acquisitions were performed in the Ötztal Alps (Tirol, Austria). Differences of the respective digital elevation models were interpreted as snow depths and converted into SWE using a simple regression method between snow depths and snow density. Preferred snow accumulation areas were determined, e.g. wind sheltered depressions, the base of steep mountain walls and flat glacier surfaces. At catchment scale, solid precipitation is obviously redistributed from wind exposed mountain ridges to lower elevations, inducing characteristic elevations of maximum snow accumulation. Overall, catchment precipitation derived from snow accumulation is a valuable reference for precipitation approaches in

  6. Federal Aviation Administration weather program to improve aviation safety

    NASA Technical Reports Server (NTRS)

    Wedan, R. W.

    1983-01-01

    The implementation of the National Airspace System (NAS) will improve safety services to aviation. These services include collision avoidance, improved landing systems and better weather data acquisition and dissemination. The program to improve the quality of weather information includes the following: Radar Remote Weather Display System; Flight Service Automation System; Automatic Weather Observation System; Center Weather Processor, and Next Generation Weather Radar Development.

  7. The 94 GHz MMW imaging radar system

    NASA Technical Reports Server (NTRS)

    Alon, Yair; Ulmer, Lon

    1993-01-01

    The 94 GHz MMW airborne radar system that provides a runway image in adverse weather conditions is now undergoing tests at Wright-Patterson Air Force Base (WPAFB). This system, which consists of a solid state FMCW transceiver, antenna, and digital signal processor, has an update rate of 10 times per second, 0.35x azimuth resolution and up to 3.5 meter range resolution. The radar B scope (range versus azimuth) image, once converted to C scope (elevation versus azimuth), is compatible with the standard TV presentation and can be displayed on the Head Up Display (HUD) or Head Down Display (HDD) to aid the pilot during landing and takeoff in limited visibility conditions.

  8. Current radar responsive tag development activities at Sandia National Laboratories.

    SciTech Connect

    Plummer, Kenneth W.; Ormesher, Richard C.

    2003-09-01

    Over the past ten years, Sandia has developed RF radar responsive tag systems and supporting technologies for various government agencies and industry partners. RF tags can function as RF transmitters or radar transponders that enable tagging, tracking, and location determination functions. Expertise in tag architecture, microwave and radar design, signal analysis and processing techniques, digital design, modeling and simulation, and testing have been directly applicable to these tag programs. In general, the radar responsive tag designs have emphasized low power, small package size, and the ability to be detected by the radar at long ranges. Recently, there has been an interest in using radar responsive tags for Blue Force tracking and Combat ID (CID). The main reason for this interest is to allow airborne surveillance radars to easily distinguish U.S. assets from those of opposing forces. A Blue Force tracking capability would add materially to situational awareness. Combat ID is also an issue, as evidenced by the fact that approximately one-quarter of all U.S. casualties in the Gulf War took the form of ground troops killed by friendly fire. Because the evolution of warfare in the intervening decade has made asymmetric warfare the norm rather than the exception, swarming engagements in which U.S. forces will be freely intermixed with opposing forces is a situation that must be anticipated. Increasing utilization of precision munitions can be expected to drive fires progressively closer to engaged allied troops at times when visual de-confliction is not an option. In view of these trends, it becomes increasingly important that U.S. ground forces have a widely proliferated all-weather radar responsive tag that communicates to all-weather surveillance. The purpose of this paper is to provide an overview of the recent, current, and future radar responsive research and development activities at Sandia National Laboratories that support both the Blue Force Tracking

  9. Prediction and uncertainty of Hurricane Sandy (2012) explored through a real-time cloud-permitting ensemble analysis and forecast system assimilating airborne Doppler radar observations

    NASA Astrophysics Data System (ADS)

    Munsell, Erin B.; Zhang, Fuqing

    2014-03-01

    the Pennsylvania State University (PSU) real-time convection-permitting hurricane analysis and forecasting system (WRF-EnKF) that assimilates airborne Doppler radar observations, the sensitivity and uncertainty of forecasts initialized several days prior to landfall of Hurricane Sandy (2012) are assessed. The performance of the track and intensity forecasts of both the deterministic and ensemble forecasts by the PSU WRF-EnKF system show significant skill and are comparable to or better than forecasts produced by operational dynamical models, even at lead times of 4-5 days prior to landfall. Many of the ensemble members correctly capture the interaction of Sandy with an approaching midlatitude trough, which precedes Sandy's forecasted landfall in the Mid-Atlantic region of the United States. However, the ensemble reveals considerable forecast uncertainties in the prediction of Sandy. For example, in the ensemble forecast initialized at 0000 UTC 26 October 2012, 10 of the 60 members do not predict a United States landfall. Using ensemble composite and sensitivity analyses, the essential dynamics and initial condition uncertainties that lead to forecast divergence among the members in tracks and precipitation are examined. It is observed that uncertainties in the environmental steering flow are the most impactful factor on the divergence of Sandy's track forecasts, and its subsequent interaction with the approaching midlatitude trough. Though the midlatitude system does not strongly influence the final position of Sandy, differences in the timing and location of its interactions with Sandy lead to considerable differences in rainfall forecasts, especially with respect to heavy precipitation over land.

  10. Reducing Spaceborne-Doppler-Radar Rainfall-Velocity Error

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Im, Eastwood; Durden, Stephen L.

    2008-01-01

    A combined frequency-time (CFT) spectral moment estimation technique has been devised for calculating rainfall velocity from measurement data acquired by a nadir-looking spaceborne Doppler weather radar system. Prior spectral moment estimation techniques used for this purpose are based partly on the assumption that the radar resolution volume is uniformly filled with rainfall. The assumption is unrealistic in general but introduces negligible error in application to airborne radar systems. However, for spaceborne systems, the combination of this assumption and inhomogeneities in rainfall [denoted non-uniform beam filling (NUBF)] can result in velocity measurement errors of several meters per second. The present CFT spectral moment estimation technique includes coherent processing of a series of Doppler spectra generated in a standard manner from data over measurement volumes that are partially overlapping in the along-track direction. Performance simulation of this technique using high-resolution data from an airborne rain-mapping radar shows that a spaceborne Ku-band Doppler radar operating at signal-to-noise ratios greater than 10 dB can achieve root-mean-square accuracy between 0.5 and 0.6 m/s in vertical-velocity estimates.

  11. 94 GHz doppler wind radar satellite mission concept

    NASA Astrophysics Data System (ADS)

    Lin, Chung-Chi; Rommen, Björn; Buck, Christopher; Schüttemeyer, Dirk

    2015-10-01

    Extreme weather such as storms, hurricanes and typhoons, also called `high impact weather', is a high priority area of research for the atmospheric dynamics and meteorological science communities. 94 GHz Doppler wind radar satellite mission concepts have been elaborated, which use cloud and precipitation droplets/particles as tracers to measure 3-D wind fields. The so-called polarisation-diversity pulse-pair (PDPP) technique enables to derive line-of-sight wind speed with good accuracy (< 2-3 m/s) and large unambiguous dynamic range (e.g. 75 m/s). Two distinct system concepts have been elaborated: (1) a conically scanning radar concept with large coverage (> 800 km) and ˜50 km along-track sampling, and; (2) a stereo viewing concept with high sampling resolution (< 4 km) within an inclined cut through the atmosphere. The former concept is adequate for studying large-scale severe/extreme weather systems, whereas the latter would be more suitable for understanding of small-scale convective phenomena. For demonstrating the potential of the FDPP technique for deriving accurate Doppler observations, ground-based and airborne Doppler radar campaigns are in preparation. The Galileo 94 GHz radar, upgraded recently to include a FDPP capability, at Chilbolton in the UK, will be used for an extended ground-based campaign (6 months). For the airborne campaign, the dual-frequency (9.4 + 94 GHz) NAWX radar on board a Convair-580 aircraft of the National Science Council of Canada will be upgraded and flown. This paper describes the observation requirements, preliminary satellite mission concepts, associated wind retrieval aspects and the planned demonstration campaigns.

  12. Cockpit display of ground-based weather data during thunderstorm research flights

    NASA Technical Reports Server (NTRS)

    Fisher, Bruce D.; Brown, Philip W.; Wunschel, Alfred J., Jr.; Stickle, Joseph W.

    1989-01-01

    This paper describes an integrated system for providing ground-based cockpit display, transmitting to an aircraft, upon request via VHF radio, important ground-based thunderstorm data such as radar precipitation reflectivity contours, aircraft ground track, and cloud-to-ground lightning locations. Examples of the airborne X-band weather radar display and the ground-based display are presented for two different missions during the NASA Storm Hazards Program. In spite of some limitation, the system was found to be helpful in the selection of the route of flight, the general ground track to be used, and, occasionally, in clarifying the location of a specific cell of interest.

  13. Distress detection, location, and communications using advanced space technology. [satellite-borne synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.

    1977-01-01

    This paper briefly introduces a concept for low-cost, global, day-night, all-weather disaster warning and assistance. Evolving, advanced space technology with passive radio frequency reflectors in conjunction with an imaging synthetic aperture radar is employed to detect, identify, locate, and provide passive communication with earth users in distress. This concept evolved from a broad NASA research on new global search and rescue techniques. Appropriate airborne radar test results from this research are reviewed and related to potential disaster applications. The analysis indicates the approach has promise for disaster communications relative to floods, droughts, earthquakes, volcanic eruptions, and severe storms.

  14. Novel deep-space radar systems and topside HF wave measurements as new sources of data for Space Weather services

    NASA Astrophysics Data System (ADS)

    Rothkaehl, H.; Thidé, B.; Baan, W. A.; Bergman, J.; Hanuise, C.; Moussas, X.; Watermann, J.

    To understand the properties of the solar terrestrial environment and to develop a quantitative model of the magnetosphere-ionosphere-thermosphere subsystem which is strongly coupled via the electric field particle precipitation heat flows and small scale interaction it is necessary to design and build new generation multi-point and multi-type sensor diagnostics as the LOFAR-LOIS system Ground-based multi-frequency and multi-polarisation netted radio and radar facilities and observation clusters in space will be helpful to find solutions to problems in space physics and to detect long-term environmental changes The innovative radio spectrometer on board the COMPASS satellite was designed to investigate the still largely unknown mechanisms which govern these turbulent interactions of natural and man-made origin Future simultaneous investigation and monitoring of the Earth environment by the combined LOIS-LOFAR system will be coordinated with space-borne low orbiting experiments Real-time access to such high-resolution multi-region data is likely to improve the quality of different types of space related services

  15. A model of weathering intensity for the Australian continent

    NASA Astrophysics Data System (ADS)

    Wilford, J.

    2013-12-01

    Regolith encompasses all weathered materials in the zone between the Earth's surface and fresh bedrock at depth. This weathered zone includes the soil, which may constitute the whole of the regolith profile or represent only its upper part. Important hydrological and biogeochemical processes operate within the regolith, including the infiltration and storage of near-surface water and nutrients, which sustain agricultural productivity. The degree to which the regolith is weathered (or its weathering intensity) is intrinsically linked to the factors involved in soil formation including parent material, climate, topography, biota and time. The degree to which the bedrock or sediments are weathered has a significant effect on the nature and distribution of regolith materials. There is commonly a strong correlation between weathering intensity and the degree of soil development as well as the depth of the weathering front. Changes in weathering intensity correspond to changes in the geochemical and physical properties of bedrock, ranging from essentially unweathered parent materials through to intensely weathered and leached regolith where all traits of the original protolith (original unweathered rock) are overprinted or lost altogether. With increasing weathering intensity we see mineral and geochemical convergence to more resistant secondary weathered materials including clay, silica, and various oxides. A weathering intensity index (WII) over the Australian continent has been developed at a 100 m resolution using two regression models based on airborne gamma-ray spectrometry imagery and the Shuttle Radar Topography Mission (SRTM) elevation data. Airborne gamma-ray spectrometry measures the concentration of three radioelements -- potassium (K), thorium (Th) and uranium (U) at the Earth's surface. The total gamma-ray flux (dose) is also calculated based on the weighted additions of the three radioelements. In general K is leached with increasing weathering whereas Th

  16. The Severe Weather Outbreak of 10 November 2002: Lightning and Radar Analysis of Storms in the Deep South

    NASA Technical Reports Server (NTRS)

    Buechler, D. E.; McCaul, E. W., Jr.; Goodman, S. J.; Blakeslee, R. J.; Bailey, J. C.; Gatlin, P.

    2004-01-01

    On the afternoon and evening of 10 November 2002, the Midwest and Deep South were struck by a major outbreak of severe storms that produced some 80 tornadoes. In terms of number of tornadoes, this was the largest outbreak in the United States since November 1992. Some 32 of the tornadoes occurred in Tennessee, Mississippi, Alabama and Georgia, including several long-track killers. We use the North Alabama Lightning Mapping Array (LMA) and other data sources to perform a comprehensive analysis of the structure and evolution of the outbreak. Most of the Southern tornadoes occurred in isolated, fast-moving supercell storms that formed in warm, moist air ahead of a major cold front. Storms tended to form in lines parallel to storm cell motion, resulting in many communities being hit multiple times by severe storms that evening. Supercells in Tennessee produced numerous strong tornadoes with short to medium-length track paths, while the supercells further south produced several very long-track tornadoes. Radar data indicate that the Tennessee storms tended to split frequently, apparently limiting their ability to sustain long-lived tornadoes, while storms further south split at most one time. The differences between these storms appear to be related to the presence of stronger jetstream winds in Tennessee relative to those present in Mississippi, Alabama and Georgia. LMA-derived flash rates associated with most of the supercell storm cores were about 1-2 flashes per second. Rapid increases in lightning rates (or "jumps") occurred prior to tornado touchdown in many instances. Lightning "holes" (lightning-free regions associated with the echo-free vault) occurred in two of the Tennessee supercells. The complexity of the relationship between lightning and storm severity is revealed by the behavior of one Alabama supercell, which produced a peak flash rate of nearly 14 flashes per second, well after the end of its long-track tornado, while interacting and ultimately merging

  17. Range ambiguity clutter suppression for bistatic STAP radar

    NASA Astrophysics Data System (ADS)

    Xie, Wenchong; Zhang, Baihua; Wang, Yongliang; Zhu, Yong; Duan, Keqing; Li, Rongfeng

    2013-12-01

    Bistatic pulse-Doppler airborne radar has desirable properties such as the low probability of detection by other radars relative to its monostatic counterpart. However, the clutter characteristics of bistatic airborne radar are more complex than those of monostatic airborne radar. The clutter spectra not only vary severely with range, but also vary with bistatic configuration. In this article, the geometry model of bistatic airborne radar is given, and the approximate estimation expressions for clutter degrees of freedom (DOFs) are presented. Then a novel clutter suppression method for bistatic airborne radar with range ambiguity is presented. The method completes registration-based range ambiguity clutter compensation based on non-uniform sampling and the estimated clutter DOFs. The simulation results illustrate the performance improvement achieved for bistatic airborne radar.

  18. Benefits of Sharing Information from Commercial Airborne Forward-Looking Sensors in the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Schaffner, Philip R.; Harrah, Steven; Neece, Robert T.

    2012-01-01

    The air transportation system of the future will need to support much greater traffic densities than are currently possible, while preserving or improving upon current levels of safety. Concepts are under development to support a Next Generation Air Transportation System (NextGen) that by some estimates will need to support up to three times current capacity by the year 2025. Weather and other atmospheric phenomena, such as wake vortices and volcanic ash, constitute major constraints on airspace system capacity and can present hazards to aircraft if encountered. To support safe operations in the NextGen environment advanced systems for collection and dissemination of aviation weather and environmental information will be required. The envisioned NextGen Network Enabled Weather (NNEW) infrastructure will be a critical component of the aviation weather support services, providing access to a common weather picture for all system users. By taking advantage of Network Enabled Operations (NEO) capabilities, a virtual 4-D Weather Data Cube with aviation weather information from many sources will be developed. One new source of weather observations may be airborne forward-looking sensors, such as the X-band weather radar. Future sensor systems that are the subject of current research include advanced multi-frequency and polarimetric radar, a variety of Lidar technologies, and infrared imaging spectrometers.

  19. Tropical convective systems life cycle characteristics from geostationary satellite and precipitating estimates derived from TRMM and ground weather radar observations for the West African and South American regions

    NASA Astrophysics Data System (ADS)

    Fiolleau, T.; Roca, R.; Angelis, F. C.; Viltard, N.

    2012-12-01

    In the tropics most of the rainfall comes in the form of individual storm events embedded in the synoptic circulations (e.g., monsoons). Understanding the rainfall and its variability hence requires to document these highly contributing tropical convective systems (MCS). Our knowledge of the MCS life cycle, from a physical point of view mainly arises from individual observational campaigns heavily based on ground radar observations. While this large part of observations enabled the creation of conceptual models of MCS life cycle, it nevertheless does not reach any statistically significant integrated perspective yet. To overcome this limitation, a composite technique, that will serve as a Day-1 algorithm for the Megha-Tropiques mission, is considered in this study. this method is based on a collocation in space and time of the level-2 rainfall estimates (BRAIN) derived from the TMI radiometer onboard TRMM with the cloud systems identified by a new MCS tracking algorithm called TOOCAN and based on a 3-dimensional segmentation (image + time) of the geostationary IR imagery. To complete this study, a similar method is also developed collocating the cloud systems with the precipitating features derived from the ground weather radar which has been deployed during the CHUVA campaign over several Brazilian regions from 2010 up to now. A comparison of the MCSs life cycle is then performed for the 2010-2012 summer seasons over the West African, and South American regions. On the whole region of study, the results show that the temporal evolution of the cold cloud shield associated to MCSs describes a symmetry between the growth and the decay phases. It is also shown that the parameters of the conceptual model of MCSs are strongly correlated, reducing thereby the problem to a single degree of freedom. At the system scale, over both land and oceanic regions, rainfall is described by an increase at the beginning (the first third) of the life cycle and then smoothly decreases

  20. Airborne laser sensors and integrated systems

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the

  1. Assessing the role of spatial rainfall variability on watersheds response using weather radar A case study in the Gard region, France

    NASA Astrophysics Data System (ADS)

    Anggraheni, Evi; Payrastre, Olivier; Emmanuel, Isabelle; Andrieu, Herve

    2014-05-01

    The consideration of spatial rainfall variability in hydrological modeling is not only an important scientific issue but also, with the current development of high resolution rainfall data from weather radars, an increasing request from managers of sewerage networks and from flood forecasting services. Although the literature on this topic is already significant, at this time the conclusions remain contrasted. The impact of spatial rainfall variability on the hydrological responses appears to highly depend both on the organization of rainfall fields and on the watershed characteristics. The objective of the study presented here is to confirm and analyze the high impact of spatial rainfall variability in the specific context of flash floods. The case study presented is located in the Gard region in south east of France and focuses on four events which occurred on 13 different watersheds in 2008. The hydrological behaviors of these watersheds have been represented by the distributed rainfall - runoff model CINECAR, which already proved to well represent the hydrological responses in this region (Naulin et al., 2013). The influence of spatial rainfall variability has been studied here by considering two different rainfall inputs: radar data with a resolution of 1 km x 1 km and the spatial average rainfall over the catchment. First, the comparison between simulated and measured hydrographs confirms the good performances of the model for intense rainfall events, independently of the level of spatial rainfall variability of these events. Secondly, the simulated hydrographs obtained from radar data are taken as reference and compared to those obtained from the average rainfall inputs by computing two values: the time difference and the difference of magnitude between the simulated peaks discharge. The results highly depend on the rainfall event considered, and on the level of organization of the spatial rainfall variability. According to the model, the behavior of the

  2. Understanding and optimizing microstrip patch antenna cross polarization radiation on element level for demanding phased array antennas in weather radar applications

    NASA Astrophysics Data System (ADS)

    Vollbracht, D.

    2015-11-01

    The antenna cross polarization suppression (CPS) is of significant importance for the accurate calculation of polarimetric weather radar moments. State-of-the-art reflector antennas fulfill these requirements, but phased array antennas are changing their CPS during the main beam shift, off-broadside direction. Since the cross polarization (x-pol) of the array pattern is affected by the x-pol element factor, the single antenna element should be designed for maximum CPS, not only at broadside, but also for the complete angular electronic scan (e-scan) range of the phased array antenna main beam positions. Different methods for reducing the x-pol radiation from microstrip patch antenna elements, available from literature sources, are discussed and summarized. The potential x-pol sources from probe fed microstrip patch antennas are investigated. Due to the lack of literature references, circular and square shaped X-Band radiators are compared in their x-pol performance and the microstrip patch antenna size variation was analyzed for improved x-pol pattern. Furthermore, the most promising technique for the reduction of x-pol radiation, namely "differential feeding with two RF signals 180° out of phase", is compared to single fed patch antennas and thoroughly investigated for phased array applications with simulation results from CST MICROWAVE STUDIO (CST MWS). A new explanation for the excellent port isolation of dual linear polarized and differential fed patch antennas is given graphically. The antenna radiation pattern from single fed and differential fed microstrip patch antennas are analyzed and the shapes of the x-pol patterns are discussed with the well-known cavity model. Moreover, two new visual based electromagnetic approaches for the explanation of the x-pol generation will be given: the field line approach and the surface current distribution approach provide new insight in understanding the generation of x-pol component in microstrip patch antenna radiation

  3. Bistatic synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Yates, Gillian

    Synthetic aperture radar (SAR) allows all-weather, day and night, surface surveillance and has the ability to detect, classify and geolocate objects at long stand-off ranges. Bistatic SAR, where the transmitter and the receiver are on separate platforms, is seen as a potential means of countering the vulnerability of conventional monostatic SAR to electronic countermeasures, particularly directional jamming, and avoiding physical attack of the imaging platform. As the receiving platform can be totally passive, it does not advertise its position by RF emissions. The transmitter is not susceptible to jamming and can, for example, operate at long stand-off ranges to reduce its vulnerability to physical attack. This thesis examines some of the complications involved in producing high-resolution bistatic SAR imagery. The effect of bistatic operation on resolution is examined from a theoretical viewpoint and analytical expressions for resolution are developed. These expressions are verified by simulation work using a simple 'point by point' processor. This work is extended to look at using modern practical processing engines for bistatic geometries. Adaptations of the polar format algorithm and range migration algorithm are considered. The principal achievement of this work is a fully airborne demonstration of bistatic SAR. The route taken in reaching this is given, along with some results. The bistatic SAR imagery is analysed and compared to the monostatic imagery collected at the same time. Demonstrating high-resolution bistatic SAR imagery using two airborne platforms represents what I believe to be a European first and is likely to be the first time that this has been achieved outside the US (the UK has very little insight into US work on this topic). Bistatic target characteristics are examined through the use of simulations. This also compares bistatic imagery with monostatic and gives further insight into the utility of bistatic SAR.

  4. A study of rain estimation methods from space using dual-wavelength radar measurements at near-nadir incidence over ocean

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Kozu, T.; Kumagai, H.; Boncyk, W. C.

    1992-01-01

    A question arising from the recent interest in spaceborne weather radar is what methods can be used to estimate precipitation parameters from space. In this paper, dual-wavelength airborne radar data obtained from flights conducted during 1988 and 1989 are used to compare rain rates derived from backscattering and attenuation methods. To help interpret the results the surface reference methods are studied by means of scatterplots of the surface cross sections at the two frequencies under rain and no-rain conditions. Approximate criteria are given on combining attenuation and backscattering methods to increase the effective dynamic range of the radar. The dual-wavelength capability of the radar is also used to examine the vertical structure of the precipitation. Another factor affecting the accuracy of the methods is the drop-size distribution. In the final section of the paper a procedure to estimate the profiled drop-size distribution is applied to the measured radar data.

  5. A Wing Pod-based Millimeter Wave Cloud Radar on HIAPER

    NASA Astrophysics Data System (ADS)

    Vivekanandan, Jothiram; Tsai, Peisang; Ellis, Scott; Loew, Eric; Lee, Wen-Chau; Emmett, Joanthan

    2014-05-01

    One of the attractive features of a millimeter wave radar system is its ability to detect micron-sized particles that constitute clouds with lower than 0.1 g m-3 liquid or ice water content. Scanning or vertically-pointing ground-based millimeter wavelength radars are used to study stratocumulus (Vali et al. 1998; Kollias and Albrecht 2000) and fair-weather cumulus (Kollias et al. 2001). Airborne millimeter wavelength radars have been used for atmospheric remote sensing since the early 1990s (Pazmany et al. 1995). Airborne millimeter wavelength radar systems, such as the University of Wyoming King Air Cloud Radar (WCR) and the NASA ER-2 Cloud Radar System (CRS), have added mobility to observe clouds in remote regions and over oceans. Scientific requirements of millimeter wavelength radar are mainly driven by climate and cloud initiation studies. Survey results from the cloud radar user community indicated a common preference for a narrow beam W-band radar with polarimetric and Doppler capabilities for airborne remote sensing of clouds. For detecting small amounts of liquid and ice, it is desired to have -30 dBZ sensitivity at a 10 km range. Additional desired capabilities included a second wavelength and/or dual-Doppler winds. Modern radar technology offers various options (e.g., dual-polarization and dual-wavelength). Even though a basic fixed beam Doppler radar system with a sensitivity of -30 dBZ at 10 km is capable of satisfying cloud detection requirements, the above-mentioned additional options, namely dual-wavelength, and dual-polarization, significantly extend the measurement capabilities to further reduce any uncertainty in radar-based retrievals of cloud properties. This paper describes a novel, airborne pod-based millimeter wave radar, preliminary radar measurements and corresponding derived scientific products. Since some of the primary engineering requirements of this millimeter wave radar are that it should be deployable on an airborne platform

  6. Weather Specialist/Aerographer's Mate.

    ERIC Educational Resources Information Center

    Chanute AFB Technical Training Center, IL.

    This course trains Air Force personnel to perform duties prescribed for weather specialists and aerographer's mates. Training includes meteorology, surface and ship observation, weather radar, operation of standard weather instruments and communications equipment, and decoding and plotting of surface and upper air codes upon standard maps and…

  7. An analysis of three weather-related aircraft accidents

    NASA Technical Reports Server (NTRS)

    Fujita, T. T.; Caracena, F.

    1977-01-01

    Two aircraft accidents in 1975, one at John F. Kennedy International Airport in New York City on 24 June and the other at Stapleton International Airport in Denver on 7 August, were examined in detail. A third accident on 23 June 1976 at Philadelphia International Airport is being investigated. Amazingly, there was a spearhead echo just to the north of each accident site. The echoes formed from 5 to 50 min in advance of the accident and moved faster than other echoes in the vicinity. These echoes were photographed by National Weather Service radars, 130-205 km away. At closer ranges, however, one or more circular echoes were depicted by airborne and ground radars. These cells were only 3-5 km in diameter, but they were accompanied by downdrafts of extreme intensity, called downbursts. All accidents occurred as aircraft, either descending or climbing, lost altitude while experiencing strong wind shear inside downburst cells.

  8. Great Lakes all-weather ice information system

    NASA Technical Reports Server (NTRS)

    Schertler, R. J.; Mueller, R. A.; Jirberg, R. J.; Cooper, D. W.; Heighway, J. E.; Holmes, A. D.; Gedney, R. T.; Mark, H.

    1975-01-01

    A system is described which utilizes an X-band Side-Looking-Airborne-Radar (SLAR) for determining type, location, and aerial distribution of the ice cover in the Great Lakes and an airborne, S-band, short pulse radar for obtaining ice thickness. The SLAR system is currently mounted aboard a U.S. Coast Guard C-130B aircraft. Digitized SLAR data are relayed in real-time via the NOAA-GOES-1 satellite in geosynchronous orbit to the U.S. Coast Guard Ice Center in Cleveland, Ohio. SLAR images along with hand-drawn interpretative ice charts for various winter shipping areas in the Great Lakes are broadcast to facsimile recorders aboard Great Lakes vessels. The operational aspects of this ice information system are being demonstrated by NASA, U.S. Coast Guard, and NOAA/National Weather Service. Results from the 1974-75 winter season demonstrated the ability of this system to provide all-weather ice information to shippers in a timely manner.

  9. All-weather ice information system for Alaskan arctic coastal shipping

    NASA Technical Reports Server (NTRS)

    Gedney, R. T.; Jirberg, R. J.; Schertler, R. J.; Mueller, R. A.; Chase, T. L.; Kramarchuk, I.; Nagy, L. A.; Hanlon, R. A.; Mark, H.

    1977-01-01

    A near real-time ice information system designed to aid arctic coast shipping along the Alaskan North Slope is described. The system utilizes a X-band Side Looking Airborne Radar (SLAR) mounted aboard a U.S. Coast Guard HC-130B aircraft. Radar mapping procedures showing the type, areal distribution and concentration of ice cover were developed. In order to guide vessel operational movements, near real-time SLAR image data were transmitted directly from the SLAR aircraft to Barrow, Alaska and the U.S. Coast Guard icebreaker Glacier. In addition, SLAR image data were transmitted in real time to Cleveland, Ohio via the NOAA-GOES Satellite. Radar images developed in Cleveland were subsequently facsimile transmitted to the U.S. Navy's Fleet Weather Facility in Suitland, Maryland for use in ice forecasting and also as a demonstration back to Barrow via the Communications Technology Satellite.

  10. Summaries of the Sixth Annual JPL Airborne Earth Science Workshop. Volume 2; AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Kim, Yun-Jin (Editor)

    1996-01-01

    The Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996, was divided into two smaller workshops:(1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, and The Airborne Synthetic Aperture Radar (AIRSAR) workshop. This current paper, Volume 2 of the Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, presents the summaries for The Airborne Synthetic Aperture Radar (AIRSAR) workshop.

  11. Flash flood warning in mountaineous areas using X-band weather radars and the AIGA method in the framework of the RHYTMME project

    NASA Astrophysics Data System (ADS)

    Javelle, Pierre; Defrance, Dimitri; Ecrepont, Stéphane; Fouchier, Catherine; Mériaux, Patrice; Tolsa, Mathieu; Westrelin, Samuel

    2013-04-01

    The knowledge of precipitations still remains a tricky issue in mountaineous areas: the available rain-gauges are in a limited number and most often located in the valleys, and the radar rainfall estimates have to deal with a lot of problems due to the relief and the difficulty to distinguish the different types of hydrometeors (snow, hail, rain). In this context, the "RHYTMME" project deals with two main issues: - Providing an accurate radar rainfall information in mountainous areas. - Developing a real-time hazards warning system based on this information. To answer to the first issue, a X-band doppler dual polarized radar network is currently implemented in the French South Alps. At the end of the project (2013), three new radars will be installed, completing a pre-existing radar already installed on the Mont Vial top since 2008 (Hydrix® technology developed by the Novimet company, and tested in a previous project). The present communication focuses on the flash flood warning issue. It presents some results obtained by coupling the radar estimates to a simple distributed hydrological model (the AIGA method). Results are compared on damages observed by end-users, which were strongly involved into the project. The RHYTMME project is co-piloted by Meteo-France and the Cemagref and has the financial support of the European Union, the Provence-Alpes-Côte d'Azur Region and the French Ministry in charge of Ecology.

  12. Simulation of Space-borne Radar Observation from High Resolution Cloud Model - for GPM Dual frequency Precipitation Radar -

    NASA Astrophysics Data System (ADS)

    Kim, H.; Meneghini, R.; Jones, J.; Liao, L.

    2011-12-01

    A comprehensive space-borne radar simulator has been developed to support active microwave sensor satellite missions. The two major objectives of this study are: 1) to develop a radar simulator optimized for the Dual-frequency Precipitation Radar (KuPR and KaPR) on the Global Precipitation Measurement Mission satellite (GPM-DPR) and 2) to generate the synthetic test datasets for DPR algorithm development. This simulator consists of two modules: a DPR scanning configuration module and a forward module that generates atmospheric and surface radar observations. To generate realistic DPR test data, the scanning configuration module specifies the technical characteristics of DPR sensor and emulates the scanning geometry of the DPR with a inner swath of about 120 km, which contains matched-beam data from both frequencies, and an outer swath from 120 to 245 km over which only Ku-band data will be acquired. The second module is a forward model used to compute radar observables (reflectivity, attenuation and polarimetric variables) from input model variables including temperature, pressure and water content (rain water, cloud water, cloud ice, snow, graupel and water vapor) over the radar resolution volume. Presently, the input data to the simulator come from the Goddard Cumulus Ensemble (GCE) and Weather Research and Forecast (WRF) models where a constant mass density is assumed for each species with a particle size distribution given by an exponential distribution with fixed intercept parameter (N0) and a slope parameter (Λ) determined from the equivalent water content. Although the model data do not presently contain mixed phase hydrometeors, the Yokoyama-Tanaka melting model is used along with the Bruggeman effective dielectric constant to replace rain and snow particles, where both are present, with mixed phase particles while preserving the snow/water fraction. For testing one of the DPR retrieval algorithms, the Surface Reference Technique (SRT), the simulator uses

  13. Airborne Visible Laser Optical Communications Program (AVLOC)

    NASA Technical Reports Server (NTRS)

    Ward, J. H.

    1975-01-01

    The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.

  14. Laser radar improvements

    NASA Astrophysics Data System (ADS)

    Jelalian, A. V.

    1981-11-01

    A short history of the uses of various laser radars is presented, and appropriate applications of laser and microwave radars are discussed. CO2 laser radar, operating at 10.6 microns, is considered for use in aircraft navigation systems, fire-control systems for armored vehicle and aircraft, missile guidance, severe storm research, line-of-sight command of missiles, wind turbine site surveys, clear-air turbulence monitors for aircraft, and satellite tracking. Microwave radar is all-weather, but is subject to multipath inaccuracies, countermeasures, and angular resolution limitations, so hybrid laser microwave systems look promising for microwave target acquisition and laser tracking. Advantages and disadvantages of the use of ruby, YAG, and CO2 lasers in varying atmospheric conditions are discussed. Development of a laser radar pod for obstacle detection, Doppler navigation, automatic terrain following, hover control, weapon delivery, and precision searching is noted.

  15. Joint UK/US Radar Program progress reports for period December 1--31, 1994

    SciTech Connect

    Twogood, R.E.; Brase, J.M.; Mantrom, D.D.; Rino, C.; Chambers, D.H.; Robey, H.F.; Belyea, J.

    1995-01-23

    Topics discussed in this report are current accomplishments in many functions to include: airborne RAR/SAR, radar data processor, ground based SAR signal processing workstation, static airborne radar, multi-aperture space-time array radar, radar field experiments, data analysis and detection theory, management, radar data analysis, modeling and analysis, current meter array, UCSB wave tank, stratified flow facility, Russian Institute of Applied Physics, and budget status.

  16. Contour-Mapping Synthetic-Aperture Radar

    NASA Technical Reports Server (NTRS)

    Goldstein, R. M.; Caro, E. R.; Wu, C.

    1985-01-01

    Airborne two-antenna synthetic-aperture-radar (SAR) interferometric system provides data processed to yield terrain elevation as well as reflectedintensity information. Relative altitudes of terrain points measured to within error of approximately 25 m.

  17. Multifunction 35-GHz FMCW radar with frequency scanning antenna for synthetic vision applications

    NASA Astrophysics Data System (ADS)

    Tospann, Franz-Jose; Pirkl, Martin; Gruener, W.

    1995-06-01

    This paper presents an experimental radar at 35 GHz in development at Daimler-Benz Aerospace, Ulm, Airborne Systems Division. This radar uses FMCW Frequency modulation waveforms with a frequency scanning antenna covering an azimuth sector of more than 30 degrees. Several signal processing algorithms, e.g. CFAR and contrast enhancement, have been developed for different applications. Due to the electronic scanning of the radar beam, an update rate of up to 15 pictures per second can be achieved as required for synthetic vision systems in aircraft. High resolution in both range and azimuth make this design suitable for a wide range of applications. The radar is suitable for use in helicopters or fixed-wing aircraft. Helicopter applications are obstacle warning (including wire detection), terrain avoidance, ground mapping and weather detection. Fixed wing aircraft applications are runway detection including detection of obstacles at the runway and taxiways. The demonstrator is used to verify the functionality of this radar design. Technical data and measurement results will be presented. Based on these measurements the radar performance will be evaluated.

  18. Knowledge Based Systems and Metacognition in Radar

    NASA Astrophysics Data System (ADS)

    Capraro, Gerard T.; Wicks, Michael C.

    An airborne ground looking radar sensor's performance may be enhanced by selecting algorithms adaptively as the environment changes. A short description of an airborne intelligent radar system (AIRS) is presented with a description of the knowledge based filter and detection portions. A second level of artificial intelligence (AI) processing is presented that monitors, tests, and learns how to improve and control the first level. This approach is based upon metacognition, a way forward for developing knowledge based systems.

  19. HiVision millimeter-wave radar for enhanced vision systems in civil and military transport aircraft

    NASA Astrophysics Data System (ADS)

    Pirkl, Martin; Tospann, Franz-Jose

    1997-06-01

    This paper presents a guideline to meet the requirements of forward looking sensors of an enhanced vision system for both military and civil transport aircraft. It gives an update of a previous publication with special respect to airborne application. For civil transport aircraft an imaging mm-wave radar is proposed as the vision sensor for an enhanced vision system. For military air transport an additional high-performance weather radar should be combined with the mm-wave radar to enable advanced situation awareness, e.g. spot-SAR or air to air operation. For tactical navigation the mm-wave radar is useful due to its ranging capabilities. To meet these requirements the HiVision radar was developed and tested. It uses a robust concept of electronic beam steering and will meet the strict price constraints of transport aircraft. Advanced image processing and high frequency techniques are currently developed to enhance the performance of both the radar image and integration techniques. The advantages FMCW waveform even enables a sensor with low probability of intercept and a high resistance against jammer. The 1997 highlight will be the optimizing of the sensor and flight trials with an enhanced radar demonstrator.

  20. Remote profiling of lake ice using an S-band short pulse radar aboard an all-terrain vehicle

    NASA Technical Reports Server (NTRS)

    Cooper, D. W.; Mueller, R. A.; Schertler, R. J.

    1975-01-01

    An airborne short-pulse radar system to measure ice thickness was designed. The system supported an effort to develop an all-weather Great Lakes Ice Information System to aid in extending the winter navigation season. Experimental studies into the accuracy and limitations of the system are described. A low power version was operated from an all-terrain vehicle on the Straits of Mackinac during March 1975. The vehicle allowed rapid surveying of large areas and eliminated the ambiguity in location between the radar system and the ground truth ice auger team. It was also possible to the effects of snow cover, surface melt water, pressure ridging, and ice type upon the accuracy of the system. Over 25 sites were explored which had ice thicknesses from 29 to 60 cm. The maximum radar overestimate was 9.8 percent, while the maximum underestimate was 6.6 percent. The average error of the 25 measurements was 0.1 percent.

  1. Measuring weather for aviation safety in the 1980's

    NASA Technical Reports Server (NTRS)

    Wedan, R. W.

    1980-01-01

    Requirements for an improved aviation weather system are defined and specifically include the need for (1) weather observations at all airports with instrument approaches, (2) more accurate and timely radar detection of weather elements hazardous to aviation, and (3) better methods of timely distribution of both pilot reports and ground weather data. The development of the discrete address beacon system data link, Doppler weather radar network, and various information processing techniques are described.

  2. Identification of central Kenyan Rift Valley Fever virus vector habitats with Landsat TM and evaluation of their flooding status with airborne imaging radar

    NASA Technical Reports Server (NTRS)

    Pope, K. O.; Sheffner, E. J.; Linthicum, K. J.; Bailey, C. L.; Logan, T. M.; Kasischke, E. S.; Birney, K.; Njogu, A. R.; Roberts, C. R.

    1992-01-01

    Rift Valley Fever (RVF) is a mosquito-borne virus that affects livestock and humans in Africa. Landsat TM data are shown to be effective in identifying dambos, intermittently flooded areas that are potential mosquite breeding sites, in an area north of Nairobi, Kenya. Positive results were obtained from a limited test of flood detection in dambos with airborne high resolution L, C, and X band multipolarization SAR imagery. L and C bands were effective in detecting flooded dambos, but LHH was by far the best channel for discrimination between flooded and nonflooded sites in both sedge and short-grass environments. This study demonstrates the feasibility of a combined passive and active remote sensing program for monitoring the location and condition of RVF vector habitats, thus making future control of the disease more promising.

  3. Radar 92; Proceedings of the International Conference, Brighton, United Kingdom, Oct. 12, 13, 1992

    NASA Astrophysics Data System (ADS)

    The present conference discusses topics indicative of the development status of radar simulation and modeling, sea and land clutter effects, multifunction and monopulse radar, radar propagation and target measurement, surveillance and tracking, clutter suppression, antenna designs, and air traffic control applications of radar systems. Also discussed are radar techniques for electronic warfare, antenna-related signal processing, SAR for remote sensing, multifunction signal processing, SAR and ISAR, radar target classification, bistatic radar, signal reconstruction, Doppler weather radar, and electronic warfare countermeasures.

  4. Coupled Stochastic Time-Inverted Lagrangian Transport/Weather Forecast and Research/Vegetation Photosynthesis and Respiration Model. Part II; Simulations of Tower-Based and Airborne CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Eluszkiewicz, Janusz; Nehrkorn, Thomas; Wofsy, Steven C.; Matross, Daniel; Gerbig, Christoph; Lin, John C.; Freitas, Saulo; Longo, Marcos; Andrews, Arlyn E.; Peters, Wouter

    2007-01-01

    This paper evaluates simulations of atmospheric CO2 measured in 2004 at continental surface and airborne receptors, intended to test the capability to use data with high temporal and spatial resolution for analyses of carbon sources and sinks at regional and continental scales. The simulations were performed using the Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by the Weather Forecast and Research (WRF) model, and linked to surface fluxes from the satellite-driven Vegetation Photosynthesis and Respiration Model (VPRM). The simulations provide detailed representations of hourly CO2 tower data and reproduce the shapes of airborne vertical profiles with high fidelity. WRF meteorology gives superior model performance compared with standard meteorological products, and the impact of including WRF convective mass fluxes in the STILT trajectory calculations is significant in individual cases. Important biases in the simulation are associated with the nighttime CO2 build-up and subsequent morning transition to convective conditions, and with errors in the advected lateral boundary condition. Comparison of STILT simulations driven by the WRF model against those driven by the Brazilian variant of the Regional Atmospheric Modeling System (BRAMS) shows that model-to-model differences are smaller than between an individual transport model and observations, pointing to systematic errors in the simulated transport. Future developments in the WRF model s data assimilation capabilities, basic research into the fundamental aspects of trajectory calculations, and intercomparison studies involving other transport models, are possible venues for reducing these errors. Overall, the STILT/WRF/VPRM offers a powerful tool for continental and regional scale carbon flux estimates.

  5. Synthetic aperture radar capabilities in development

    SciTech Connect

    Miller, M.

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  6. Radar detection of surface oil accumulations

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Oneill, P.; Wilson, M.

    1980-01-01

    The United States Coast Guard is developing AIREYE, an all weather, day/night airborne surveillance system, for installation aboard future medium range surveillance aircraft. As part of this program, a series of controlled tests were conducted off southern California to evaluate the oil slick detection capabilities of two Motorola developed, side looking radars. The systems, a real aperture AN/APS-94D and a synthetic aperture coherent on receive (COR) were flown over the Santa Barbara Channel on May 19, 1976. Targets imaged during the coincident overflights included natural oil seepage, simulated oil spills, oil production platforms, piers, mooring buoys, commercial boats and barges at other targets. Based on an analysis of imagery from the coincident radar runs, COR provides better detection of natural and man made oil slicks, whereas the AN/APS-94D consistently exhibited higher surface target detection results. This and other tests have shown that active microwave systems have considerable potential for aiding in the detection and analysis of surface oil accumulations.

  7. Pathfinder radar development at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Castillo, Steven

    2016-05-01

    Since the invention of Synthetic Aperture Radar imaging in the 1950's, users or potential users have sought to exploit SAR imagery for a variety of applications including the earth sciences and defense. At Sandia Laboratories, SAR Research and Development and associated defense applications grew out of the nuclear weapons program in the 1980's and over the years has become a highly viable ISR sensor for a variety of tactical applications. Sandia SAR systems excel where real-­-time, high-­-resolution, all-­-weather, day or night surveillance is required for developing situational awareness. This presentation will discuss the various aspects of Sandia's airborne ISR capability with respect to issues related to current operational success as well as the future direction of the capability as Sandia seeks to improve the SAR capability it delivers into multiple mission scenarios. Issues discussed include fundamental radar capabilities, advanced exploitation techniques and human-­-computer interface (HMI) challenges that are part of the advances required to maintain Sandia's ability to continue to support ever changing and demanding mission challenges.

  8. Systems and methods for supplemental weather information presentation on a display

    NASA Technical Reports Server (NTRS)

    Bunch, Brian (Inventor)

    2010-01-01

    An embodiment of the supplemental weather display system presents supplemental weather information on a display in a craft. An exemplary embodiment receives the supplemental weather information from a remote source, determines a location of the supplemental weather information relative to the craft, receives weather information from an on-board radar system, and integrates the supplemental weather information with the weather information received from the on-board radar system.

  9. A multisensor system for airborne surveillance of oil pollution

    NASA Technical Reports Server (NTRS)

    Edgerton, A. T.; Ketchal, R.; Catoe, C.

    1973-01-01

    The U.S. Coast Guard is developing a prototype airborne oil surveillance system for use in its Marine Environmental Protection Program. The prototype system utilizes an X-band side-looking radar, a 37-GHz imaging microwave radiometer, a multichannel line scanner, and a multispectral low light level system. The system is geared to detecting and mapping oil spills and potential pollution violators anywhere within a 25 nmi range of the aircraft flight track under all but extreme weather conditions. The system provides for false target discrimination and maximum identification of spilled materials. The system also provides an automated detection alarm, as well as a color display to achieve maximum coupling between the sensor data and the equipment operator.

  10. A towed airborne platform for turbulence measurements over the ocean

    NASA Astrophysics Data System (ADS)

    Friehe, Carl; Khelif, Djamal

    2008-11-01

    Measurements of wind stress and associated heat and mass fluxes (water vapor and CO2) down to ˜10 meters height over the ocean are required to establish parameterizations for wave, weather, hurricane and climate models. At high winds and accompanying sea states, such measurements are difficult or impossible. A new airborne instrumented towed platform has been developed that allows measurements down to 10 meters under radar-altitude control while the tow aircraft is safely above. Measurements include the three components of the wind, temperature, humidity, infrared surface temperature, CO2, and motion and navigational parameters. The bandwidth of the sensors allows calculation of the Reynolds averaged covariance's of stress and sensible heat and evaporation fluxes. Results are compared to equivalent measurements made with an instrumented aircraft. We would like to thank Robert Bluth of the Naval Postgraduate School and Jesse Barge and Dan Bierly of Zivko Aeronautics.

  11. RADAR performance experiments

    NASA Technical Reports Server (NTRS)

    Leroux, C.; Bertin, F.; Mounir, H.

    1991-01-01

    Theoretical studies and experimental results obtained at Coulommiers airport showed the capability of Proust radar to detect wind shears, in clear air condition as well as in presence of clouds or rain. Several examples are presented: in a blocking highs situation an atmospheric wave system at the Brunt-Vaisala frequency can be clearly distinguished; in a situation of clouds without rain the limit between clear air and clouds can be easily seen; and a windshear associated with a gust front in rainy conditions is shown. A comparison of 30 cm clear air radar Proust and 5 cm weather Doppler radar Ronsard will allow to select the best candidate for wind shear detection, taking into account the low sensibility to ground clutter of Ronsard radar.

  12. SPace Radar Image of Fort Irwin, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This image of Fort Irwin in California's Mojave Desert compares interferometric radar signatures topography -- data that were obtained by multiple imaging of the same region to produce three-dimensional elevation maps -- as it was obtained on October 7-8, 1994 by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar aboard the space shuttle Endeavour. Data were acquired using the L-band (24 centimeter wavelength) and C-band (6 centimeter wavelength). The image covers an area about 25 kilometers by 70 kilometers (15.5 miles by 43 miles). North is to the lower right of the image. The color contours shown are proportional to the topographic elevation. With a wavelength one-fourth that of the L-band, the results from the C-band cycle through the color contours four times faster for a given elevation change. Detailed comparisons of these multiple frequency data over different terrain types will provide insights in the future into wavelength-dependent effects of penetration and scattering on the topography measurement accuracy. Fort Irwin is an ideal site for such detailed digital elevation model comparisons because a number of high precision digital models of the area already exist from conventional measurements as well as from airborne interferometric SAR data. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human

  13. DOPPLER WEATHER SYSTEM

    SciTech Connect

    Berlin, Gary J.

    2002-08-05

    The SRS Doppler Weather System consists of a Doppler Server, A Master Server (also known as the Weather Server), several Doppler Slave Servers, and client-side software program called the Doppler Radar Client. This system is used to display near rel-time images taken from the SRS Weather Center's Doppler Radar computer. The Doppler Server is software that resides on the SRS Doppler Computer. It gathers raw data, 24-bit color weather images via screen scraping ever five minutes as requested by the Master Server. The Doppler Server then reduces the 24-bit color images to 8-bit color using a fixed color table for analysis and compression. This preserves the fidelity of the image color and arranges the colors in specific order for display. At the time of color reduction, the white color used for the city names on the background images are remapped to a different index (color) of white that the white on the weather scale. The Weather Server places a time stamp on the image, then compresses the image and passes it to all Doppler Slave servers. Each of the Doppler Slave servers mainitain a circular buffer of the eight most current images representing the last 40 minutes of weather data. As a new image is added, the oldest drops off. The Doppler Radar Client is an optional install program for any site-wide workstation. When a Client session is started, the Client requests Doppler Slave server assignment from the Master Server. Upon its initial request to the Slave Server, the Client obtains all eight current images and maintains its own circular buffer, updating its images every five minutes as the Doppler Slave is updated. Three background reference images are stored as part of the Client. The Client brings up the appropriate background image, decompresses the doppler data, and displays the doppler data on the background image.

  14. DOPPLER WEATHER SYSTEM

    2002-08-05

    The SRS Doppler Weather System consists of a Doppler Server, A Master Server (also known as the Weather Server), several Doppler Slave Servers, and client-side software program called the Doppler Radar Client. This system is used to display near rel-time images taken from the SRS Weather Center's Doppler Radar computer. The Doppler Server is software that resides on the SRS Doppler Computer. It gathers raw data, 24-bit color weather images via screen scraping ever fivemore » minutes as requested by the Master Server. The Doppler Server then reduces the 24-bit color images to 8-bit color using a fixed color table for analysis and compression. This preserves the fidelity of the image color and arranges the colors in specific order for display. At the time of color reduction, the white color used for the city names on the background images are remapped to a different index (color) of white that the white on the weather scale. The Weather Server places a time stamp on the image, then compresses the image and passes it to all Doppler Slave servers. Each of the Doppler Slave servers mainitain a circular buffer of the eight most current images representing the last 40 minutes of weather data. As a new image is added, the oldest drops off. The Doppler Radar Client is an optional install program for any site-wide workstation. When a Client session is started, the Client requests Doppler Slave server assignment from the Master Server. Upon its initial request to the Slave Server, the Client obtains all eight current images and maintains its own circular buffer, updating its images every five minutes as the Doppler Slave is updated. Three background reference images are stored as part of the Client. The Client brings up the appropriate background image, decompresses the doppler data, and displays the doppler data on the background image.« less

  15. CloudSat as a Global Radar Calibrator

    SciTech Connect

    Protat, Alain; Bouniol, Dominique; O'Connor, E. J.; Baltink, Henk K.; Verlinde, J.; Widener, Kevin B.

    2011-03-01

    The calibration of the CloudSat spaceborne cloud radar has been thoroughly assessed using very accurate internal link budgets before launch, comparisons with predicted ocean surface backscatter at 94 GHz, direct comparisons with airborne cloud radars, and statistical comparisons with ground-based cloud radars at different locations of the world. It is believed that the calibration of CloudSat is accurate to within 0.5 to 1 dB. In the present paper it is shown that an approach similar to that used for the statistical comparisons with ground-based radars can now be adopted the other way around to calibrate other ground-based or airborne radars against CloudSat and / or detect anomalies in long time series of ground-based radar measurements, provided that the calibration of CloudSat is followed up closely (which is the case). The power of using CloudSat as a Global Radar Calibrator is demonstrated using the Atmospheric Radiation Measurement cloud radar data taken at Barrow, Alaska, the cloud radar data from the Cabauw site, The Netherlands, and airborne Doppler cloud radar measurements taken along the CloudSat track in the Arctic by the RASTA (Radar SysTem Airborne) cloud radar installed in the French ATR-42 aircraft for the first time. It is found that the Barrow radar data in 2008 are calibrated too high by 9.8 dB, while the Cabauw radar data in 2008 are calibrated too low by 8.0 dB. The calibration of the RASTA airborne cloud radar using direct comparisons with CloudSat agrees well with the expected gains and losses due to the change in configuration which required verification of the RASTA calibration.

  16. Reconfigurable L-Band Radar

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.

    2008-01-01

    The reconfigurable L-Band radar is an ongoing development at NASA/GSFC that exploits the capability inherently in phased array radar systems with a state-of-the-art data acquisition and real-time processor in order to enable multi-mode measurement techniques in a single radar architecture. The development leverages on the L-Band Imaging Scatterometer, a radar system designed for the development and testing of new radar techniques; and the custom-built DBSAR processor, a highly reconfigurable, high speed data acquisition and processing system. The radar modes currently implemented include scatterometer, synthetic aperture radar, and altimetry; and plans to add new modes such as radiometry and bi-static GNSS signals are being formulated. This development is aimed at enhancing the radar remote sensing capabilities for airborne and spaceborne applications in support of Earth Science and planetary exploration This paper describes the design of the radar and processor systems, explains the operational modes, and discusses preliminary measurements and future plans.

  17. Application of radar remote sensing in landslide geohazard risk assessment

    NASA Astrophysics Data System (ADS)

    Xue, Dongjian; He, Zhengwei; Hu, Deyong

    2011-10-01

    It is the difficulties to radar image interpretation, present remote sensing investigation and assessment of geohazard is mainly dependent on the high-resolution optical images, resulting in limited ability to extract surface information. The main advantage of radar is that it provides superior penetration capability under any type of weather condition, and can be used in the day or night time, rich image information and so on for the risk assessment of landslide, especially in geohazard emergency; optical image cannot match this advantage. The use of the "5.12" earthquake-induced landslide hazard for the research prototype, elaborate unique advantages and technical support role of remote sensing technology in landslide investigation and risk assessment, from the basic terrain data acquisition, disaster background analysis, interpretation of landslide hazard, monitoring, mapping, etc. Use of airborne and satellite radar remote sensing and Multi-source data to composite analysis of hazard information, indicates that the better interpretation effect by field investigation. The research results of this paper have great reference value to emergency disaster prevention and reduction of occurred frequent and dangerous geohazard.

  18. JPL realtime weather processor system developed for FAA

    NASA Technical Reports Server (NTRS)

    Chen, Philip C.

    1989-01-01

    Modifications made to the Central Weather Processor (CWP) project are discussed. In 1987, the development plan was revised and the CWP was split into the following parts: a meteorological weather processor and a realtime weather processor (RWP). The JPL is in charge of RWP development. Consideration is given to the major product categories (NEXRAD products, alphanumeric weather products, binary encoded products, graphic products), and the system architecture (the individual radar processor, the radar mosaic processor, and the communication and control processor).

  19. A barrier radar concept

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Ball, C.; Weissman, I.

    A description is given of a low power, light-weight radar that can be quickly set up and operated on batteries for extended periods of time to detect airborne intruders. With low equipment and operating costs, it becomes practical to employ a multiplicity of such radars to provide an unbroken intrusion fence over the desired perimeter. Each radar establishes a single transmitted fan beam extending vertically from horizon to horizon. The beam is generated by a two-face array antenna built in an A-frame configuration and is shaped, through phasing of the array elements, to concentrate the transmitter power in a manner consistent with the expected operating altitude ceiling of the targets of interest. The angular width of this beam in the dimension transverse to the fan depends on the radar transmission frequency and the antenna aperture dimension, but is typically wide enough so that a target at the maximum altitude or range will require tens of seconds to pass through the beam. A large number of independent samples of radar data will thus be available to provide many opportunities for target detection.

  20. Radar volcano monitoring system in Iceland

    NASA Astrophysics Data System (ADS)

    Arason, Þórður; Yeo, Richard F.; Sigurðsson, Geirfinnur S.; Pálmason, Bolli; von Löwis, Sibylle; Nína Petersen, Guðrún; Bjornsson, Halldór

    2013-04-01

    Weather radars are valuable instruments in monitoring explosive volcanic eruptions. Temporal variations in the eruption strength can be monitored as well as variations in plume and ash dispersal. Strength of the reflected radar signal of a volcanic plume is related to water content and droplet sizes as well as type, shape, amount and the grain size distribution of ash. The Icelandic Meteorological Office (IMO) owns and operates three radars and one more is planned for this radar volcano monitoring system. A fixed position 250 kW C-band weather radar was installed in 1991 in SW-Iceland close to Keflavík International Airport, and upgraded to a doppler radar in 2010. In cooperation with the International Civil Aviation Organization (ICAO), IMO has recently invested in two mobile X-band radars and one fixed position C-band radar. The fixed position 250 kW doppler C-band weather radar was installed in April 2012 at Fljótsdalsheiði, E-Iceland, and in June 2012 IMO received a mobile 65 kW dual-polarization doppler X-band radar. Early in 2013 IMO will acquire another mobile radar of the same type. Explosive volcanic eruptions in Iceland during the past 22 years were monitored by the Keflavík radar: Hekla 1991, Gjálp 1996, Grímsvötn 1998, Hekla 2000, Grímsvötn 2004, Eyjafjallajökull 2010 and Grímsvötn 2011. Additionally, the Grímsvötn 2011 eruption was mointored by a mobile X-band radar on loan from the Italian Civil Protection Authorities. Detailed technical information is presented on the four radars with examples of the information acquired during previous eruptions. This expanded network of radars is expected to give valuable information on future volcanic eruptions in Iceland.

  1. The Multi-Center Airborne Coherent Atmospheric Wind Sensor: Recent Measurements and Future Applications

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Hardesty, R. Michael; Howell, James N.; Darby, Lisa S.; Tratt, David M.; Menzies, Robert T.

    1999-01-01

    The coherent Doppler lidar, when operated from an airborne platform, offers a unique measurement capability for study of atmospheric dynamical and physical properties. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are at a disadvantage in terms of spatial resolution and coverage. Recent experience suggests airborne coherent Doppler lidar can yield unique wind measurements of--and during operation within--extreme weather phenomena. This paper presents the first airborne coherent Doppler lidar measurements of hurricane wind fields. The lidar atmospheric remote sensing groups of National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, and Jet Propulsion Laboratory jointly developed an airborne lidar system, the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS). The centerpiece of MACAWS is the lidar transmitter from the highly successful NOAA Windvan. Other field-tested lidar components have also been used, when feasible, to reduce costs and development time. The methodology for remotely sensing atmospheric wind fields with scanning coherent Doppler lidar was demonstrated in 1981; enhancements were made and the system was reflown in 1984. MACAWS has potentially greater scientific utility, compared to the original airborne scanning lidar system, owing to a factor of approx. 60 greater energy-per-pulse from the NOAA transmitter. MACAWS development was completed and the system was first flown in 1995. Following enhancements to improve performance, the system was re-flown in 1996 and 1998. The scientific motivation for MACAWS is three-fold: obtain fundamental measurements of subgrid scale (i.e., approx. 2-200 km) processes and features which may be used to improve parameterizations in hydrological, climate, and general

  2. Convective Weather Avoidance with Uncertain Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Karahan, Sinan; Windhorst, Robert D.

    2009-01-01

    Convective weather events have a disruptive impact on air traffic both in terminal area and in en-route airspaces. In order to make sure that the national air transportation system is safe and efficient, it is essential to respond to convective weather events effectively. Traffic flow control initiatives in response to convective weather include ground delay, airborne delay, miles-in-trail restrictions as well as tactical and strategic rerouting. The rerouting initiatives can potentially increase traffic density and complexity in regions neighboring the convective weather activity. There is a need to perform rerouting in an intelligent and efficient way such that the disruptive effects of rerouting are minimized. An important area of research is to study the interaction of in-flight rerouting with traffic congestion or complexity and developing methods that quantitatively measure this interaction. Furthermore, it is necessary to find rerouting solutions that account for uncertainties in weather forecasts. These are important steps toward managing complexity during rerouting operations, and the paper is motivated by these research questions. An automated system is developed for rerouting air traffic in order to avoid convective weather regions during the 20- minute - 2-hour time horizon. Such a system is envisioned to work in concert with separation assurance (0 - 20-minute time horizon), and longer term air traffic management (2-hours and beyond) to provide a more comprehensive solution to complexity and safety management. In this study, weather is dynamic and uncertain; it is represented as regions of airspace that pilots are likely to avoid. Algorithms are implemented in an air traffic simulation environment to support the research study. The algorithms used are deterministic but periodically revise reroutes to account for weather forecast updates. In contrast to previous studies, in this study convective weather is represented as regions of airspace that pilots

  3. Radar activities of the DFVLR Institute for Radio Frequency Technology

    NASA Technical Reports Server (NTRS)

    Keydel, W.

    1983-01-01

    Aerospace research and the respective applications microwave tasks with respect to remote sensing, position finding and communication are discussed. The radar activities are directed at point targets, area targets and volume targets; they center around signature research for earth and ocean remote sensing, target recognition, reconnaissance and camouflage and imaging and area observation radar techniques (SAR and SLAR). The radar activities cover a frequency range from 1 GHz up to 94 GHz. The radar program is oriented to four possible application levels: ground, air, shuttle orbits and satellite orbits. Ground based studies and measurements, airborne scatterometers and imaging radars, a space shuttle radar, the MRSE, and follow on experiments are considered.

  4. Weather Watch

    ERIC Educational Resources Information Center

    Bratt, Herschell Marvin

    1973-01-01

    Suggests a number of ways in which Federal Aviation Agency weather report printouts can be used in teaching the weather section of meteorology. These weather sequence reports can be obtained free of charge at most major airports. (JR)

  5. Relationship between Weather, Traffic and Delay Based on Empirical Methods

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Swei, Sean S. M.

    2006-01-01

    The steady rise in demand for air transportation over the years has put much emphasis on the need for sophisticated air traffic flow management (TFM) within the National Airspace System (NAS). The NAS refers to hardware, software and people, including runways, radars, networks, FAA, airlines, etc., involved in air traffic management (ATM) in the US. One of the metrics that has been used to assess the performance of NAS is the actual delays provided through FAA's Air Traffic Operations Network (OPSNET). The OPSNET delay data includes those reportable delays, i.e. delays of 15 minutes or more experienced by Instrument Flight Rule (IFR) flights, submitted by the FAA facilities. These OPSNET delays are caused by the application of TFM initiatives in response to, for instance, weather conditions, increased traffic volume, equipment outages, airline operations, and runway conditions. TFM initiatives such as, ground stops, ground delay programs, rerouting, airborne holding, and miles-in-trail restrictions, are actions which are needed to control the air traffic demand to mitigate the demand-capacity imbalance due to the reduction in capacity. Consequently, TFM initiatives result in NAS delays. Of all the causes, weather has been identified as the most important causal factor for NAS delays. Therefore, in order to accurately assess the NAS performance, it has become necessary to create a baseline for NAS performance and establish a model which characterizes the relation between weather and NAS delays.

  6. The MST Radar Technique

    NASA Technical Reports Server (NTRS)

    Balsley, B. B.

    1985-01-01

    The past ten year have witnessed the development of a new radar technique to examine the structure and dynamics of the atmosphere between roughly 1 to 100 km on a continuous basis. The technique is known as the MST (for Mesosphere-Stratosphere-Troposphere) technique and is usable in all weather conditions, being unaffected by precipitation or cloud cover. MST radars make use of scattering from small scale structure in the atmospheric refractive index, with scales of the order of one-half the radar wavelength. Pertinent scale sizes for middle atmospheric studies typically range between a fraction of a meter and a few meters. The structure itself arises primarily from atmospheric turbulence. The technique is briefly described along with the meteorological parameters it measures.

  7. Space Radar Image of Chernobyl

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an image of the Chernobyl nuclear power plant and its surroundings, centered at 51.17 north latitude and 30.15 west longitude. The image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 16th orbit on October 1, 1994. The area is located on the northern border of the Ukraine Republic and was produced by using the L-band (horizontally transmitted and received) polarization. The differences in the intensity are due to differences in vegetation cover, with brighter areas being indicative of more vegetation. These data were acquired as part of a collaboration between NASA and the National Space Agency of Ukraine in Remote Sensing and Earth Sciences. NASA has included several sites provided by the Ukrainian space agency as targets of opportunity during the second flight of SIR-C/X-SAR. The Ukrainian space agency also plans to conduct airborne surveys of these sites during the mission. The Chernobyl nuclear power plant is located toward the top of the image near the Pripyat River. The 12-kilometer (7.44-mile)-long cooling pond is easily distinguishable as an elongated dark shape in the center near the top of the image. The reactor complex is visible as the bright area to the extreme left of the cooling pond and the city of Chernobyl is the bright area just below the cooling pond next to the Pripyat River. The large dark area in the bottom right of the image is the Kiev Reservoir just north of Kiev. Also visible is the Dnieper River, which feeds into the Kiev Reservoir from the top of the image. The Soviet government evacuated 116,000 people within 30 kilometers (18.6 miles) of the Chernobyl reactor after the explosion and fire on April 26, 1986. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight

  8. X-Band Radar for Studies of Tropical Storms from High Altitude UAV Platform

    NASA Technical Reports Server (NTRS)

    Rodriquez, Shannon; Heymsfield, Gerald; Li, Lihua; Bradley, Damon

    2007-01-01

    The increased role of unmanned aerial vehicles (UAV) in NASA's suborbital program has created a strong interest in the development of instruments with new capabilities, more compact sizes and reduced weights than the instruments currently operated on manned aircrafts. There is a strong demand and tremendous potential for using high altitude UAV (HUAV) to carry weather radars for measurements of reflectivity and wind fields from tropical storms. Tropical storm genesis frequently occurs in ocean regions that are inaccessible to piloted aircraft due to the long off shore range and the required periods of time to gather significant data. Important factors of interest for the study of hurricane genesis include surface winds, profiled winds, sea surface temperatures, precipitation, and boundary layer conditions. Current satellite precipitation and surface wind sensors have resolutions that are too large and revisit times that are too infrequent to study this problem. Furthermore, none of the spaceborne sensors measure winds within the storm itself. A dual beam X-band Doppler radar, UAV Radar (URAD), is under development at the NASA Goddard Space Flight Center for the study of tropical storms from HUAV platforms, such as a Global Hawk. X-band is the most desirable frequency for airborne weather radars since these can be built in a relatively compact size using off-the-shelf components which cost significantly less than other higher frequency radars. Furthermore, X-band radars provide good sensitivity with tolerable attenuation in storms. The low-cost and light-weight URAD will provide new capabilities for studying hurricane genesis by analyzing the vertical structure of tropical cyclones as well as 3D reflectivity and wind fields in clouds. It will enable us to measure both the 3D precipitation structure and surface winds by using two antenna beams: fixed nadir and conical scanning each produced by its associated subsystem. The nadir subsystem is a magnetron based radar

  9. UAVSAR: An Airborne Window on Earth Surface Deformation

    NASA Technical Reports Server (NTRS)

    Hensley, Scott

    2011-01-01

    This study demonstrates that UAVSAR's precision autopilot and electronic steering have allowed for the reliable collection of airborne repeat pass radar interferometric data for deformation mapping. Deformation maps from temporal scales ranging from hours to months over a variety of signals of geophysical interest illustrate the utility of UAVSAR airborne repeat pass interferometry to these studies.

  10. Current radar-responsive tag development activities at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Ormesher, Richard C.; Plummer, Kenneth W.; Wells, Lars M.

    2004-08-01

    Over the past ten years, Sandia has developed RF radar responsive tag systems and supporting technologies for various government agencies and industry partners. RF tags can function as RF transmitters or radar transponders that enable tagging, tracking, and location determination functions. Expertise in tag architecture, microwave and radar design, signal analysis and processing techniques, digital design, modeling and simulation, and testing have been directly applicable to these tag programs. In general, the radar responsive tag designs have emphasized low power, small package size, and the ability to be detected by the radar at long ranges. Recently, there has been an interest in using radar responsive tags for Blue Force tracking and Combat ID (CID). The main reason for this interest is to allow airborne surveillance radars to easily distinguish U.S. assets from those of opposing forces. A Blue Force tracking capability would add materially to situational awareness. Combat ID is also an issue, as evidenced by the fact that approximately one-quarter of all U.S. casualties in the Gulf War took the form of ground troops killed by friendly fire. Because the evolution of warfare in the intervening decade has made asymmetric warfare the norm rather than the exception, swarming engagements in which U.S. forces will be freely intermixed with opposing forces is a situation that must be anticipated. Increasing utilization of precision munitions can be expected to drive fires progressively closer to engaged allied troops at times when visual de-confliction is not an option. In view of these trends, it becomes increasingly important that U.S. ground forces have a widely proliferated all-weather radar responsive tag that communicates to all-weather surveillance. The purpose of this paper is to provide an overview of the recent, current, and future radar responsive research and development activities at Sandia National Laboratories that support both the Blue Force Tracking

  11. Atlanta Air Route Traffic Control Center's involvement in aviation weather

    NASA Technical Reports Server (NTRS)

    Wood, W. D.

    1979-01-01

    The distribution of weather information throughout the Air Traffic Control System is discussed along with the development of meteorological radar, and the modifications to the Air Route Traffic Control Center radars for locating and determining the severity of storms' cells. The planned improvements in the availability of weather data to the control centers are listed.

  12. Severe Weather

    ERIC Educational Resources Information Center

    Forde, Evan B.

    2004-01-01

    Educating the public about safety issues related to severe weather is part of the National Oceanic and Atmospheric Administration's (NOAA) mission. This article deals with a poster entitled, "Severe Weather," that has been created by NOAA to help educate the public about hazardous weather conditions. The four types of severe weather highlighted in…

  13. Severe Weather

    ERIC Educational Resources Information Center

    Forde, Evan B.

    2004-01-01

    Educating the public about safety issues related to severe weather is part of the National Oceanic and Atmospheric Administration's (NOAA) mission. This month's insert, Severe Weather, has been created by NOAA to help educate the public about hazardous weather conditions. The four types of severe weather highlighted in this poster are hurricanes,…

  14. WSR-88D doppler radar detection of corn earworm moth migration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flying insects, birds, and bats contribute to radar reflectivity and radial velocity measured by Doppler weather radars. A study was conducted in the Lower Rio Grande Valley of Texas to determine the capability of Weather Service Radar (version 88D) (WSR-88D) to monitor migratory flights of corn ea...

  15. The Use of Radar Imagery in Climatological Research. Resource Paper No. 21.

    ERIC Educational Resources Information Center

    Williams, Aaron, Jr.

    Intended to supplement undergraduate college geography courses, this resource paper investigates the need and use of radar in weather phenomena research. Radar can be used to study weather phenomena over a wide area, thus improving the results of statistical analyses previously limited by inadequate data. Radar techniques are also useful for…

  16. Tropical Rainfall Measuring Mission (TRMM) project. VII - Techniques for radar data processing

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Atlas, David; Fujita, Masaharu; Nakamura, Kenji

    1990-01-01

    The paper describes algorithms for rain-rate profiling with an airborne or space-borne radar. Some problems involved in the radar measurements from an airborne or space-borne platform are discussed. An outline of a dual-frequency algorithm is described and its performance is confirmed by a computer simulation and an airborne experiment. A single-frequency algorithm is developed by introducing a path-integrated rain rate estimated from an attenuation of surface echoes or from microwave brightness temperature. The computer simulation shows good performance for an airborne or space-borne radar.

  17. Comparison of simulated and actual wind shear radar data products

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.; Crittenden, Lucille H.

    1992-01-01

    Prior to the development of the NASA experimental wind shear radar system, extensive computer simulations were conducted to determine the performance of the radar in combined weather and ground clutter environments. The simulation of the radar used analytical microburst models to determine weather returns and synthetic aperture radar (SAR) maps to determine ground clutter returns. These simulations were used to guide the development of hazard detection algorithms and to predict their performance. The structure of the radar simulation is reviewed. Actual flight data results from the Orlando and Denver tests are compared with simulated results. Areas of agreement and disagreement of actual and simulated results are shown.

  18. Space Radar Image Isla Isabela in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-dimensional view of Isabela, one of the Galapagos Islands located off the western coast of Ecuador, South America. This view was constructed by overlaying a Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) image on a digital elevation map produced by TOPSAR, a prototype airborne interferometric radar which produces simultaneous image and elevation data. The vertical scale in this image is exaggerated by a factor of 1.87. The SIR-C/X-SAR image was taken on the 40th orbit of space shuttle Endeavour. The image is centered at about 0.5 degree south latitude and 91 degrees west longitude and covers an area of 75 by 60 kilometers (47 by 37 miles). The radar incidence angle at the center of the image is about 20 degrees. The western Galapagos Islands, which lie about 1,200 kilometers (750 miles)west of Ecuador in the eastern Pacific, have six active volcanoes similar to the volcanoes found in Hawaii and reflect the volcanic processes that occur where the ocean floor is created. Since the time of Charles Darwin's visit to the area in 1835, there have been more than 60 recorded eruptions on these volcanoes. This SIR-C/X-SAR image of Alcedo and Sierra Negra volcanoes shows the rougher lava flows as bright features, while ash deposits and smooth pahoehoe lava flows appear dark. Vertical exaggeration of relief is a common tool scientists use to detect relationships between structure (for example, faults, and fractures) and topography. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data

  19. Large phased-array radars

    SciTech Connect

    Brookner, D.E.

    1988-12-15

    Large phased-array radars can play a very important part in arms control. They can be used to determine the number of RVs being deployed, the type of targeting of the RVs (the same or different targets), the shape of the deployed objects, and possibly the weight and yields of the deployed RVs. They can provide this information at night as well as during the day and during rain and cloud covered conditions. The radar can be on the ground, on a ship, in an airplane, or space-borne. Airborne and space-borne radars can provide high resolution map images of the ground for reconnaissance, of anti-ballistic missile (ABM) ground radar installations, missile launch sites, and tactical targets such as trucks and tanks. The large ground based radars can have microwave carrier frequencies or be at HF (high frequency). For a ground-based HF radar the signal is reflected off the ionosphere so as to provide over-the-horizon (OTH) viewing of targets. OTH radars can potentially be used to monitor stealth targets and missile traffic.

  20. Gulf stream ground truth project - Results of the NRL airborne sensors

    NASA Technical Reports Server (NTRS)

    Mcclain, C. R.; Chen, D. T.; Hammond, D. L.

    1980-01-01

    Results of an airborne study of the waves in the Gulf Stream are presented. These results show that the active microwave sensors (high-flight radar and wind-wave radar) provide consistent and accurate estimates of significant wave height and surface wind speed, respectively. The correlation between the wave height measurements of the high-flight radar and a laser profilometer is excellent.

  1. Weather & Weather Maps. Teacher's Manual.

    ERIC Educational Resources Information Center

    Metro, Peter M.; Green, Rachel E.

    This guide is intended to provide an opportunity for students to work with weather symbols used for reporting weather. Also included are exercises in location of United States cities by latitude and longitude, measurement of distances in miles and kilometers, and prediction of weather associated with various types of weather fronts. (RE)

  2. Forecast of muddy floods using high-resolution radar precipitation forcasting data and erosion modelling

    NASA Astrophysics Data System (ADS)

    Hänsel, Phoebe; Schindewolf, Marcus; Schmidt, Jürgen

    2016-04-01

    In the federal province of Saxony, Eastern Germany, almost 60 % of the agricultural land is endangered by erosion processes, mainly caused by heavy rainfall events. Beside the primary impact of soil loss and decreasing soil fertility, erosion can cause significant effects if transported sediments are entering downslope settlements, infrastructure or traffic routes. Available radar precipitation data are closing the gap between the conventional rainfall point measurements and enable the nationwide rainfall distribution with high spatial and temporal resolution. By means of the radar precipitation data of the German Weather Service (DWD), high-resolution radar-based rainfall data totals up to 5 minute time steps are possible. The radar data are visualised in a grid-based hourly precipitation map. In particular, the daily and hourly precipitation maps help to identify regions with heavy rainfall and possible erosion events. In case of an erosion event on agricultural land, these areas are mapped with an unmanned airborne vehicle (UAV). The camera-equipped UAV delivers high-resolution images of the erosion event, that allow the generation of high-resolution orthophotos. By the application of the high-resolution radar precipitation data as an input for the process-based soil loss and deposition model EROSION 3D, these images are for validation purposes. Future research is focused on large scale soil erosion modelling with the help of the radar forecasting product and an automatic identification of sediment pass over points. The study will end up with an user friendly muddy flood warning tool, which allows the local authorities to initiate immediate measures in order to prevent severe damages in settlements, infrastructure or traffic routes.

  3. Design of integrated ship monitoring system using SAR, RADAR, and AIS

    NASA Astrophysics Data System (ADS)

    Yang, Chan-Su; Kim, Tae-Ho; Hong, Danbee; Ahn, Hyung-Wook

    2013-06-01

    When we talk about for the ship detection, identification and its classification, we need to go for the wide area of monitoring and it may be possible only through satellite based monitoring approach which monitors and covers coastal as well as the oceanic zone. Synthetic aperture radar (SAR) has been widely used to detect targets of interest with the advantage of the operating capability in all weather and luminance free condition (Margarit and Tabasco, 2011). In EU waters, EMSA(European Maritime Safety Agency) is operating the SafeSeaNet and CleanSeaNet systems which provide the current positions of all ships and oil spill monitoring information in and around EU waters in a single picture to Member States using AIS, LRIT and SAR images. In many countries, a similar system has been developed and the key of the matter is to integrate all available data. This abstract describes the preliminary design concept for an integration system of RADAR, AIS and SAR data for vessel traffic monitoring. SAR sensors are used to acquire image data over large coverage area either through the space borne or airborne platforms in UTC. AIS reports should be also obtained on the same date as of the SAR acquisition for the purpose to perform integration test. Land-based RADAR can provide ships positions detected and tracked in near real time. In general, SAR are used to acquire image data over large coverage area, AIS reports are obtained from ship based transmitter, and RADAR can monitor continuously ships for a limited area. In this study, we developed individual ship monitoring algorithms using RADAR(FMCW and Pulse X-band), AIS and SAR(RADARSAT-2 Full-pol Mode). We conducted field experiments two times for displaying the RADAR, AIS and SAR integration over the Pyeongtaek Port, South Korea.

  4. Comparison of radar data versus rainfall data.

    PubMed

    Espinosa, B; Hromadka, T V; Perez, R

    2015-01-01

    Doppler radar data are increasingly used in rainfall-runoff synthesis studies, perhaps due to radar data availability, among other factors. However, the veracity of the radar data are often a topic of concern. In this paper, three Doppler radar outcomes developed by the United States National Weather Service at three radar sites are examined and compared to actual rain gage data for two separate severe storm events in order to assess accuracy in the published radar estimates of rainfall. Because the subject storms were very intense rainfall events lasting approximately one hour in duration, direct comparisons between the three radar gages themselves can be made, as well as a comparison to rain gage data at a rain gage location subjected to the same storm cells. It is shown that topographic interference with the radar outcomes can be a significant factor leading to differences between radar and rain gage readings, and that care is needed in calibrating radar outcomes using available rain gage data in order to interpolate rainfall estimates between rain gages using the spatial variation observed in the radar readings. The paper establishes and describes•the need for "ground-truthing" of radar data, and•possible errors due to topographic interference. PMID:26649276

  5. Comparison of radar data versus rainfall data

    PubMed Central

    Espinosa, B.; Hromadka, T.V.; Perez, R.

    2015-01-01

    Doppler radar data are increasingly used in rainfall-runoff synthesis studies, perhaps due to radar data availability, among other factors. However, the veracity of the radar data are often a topic of concern. In this paper, three Doppler radar outcomes developed by the United States National Weather Service at three radar sites are examined and compared to actual rain gage data for two separate severe storm events in order to assess accuracy in the published radar estimates of rainfall. Because the subject storms were very intense rainfall events lasting approximately one hour in duration, direct comparisons between the three radar gages themselves can be made, as well as a comparison to rain gage data at a rain gage location subjected to the same storm cells. It is shown that topographic interference with the radar outcomes can be a significant factor leading to differences between radar and rain gage readings, and that care is needed in calibrating radar outcomes using available rain gage data in order to interpolate rainfall estimates between rain gages using the spatial variation observed in the radar readings. The paper establishes and describes•the need for “ground-truthing” of radar data, and•possible errors due to topographic interference. PMID:26649276

  6. Airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-06-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  7. Smooth Sailing for Weather Forecasting

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Through a cooperative venture with NASA's Stennis Space Center, WorldWinds, Inc., developed a unique weather and wave vector map using space-based radar satellite information and traditional weather observations. Called WorldWinds, the product provides accurate, near real-time, high-resolution weather forecasts. It was developed for commercial and scientific users. In addition to weather forecasting, the product's applications include maritime and terrestrial transportation, aviation operations, precision farming, offshore oil and gas operations, and coastal hazard response support. Target commercial markets include the operational maritime and aviation communities, oil and gas providers, and recreational yachting interests. Science applications include global long-term prediction and climate change, land-cover and land-use change, and natural hazard issues. Commercial airlines have expressed interest in the product, as it can provide forecasts over remote areas. WorldWinds, Inc., is currently providing its product to commercial weather outlets.

  8. Fly eye radar or micro-radar sensor technology

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo; Asmolova, Olga

    2014-05-01

    To compensate for its eye's inability to point its eye at a target, the fly's eye consists of multiple angularly spaced sensors giving the fly the wide-area visual coverage it needs to detect and avoid the threats around him. Based on a similar concept a revolutionary new micro-radar sensor technology is proposed for detecting and tracking ground and/or airborne low profile low altitude targets in harsh urban environments. Distributed along a border or around a protected object (military facility and buildings, camp, stadium) small size, low power unattended radar sensors can be used for target detection and tracking, threat warning, pre-shot sniper protection and provides effective support for homeland security. In addition it can provide 3D recognition and targets classification due to its use of five orders more pulses than any scanning radar to each space point, by using few points of view, diversity signals and intelligent processing. The application of an array of directional antennas eliminates the need for a mechanical scanning antenna or phase processor. It radically decreases radar size and increases bearing accuracy several folds. The proposed micro-radar sensors can be easy connected to one or several operators by point-to-point invisible protected communication. The directional antennas have higher gain, can be multi-frequency and connected to a multi-functional network. Fly eye micro-radars are inexpensive, can be expendable and will reduce cost of defense.

  9. Planetary Radar

    NASA Technical Reports Server (NTRS)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  10. Progress reports for October 1994 -- Joint UK/US Radar Program

    SciTech Connect

    Twogood, R.E.; Brase, J.M.; Mantrom, D.D.; Chambers, D.H.; Robey, H.F.

    1994-11-18

    This report gives the principle investigator, objectives, recent accomplishments, milestones for reporting period, expected milestones for ensuing period, other issues and planned expenditures for each of the following programs: airborne RAR/SAR; radar data processor; ground-based SAR signal processing workstation; static airborne radar; multi-aperture space-time array radar; radar field experiments; data analysis and detection theory; management; E-2C radar data analysis; modeling and analysis; current meter array; UCSB wave tank; stratified flow facility; and IR sensor system. Finally the budget status is given.

  11. Progress reports for period November 1--30, 1994 -- Joint UK/US Radar Program

    SciTech Connect

    Twogood, R.E.; Brase, J.M.; Mantrom, D.D.; Chambers, D.H.; Robey, H.F.

    1994-12-19

    This report gives the principle investigator, objectives, recent accomplishments, milestones for reporting period, expected milestones for ensuing period, other issues and planned expenditures for the following programs: airborne RAR/SAR; radar data processor; ground-based SAR signal processing workstation; static airborne radar; multi-aperture space-time array radar; radar field experiments; data analysis and detection theory; management; E-2C radar data analysis;modeling and analysis; current meter array; UCSB wave tank; stratified flow facility; and IR sensor system. Budget status is also given.

  12. Exploratory Meeting on Airborne Doppler Lidar Wind Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Fichtel, G. H. (Editor); Kaufman, J. W. (Editor); Vaughan, W. W. (Editor)

    1980-01-01

    The scientific interests and applications of the Airborne Doppler Lidar Wind Velocity Measurement System to severe storms and local weather are discussed. The main areas include convective phenomena, local circulation, atmospheric boundary layer, atmospheric dispersion, and industrial aerodynamics.

  13. The Orlando TDWR testbed and airborne wind shear date comparison results

    NASA Technical Reports Server (NTRS)

    Campbell, Steven; Berke, Anthony; Matthews, Michael

    1992-01-01

    The focus of this talk is on comparing terminal Doppler Weather Radar (TDWR) and airborne wind shear data in computing a microburst hazard index called the F factor. The TDWR is a ground-based system for detecting wind shear hazards to aviation in the terminal area. The Federal Aviation Administration will begin deploying TDWR units near 45 airports in late 1992. As part of this development effort, M.I.T. Lincoln Laboratory operates under F.A.A. support a TDWR testbed radar in Orlando, FL. During the past two years, a series of flight tests has been conducted with instrumented aircraft penetrating microburst events while under testbed radar surveillance. These tests were carried out with a Cessna Citation 2 aircraft operated by the University of North Dakota (UND) Center for Aerospace Sciences in 1990, and a Boeing 737 operated by NASA Langley Research Center in 1991. A large data base of approximately 60 instrumented microburst penetrations has been obtained from these flights.

  14. Prospects for Geostationary Doppler Weather Radar

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Fang, Houfei; Durden, Stephen L.; Im, Eastwood; Rhamat-Samii, Yahya

    2009-01-01

    A novel mission concept, namely NEXRAD in Space (NIS), was developed for detailed monitoring of hurricanes, cyclones, and severe storms from a geostationary orbit. This mission concept requires a space deployable 35-m diameter reflector that operates at 35-GHz with a surface figure accuracy requirement of 0.21 mm RMS. This reflector is well beyond the current state-of-the-art. To implement this mission concept, several potential technologies associated with large, lightweight, spaceborne reflectors have been investigated by this study. These spaceborne reflector technologies include mesh reflector technology, inflatable membrane reflector technology and Shape Memory Polymer reflector technology.

  15. Spaceborne radar

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Eckerman, J.; Meneghini, R.; Atlas, D.; Boerner, W. M.; Cherry, S.; Clark, J. F.; Doviak, R. J.; Goldhirsh, J.; Lhermitte, R. M.

    1981-01-01

    The spaceborne radar panel considered how radar could be used to measure precipitation from satellites. The emphasis was on how radar could be used with radiometry (at microwave, visible (VIS), and infrared (IR) wavelengths) to reduce the uncertainties of measuring precipitation with radiometry alone. In addition, the fundamental electromagnetic interactions involved in the measurements were discussed to determine the key work areas for research and development to produce effective instruments. Various approaches to implementing radar systems on satellites were considered for both shared and dedicated instruments. Finally, a research and development strategy was proposed for establishing the parametric relations and retrieval algorithms required for extracting precipitation information from the radar and associated radiometric data.

  16. Detecting and mitigating wind turbine clutter for airspace radar systems.

    PubMed

    Wang, Wen-Qin

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880

  17. Detecting and Mitigating Wind Turbine Clutter for Airspace Radar Systems

    PubMed Central

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880

  18. Report on the Radar/PIREP Cloud Top Discrepancy Study

    NASA Technical Reports Server (NTRS)

    Wheeler, Mark M.

    1997-01-01

    This report documents the results of the Applied Meteorology Unit's (AMU) investigation of inconsistencies between pilot reported cloud top heights and weather radar indicated echo top heights (assumed to be cloud tops) as identified by the 45 Weather Squadron (45WS). The objective for this study is to document and understand the differences in echo top characteristics as displayed on both the WSR-88D and WSR-74C radars and cloud top heights reported by the contract weather aircraft in support of space launch operations at Cape Canaveral Air Station (CCAS), Florida. These inconsistencies are of operational concern since various Launch Commit Criteria (LCC) and Flight Rules (FR) in part describe safe and unsafe conditions as a function of cloud thickness. Some background radar information was presented. Scan strategies for the WSR-74C and WSR-88D were reviewed along with a description of normal radar beam propagation influenced by the Effective Earth Radius Model. Atmospheric conditions prior to and leading up to both launch operations were detailed. Through the analysis of rawinsonde and radar data, atmospheric refraction or bending of the radar beam was identified as the cause of the discrepancies between reported cloud top heights by the contract weather aircraft and those as identified by both radars. The atmospheric refraction caused the radar beam to be further bent toward the Earth than normal. This radar beam bending causes the radar target to be displayed erroneously, with higher cloud top heights and a very blocky or skewed appearance.

  19. Impact of Tactical and Strategic Weather Avoidance on Separation Assurance

    NASA Technical Reports Server (NTRS)

    Refai, Mohamad S.; Windhorst, Robert

    2011-01-01

    The ability to keep flights away from weather hazards while maintaining aircraft-to-aircraft separation is critically important. The Advanced Airspace Concept is an automation concept that implements a ground-based strategic conflict resolution algorithm for management of aircraft separation. The impact of dynamic and uncertain weather avoidance on this concept is investigated. A strategic weather rerouting system is integrated with the Advanced Airspace Concept, which also provides a tactical weather avoidance algorithm, in a fast time simulation of the Air Transportation System. Strategic weather rerouting is used to plan routes around weather in the 20 minute to two-hour time horizon. To address forecast uncertainty, flight routes are revised at 15 minute intervals. Tactical weather avoidance is used for short term trajectory adjustments (30 minute planning horizon) that are updated every minute to address any weather conflicts (instances where aircraft are predicted to pass through weather cells) that are left unresolved by strategic weather rerouting. The fast time simulation is used to assess the impact of tactical weather avoidance on the performance of automated conflict resolution as well as the impact of strategic weather rerouting on both conflict resolution and tactical weather avoidance. The results demonstrate that both tactical weather avoidance and strategic weather rerouting increase the algorithm complexity required to find aircraft conflict resolutions. Results also demonstrate that tactical weather avoidance is prone to higher airborne delay than strategic weather rerouting. Adding strategic weather rerouting to tactical weather avoidance reduces total airborne delays for the reported scenario by 18% and reduces the number of remaining weather violations by 13%. Finally, two features are identified that have proven important for strategic weather rerouting to realize these benefits; namely, the ability to revise reroutes and the use of maneuvers

  20. Detection and identification of human targets in radar data

    NASA Astrophysics Data System (ADS)

    Gürbüz, Sevgi Z.; Melvin, William L.; Williams, Douglas B.

    2007-04-01

    Radar offers unique advantages over other sensors, such as visual or seismic sensors, for human target detection. Many situations, especially military applications, prevent the placement of video cameras or implantment seismic sensors in the area being observed, because of security or other threats. However, radar can operate far away from potential targets, and functions during daytime as well as nighttime, in virtually all weather conditions. In this paper, we examine the problem of human target detection and identification using single-channel, airborne, synthetic aperture radar (SAR). Human targets are differentiated from other detected slow-moving targets by analyzing the spectrogram of each potential target. Human spectrograms are unique, and can be used not just to identify targets as human, but also to determine features about the human target being observed, such as size, gender, action, and speed. A 12-point human model, together with kinematic equations of motion for each body part, is used to calculate the expected target return and spectrogram. A MATLAB simulation environment is developed including ground clutter, human and non-human targets for the testing of spectrogram-based detection and identification algorithms. Simulations show that spectrograms have some ability to detect and identify human targets in low noise. An example gender discrimination system correctly detected 83.97% of males and 91.11% of females. The problems and limitations of spectrogram-based methods in high clutter environments are discussed. The SNR loss inherent to spectrogram-based methods is quantified. An alternate detection and identification method that will be used as a basis for future work is proposed.

  1. New inverse synthetic aperture radar algorithm for translational motion compensation

    NASA Astrophysics Data System (ADS)

    Bocker, Richard P.; Henderson, Thomas B.; Jones, Scott A.; Frieden, B. R.

    1991-10-01

    Inverse synthetic aperture radar (ISAR) is an imaging technique that shows real promise in classifying airborne targets in real time under all weather conditions. Over the past few years a large body of ISAR data has been collected and considerable effort has been expended to develop algorithms to form high-resolution images from this data. One important goal of workers in this field is to develop software that will do the best job of imaging under the widest range of conditions. The success of classifying targets using ISAR is predicated upon forming highly focused radar images of these targets. Efforts to develop highly focused imaging computer software have been challenging, mainly because the imaging depends on and is affected by the motion of the target, which in general is not precisely known. Specifically, the target generally has both rotational motion about some axis and translational motion as a whole with respect to the radar. The slant-range translational motion kinematic quantities must be first accurately estimated from the data and compensated before the image can be focused. Following slant-range motion compensation, the image is further focused by determining and correcting for target rotation. The use of the burst derivative measure is proposed as a means to improve the computational efficiency of currently used ISAR algorithms. The use of this measure in motion compensation ISAR algorithms for estimating the slant-range translational motion kinematic quantities of an uncooperative target is described. Preliminary tests have been performed on simulated as well as actual ISAR data using both a Sun 4 workstation and a parallel processing transputer array. Results indicate that the burst derivative measure gives significant improvement in processing speed over the traditional entropy measure now employed.

  2. Road Weather and Connected Vehicles

    NASA Astrophysics Data System (ADS)

    Pisano, P.; Boyce, B. C.

    2015-12-01

    On average, there are over 5.8 M vehicle crashes each year of which 23% are weather-related. Weather-related crashes are defined as those crashes that occur in adverse weather or on slick pavement. The vast majority of weather-related crashes happen on wet pavement (74%) and during rainfall (46%). Connected vehicle technologies hold the promise to transform road-weather management by providing improved road weather data in real time with greater temporal and geographic accuracy. This will dramatically expand the amount of data that can be used to assess, forecast, and address the impacts that weather has on roads, vehicles, and travelers. The use of vehicle-based measurements of the road and surrounding atmosphere with other, more traditional weather data sources, and create road and atmospheric hazard products for a variety of users. The broad availability of road weather data from mobile sources will vastly improve the ability to detect and forecast weather and road conditions, and will provide the capability to manage road-weather response on specific roadway links. The RWMP is currently demonstrating how weather, road conditions, and related vehicle data can be used for decision making through an innovative Integrated Mobile Observations project. FHWA is partnering with 3 DOTs (MN, MI, & NV) to pilot these applications. One is a mobile alerts application called the Motorists Advisories and Warnings (MAW) and a maintenance decision support application. These applications blend traditional weather information (e.g., radar, surface stations) with mobile vehicle data (e.g., temperature, brake status, wiper status) to determine current weather conditions. These weather conditions, and other road-travel-relevant information, are provided to users via web and phone applications. The MAW provides nowcasts and short-term forecasts out to 24 hours while the EMDSS application can provide forecasts up to 72 hours in advance. The three DOTs have placed readers and external

  3. Towards Realtime Assimilation of Doppler Radar Observations for Cloud-Resolving Hurricane Prediction

    NASA Astrophysics Data System (ADS)

    Weng, Y.; Zhang, F.; Gamache, J. F.; Marks, F. D.

    2008-12-01

    This study explores the feasibility and impacts of on-demand, real-time assimilation of Doppler radar observations straight from the planes with an ensemble Kalman filter (EnKF) to initialize a cloud-resolving hurricane prediction model. The NOAA P3 aircrafts have being flying into tropical cyclones to gather radar observations since 1994. These observations are significant in investigating and anglicizing hurricane's intensity, eye-wall structure and intensity changes, but the radar data has never been ingested into hurricane prediction models in real-time. Likely reasons are (1) insufficient model resolution due to inadequate computing resources for ingesting convective-scale details observed by the radar, (2) inadequacy of existing data assimilation method for operational models, and (3) lack of sufficient bandwidth in transmitting huge volume radar data to the ground in realtime. This work is built on our recent case studies of predicting the rapid formation and intensification of past hurricanes in assimilating both ground-base and/or airborne radial velocity into a cloud-resolving mesoscale model with EnKF. Under the auspices of NOAA Hurricane Forecasting Improvement Project (HFIP), we have access to the NSF-sponsored high-performance computing facility TACC at University of Texas at Austin that makes realtime cloud-resolving hurricane data assimilation and forecasting possible. We alleviate the requirement of large volume data transfer from the aircraft through developing a radar radial velocity data quality and thinning procedure (namely to produce superobervations or SOs) to significantly reduce the data size before being transferred. We have first conducted near realtime testing of the cloud-resolving data assimilation and forecasting with Weather Research and Forecast (WRF) model using 40.5, 13.5, 4.5 and 1.5 km grid spacings and movable nested grids for Hurricanes Dolly and Fay (2008). As of today, we have successfully demonstrated the feasibility, data

  4. Automotive radar

    NASA Astrophysics Data System (ADS)

    Rohling, Hermann

    2004-07-01

    Radar networks for automtovie short-range applications (up to 30m) based on powerful but inexpensive 24GHz high range resolution pulse or FMCW radar systems have been developed at the Technical University of Hamburg-Harburg. The described system has been integrated in to an experimental vehicle and tested in real street environment. This paper considers the general network design, the individual pulse or FMCW radar sensors, the network signal processing scheme, the tracking procedure and possible automotive applications, respectively. Object position estimation is accomplished by the very precise range measurement of each individual sensor and additional trilateration procedures. The paper concludes with some results obtained in realistic traffic conditions with multiple target situations using 24 GHz radar network.

  5. Rainfall observations by an airbourne dual-fequency precipitation radar during CAMEX-4

    NASA Technical Reports Server (NTRS)

    Im, E.; Durden, S. L.; Sadowy, G.; Li, L.

    2002-01-01

    The 2d Generation Precipitation Radar is a new design for a dual-frequency (13.4 and 35.6 GHz) spaceborne precipitation radar. An airborne PR-2 simulator has been developed to demonstrate key technologies. This airborne system was flown on the NASA DC-8 aircraft during the 4th Convection and Moisture Experiment in 2001. Data were acquired in Tropical Storms Chantal and Gabrielle, Hurricane Humberto, and in several more localized convective systems. The authors discuss the design of thePR-2 airborne radar and show observations from CAMEX-4. Overall, the observations validated the design of PR-2 and provide an extensive data set for scientific analysis.

  6. Radar history

    NASA Astrophysics Data System (ADS)

    Putley, Ernest

    2008-07-01

    The invention of radar, as mentioned in Chris Lavers' article on warship stealth technology (March pp21-25), continues to be a subject of discussion. Here in Malvern we have just unveiled a blue plaque to commemorate the physicist Albert Percival Rowe, who arrived in 1942 as the head of the Telecommunications Research Establishment (TRE), which was the Air Ministry research facility responsible for the first British radar systems.

  7. Canada invests in weather and climate monitoring

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-01-01

    Canada is investing $78.7 million over the next 5 years to improve weather and climate monitoring infrastructure, Canada's minister of the environment Peter Kent announced on 20 January. The Canadian weather radar network, which consists of 31 radar sites around the country, is slated to receive the bulk of the funding ($45.2 million) to allow existing newer-generation radars to upgrade to dual-polarization technology. Of the remainder, $18.8 million is for the Canadian weather and climate observing networks to supplement existing resources and upgrade about 250 observing stations; $10.5 million is to improve the Canadian lightning detection network; and $4.2 million is to upgrade the Canadian aerological network's navigational technology with multisensor GPS radiosonde equipment.

  8. Weather Instruments.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  9. Wacky Weather

    ERIC Educational Resources Information Center

    Sabarre, Amy; Gulino, Jacqueline

    2013-01-01

    What do a leaf blower, water hose, fan, and ice cubes have in common? Ask the students who participated in an integrative science, technology, engineering, and mathematics (I-STEM) education unit, "Wacky Weather," and they will tell say "fun and severe weather"--words one might not have expected! The purpose of the unit…

  10. Space Weather

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis L.

    2010-01-01

    This video provides a narrated exploration of the history and affects of space weather. It includes information the earth's magnetic field, solar radiation, magnetic storms, and how solar winds affect electronics on earth, with specific information on how space weather affects space exploration in the future.

  11. Developing tools for digital radar image data evaluation

    NASA Technical Reports Server (NTRS)

    Domik, G.; Leberl, F.; Raggam, J.

    1986-01-01

    The refinement of radar image analysis methods has led to a need for a systems approach to radar image processing software. Developments stimulated through satellite radar are combined with standard image processing techniques to create a user environment to manipulate and analyze airborne and satellite radar images. One aim is to create radar products for the user from the original data to enhance the ease of understanding the contents. The results are called secondary image products and derive from the original digital images. Another aim is to support interactive SAR image analysis. Software methods permit use of a digital height model to create ortho images, synthetic images, stereo-ortho images, radar maps or color combinations of different component products. Efforts are ongoing to integr