Science.gov

Sample records for airborne wind profiling

  1. Airborne Wind Profiling Algorithm for Doppler Wind LIDAR

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y. (Inventor); Koch, Grady J. (Inventor); Kavaya, Michael J. (Inventor)

    2015-01-01

    Systems, methods, and devices of the present invention enable airborne Doppler Wind LIDAR system measurements and INS/GPS measurements to be combined to estimate wind parameters and compensate for instrument misalignment. In a further embodiment, the wind speed and wind direction may be computed based on two orthogonal line-of-sight LIDAR returns.

  2. Airborne Wind Profiling Algorithms for the Pulsed 2-Micron Coherent Doppler Lidar at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.; Ray, Taylor J.

    2013-01-01

    Two versions of airborne wind profiling algorithms for the pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia are presented. Each algorithm utilizes different number of line-of-sight (LOS) lidar returns while compensating the adverse effects of different coordinate systems between the aircraft and the Earth. One of the two algorithms APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) estimates wind products using two LOSs. The other algorithm utilizes five LOSs. The airborne lidar data were acquired during the NASA's Genesis and Rapid Intensification Processes (GRIP) campaign in 2010. The wind profile products from the two algorithms are compared with the dropsonde data to validate their results.

  3. Improved Hurricane Boundary Layer Observations with the Imaging Wind and Rain Airborne Profiler

    NASA Technical Reports Server (NTRS)

    Esteban-Fernandez, Daniel; Changy, P.; Carswell, J.; Contreras, R.; Chu, T.

    2006-01-01

    During the NOAA/NESDIS 2005 Hurricane Season (HS2005) and the 2006 Winter Experiment, the University of Massachusetts (UMass) installed two instruments on the NOAA N42RF WP-3D research aircraft: the Imaging Wind and Rain Airborne Profiler (IWRAP) and the Simultaneous Frequency Microwave Radiometer (SFMR). IWRAP is a dual-band (C- and Ku), dual-polarized pencil-beam airborne radar that profiles the volume backscatter and Doppler velocity from rain and that also measures the ocean backscatter response. It simultaneously profiles along four separate incidence angles while conically scanning at 60 RPM. SFMR is a C-band nadir viewing radiometer that measures the emission from the ocean surface and intervening atmosphere simultaneously at six frequencies. It is designed to obtain the surface wind speed and the column average rain rate. Both instruments have previously been flown during the 2002, 2003 and 2004 hurricane seasons. For the HS2005, the IWRAP system was modified to implement a raw data acquisition system. The importance of the raw data system arises when trying to profile the atmosphere all the way down to the surface with a non-nadir looking radar system. With this particular geometry, problems arise mainly from the fact that both rain and ocean provide a return echo coincident in time through the antenna s main lobe. This paper shows how this limitation has been removed and presents initial results demonstrating its new capabilities to derive the atmospheric boundary layer (ABL) wind field within the inner core of hurricanes to much lower altitudes than the ones the original system was capable of, and to analyze the spectral response of the ocean backscatter and the rain under different wind and rain conditions.

  4. Development of the NASA High-Altitude Imaging Wind and Rain Airborne Profiler

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Heymsfield, Gerald; Carswell, James; Schaubert, Dan; McLinden, Matthew; Vega, Manuel; Perrine, Martin

    2011-01-01

    The scope of this paper is the development and recent field deployments of the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), which was funded under the NASA Instrument Incubator Program (IIP) [1]. HIWRAP is a dual-frequency (Ka- and Ku-band), dual-beam (300 and 400 incidence angles), conical scanning, Doppler radar system designed for operation on the NASA high-altitude (65,000 ft) Global Hawk Unmanned Aerial System (UAS). It utilizes solid state transmitters along with a novel pulse compression scheme that results in a system with compact size, light weight, less power consumption, and low cost compared to radars currently in use for precipitation and Doppler wind measurements. By combining measurements at Ku- and Ka-band, HIWRAP is able to image winds through measuring volume backscattering from clouds and precipitation. In addition, HIWRAP is also capable of measuring surface winds in an approach similar to SeaWinds on QuikScat. To this end, HIWRAP hardware and software development has been completed. It was installed on the NASA WB57 for instrument test flights in March, 2010 and then deployed on the NASA Global Hawk for supporting the Genesis and Rapid Intensification Processes (GRIP) field campaign in August-September, 2010. This paper describes the scientific motivations of the development of HIWRAP as well as system hardware, aircraft integration and flight missions. Preliminary data from GRIP science flights is also presented.

  5. Noise Whitening in Airborne Wind Profiling With a Pulsed 2-Micron Coherent Doppler Lidar at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Arthur, Grant E.; Koch, Grady J.; Kavaya, Michael J.

    2012-01-01

    Two different noise whitening methods in airborne wind profiling with a pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia are presented. In order to provide accurate wind parameter estimates from the airborne lidar data acquired during the NASA Genesis and Rapid Intensification Processes (GRIP) campaign in 2010, the adverse effects of background instrument noise must be compensated properly in the early stage of data processing. The results of the two methods are presented using selected GRIP data and compared with the dropsonde data for verification purposes.

  6. Three-Dimensional Wind Profiling of Offshore Wind Energy Areas With Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Beyon, Jeffrey Y.; Cowen, Larry J.; Kavaya, Michael J.; Grant, Michael S.

    2014-01-01

    A technique has been developed for imaging the wind field over offshore areas being considered for wind farming. This is accomplished with an eye-safe 2-micrometer wavelength coherent Doppler lidar installed in an aircraft. By raster scanning the aircraft over the wind energy area (WEA), a three-dimensional map of the wind vector can be made. This technique was evaluated in 11 flights over the Virginia and Maryland offshore WEAs. Heights above the ocean surface planned for wind turbines are shown to be within the marine boundary layer, and the wind vector is seen to show variation across the geographical area of interest at turbine heights.

  7. Three-dimensional wind profiling of offshore wind energy areas with airborne Doppler lidar

    NASA Astrophysics Data System (ADS)

    Koch, Grady J.; Beyon, Jeffrey Y.; Cowen, Larry J.; Kavaya, Michael J.; Grant, Michael S.

    2014-01-01

    A technique has been developed for imaging the wind field over offshore areas being considered for wind farming. This is accomplished with an eye-safe 2-μm wavelength coherent Doppler lidar installed in an aircraft. By raster scanning the aircraft over the wind energy area (WEA), a three-dimensional map of the wind vector can be made. This technique was evaluated in 11 flights over the Virginia and Maryland offshore WEAs. Heights above the ocean surface planned for wind turbines are shown to be within the marine boundary layer, and the wind vector is seen to show variation across the geographical area of interest at turbine heights.

  8. Airborne Wind Profiling With the Data Acquisition and Processing System for a Pulsed 2-Micron Coherent Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2012-01-01

    A pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia flew on the NASA's DC-8 aircraft during the NASA Genesis and Rapid Intensification Processes (GRIP) during the summer of 2010. The participation was part of the project Doppler Aerosol Wind Lidar (DAWN) Air. Selected results of airborne wind profiling are presented and compared with the dropsonde data for verification purposes. Panoramic presentations of different wind parameters over a nominal observation time span are also presented for selected GRIP data sets. The realtime data acquisition and analysis software that was employed during the GRIP campaign is introduced with its unique features.

  9. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  10. Data Acquisition and Processing System for Airborne Wind Profiling with a Pulsed, 2-Micron, Coherent-Detection, Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Beyon, J. Y.; Koch, G. J.; Kavaya, M. J.

    2010-01-01

    A data acquisition and signal processing system is being developed for a 2-micron airborne wind profiling coherent Doppler lidar system. This lidar, called the Doppler Aerosol Wind Lidar (DAWN), is based on a Ho:Tm:LuLiF laser transmitter and 15-cm diameter telescope. It is being packaged for flights onboard the NASA DC-8, with the first flights in the summer of 2010 in support of the NASA Genesis and Rapid Intensification Processes (GRIP) campaign for the study of hurricanes. The data acquisition and processing system is housed in a compact PCI chassis and consists of four components such as a digitizer, a digital signal processing (DSP) module, a video controller, and a serial port controller. The data acquisition and processing software (DAPS) is also being developed to control the system including real-time data analysis and display. The system detects an external 10 Hz trigger pulse and initiates the data acquisition and processing process, and displays selected wind profile parameters such as Doppler shift, power distribution, wind directions and velocities. Doppler shift created by aircraft motion is measured by an inertial navigation/GPS sensor and fed to the signal processing system for real-time removal of aircraft effects from wind measurements. A general overview of the system and the DAPS as well as the coherent Doppler lidar system is presented in this paper.

  11. Improved Atmospheric Boundary Layer Observations of Tropical Cyclones with the Imaging Wind and Rain Airborne Profiler

    NASA Technical Reports Server (NTRS)

    Fernandez, D. Esteban; Chang, P.; Carswel, J.; Contreras, R.; Chu, T.; Asuzu, P.; Black, P.; Marks, F.

    2006-01-01

    The Imaging Wind and Rain Arborne Profilers (IWRAP) is a dual-frequency, conically-scanning Doppler radar that measures high-resolution, dual-polarized, multi-beam C- and Ku-band reflectivity and Doppler velocity profiles of the atmospheric boundary layer (ABL) within the inner core of hurricanes.From the datasets acquired during the 2002 through 20O5 hurricane seasons as part of the ONR Coupled Boundary Layer Air-Sea Transfer (CBLAST) program and the NOAA/NESDIS Ocean Winds and Rain experiments, very high resolution radar observations of hurricanes have been acquired and made available to the CBLAST community. Of particular interest am the ABL wind fields and 3-D structures found within the inner core of hurricanes. As a result of these analysis, a limitation in the ability to retrieve the ABL wind field at very low altitudes was identified. This paper shows how this limitation has been removed and presents initial results demonstrating its new capabilities to derive the ABL wind field within the inner are of hurricanes to much lower altitudes than the ones the original system was capable of.

  12. Airborne Doppler Wind Lidar Post Data Processing Software DAPS-LV

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y. (Inventor); Koch, Grady J. (Inventor); Kavaya, Michael J. (Inventor)

    2015-01-01

    Systems, methods, and devices of the present invention enable post processing of airborne Doppler wind LIDAR data. In an embodiment, airborne Doppler wind LIDAR data software written in LabVIEW may be provided and may run two versions of different airborne wind profiling algorithms. A first algorithm may be the Airborne Wind Profiling Algorithm for Doppler Wind LIDAR ("APOLO") using airborne wind LIDAR data from two orthogonal directions to estimate wind parameters, and a second algorithm may be a five direction based method using pseudo inverse functions to estimate wind parameters. The various embodiments may enable wind profiles to be compared using different algorithms, may enable wind profile data for long haul color displays to be generated, may display long haul color displays, and/or may enable archiving of data at user-selectable altitudes over a long observation period for data distribution and population.

  13. Downscaling of Airborne Wind Energy Systems

    NASA Astrophysics Data System (ADS)

    Fechner, Uwe; Schmehl, Roland

    2016-09-01

    Airborne wind energy systems provide a novel solution to harvest wind energy from altitudes that cannot be reached by wind turbines with a similar nominal generator power. The use of a lightweight but strong tether in place of an expensive tower provides an additional cost advantage, next to the higher capacity factor and much lower total mass. This paper investigates the scaling effects of airborne wind energy systems. The energy yield of airborne wind energy systems, that work in pumping mode of operation is at least ten times higher than the energy yield of conventional solar systems. For airborne wind energy systems the yield is defined per square meter wing area. In this paper the dependency of the energy yield on the nominal generator power for systems in the range of 1 kW to 1 MW is investigated. For the onshore location Cabauw, The Netherlands, it is shown, that a generator of just 1.4 kW nominal power and a total system mass of less than 30 kg has the theoretical potential to harvest energy at only twice the price per kWh of large scale airborne wind energy systems. This would make airborne wind energy systems a very attractive choice for small scale remote and mobile applications as soon as the remaining challenges for commercialization are solved.

  14. Airborne Wind Measurements at Cape Blanco, Oregon.

    SciTech Connect

    Lin, Jung-Tai Lin; Veenhuizen, Scott D.

    1983-12-01

    The airborne wind measuring system using a fixed wing airplane and a Loran-C navigation unit was proven to be feasible to provide the large scale background wind flow for initialization of numerical wind modeling. The rms errors in the airborne wind measuring system were +- 2 mph in wind speed and +- 12 degrees in wind direction. The advantages of this method were that wind speeds over a large area (5 miles x 14 miles, or 18 miles x 30 miles) may be determined rapidly, economically and at altitudes above the normal altitudes of TALA kite mesurements. The disadvantages were that the spatial resolution of the measurements was poor and near surface measurements were not feasible using a fixed wing aircraft. 1 reference, 10 figures, 1 table.

  15. 76 FR 76333 - Notification for Airborne Wind Energy Systems (AWES)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... Federal Aviation Administration 14 CFR Part 77 Notification for Airborne Wind Energy Systems (AWES) AGENCY...,'' to airborne wind energy systems (AWES). In addition, this notice requests information from airborne wind energy system developers and the public related to these systems so that the FAA...

  16. BOREAS AFM-06 Mean Wind Profile Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Administration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) tower from 21 May 1994 to 20 Sep 1994. The data set provides wind profiles at 38 heights, containing the variables of wind speed; wind direction; and the u-, v-, and w-components of the total wind. The data are stored in tabular ASCII files. The mean wind profile data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  17. Doppler wind profile experiment

    NASA Technical Reports Server (NTRS)

    Arnold, J. E.

    1985-01-01

    The data collection phase of a Doppler wind measurement experiment supported by high-resolution Jimsphere/FPS-16 wind data and Windsonde data was carried out at the Kennedy Space Center in February, March and early April of 1985. The Doppler wind measurements were made using a hybrid doppler profiler put in place by the Johnson Space Center and a SOUSY profiler operated by Radian Corporation. Both systems operated at 50 Mhz. Although the doppler profiler systems were located 10 km apart to enable concurrent operation of the systems for data comparison, little concurrent data were obtained due to set-up delays with the SOUSY system, and system problems with the WPL system during the last month of the test. During the test period, special serial Jimsphere soundings were taken at two-hour intervals on six days in March and April in addition to balloon soundings taken in support of the Shuttle launch operations. In addition, there is temperature, moisture and wind information available from the daily morning Radiosonde sounding taken at the Kennedy site. The balloon release point was at the same location as the SOUSY profiler. Vertical resolution of the SOUSY profiler was 150 M to approximately 20 km. The vertical resolution of the WPL profiler was 290 M to 10 km and 870 M to 17 km. Winds determined form the Jimsphere balloon have a vertical resolution of 30 M.

  18. Wind Field Measurements With Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.

    1999-01-01

    In collaboration with lidar atmospheric remote sensing groups at NASA Marshall Space Flight Center and National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, we have developed and flown the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) lidar on the NASA DC-8 research aircraft. The scientific motivations for this effort are: to obtain measurements of subgrid scale (i.e. 2-200 km) processes and features which may be used to improve parameterizations in global/regional-scale models; to improve understanding and predictive capabilities on the mesoscale; and to assess the performance of Earth-orbiting Doppler lidar for global tropospheric wind measurements. MACAWS is a scanning Doppler lidar using a pulsed transmitter and coherent detection; the use of the scanner allows 3-D wind fields to be produced from the data. The instrument can also be radiometrically calibrated and used to study aerosol, cloud, and surface scattering characteristics at the lidar wavelength in the thermal infrared. MACAWS was used to study surface winds off the California coast near Point Arena, with an example depicted in the figure below. The northerly flow here is due to the Pacific subtropical high. The coastal topography interacts with the northerly flow in the marine inversion layer, and when the flow passes a cape or point that juts into the winds, structures called "hydraulic expansion fans" are observed. These are marked by strong variation along the vertical and cross-shore directions. The plots below show three horizontal slices at different heights above sea level (ASL). Bottom plots are enlargements of the area marked by dotted boxes above. The terrain contours are in 200-m increments, with the white spots being above 600-m elevation. Additional information is contained in the original.

  19. Airborne infrared low level wind shear predictor

    NASA Technical Reports Server (NTRS)

    Kuhn, P. M.; Kurkowski, R. L.

    1984-01-01

    The operating principles and test performance of an airborne IR (13-16 micron) temperature-sensing detection and warning system for low-level wind shear (LLWS) are presented. The physics of LLWS phenomena and of the IR radiometer are introduced. The cold density-current outflow or gust front related to LLWS is observed in the IR spectrum of CO2 by a radiometer with + or - 0.5-C accuracy at 0.5-Hz sampling rate; LLWS alerts are given on the basis of specific criteria. Test results from the JAWS experiments conducted at Denver in July 1982, are presented graphically and discussed. The feasibility of the passive IR system is demonstrated, with an average warning time of 51 sec, corresponding to a distance from touchdown of about 2 miles.

  20. Evaluating the accuracy and representativeness of Airborne Doppler Wind Lidar winds in complex terrain

    NASA Astrophysics Data System (ADS)

    Godwin, K.; Emmitt, G. D.; Greco, S.; De Wekker, S.

    2013-12-01

    An Airborne Doppler Wind Lidar (ADWL) was flown during the MATERHORN experiment in October 2012. The ADWL was used to obtain profiles of u,v,w,σlos and aerosol structure between the surface and flight level (~2500m AGL). The lidar returns were processed to obtain a vertical resolution of 50m and a complete profile every 1.5km. The aircraft (Navy Twin Otter) was flown in a 'lawnmower' pattern near and over Granite Mountain located at the Dugway Proving Grounds, Utah. Combining multiple Lines of Sight (LOS) measurements to construct a vertical profile in complex terrain presents several challenges that must be met before using these data in numerical models. In addition to the wind profiles obtained with a nadir conical scan, we pointed the beam straight down to obtain a direct measure of the vertical velocity of the air. With a precision of < 10 cm/s, mountain waves, katabatic flows and other complex terrain induced flow features are resolved and provide validation of model resolved flow features. Examples of ADWL profile grids will be presented along with a discussion of the methodology(s) used to evaluate the accuracy and representativeness of the ADWL winds. We will also illustrate how we are making comparisons with numerical model wind fields (WRF) by using a forward operator with lidar LOS observations. Particular attention will be paid to interpreting the non-conventional ADWL's estimate(s) of turbulent kinetic energy.

  1. Exploratory Meeting on Airborne Doppler Lidar Wind Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Fichtel, G. H. (Editor); Kaufman, J. W. (Editor); Vaughan, W. W. (Editor)

    1980-01-01

    The scientific interests and applications of the Airborne Doppler Lidar Wind Velocity Measurement System to severe storms and local weather are discussed. The main areas include convective phenomena, local circulation, atmospheric boundary layer, atmospheric dispersion, and industrial aerodynamics.

  2. Airborne sound propagation over sea during offshore wind farm piling.

    PubMed

    Van Renterghem, T; Botteldooren, D; Dekoninck, L

    2014-02-01

    Offshore piling for wind farm construction has attracted a lot of attention in recent years due to the extremely high noise emission levels associated with such operations. While underwater noise levels were shown to be harmful for the marine biology, the propagation of airborne piling noise over sea has not been studied in detail before. In this study, detailed numerical calculations have been performed with the Green's Function Parabolic Equation (GFPE) method to estimate noise levels up to a distance of 10 km. Measured noise emission levels during piling of pinpiles for a jacket-foundation wind turbine were assessed and used together with combinations of the sea surface state and idealized vertical sound speed profiles (downwind sound propagation). Effective impedances were found and used to represent non-flat sea surfaces at low-wind sea states 2, 3, and 4. Calculations show that scattering by a rough sea surface, which decreases sound pressure levels, exceeds refractive effects, which increase sound pressure levels under downwind conditions. This suggests that the presence of wind, even when blowing downwind to potential receivers, is beneficial to increase the attenuation of piling sound over the sea. A fully flat sea surface therefore represents a worst-case scenario.

  3. Wind profiler dedicated in Indonesia

    NASA Astrophysics Data System (ADS)

    Gage, Ken

    A dedication ceremony was recently held in Biak, Indonesia, to commemorate the opening of the Biak VHF wind profiler. The wind profiler, which operates at 50 MHz, was constructed by the National Oceanic and Atmospheric Administration's Aeronomy Laboratory in cooperation with the Indonesian National Institute of Aeronautics and Space (LAPAN). The Biak facility completes the NOAA'Colorado University trans-Pacific wind-profiler network. Other stations in the network, which is sponsored by the National Science Foundation, are Piura, Peru; Pohnpei, Federated States of Micronesia; and Christmas Island in Kirabati. The Christmas Island facility is supported by NOAA's Tropical Ocean and Global Atmosphere (TOGA) Program Project Office.

  4. Wind profiler signal detection improvements

    NASA Technical Reports Server (NTRS)

    Hart, G. F.; Divis, Dale H.

    1992-01-01

    Research is described on potential improvements to the software used with the NASA 49.25 MHz wind profiler located at Kennedy Space Center. In particular, the analysis and results are provided of a study to (1) identify preferred mathematical techniques for the detection of atmospheric signals that provide wind velocities which are obscured by natural and man-made sources, and (2) to analyze one or more preferred techniques to demonstrate proof of the capability to improve the detection of wind velocities.

  5. Design of airborne wind turbine and computational fluid dynamics analysis

    NASA Astrophysics Data System (ADS)

    Anbreen, Faiqa

    Wind energy is a promising alternative to the depleting non-renewable sources. The height of the wind turbines becomes a constraint to their efficiency. Airborne wind turbine can reach much higher altitudes and produce higher power due to high wind velocity and energy density. The focus of this thesis is to design a shrouded airborne wind turbine, capable to generate 70 kW to propel a leisure boat with a capacity of 8-10 passengers. The idea of designing an airborne turbine is to take the advantage of higher velocities in the atmosphere. The Solidworks model has been analyzed numerically using Computational Fluid Dynamics (CFD) software StarCCM+. The Unsteady Reynolds Averaged Navier Stokes Simulation (URANS) with K-epsilon turbulence model has been selected, to study the physical properties of the flow, with emphasis on the performance of the turbine and the increase in air velocity at the throat. The analysis has been done using two ambient velocities of 12 m/s and 6 m/s. At 12 m/s inlet velocity, the velocity of air at the turbine has been recorded as 16 m/s. The power generated by the turbine is 61 kW. At inlet velocity of 6 m/s, the velocity of air at turbine increased to 10 m/s. The power generated by turbine is 25 kW.

  6. Surface and airborne evidence for plumes and winds on triton

    USGS Publications Warehouse

    Hansen, C.J.; McEwen, A.S.; Ingersoll, A.P.; Terrile, R.J.

    1990-01-01

    Aeolian features on Triton that were imaged during the Voyager Mission have been grouped. The term "aeolian feature" is broadly defined as features produced by or blown by the wind, including surface and airborne materials. Observations of the latitudinal distributions of the features probably associated with current activity (known plumes, crescent streaks, fixed terminator clouds, and limb haze with overshoot) all occur from latitude -37?? to latitude -62??. Likely indicators of previous activity (dark surface streaks) occur from latitude -5?? to -70??, but are most abundant from -15?? to -45??, generally north of currently active features. Those indicators which give information on wind direction and speed have been measured. Wind direction is a function of altitude. The predominant direction of the surface wind streaks is found to be between 40?? and 80?? measured clockwise from north. The average orientation of streaks in the northeast quadrant is 59??. Winds at 1- to 3-kilometer altitude are eastward, while those at >8 kilometers blow west.

  7. Wind Energy Resource Assessment for Airborne Wind Turbines

    NASA Astrophysics Data System (ADS)

    Woodrow, A.

    2015-12-01

    Google, through its Makani project, is developing a new type of wind energy conversion device called an energy kite. Using a tethered airfoil flying in vertical loops, energy kites access stronger, more consistent wind resources at altitudes between 100-500m AGL. By eliminating mass and cost of the tower, nacelle, and gearbox of a conventional wind turbine, and by increasing the capacity factor of energy generation, energy kites promise to significantly reduce the levelized cost of wind energy. The focus of this presentation will be on the approach Makani has taken to characterize the wind resource at 100-500m, where far less study has taken place compared to the atmosphere accessed by conventional wind turbines.

  8. NARSTO SOS99NASH WIND PROFILER DATA

    Atmospheric Science Data Center

    2014-04-25

    NARSTO SOS99NASH WIND PROFILER DATA Project Title:  NARSTO ... Platform:  Ground Station Instrument:  Wind Profiler Location:  Nashville, Tennessee Spatial ... Data Guide Documents:  SOS99Nash Wind Profiler Guide Related Data:  Southern Oxidants ...

  9. Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS)

    NASA Astrophysics Data System (ADS)

    Rhothermel, Jeffry; Jones, W. D.; Dunkin, J. A.; McCaul, E. W., Jr.

    1993-01-01

    This effort involves development of a calibrated, pulsed coherent CO2 Doppler lidar, followed by a carefully-planned and -executed program of multi-dimensional wind velocity and aerosol backscatter measurements from the NASA DC-8 research aircraft. The lidar, designated as the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS), will be applicable to two research areas. First, MACAWS will enable specialized measurements of atmospheric dynamical processes in the planetary boundary layer and free troposphere in geographic locations and over scales of motion not routinely or easily accessible to conventional sensors. The proposed observations will contribute fundamentally to a greater understanding of the role of the mesoscale, helping to improve predictive capabilities for mesoscale phenomena and to provide insights into improving model parameterizations of sub-grid scale processes within large-scale circulation models. As such, it has the potential to contribute uniquely to major, multi-institutional field programs planned for the mid 1990's. Second, MACAWS measurements can be used to reduce the degree of uncertainty in performance assessments and algorithm development for NASA's prospective Laser Atmospheric Wind Sounder (LAWS), which has no space-based instrument heritage. Ground-based lidar measurements alone are insufficient to address all of the key issues. To minimize costs, MACAWS is being developed cooperatively by the lidar remote sensing groups of the Jet Propulsion Laboratory, NOAA Wave Propagation Laboratory, and MSFC using existing lidar hardware and manpower resources. Several lidar components have already been exercised in previous airborne lidar programs (for example, MSFC Airborne Doppler Lidar System (ADLS) used in 1981,4 Severe Storms Wind Measurement Program; JPL Airborne Backscatter Lidar Experiment (ABLE) used in 1989,90 Global Backscatter Experiment Survey Missions). MSFC has been given responsibility for directing the overall

  10. Vector wind profile gust model

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.

    1979-01-01

    Work towards establishing a vector wind profile gust model for the Space Transportation System flight operations and trade studies is reported. To date, all the statistical and computational techniques required were established and partially implemented. An analysis of wind profile gust at Cape Kennedy within the theoretical framework is presented. The variability of theoretical and observed gust magnitude with filter type, altitude, and season is described. Various examples are presented which illustrate agreement between theoretical and observed gust percentiles. The preliminary analysis of the gust data indicates a strong variability with altitude, season, and wavelength regime. An extension of the analyses to include conditional distributions of gust magnitude given gust length, distributions of gust modulus, and phase differences between gust components has begun.

  11. The Coplane Analysis Technique for Three-Dimensional Wind Retrieval Using the HIWRAP Airborne Doppler Radar

    NASA Technical Reports Server (NTRS)

    Didlake, Anthony C., Jr.; Heymsfield, Gerald M.; Tian, Lin; Guimond, Stephen R.

    2015-01-01

    The coplane analysis technique for mapping the three-dimensional wind field of precipitating systems is applied to the NASA High Altitude Wind and Rain Airborne Profiler (HIWRAP). HIWRAP is a dual-frequency Doppler radar system with two downward pointing and conically scanning beams. The coplane technique interpolates radar measurements to a natural coordinate frame, directly solves for two wind components, and integrates the mass continuity equation to retrieve the unobserved third wind component. This technique is tested using a model simulation of a hurricane and compared to a global optimization retrieval. The coplane method produced lower errors for the cross-track and vertical wind components, while the global optimization method produced lower errors for the along-track wind component. Cross-track and vertical wind errors were dependent upon the accuracy of the estimated boundary condition winds near the surface and at nadir, which were derived by making certain assumptions about the vertical velocity field. The coplane technique was then applied successfully to HIWRAP observations of Hurricane Ingrid (2013). Unlike the global optimization method, the coplane analysis allows for a transparent connection between the radar observations and specific analysis results. With this ability, small-scale features can be analyzed more adequately and erroneous radar measurements can be identified more easily.

  12. The Multi-Center Airborne Coherent Atmospheric Wind Sensor, MACAWS

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Hardesty, R. Michael; Menzies, Robert T.; Howell, James; Johnson, Steven C.; Tratt, David M.; Olivier, Lisa D.; Banta, Robert M.

    1997-01-01

    In 1992 the atmospheric lidar remote sensing groups of the NASA Marshall Space Flight Center, NOAA Environmental Technology Laboratory, and Jet Propulsion Laboratory began a joint collaboration to develop an airborne high-energy Doppler laser radar (lidar) system for atmospheric research and satellite validation and simulation studies. The result is the Multi-center Airborne Coherent Atmospheric Wind Sensor, MACAWS, which has the capability to remotely sense the distribution of wind and absolute aerosol backscatter in the troposphere and lower stratosphere. A factor critical to the programmatic feasibility and technical success of this collaboration has been the utilization of existing components and expertise which were developed for previous atmospheric research by the respective institutions. The motivation for the MACAWS program Is three-fold: to obtain fundamental measurements of sub-synoptic scale processes and features which may be used as a basis to improve sub-grid scale parameterizations in large-scale models; to obtain similar datasets in order to improve the understanding and predictive capabilities on the mesoscale; and to validate (simulate) the performance of existing (planned) satellite-borne sensors. Examples of the latter include participation in the validation of the NASA Scatterometer and the assessment of prospective satellite Doppler lidar for global tropospheric wind measurement. Initial flight tests were made in September 1995; subsequent flights were made in June 1996 following improvements. This paper describes the MACAWS instrument, principles of operation, examples of measurements over the eastern Pacific Ocean and western United States, and future applications.

  13. Multi-center airborne coherent atmospheric wind sensor (MACAWS)

    SciTech Connect

    Rothermel, J.; Menzies, R.T.; Tratt, D.M.

    1996-11-01

    The Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) is an airborne scanning coherent Doppler lidar designed to acquire remote multi-dimensional measurements of winds and absolute aerosol backscatter in the troposphere and lower stratosphere. These measurements enable study of atmospheric dynamic processes and features at scales of motion that may be undersampled by, or may be beyond the capability of, existing or planned sensors. MACAWS capabilities enable more realistic assessments of concepts in global tropospheric wind measurement with satellite Doppler lidar, as well as a unique capability to validate the NASA Scatterometer currently scheduled for launch in late 1996. MACAWS consists of a Joule-class CO{sub 2} coherent Doppler lidar on a ruggedized optical table, a programmable scanner to direct the lidar beam in the desired direction, and a dedicated inertial navigation system to account for variable aircraft attitude and speed. MACAWS was flown for the first time in September 1995, over the eastern Pacific Ocean and western US. 33 refs., 2 figs.

  14. Surface and airborne evidence for plumes and winds on Triton

    NASA Technical Reports Server (NTRS)

    Hansen, C. J.; Terrile, R. J.; Mcewen, A.; Ingersoll, A.

    1990-01-01

    Aeolian features on Triton that were imaged during the Voyager Mission have been grouped. The term 'aeolian feature' is broadly defined as features produced by or blown by the wind, including surface and airborne materials. Observations of the latitudinal distributions of the features probably associated with current activity (known plumes, crescent streaks, fixed terminator clouds, and limb haze with overshoot) all occur from latitude -37 deg to latitude -62 deg. Likely indicators of previous activity (dark surface streaks) occur from latitude -5 deg to -70 deg, but are most abundant from -15 deg to -45 deg, generally north of currently active features. Those indicators which give information on wind direction and speed have been measured. Wind direction is a function of altitude. The predominant direction of the surface wind streaks is found to be between 40 deg and 80 deg measured clockwise from north. The average orientation of streaks in the northeast quadrant is 59 deg. Winds at 1- to 3-kilometer altitude are eastward, while those at more than 8 kilometers blow west.

  15. Temperature and wind measurements and model atmospheres of the 1989 Airborne Arctic Stratospheric Expedition

    NASA Technical Reports Server (NTRS)

    Chan, K. R.; Bui, T. P.; Scott, S. G.; Bowen, S. W.; Dean-Day, J.

    1990-01-01

    The ER-2 Meteorological Measurement System provides accurate in situ measurements of atmospheric state variables. During the Airborne Arctic Stratospheric Expedition (AASE) the ER-2 flew over the polar region on 14 occasions in January and February, 1989. Vertical temperature profiles, during aircraft takeoff at about 60 deg N and during midflight descent and ascent at high latitudes, are presented. Latitudinal variations of the horizontal wind measurement are illustrated and discussed. Based on observation data, model atmospheres at 60 deg and 75 deg N, representative of the environment of the AASE campaign, are developed.

  16. Wind Retrieval Algorithms for the IWRAP and HIWRAP Airborne Doppler Radars with Applications to Hurricanes

    NASA Technical Reports Server (NTRS)

    Guimond, Stephen Richard; Tian, Lin; Heymsfield, Gerald M.; Frasier, Stephen J.

    2013-01-01

    Algorithms for the retrieval of atmospheric winds in precipitating systems from downward-pointing, conically-scanning airborne Doppler radars are presented. The focus in the paper is on two radars: the Imaging Wind and Rain Airborne Profiler(IWRAP) and the High-altitude IWRAP (HIWRAP). The IWRAP is a dual-frequency (Cand Ku band), multi-beam (incidence angles of 30 50) system that flies on the NOAAWP-3D aircraft at altitudes of 2-4 km. The HIWRAP is a dual-frequency (Ku and Kaband), dual-beam (incidence angles of 30 and 40) system that flies on the NASA Global Hawk aircraft at altitudes of 18-20 km. Retrievals of the three Cartesian wind components over the entire radar sampling volume are described, which can be determined using either a traditional least squares or variational solution procedure. The random errors in the retrievals are evaluated using both an error propagation analysis and a numerical simulation of a hurricane. These analyses show that the vertical and along-track wind errors have strong across-track dependence with values of 0.25 m s-1 at nadir to 2.0 m s-1 and 1.0 m s-1 at the swath edges, respectively. The across-track wind errors also have across-track structure and are on average, 3.0 3.5 m s-1 or 10 of the hurricane wind speed. For typical rotated figure four flight patterns through hurricanes, the zonal and meridional wind speed errors are 2 3 m s-1.Examples of measured data retrievals from IWRAP during an eyewall replacement cycle in Hurricane Isabel (2003) and from HIWRAP during the development of Tropical Storm Matthew (2010) are shown.

  17. The Tropospheric Wind Lidar Technology Experiment (TWiLiTE): An Airborne Direct Detection Doppler Lidar Instrument Development Program

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott

    2006-01-01

    Global measurement of tropospheric winds is a key measurement for understanding atmospheric dynamics and improving numerical weather prediction. Global wind profiles remain a high priority for the operational weather community and also for a variety of research applications including studies of the global hydrologic cycle and transport studies of aerosols and trace species. In addition to space based winds, a high altitude airborne system flown on UAV or other advanced platforms would be of great interest for studying mesoscale dynamics and hurricanes. The Tropospheric Wind Lidar Technology Experiment (TWiLiTE) project was selected in 2005 by the NASA Earth Sun Technology Office as part of the Instrument Incubator Program. TWiLiTE will leverage significant research and development investments in key technologies made in the past several years. The primary focus will be on integrating these sub-systems into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57, so that the nadir viewing lidar will be able to profile winds through the full troposphere. TWiLiTE is a collaboration involving scientists and technologists from NASA Goddard, NOAA ESRL, Utah State University Space Dynamics Lab and industry partners Michigan Aerospace Corporation and Sigma Space Corporation. NASA Goddard and it's partners have been at the forefront in the development of key lidar technologies (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a fixture spaceborne tropospheric wind system. The completed system will have the capability to profile winds in clear air from the aircraft altitude of 18 h to the surface with 250 m vertical

  18. Design and Evaluation of Airborne Wind Turbine Utilizing Physical Prototype

    NASA Astrophysics Data System (ADS)

    Safavi, Edris; Namakian, Mohsen; Sirén, Tim; Magnéli, Rickard; Ölvander, Johan

    Moving towards renewable sources of energy has become one of the most important energy-related strategies in recent decades. High-altitude wind power (HAWP) has been discovered in 1833 as a source of useful energy. Wind power density (Watts/m2) can significantly increase (~6 times) by going from 80 to 500 m altitude. The global capacity of 380 TW (terawatt) as well as abundance, strength, and relative persistency of wind in higher altitude are eye-catching points to consider HAWP as a reliable energy source in the future. A research project called "THOR" has been initiated at Linköping University by a group of master students (soon to graduate) as proof of concept of airborne wind energy (AWES). THOR is about feasibility analysis of different concepts of HAWP and proof of concept of balloon based AWES as one of the appropriate existing concepts. THOR is intended to be a research platform at Linköping University for further development of AWES concepts in future.

  19. Wind-Driven Angular Dependence of Sea-Surface Reflectance Measured with an Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Menzies, Robert T.; Cutten, Dean R.

    1998-01-01

    The effects of wind-stress on the optical properties of the ocean surface have been studied for several decades. In particular, the classic study by Cox and Munk (1954) linking sea-surface wind field to wave slope statistics provides a phenomenology by which the sea-surface wind velocity can be estimated from direct measurement of the wave-modulated surface reflectance. A limited number of studies along these lines have been conducted using airborne or spaceborne lidar systems. In these instances, truthing was provided by in situ ship reports or satellite microwave remote sensing instruments (e.g., ERS scatterometer, SSM/I). During the second deployment of the MACAWS Doppler wind lidar in the summer of 1996 measurements of sea-surface reflectance as a function of azimuth- and nadir-viewing angles were acquired off the California coast. MACAWS data products include directly measured winds, as well as calibrated backscatter/reflectance profiles, thus enabling comparison of the winds inferred from sea-surface reflectance measurements with those deriving from the Doppler-processed direct line-of-sight (LOS) estimates. Additional validation data was extracted from the ERS and SSM/I satellite microwave sensor archives maintained by the JPL Physical Oceanography Distributed Active Archive Center (PO- DAAC).

  20. AIRBORNE INERTIAL SURVEYING USING LASER TRACKING AND PROFILING TECHNIQUES.

    USGS Publications Warehouse

    Cyran, Edward J.; ,

    1986-01-01

    The U. S. Geological Survey through a contract with the Charles Stark Draper Laboratory has developed the Aerial Profiling of Terrain System. This is an airborne inertial surveying system designed to use a laser tracker to provide position and velocity updates, and a laser profiler to measure terrain elevations. The performance characteristics of the system are discussed with emphasis placed on the performance of the laser devices. The results of testing the system are summarized for both performance evaluation and applications.

  1. Design of Shrouded Airborne Wind Turbine & CFD Analysis

    NASA Astrophysics Data System (ADS)

    Anbreen, Faiqa; Faiqa Anbreen Collaboration

    2015-11-01

    The focus is to design a shrouded airborne wind turbine, capable to generate 70 kW to propel a leisure boat. The idea of designing an airborne turbine is to take the advantage of different velocity layers in the atmosphere. The blades have been designed using NREL S826 airfoil, which has coefficient of lift CL of 1.4 at angle of attack, 6°. The value selected for CP is 0.8. The rotor diameter is 7.4 m. The balloon (shroud) has converging-diverging nozzle design, to increase the mass flow rate through the rotor. The ratio of inlet area to throat area, Ai/At is 1.31 and exit area to throat area, Ae/At is1.15. The Solidworks model has been analyzed numerically using CFD. The software used is StarCCM +. The Unsteady Reynolds Averaged Navier Stokes Simulation (URANS) K- ɛ model has been selected, to study the physical properties of the flow, with emphasis on the performance of the turbine. Stress analysis has been done using Nastran. From the simulations, the torque generated by the turbine is approximately 800N-m and angular velocity is 21 rad/s.

  2. The Multi-center Airborne Coherent Atmospheric Wind Sensor.

    NASA Astrophysics Data System (ADS)

    Rothermel, Jeffry; Cutten, Dean R.; Hardesty, R. Michael; Menzies, Robert T.; Howell, James N.; Johnson, Steven C.; Tratt, David M.; Olivier, Lisa D.; Banta, Robert M.

    1998-04-01

    In 1992 the atmospheric lidar remote sensing groups of the National Aeronautics and Space Administration Marshall Space Flight Center, the National Oceanic and Atmospheric Administration/Environmental Technology Laboratory (NOAA/ETL), and the Jet Propulsion Laboratory began a joint collaboration to develop an airborne high-energy Doppler laser radar (lidar) system for atmospheric research and satellite validation and simulation studies. The result is the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS), which has the capability to remotely sense the distribution of wind and absolute aerosol backscatter in three-dimensional volumes in the troposphere and lower stratosphere.A factor critical to the programmatic feasibility and technical success of this collaboration has been the utilization of existing components and expertise that were developed for previous atmospheric research by the respective institutions. For example, the laser transmitter is that of the mobile ground-based Doppler lidar system developed and used in atmospheric research for more than a decade at NOAA/ETL.The motivation for MACAWS is threefold: 1) to obtain fundamental measurements of subsynoptic-scale processes and features to improve subgrid-scale parameterizations in large-scale models, 2) to obtain datasets in order to improve the understanding of and predictive capabilities for meteorological systems on subsynoptic scales, and 3) to validate (simulate) the performance of existing (planned) satellite-borne sensors.Initial flight tests were made in September 1995; subsequent flights were made in June 1996 following system improvements. This paper describes the MACAWS instrument, principles of operation, examples of measurements over the eastern Pacific Ocean and western United States, and future applications.

  3. VisibleWind: wind profile measurements at low altitude

    NASA Astrophysics Data System (ADS)

    Wilkerson, Tom; Bradford, Bill; Marchant, Alan; Apedaile, Tom; Wright, Cordell

    2009-09-01

    VisibleWindTM is developing an inexpensive rapid response system, for accurately characterizing wind shear and small scale wind phenomena in the boundary layer and for prospecting suitable locations for wind power turbines. The ValidWind system can also collect reliable "ground truth" for other remote wind sensors. The system employs small (0.25 m dia.) lightweight balloons and a tracker consisting of an Impulse 200 XL laser rangefinder coupled to a PC for automated data recording. Experiments on balloon trajectories demonstrate that the laser detection of range (+/- 0.5 m), together with measured azimuth and altitude, is an inexpensive, convenient, and capable alternative to other wind tracking methods. The maximum detection range has been increased to 2200 meters using micro-corner-cube retroreflector tape on balloons. Low power LEDs enable nighttime tracking. To avoid large balloon gyrations about the mean trajectory, we use balloons having low ascent rates and subcritical Reynolds numbers. Trajectory points are typically recorded every 4 - 7 seconds. Atmospheric features observed under conditions of inversions or "light and variable winds" include abrupt onsets of shear at altitudes of 100-250 m, velocity changes of order 1-3 m/s within layers of 10-20 m thickness, and veering of the wind direction by 180 degrees or more as altitude increases from 300 to 500 m. We have previously reported comparisons of balloon-based wind profiles with the output of a co-located sodar. Even with the Impulse rangefinder, our system still requires a "man in the loop" to track the balloon. A future system enhancement will automate balloon tracking, so that laser returns are obtained automatically at 1 Hz. While balloon measurements of large-scale, high altitude wind profiles are well known, this novel measurement system provides high-resolution, real-time characterization of the fluctuating local wind fields at the bottom of the boundary layer where wind power turbines and other

  4. Profiling the atmosphere with the airborne radio occultation technique

    NASA Astrophysics Data System (ADS)

    Muradyan, Paytsar

    The GNSS Instrument System for Multistatic and Occultation Sensing (GISMOS) was designed for dense sampling of meteorological targets using the airborne radio occultation (RO) technique. Airborne RO refers to an atmospheric limb sounding technique in which Global Positioning System (GPS) signals are recorded at a receiver onboard an aircraft as the satellites descend beyond the limb of the Earth. The GPS signals, that are unaffected by clouds and precipitation, experience refractive bending as well as a delay in the travel time through the atmosphere. Bending can be used to retrieve information about atmospheric refractivity, which depends on atmospheric moisture and temperature. The new system has the potential for improving numerical weather prediction (NWP) forecasts through assimilation of many high-resolution atmospheric profiles in an area of interest, compared to spaceborne RO, which samples sparsely around the globe. In February 2008, GISMOS was deployed on the National Science Foundation Gulfstream-V aircraft to make atmospheric observations in the Gulf of Mexico coastal region with an objective to test the performance of the profiling system. Recordings from this flight campaign made with the conventional phase lock loop GPS receivers descend from flight level to 5 km altitude. However, below that level strong refractivity gradients, especially those associated with the boundary layer, cause rapid phase accelerations resulting in loss of lock in the receiver. To extend the RO profiles deeper in the atmosphere, the GISMOS system was also equipped with a GPS Recording System (GRS) that records the raw RF signals. Post-processing this dataset in open-loop (OL) tracking mode enables reliable atmospheric profiling at lower altitudes. We present a comprehensive analysis of the performance of the airborne system OL tracking algorithm during a 5 hour flight on 15 February 2008. Excess phase and amplitude profiles for 5 setting and 5 rising occultations were

  5. First Test of a Shipboard Wind Profiler.

    NASA Astrophysics Data System (ADS)

    Carter, D. A.; Ecklund, W. L.; Gage, K. S.; Spowart, M.; Cole, H. L.; Chamberlain, E. F.; Dabberdt, W. F.; Wilson, J.

    1992-10-01

    The Aeronomy Laboratory of the National Oceanic and Atmospheric Administration and the Atmospheric Technology Division of the National Center for Atmospheric Research are jointly developing Integrated Sounding Systems (ISS) for use in support of TOGA (Tropical Ocean Global Atmosphere) and TOGA COARE (Coupled Ocean-Atmosphere Response Experiment). Some of the ISS units will have to be operated on research ships during TOGA COARE's intensive observing period in late 1992 and early 1993. The greatest technical challenge in adapting the ISS to shipboard use is to stabilize the UHF wind profiler that is an integral part of the ISS. In June 1991 a UHF wind-profiling Doppler radar was installed on a stabilized platform aboard the NOAA research vessel Malcolm Baldrige on an eight-day cruise in the Atlantic Ocean. The wind profiler was gyrostabilized and profiler winds were corrected for ship motion utilizing the Global Positioning System. During the eight days at sea, CLASS (Cross-Chain LORAN Atmospheric Sounding System) and OMEGA Sounding System balloons were launched on-board ship for wind profile comparisons. Results of the comparisons show excellent agreement between wind profiles, with an rms difference of about 1 m s1 in wind speed.

  6. Instrument description of the airborne microwave temperature profiler

    SciTech Connect

    Denning, R.F.; Guidero, S.L.; Parks, G.S.; Gary, B.L. )

    1989-11-30

    The microwave temperature profiler (MTP) is a passive microwave radiometer installed in the NASA ER-2 aircraft and used to measure profiles of air temperature versus altitude. It operates at 57.3 and 58.8 GHz, where oxygen molecules emit thermal radiation. Brightness temperature is measured at a selection of viewing elevation angles every 14 s. MTP was the only remote sensing experiment aboard the ER-2 during the Airborne Antarctic Ozone Experiment. This paper describes hardware, calibration, and performance aspects of the MTP.

  7. Instrument description of the airborne microwave temperature profiler

    NASA Technical Reports Server (NTRS)

    Denning, Richard F.; Guidero, Steven L.; Parks, Gary S.; Gary, Bruce L.

    1989-01-01

    The microwave temperature profiler (MTP) is a passive microwave radiometer installed in the NASA ER-2 aircraft and used to measure profiles of air temperature versus altitude. It operates at 57.3 and 58.8 GHz, where oxygen molecules emit thermal radiation. Brightness temperature is measured at a selection of viewing elevation angles every 14 s. MTP was the only remote sensing experiment aboard the ER-2 during the Airborne Antarctic Ozone Experiment. This paper describes hardware, calibration, and performance aspects of the MTP.

  8. Multicenter airborne coherent atmospheric wind sensor (MACAWS) instrument: recent upgrades and results

    NASA Astrophysics Data System (ADS)

    Howell, James N.; Rothermel, Jeffrey; Tratt, David M.; Cutten, Dean; Darby, Lisa S.; Hardesty, R. Michael

    1999-10-01

    The Multicenter Airborne Coherent Atmospheric Wind Sensor instrument is an airborne coherent Doppler laser radar (Lidar) capable of measuring atmospheric wind fields and aerosol structure. Since the first demonstration flights onboard the NASA DC-8 research aircraft in September 1995, two additional science flights have been completed. Several system upgrades have also bee implemented. In this paper we discuss the system upgrades and present several case studies which demonstrate the various capabilities of the system.

  9. Performance of Airborne Precision Spacing Under Realistic Wind Conditions

    NASA Technical Reports Server (NTRS)

    Wieland, Frederick; Santos, Michel; Krueger, William; Houston, Vincent E.

    2011-01-01

    With the expected worldwide increase of air traffic during the coming decade, both the Federal Aviation Administration s (FAA s) Next Generation Air Transportation System (NextGen), as well as Eurocontrol s Single European Sky ATM Research (SESAR) program have, as part of their plans, air traffic management solutions that can increase performance without requiring time-consuming and expensive infrastructure changes. One such solution involves the ability of both controllers and flight crews to deliver aircraft to the runway with greater accuracy than is possible today. Previous research has shown that time-based spacing techniques, wherein the controller assigns a time spacing to each pair of arriving aircraft, is one way to achieve this goal by providing greater runway delivery accuracy that produces a concomitant increase in system-wide performance. The research described herein focuses on a specific application of time-based spacing, called Airborne Precision Spacing (APS), which has evolved over the past ten years. This research furthers APS understanding by studying its performance with realistic wind conditions obtained from atmospheric sounding data and with realistic wind forecasts obtained from the Rapid Update Cycle (RUC) short-range weather forecast. In addition, this study investigates APS performance with limited surveillance range, as provided by the Automatic Dependent Surveillance-Broadcast (ADS-B) system, and with an algorithm designed to improve APS performance when an ADS-B signal is unavailable. The results presented herein quantify the runway threshold delivery accuracy of APS un-der these conditions, and also quantify resulting workload metrics such as the number of speed changes required to maintain spacing.

  10. Analysis of Rhode Island Coastal Wind Profiles

    NASA Astrophysics Data System (ADS)

    Knorr, K. I.; Merrill, J. T.

    2012-12-01

    Eleven wind profile data sets were collected at sites in Rhode Island between 2007 and the present, extending over periods from 6 to 20 months, with a mean of 14 months. The data was gathered from meteorological towers via anemometers and wind vanes at heights up to 60 m, or using SoDAR (Sonic Detection And Ranging) instruments at heights up to 200 m. Wind speeds are generally greater in the fall and winter, with minimum wind speeds occurring in the summer. Winds blow most frequently from the northwest in the winter and from the southwest in the summer. The power law describes wind speed with height in neutral static stability conditions; the fitted shear coefficient characterizes the distribution and is used in wind resource assessment. Marine sites exhibit higher wind speeds and lower shear than terrestrial sites, due to lower surface drag. In contrast, terrestrial sites experience more shear and greater temporal variability. The magnitude of diel and seasonal differences between marine and terrestrial locations will be discussed. The land-breeze sea-breeze cycle influences wind throughout the study area; the magnitude of this variation, along with azimuthal shear will be considered. In addition to the short-term profile data, we used several multi-decadal single height anemometer data sets. Wind estimates at hub height over an extended time period calculated using Measure Correlate Predict (MCP) algorithms will be discussed in the context of hypothesized temporal trends in the wind speeds. Utilization of such data for wind energy and other applications will be discussed.

  11. Development of a Climatology of Vertically Complete Wind Profiles from Doppler Radar Wind Profiler Systems

    NASA Technical Reports Server (NTRS)

    Barbre, Robert, Jr.

    2015-01-01

    Assessment of space vehicle loads and trajectories during design requires a large sample of wind profiles at the altitudes where winds affect the vehicle. Traditionally, this altitude region extends from near 8-14 km to address maximum dynamic pressure upon ascent into space, but some applications require knowledge of measured wind profiles at lower altitudes. Such applications include crew capsule pad abort and plume damage analyses. Two Doppler Radar Wind Profiler (DRWP) systems exist at the United States Air Force (USAF) Eastern Range and at the National Aeronautics and Space Administration's Kennedy Space Center. The 50-MHz DRWP provides wind profiles every 3-5 minutes from roughly 2.5-18.5 km, and five 915-MHz DRWPs provide wind profiles every 15 minutes from approximately 0.2-3.0 km. Archived wind profiles from all systems underwent rigorous quality control (QC) processes, and concurrent measurements from the QC'ed 50- and 915-MHz DRWP archives were spliced into individual profiles that extend from about 0.2-18.5 km. The archive contains combined profiles from April 2000 to December 2009, and thousands of profiles during each month are available for use by the launch vehicle community. This paper presents the details of the QC and splice methodology, as well as some attributes of the archive.

  12. Wind profiler observations of a sting jet

    NASA Astrophysics Data System (ADS)

    Vaughan, G.; Parton, G.

    2009-09-01

    Some of the most damaging surface winds experienced in midlatitude cyclonic storms have been attributed to a phenomenon known as a sting jet. Previous studies have deduced how sting jets develop from their mid-tropospheric origin, but there have been no direct observations of these wind features in the mid-troposphere. During windstorm Jeanette on the 27th October 2002, the tip of the storm's cloud head passed over a VHF wind profiler at Aberystwyth, Wales, allowing the structure of a sting jet to be measured with high spatial and temporal resolution. These observations showed a multiple slantwise structure to the sting jet region with two tails of increased winds which persisted after the passing of the cloud head aloft. Simulations by the Met Office Unified Model (UM) showed that the slantwise structure followed ?w surfaces, and that the sting jet descended along ? surfaces as it passed over the UK, accelerating and drying during its descent. The horizontal and vertical scales of the observed structures are compatible with slantwise convection releasing Conditional Symmetric Instability within the cloud head. Further observations of the sting jet were obtained by a UHF wind profiler at Cardington in eastern England, where the sting jet had merged with the cold conveyor belt circulating around the storm. An unstable temperature profile in the lowest kilometre over Cardington enabled damaging gusts of strong winds to be brought to the surface in convective plumes; however, this strong vertical mixing was not represented correctly in the UM.

  13. T-lymphocyte cytokine profiles in compositae airborne dermatitis.

    PubMed

    Stingeni, L; Agea, E; Lisi, P; Spinozzi, F

    1999-10-01

    Compositae airborne dermatitis is a well-recognized disorder characterized by erythematosquamous lesions and papules on light-exposed areas. The presence of positive patch test reactions and the absence of specific serum IgE suggest delayed-type hypersensitivity, the murine model of which is characterized by a Th1 cytokine production profile [high amounts of interferon (IFN)-gamma and interleukin (IL)-2; little or no IL-4 and IL-5]. The aim of this study was to evaluate the cytokine profile of T-cell lines and T-cell clones from peripheral blood in a 38-year-old non-atopic male woodcutter affected by seasonal airborne contact dermatitis. The patient showed positive patch test reactions to several Compositae extracts (Achillea millefolium, Chamomilla recutita, Tanacetum parthenium, T. vulgare) and sesquiterpene lactone mix. On prick testing with Compositae and other plants, serum-specific IgE levels and phototesting were negative or normal. Allergen-specific T-cell lines produced with Compositae extracts showed a good in vitro cell proliferation only to C. recutita extract. Serial cloning performed using the C. recutita-specific T-cell lines revealed an alphabeta+CD4+ phenotype with high amounts of IFN-gamma and IL-4 in T-cell clones. Thus, these cells expressed a preferential Th0 phenotype. These data suggest that in addition to IFN-gamma, other T-cell derived cytokines, such as IL-4, may play a part in the immunopathogenesis of contact dermatitis.

  14. Vector wind profile gust model

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.

    1981-01-01

    To enable development of a vector wind gust model suitable for orbital flight test operations and trade studies, hypotheses concerning the distributions of gust component variables were verified. Methods for verification of hypotheses that observed gust variables, including gust component magnitude, gust length, u range, and L range, are gamma distributed and presented. Observed gust modulus has been drawn from a bivariate gamma distribution that can be approximated with a Weibull distribution. Zonal and meridional gust components are bivariate gamma distributed. An analytical method for testing for bivariate gamma distributed variables is presented. Two distributions for gust modulus are described and the results of extensive hypothesis testing of one of the distributions are presented. The validity of the gamma distribution for representation of gust component variables is established.

  15. An approach to evaluating reactive airborne wind shear systems

    NASA Technical Reports Server (NTRS)

    Gibson, Joseph P., Jr.

    1992-01-01

    An approach to evaluating reactive airborne windshear detection systems was developed to support a deployment study for future FAA ground-based windshear detection systems. The deployment study methodology assesses potential future safety enhancements beyond planned capabilities. The reactive airborne systems will be an integral part of planned windshear safety enhancements. The approach to evaluating reactive airborne systems involves separate analyses for both landing and take-off scenario. The analysis estimates the probability of effective warning considering several factors including NASA energy height loss characteristics, reactive alert timing, and a probability distribution for microburst strength.

  16. Effect of land uses and wind direction on the contribution of local sources to airborne pollen.

    PubMed

    Rojo, Jesús; Rapp, Ana; Lara, Beatriz; Fernández-González, Federico; Pérez-Badia, Rosa

    2015-12-15

    The interpretation of airborne pollen levels in cities based on the contribution of the surrounding flora and vegetation is a useful tool to estimate airborne allergen concentrations and, consequently, to determine the allergy risk for local residents. This study examined the pollen spectrum in a city in central Spain (Guadalajara) and analysed the vegetation landscape and land uses within a radius of 20km in an attempt to identify and locate the origin of airborne pollen and to determine the effect of meteorological variables on pollen emission and dispersal. The results showed that local wind direction was largely responsible for changes in the concentrations of different airborne pollen types. The land uses contributing most to airborne pollen counts were urban green spaces, though only 0.1% of the total surface area studied, and broadleaved forest which covered 5% of the study area. These two types of land use together accounted for 70% of the airborne pollen. Crops, scrubland and pastureland, though covering 80% of the total surface area, contributed only 18.6% to the total pollen count, and this contribution mainly consisted of pollen from Olea and herbaceous plants, including Poaceae, Urticaceae and Chenopodiaceae-Amaranthaceae. Pollen from ornamental species were mainly associated with easterly (Platanus), southerly (Cupressaceae) and westerly (Cupressaceae and Platanus) winds from the areas where the city's largest parks and gardens are located. Quercus pollen was mostly transported by winds blowing in from holm-oak stands on the eastern edge of the city. The highest Populus pollen counts were associated with easterly and westerly winds blowing in from areas containing rivers and streams. The airborne pollen counts generally rose with increasing temperature, solar radiation and hours of sunlight, all of which favour pollen release. In contrast, pollen counts declined with increased relative humidity and rainfall, which hinder airborne pollen transport.

  17. Airborne Wind Shear Detection and Warning Systems: First Combined Manufacturers' and Technologists' Conference

    NASA Technical Reports Server (NTRS)

    Spady, Amos A., Jr. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1988-01-01

    The purpose of the meeting was to transfer significant, ongoing results gained during the first year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-looking technology concepts and for technologists to gain an understanding of FAA certification requirements and the problems encountered by the manufacturers during the development of airborne equipment.

  18. Air-Sea Spray Airborne Radar Profiler Characterizes Energy Fluxes in Hurricanes

    NASA Technical Reports Server (NTRS)

    Durden, Stephen L.; Esteban-Fermandez, D.

    2010-01-01

    A report discusses ASAP (Air-sea Spray Airborne Profiler), a dual-wavelength radar profiler that provides measurement information about the droplet size distribution (DSD) of sea-spray, which can be used to estimate heat and moisture fluxes for hurricane research. Researchers have recently determined that sea spray can have a large effect on the magnitude and distribution of the air-sea energy flux at hurricane -force wind speeds. To obtain information about the DSD, two parameters of the DSD are required; for example, overall DSD amplitude and DSD mean diameter. This requires two measurements. Two frequencies are used, with a large enough separation that the differential frequency provides size information. One frequency is 94 GHz; the other is 220 GHz. These correspond to the Rayleigh and Mie regions. Above a surface wind speed of 10 m/ s, production of sea spray grows exponentially. Both the number of large droplets and the altitude they reach are a function of the surface wind speed.

  19. Assimilation of Wind Profiles from Multiple Doppler Radar Wind Profilers for Space Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Walker, John R.; Barbre, Robert E., Jr.; Leach, Richard D.

    2015-01-01

    Atmospheric wind data are required by space launch vehicles in order to assess flight vehicle loads and performance on day-of-launch. Space launch ranges at NASA's Kennedy Space Center co-located with the United States Air Force's (USAF) Eastern Range (ER) at Cape Canaveral Air Force Station and USAF's Western Range (WR) at Vandenberg Air Force Base have extensive networks of in-situ and remote sensing instrumentation to measure atmospheric winds. Each instrument's technique to measure winds has advantages and disadvantages in regards to use within vehicle trajectory analyses. Balloons measure wind at all altitudes necessary for vehicle assessments, but two primary disadvantages exist when applying balloon output. First, balloons require approximately one hour to reach required altitudes. Second, balloons are steered by atmospheric winds down range of the launch site that could significantly differ from those winds along the vehicle ascent trajectory. These issues are mitigated by use of vertically pointing Doppler Radar Wind Profilers (DRWPs). However, multiple DRWP instruments are required to provide wind data over altitude ranges necessary for vehicle trajectory assessments. The various DRWP systems have different operating configurations resulting in different temporal and spatial sampling intervals. Therefore, software was developed to combine data from both DRWP-generated profiles into a single profile for use in vehicle trajectory analyses. This paper will present details of the splicing software algorithms and will provide sample output.

  20. The Multi-Center Airborne Coherent Atmospheric Wind Sensor: Recent Measurements and Future Applications

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Hardesty, R. Michael; Howell, James N.; Darby, Lisa S.; Tratt, David M.; Menzies, Robert T.

    1999-01-01

    The coherent Doppler lidar, when operated from an airborne platform, offers a unique measurement capability for study of atmospheric dynamical and physical properties. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are at a disadvantage in terms of spatial resolution and coverage. Recent experience suggests airborne coherent Doppler lidar can yield unique wind measurements of--and during operation within--extreme weather phenomena. This paper presents the first airborne coherent Doppler lidar measurements of hurricane wind fields. The lidar atmospheric remote sensing groups of National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, and Jet Propulsion Laboratory jointly developed an airborne lidar system, the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS). The centerpiece of MACAWS is the lidar transmitter from the highly successful NOAA Windvan. Other field-tested lidar components have also been used, when feasible, to reduce costs and development time. The methodology for remotely sensing atmospheric wind fields with scanning coherent Doppler lidar was demonstrated in 1981; enhancements were made and the system was reflown in 1984. MACAWS has potentially greater scientific utility, compared to the original airborne scanning lidar system, owing to a factor of approx. 60 greater energy-per-pulse from the NOAA transmitter. MACAWS development was completed and the system was first flown in 1995. Following enhancements to improve performance, the system was re-flown in 1996 and 1998. The scientific motivation for MACAWS is three-fold: obtain fundamental measurements of subgrid scale (i.e., approx. 2-200 km) processes and features which may be used to improve parameterizations in hydrological, climate, and general

  1. Overview of the first Multicenter Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiment: conversion of a ground-based lidar for airborne applications

    NASA Astrophysics Data System (ADS)

    Howell, James N.; Hardesty, R. Michael; Rothermel, Jeffrey; Menzies, Robert T.

    1996-11-01

    The first Multi center Airborne Coherent Atmospheric Wind Sensor (MACAWS) field experiment demonstrated an airborne high energy TEA CO2 Doppler lidar system for measurement of atmospheric wind fields and aerosol structure. The system was deployed on the NASA DC-8 during September 1995 in a series of checkout flights to observe several important atmospheric phenomena, including upper level winds in a Pacific hurricane, marine boundary layer winds, cirrus cloud properties, and land-sea breeze structure. The instrument, with its capability to measure 3D winds and backscatter fields, promises to be a valuable tool for climate and global change, severe weather, and air quality research. In this paper, we describe the airborne instrument, assess its performance, discuss future improvements, and show some preliminary results from the September experiments.

  2. Overview of the first Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiment: Conversion of a ground-based lidar for airborne applications

    SciTech Connect

    Howell, J.N.; Hardesty, R.M.; Rothermel, J.; Menzies, R.T.

    1996-12-31

    The first Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) field experiment demonstrated an airborne high energy TEA CO{sub 2} Doppler lidar system for measurement of atmospheric wind fields and aerosol structure. The system was deployed on the NASA DC-8 during September 1995 in a series of checkout flights to observe several important atmospheric phenomena, including upper level winds in a Pacific hurricane, marine boundary layer winds, cirrus cloud properties, and land-sea breeze structure. The instrument, with its capability to measure three-dimensional winds and backscatter fields, promises to be a valuable tool for climate and global change, severe weather, and air quality research. In this paper, the authors describe the airborne instrument, assess its performance, discuss future improvements, and show some preliminary results from September experiments.

  3. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1991-01-01

    Papers presented at the conference on airborne wind shear detection and warning systems are compiled. The following subject areas are covered: terms of reference; case study; flight management; sensor fusion and flight evaluation; Terminal Doppler Weather Radar data link/display; heavy rain aerodynamics; and second generation reactive systems.

  4. Assimilation of Wind Profiles from Multiple Doppler Radar Wind Profilers for Space Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.; Brenton, James C.; Walker, James C.; Leach, Richard D.

    2015-01-01

    Space launch vehicles utilize atmospheric winds in design of the vehicle and during day-of-launch (DOL) operations to assess affects of wind loading on the vehicle and to optimize vehicle performance during ascent. The launch ranges at NASA's Kennedy Space Center co-located with the United States Air Force's (USAF) Eastern Range (ER) at Cape Canaveral Air Force Station and USAF's Western Range (WR) at Vandenberg Air Force Base have extensive networks of in-situ and remote sensing instrumentation to measure atmospheric winds. Each instrument's technique to measure winds has advantages and disadvantages in regards to use for vehicle engineering assessments. Balloons measure wind at all altitudes necessary for vehicle assessments, but two primary disadvantages exist when applying balloon output on DOL. First, balloons need approximately one hour to reach required altitude. For vehicle assessments this occurs at 60 kft (18.3 km). Second, balloons are steered by atmospheric winds down range of the launch site that could significantly differ from those winds along the vehicle ascent trajectory. Figure 1 illustrates the spatial separation of balloon measurements from the surface up to approximately 55 kft (16.8 km) during the Space Shuttle launch on 10 December 2006. The balloon issues are mitigated by use of vertically pointing Doppler Radar Wind Profilers (DRWPs). However, multiple DRWP instruments are required to provide wind data up to 60 kft (18.3 km) for vehicle trajectory assessments. The various DRWP systems have different operating configurations resulting in different temporal and spatial sampling intervals. Therefore, software was developed to combine data from both DRWP-generated profiles into a single profile for use in vehicle trajectory analyses. Details on how data from various wind measurement systems are combined and sample output will be presented in the following sections.

  5. Wind profiler-related research in the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Gage, K. S.; Balsley, B. B.; Ecklund, W. L.; Carter, D. A.; McAfee, J. R.

    This paper is concerned with the application of wind-profiling Doppler radar technology to tropical atmospheric research. Examples of the use of wind profilers in the tropics are drawn from the Aeronomy Laboratory's wind profilers located on Pohnpei, Micronesia (7°N, 158°E), and Christmas Island (2°N, 157°W). The Pohnpei wind profiler was constructed in 1984 and has been used exclusively to observe vertical motions. The Christmas Island wind profiler has observed horizontal and vertical velocities routinely since 1986. These two wind profilers form part of a planned trans-Pacific network of wind-profiling radars that will eventually span the tropical Pacific.

  6. Estimation of Separation Buffers for Wind-Prediction Error in an Airborne Separation Assistance System

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Hoadley, Sherwood T.; Allen, B. Danette

    2009-01-01

    Wind prediction errors are known to affect the performance of automated air traffic management tools that rely on aircraft trajectory predictions. In particular, automated separation assurance tools, planned as part of the NextGen concept of operations, must be designed to account and compensate for the impact of wind prediction errors and other system uncertainties. In this paper we describe a high fidelity batch simulation study designed to estimate the separation distance required to compensate for the effects of wind-prediction errors throughout increasing traffic density on an airborne separation assistance system. These experimental runs are part of the Safety Performance of Airborne Separation experiment suite that examines the safety implications of prediction errors and system uncertainties on airborne separation assurance systems. In this experiment, wind-prediction errors were varied between zero and forty knots while traffic density was increased several times current traffic levels. In order to accurately measure the full unmitigated impact of wind-prediction errors, no uncertainty buffers were added to the separation minima. The goal of the study was to measure the impact of wind-prediction errors in order to estimate the additional separation buffers necessary to preserve separation and to provide a baseline for future analyses. Buffer estimations from this study will be used and verified in upcoming safety evaluation experiments under similar simulation conditions. Results suggest that the strategic airborne separation functions exercised in this experiment can sustain wind prediction errors up to 40kts at current day air traffic density with no additional separation distance buffer and at eight times the current day with no more than a 60% increase in separation distance buffer.

  7. Microwave Temperature Profiler Mounted in a Standard Airborne Research Canister

    NASA Technical Reports Server (NTRS)

    Mahoney, Michael J.; Denning, Richard F.; Fox, Jack

    2009-01-01

    Many atmospheric research aircraft use a standard canister design to mount instruments, as this significantly facilitates their electrical and mechanical integration and thereby reduces cost. Based on more than 30 years of airborne science experience with the Microwave Temperature Profiler (MTP), the MTP has been repackaged with state-of-the-art electronics and other design improvements to fly in one of these standard canisters. All of the controlling electronics are integrated on a single 4 5-in. (.10 13- cm) multi-layer PCB (printed circuit board) with surface-mount hardware. Improved circuit design, including a self-calibrating RTD (resistive temperature detector) multiplexer, was implemented in order to reduce the size and mass of the electronics while providing increased capability. A new microcontroller-based temperature controller board was designed, providing better control with fewer components. Five such boards are used to provide local control of the temperature in various areas of the instrument, improving radiometric performance. The new stepper motor has an embedded controller eliminating the need for a separate controller board. The reference target is heated to avoid possible emissivity (and hence calibration) changes due to moisture contamination in humid environments, as well as avoiding issues with ambient targets during ascent and descent. The radiometer is a double-sideband heterodyne receiver tuned sequentially to individual oxygen emission lines near 60 GHz, with the line selection and intermediate frequency bandwidths chosen to accommodate the altitude range of the aircraft and mission.

  8. Airborne Wind Shear Detection and Warning Systems: Fourth Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Passman, Robert H. (Compiler)

    1992-01-01

    The purpose of the meeting was to transfer significant ongoing results of the NASA/FAA joint Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements. The present document was compiled to record the essence of the technology updates and discussions which follow each.

  9. Airborne Wind Shear Detection and Warning Systems. Second Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Spady, Amos A., Jr. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1990-01-01

    The Second Combined Manufacturers' and Technologists' Conference hosted jointly by NASA Langley (LaRC) and the Federal Aviation Administration (FAA) was held in Williamsburg, Virginia, on October 18 to 20, 1988. The purpose of the meeting was to transfer significant, ongoing results gained during the second year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.

  10. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1991-01-01

    The Third Combined Manufacturers' and Technologists' Conference was held in Hampton, Va., on October 16-18, 1990. The purpose of the meeting was to transfer significant on-going results of the NASA/FAA joint Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.

  11. MARLI: MARs LIdar for Global Wind Profiles and Aerosol Profiles from Orbit

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Guzewich, S. D.; Smith, M. D.; Riris, H.; Sun, X.; Gentry, B. M.; Yu, A.; Allan, G. R.

    2016-10-01

    Winds are the key variable to understand atmospheric transport and to answer fundamental questions about the three primary cycles of the Mars climate. We are developing a new orbital lidar to directly measure both wind profiles and aerosol profiles.

  12. Hatchery workers' IgG antibody profiles to airborne bacteria.

    PubMed

    Brauner, Paul; Gromöller, Silvana; Pfeifer, Yvonne; Wilharm, Gottfried; Jäckel, Udo

    2017-04-01

    Occupational exposure to high concentrations of airborne bacteria in poultry production is related to an increased risk of respiratory disorders. However, etiology and in particular microorganisms' potential role in pathogenesis still needs to be elucidated. Thus, detection of specific antibodies against occupational microbial antigens may lead to identification of potentially harmful species. For the purpose of IgG titer determination, indirect immunofluorescence on various bacterial isolates from duck hatchery air was combined with image-based quantification of fluorescence intensity. Moreover, in addition to established assays with pure bacterial cultures, a new approach utilized complex bioaerosol samples for detection of anti-microbial antibodies in human sera by determination of percentages of antibody-bound cells in different serum dilutions. Mean titers in sera from hatchery workers and a non-exposed control group did not display significant differences for most tested isolates and application of comprehensive cluster analysis to entire titer data revealed no structure reflecting workers and controls group. Furthermore, determination of immunoreactivity to the complete microbial community in workplace air displayed similar proportions of antibody-bound cells in both groups. Although no general differences in immunoreaction patterns were observed, mean titers to a Proteus mirabilis isolate and to 3 of 4 distinct Acinetobacter baumannii isolates were higher in the group of hatchery workers than in the reference group indicating a potential applicability as exposure markers. We conclude, despite long term bioaerosol exposure, hatchery workers' IgG antibody profiles to tested antigens did not differ substantially from those of the control group. However, increased workers' titers to A. baumannii and clinical relevance of this species should lead to further investigations regarding potential involvement in pathogenesis of occupational respiratory disorders.

  13. Quality Control of Wind Data from 50-MHz Doppler Radar Wind Profiler

    NASA Technical Reports Server (NTRS)

    Vacek, Austin

    2016-01-01

    Upper-level wind profiles obtained from a 50-MHz Doppler Radar Wind Profiler (DRWP) instrument at Kennedy Space Center are incorporated in space launch vehicle design and day-of-launch operations to assess wind effects on the vehicle during ascent. Automated and manual quality control (QC) techniques are implemented to remove spurious data in the upper-level wind profiles caused from atmospheric and non-atmospheric artifacts over the 2010-2012 period of record (POR). By adding the new quality controlled profiles with older profiles from 1997-2009, a robust database will be constructed of upper-level wind characteristics. Statistical analysis will determine the maximum, minimum, and 95th percentile of the wind components from the DRWP profiles over recent POR and compare against the older database. Additionally, this study identifies specific QC flags triggered during the QC process to understand how much data is retained and removed from the profiles.

  14. Quality Control of Wind Data from 50-MHz Doppler Radar Wind Profiler

    NASA Technical Reports Server (NTRS)

    Vacek, Austin D.

    2015-01-01

    Upper-level wind profiles obtained from a 50-MHz Doppler Radar Wind Profiler (DRWP) instrument at Kennedy Space Center are incorporated in space launch vehicle design and day-of-launch operations to assess wind effects on the vehicle during ascent. Automated and manual quality control (QC) techniques are implemented to remove spurious data in the upper-level wind profiles caused from atmospheric and non-atmospheric artifacts over the 2010-2012 period of record (POR). By adding the new quality controlled profiles with older profiles from 1997-2009, a robust database will be constructed of upper-level wind characteristics. Statistical analysis will determine the maximum, minimum, and 95th percentile of the wind components from the DRWP profiles over recent POR and compare against the older database. Additionally, this study identifies specific QC flags triggered during the QC process to understand how much data is retained and removed from the profiles.

  15. Hurricane Wind Field Measurements with Scanning Airborne Doppler Lidar During CAMEX-3

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, D. R.; Howell, J. N.; Darby, L. S.; Hardesty, R. M.; Traff, D. M.; Menzies, R. T.

    2000-01-01

    During the 1998 Convection and Moisture Experiment (CAMEX-3), the first hurricane wind field measurements with Doppler lidar were achieved. Wind fields were mapped within the eye, along the eyewall, in the central dense overcast, and in the marine boundary layer encompassing the inflow region. Spatial coverage was determined primarily by cloud distribution and opacity. Within optically-thin cirrus slant range of 20- 25 km was achieved, whereas no propagation was obtained during penetration of dense cloud. Measurements were obtained with the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) on the NASA DC-8 research aircraft. MACAWS was developed and operated cooperatively by the atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory. A pseudo-dual Doppler technique ("co-planar scanning") is used to map the horizontal component of the wind at several vertical levels. Pulses from the laser are directed out the left side of the aircraft in the desired directions using computer-controlled rotating prisms. Upon exiting the aircraft, the beam is completely eyesafe. Aircraft attitude and speed are taken into account during real-time signal processing, resulting in determination of the ground-relative wind to an accuracy of about 1 m/s magnitude and about 10 deg direction. Beam pointing angle errors are about 0.1 deg, equivalent to about 17 m at 10 km. Horizontal resolution is about 1 km (along-track) for typical signal processor and scanner settings; vertical resolution varies with range. Results from CAMEX-3 suggest that scanning Doppler wind lidar can complement airborne Doppler radar by providing wind field measurements in regions that are devoid of hydrometeors. At present MACAWS observations are being assimilated into experimental forecast models and satellite Doppler wind lidar simulations to evaluate the relative impact.

  16. Remote Sensing of Wind Fields and Aerosol Distribution with Airborne Scanning Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Johnson, Steven C.; Jazembski, Maurice; Arnold, James E. (Technical Monitor)

    2001-01-01

    The coherent Doppler laser radar (lidar), when operated from an airborne platform, is a unique tool for the study of atmospheric and surface processes and features. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are typically at a disadvantage. The atmospheric lidar remote sensing groups of several US institutions, led by Marshall Space Flight Center, have developed an airborne coherent Doppler lidar capable of mapping the wind field and aerosol structure in three dimensions. The instrument consists of an eye-safe approx. 1 Joule/pulse lidar transceiver, telescope, scanner, inertial measurement unit, and flight computer system to orchestrate all subsystem functions and tasks. The scanner is capable of directing the expanded lidar beam in a variety of ways, in order to extract vertically-resolved wind fields. Horizontal resolution is approx. 1 km; vertical resolution is even finer. Winds are obtained by measuring backscattered, Doppler-shifted laser radiation from naturally-occurring aerosol particles (of order 1 micron diameter). Measurement coverage depends on aerosol spatial distribution and composition. Velocity accuracy has been verified to be approx. 1 meter per second. A variety of applications have been demonstrated during the three flight campaigns conducted during 1995-1998. Examples will be shown during the presentation. In 1995, boundary layer winds over the ocean were mapped with unprecedented resolution. In 1996, unique measurements were made of. flow over the complex terrain of the Aleutian Islands; interaction of the marine boundary layer jet with the California coastal mountain range; a weak dry line in Texas - New Mexico; the angular dependence of sea surface scattering; and in-flight radiometric calibration using the surface of White Sands National Monument. In 1998, the first measurements of eyewall and boundary layer winds within a

  17. On the Use of X-Band CW Nanosecond Airborne Radar for Terrain Profiling.

    DTIC Science & Technology

    2014-09-26

    Report 5599 On the Use of X-Band CW Nanosecond Airborne Radar for Terrain Profiling (D. T. CHEN AND E. A. ULIANA00 00 Space Sensing Branch Space...Radar for Terrain Profiling 2 ERSONAL AUTHOR(S) Chen, D.T. and Uliana, E.A. - 𔄀 SUPPLEMENTARY NOTATION Radar return waveform analysis Hfigh pass...filter. 79 ABSTRACT (Continue on reverse of necessary and identify by block number) - ’ Terrain profile sensed by a 10 GHz X-band airborne nanosecond radar

  18. User's Guide for Monthly Vector Wind Profile Model

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.

    1999-01-01

    The background, theoretical concepts, and methodology for construction of vector wind profiles based on a statistical model are presented. The derived monthly vector wind profiles are to be applied by the launch vehicle design community for establishing realistic estimates of critical vehicle design parameter dispersions related to wind profile dispersions. During initial studies a number of months are used to establish the model profiles that produce the largest monthly dispersions of ascent vehicle aerodynamic load indicators. The largest monthly dispersions for wind, which occur during the winter high-wind months, are used for establishing the design reference dispersions for the aerodynamic load indicators. This document includes a description of the computational process for the vector wind model including specification of input data, parameter settings, and output data formats. Sample output data listings are provided to aid the user in the verification of test output.

  19. New observations of Bolivian wind streaks by JPL Airborne SAR: Preliminary results

    NASA Technical Reports Server (NTRS)

    Blumberg, Dan G.; Greeley, Ronald

    1995-01-01

    In 1993 NASA's Jet Propulsion Laboratory Airborne Synthetic Aperture Radar system (AIRSAR) was deployed to South America to collect multi-parameter radar data over pre-selected targets. Among the sites targeted was a series of wind streaks located in the Altiplano of Bolivia. The objective of this investigation is to study the effect of wavelength, polarization, and incidence angle on the visibility of wind streaks in radar data. Because this is a preliminary evaluation of the recently acquired data we will focus on one scene and, thus, only on the effects of wavelength and polarization. Wind streaks provide information on the near-surface prevailing winds and on the abundance of winderodible material, such as sand. The potential for a free-flyer radar system that could provide global radar images in multiple wavelengths, polarizations, and incidence angles requires definition of system parameters for mission planning. Furthermore, thousands of wind streaks were mapped from Magellan radar images of Venus; their interpretation requires an understanding of the interaction of radar with wind streaks and the surrounding terrain. Our experiment was conducted on wind streaks in the Altiplano of Bolivia to address these issues.

  20. The marine atmospheric boundary layer under strong wind conditions: Organized turbulence structure and flux estimates by airborne measurements

    NASA Astrophysics Data System (ADS)

    Brilouet, Pierre-Etienne; Durand, Pierre; Canut, Guylaine

    2017-02-01

    During winter, cold air outbreaks take place in the northwestern Mediterranean sea. They are characterized by local strong winds (Mistral and Tramontane) which transport cold and dry continental air across a warmer sea. In such conditions, high values of surface sensible and latent heat flux are observed, which favor deep oceanic convection. The HyMeX/ASICS-MED field campaign was devoted to the study of these processes. Airborne measurements, gathered in the Gulf of Lion during the winter of 2013, allowed for the exploration of the mean and turbulent structure of the marine atmospheric boundary layer (MABL). A spectral analysis based on an analytical model was conducted on 181 straight and level runs. Profiles of characteristic length scales and sharpness parameter of the vertical wind spectrum revealed larger eddies along the mean wind direction associated with an organization of the turbulence field into longitudinal rolls. These were highlighted by boundary layer cloud bands on high-resolution satellite images. A one-dimensional description of the vertical exchanges is then a tricky issue. Since the knowledge of the flux profile throughout the entire MABL is essential for the estimation of air-sea exchanges, a correction of eddy covariance turbulent fluxes was developed taking into account the systematic and random errors due to sampling and data processing. This allowed the improvement of surface fluxes estimates, computed from the extrapolation of the stacked levels. A comparison between those surface fluxes and bulk fluxes computed at a moored buoy revealed considerable differences, mainly regarding the latent heat flux under strong wind conditions.

  1. Lidar Wind Profiler Comparison to Weather Balloon for Support of Orion Crew Exploration Vehicle Landings

    NASA Technical Reports Server (NTRS)

    Houtas, Franzeska F.; Teets, Edward H.

    2010-01-01

    A comparison study by the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) and the Naval Post Graduate School Center for Interdisciplinary Remotely-Piloted Aircraft Studies (Marina, California) was conducted to show the advantages of an airborne wind profiling light detection and ranging (lidar) system in reducing drift uncertainty along a reentry vehicle descent trajectory. This effort was in support of the once planned Orion Crew Exploration Vehicle ground landing. A Twin Otter Doppler Wind Lidar was flown on multiple flights along the approximate ground track of each ascending weather balloon launched from the Marina Municipal Airport (Marina, California). The airborne lidar used was a 5-mJ, 2-micron infrared laser with a 10-cm telescope and a two-axis scanner. Each lidar wind profile contains data for an altitude range between the surface and flight altitude of 2.7 km, processed on board every 20 s. In comparison, a typical weather balloon would traverse that same altitude range with a similar data set available in approximately 15 to 20 min. These tests were conducted on November 15 and 16, 2007. Results show a best-case absolute difference of 0.18 m/s (0.35 knots) in speed and 1 degree in direct

  2. Relationships between airborne pollen grains, wind direction and land cover using GIS and circular statistics.

    PubMed

    Maya-Manzano, J M; Sadyś, M; Tormo-Molina, R; Fernández-Rodríguez, S; Oteros, J; Silva-Palacios, I; Gonzalo-Garijo, A

    2017-04-15

    Airborne bio-aerosol content (mainly pollen and spores) depends on the surrounding vegetation and weather conditions, particularly wind direction. In order to understand this issue, maps of the main land cover in influence areas of 10km in radius surrounding pollen traps were created. Atmospheric content of the most abundant 14 pollen types was analysed in relation to the predominant wind directions measured in three localities of SW of Iberian Peninsula, from March 2011 to March 2014. Three Hirst type traps were used for aerobiological monitoring. The surface area for each land cover category was calculated and wind direction analysis was approached by using circular statistics. This method could be helpful for estimating the potential risk of exposure to various pollen types. Thus, the main land cover was different for each monitoring location, being irrigated crops, pastures and hardwood forests the main categories among 11 types described. Comparison of the pollen content with the predominant winds and land cover shows that the atmospheric pollen concentration is related to some source areas identified in the inventory. The study found that some pollen types (e.g. Plantago, Fraxinus-Phillyrea, Alnus) come from local sources but other pollen types (e.g. Quercus) are mostly coming from longer distances. As main conclusions, airborne particle concentrations can be effectively split by addressing wind with circular statistics. By combining circular statistics and GIS method with aerobiological data, we have created a useful tool for understanding pollen origin. Some pollen loads can be explained by immediate surrounding landscape and observed wind patterns for most of the time. However, other factors like medium or long-distance transport or even pollen trap location within a city, may occasionally affect the pollen load recorded using an air sampler.

  3. Interpretation of combined wind profiler and aircraft-measured tropospheric winds and clear air turbulence

    NASA Technical Reports Server (NTRS)

    Thomson, D. W.; Syrett, William J.; Fairall, C. W.

    1991-01-01

    In the first experiment, it was found that wind profilers are far better suited for the detailed examination of jet stream structure than are weather balloons. The combination of good vertical resolution with not previously obtained temporal resolution reveals structural details not seen before. Development of probability-derived shear values appears possible. A good correlation between pilot reports of turbulence and wind shear was found. In the second experiment, hourly measurements of wind speed and direction obtained using two wind profiling Doppler radars during two prolonged jet stream occurrences over western Pennsylvania were analyzed. In particular, the time-variant characteristics of derived shear profiles were examined. Profiler data dropouts were studied in an attempt to determine possible reasons for the apparently reduced performance of profiling radar operating beneath a jet stream. Richardson number and wind shear statistics were examined along with pilot reports of turbulence in the vicinity of the profiler.

  4. Combined VHF Dopplar radar and airborne (CV-990) measurements of atmospheric winds on the mesoscale

    NASA Technical Reports Server (NTRS)

    Fairall, Christopher W.; Thomson, Dennis W.

    1989-01-01

    Hourly measurements of wind speed and direction obtained using two wind profiling Doppler radars during two prolonged jet stream occurrences over western Pennsylvania were analyzed. In particular, the time-variant characteristics of derived shear profiles were examined. To prevent a potential loss of structural detail and retain statistical significance, data from both radars were stratified into categories based on the location data from the Penn State radar were also compared to data from Pittsburgh radiosondes. Profiler data dropouts were studied in an attempt to determine possible reasons for the apparently reduced performance of profiling radars operating beneath a jet stream. Temperature profiles for the radar site were obtained using an interpolated temperature and dewpoint temperature sounding procedure developed at Penn State. The combination of measured wind and interpolated temperature profiles allowed Richardson number profiles to be generated for the profiler sounding volume. Both Richardson number and wind shear statistics were then examined along with pilot reports of turbulence in the vicinity of the profiler.

  5. Airborne Wind Shear Detection and Warning Systems. Second Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Spady, Amos A., Jr. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1990-01-01

    The Second Combined Manufacturers' and Technologists' Conference was hosted jointly by NASA Langley (LaRC) and the Federal Aviation Administration (FAA) in Williamsburg, Virginia, on October 18 to 20, 1988. The meeting was co-chaired by Dr. Roland Bowles of LaRC and Herbrt Schlickenmaier of the FAA. The purpose of the meeting was to transfer significant, ongoing results gained during the second year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.

  6. Airborne Wind Shear Detection and Warning Systems. Fourth Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Passman, Robert H. (Compiler)

    1992-01-01

    The Fourth Combined Manufacturers' and Technologists' Conference was hosted jointly by NASA Langley Research Center (LaRC) and the Federal Aviation Administration (FAA) in Williamsburg, Virginia, on April 14-16, 1992. The meeting was co-chaired by Dr. Roland Bowles of LaRC and Bob Passman of the FAA. The purpose of the meeting was to transfer significant ongoing results of the NASA/FAA Joint Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements. The present document has been compiled to record the essence of the technology updates and discussions which follow each.

  7. Transition Marshall Space Flight Center Wind Profiler Splicing Algorithm to Launch Services Program Upper Winds Tool

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2014-01-01

    NASAs LSP customers and the future SLS program rely on observations of upper-level winds for steering, loads, and trajectory calculations for the launch vehicles flight. On the day of launch, the 45th Weather Squadron (45 WS) Launch Weather Officers (LWOs) monitor the upper-level winds and provide forecasts to the launch team via the AMU-developed LSP Upper Winds tool for launches at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station. This tool displays wind speed and direction profiles from rawinsondes released during launch operations, the 45th Space Wing 915-MHz Doppler Radar Wind Profilers (DRWPs) and KSC 50-MHz DRWP, and output from numerical weather prediction models.The goal of this task was to splice the wind speed and direction profiles from the 45th Space Wing (45 SW) 915-MHz Doppler radar Wind Profilers (DRWPs) and KSC 50-MHz DRWP at altitudes where the wind profiles overlap to create a smooth profile. In the first version of the LSP Upper Winds tool, the top of the 915-MHz DRWP wind profile and the bottom of the 50-MHz DRWP were not spliced, sometimes creating a discontinuity in the profile. The Marshall Space Flight Center (MSFC) Natural Environments Branch (NE) created algorithms to splice the wind profiles from the two sensors to generate an archive of vertically complete wind profiles for the SLS program. The AMU worked with MSFC NE personnel to implement these algorithms in the LSP Upper Winds tool to provide a continuous spliced wind profile.The AMU transitioned the MSFC NE algorithms to interpolate and fill data gaps in the data, implement a Gaussian weighting function to produce 50-m altitude intervals in each sensor, and splice the data together from both DRWPs. They did so by porting the MSFC NE code written with MATLAB software into Microsoft Excel Visual Basic for Applications (VBA). After testing the new algorithms in stand-alone VBA modules, the AMU replaced the existing VBA code in the LSP Upper Winds tool with the new

  8. Upstream Measurements of Wind Profiles with Doppler Lidar for Improved Wind Energy Integration

    SciTech Connect

    Rodney Frehlich

    2012-10-30

    New upstream measurements of wind profiles over the altitude range of wind turbines will be produced using a scanning Doppler lidar. These long range high quality measurements will provide improved wind power forecasts for wind energy integration into the power grid. The main goal of the project is to develop the optimal Doppler lidar operating parameters and data processing algorithms for improved wind energy integration by enhancing the wind power forecasts in the 30 to 60 minute time frame, especially for the large wind power ramps. Currently, there is very little upstream data at large wind farms, especially accurate wind profiles over the full height of the turbine blades. The potential of scanning Doppler lidar will be determined by rigorous computer modeling and evaluation of actual Doppler lidar data from the WindTracer system produced by Lockheed Martin Coherent Technologies, Inc. of Louisville, Colorado. Various data products will be investigated for input into numerical weather prediction models and statistically based nowcasting algorithms. Successful implementation of the proposed research will provide the required information for a full cost benefit analysis of the improved forecasts of wind power for energy integration as well as the added benefit of high quality wind and turbulence information for optimal control of the wind turbines at large wind farms.

  9. Thermospheric neutral wind profile in moonlit midnight by Lithium release experiments in Japan

    NASA Astrophysics Data System (ADS)

    Yamamoto, M. Y.; Watanabe, S.; Abe, T.; Kakinami, Y.; Habu, H.; Yamamoto, M.

    2015-12-01

    Neutral wind profiles were observed in lower thermosphere at about between 90 km and 130 km altitude by using resonance scattering light of moonlit Lithium (Li) vapor released from sounding rockets in midnight (with almost full-moon condition) in 2013 in Japan. As a target of the Daytime Dynamo campaign, Li release experiment was operated at Wallops Flight Facility (WFF) of NASA, U.S.A. in July, 2013 (Pfaff et al., 2015, this meeting), while the same kind of rocket-ground observation campaign in midnight was carried out by using S-520-27/S-310-42 sounding rockets in Uchinoura Space Center (USC) of JAXA, Kagoshima, Japan, also in July 2013.Since imaging signal-to-noise (S/N) condition of the experiment was so severe, we conducted to apply airborne observation for imaging the faint moonlit Li tracers so as to reduce the illuminating intensity of the background skies as an order of magnitude. Two independent methods for calculating the wind profile were applied to the Lithium emission image sequences successfully obtained by the airborne imaging by special Li imagers aboard the airplanes in order to derive precise information of Li tracers motion under the condition of single observation site on a moving aircraft along its flight path at about 12 km altitude in lower stratosphere. Slight attitude-feedback motion of the aircraft's 3-axes attitude changes (rolling, yawing and pitching) was considered for obtaining precise coordinates on each snapshot. Another approach is giving a simple mathematic function for wind profile to resolve the shape displacement of the imaged Li tracers. As a result, a wind profile in moonlit thermosphere was calculated in a range up to about 150 m/s with some fluctuated parts possibly disturbed by wind shears. In the same experiment, another sounding rocket S-310-42 with a TMA canister was also launched from USC/JAXA at about 1 hour before the rocket with carrying the Lithium canisters, thus, we can derive the other 2 profiles determined by

  10. Influence of wind on daily airborne pollen counts in Catalonia (NE Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    tareq Majeed, Husam; Periago, Cristina; Alarcón, Marta; De Linares, Concepción; Belmonte, Jordina

    2016-04-01

    The aim of this study is to analize the influence of wind (speed and direction) on the daily airborne pollen counts recorded in Catalonia (NE Iberian Peninsula) of 21 pollen taxa recorded at 6 aerobiological stations: Barcelona, Bellaterra, Girona, Lleida Manresa, and Tarragona for the period 2004-2014. The taxa studied are Alnus, Betula, Castanea, Cupressaceae, Fagus, Fraxinus, Olea, Pinus, Platanus, total Quercus, Quercus deciduous type, Quercus evergreen type, Ulmus, Corylus, Pistacia, Artemisia, Chenopodiaceae/Amaranthaceae, Plantago, Poaceae, Polygonaceae, and Urticaceae. The mean daily wind direction was divided into 8 sectors: N, NE, E, SE, S, SW, W and NW. For each sector, the correlation between the daily pollen concentrations and wind speed using Spearman's rank correlation coefficient was computed and compared with the wind rose charts. The results showed that Tarragona was the station with more significant correlations followed by Bellaterra, Lleida and Manresa. On the other hand, Artemisia was the most correlated taxon with mainly negative values, and Fagus was the least. The W wind direction showed the largest number of significant correlations, mostly positive, while the N direction was the least and negatively correlated.

  11. Removal of bird contamination in wind profiler signal spectra.

    SciTech Connect

    Pekour, M. S.

    1998-06-05

    The problem of bird interference with radar performance is as old as radar itself; however, the problem specific to wind profiler operation has not drawn the attention of researchers until the last 5 or 6 years. Since then, the problem has been addressed in many publications and several ways to solve it have been indicated. Recent advances in radar hardware and software made the last generation of profilers much more immune to bird contamination. However, many older profilers are still in use; errors in averaged (hourly) winds due to bird interference may be as high as 15 m/s. The objective of the present study is to develop a practical method to derive mean winds from averaged spectral data of a 915-MHz wind profiler under the condition of bird contamination.

  12. Mapping the Risk of Forest Wind Damage Using Airborne Scanning LiDAR

    NASA Astrophysics Data System (ADS)

    Saarinen, N.; Vastaranta, M.; Honkavaara, E.; Wulder, M. A.; White, J. C.; Litkey, P.; Holopainen, M.; Hyyppä, J.

    2015-03-01

    Wind damage is known for causing threats to sustainable forest management and yield value in boreal forests. Information about wind damage risk can aid forest managers in understanding and possibly mitigating damage impacts. The objective of this research was to better understand and quantify drivers of wind damage, and to map the probability of wind damage. To accomplish this, we used open-access airborne scanning light detection and ranging (LiDAR) data. The probability of wind-induced forest damage (PDAM) in southern Finland (61°N, 23°E) was modelled for a 173 km2 study area of mainly managed boreal forests (dominated by Norway spruce and Scots pine) and agricultural fields. Wind damage occurred in the study area in December 2011. LiDAR data were acquired prior to the damage in 2008. High spatial resolution aerial imagery, acquired after the damage event (January, 2012) provided a source of model calibration via expert interpretation. A systematic grid (16 m x 16 m) was established and 430 sample grid cells were identified systematically and classified as damaged or undamaged based on visual interpretation using the aerial images. Potential drivers associated with PDAM were examined using a multivariate logistic regression model. Risk model predictors were extracted from the LiDAR-derived surface models. Geographic information systems (GIS) supported spatial mapping and identification of areas of high PDAM across the study area. The risk model based on LiDAR data provided good agreement with detected risk areas (73 % with kappa-value 0,47). The strongest predictors in the risk model were mean canopy height and mean elevation. Our results indicate that open-access LiDAR data sets can be used to map the probability of wind damage risk without field data, providing valuable information for forest management planning.

  13. Development of a Climatology of Vertically Complete Wind Profiles from Doppler Radar Wind Profiler Systems

    NASA Technical Reports Server (NTRS)

    Barbre, Robert E., Jr.

    2015-01-01

    This paper describes in detail the QC and splicing methodology for KSC's 50- and 915-MHz DRWP measurements that generates an extensive archive of vertically complete profiles from 0.20-18.45 km. The concurrent POR from each archive extends from April 2000 to December 2009. MSFC NE applies separate but similar QC processes to each of the 50- and 915-MHz DRWP archives. DRWP literature and data examination provide the basis for developing and applying the automated and manual QC processes on both archives. Depending on the month, the QC'ed 50- and 915-MHz DRWP archives retain 52-65% and 16-30% of the possible data, respectively. The 50- and 915-MHz DRWP QC archives retain 84-91% and 85-95%, respectively, of all the available data provided that data exist in the non- QC'ed archives. Next, MSFC NE applies an algorithm to splice concurrent measurements from both DRWP sources. Last, MSFC NE generates a composite profile from the (up to) five available spliced profiles to effectively characterize boundary layer winds and to utilize all possible 915-MHz DRWP measurements at each timestamp. During a given month, roughly 23,000-32,000 complete profiles exist from 0.25-18.45 km from the composite profiles' archive, and approximately 5,000- 27,000 complete profiles exist from an archive utilizing an individual 915-MHz DRWP. One can extract a variety of profile combinations (pairs, triplets, etc.) from this sample for a given application. The sample of vertically complete DRWP wind measurements not only gives launch vehicle customers greater confidence in loads and trajectory assessments versus using balloon output, but also provides flexibility to simulate different DOL situations across applicable altitudes. In addition to increasing sample size and providing more flexibility for DOL simulations in the vehicle design phase, the spliced DRWP database provides any upcoming launch vehicle program with the capability to utilize DRWP profiles on DOL to compute vehicle steering

  14. Wind profile estimation from point to point laser distortion data

    NASA Technical Reports Server (NTRS)

    Leland, Robert

    1989-01-01

    The author's results on the problem of using laser distortion data to estimate the wind profile along the path of the beam are presented. A new model for the dynamics of the index of refraction in a non-constant wind is developed. The model agrees qualitatively with theoretical predictions for the index of refraction statistics in linear wind shear, and is approximated by the predictions of Taylor's hypothesis in constant wind. A framework for a potential in-flight experiment is presented, and the estimation problem is discussed in a maximum likelihood context.

  15. Analysis and characterization of the vertical wind profile in UAE

    NASA Astrophysics Data System (ADS)

    Lee, W.; Ghedira, H.; Ouarda, T.; Gherboudj, I.

    2011-12-01

    In this study, temporal and spatial analysis of the vertical wind profiles in the UAE has been performed to estimate wind resource potential. Due to the very limited number of wind masts (only two wind masts in the UAE, operational for less than three years), the wind potential analysis will be mainly derived from numerical-based models. Additional wind data will be derived from the UAE met stations network (at 10 m elevation) managed by the UAE National Center of Meteorology and Seismology. However, since wind turbines are generally installed at elevations higher than 80 m, it is vital to extrapolate wind speed correctly from low heights to wind turbine hub heights to predict potential wind energy properly. To do so, firstly two boundary layer based models, power law and logarithmic law, were tested to find the best fitting model. Power law is expressed as v/v0 =(H/H0)^α and logarithmic law is represented as v/v0 =[ln(H/Z0))/(ln(H0/Z0)], where V is the wind speed [m/s] at height H [m] and V0 is the known wind speed at a reference height H0. The exponent (α) coefficient is an empirically derived value depending on the atmospheric stability and z0 is the roughness coefficient length [m] that depends on topography, land roughness and spacing. After testing the two models, spatial and temporal analysis for wind profile was performed. Many studies about wind in different regions have shown that wind profile parameters have hourly, monthly and seasonal variations. Therefore, it can be examined whether UAE wind characteristics follow general wind characteristics observed in other regions or have specific wind features due to its regional condition. About 3 years data from August 2008 to February 2011 with 10-minutes resolution were used to derive monthly variation. The preliminary results(Fig.1) show that during that period, wind profile parameters like alpha from power law and roughness length from logarithmic law have monthly variation. Both alpha and roughness have

  16. Use of ground-based wind profiles in mesoscale forecasting

    NASA Technical Reports Server (NTRS)

    Schlatter, Thomas W.

    1985-01-01

    A brief review is presented of recent uses of ground-based wind profile data in mesoscale forecasting. Some of the applications are in real time, and some are after the fact. Not all of the work mentioned here has been published yet, but references are given wherever possible. As Gage and Balsley (1978) point out, sensitive Doppler radars have been used to examine tropospheric wind profiles since the 1970's. It was not until the early 1980's, however, that the potential contribution of these instruments to operational forecasting and numerical weather prediction became apparent. Profiler winds and radiosonde winds compare favorably, usually within a few m/s in speed and 10 degrees in direction (see Hogg et al., 1983), but the obvious advantage of the profiler is its frequent (hourly or more often) sampling of the same volume. The rawinsonde balloon is launched only twice a day and drifts with the wind. In this paper, I will: (1) mention two operational uses of data from a wind profiling system developed jointly by the Wave Propagation and Aeronomy Laboratories of NOAA; (2) describe a number of displays of these same data on a workstation for mesoscale forecasting developed by the Program for Regional Observing and Forecasting Services (PROFS); and (3) explain some interesting diagnostic calculations performed by meteorologists of the Wave Propagation Laboratory.

  17. Determination of precipitation profiles from airborne passive microwave radiometric measurements

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Hakkarinen, Ida M.; Pierce, Harold F.; Weinman, James A.

    1991-01-01

    This study presents the first quantitative retrievals of vertical profiles of precipitation derived from multispectral passive microwave radiometry. Measurements of microwave brightness temperature (Tb) obtained by a NASA high-altitude research aircraft are related to profiles of rainfall rate through a multichannel piecewise-linear statistical regression procedure. Statistics for Tb are obtained from a set of cloud radiative models representing a wide variety of convective, stratiform, and anvil structures. The retrieval scheme itself determines which cloud model best fits the observed meteorological conditions. Retrieved rainfall rate profiles are converted to equivalent radar reflectivity for comparison with observed reflectivities from a ground-based research radar. Results for two case studies, a stratiform rain situation and an intense convective thunderstorm, show that the radiometrically derived profiles capture the major features of the observed vertical structure of hydrometer density.

  18. Simulation of Wind Profile Perturbations for Launch Vehicle Design

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.

    2004-01-01

    Ideally, a statistically representative sample of measured high-resolution wind profiles with wavelengths as small as tens of meters is required in design studies to establish aerodynamic load indicator dispersions and vehicle control system capability. At most potential launch sites, high- resolution wind profiles may not exist. Representative samples of Rawinsonde wind profiles to altitudes of 30 km are more likely to be available from the extensive network of measurement sites established for routine sampling in support of weather observing and forecasting activity. Such a sample, large enough to be statistically representative of relatively large wavelength perturbations, would be inadequate for launch vehicle design assessments because the Rawinsonde system accurately measures wind perturbations with wavelengths no smaller than 2000 m (1000 m altitude increment). The Kennedy Space Center (KSC) Jimsphere wind profiles (150/month and seasonal 2 and 3.5-hr pairs) are the only adequate samples of high resolution profiles approx. 150 to 300 m effective resolution, but over-sampled at 25 m intervals) that have been used extensively for launch vehicle design assessments. Therefore, a simulation process has been developed for enhancement of measured low-resolution Rawinsonde profiles that would be applicable in preliminary launch vehicle design studies at launch sites other than KSC.

  19. Implementation and evaluation of the new wind algorithm in NASA's 50 MHz doppler radar wind profiler

    NASA Technical Reports Server (NTRS)

    Taylor, Gregory E.; Manobianco, John T.; Schumann, Robin S.; Wheeler, Mark M.; Yersavich, Ann M.

    1993-01-01

    The purpose of this report is to document the Applied Meteorology Unit's implementation and evaluation of the wind algorithm developed by Marshall Space Flight Center (MSFC) on the data analysis processor (DAP) of NASA's 50 MHz doppler radar wind profiler (DRWP). The report also includes a summary of the 50 MHz DRWP characteristics and performance and a proposed concept of operations for the DRWP.

  20. Vertical wind retrieved by airborne lidar and analysis of island induced gravity waves in combination with numerical models and in situ particle measurements

    NASA Astrophysics Data System (ADS)

    Chouza, Fernando; Reitebuch, Oliver; Jähn, Michael; Rahm, Stephan; Weinzierl, Bernadett

    2016-04-01

    This study presents the analysis of island induced gravity waves observed by an airborne Doppler wind lidar (DWL) during SALTRACE. First, the instrumental corrections required for the retrieval of high spatial resolution vertical wind measurements from an airborne DWL are presented and the measurement accuracy estimated by means of two different methods. The estimated systematic error is below -0.05 m s-1 for the selected case of study, while the random error lies between 0.1 and 0.16 m s-1 depending on the estimation method. Then, the presented method is applied to two measurement flights during which the presence of island induced gravity waves was detected. The first case corresponds to a research flight conducted on 17 June 2013 in the Cabo Verde islands region, while the second case corresponds to a measurement flight on 26 June 2013 in the Barbados region. The presence of trapped lee waves predicted by the calculated Scorer parameter profiles was confirmed by the lidar and in situ observations. The DWL measurements are used in combination with in situ wind and particle number density measurements, large-eddy simulations (LES), and wavelet analysis to determine the main characteristics of the observed island induced trapped waves.

  1. Analysis of satellite and airborne wind measurements during the SEMAPHORE experiment

    SciTech Connect

    Tournadre, J.; Hauser, D.

    1994-12-31

    During the SEMAPHORE experiment Intensive Observation Period (IOP), held in October and November 1993 in the Azores-Madeira region, two airplanes, instrumented for atmospheric research, and two oceanographic research vessels have conducted in situ measurements in a 500km x 500km domain. Within the framework of SEMAPHORE, the SOFIA program is dedicated to the study of the air-sea fluxes and interactions from local scale up to mesoscale. The analysis of the structure of the wind and wave fields and their relations to the surface fluxes (especially near oceanic fronts) and the validation of the satellite data are two of the main goals of the SOFIA program. During the IOP, the experiment domain was regularly overflown by the ERS-1 and Topex-Poseidon (TP) satellites. This study presents a preliminary analysis of the ERS-1 and TP altimeter wind and wave measurement and ERS-1 scatterometer wind fields. The data from the airborne RESSAC (a radar ocean wave spectrometer) are also presented.

  2. An airborne FLIR detection and warning system for low altitude wind shear

    NASA Technical Reports Server (NTRS)

    Sinclair, Peter C.; Kuhn, Peter M.

    1991-01-01

    It is shown through some preliminary flight measurement research that a forward looking infrared radiometer (FLIR) system can be used to successfully detect the cool downdraft of downbursts (microbusts/macrobursts) and thunderstorm gust front outflows that are responsible for most of the low altitude wind shear (LAWS) events. The FLIR system provides a much greater safety margin for the pilot than that provided by reactive designs such as inertial air speed systems. Preliminary results indicate that an advanced airborne FLIR system could provide the pilot with remote indication of microburst (MB) hazards along the flight path ahead of the aircraft. Results of a flight test of a prototype FLIR system show that a minimum warning time of one to four minutes (5 to 10 km), depending on aircraft speed, is available to the pilot prior to the microburst encounter.

  3. Radar - ANL Wind Profiler with RASS, Goldendale - Raw Data

    SciTech Connect

    Coleman, Tim

    2016-10-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  4. Radar - ESRL Wind Profiler with RASS, Wasco Airport - Raw Data

    SciTech Connect

    Coleman, Tim

    2016-10-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  5. Radar - ANL Wind Profiler with RASS, Walla Walla - Raw Data

    SciTech Connect

    Coleman, Tim

    2016-10-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  6. Radar - ESRL Wind Profiler with RASS, Troutdale - Raw Data

    SciTech Connect

    Coleman, Tim

    2016-10-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  7. Radar - ANL Wind Profiler with RASS, Yakima - Raw Data

    SciTech Connect

    Coleman, Tim

    2016-10-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  8. Radar - ESRL Wind Profiler with RASS, Condon - Raw Data

    SciTech Connect

    Coleman, Tim

    2016-10-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  9. Radar - ESRL Wind Profiler with RASS, Prineville - Raw Data

    SciTech Connect

    Coleman, Tim

    2016-10-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  10. Winds from T Tauri stars. II - Balmer line profiles for inner disk winds

    NASA Technical Reports Server (NTRS)

    Calvet, Nuria; Hartmann, Lee; Hewett, Robert

    1992-01-01

    Results are presented of calculations of Balmer emission line profiles using escape probability methods for T Tauri wind models with nonspherically symmetric geometry. The wind is assumed to originate in the inner regions of an accretion disk surrounding the T Tauri star, and flows outward in a 'cone' geometry. Two types of wind models are considered, both with monotonically increasing expansion velocities as a function of radial distance. For flows with large turbulent velocities, such as the HF Alfven wave-driven wind models, the effect of cone geometry is to increase the blue wing emission, and to move the absorption reversal close to line center. Line profiles for a wind model rotating with the same angular velocity as the inner disk are also calculated. The Balmer lines of this model are significantly broader than observed in most objects, suggesting that the observed emission lines do not arise in a region rotating at Keplerian velocity.

  11. Design and Performance of a Miniature Lidar Wind Profiler (MLWP)

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M., Jr.; Miodek, Mariusz J.

    1998-01-01

    The directional velocity of the wind is one of the most critical components for understanding meteorological and other dynamic atmospheric processes. Altitude-resolved wind velocity measurements, also known as wind profiles or soundings, are especially necessary for providing data for meteorological forecasting and overall global circulation models (GCM's). Wind profiler data are also critical in identifying possible dangerous weather conditions for aviation. Furthermore, a system has yet to be developed for wind profiling from the surface of Mars which could also meet the stringent requirements on size, weight, and power of such a mission. Obviously, a novel wind profiling approach based on small and efficient technology is required to meet these needs. A lidar system based on small and highly efficient semiconductor lasers is now feasible due to recent developments in the laser and detector technologies. The recent development of high detection efficiency (50%), silicon-based photon-counting detectors when combined with high laser pulse repetition rates and long receiver integration times has allowed these transmitter energies to be reduced to the order of microjoules per pulse. Aerosol lidar systems using this technique have been demonstrated for both Q-switched, diode-pumped solid-state laser transmitters (lambda = 523 nm) and semiconductor diode lasers (lambda = 830 nm); however, a wind profiling lidar based on this technique has yet to be developed. We will present an investigation of a semiconductor-laser-based lidar system which uses the "edge-filter" direct detection technique to infer Doppler frequency shifts of signals backscattered from aerosols in the planetary boundary layer (PBL). Our investigation will incorporate a novel semiconductor laser design which mitigates the deleterious effects of frequency chirp in pulsed diode lasers, a problem which has limited their use in such systems in the past. Our miniature lidar could be used on a future Mars

  12. Doppler Feature Based Classification of Wind Profiler Data

    NASA Astrophysics Data System (ADS)

    Sinha, Swati; Chandrasekhar Sarma, T. V.; Lourde. R, Mary

    2017-01-01

    Wind Profilers (WP) are coherent pulsed Doppler radars in UHF and VHF bands. They are used for vertical profiling of wind velocity and direction. This information is very useful for weather modeling, study of climatic patterns and weather prediction. Observations at different height and different wind velocities are possible by changing the operating parameters of WP. A set of Doppler power spectra is the standard form of WP data. Wind velocity, direction and wind velocity turbulence at different heights can be derived from it. Modern wind profilers operate for long duration and generate approximately 4 megabytes of data per hour. The radar data stream contains Doppler power spectra from different radar configurations with echoes from different atmospheric targets. In order to facilitate systematic study, this data needs to be segregated according the type of target. A reliable automated target classification technique is required to do this job. Classical techniques of radar target identification use pattern matching and minimization of mean squared error, Euclidean distance etc. These techniques are not effective for the classification of WP echoes, as these targets do not have well-defined signature in Doppler power spectra. This paper presents an effective target classification technique based on range-Doppler features.

  13. Precipitation correction of airborne gamma-ray spectrometry data using monitoring profiles: methodology and case study

    NASA Astrophysics Data System (ADS)

    Ahl, Andreas; Motschka, Klaus; Slapansky, Peter

    2014-08-01

    Variations of soil moisture content caused by precipitation often complicate the interpretation of airborne gamma-ray spectrometry data. This is particularly the case in repeated surveys designed to monitor the change of near surface abundances of radioactive elements or in large and time-consuming surveys. To counter this precipitation effect we propose a correction method based on repeated survey flights over a monitoring profile. Assuming that the weather and the soil conditions at the monitoring profile are representative for the survey area, the weather dependent effect of soil moisture can be observed and sufficiently corrected.

  14. Synthetic line profiles of rotationally distorted hot-star winds

    NASA Astrophysics Data System (ADS)

    Harries, Tim J.

    2000-07-01

    A new Monte Carlo stellar wind radiative-transfer code is presented. The code employs a three-dimensional opacity grid, and fully treats polarization and multiple scattering. Either Mie or Rayleigh scattering phase matrices may be used, and the line-transfer is treated by means of the Solobolev approximation. Variance reduction techniques are employed to increase computational efficiency. The results of several tests of the code are reported. It is confirmed that no continuum polarization is produced in the spherically symmetric wind case, and that the line profiles computed match those computed using established radiative-transfer codes. The continuum polarization produced by a latitudinally structured low-density wind is found to be in good agreement with that predicted by the single-scattering analytical treatment of Fox, while in the higher density regime the polarizations are consistent with the multiple-scattering code given by Hillier. Two illustrative applications of the code are described, using the wind parameters of ζ Puppis [O4I(n)f] as the base model. In the first the effect on the line profile of a corotating spiral density enhancement is examined. It is found that the spiral gives line profile variations on the order of 5 per cent, and that it produces an S-wave-like pattern as a function of rotational phase. It is noted that the accelerations described by the spiral wave may mimic those produced by tangentially accelerating wind clumps. The variable polarization produced by the spiral is found to have an amplitude of 0.1 per cent, with two maxima per rotational period in phase with the line emission modulation. The second application investigates the profiles and polarization produced in a clumped wind. Although the parameters of the discrete wind clumps are necessarily arbitrary, it is found that a clumped-wind model reproduces the level of spectroscopic variability found by Eversberg et al. It is shown that the wind emission `bumps' produced in

  15. The Orlando TDWR testbed and airborne wind shear date comparison results

    NASA Technical Reports Server (NTRS)

    Campbell, Steven; Berke, Anthony; Matthews, Michael

    1992-01-01

    The focus of this talk is on comparing terminal Doppler Weather Radar (TDWR) and airborne wind shear data in computing a microburst hazard index called the F factor. The TDWR is a ground-based system for detecting wind shear hazards to aviation in the terminal area. The Federal Aviation Administration will begin deploying TDWR units near 45 airports in late 1992. As part of this development effort, M.I.T. Lincoln Laboratory operates under F.A.A. support a TDWR testbed radar in Orlando, FL. During the past two years, a series of flight tests has been conducted with instrumented aircraft penetrating microburst events while under testbed radar surveillance. These tests were carried out with a Cessna Citation 2 aircraft operated by the University of North Dakota (UND) Center for Aerospace Sciences in 1990, and a Boeing 737 operated by NASA Langley Research Center in 1991. A large data base of approximately 60 instrumented microburst penetrations has been obtained from these flights.

  16. Indoor and outdoor measurements of vertical concentration profiles of airborne particulate matter.

    PubMed

    Micallef, A; Deuchar, C N; Colls, J J

    1998-05-04

    Vertical concentration profiles of various particle size ranges of airborne particulate matter were measured from ground level up to 3 m, in outdoor and indoor environments. Indoor measurements were carried out in an electronics workshop, while two outdoor environments were chosen: a street canyon cutting across a town and an open field situated in a semi-rural environment. The novel measurement technique employed in this experimental work, which can also be used to determine vertical concentration gradients of pollutants other than airborne particles in different environments, is given particular attention. Analyses of the collected data for the environments considered are presented and some conclusions and plausible explanations of the profiles are discussed. The workshop and street canyon environments exhibited larger concentrations and vertical concentration gradients as compared to the sports field. This indicates that people breathing at different heights are subjected to different concentrations of airborne particulate matter, which has implications for sitting air pollution monitors intended for protection of public health and estimation of human exposure.

  17. Investigation of the Air-Wave-Sea Interaction Modes Using an Airborne Doppler Wind Lidar: Analyses of the HRDL Data Taken during DYNAMO

    DTIC Science & Technology

    2012-09-06

    2011-August 16, 2012 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Investigation of the Air-Wave- Sea Interaction Modes Using an Airborne NOOO 1411...area code) u 434-979-3571 STANDARD FORM 298 Back (Rev. 8/98) Investigation of the Air-Wave- Sea Interaction Modes Using an Airborne Doppler Wind

  18. Quality Control Algorithms for the Kennedy Space Center 50-Megahertz Doppler Radar Wind Profiler Winds Database

    NASA Technical Reports Server (NTRS)

    Barbre, Robert E., Jr.

    2012-01-01

    This paper presents the process used by the Marshall Space Flight Center Natural Environments Branch (EV44) to quality control (QC) data from the Kennedy Space Center's 50-MHz Doppler Radar Wind Profiler for use in vehicle wind loads and steering commands. The database has been built to mitigate limitations of using the currently archived databases from weather balloons. The DRWP database contains wind measurements from approximately 2.7-18.6 km altitude at roughly five minute intervals for the August 1997 to December 2009 period of record, and the extensive QC process was designed to remove spurious data from various forms of atmospheric and non-atmospheric artifacts. The QC process is largely based on DRWP literature, but two new algorithms have been developed to remove data contaminated by convection and excessive first guess propagations from the Median Filter First Guess Algorithm. In addition to describing the automated and manual QC process in detail, this paper describes the extent of the data retained. Roughly 58% of all possible wind observations exist in the database, with approximately 100 times as many complete profile sets existing relative to the EV44 balloon databases. This increased sample of near-continuous wind profile measurements may help increase launch availability by reducing the uncertainty of wind changes during launch countdown

  19. Advances in high-energy solid-state 2-micron laser transmitter development for ground and airborne wind and CO2 measurements

    NASA Astrophysics Data System (ADS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Kavaya, Michael J.; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Modlin, Edward A.; Koch, Grady; Beyon, Jeffrey

    2010-10-01

    Sustained research efforts at NASA Langley Research Center (LaRC) during last fifteen years have resulted in a significant advancement in 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurement from ground, air and space-borne platform. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2- micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  20. Advances in High Energy Solid-State 2-micron Laser Transmitter Development for Ground and Airborne Wind and CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Kavaya, Michael J.; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Modlin, Edward A.; Koch, Grady; Beyon, Jeffrey

    2010-01-01

    Sustained research efforts at NASA Langley Research Center (LaRC) during last fifteen years have resulted in a significant advancement in 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurement from ground, air and space-borne platform. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  1. Wind-wave-induced velocity in ATI SAR ocean surface currents: First experimental evidence from an airborne campaign

    NASA Astrophysics Data System (ADS)

    Martin, Adrien C. H.; Gommenginger, Christine; Marquez, Jose; Doody, Sam; Navarro, Victor; Buck, Christopher

    2016-03-01

    Conventional and along-track interferometric (ATI) Synthetic Aperture Radar (SAR) senses the motion of the ocean surface by measuring the Doppler shift of reflected signals. Measurements are affected by a Wind-wave-induced Artifact Surface Velocity (WASV) which was modeled theoretically in past studies and has been estimated empirically only once before with Envisat ASAR by Mouche et al. (2012). An airborne campaign in the tidally dominated Irish Sea served to evaluate this effect and the current retrieval capabilities of a dual-beam SAR interferometer known as Wavemill. A comprehensive collection of Wavemill airborne data acquired in a star pattern over a well-instrumented validation site made it possible for the first time to estimate the magnitude of the WASV, and its dependence on azimuth and incidence angle from data alone. In light wind (5.5 m/s) and moderate current (0.7 m/s) conditions, the wind-wave-induced contribution to the measured ocean surface motion reaches up to 1.6 m/s upwind, with a well-defined second-order harmonic dependence on direction to the wind. The magnitude of the WASV is found to be larger at lower incidence angles. The airborne WASV results show excellent consistency with the empirical WASV estimated from Envisat ASAR. These results confirm that SAR and ATI surface velocity estimates are strongly affected by WASV and that the WASV can be well characterized with knowledge of the wind knowledge and of the geometry. These airborne results provide the first independent validation of Mouche et al. (2012) and confirm that the empirical model they propose provides the means to correct airborne and spaceborne SAR and ATI SAR data for WASV to obtain accurate ocean surface current measurements. After removing the WASV, the airborne Wavemill-retrieved currents show very good agreement against ADCP measurements with a root-mean-square error (RMSE) typically around 0.1 m/s in velocity and 10° in direction.

  2. 915-MHz Radar Wind Profiler (915RWP) Handbook

    SciTech Connect

    Coulter, R

    2005-01-01

    The 915 MHz radar wind profiler/radio acoustic sounding system (RWP/RASS) measures wind profiles and backscattered signal strength between (nominally) 0.1 km and 5 km and virtual temperature profiles between 0.1 km and 2.5 km. It operates by transmitting electromagnetic energy into the atmosphere and measuring the strength and frequency of backscattered energy. Virtual temperatures are recovered by transmitting an acoustic signal vertically and measuring the electromagnetic energy scattered from the acoustic wavefront. Because the propagation speed of the acoustic wave is proportional to the square root of the virtual temperature of the air, the virtual temperature can be recovered by measuring the Doppler shift of the scattered electromagnetic wave.

  3. Transport of airborne pollen into the city of Thessaloniki: the effects of wind direction, speed and persistence

    NASA Astrophysics Data System (ADS)

    Damialis, Athanasios; Gioulekas, Dimitrios; Lazopoulou, Chariklia; Balafoutis, Christos; Vokou, Despina

    2005-01-01

    We examined the effect of the wind vector analyzed into its three components (direction, speed and persistence), on the circulation of pollen from differe nt plant taxa prominent in the Thessaloniki area for a 4-year period (1996- 1999). These plant taxa were Ambrosia spp., Artemisia spp., Chenopodiaceae, spp., Cupressaceae, Olea europaea, Pinaceae, Platanus spp., Poaceae, Populus spp., Quercus spp., and Urticaceae. Airborne pollen of Cupressaceae, Urticaceae, Quercus spp. and O. europaea make up approximately 70% of the total average annual pollen counts. The set of data that we worked with represented days without precipitation and time intervals during which winds blew from the same direction for at least 4 consecutive hours. We did this in order to study the effect of the different wind components independently of precipitation, and to avoid secondary effects produced by pollen resuspension phenomena. Factorial regression analysis among the summed bi-hourly pollen counts for each taxon and the values of wind speed and persistence per wind direction gave significant results in 22 cases (combinations of plant taxa and wind directions). The pollen concentrations of all taxa correlated significantly with at least one of the three wind components. In seven out of the 22 taxon-wind direction combinations, the pollen counts correlated positively with wind persistence, whereas this was the case for only two of the taxon-wind speed combinations. In seven cases, pollen counts correlated with the interaction effect of wind speed and persistence. This shows the importance of wind persistence in pollen transport, particularly when weak winds prevail for a considerable part of the year, as is the case for Thessaloniki. Medium/long-distance pollen transport was evidenced for Olea (NW, SW directions), Corylus (NW, SW), Poaceae (SW) and Populus (NW).

  4. A New Wind Profiler Trajectory Tool for Air Quality Studies

    NASA Astrophysics Data System (ADS)

    White, A. B.; Senff, C. J.; Keane, A. N.; Koury, J.

    2003-12-01

    The Cooperative Institute for Research in Environmental Sciences, the NOAA Environmental Technology Laboratory (NOAA/ETL), and the Science and Technology Corporation have developed a new online tool for producing forward and backward trajectories from hourly wind profiles measured by a network of boundary-layer wind profilers. The tool is intended to aid scientists and forecasters in the planning and execution of field operations during the 2004 Northeast North Atlantic Air Quality Study. This study will involve an international consortium of agencies and will include upwards of a dozen of research aircraft and the NOAA research vessel Ronald H. Brown. The purpose of this talk is to demonstrate the tool and collect feedback from scientific investigators, which we will use to modify the tool before the 2004 field study. In addition, we will present preliminary results from the 2002 New England Air Quality Study that demonstrate the value of using continuous profiler observations instead of numerical model initialization fields to calculate trajectories for the meteorologically complex coastal zone of New England. The trajectory tool uses the horizontal wind profiles measured by the profiler network that are collected in near-real time and archived at NOAA/ETL's facility in Boulder, Colorado. The vertical velocities are not used because of large uncertainty in the profiler's vertical velocity measurement. To calculate hourly trajectory positions, the horizontal winds are interpolated in space using an inverse distance squared weighting. Users may request altitude ranges for the trajectories as well as start and end times and trajectory starting/end points. Trajectories are plotted on a two dimensional map background and are color coded by their respective altitude range.

  5. Modified power law equations for vertical wind profiles. [in investigation of windpower plant siting

    NASA Technical Reports Server (NTRS)

    Spera, D. A.; Richards, T. R.

    1979-01-01

    In an investigation of windpower plant siting, equations are presented and evaluated for a wind profile model which incorporates both roughness and wind speed effects, while retaining the basic simplicity of the Hellman power law. These equations recognize the statistical nature of wind profiles and are compatible with existing analytical models and recent wind profile data. Predictions of energy output based on the proposed profile equations are 10% to 20% higher than those made with the 1/7 power law. In addition, correlation between calculated and observed blade loads is significantly better at higher wind speeds when the proposed wind profile model is used than when a constant power model is used.

  6. Dust Transport Across the Atlantic Studied by Airborne Doppler Wind Lidar During the Saltrace Experiment in 2013

    NASA Astrophysics Data System (ADS)

    Chouza, Fernando; Reitebuch, Oliver; Rahm, Stephan; Weinzierl, Bernadett

    2016-06-01

    During the SALTRACE field experiment, conducted during June/July 2013, the Saharan dust transport across the Atlantic was analyzed by a set of ground based, in-situ and airborne instruments, including a 2-μm coherent DWL (Doppler wind lidar) mounted onboard the DLR Falcon 20 research aircraft. An overview of the measurements of aerosol backscatter and extinction, horizontal and vertical winds retrieved from the DWL are presented together with a brief description of the applied methods. The retrieved measurements provide direct observation of Saharan dust transport mechanisms across the Atlantic as well as island induced lee waves in the Barbados region.

  7. First results from an airborne GPS radio occultation system for atmospheric profiling

    NASA Astrophysics Data System (ADS)

    Haase, J. S.; Murphy, B. J.; Muradyan, P.; Nievinski, F. G.; Larson, K. M.; Garrison, J. L.; Wang, K.-N.

    2014-03-01

    Global Positioning System (GPS) radio occultation (RO) from low Earth-orbiting satellites has increased the quantity of high-vertical resolution atmospheric profiles, especially over oceans, and has significantly improved global weather forecasting. A new system, the Global Navigation Satellite Systems Instrument System for Multistatic and Occultation Sensing (GISMOS), has been developed for RO sounding from aircraft. GISMOS also provides high-vertical resolution profiles that are insensitive to clouds and precipitation, and in addition, provides greater control on the sampling location, useful for targeted regional studies. The feasibility of the system is demonstrated with a flight carried out during development of an Atlantic tropical storm. The data have been evaluated through a comparison with dropsonde data. The new airborne RO system will effectively increase by more than 50% the number of profiles available for studying the evolution of tropical storms during this campaign and could potentially be deployed on commercial aircraft in the future.

  8. On the relationship between wind profiles and the STS ascent structural loads

    NASA Technical Reports Server (NTRS)

    Smith, Orvel E.; Adelfang, Stanley I.; Whitehead, Douglas S.

    1989-01-01

    The response of STS ascent structural load indicators to the wind profile is analyzed. The load indicator values versus Mach numbers are calculated with algorithms using trajectory information. The ascent load minimum margin concept is used to show that the detailed wind profile structure measured by the Jimsphere wind system is not needed to assess the STS rigid body structural wind loads.

  9. Sampling the Vertical Moisture Structure of an Atmospheric River Event Using Airborne GPS Radio Occultation Profiling

    NASA Astrophysics Data System (ADS)

    Haase, J. S.; Malloy, K.; Murphy, B.; Sussman, J.; Zhang, W.

    2015-12-01

    Atmospheric rivers (ARs) are of high concern in California, bringing significant rain to the region over extended time periods of up to 5 days, potentially causing floods, and more importantly, contributing to the Sierra snowpack that provides much of the regional water resources. The CalWater project focuses on predicting the variability of the West Coast water supply, including improving AR forecasting. Unfortunately, data collection over the ocean remains a challenge and impacts forecasting accuracy. One novel technique to address this issue includes airborne GPS radio occultation (ARO), using broadcast GPS signals from space to measure the signal ray path bending angle and refractivity to retrieve vertical water vapor profiles. The Global Navigation Satellite System Instrument System for Multistatic and Occultation Sensing (GISMOS) system was developed for this purpose for recording and processing high-sample rate (10MHz) signals in the lower troposphere. Previous studies (Murphy et al, 2014) have shown promising results in acquiring airborne GPS RO data, comparing it to dropsondes and numerical weather models. CalWater launched a field campaign in the beginning of 2015 which included testing GISMOS ARO on the NOAA GIV aircraft for AR data acquisition, flying into the February 6th AR event that brought up to 35 cm of rain to central California. This case study will compare airborne GPS RO refractivity profiles to the NCEP-NCAR final reanalysis model and dropsonde profiles. We will show the data distribution and explain the sampling characteristics, providing high resolution vertical information to the sides of the aircraft in a manner complementary to dropsondes beneath the flight track. We will show how this method can provide additional reliable data during the development of AR storms.

  10. Performance of Airborne Precision Spacing Under Realistic Wind Conditions and Limited Surveillance Range

    NASA Technical Reports Server (NTRS)

    Wieland, Frederick; Santos, Michel; Krueger, William; Houston, Vincent E.

    2011-01-01

    With the expected worldwide increase of air traffic during the coming decade, both the Federal Aviation Administration's (FAA's) Next Generation Air Transportation System (NextGen), as well as Eurocontrol's Single European Sky ATM Research (SESAR) program have, as part of their plans, air traffic management (ATM) solutions that can increase performance without requiring time-consuming and expensive infrastructure changes. One such solution involves the ability of both controllers and flight crews to deliver aircraft to the runway with greater accuracy than they can today. Previous research has shown that time-based spacing techniques, wherein the controller assigns a time spacing to each pair of arriving aircraft, can achieve this goal by providing greater runway delivery accuracy and producing a concomitant increase in system-wide performance. The research described herein focuses on one specific application of time-based spacing, called Airborne Precision Spacing (APS), which has evolved over the past ten years. This research furthers APS understanding by studying its performance with realistic wind conditions obtained from atmospheric sounding data and with realistic wind forecasts obtained from the Rapid Update Cycle (RUC) short-range weather forecast. In addition, this study investigates APS performance with limited surveillance range, as provided by the Automatic Dependent Surveillance-Broadcast (ADS-B) system, and with an algorithm designed to improve APS performance when ADS-B surveillance data is unavailable. The results presented herein quantify the runway threshold delivery accuracy of APS under these conditions, and also quantify resulting workload metrics such as the number of speed changes required to maintain spacing.

  11. Profile negotiation - A concept for integrating airborne and ground-based automation for managing arrival traffic

    NASA Technical Reports Server (NTRS)

    Green, Steven M.; Den Braven, Wim; Williams, David H.

    1991-01-01

    The profile negotiation process (PNP) concept as applied to the management of arrival traffic within the extended terminal area is presented, focusing on functional issues from the ground-based perspective. The PNP is an interactive process between an aircraft and air traffic control (ATC) which combines airborne and ground-based automation capabilities to determine conflict-free trajectories that are as close to an aircraft's preference as possible. Preliminary results from a real-time simulation study show that the controller teams are able to consistently and effectively negotiate conflict-free vertical profiles with 4D-equipped aircraft. The ability of the airborne 4D flight management system to adapt to ATC specified 4D trajectory constraints is found to be a requirement for successful execution of the PNP. It is recommended that the conventional method of cost index iteration for obtaining the minimum fuel 4D trajectory be supplemented by a method which constrains the profile speeds to those desired by ATC.

  12. Effect of wind turbine wakes on summer-time wind profiles in the US Great Plains

    NASA Astrophysics Data System (ADS)

    Rhodes, M. E.; Lundquist, J. K.; Aitken, M.

    2011-12-01

    Wind energy is steadily becoming a significant source of grid electricity in the United States, and the Midwestern United States provides one of the nation's richest wind resources. This study examines the effect of wind turbine wakes on the wind profile in central Iowa. Data were collected using a coherent Doppler LiDAR system located approximately 2.5 rotor diameters north of a row of modern multi-MW wind turbine generators. The prevailing wind direction was from the South allowing the LiDAR to capture wind turbine wake properties; however, a number of periods existed where the LiDAR captured undisturbed flow. The LiDAR system reliably obtained readings up to 200 m above ground level (AGL), spanning the entire rotor disk (~40 m to 120 m AGL) which far surpasses the information provided by traditional wind resource assessment instrumentation. We extract several relevant parameters from the lidar data including: horizontal wind speed, vertical velocity, horizontal turbulence intensity, wind shear, and turbulent kinetic energy (TKE). Each time period at a particular LiDAR measurement height was labeled "wake" or "undisturbed" based on the wind direction at that height. Wake and undisturbed data were averaged separately to create a time-height cross-section averaged day for each parameter. Significant differences between wake and undisturbed data emerge. During the day, wake conditions experience larger values of TKE within the altitudes of the turbine rotor disk while TKE values above the rotor disk are similar between waked and undisturbed conditions. Furthermore, the morning transition of TKE in the atmospheric boundary layer commences earlier during wake conditions than in undisturbed conditions, and the evening decay of TKE persists longer during wake conditions. Waked wind shear is consistently greater than undisturbed periods at the edges of the wind turbine rotor disk (40m & 120m AGL), but especially so during the night where wind shear values during wake

  13. Tropospheric Wind Profile Measurements with a Direct Detection Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Korb, C. Laurence; Chen, Huailin; Mathur, Savyasachee

    1998-01-01

    Research has established the importance of global tropospheric wind measurements for large scale improvements in numerical weather prediction. In addition, global wind measurements provide data that are fundamental to the understanding and prediction of global climate change. These tasks are closely linked with the goals of the NASA Earth Science Enterprise and Global Climate Change programs. NASA Goddard has been actively involved in the development of direct detection Doppler lidar methods and technologies to meet the wind observing needs of the atmospheric science community. In this paper we describe a recently developed prototype wind lidar system using a direct detection Doppler technique for measuring wind profiles from the surface through the troposphere. This system uses a pulsed ND:YAG laser operating at 1064 nm as the transmitter. The laser pulse is directed to the atmosphere using a 40 cm diameter scan mirror. The portion of the laser energy backscattered from aerosols and molecules is collected by a 40 cm diameter telescope and coupled via fiber optics into the Doppler receiver. Single photon counting APD's are used to detect the atmospheric backscattered signal. The principle element of the receiver is a dual bandpass tunable Fabry Perot etalon which analyzes the Doppler shift of the incoming laser signal using the double edge technique. The double edge technique uses two high resolution optical filters having bandpasses offset relative to one another such that the 'edge' of the first filter's transmission function crosses that of the second at the half power point. The outgoing laser frequency is located approximately at the crossover point. Due to the opposite going slopes of the edges, a Doppler shift in the atmospheric backscattered laser frequency produces a positive change in signal for one filter and a negative change in the second filter. Taking the ratio of the two edge channel signals yields a result which is directly proportional to the

  14. Revised prediction (estimation) of Cape Kennedy, Florida, wind speed profile

    NASA Technical Reports Server (NTRS)

    Guttman, N. B.; Crutcher, H. L.

    1975-01-01

    The prediction of the wind profile maximum speed at Cape Kennedy, Florida, is made for any selected calendar data. The prediction is based on a normal probability distribution model with 15 years of smoothed input data and is static in the sense that no dynamic principles of persistence or synoptic features are considered. Comparison with similar predictions based on 6 years of data shows the same general pattern, but the variability decreased with the increase of sample size.

  15. Final Report DE-EE0005380: Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems

    SciTech Connect

    Ling, Hao; Hamilton, Mark F.; Bhalla, Rajan; Brown, Walter E.; Hay, Todd A.; Whitelonis, Nicholas J.; Yang, Shang-Te; Naqvi, Aale R.

    2013-09-30

    Offshore wind energy is a valuable resource that can provide a significant boost to the US renewable energy portfolio. A current constraint to the development of offshore wind farms is the potential for interference to be caused by large wind farms on existing electronic and acoustical equipment such as radar and sonar systems for surveillance, navigation and communications. The US Department of Energy funded this study as an objective assessment of possible interference to various types of equipment operating in the marine environment where offshore wind farms could be installed. The objective of this project was to conduct a baseline evaluation of electromagnetic and acoustical challenges to sea surface, subsurface and airborne electronic systems presented by offshore wind farms. To accomplish this goal, the following tasks were carried out: (1) survey electronic systems that can potentially be impacted by large offshore wind farms, and identify impact assessment studies and research and development activities both within and outside the US, (2) engage key stakeholders to identify their possible concerns and operating requirements, (3) conduct first-principle modeling on the interactions of electromagnetic signals with, and the radiation of underwater acoustic signals from, offshore wind farms to evaluate the effect of such interactions on electronic systems, and (4) provide impact assessments, recommend mitigation methods, prioritize future research directions, and disseminate project findings. This report provides a detailed description of the methodologies used to carry out the study, key findings of the study, and a list of recommendations derived based the findings.

  16. A Multiple Resource Inventory of Delaware Using an Airborne Profiling Laser

    NASA Technical Reports Server (NTRS)

    Nelson, Ross; Short, Austin; Valenti, Michael A.; Keller, Cherry; Smith, David E. (Technical Monitor)

    2002-01-01

    An airborne profiling laser is used to monitor multiple resources related to landscape structure, both natural and man-made, across regions encompassing hundreds of thousands of hectares. A small, lightweight, inexpensive airborne profiling laser is used to inventory Delaware forests, to estimate impervious surface area statewide, and to locate potentially Suitable Delmarva Fox Squirrel (Scrotum niger cinereus) habitat. Merchantable volume estimates are within 14% of US Forest Service estimates at the county level and within 4% statewide. Total above-ground dry biomass estimates are within 19% of USES estimates at the county level and within 16% statewide. Mature forest stands suitable for reintroduction of the Delmarva Fox Squirrel, an endangered species historically endemic to the eastern shores of Delaware, Maryland, and Virginia, are identified and mapped along the laser transacts. Intersection lengths with various types of impervious surface (roofs, concrete/asphalt) and open water are tallied to estimate percent and areal coverage statewide, by stratum and county. Laser estimates of open water are within 7% of photointerpreted GIS estimates at the county level and within 3% of the GIS at the state level.

  17. Estimating Planetary Boundary Layer Heights from NOAA Profiler Network Wind Profiler Data

    NASA Technical Reports Server (NTRS)

    Molod, Andrea M.; Salmun, H.; Dempsey, M

    2015-01-01

    An algorithm was developed to estimate planetary boundary layer (PBL) heights from hourly archived wind profiler data from the NOAA Profiler Network (NPN) sites located throughout the central United States. Unlike previous studies, the present algorithm has been applied to a long record of publicly available wind profiler signal backscatter data. Under clear conditions, summertime averaged hourly time series of PBL heights compare well with Richardson-number based estimates at the few NPN stations with hourly temperature measurements. Comparisons with clear sky reanalysis based estimates show that the wind profiler PBL heights are lower by approximately 250-500 m. The geographical distribution of daily maximum PBL heights corresponds well with the expected distribution based on patterns of surface temperature and soil moisture. Wind profiler PBL heights were also estimated under mostly cloudy conditions, and are generally higher than both the Richardson number based and reanalysis PBL heights, resulting in a smaller clear-cloudy condition difference. The algorithm presented here was shown to provide a reliable summertime climatology of daytime hourly PBL heights throughout the central United States.

  18. Airborne GPS radio occultation refractivity profiles observed in tropical storm environments

    NASA Astrophysics Data System (ADS)

    Murphy, B. J.; Haase, J. S.; Muradyan, P.; Garrison, J. L.; Wang, K.-N.

    2015-03-01

    Airborne GPS radio occultation (ARO) data have been collected during the 2010 PRE-Depression Investigation of Cloud systems in the Tropics (PREDICT) experiment. GPS signals received by the airborne Global Navigation Satellite System Instrument System for Multistatic and Occultation Sensing (GISMOS) are used to retrieve vertical profiles of refractivity in the neutral atmosphere. The system includes a conventional geodetic GPS receiver component for straightforward validation of the analysis method in the middle to upper troposphere, and a high-sample rate (10 MHz) GPS recorder for postprocessing complex signals that probe the lower troposphere. The results from the geodetic receivers are presented here. The retrieved ARO profiles consistently agree within ~2% of refractivity profiles calculated from the European Center for Medium-Range Weather Forecasting model Interim reanalyses as well as from nearby dropsondes and radiosondes. Changes in refractivity obtained from ARO data over the 5 days leading to the genesis of tropical storm Karl are consistent with moistening in the vicinity of the storm center. An open-loop tracking method was implemented in a test case to analyze GPS signals from the GISMOS 10 MHz recording system for comparison with geodetic receiver data. The open-loop mode successfully tracked ~2 km deeper into the troposphere than the conventional receiver and can also track rising occultations, illustrating the benefit from the high-rate recording system. Accurate refractivity retrievals are an important first step toward the future goal of assimilating moisture profiles to improve forecasting of developing storms using this new GPS occultation technique.

  19. Source Identification Of Airborne Antimony On The Basis Of The Field Monitoring And The Source Profiling

    NASA Astrophysics Data System (ADS)

    Iijima, A.; Sato, K.; Fujitani, Y.; Fujimori, E.; Tanabe, K.; Ohara, T.; Shimoda, M.; Kozawa, K.; Furuta, N.

    2008-12-01

    The results of the long-term monitoring of airborne particulate matter (APM) in Tokyo indicated that APM have been extremely enriched with antimony (Sb) compared to crustal composition. This observation suggests that the airborne Sb is distinctly derived from human activities. According to the material flow analysis, automotive brake abrasion dust and fly ash from waste incinerator were suspected as the significant Sb sources. To clarify the emission sources of the airborne Sb, elemental composition, particle size distribution, and morphological profiles of dust particles collected from two possible emission sources were characterized and compared to the field observation data. Brake abrasion dust samples were generated by using a brake dynamometer. During the abrasion test, particle size distribution was measured by an aerodynamic particle sizer spectrometer. Concurrently, size- classified dust particles were collected by an Andersen type air sampler. Fly ash samples were collected from several municipal waste incinerators, and the bulk ash samples were re-dispersed into an enclosed chamber. The measurement of particle size distribution and the collection of size-classified ash particles were conducted by the same methodologies as described previously. Field observations of APM were performed at a roadside site and a residential site by using an Andersen type air sampler. Chemical analyses of metallic elements were performed by an inductively coupled plasma atomic emission spectrometry and an inductively coupled plasma mass spectrometr. Morphological profiling of the individual particle was conducted by a scanning electron microscope equipped with an energy dispersive X-ray spectrometer. High concentration of Sb was detected from both of two possible sources. Particularly, Sb concentrations in a brake abrasion dust were extremely high compared to that in an ambient APM, suggesting that airborne Sb observed at the roadside might have been largely derived from

  20. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.

    2007-07-01

    A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF), enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI) and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL) for the ACRI is close to 1.51(±0.02)-i0.017(±0.003) at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH) profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  1. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.

    2008-02-01

    A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF), enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI) and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL) for the ACRI is close to 1.51(±0.02)-i0.017(±0.003) at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH) profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  2. Performance of a wind-profiling LIDAR in the region of wind turbine rotor disks

    NASA Astrophysics Data System (ADS)

    Aitken, M.; Rhodes, M. E.; Lundquist, J. K.

    2010-12-01

    As the wind energy sector continues to grow, so does the need for reliable vertical wind profiles for assessing wind turbine performance and diagnosing underperformance issues. In situ instrumentation mounted on meteorological towers can rarely probe the atmosphere at the altitudes of modern turbine rotor disks, up to 200 m above the surface. Remote sensing LIDAR, on the other hand, can quantify winds and turbulence at altitudes throughout the ranges of modern turbine rotor disks (40 m to 200 m above the surface). By measuring the Doppler shift of laser light backscattered by particles in the atmosphere, LIDAR has proven a promising technology for both wind resource assessment and turbine response characterization; to date, however, LIDAR data availability has not been well-quantified. To determine situations of suitable data return rates, we have deployed a Windcube LIDAR, co-located with a Vaisala CL31 ceilometer, as part of the Skywatch Observatory at the University of Colorado at Boulder. Aerosol backscatter, as measured by the ceilometer, and LIDAR signal-to-noise ratio (SNR) are strongly correlated. Additionally, we find that LIDAR SNR also depends weakly on atmospheric turbulence characteristics and atmospheric relative humidity. This relationship suggests an ability to predict LIDAR performance based on widely available air quality assessments (such as the EPA Air Quality Index), thus providing guidance for useful LIDAR deployments at wind farms to characterize turbine performance. *Acknowledgments: Skywatch Observatory is funded through NSF grant 0837388.

  3. A 449 MHz modular wind profiler radar system

    NASA Astrophysics Data System (ADS)

    Lindseth, Bradley James

    This thesis presents the design of a 449 MHz radar for wind profiling, with a focus on modularity, antenna sidelobe reduction, and solid-state transmitter design. It is one of the first wind profiler radars to use low-cost LDMOS power amplifiers combined with spaced antennas. The system is portable and designed for 2-3 month deployments. The transmitter power amplifier consists of multiple 1-kW peak power modules which feed 54 antenna elements arranged in a hexagonal array, scalable directly to 126 elements. The power amplifier is operated in pulsed mode with a 10% duty cycle at 63% drain efficiency. The antenna array is designed to have low sidelobes, confirmed by measurements. The radar was operated in Boulder, Colorado and Salt Lake City, Utah. Atmospheric wind vertical and horizontal components at altitudes between 200m and 4km were calculated from the collected atmospheric return signals. Sidelobe reduction of the antenna array pattern is explored to reduce the effects of ground or sea clutter. Simulations are performed for various shapes of compact clutter fences for the 915-MHz beam-steering Doppler radar and the 449-MHz spaced antenna interferometric radar. It is shown that minimal low-cost hardware modifications to existing compact ground planes of 915-MHz beam-steering radar allow for reduction of sidelobes of up to 5dB. The results obtained on a single beam-steering array are extended to the 449 MHz triple hexagonal array spaced antenna interferometric radar. Cross-correlation, transmit beamwidth, and sidelobe levels are evaluated for various clutter fence configurations and array spacings. The resulting sidelobes are as much as 10 dB below those without a clutter fence and can be incorporated into existing and future 915 and 449 MHz wind profiler systems with minimal hardware modifications.

  4. Observations of Atmospheric Temperature Structure from an Airborne Microwave Temperature Profiler

    NASA Astrophysics Data System (ADS)

    Haggerty, J. A.; Schick, K. E.; Young, K.; Lim, B.; Ahijevych, D.

    2014-12-01

    A newly-designed Microwave Temperature Profiler (MTP) was developed at JPL for the NSF-NCAR Gulfstream-V aircraft. The MTP is a scanning microwave radiometer that measures thermal emission in the 50-60 GHz oxygen complex. It scans from near-zenith to near-nadir, measuring brightness temperatures forward, above, and below the aircraft at 17 s intervals. A statistical retrieval method derives temperature profiles from the measurements, using proximate radiosonde profiles as a priori information. MTP data examples from recent experiments, comparisons with simultaneous temperature profiles from the Airborne Vertical Atmospheric Profiling System (AVAPS), and a method for blending MTP and AVAPS temperature profiles will be presented. The Mesoscale Predictability Experiment (MPEX; May-June, 2013) investigated the utility of sub-synoptic observations to extend convective-scale predictability and otherwise enhance skill in regional numerical weather prediction over short forecast periods. This project relied on MTP and AVAPS profiles to characterize atmospheric structure on fine spatial scales. Comparison of MTP profiles with AVAPS profiles confirms uncertainty specifications of MTP. A profile blending process takes advantage of the high resolution of AVAPS profiles below the aircraft while utilizing MTP profiles above the aircraft. Ongoing research with these data sets examines double tropopause structure in association with the sub-tropical jet, mountain lee waves, and fluxes at the tropopause. The attached figure shows a mountain lee wave signature in the MTP-derived isentrope field along the flight track during an east-west segment over the Rocky Mountains. A vertically propagating wave with westward tilt is evident on the leeward side of the mountains at around 38 ksec. The Deep Propagating Gravity Wave Experiment over New Zealand (DEEPWAVE; June-July, 2014) investigated the dynamics of gravity waves from the surface to the lower thermosphere. MTP and AVAPS

  5. Conceptual design of an airborne laser Doppler velocimeter system for studying wind fields associated with severe local storms

    NASA Technical Reports Server (NTRS)

    Thomson, J. A. L.; Davies, A. R.; Sulzmann, K. G. P.

    1976-01-01

    An airborne laser Doppler velocimeter was evaluated for diagnostics of the wind field associated with an isolated severe thunderstorm. Two scanning configurations were identified, one a long-range (out to 10-20 km) roughly horizontal plane mode intended to allow probing of the velocity field around the storm at the higher altitudes (4-10 km). The other is a shorter range (out to 1-3 km) mode in which a vertical or horizontal plane is scanned for velocity (and possibly turbulence), and is intended for diagnostics of the lower altitude region below the storm and in the out-flow region. It was concluded that aircraft flight velocities are high enough and severe storm lifetimes are long enough that a single airborne Doppler system, operating at a range of less than about 20 km, can view the storm area from two or more different aspects before the storm characteristics change appreciably.

  6. Estimation of wind shear components over complex terrain, and their removal to enhance wind profiling

    NASA Astrophysics Data System (ADS)

    Bradley, S.; Vallès, B.

    2010-09-01

    Wind profiles over complex terrain are currently impossible to obtain at requisite accuracy via remote sensing or flow models. We propose a new approach in which, in each sampled height plane, the 3 wind components (u, v, w) and their horizontal shear components (du/dx, du/dy, dv/dx, dv/dy, dw/dx, dw/dy) are estimated from a 9-beam ground-based remote-sensing system. Based on simulations and error-propagation, we show that this characterization of the spatially complex wind field to first order will allow improved estimation of (u, v, w). The effects of temporal fluctuations due to spatial coherence are also discussed. Planned field investigations and coupled CFD data interpretations are described.

  7. Marli: Mars Lidar for Global Wind Profiles and Aerosol Profiles from Orbit

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Guzewich, S. D.; Smith, M. D.; Riris, H.; Sun, X.; Gentry, B. M.; Yu, A.; Allan, G. R.

    2016-01-01

    The Mars Exploration Analysis Group's Next Orbiter Science Analysis Group (NEXSAG) has recently identified atmospheric wind measurements as one of 5 top compelling science objectives for a future Mars orbiter. To date, only isolated lander observations of martian winds exist. Winds are the key variable to understand atmospheric transport and answer fundamental questions about the three primary cycles of the martian climate: CO2, H2O, and dust. However, the direct lack of observations and imprecise and indirect inferences from temperature observations leave many basic questions about the atmospheric circulation unanswered. In addition to addressing high priority science questions, direct wind observations from orbit would help validate 3D general circulation models (GCMs) while also providing key input to atmospheric reanalyses. The dust and CO2 cycles on Mars are partially coupled and their influences on the atmospheric circulation modify the global wind field. Dust absorbs solar infrared radiation and its variable spatial distribution forces changes in the atmospheric temperature and wind fields. Thus it is important to simultaneously measure the height-resolved wind and dust profiles. MARLI provides a unique capability to observe these variables continuously, day and night, from orbit.

  8. Comparing mixing-length models of the diabatic wind profile over homogeneous terrain

    NASA Astrophysics Data System (ADS)

    Peña, Alfredo; Gryning, Sven-Erik; Hasager, Charlotte Bay

    2010-05-01

    Models of the diabatic wind profile over homogeneous terrain for the entire atmospheric boundary layer are developed using mixing-length theory and are compared to wind speed observations up to 300 m at the National Test Station for Wind Turbines at Høvsøre, Denmark. The measurements are performed within a wide range of atmospheric stability conditions, which allows a comparison of the models with the average wind profile computed in seven stability classes, showing a better agreement than compared to the traditional surface-layer wind profile. The wind profile is measured by combining cup anemometer and lidar observations, showing good agreement at the overlapping heights. The height of the boundary layer, a parameter required for the wind profile models, is estimated under neutral and stable conditions using surface-layer turbulence measurements, and under unstable conditions based on the aerosol backscatter profile from ceilometer observations.

  9. Streamwise vortex generator for separation reduction on wind turbine profile

    NASA Astrophysics Data System (ADS)

    Martinez Suarez, J.; Flaszyński, P.; Doerffer, P.

    2016-10-01

    High angles of attack of the wind turbine blades induce severe flow conditions which lead to flow separation and, as the consequence, aerodynamic performance reduction. Implementation of a new type of passive streamwise vortex generator (Rod Vortex Generator - RVG), on a wind turbine profile in order to reduce the flow separation is presented. Numerical model validation is carried out for the S809 aerofoil and a wide range of angles of attack (AoA) employed as reference for flow control cases. Investigation of proposed passive control method involves attached as well as incipient and massive flow separation. A study of chordwise location of RVGs for different inflow conditions is performed. The numerical and experimental results are in good agreement. Obtained numerical results based on the RANS approach reveal a large potential of selected passive devices in reduction of flow separation and increase of aerodynamic performance.

  10. Development of a laser wind and hazard profiler

    NASA Astrophysics Data System (ADS)

    Rouse, Gordon F.; Bagley, Harold R.; Kane, Thomas J.; Leung, Christopher

    1996-10-01

    This paper describes present day wind-measuring and air-data systems, the limitations of these systems, and the formation of a consortium to develop solutions using the laser Doppler velocimeter (LDV). The LDV concept is discussed as well as the issues related to developing such systems. Significant progress towards making practical, reliable, and affordable eye-safe LDV systems is being gained through the many systems built to date and flight tests. The technical goal of this program is to demonstrate that small, low-power, diode pumped, 2 micrometers wavelength, eye-safe coherent LDV systems can be built and flown on both high-performance military fighter aircraft and advanced military attack helicopters. An industry-government consortium will develop LDV systems with the name Laser Wind and Hazard Profiler.

  11. Airborne Lidar measurements of the atmospheric pressure profile with tunable Alexandrite lasers

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Milrod, J.; Walden, H.

    1986-01-01

    The first remote measurements of the atmospheric pressure profile made from an airborne platform are described. The measurements utilize a differential absorption lidar and tunable solid state Alexandrite lasers. The pressure measurement technique uses a high resolution oxygen A band where the absorption is highly pressure sensitive due to collision broadening. Absorption troughs and regions of minimum absorption were used between pairs of stongly absorption lines for these measurements. The trough technique allows the measurement to be greatly desensitized to the effects of laser frequency instabilities. The lidar system was set up to measure pressure with the on-line laser tuned to the absorption trough at 13147.3/cm and with the reference laser tuned to a nonabsorbing frequency near 13170.0/cm. The lidar signal returns were sampled with a 200 range gate (30 vertical resoltion) and averaged over 100 shots.

  12. Vertical profiles of the 3-D wind velocity retrieved from multiple wind lidars performing triple range-height-indicator scans

    DOE PAGES

    Debnath, Mithu; Iungo, G. Valerio; Ashton, Ryan; ...

    2017-02-06

    Vertical profiles of 3-D wind velocity are retrieved from triple range-height-indicator (RHI) scans performed with multiple simultaneous scanning Doppler wind lidars. This test is part of the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign carried out at the Boulder Atmospheric Observatory. The three wind velocity components are retrieved and then compared with the data acquired through various profiling wind lidars and high-frequency wind data obtained from sonic anemometers installed on a 300 m meteorological tower. The results show that the magnitude of the horizontal wind velocity and the wind direction obtained from the triple RHI scans are generally retrieved with goodmore » accuracy. However, poor accuracy is obtained for the evaluation of the vertical velocity, which is mainly due to its typically smaller magnitude and to the error propagation connected with the data retrieval procedure and accuracy in the experimental setup.« less

  13. Vertical profiles of the 3-D wind velocity retrieved from multiple wind lidars performing triple range-height-indicator scans

    SciTech Connect

    Debnath, Mithu; Iungo, G. Valerio; Ashton, Ryan; Brewer, W. Alan; Choukulkar, Aditya; Delgado, Ruben; Lundquist, Julie K.; Shaw, William J.; Wilczak, James M.; Wolfe, Daniel

    2017-01-01

    Vertical profiles of 3-D wind velocity are retrieved from triple range-height-indicator (RHI) scans performed with multiple simultaneous scanning Doppler wind lidars. This test is part of the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign carried out at the Boulder Atmospheric Observatory. The three wind velocity components are retrieved and then compared with the data acquired through various profiling wind lidars and high-frequency wind data obtained from sonic anemometers installed on a 300 m meteorological tower. The results show that the magnitude of the horizontal wind velocity and the wind direction obtained from the triple RHI scans are generally retrieved with good accuracy. However, poor accuracy is obtained for the evaluation of the vertical velocity, which is mainly due to its typically smaller magnitude and to the error propagation connected with the data retrieval procedure and accuracy in the experimental setup.

  14. Vertical profiles of the 3-D wind velocity retrieved from multiple wind lidars performing triple range-height-indicator scans

    NASA Astrophysics Data System (ADS)

    Debnath, Mithu; Valerio Iungo, G.; Ashton, Ryan; Brewer, W. Alan; Choukulkar, Aditya; Delgado, Ruben; Lundquist, Julie K.; Shaw, William J.; Wilczak, James M.; Wolfe, Daniel

    2017-02-01

    Vertical profiles of 3-D wind velocity are retrieved from triple range-height-indicator (RHI) scans performed with multiple simultaneous scanning Doppler wind lidars. This test is part of the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign carried out at the Boulder Atmospheric Observatory. The three wind velocity components are retrieved and then compared with the data acquired through various profiling wind lidars and high-frequency wind data obtained from sonic anemometers installed on a 300 m meteorological tower. The results show that the magnitude of the horizontal wind velocity and the wind direction obtained from the triple RHI scans are generally retrieved with good accuracy. However, poor accuracy is obtained for the evaluation of the vertical velocity, which is mainly due to its typically smaller magnitude and to the error propagation connected with the data retrieval procedure and accuracy in the experimental setup.

  15. Vertical and horizontal profiles of airborne particulate matter near major roads in Macao, China

    NASA Astrophysics Data System (ADS)

    Wu, Ye; Hao, Jiming; Fu, Lixin; Wang, Zhishi; Tang, Uwa

    Vertical profiles, horizontal profiles and size distribution of airborne particulate matter were measured near major roads in Macao using DustTrak and TEOM monitors. A significant decrease in the concentrations of PM 10, PM 2.5 and PM 1, as the height above the ground increases from 2 to 79 m, was found. At the height of 79 m, the concentrations of PM 10, PM 2.5 and PM 1, decrease to about 60%, 62% and 80% of the maximum occurring at 2 m above the ground, respectively. However, the horizontal profiles near another major road revealed there was no significant trend of decrease in concentrations of particulate matter as the distance from the road increases. Over the total measured distance (0-228 m), the maximum decreases of PM 10, PM 2.5 and PM 1 are only 7%, 9% and 10%, of the maximum occurring at 2 m from the road, respectively. The daytime averaged PM 2.5 and PM 1 contribute 66-67% and 51-60%, respectively, of the total PM 10 mass after the particle readings by DustTrak were recalibrated by TEOM. It showed that fine particles and submicrometer particles contributed a major part of PM 10 at the roadside in Macao, which is most likely attributed to the combinations of local sources including exhausted particulate matter from vehicles and resuspended fine dust, and secondary particles (sulfate, nitrate and ammonium) of regional scales.

  16. Compact, Engineered 2-Micron Coherent Doppler Wind Lidar Prototype for Field and Airborne Evaluation

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Amzajerdian, Farzin; Koch, Grady J.

    2006-01-01

    The state-of-the-art 2-micron coherent Doppler wind lidar breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent Doppler wind lidar system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid Doppler wind lidar solution to the need for global tropospheric wind measurements.

  17. Offshore wind profile measurements using a Doppler LIDAR at the Hazaki Oceanographical Research Station

    NASA Astrophysics Data System (ADS)

    Shimada, Susumu; Ohsawa, Teruo; Ohgishi, Tatsuya; Kikushima, Yoshihiro; Kogaki, Testuya; Kawaguchi, Koji; Nakamura, Satoshi

    2014-08-01

    Vertical wind speed profiles near the coast were observed using a Doppler Light Detection and Ranging (LIDAR) system at the Hazaki Oceanographical Research Station (HORS) from September 17 to 26, 2013. The accuracies of the theoretical wind profile models of the log profile model and the Monin-Obukov similarity (MOS) theory were examined by comparing them to those of the observed wind profiles. As a result, MOS, which takes into account the stability effects during wind profile calculations, successfully estimated the wind profile more accurately than the log profile model when the wind was from a sea sector (from sea to land). Conversely, both models did not estimate the profile adequately when the wind was from a land sector (from land to sea). Moreover, the wind profile for the land sector was found to include an obvious diurnal cycle, which is relevant to the stability change over land. Consequently, it is found that the atmospheric stability plays an important roll to determine the offshore wind speed profiles near the coast for not only the sea sector but also the land sector.

  18. Remote Sensing of Multi-Level Wind Fields with High-Energy Airborne Scanning Coherent Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Olivier, Lisa D.; Banta, Robert M.; Hardesty, R. Michael; Howell, James N.; Cutten, Dean R.; Johnson, Steven C.; Menzies, Robert T.; Tratt, David M.

    1997-01-01

    The atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory have developed and flown a scanning, 1 Joule per pulse, CO2 coherent Doppler lidar capable of mapping a three-dimensional volume of atmospheric winds and aerosol backscatter in the troposphere and lower stratosphere. Applications include the study of severe and non-severe atmospheric flows, intercomparisons with other sensors, and the simulation of prospective satellite Doppler lidar wind profilers. Examples of wind measurements are given for the marine boundary layer and near the coastline of the western United States.

  19. Remote sensing of multi-level wind fields with high-energy airborne scanning coherent Doppler lidar.

    PubMed

    Rothermel, J; Olivier, L; Banta, R; Hardesty, R M; Howell, J; Cutten, D; Johnson, S; Menzies, R; Tratt, D M

    1998-01-19

    The atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory have developed and flown a scanning, 1 Joule per pulse, CO2 coherent Doppler lidar capable of mapping a three-dimensional volume of atmospheric winds and aerosol backscatter in the planetary boundary layer, free troposphere, and lower stratosphere. Applications include the study of severe and non-severe atmospheric flows, intercomparisons with other sensors, and the simulation of prospective satellite Doppler lidar wind profilers. Examples of wind measurements are given for the marine boundary layer and near the coastline of the western United States.

  20. Integrating Wind Profiling Radars and Radiosonde Observations with Model Point Data to Develop a Decision Support Tool to Assess Upper-level Winds For Space Launch

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Flinn, Clay

    2012-01-01

    Launch directors need to know upper-level wind forecasts. We developed an Excel-based GUI to display upper-level winds: (1) Rawinsonde at CCAFS, (2) Wind profilers at KSC, (3) Model point data at CCAFS.

  1. Exploring the nearshore marine wind profile from field measurements and numerical hindcast

    NASA Astrophysics Data System (ADS)

    del Jesus, F.; Menendez, M.; Guanche, R.; Losada, I.

    2012-12-01

    Wind power is the predominant offshore renewable energy resource. In the last years, offshore wind farms have become a technically feasible source of electrical power. The economic feasibility of offshore wind farms depends on the quality of the offshore wind conditions compared to that of onshore sites. Installation and maintenance costs must be balanced with more hours and a higher quality of the available resources. European offshore wind development has revealed that the optimum offshore sites are those in which the distance from the coast is limited with high available resource. Due to the growth in the height of the turbines and the complexity of the coast, with interactions between inland wind/coastal orography and ocean winds, there is a need for field measurements and validation of numerical models to understand the marine wind profile near the coast. Moreover, recent studies have pointed out that the logarithmic law describing the vertical wind profile presents limitations. The aim of this work is to characterize the nearshore vertical wind profile in the medium atmosphere boundary layer. Instrumental observations analyzed in this work come from the Idermar project (www.Idermar.es). Three floating masts deployed at different locations on the Cantabrian coast provide wind measurements from a height of 20 to 90 meters. Wind speed and direction are measured as well as several meteorological variables at different heights of the profile. The shortest wind time series has over one year of data. A 20 year high-resolution atmospheric hindcast, using the WRF-ARW model and focusing on hourly offshore wind fields, is also analyzed. Two datasets have been evaluated: a European reanalysis with a ~15 Km spatial resolution, and a hybrid downscaling of wind fields with a spatial resolution of one nautical mile over the northern coast of Spain.. These numerical hindcasts have been validated based on field measurement data. Several parameterizations of the vertical wind

  2. Saharan Mineral Dust Experiment SAMUM 2006: Airborne observations of dust particle properties and vertical dust profiles

    NASA Astrophysics Data System (ADS)

    Petzold, A.; Weinzierl, B.; Esselborn, M.; Fiebig, M.; Fix, A.; Kiemle, C.; Wirth, M.; Müller, D.; Wendisch, M.; Schuetz, L.; Kandler, K.; Kahn, R.; Wagner, F.; Pereira, S.; Virkkula, A.

    2006-12-01

    during the long-range transport events. First results will be presented on dust size distributions in several altitudes, dust optical properties and aerosol optical depths determined from HSRL and aerosol size distribution data. Vertical profiles of the dust mass loading will be discussed for the field sites of Zagora at the Saharan border and Evora in Portugal from the combination of ground-based and airborne measurements. This work is supported by the Deutsche Forschungsgemeinschaft DFG, the European Space Agency ESA and the European Fleet for Airborne research EUFAR.

  3. Mapping and Monitoring Delmarva Fox Squirrel Habitat Using an Airborne LiDAR Profiler

    NASA Technical Reports Server (NTRS)

    Nelson, Ross; Ratnaswamy, Mary; Keller, Cherry

    2004-01-01

    Twenty five hundred thirty nine kilometers of airborne laser profiling and videography data were acquired over the state of Delaware during the summer of 2000. The laser ranging measurements and video from approximately one-half of that data set (1304 km) were analyzed to identify and locate forested sites that might potentially support populations of Delmarva fox squirrel (DFS, Sciurus niger cinereus). The DFS is an endangered species previously endemic to tall, dense, mature forests with open understories on the Eastern Shore of the Chesapeake Bay. The airborne LiDAR employed in this study can measure forest canopy height and canopy closure, but cannot measure or infer understory canopy conditions. Hence the LiDAR must be viewed as a tool to map potential, not actual, habitat. Fifty-three potentially suitable DFS sites were identified in the 1304 km of flight transect data. Each of the 53 sites met the following criteria according to the LiDAR and video record: (1 ) at least 120m of contiguous forest; (2) an average canopy height greater than 20m; (3) an average canopy closure of >80%; and (4) no roofs, impervious surface (e.g., asphalt, concrete), and/or open water anywhere along the 120m length of the laser segment. Thirty-two of the 53 sites were visited on the ground and measurements taken for a DFS habitat suitability model. Seventy eight percent of the sites (25 of 32) were judged by the model to be suited to supporting a DFS population. Twenty-eight of the 32 sites visited in the field were in forest cover types (hardwood, mixed wood, conifer, wetlands) according to a land cover GIS map. Of these, 23 (82%) were suited to support DFS. The remaining 4 sites were located in nonforest cover types - agricultural or residential areas. Two of the four, or 50% were suited to the DFS. All of the LiDAR flight data, 2539 km, were analyzed to

  4. Airborne Wind Energy: Implementation and Design for the U.S. Air Force

    DTIC Science & Technology

    2011-03-01

    11 2.3. Jet Streams & Global Wind Patterns...3. A typical jet stream pattern, with two jet streams per hemisphere 17 ............... 14 Figure 4. Wind power density (kW/m 2 ) that was...turbines and airfoils in energy production; in wind towers, limited blade portions (red) contribute predominantly to power production; the kite

  5. Comparison of FPS-16 radar/jimsphere and NASA's 50-MHz radar wind profiler turbulence indicators

    NASA Technical Reports Server (NTRS)

    Susko, Michael

    1993-01-01

    Measurements of the wind and turbulent regions from the surface to 16 km by the FPS-11 radar/jimsphere system are reported with particular attention given to the use of these turbulence and wind assessments to validate the NASA 50-MHz radar wind profiler. Wind profile statistics were compared at 150-m wavelengths, a wavelength validated from 20 jimspheres, simultaneously tracked by FPS-16 and FPQ-14 radar, and the resulting analysis of auto spectra, cross-spectra, and coherence squared spectra of the wind profiles. Results demonstrate that the NASA prototype wind profiler is an excellent monitoring device illustrating the measurements of the winds within 1/2 hour of launch zero.

  6. Vertical Structure of the Wind Speed Profile at the North Sea Offshore Measurement Platform FINO1

    NASA Astrophysics Data System (ADS)

    Kettle, A. J.

    2013-12-01

    The vertical wind speed profile in the lowest 100m of the marine atmospheric boundary layer has been characterized from data collected at the FINO1 offshore research platform in the German North Sea sector for 2005. Located in 30m of water, the platform has a dense vertical array of meteorological instrumentation to measure wind speed, air temperature, relative humidity, and atmospheric turbulence characteristics. Along measurements of the ocean temperature and surface waves, the platform is well-equipped to characterize wind properties in the near-surface boundary layer. Preliminary analysis reveals a high incidence of vertical wind speed profiles that deviate significantly from Monin-Obukhov similarity theory with wind speed inflections that suggest decoupled layers near the surface. The presentation shows how the properties of the vertical wind speed profile change mainly depending on the wind speed, wind direction, and time of year. The results are significant because there are few reports of inflections in the vertical wind speed profile over the ocean and there is an a priori assumption that the vertical wind speed profile varies smoothly according to similarity theory. There are possible consequences for the wind energy development in terms of understanding the forces acting on offshore wind turbines whose rotors sweep across heights 150-200m above the sea surface.

  7. Quality-Controlled Wind Data from the Kennedy Space Center 915 Megahertz Doppler Radar Wind Profiler Network

    NASA Technical Reports Server (NTRS)

    Dryden, Rachel L.

    2011-01-01

    The National Aeronautics and Space Administration s (NASA) Kennedy Space Center (KSC) has installed a five-instrument 915-Megahertz (MHz) Doppler Radar Wind Profiler (DRWP) system that records atmospheric wind profile properties. The purpose of these profilers is to fill data gaps between the top of the KSC wind tower network and the lowest measurement altitude of the KSC 50-MHz DRWP. The 915-MHz DRWP system has the capability to generate three-dimensional wind data outputs from approximately 150 meters (m) to 6,000 m at roughly 15-minute (min) intervals. NASA s long-term objective is to combine the 915-MHz and 50-MHz DRWP systems to create complete vertical wind profiles up to 18,300 m to be used in trajectory and loads analyses of space vehicles and by forecasters on day-of-launch (DOL). This analysis utilizes automated and manual quality control (QC) processes to remove erroneous and unrealistic wind data returned by the 915-MHz DRWP system. The percentage of data affected by each individual QC check in the period of record (POR) (i.e., January to April 2006) was computed, demonstrating the variability in the amount of data affected by the QC processes. The number of complete wind profiles available at given altitude thresholds for each profiler in the POR was calculated and outputted graphically, followed by an assessment of the number of complete wind profiles available for any profiler in the POR. A case study is also provided to demonstrate the QC process on a day of a known weather event.

  8. Investigation of the Air-Wave-Sea Interaction Modes Using an Airborne Doppler Wind Lidar: Analyses of the HRDL Data Taken using DYNAMO

    DTIC Science & Technology

    2013-10-07

    07-10-2013 2. REPORT TYPE Annual 3. DATES COVERED (From - To) 08/17/2012-08/16/2013 4. TITLE AND SUBTITLE Investigation of the Air-Wave- Sea ...of our initially proposed work. The move to examining the ABL using data taken from the CIRPAS TODWL (Twin Otter Doppler Wind Lidar) remains...Investigation of the Air-Wave- Sea Interaction Modes Using an Airborne Doppler Wind Lidar: Analyses of the HRDL data taken during DYNAMO George

  9. Analysis of the diurnal development of the Ora del Garda wind in the Alps from airborne and surface measurements

    NASA Astrophysics Data System (ADS)

    Laiti, L.; Zardi, D.; de Franceschi, M.; Rampanelli, G.

    2013-07-01

    A lake-breeze and valley-wind coupled circulation system, known as Ora del Garda, typically arises in the late morning from the northern shorelines of Lake Garda (southeastern Italian Alps), and then channels into the Sarca and Lakes valleys to the north. After flowing over an elevated saddle, in the early afternoon this wind breaks out from the west into the nearby Adige Valley, hindering the regular development of the local up-valley wind by producing a strong and gusty anomalous flow in the area. Two targeted flights of an equipped motorglider were performed in the morning and afternoon of 23 August 2001 in the above valleys, exploring selected vertical slices of the atmosphere, from the lake's shore to the area where the two local airflows interact. At the same time, surface observations were collected during an intensive field measurement campaign held in the interaction area, as well as from routinely-operated weather stations disseminated along the whole study area, allowing the analysis of the different stages of the Ora del Garda development. From airborne measurements, an atmospheric boundary-layer (ABL) vertical structure, typical of deep Alpine valleys, was detected in connection with the wind flow, with rather shallow (∼500 m) convective mixed layers surmounted by deeper, weakly stable layers. On the other hand, close to the lake's shoreline the ABL was found to be stabilized down to very low heights, as an effect of the onshore advection of cold air by the lake breeze. Airborne potential temperature observations were mapped over high-resolution 3-D grids for each valley section explored by the flights, using a geostatistical technique called residual kriging (RK). RK-regridded fields revealed fine-scale features and inhomogeneities of ABL thermal structures associated with the complex thermally-driven wind field developing in the valleys. The combined analysis of surface observations and RK-interpolated fields revealed an irregular propagation of

  10. Investigating the impacts of LLJs and OLEs on ABL exchanges and transports using an airborne Doppler wind lidar

    NASA Astrophysics Data System (ADS)

    Emmitt, G. D.; Foster, R. C.; Godwin, K.; Greco, S.

    2013-12-01

    An airborne Doppler wind lidar (ADWL) has been used for more than a decade to investigate the Atmospheric Boundary Layer (ABL) in the coastal region of central California. The frequent detection of Low Level Jets (LLJs) and Organized Large Eddies (OLEs) has made a strong case for a focused study on the role these structures play in modulating the exchange of mass, momentum and energy between the atmosphere and the underlying land/water. As the ADWL provides high resolution wind and aerosol observations, aircraft in situ instrumentation measures state variables (10Hz) to enable flux computations within the ABL. This combination is ideally suited to relating both Eddy Diffusivity and Mass Fluxes to the presence and degree of organized structures such as LLJs, OLEs scaled to the depth of the Boundary Layer, OLEs scaled by the LLJ and convective 'plumes'. The recent addition of a modified 'cruise missile' towed below the aircraft, within 10 meters of the surface, promises to provide an additional and unique set of observations. Results from several field experiments using an ADWL installed on a Twin Otter (TODWL) will be presented with a focus upon the visualization of ABL structures and the interpretation of direct measurements of wind velocity, turbulence and aerosol distributions. Observations and fluxes derived from the Twin Otter's gust probe will be examined in terms of the DWL resolved ABL features.

  11. Temperature and horizontal wind measurements on the ER-2 aircraft during the 1987 airborne Antarctic ozone experiment

    NASA Technical Reports Server (NTRS)

    Chan, K. Roland; Scott, Stan G.; Bui, T. Paul; Bowen, Stuart W.; Day, Jon

    1988-01-01

    The NASA ER-2 aircraft is equipped with special instrumentation to provide accurate in situ measurement of the atmospheric state variables during flight. The Meteorological Measurement System (MMS) on the ER-2 aircraft is described. Since the meteorological parameters (temperature, pressure, and wind vector) are extensively used by other ER-2 experimenters for data processing and interpretation, the accuracy and resolution of each of these parameters are assessed and discussed. During the 1987 Airborne Antarctic Ozone Experiment (AAOE) mission, the ER-2 aircraft was stationed at Punta Arenas, Chile (53 S, 72 W), and successfully flew over Antarctica on 12 occasions between August 17 and September 22, 1987. On each of the 12 flights, the ER-2 aircraft flight plan was to take off at approximately the same local time, fly southward at a near constant potential temperature surface, descend and ascend at the southernmost terminus at about 72 S over Antarctica and return northward at either the same or a different constant potential temperature surface. The measurements of the MMS experiment during the AAOE mission are presented. MMS data are organized to provide a composite view of the polar atmosphere, which is characterized by frigid temperatures and high zonal winds. Altitudinal variations of the temperature measurement (during takeoff/landing at Punta Arenas and during descent/ascent at the southern terminus) and latitudinal variations of the zonal wind (on near constant potential temperature surfaces) are emphasized and discussed.

  12. Coupling airborne laser scanning and acoustic Doppler current profiler data to model stream rating curves

    NASA Astrophysics Data System (ADS)

    Lam, N.; Lyon, S. W.; Kean, J. W.

    2015-12-01

    The rating curve enables the translation of water depth into discharge through a reference cross section. Errors in estimating stream channel geometry can therefore result in increased discharge uncertainty. This study investigates coupling national-scale airborne laser scanning (ALS) and acoustic Doppler current profiler (ADCP) bathymetric survey data for generating stream rating curves. Specifically, stream channel geometries were generated from coupled ALS and ADCP scanning data collected for a well-monitored site located in northern Sweden. These data were used to define the hydraulic geometry required by a physically-based 1-D hydraulic model. The results of our study demonstrate that the effects of potential scanning data errors on the model generated rating curve were less than the uncertainties due to stream gauging measurements and empirical rating curve fitting. Further analysis of the ALS data showed that an overestimation of the streambank elevation (the main scanning data error) was primarily due to vegetation that could be adjusted for through a root-mean-square-error bias correction. We consider these findings encouraging as hydrometric agencies can potentially leverage national-scale ALS and ADCP instrumentation to reduce the cost and effort required for maintaining and establish rating curves at gauging stations.

  13. Airborne PCDD/F profiles in rural and urban areas of Buenos Aires Province, Argentina.

    PubMed

    Cappelletti, N; Astoviza, M; Migoya, M C; Colombo, J C

    2016-12-15

    Passive air samplers were deployed in 18 rural and urban locations in the densely populated Buenos Aires district to investigate airborne polychlorinated dibenzo-p-dioxin and polychlorinated-dibenzofuran (PCDD/Fs) profiles, sources and spatial patterns. Atmospheric concentrations reported as total toxic equivalents (TEQs), 2378-substituted (∑17PCDD/F) and 4-8 homologous groups (∑4-8PCDD/F) were highly variable and significantly correlated to urban scale. The rural average (3.0±2.7fgTEQm(-3)) was thirty times less than metropolitan values (90±51fgTEQm(-3)), with urban cluster (5.4±4.0fgTEQm(-3)) and urbanized area (33±50fgTEQm(-3)) in an intermediate position. A rural outlier exhibited the highest TEQ values (295-296fgTEQm(-3)) suggesting a local source. Principal component analyses (PCA) performed for ∑17PCDD/F and ∑4-8PCDD/F to identify source contributions showed more significant results for homologue groups compared to 17 congeners (83 and 45% of total variability explained, respectively) pointing to dominant diesel emissions enriched in TeCDF in rural areas, and open burning and industrial sources characterized by TeCDD, PeCDD contributing most in urbanized and metropolitan areas. Homologue group PCA also performed better clustering samples according to sources and TEQ concentrations. The PCDD/Fs profile of the rural outlier dominated by HxCDF and HpCDD/F showed a typical municipal incineration signature confirming the presence of local source.

  14. Fuel penalties and time flexibility of 4D flight profiles under mismodeled wind conditions

    NASA Technical Reports Server (NTRS)

    Williams, David H.

    1987-01-01

    A parametric sensitivity study was conducted to evaluate time flexibility and fuel penalties associated with 4D operations in the presence of mismodeled wind. The final cruise and descent segments of a flight in an advanced time-metered air traffic control environment were considered. Optimal performance of a B-737-100 airplane in known, constant winds was determined. Performance in mismodeled wind was obtained by tracking no-wind reference profiles in the presence of actual winds. The results of the analysis are presented in terms of loss of time flexibility and fuel penalties compared to the optimum performance in modeled winds.

  15. Airborne/Space-Based Doppler Lidar Wind Sounders Sampling the PBL and Other Regions of Significant Beta and U Inhomogeneities

    NASA Technical Reports Server (NTRS)

    Emmitt, Dave

    1998-01-01

    This final report covers the period from April 1994 through March 1998. The proposed research was organized under four main tasks. Those tasks were: (1) Investigate the vertical and horizontal velocity structures within and adjacent to thin and subvisual cirrus; (2) Investigate the lowest 1 km of the PBL and develop algorithms for processing pulsed Doppler lidar data obtained from single shots into regions of significant inhomogeneities in Beta and U; (3) Participate in OSSEs including those designed to establish shot density requirements for meso-gamma scale phenomena with quasi-persistent locations (e.g., jets, leewaves, tropical storms); and (4) Participate in the planning and execution of an airborne mission to measure winds with a pulsed CO2 Doppler lidar. Over the four year period of this research contract, work on all four tasks has yielded significant results which have led to 38 professional presentations (conferences and publications) and have been folded into the science justification for an approved NASA space mission, SPARCLE (SPAce Readiness Coherent Lidar Experiment), in 2001. Also this research has, through Task 4, led to a funded proposal to work directly on a NASA field campaign, CAMEX III, in which an airborne Doppler wind lidar will be used to investigate the cloud-free circulations near tropical storms. Monthly progress reports required under this contract are on file. This final report will highlight major accomplishments, including some that were not foreseen in the original proposal. The presentation of this final report includes this written document as well as material that is better presented via the internet (web pages). There is heavy reference to appended papers and documents. Thus, the main body of the report will serve to summarize the key efforts and findings.

  16. Changes in profiles of airborne fungi in flooded homes in southern Taiwan after Typhoon Morakot.

    PubMed

    Hsu, Nai-Yun; Chen, Pei-Yu; Chang, Hsin-Wen; Su, Huey-Jen

    2011-04-01

    In August 2009, the historic Typhoon Morakot brought extreme rainfall and resulted in flooding which spread throughout southern Taiwan. This study compared the difference between fungal concentrations before and after the disaster in selected homes of the Tainan metropolitan area, which were hit hardest by the catastrophe. A group of 83 households available from a prior cohort established with random sampling out of a regional population in southern Taiwan was contacted successfully by telephone. Twenty-five of these reported to have suffered from floods of various degrees at this time. Around 2 weeks after the event, at which time most of the remedial process had been completed by self-efforts and public health endeavours, 14 of these 25 (56%) agreed to participate in measurements of the airborne microbial concentrations. The averages (standard deviation) of the total culturable fungal concentrations in children's bedrooms and flooded rooms were 18,181 (25,854) colony-forming units per cubic metre (CFU/m(3)) and 13,440 (11,033) CFU/m(3), respectively. The airborne fungal spore levels in the 2 above-mentioned indoor sites were 221,536 (169,640) spores/m(3) and 201,582 (137,091) spores/m(3), respectively. The average indoor/outdoor ratios in the children's bedrooms were 4.2 for culturable fungi and 1.4 for fungal spores. These values were higher than the respective values measured in the same homes during the previous year: 1.1 and 0.6. In terms of the specific fungal profile, the percentages of Aspergillus spp. increased significantly in both the indoor and outdoor environments after the event. To this date, this study is among the limited research that has been conducted to quantitatively demonstrate that fungal manifestation is likely to persist in flooded homes even after seemingly robust remedial measures have been put into place. Studies to examine the potential health implications and effectiveness of better remedial technology remain much needed.

  17. Saharan dust long-range transport across the Atlantic studied by an airborne Doppler wind lidar and the MACC model

    NASA Astrophysics Data System (ADS)

    Chouza, Fernando; Reitebuch, Oliver; Benedetti, Angela; Weinzierl, Bernadett

    2016-09-01

    A huge amount of dust is transported every year from north Africa into the Caribbean region. This paper presents an investigation of this long-range transport process based on airborne Doppler wind lidar (DWL) measurements conducted during the SALTRACE campaign (June-July 2013), as well as an evaluation of the ability of the MACC (Monitoring Atmospheric Composition and Climate) global aerosol model to reproduce it and its associated features. Although both the modeled winds from MACC and the measurements from the DWL show a generally good agreement, some differences, particularly in the African easterly jet (AEJ) intensity, were noted. The observed differences between modeled and measured wind jet speeds are between 5 and 10 m s-1. The vertical aerosol distribution within the Saharan dust plume and the marine boundary layer is investigated during the June-July 2013 period based on the MACC aerosol model results and the CALIOP satellite lidar measurements. While the modeled Saharan dust plume extent shows a good agreement with the measurements, a systematic underestimation of the marine boundary layer extinction is observed. Additionally, three selected case studies covering different aspects of the Saharan dust long-range transport along the west African coast, over the North Atlantic Ocean and the Caribbean are presented. For the first time, DWL measurements are used to investigate the Saharan dust long-range transport. Simultaneous wind and backscatter measurements from the DWL are used, in combination with the MACC model, to analyze different features associated with the long-range transport, including an African easterly wave trough, the AEJ and the intertropical convergence zone.

  18. Wind profiling for a coherent wind Doppler lidar by an auto-adaptive background subtraction approach.

    PubMed

    Wu, Yanwei; Guo, Pan; Chen, Siying; Chen, He; Zhang, Yinchao

    2017-04-01

    Auto-adaptive background subtraction (AABS) is proposed as a denoising method for data processing of the coherent Doppler lidar (CDL). The method is proposed specifically for a low-signal-to-noise-ratio regime, in which the drifting power spectral density of CDL data occurs. Unlike the periodogram maximum (PM) and adaptive iteratively reweighted penalized least squares (airPLS), the proposed method presents reliable peaks and is thus advantageous in identifying peak locations. According to the analysis results of simulated and actually measured data, the proposed method outperforms the airPLS method and the PM algorithm in the furthest detectable range. The proposed method improves the detection range approximately up to 16.7% and 40% when compared to the airPLS method and the PM method, respectively. It also has smaller mean wind velocity and standard error values than the airPLS and PM methods. The AABS approach improves the quality of Doppler shift estimates and can be applied to obtain the whole wind profiling by the CDL.

  19. Quality Control Algorithms and Proposed Integration Process for Wind Profilers Used by Launch Vehicle Systems

    NASA Technical Reports Server (NTRS)

    Decker, Ryan; Barbre, Robert E., Jr.

    2011-01-01

    Impact of winds to space launch vehicle include Design, Certification Day-of-launch (DOL) steering commands (1)Develop "knockdowns" of load indicators (2) Temporal uncertainty of flight winds. Currently use databases from weather balloons. Includes discrete profiles and profile pair datasets. Issues are : (1)Larger vehicles operate near design limits during ascent 150 discrete profiles per month 110-217 seasonal 2.0 and 3.5-hour pairs Balloon rise time (one hour) and drift (up to 100 n mi) Advantages of the Alternative approach using Doppler Radar Wind Profiler (DRWP) are: (1) Obtain larger sample size (2) Provide flexibility for assessing trajectory changes due to winds (3) Better representation of flight winds.

  20. Merged and corrected 915 MHz Radar Wind Profiler moments

    SciTech Connect

    Jonathan Helmus,Virendra Ghate, Frederic Tridon

    2014-06-25

    The radar wind profiler (RWP) present at the SGP central facility operates at 915 MHz and was reconfigured in early 2011, to collect key sets of measurements for precipitation and boundary layer studies. The RWP is configured to run in two main operating modes: a precipitation (PR) mode with frequent vertical observations and a boundary layer (BL) mode that is similar to what has been traditionally applied to RWPs. To address issues regarding saturation of the radar signal, range resolution and maximum range, the RWP PR mode is set to operate with two different pulse lengths, termed as short pulse (SP) and long pulse (LP). Please refer to the RWP handbook (Coulter, 2012) for further information. Data from the RWP PR-SP and PR-LP modes have been extensively used to study deep precipitating clouds, especially their dynamical structure as the RWP data does not suffer from signal attenuation during these conditions (Giangrande et al., 2013). Tridon et al. (2013) used the data collected during the Mid-latitude Continental Convective Cloud Experiment (MC3E) to improve the estimation of noise floor of the RWP recorded Doppler spectra.

  1. A technique for removing the effect of migrating birds in 915-MHz wind profiler data.

    SciTech Connect

    Pekour, M. S.; Coulter, R. L.; Environmental Research

    1999-12-01

    A method is described and evaluated for decreasing artifacts in radar wind profiler data resulting from overflying, migrating birds. The method processes the prerecorded, averaged spectral data of a wind profiler to derive hourly wind profiles during conditions of frequent backscattering from birds. Comparison with in situ measurements revealed a significant improvement over the 'traditional,' online processing routine. When both the traditional method and the proposed new method are applied to an extended dataset, a practical procedure can be implemented to detect periods with significant bird-caused artifacts.

  2. Directional Profiles of Wind Speed and Turbulence Intensity over Forest and Open Land

    NASA Astrophysics Data System (ADS)

    Beyer, Elisabeth; Dietz, Sebastian; Pinter, Anna

    2014-05-01

    More and more wind turbines are built onshore and reduce the available areas for wind energy. Forests are additional potential for wind energy priority areas. But the high roughness of wooden areas and the resulting turbulences make it difficult to assess sites in forests. In order to cope with this problem some measurements were done inside and outside wooden areas. Therefore met masts equipped with ultra sonic and cup anemometers and LIDAR were used. With the measured wind speed and its standard deviation the turbulence intensity was calculated. The results are direction dependent profiles of wind speed and turbulence intensity.

  3. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Kittaka, C.; Vaughn, M. A.; Remer, L. A.

    2010-01-01

    We derive aerosol extinction profiles from airborne and space-based lidar backscatter signals by constraining the retrieval with column aerosol optical thickness (AOT), with no need to rely on assumptions about aerosol type or lidar ratio. The backscatter data were acquired by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The HSRL also simultaneously measures aerosol extinction coefficients independently using the high spectral resolution lidar technique, thereby providing an ideal data set for evaluating the retrieval. We retrieve aerosol extinction profiles from both HSRL and CALIOP attenuated backscatter data constrained with HSRL, Moderate-Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer column AOT. The resulting profiles are compared with the aerosol extinction measured by HSRL. Retrievals are limited to cases where the column aerosol thickness is greater than 0.2 over land and 0.15 over water. In the case of large AOT, the results using the Aqua MODIS constraint over water are poorer than Aqua MODIS over land or Terra MODIS. The poorer results relate to an apparent bias in Aqua MODIS AOT over water observed in August 2007. This apparent bias is still under investigation. Finally, aerosol extinction coefficients are derived from CALIPSO backscatter data using AOT from Aqua MODIS for 28 profiles over land and 9 over water. They agree with coincident measurements by the airborne HSRL to within +/-0.016/km +/- 20% for at least two-thirds of land points and within +/-0.028/km +/- 20% for at least two-thirds of ocean points.

  4. Quantifying wind blown landscapes using time-series airborne LiDAR at White Sands Dune Field, New Mexico

    NASA Astrophysics Data System (ADS)

    Ewing, R. C.

    2011-12-01

    Wind blown landscapes are a default geomorphic and sedimentary environment in our solar system. Wind sand dunes are ubiquitous features on the surfaces of Earth, Mars and Titan and prevalent within the aeolian rock records of Earth and Mars. Dunes are sensitive to environmental and climatic changes and a complete understanding of this system promises a unique, robust and quantitative record of paleoclimate extending to the early histories of these worlds. However, our understanding of how aeolian dune landscapes evolve and how the details of the wind are recorded in cross-strata is limited by our lack of understanding of three-dimensional dune morphodynamics related to changing boundary conditions such as wind direction and magnitude and sediment source area. We use airborne LiDAR datasets over 40 km2 of White Sands Dune Field collected from June 2007, June 2008, January 2009, September 2009 and June 2010 to quantify 1) three-dimensional dune geometries, 2) annual and seasonal patterns of erosion and deposition across dune topography, 3) spatial changes in sediment flux related to position within the field, 4) spatial changes in sediment flux across sinuous crestlines and 5) morphologic changes through dune-dune interactions. In addition to measurements, we use the LiDAR data along with wind data from two near-by weather stations to develop a simple model that predicts depositional and stratigraphic patterns on dune lee slopes. Several challenges emerged using time series LiDAR data sets at White Sands Dune Field. The topography upon which the dunes sit is variable and rises by 16 meters over the length of the dune field. In order to compare individual dune geometries across the field and between data sets a base surface was interpolated from local minima and subtracted from the dune topography. Co-registration and error calculation between datasets was done manually using permanent vegetated features within the active dune field and structures built by the

  5. The CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases

    NASA Astrophysics Data System (ADS)

    Baidar, S.; Oetjen, H.; Coburn, S.; Dix, B.; Ortega, I.; Sinreich, R.; Volkamer, R.

    2013-03-01

    The University of Colorado Airborne Multi-Axis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument uses solar stray light to detect and quantify multiple trace gases, including nitrogen dioxide (NO2), glyoxal (CHOCHO), formaldehyde (HCHO), water vapor (H2O), nitrous acid (HONO), iodine monoxide (IO), bromine monoxide (BrO), and oxygen dimers (O4) at multiple wavelengths (absorption bands at 360, 477, 577, 632 nm) simultaneously in the open atmosphere. The instrument is unique as it (1) features a motion compensation system that decouples the telescope field of view from aircraft movements in real time (<0.35° accuracy), and (2) includes measurements of solar stray light photons from nadir, zenith, and multiple elevation angles forward and below the plane by the same spectrometer/detector system. Sets of solar stray light spectra collected from nadir to zenith scans provide some vertical profile information within 2 km above and below the aircraft altitude, and the vertical column density (VCD) below the aircraft is measured in nadir view. Maximum information about vertical profiles is derived simultaneously for trace gas concentrations and aerosol extinction coefficients over similar spatial scales and with a vertical resolution of typically 250 m during aircraft ascent/descent. The instrument is described, and data from flights over California during the CalNex (California Research at the Nexus of Air Quality and Climate Change) and CARES (Carbonaceous Aerosols and Radiative Effects Study) air quality field campaigns is presented. Horizontal distributions of NO2 VCD (below the aircraft) maps are sampled with typically 1 km resolution, and show good agreement with two ground-based MAX-DOAS instruments (slope = 0.95 ± 0.09, R2 = 0.86). As a case study vertical profiles of NO2, CHOCHO, HCHO, and H2O concentrations and aerosol extinction coefficients, ɛ, at 477 nm calculated from O4 measurements from a low approach at Brackett airfield inside the

  6. Doppler Lidar Measurements of Tropospheric Wind Profiles Using the Aerosol Double Edge Technique

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Mathur, Savyasachee; Korb, C. Laurence; Chen, Huailin

    2000-01-01

    The development of a ground based direct detection Doppler lidar based on the recently described aerosol double edge technique is reported. A pulsed, injection seeded Nd:YAG laser operating at 1064 nm is used to make range resolved measurements of atmospheric winds in the free troposphere. The wind measurements are determined by measuring the Doppler shift of the laser signal backscattered from atmospheric aerosols. The lidar instrument and double edge method are described and initial tropospheric wind profile measurements are presented. Wind profiles are reported for both day and night operation. The measurements extend to altitudes as high as 14 km and are compared to rawinsonde wind profile data from Dulles airport in Virginia. Vertical resolution of the lidar measurements is 330 m and the rms precision of the measurements is a low as 0.6 m/s.

  7. Measurement of a zonal wind profile on Titan by Doppler tracking of the Cassini entry probe

    NASA Technical Reports Server (NTRS)

    Atkinson, D. H.; Pollack, J. B.; Seiff, A.

    1990-01-01

    A program, called the Cassini mission, intended to study the Saturn system by utilizing a Saturn orbiter and a probe descending to the surface of Titan, is discussed. Winds are expected to cause perturbations to the probe local horizontal velocity, resulting in an anomalous drift in the probe location and a shift in the frequency of the probe telemetry, due to the Doppler effect. By using an iterative algorithm, in which the time variation of the probe telemetry frequency is monitored throughout the descent, and the probe trajectory is updated to reflect the effect of wind on the probe location, a highly accurate relative wind profile can be recovered. By adding a single wind velocity, measured by independent means, an absolute wind profile can be obtained. However, the accuracy of the zonal winds recovery is limited by errors in trajectory, and frequency.

  8. Accuracy of aircraft velocities from inertial navigation systems for application to airborne wind measurements

    NASA Technical Reports Server (NTRS)

    Rhyne, R. H.

    1980-01-01

    An experimental assessment was made of two commercially available inertial navigation systems (INS) with regard to their velocity measuring capability for use in wind, shear, and long-wavelength atmospheric turbulence research. The assessment was based on 52 sets of postflight measurements of velocity (error) during a "Schuler cycle" (84 minutes) while the INS was still operating but the airplane was motionless. Four INS units of one type and two units of another were tested over a period of 2 years after routine research flights similar to air-linetype operations of from 1 to 6 hours duration. The maximum postflight errors found for the 52 cases had a root mean square value of 2.82 m/sec with little or no correlation of error magnitude with flight duration. Using an INS for monitoring ground speed during landway in a predicted high wind shear situation could lead to landing speeds which are dangerously high or low.

  9. Solid-State 2-Micron Laser Transmitter Advancement for Wind and Carbon Dioxide Measurements From Ground, Airborne, and Space-Based Lidar Systems

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.; Koch, Grady; Yu, Jirong; Ismail, Syed

    2008-01-01

    NASA Langley Research Center has been developing 2-micron lidar technologies over a decade for wind measurements, utilizing coherent Doppler wind lidar technique and carbon dioxide measurements, utilizing Differential Absorption Lidar (DIAL) technique. Significant advancements have been made towards developing state-of-the-art technologies towards laser transmitters, detectors, and receiver systems. These efforts have led to the development of solid-state lasers with high pulse energy, tunablility, wavelength-stability, and double-pulsed operation. This paper will present a review of these technological developments along with examples of high resolution wind and high precision CO2 DIAL measurements in the atmosphere. Plans for the development of compact high power lasers for applications in airborne and future space platforms for wind and regional to global scale measurement of atmospheric CO2 will also be discussed.

  10. Variability of the vertical profile of wind speed: characterization at various time scales and analytical approximation

    NASA Astrophysics Data System (ADS)

    Jourdier, Bénédicte; Plougonven, Riwal; Drobinski, Philippe; Dupont, Jean-Charles

    2014-05-01

    Wind measurements are key for the wind resource assessment. But as wind turbines get higher, wind measurement masts are often lower than the future wind turbine hub height. Therefore one of the first steps in the energy yield assessment is the vertical extrapolation of wind measurements. Such extrapolation is often done by approximating the vertical profile of wind speed with an analytical expression: either a logarithmic law which has a theoretical basis in Monin-Obukhov similarity theory; or a power law which is empirical. The present study analyzes the variability of the wind profile and how this variability affects the results of the vertical extrapolation methods. The study is conducted with data from the SIRTA observatory, 20km south of Paris (France). A large set of instrumentation is available, including sonic anemometers at 10 and 30 meters, a LIDAR measuring wind speeds from 40 to 200 meters and a SODAR measuring wind speeds starting from 100m up to 1km. The comparison between the instruments enables to characterize the measurements uncertainties. The observations show that close to the ground the wind is stronger during daytime and weaker at night while higher, around 150 m, the wind is weaker during daytime and stronger at night. Indeed the wind shear has a pronounced diurnal cycle. The vertical extrapolation methods currently used in the industry do not usually take into account the strong variability of the wind profile. The often fit the parameters of the extrapolation law, not on each time step, but on time-averaged profiles. The averaging period may be the whole measurement period or some part of it: there may be one constant parameter computed on the wind profile that was averaged on the whole year of measures, or the year of measures may be divided into a small number of cases (for example into night or daytime data, or into 4 seasons) and the parameter is adjusted for each case. The study analyzes thoroughly the errors generated by both

  11. Depth profiling analysis of solar wind helium collected in diamond-like carbon film from Genesis

    DOE PAGES

    Bajo, Ken-ichi; Olinger, Chad T.; Jurewicz, Amy J.G.; ...

    2015-01-01

    The distribution of solar-wind ions in Genesis mission collectors, as determined by depth profiling analysis, constrains the physics of ion solid interactions involving the solar wind. Thus, they provide an experimental basis for revealing ancient solar activities represented by solar-wind implants in natural samples. We measured the first depth profile of ⁴He in a collector; the shallow implantation (peaking at <20 nm) required us to use sputtered neutral mass spectrometry with post-photoionization by a strong field. The solar wind He fluence calculated using depth profiling is ~8.5 x 10¹⁴ cm⁻². The shape of the solar wind ⁴He depth profile ismore » consistent with TRIM simulations using the observed ⁴He velocity distribution during the Genesis mission. It is therefore likely that all solar-wind elements heavier than H are completely intact in this Genesis collector and, consequently, the solar particle energy distributions for each element can be calculated from their depth profiles. Ancient solar activities and space weathering of solar system objects could be quantitatively reproduced by solar particle implantation profiles.« less

  12. A new method for GPS-based wind speed determinations during airborne volcanic plume measurements

    USGS Publications Warehouse

    Doukas, Michael P.

    2002-01-01

    Begun nearly thirty years ago, the measurement of gases in volcanic plumes is today an accepted technique in volcano research. Volcanic plume measurements, whether baseline gas emissions from quiescent volcanoes or more substantial emissions from volcanoes undergoing unrest, provide important information on the amount of gaseous output of a volcano to the atmosphere. Measuring changes in gas emission rates also allows insight into eruptive behavior. Some of the earliest volcanic plume measurements of sulfur dioxide were made using a correlation spectrometer (COSPEC). The COSPEC, developed originally for industrial pollution studies, is an upward-looking optical spectrometer tuned to the ultraviolet absorption wavelength of sulfur dioxide (Millán and Hoff, 1978). In airborne mode, the COSPEC is mounted in a fixed-wing aircraft and flown back and forth just underneath a volcanic plume, perpendicular to the direction of plume travel (Casadevall and others, 1981; Stoiber and others, 1983). Similarly, for plumes close to the ground, the COSPEC can be mounted in an automobile and driven underneath a plume if a suitable road system is available (Elias and others, 1998). The COSPEC can also be mounted on a tripod and used to scan a volcanic plume from a fixed location on the ground, although the effectiveness of this configuration declines with distance from the plume (Kyle and others, 1990). In the 1990’s, newer airborne techniques involving direct sampling of volcanic plumes with infrared spectrometers and electrochemical sensors were developed in order to measure additional gases such as CO2 and H2S (Gerlach and others, 1997; Gerlach and others, 1999; McGee and others, 2001). These methods involve constructing a plume cross-section from several measurement traverses through the plume in a vertical plane. Newer instruments such as open-path Fourier transform infrared (FTIR) spectrometers are now being used to measure the gases in volcanic plumes mostly from fixed

  13. Analysis of Near Simultaneous Jimsphere and AMPS High Resolution Wind Profiles

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.

    2003-01-01

    The high-resolution wind profile of the Automated Meteorological Profiling System (HRAMPS) is the proposed replacement for the Jimsphere measurement system used to support NASA Shuttle launches from the Eastern Test Range (ETR). Samples of twenty-six ETR near simultaneous Jimsphere and HRAMPS wind profiles were obtained for Shuttle program HRAMPS certification studies. Shuttle systems engineering certification is to ensure that spacecraft and launch vehicle systems performance and safety evaluations for each launch (derived from flight simulations with Jimsphere wind profile data bases) retain their validity when HRAMPS profiles are used on day-of-launch (DOL) in trajectory and loads simulations to support the commit-to-launch decision. This paper describes a statistical analysis of the near simultaneous profiles. In principle the differences between a Jimsphere profile and an HRAMPS profile should be attributed to tracking technology (radar versus GPS tracking of a Jimsphere flight element) and the method for derivation of wind vectors from the raw tracking data. In reality, it is not technically feasible to track the same Jimsphere balloon with the two systems. The aluminized Mylar surface of the standard Jimsphere flight element facilitates radar tracking, but it interferes with HRAMPS during simultaneous tracking. Suspending a radar reflector from an HRAMPS flight element (Jimsphere without aluminized coating) does not produce satisfactory Jimsphere profiles because of intermittent radar returns. Thus, differences between the Jimsphere and HRAMPS profiles are also attributed to differences in the trajectories of separate flight elements. Because of small sample size and a test period limited to one winter season, test measurements during extreme high winds aloft could not have been expected and did not occur. It is during the highest winds that the largest differences between Jimsphere and HRAMPS would occur because the distance between flight elements would be

  14. Characterizing the height profile of the flux of wind-eroded sediment

    NASA Astrophysics Data System (ADS)

    Dong, Zhibao; Qian, Guangqiang

    2007-01-01

    Wind erosion causes severe environmental problems, such as aeolian desertification and dust storms, in arid and semiarid regions. Reliable prediction of the height profile of the wind-eroded sediment flux is crucial for estimation of transport rates, verification of computer models, understanding of particle-modified wind flows, and control of drifting sand. This study defined the basic height profile for the flux of wind-eroded sediment and the coefficients that characterize its equation. Nine grain-size populations of natural sand at different wind velocities were tested in a wind tunnel to measure the flux of sediment at different heights. The resulting flux profiles resemble a golf club with a small back-turn where the flux increases with increasing height within 20 mm above the surface. If the small back-turns are neglected, the flux profiles can be expressed by an exponential-decay function q_{{text{r}}} (z) = a{text{e}}^{{ - bzr }} , where q r( z) is the dimensionless relative flux of sediment at height z, which follows the exponential-decay law proposed by previous researchers for aeolian saltation. Three coefficients (a creep proportion, a relative decay rate, and an average saltation height) are proposed to characterize the height profile. Coefficients a and b in the above equation represent the creep proportion and relative decay rate as a function of height, respectively. Coefficient a varies widely, depending on grain size and wind velocity, but averages 0.09. It is suggested that the grain size and wind velocity must be specified when discussing creep proportion. Coefficients a and b are nearly linearly correlated and decrease as grain size and wind velocity increase. The average saltation height (the average height sediment particles can reach) was a function of grain size and wind velocity, and was well correlated with coefficients a and b.

  15. Comparison of low-altitude wind-shear statistics derived from measured and proposed standard wind profiles

    NASA Technical Reports Server (NTRS)

    Usry, J. W.

    1983-01-01

    Wind shear statistics were calculated for a simulated set of wind profiles based on a proposed standard wind field data base. Wind shears were grouped in altitude in altitude bands of 100 ft between 100 and 1400 ft and in wind shear increments of 0.025 knot/ft. Frequency distributions, means, and standard deviations for each altitude band were derived for the total sample were derived for both sets. It was found that frequency distributions in each altitude band for the simulated data set were more dispersed below 800 ft and less dispersed above 900 ft than those for the measured data set. Total sample frequency of occurrence for the two data sets was about equal for wind shear values between +0.075 knot/ft, but the simulated data set had significantly larger values for all wind shears outside these boundaries. It is shown that normal distribution in both data sets neither data set was normally distributed; similar results are observed from the cumulative frequency distributions.

  16. Airborne pollen sampling in Manoa Valley, Hawaii: effect of rain, humidity and wind.

    PubMed

    Massey, D G; Fournier-Massey, G

    1984-05-01

    Kramer-Collins pollen sampling was conducted over 24 hours for 25 consecutive months at two valley sites in Honolulu. Of 1,059 expected samples, 699 (66.0%) were collected. Only 25 were considered excellent, i.e., eight three-hour collection bands. Twenty eight were considered good, ie., two to six bands. The difficulties in the study were associated with the weather directly (17.5%), the power source (3.9%), inadequancy of the samplers (63.1%) and the inexperience of technicians (15.3%). Sampler problems were also indirectly attributable to the high humidity, rain and wind, which differed at the two sites.

  17. Line profiles variations from atmospheric eclipses: Constraints on the wind structure in Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Auer, L. H.; Koenigsberger, G.

    1994-01-01

    Binary systems in which one of the components has a stellar wind may present a phenomenon known as 'wind' or 'atmospheric eclipse', in which that wind occults the luminous disk of the companion. The enhanced absorption profile, relative to the spectrum at uneclipsed orbital phases, can be be modeled to yield constraints on the spatial structure of the eclipsing wind. A new, very efficient approach to the radiative transfer problem, which makes no requirements with respect to monotonicity of the velocity gradient or size of that gradient, is presented. The technique recovers both the comoving frame calculation and the Sobolev approximation in the appropiate limits. Sample computer simulations of the line profile variations induced by wind eclipses are presented. It is shown that the location of the wind absorption features in frequency is a diagnostic tool for identifying the size of the wind acceleration region. Comparison of the model profile variations with the observed variations in the Wolf-Rayet (W-R)+6 binary system V444 Cyg illustrate how the method can be used to derive information on the structure of the wind of the W-R star constrain the size of the W-R core radius.

  18. Atmospheric Boundary Layer and Clouds wind speed profile measurements with the new compact long range wind Lidar WindCube(TM) WLS70

    NASA Astrophysics Data System (ADS)

    Boquet, M.; Cariou, J. P.; Sauvage, L.; Lolli, S.; Parmentier, R.; Loaec, S.

    2009-04-01

    To fully understand atmospheric dynamics, climate studies, energy transfer, and weather prediction the wind field is one of the most important atmospheric state variables. Small scales variability and low atmospheric layers are not described with sufficient resolution up to now. To answer these needs, the WLS70 long-range wind Lidar is a new generation of wind Lidars developed by LEOSPHERE, derived from the commercial WindCube™ Lidar widely used by the wind power industry and well-known for its great accuracy and data availability. The WLS70 retrieves the horizontal and vertical wind speed profiles as well as the wind direction at various heights simultaneously inside the boundary layer and cloud layers. The amplitude and spectral content of the backscattering signal are also available. From raw data, the embedded signal processing software performs the computation of the aerosol Doppler shift and backscattering coefficient. Higher values of normalized relative backscattering (NRB) are proportional to higher aerosol concentration. At 1540 nm, molecular scattering being negligible, it is then possible to directly retrieve the Boundary Layer height evolution observing the height at which the WindCube NRB drops drastically. In this work are presented the results of the measurements obtained during the LUAMI campaign that took place in Lindenberg, at the DWD (Deutscher WetterDienst) meteorological observatory, from November 2008 to January 2009. The WLS70 Lidar instrument was placed close together with an EZ Lidar™ ALS450, a rugged and compact eye safe aerosol Lidar that provides a real time measurement of backscattering and extinction coefficients, aerosol optical depth (AOD), automatic detection of the planetary boundary layer (PBL) height and clouds base and top from 100m up to more than 20km. First results put in evidence wind shear and veer phenomena as well as strong convective effects during the raise of the mixing layer or before rain periods. Wind speed

  19. DAWN Coherent Wind Profiling Lidar Flights on NASA's DC-8 During GRIP

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Beyon, Jeffrey Y.; Creary, Garfield A.; Koch, Grady J.; Petros, Mulugeta; Petzar, Paul J.; Singh, Upendra N.; Trieu, Bo C.; Yu, Jirong

    2011-01-01

    Almost from their invention, lasers have been used to measure the velocity of wind and objects; over distances of cm to 10s of km. Long distance (remote) sensing of wind has been accomplished with continuous-wave (CW), focused pulsed, and collimated pulsed lasers; with direct and coherent (heterodyne) optical detection; and with a multitude of laser wavelengths. Airborne measurement of wind with pulsed, coherent-detection lidar was first performed in 1971 with a CW CO2 laser1, in 1972 with a pulsed CO2 laser2, in 1993 with a pulsed 2-micron laser3, and in 1999 with a pulsed CO2 laser and nadir-centered conical scanning4. Of course there were many other firsts and many other groups doing lidar wind remote sensing with coherent and direct detection. A very large FOM coherent wind lidar has been built by LaRC and flown on a DC-8. However a burn on the telescope secondary mirror prevented the full demonstration of high FOM. Both the GRIP science product and the technology and technique demonstration from aircraft are important to NASA. The technology and technique demonstrations contribute to our readiness for the 3D Winds space mission. The data analysis is beginning and we hope to present results at the conference.

  20. Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar

    NASA Astrophysics Data System (ADS)

    Achtert, P.; Brooks, I. M.; Brooks, B. J.; Moat, B. I.; Prytherch, J.; Persson, P. O. G.; Tjernström, M.

    2015-11-01

    Three months of Doppler lidar wind measurements were obtained during the Arctic Cloud Summer Experiment on the icebreaker Oden during the summer of 2014. Such ship-borne Doppler measurements require active stabilisation to remove the effects of ship motion. We demonstrate that the combination of a commercial Doppler lidar with a custom-made motion-stabilisation platform enables the retrieval of wind profiles in the Arctic atmospheric boundary layer during both cruising and ice-breaking with statistical uncertainties comparable to land-based measurements. This held true particularly within the atmospheric boundary layer even though the overall aerosol load was very low. Motion stabilisation was successful for high wind speeds in open water and the resulting wave conditions. It allows for the retrieval of vertical winds with a random error below 0.2 m s-1. The comparison of lidar-measured wind and radio soundings gives a mean bias of 0.3 m s-1 (2°) and a mean standard deviation of 1.1 m s-1 (12°) for wind speed (wind direction). The agreement for wind direction degrades with height. The combination of a motion-stabilised platform with a low-maintenance autonomous Doppler lidar has the potential to enable continuous long-term high-resolution ship-based wind profile measurements over the oceans.

  1. Warm O(+) polar wind and the DE-1 polar cap electron density profile

    NASA Technical Reports Server (NTRS)

    Ho, C. W.; Horwitz, J. L.

    1993-01-01

    Theoretical steady state semikinetic polar wind density profiles, based on DE1/RIMS polar wind data (up to 3700 km), were obtained which agree very well with the power law electron density profile measured by the DE1/PWI for high altitudes. The polar wind is found to be O(+) dominated for the full altitude range considered (up to 8 R(E)). Multiple solutions are obtained for various combinations of base altitude ion temperatures and electron temperatures, such that the densities fit the Persoon et al. (1983) profile. For example, good fits to measured density profile are found for low base ion temperatures (5000 K) and high electron temperatures (9000 K), and also for unheated H(+) and O(+)(3000 K) with electron temperatures of 11,000 K. Below 2.8 R(E) the theoretical polar wind density deviates somewhat from the r exp -3.85 power law. It is concluded that this theoretical polar wind density profile, with a sum of base electron and ion temperatures of 14,000 K, yields a close match with the measured DE-1 electron density profile.

  2. Aerosol Profile Measurements from the NASA Langley Research Center Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Obland, Michael D.; Hostetler, Chris A.; Ferrare, Richard A.; Hair, John W.; Roers, Raymond R.; Burton, Sharon P.; Cook, Anthony L.; Harper, David B.

    2008-01-01

    Since achieving first light in December of 2005, the NASA Langley Research Center (LaRC) Airborne High Spectral Resolution Lidar (HSRL) has been involved in seven field campaigns, accumulating over 450 hours of science data across more than 120 flights. Data from the instrument have been used in a variety of studies including validation and comparison with the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite mission, aerosol property retrievals combining passive and active instrument measurements, aerosol type identification, aerosol-cloud interactions, and cloud top and planetary boundary layer (PBL) height determinations. Measurements and lessons learned from the HSRL are leading towards next-generation HSRL instrument designs that will enable even further studies of aerosol intensive and extensive parameters and the effects of aerosols on the climate system. This paper will highlight several of the areas in which the NASA Airborne HSRL is making contributions to climate science.

  3. Imaging doppler lidar for wind turbine wake profiling

    DOEpatents

    Bossert, David J.

    2015-11-19

    An imaging Doppler lidar (IDL) enables the measurement of the velocity distribution of a large volume, in parallel, and at high spatial resolution in the wake of a wind turbine. Because the IDL is non-scanning, it can be orders of magnitude faster than conventional coherent lidar approaches. Scattering can be obtained from naturally occurring aerosol particles. Furthermore, the wind velocity can be measured directly from Doppler shifts of the laser light, so the measurement can be accomplished at large standoff and at wide fields-of-view.

  4. Measurement of Damage Profiles from Solar Wind Implantation

    NASA Technical Reports Server (NTRS)

    McNamara, K. M.; Synowicki, R. A.; Tiwald, T. E.

    2007-01-01

    NASA's Genesis Mission launched from Cape Canaveral in August of 2001 with the goal of collecting solar wind in ultra-pure materials. The samples were returned to Earth more than three years later for subsequent analysis. Although the solar wind is comprised primarily of protons, it also contains ionized species representing the entire periodic table. The Genesis mission took advantage of the natural momentum of these ionized species to implant themselves in specialized collectors including single crystal Si and SiC. The collectors trapped the solar wind species of interest and sustained significant damage to the surface crystal structure as a result of the ion bombardment. In this work, spectroscopic ellipsometry has been used to evaluate the extent of this damage in Si and SiC samples. These results and models are compared for artificially implanted samples and pristine non-flight material. In addition, the flown samples had accumulated a thin film of molecular contamination as a result of outgassing in flight, and we demonstrate that this layer can be differentiated from the material damage. In addition to collecting bulk solar wind samples (continuous exposure), the Genesis mission actually returned silicon exposed to four different solar wind regimes: bulk, high speed, low speed, and coronal mass ejections. Each of these solar wind regimes varies in energy, but may vary in composition as well. While determining the composition is a primary goal of the mission, we are also interested in the variation in depth and extent of the damage layer as a function of solar wind regime. Here, we examine flight Si from the bulk solar wind regime and compare the results to both pristine and artificially implanted Si. Finally, there were four samples which were mounted in an electrostatic "concentrator" designed to reject a large fraction (>85%) of incoming protons while enhancing the concentration of ions mass 4-28 amu by a factor of at least 20. Two of these samples were

  5. Advances in High Energy Solid-State Pulsed 2-Micron Lidar Development for Ground and Airborne Wind, Water Vapor and CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Kavaya, Michael J.; Remus, Ruben

    2015-01-01

    NASA Langley Research Center has a long history of developing 2-micron lasers. From fundamental spectroscopy research, theoretical prediction of new materials, laser demonstration and engineering of lidar systems, it has been a very successful program spanning around two decades. Successful development of 2-micron lasers has led to development of a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement with an unprecedented laser pulse energy of 250 millijoules in a rugged package. This high pulse energy is produced by a Ho:Tm:LuLiF laser with an optical amplifier. While the lidar is meant for use as an airborne instrument, ground-based tests were carried out to characterize performance of the lidar. Atmospheric measurements will be presented, showing the lidar's capability for wind measurement in the atmospheric boundary layer and free troposphere. Lidar wind measurements are compared to a balloon sonde, showing good agreement between the two sensors. Similar architecture has been used to develop a high energy, Ho:Tm:YLF double-pulsed 2-micron Integrated Differential Absorption Lidar (IPDA) instrument based on direct detection technique that provides atmospheric column CO2 measurements. This instrument has been successfully used to measure atmospheric CO2 column density initially from a ground mobile lidar trailer, and then it was integrated on B-200 plane and 20 hours of flight measurement were made from an altitude ranging 1500 meters to 8000 meters. These measurements were compared to in-situ measurements and National Oceanic and Atmospheric Administration (NOAA) airborne flask measurement to derive the dry mixing ratio of the column CO2 by reflecting the signal by various reflecting surfaces such as land, vegetation, ocean surface, snow and sand. The lidar measurements when compared showed a very agreement with in-situ and airborne flask measurement. NASA Langley Research Center is currently developing a

  6. Advances in High Energy Solid-State Pulsed 2-micron Lidar Development for Ground and Airborne Wind, Water Vapor and CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Singh, Upendra; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Kavaya, Michael; Remus, Ruben

    2015-04-01

    NASA Langley Research Center has a long history of developing 2 µm lasers. From fundamental spectroscopy research, theoretical prediction of new materials, laser demonstration and engineering of lidar systems, it has been a very successful program spanning around two decades. Successful development of 2 µm lasers has led to development of a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement with an unprecedented laser pulse energy of 250-mJ in a rugged package. This high pulse energy is produced by a Ho:Tm:LuLiF laser with an optical amplifier. While the lidar is meant for use as an airborne instrument, ground-based tests were carried out to characterize performance of the lidar. Atmospheric measurements will be presented, showing the lidar's capability for wind measurement in the atmospheric boundary layer and free troposphere. Lidar wind measurements are compared to a balloon sonde, showing good agreement between the two sensors. Similar architecture has been used to develop a high energy, Ho:Tm:YLF double-pulsed 2 μm Integrated Differential Absorption Lidar (IPDA) instrument based on direct detection technique that provides atmospheric column CO2 measurements. This instrument has been successfully used to measure atmospheric CO2 column density initially from a ground mobile lidar trailer, and then it was integrated on B-200 plane and 20 hrs of flight measurement were made from an altitude ranging 1500 meter to 8000 meter. These measurements were compared to in-situ measurements and NOAA airborne flask measurement to derive the dry mixing ratio of the column CO2 by reflecting the signal by various reflecting surfaces such as land, vegetation, ocean surface, snow and sand. The lidar measurements when compared showed a very agreement with in-situ and airborne flask measurement. NASA Langley Research Center is currently developing a triple-pulsed 2 μm Integrated Differential Absorption Lidar (IPDA

  7. Large-scale variability of wind erosion mass flux rates at Owens Lake 1. Vertical profiles of horizontal mass fluxes of wind-eroded particles with diameter greater than 50 μm

    USGS Publications Warehouse

    Gillette, Dale A.; Fryrear, D.W.; Xiao, Jing Bing; Stockton, Paul; Ono, Duane; Helm, Paula J.; Gill, Thomas E; Ley, Trevor

    1997-01-01

    A field experiment at Owens (dry) Lake, California, tested whether and how the relative profiles of airborne horizontal mass fluxes for >50-μm wind-eroded particles changed with friction velocity. The horizontal mass flux at almost all measured heights increased proportionally to the cube of friction velocity above an apparent threshold friction velocity for all sediment tested and increased with height except at one coarse-sand site where the relative horizontal mass flux profile did not change with friction velocity. Size distributions for long-time-averaged horizontal mass flux samples showed a saltation layer from the surface to a height between 30 and 50 cm, above which suspended particles dominate. Measurements from a large dust source area on a line parallel to the wind showed that even though the saltation flux reached equilibrium ∼650 m downwind of the starting point of erosion, weakly suspended particles were still input into the atmosphere 1567 m downwind of the starting point; thus the saltating fraction of the total mass flux decreased after 650 m. The scale length difference and ratio of 70/30 suspended mass flux to saltation mass flux at the farthest down wind sampling site confirm that suspended particles are very important for mass budgets in large source areas and that saltation mass flux can be a variable fraction of total horizontal mass flux for soils with a substantial fraction of <100-μm particles.

  8. Mixed convective/dynamic roll vortices and their effects on initial wind and temperature profiles

    NASA Technical Reports Server (NTRS)

    Haack, Tracy; Shirer, Hampton N.

    1991-01-01

    The onset and development of both dynamically and convectively forced boundary layer rolls are studied with linear and nonlinear analyses of a truncated spectral model of shallow Boussinesq flow. Emphasis is given here on the energetics of the dominant roll modes, on the magnitudes of the roll-induced modifications of the initial basic state wind and temperature profiles, and on the sensitivity of the linear stability results to the use of modified profiles as basic states. It is demonstrated that the roll circulations can produce substantial changes to the cross-roll component of the initial wind profile and that significant changes in orientation angle estimates can result from use of a roll-modified profile in the stability analysis. These results demonstrate that roll contributions must be removed from observed background wind profiles before using them to investigate the mechanisms underlying actual secondary flows in the boundary layer. The model is developed quite generally to accept arbitrary basic state wind profiles as dynamic forcing. An Ekman profile is chosen here merely to provide a means for easy comparison with other theoretical boundary layer studies; the ultimate application of the model is to study observed boundary layer profiles. Results of the analytic stability analysis are validated by comparing them with results from a larger linear model. For an appropriate Ekman depth, a complete set of transition curves is given in forcing parameter space for roll modes driven both thermally and dynamically. Preferred orientation angles, horizontal wavelengths and propagation frequencies, as well as energetics and wind profile modifications, are all shown to agree rather well with results from studies on Ekman layers as well as with studies on near-neutral and convective atmospheric boundary layers.

  9. Results of the NASA Kennedy Space Center 50-MHz Doppler Radar Wind Profiler Operational Acceptance Test

    NASA Technical Reports Server (NTRS)

    Barbre', Robert E., Jr.; Decker, Ryan K.; Leahy, Frank B.; Huddleston, Lisa

    2016-01-01

    This paper presents results of the new Kennedy Space Center (KSC) 50-MHz Doppler Radar Wind Profiler (DRWP) Operational Acceptance Test (OAT). The goal of the OAT was to verify the data quality of the new DRWP against the performance of the previous DRWP in order to use wind data derived by the new DRWP for space launch vehicle operations support at the Eastern Range. The previous DRWP was used as a situational awareness asset for mission operations to identify rapid changes in the wind environment that weather balloons cannot depict. The Marshall Space Flight Center's Natural Environments Branch assessed data from the new DRWP collected during Jan-Feb 2015 against a specified set of test criteria. Data examination verified that the DRWP provides complete profiles every five minutes from 1.8-19.5 km in vertical increments of 150 m. Analysis of 49 concurrent DRWP and balloon profiles presented root mean square wind component differences around 2.0 m/s. Evaluation of the DRWP's coherence between five-minute wind pairs found the effective vertical resolution to be Nyquist-limited at 300 m for both wind components. In addition, the sensitivity to rejecting data that do not have adequate signal was quantified. This paper documents the data, quality control procedures, methodology, and results of each analysis.

  10. Temporal/seasonal variations of size-dependent airborne fungi indoor/outdoor relationships for a wind-induced naturally ventilated airspace

    NASA Astrophysics Data System (ADS)

    Liao, Chung-Min; Luo, Wen-Chang; Chen, Szu-Chieh; Chen, Jein-Wen; Liang, Huang-Min

    With the use of published temporal/seasonal size characteristics of fungal spores and meteorological data in the subtropical climate, we estimated the airborne fungal concentration indoor/outdoor (I/O) ratios in a wind-induced naturally ventilated home. We expanded previous size-dependent indoor air quality model based on a hygroscopic growth factor as a function of relative humidity (RH) on aerodynamic diameter and concentration of fungal spores. The average geometric mean diameters of airborne fungi decreased from outdoor 2.58±0.37 to indoor 1.91±0.12 μm in summer, whereas decreased from outdoor 2.79±0.32 to indoor 1.73±0.10 μm in winter, resulting from the effect of hygroscopicity of airborne fungi. The higher indoor airborne fungal concentrations occurred in early and late afternoon in which median values were 699.29 and 626.20 CFU m -3 in summer as well as 138.71 and 99.01 CFU m -3 in winter, respectively, at 2 a.m. and 8 p.m. In the absence of indoor sources, summer has higher mean I/O ratios of airborne fungal concentration (0.29 - 0.58) than that in winter (0.12 - 0.16). Parsimoniously, our proposed RH-corrected I/O ratio model could be used to estimate the indoor source concentrations of bioaerosols provided that the actual measured fungus-specific I/O ratios are available.

  11. Wind Profiles Obtained with a Molecular Direct Detection Doppler Lidar During IHOP-2002

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huai-Lin; Li, Steven X.; Mathur, Savyasachee; Dobler, Jeremy; Hasselbrack, William; Comer, Joseph

    2004-01-01

    The Goddard Lidar Observatory for Winds (GLOW) is a mobile direct detection Doppler lidar system which uses the double edge technique to measure the Doppler shift of the molecular backscattered laser signal at a wavelength of 355 nm. In the spring of 2002 GLOW was deployed to the western Oklahoma profiling site (36 deg 33.500 min. N, 100 deg. 36.371 min. W) to participate in the International H2O Project (IHOP). During the IHOP campaign over 240 hours of wind profiles were obtained with the GLOW lidar in support of a variety of scientific investigations.

  12. Temporal variability of the trade wind inversion: Measured with a boundary layer vertical profiler. Master's thesis

    SciTech Connect

    Grindinger, C.M.

    1992-05-01

    This study uses Hawaiian Rainband Project (HaRP) data, from the summer of 1991, to show a boundary layer wind profiler can be used to measure the trade wind inversion. An algorithm has been developed for the profiler that objectively measures the depth of the moist oceanic boundary layer. The Hilo inversion, measured by radiosonde, is highly correlated with the moist oceanic boundary layer measured by the profiler at Paradise Park. The inversion height on windward Hawaii is typically 2253 + or - 514 m. The inversion height varies not only on a daily basis, but on less than an hourly basis. It has a diurnal, as well as a three to four day cycle. There appears to be no consistent relationship between inversion height and precipitation. Currently, this profiler is capable of making high frequency (12 minute) measurements of the inversion base variation, as well as other features.

  13. Range profiling of the rain rate by an airborne weather radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Nakamura, Kenji

    1990-01-01

    A class of methods based on a measure of path attenuation that is used to constrain the Hitschfeld-Bordan solution is investigated. Such methods are investigated for lidar, radar, and combined radar-radiometer applications. Their function is to allocate the attenuation in proportion to the strength of the measured reflectivity. A description is provided of four estimates of rain rate that have been tested using data from a dual-wavelength airborne radar at 10 GHz and 35 GHz. It is concluded, that when attenuation is significant, the estimates are generally more accurate than those without attenuation correction. Thus, such methodologies can be utilized to extend the effective dynamic range of the radar to higher rain rates.

  14. A simple method for simulating wind profiles in the boundary layer of tropical cyclones

    SciTech Connect

    Bryan, George H.; Worsnop, Rochelle P.; Lundquist, Julie K.; Zhang, Jun A.

    2016-11-01

    A method to simulate characteristics of wind speed in the boundary layer of tropical cyclones in an idealized manner is developed and evaluated. The method can be used in a single-column modelling set-up with a planetary boundary-layer parametrization, or within large-eddy simulations (LES). The key step is to include terms in the horizontal velocity equations representing advection and centrifugal acceleration in tropical cyclones that occurs on scales larger than the domain size. Compared to other recently developed methods, which require two input parameters (a reference wind speed, and radius from the centre of a tropical cyclone) this new method also requires a third input parameter: the radial gradient of reference wind speed. With the new method, simulated wind profiles are similar to composite profiles from dropsonde observations; in contrast, a classic Ekman-type method tends to overpredict inflow-layer depth and magnitude, and two recently developed methods for tropical cyclone environments tend to overpredict near-surface wind speed. When used in LES, the new technique produces vertical profiles of total turbulent stress and estimated eddy viscosity that are similar to values determined from low-level aircraft flights in tropical cyclones. Lastly, temporal spectra from LES produce an inertial subrange for frequencies ≳0.1 Hz, but only when the horizontal grid spacing ≲20 m.

  15. A simple method for simulating wind profiles in the boundary layer of tropical cyclones

    DOE PAGES

    Bryan, George H.; Worsnop, Rochelle P.; Lundquist, Julie K.; ...

    2016-11-01

    A method to simulate characteristics of wind speed in the boundary layer of tropical cyclones in an idealized manner is developed and evaluated. The method can be used in a single-column modelling set-up with a planetary boundary-layer parametrization, or within large-eddy simulations (LES). The key step is to include terms in the horizontal velocity equations representing advection and centrifugal acceleration in tropical cyclones that occurs on scales larger than the domain size. Compared to other recently developed methods, which require two input parameters (a reference wind speed, and radius from the centre of a tropical cyclone) this new method alsomore » requires a third input parameter: the radial gradient of reference wind speed. With the new method, simulated wind profiles are similar to composite profiles from dropsonde observations; in contrast, a classic Ekman-type method tends to overpredict inflow-layer depth and magnitude, and two recently developed methods for tropical cyclone environments tend to overpredict near-surface wind speed. When used in LES, the new technique produces vertical profiles of total turbulent stress and estimated eddy viscosity that are similar to values determined from low-level aircraft flights in tropical cyclones. Lastly, temporal spectra from LES produce an inertial subrange for frequencies ≳0.1 Hz, but only when the horizontal grid spacing ≲20 m.« less

  16. A Simple Method for Simulating Wind Profiles in the Boundary Layer of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Bryan, George H.; Worsnop, Rochelle P.; Lundquist, Julie K.; Zhang, Jun A.

    2017-03-01

    A method to simulate characteristics of wind speed in the boundary layer of tropical cyclones in an idealized manner is developed and evaluated. The method can be used in a single-column modelling set-up with a planetary boundary-layer parametrization, or within large-eddy simulations (LES). The key step is to include terms in the horizontal velocity equations representing advection and centrifugal acceleration in tropical cyclones that occurs on scales larger than the domain size. Compared to other recently developed methods, which require two input parameters (a reference wind speed, and radius from the centre of a tropical cyclone) this new method also requires a third input parameter: the radial gradient of reference wind speed. With the new method, simulated wind profiles are similar to composite profiles from dropsonde observations; in contrast, a classic Ekman-type method tends to overpredict inflow-layer depth and magnitude, and two recently developed methods for tropical cyclone environments tend to overpredict near-surface wind speed. When used in LES, the new technique produces vertical profiles of total turbulent stress and estimated eddy viscosity that are similar to values determined from low-level aircraft flights in tropical cyclones. Temporal spectra from LES produce an inertial subrange for frequencies ≳ 0.1 Hz, but only when the horizontal grid spacing ≲ 20 m.

  17. A Simple Method for Simulating Wind Profiles in the Boundary Layer of Tropical Cyclones

    SciTech Connect

    Bryan, George H.; Worsnop, Rochelle P.; Lundquist, Julie K.; Zhang, Jun A.

    2016-11-01

    A method to simulate characteristics of wind speed in the boundary layer of tropical cyclones in an idealized manner is developed and evaluated. The method can be used in a single-column modelling set-up with a planetary boundary-layer parametrization, or within large-eddy simulations (LES). The key step is to include terms in the horizontal velocity equations representing advection and centrifugal acceleration in tropical cyclones that occurs on scales larger than the domain size. Compared to other recently developed methods, which require two input parameters (a reference wind speed, and radius from the centre of a tropical cyclone) this new method also requires a third input parameter: the radial gradient of reference wind speed. With the new method, simulated wind profiles are similar to composite profiles from dropsonde observations; in contrast, a classic Ekman-type method tends to overpredict inflow-layer depth and magnitude, and two recently developed methods for tropical cyclone environments tend to overpredict near-surface wind speed. When used in LES, the new technique produces vertical profiles of total turbulent stress and estimated eddy viscosity that are similar to values determined from low-level aircraft flights in tropical cyclones. Temporal spectra from LES produce an inertial subrange for frequencies >/~0.1 Hz, but only when the horizontal grid spacing >/~20 m.

  18. A Simple Method for Simulating Wind Profiles in the Boundary Layer of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Bryan, George H.; Worsnop, Rochelle P.; Lundquist, Julie K.; Zhang, Jun A.

    2016-11-01

    A method to simulate characteristics of wind speed in the boundary layer of tropical cyclones in an idealized manner is developed and evaluated. The method can be used in a single-column modelling set-up with a planetary boundary-layer parametrization, or within large-eddy simulations (LES). The key step is to include terms in the horizontal velocity equations representing advection and centrifugal acceleration in tropical cyclones that occurs on scales larger than the domain size. Compared to other recently developed methods, which require two input parameters (a reference wind speed, and radius from the centre of a tropical cyclone) this new method also requires a third input parameter: the radial gradient of reference wind speed. With the new method, simulated wind profiles are similar to composite profiles from dropsonde observations; in contrast, a classic Ekman-type method tends to overpredict inflow-layer depth and magnitude, and two recently developed methods for tropical cyclone environments tend to overpredict near-surface wind speed. When used in LES, the new technique produces vertical profiles of total turbulent stress and estimated eddy viscosity that are similar to values determined from low-level aircraft flights in tropical cyclones. Temporal spectra from LES produce an inertial subrange for frequencies ≳ 0.1 Hz, but only when the horizontal grid spacing ≲ 20 m.

  19. Tropospheric and stratospheric wind profiling with a direct detection Doppler lidar

    NASA Technical Reports Server (NTRS)

    Abreu, Vincent J.; Barnes, John E.; Fischer, Ken W.; Skinner, Wilbert R.; Mcgill, Matt J.

    1992-01-01

    The Space Physics Research Laboratory at the University of Michigan has been operating a direct detection, high resolution Doppler Lidar (HRDL) to measure winds in the boundary layer, free troposphere and lower stratosphere. A direct detection Doppler lidar measures the Doppler shift of the aerosol or Rayleigh backscattered signal, from which the wind velocity vector can be retrieved (Benedetti-Michelangeli et al, 1972, 1974; Chanin et al., 1989; Abreu et al., 1992). The system components are shown. The transmitting system is a Continuum NY-60 Nd:YAG laser frequency doubled to a wavelength of 532 nm. The laser is injection seeded for single line mode operation yielding a linewidth of 0.0045 cm(exp -1) (135 MHz) with excellent shot-to-shot frequency stability. The laser produces 60 mJ pulses and operates at a 50 Hz repetition rate for an effective output power of 3.0 W. A description of the University of Michigan's Doppler lidar is given with examples of wind profiles for the boundary layer, free troposphere, and for the lower stratosphere. The system provides a reliable method of remotely measuring the wind. The wind error is smallest in regions of high aerosols. The system also produces aerosol extinction profiles versus altitude which can be determined by the shape of the spectra. The system has been installed in a trailor so that measurements can be made for field campaigns. Winds and aerosol data are available immediately at the site for use in forecasting.

  20. Assessment of Error in Synoptic-Scale Diagnostics Derived from Wind Profiler and Radiosonde Network Data

    NASA Technical Reports Server (NTRS)

    Mace, Gerald G.; Ackerman, Thomas P.

    1996-01-01

    A topic of current practical interest is the accurate characterization of the synoptic-scale atmospheric state from wind profiler and radiosonde network observations. We have examined several related and commonly applied objective analysis techniques for performing this characterization and considered their associated level of uncertainty both from a theoretical and a practical standpoint. A case study is presented where two wind profiler triangles with nearly identical centroids and no common vertices produced strikingly different results during a 43-h period. We conclude that the uncertainty in objectively analyzed quantities can easily be as large as the expected synoptic-scale signal. In order to quantify the statistical precision of the algorithms, we conducted a realistic observing system simulation experiment using output from a mesoscale model. A simple parameterization for estimating the uncertainty in horizontal gradient quantities in terms of known errors in the objectively analyzed wind components and temperature is developed from these results.

  1. Measurements and Modelling of the Wind Speed Profile in the Marine Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Peña, Alfredo; Gryning, Sven-Erik; Hasager, Charlotte B.

    2008-12-01

    We present measurements from 2006 of the marine wind speed profile at a site located 18 km from the west coast of Denmark in the North Sea. Measurements from mast-mounted cup anemometers up to a height of 45 m are extended to 161 m using LiDAR observations. Atmospheric turbulent flux measurements performed in 2004 with a sonic anemometer are compared to a bulk Richardson number formulation of the atmospheric stability. This is used to classify the LiDAR/cup wind speed profiles into atmospheric stability classes. The observations are compared to a simplified model for the wind speed profile that accounts for the effect of the boundary-layer height. For unstable and neutral atmospheric conditions the boundary-layer height could be neglected, whereas for stable conditions it is comparable to the measuring heights and therefore essential to include. It is interesting to note that, although it is derived from a different physical approach, the simplified wind speed profile conforms to the traditional expressions of the surface layer when the effect of the boundary-layer height is neglected.

  2. Characteristics and Trade-Offs of Doppler Lidar Global Wind Profiling

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Emmitt, G David

    2004-01-01

    Accurate, global profiling of wind velocity is highly desired by NASA, NOAA, the DOD/DOC/NASA Integrated Program Office (IPO)/NPOESS, DOD, and others for many applications such as validation and improvement of climate models, and improved weather prediction. The most promising technology to deliver this measurement from space is Doppler Wind Lidar (DWL). The NASA/NOAA Global Tropospheric Wind Sounder (GTWS) program is currently in the process of generating the science requirements for a space-based sensor. In order to optimize the process of defining science requirements, it is important for the scientific and user community to understand the nature of the wind measurements that DWL can make. These measurements are very different from those made by passive imaging sensors or by active radar sensors. The purpose of this paper is to convey the sampling characteristics and data product trade-offs of an orbiting DWL.

  3. An investigation of vertical winds obtained from vertically pointing and tilted beams of a five-beam 915-MHz wind profiler

    NASA Astrophysics Data System (ADS)

    Coulter, R. L.; Martin, T. J.

    The Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program has operated a 915-MHz radar wind profiler coupled with a Radio Acoustic Sounding System (RASS) since November 1992 at its Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) central facility in north central Oklahoma. The system is designed to provide continuous wind profiles from near the surface (100 m) to 5 km or more and virtual temperature profiles from near the surface to 1.5 km. During normal operation, the system uses four tilted beams (two each in the north-south and east-west vertical planes) and a single vertical beam to determine mean wind and virtual temperature profiles every hour. In this paper we illustrate and compare different methods for calculating w and several statistical variables from profiler data. The results are compared with those derived when the profiler is operated in a vertical-only mode under similar conditions.

  4. The influence of non-logarithmic wind speed profiles on potential power output at Danish offshore sites

    NASA Astrophysics Data System (ADS)

    Motta, M.; Barthelmie, R. J.; Vølund, P.

    2005-04-01

    Detailed knowledge of mean wind speed profiles is essential for properly assessing the power output of a potential wind farm. Since atmospheric stratification plays a crucial role in affecting wind speed profiles, obtaining a detailed picture of the climatology of stability conditions at a given site is very important. In the present study, long time series from offshore measurement sites around Denmark are analysed, with the aim of quantifying the role of atmospheric stability in wind speed profiles and in our ability to model them. A simple method for evaluating stability is applied, and the resulting statistics of the atmospheric stratification is thoroughly studied. A significant improvement in the mean wind speed profile prediction is obtained by applying a stability correction to the logarithmic profiles suitable for neutral conditions. These results are finally used to estimate power densities at different heights. Copyright

  5. One year of vertical wind profiles measurements at a Mediterranean coastal site of South Italy

    NASA Astrophysics Data System (ADS)

    Calidonna, Claudia Roberta; Avolio, Elenio; Federico, Stefano; Gullì, Daniel; Lo Feudo, Teresa; Sempreviva, Anna Maria

    2015-04-01

    In order to develop wind farms projects is challenging to site them on coastal areas both onshore and offshore as suitable sites. Developing projects need high quality databases under a wide range of atmospheric conditions or high resolution models that could resolve the effect of the coastal discontinuity in the surface properties. New parametrizations are important and high quality databases are also needed for formulating them. Ground-based remote sensing devices such as lidars have been shown to be functional for studying the evolution of the vertical wind structure coastal atmospheric boundary layer both on- and offshore. Here, we present results from a year of vertical wind profiles, wind speed and direction, monitoring programme at a site located in the Italian Calabria Region, Central Mediterranean, 600m from the Thyrrenian coastline, where a Lidar Doppler, ZephIr (ZephIr ltd) has been operative since July 2013. The lidar monitors wind speed and direction from 10m up to 300m at 10 vertical levels with an average of 10 minutes and it is supported by a metmast providing: Atmospheric Pressure, Solar Radiation, Precipitation, Relative Humidity, Temperature,Wind Speed and Direction at 10m. We present the characterization of wind profiles during one year period according to the time of the day to transition periods night/day/night classified relating the local scale, breeze scale, to the large scale conditions. The dataset is also functional for techniques for short-term prediction of wind for the renewable energy integration in the distribution grids. The site infrastructure is funded within the Project "Infrastructure of High Technology for Environmental and Climate Monitoring" (I-AMICA) (PONa3_00363) by the Italian National Operative Program (PON 2007-2013) and European Regional Development Fund. Real-time data are show on http://www.i-amica.it/i-amica/?page_id=1122.

  6. Offshore wind measurements using Doppler aerosol wind lidar (DAWN) at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2014-06-01

    The latest flight demonstration of Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center (LaRC) is presented. The goal of the campaign was to demonstrate the improvement of DAWN system since the previous flight campaign in 2012 and the capabilities of DAWN and the latest airborne wind profiling algorithm APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) developed at LaRC. The comparisons of APOLO and another algorithm are discussed utilizing two and five line-of-sights (LOSs), respectively. Wind parameters from DAWN were compared with ground-based radar measurements for validation purposes. The campaign period was June - July in 2013 and the flight altitude was 8 km in inland toward Charlotte, NC, and offshores in Virginia Beach, VA and Ocean City, MD. The DAWN system was integrated into a UC12B with two operators onboard during the campaign.

  7. Offshore Wind Measurements Using Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2014-01-01

    The latest flight demonstration of Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center (LaRC) is presented. The goal of the campaign was to demonstrate the improvement of DAWN system since the previous flight campaign in 2012 and the capabilities of DAWN and the latest airborne wind profiling algorithm APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) developed at LaRC. The comparisons of APOLO and another algorithm are discussed utilizing two and five line-of-sights (LOSs), respectively. Wind parameters from DAWN were compared with ground-based radar measurements for validation purposes. The campaign period was June - July in 2013 and the flight altitude was 8 km in inland toward Charlotte, NC, and offshores in Virginia Beach, VA and Ocean City, MD. The DAWN system was integrated into a UC12B with two operators onboard during the campaign.

  8. Airborne water vapor DIAL system and measurements of water and aerosol profiles

    NASA Technical Reports Server (NTRS)

    Higdon, Noah S.; Browell, Edward V.

    1991-01-01

    The Lidar Applications Group at NASA Langley Research Center has developed a differential absorption lidar (DIAL) system for the remote measurement of atmospheric water vapor (H2O) and aerosols from an aircraft. The airborne H2O DIAL system is designed for extended flights to perform mesoscale investigations of H2O and aerosol distributions. This DIAL system utilizes a Nd:YAG-laser-pumped dye laser as the off-line transmitter and a narrowband, tunable Alexandrite laser as the on-line transmitter. The dye laser has an oscillator/amplifier configuration which incorporates a grating and prism in the oscillator cavity to narrow the output linewidth to approximately 15 pm. This linewidth can be maintained over the wavelength range of 725 to 730 nm, and it is sufficiently narrow to satisfy the off-line spectral requirements. In the Alexandrite laser, three intracavity tuning elements combine to produce an output linewidth of 1.1 pm. These spectral devices include a five-plate birefringent tuner, a 1-mm thick solid etalon and a 1-cm air-spaced etalon. A wavelength stability of +/- 0.35 pm is achieved by active feedback control of the two Fabry-Perot etalons using a frequency stabilized He-Ne laser as a wavelength reference. The three tuning elements can be synchronously scanned over a 150 pm range with microprocessor-based scanning electronics. Other aspects of the DIAL system are discussed.

  9. Simultaneous Measurements of Water Vapor Profiles From Airborne MIR and LASE

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Racette, P.; Triesky, M. E.; Browell, E. V.; Ismail, S.; Chang, L. A.

    1997-01-01

    A NASA ER-2 aircraft flight with both Millimeter-wave Imaging radiometer (MIR) and lidar Atmospheric Sensing Experiment (LASE) was made over ocean areas in the eastern United States on September 25, 1995. The water vapor profiles derived from both instruments under both clear and cloudy conditions are compared in this paper. It is shown that good agreement is found between the MIR-derived and the LASE-measured water vapor profiles over the areas of clear-sky condition. In the cloudy areas, the MIR-retrieved values at the altitudes of the cloud layers and below are generally higher than those measured by the LASE.

  10. Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar

    NASA Astrophysics Data System (ADS)

    Achtert, P.; Brooks, I. M.; Brooks, B. J.; Moat, B. I.; Prytherch, J.; Persson, P. O. G.; Tjernström, M.

    2015-09-01

    Three months of Doppler lidar wind measurements were obtained during the Arctic Cloud Summer Experiment on the icebreaker Oden during the summer of 2014. Such ship-borne measurements require active stabilisation to remove the effects of ship motion. We demonstrate that the combination of a commercial Doppler lidar with a custom-made motion-stabilisation platform enables the retrieval of wind profiles in the Arctic boundary layer during both cruising and ice-breaking with statistical uncertainties comparable to land-based measurements. This holds particularly within the planetary boundary layer even though the overall aerosol load was very low. Motion stabilisation was successful for high wind speeds in open water and the resulting wave conditions. It allows for the retrieval of winds with a random error below 0.2 m s-1, comparable to the measurement error of standard radiosondes. The combination of a motion-stabilised platform with a low-maintenance autonomous Doppler lidar has the potential to enable continuous long-term high-resolution ship-based wind profile measurements over the oceans.

  11. Watershed Scale Shear Stress From Tethersonde Wind Profile Measurements Under Near Neutral and Unstable Atmospheric Stability

    NASA Astrophysics Data System (ADS)

    Parlange, M. B.; Katul, G. G.

    1995-04-01

    Mean wind speed profiles were measured in the atmospheric surface layer, using a tethersonde system, above the Ojai Valley Watershed in southern California. The valley is mainly planted with mature avocado and orange trees. The surface shear stress and latent and sensible heat fluxes were measured above the trees which are up to 9 m in height. Near-neutral wind speed profile measurements allowed the determination of the watershed surface roughness (z0 = 1.4 m) and the momentum displacement height (d0 = 7.0 m). The wind speed measurements obtained under unstable atmospheric stability were analyzed using Monin-Obukhov similarity theory. New stability correction functions proposed based on theory and experiments of Kader-Yaglom as well as the now classic Businger-Dyer type functions were tested. The watershed shear stress values calculated using the surface layer wind speed profiles with the new Monin-Obukhov stability functions were found to be improved in comparison with the values obtained with the Businger-Dyer functions under strongly unstable stability conditions. The Monin-Obukhov model with the Businger-Dyer stability correction function underpredicted the momentum flux by 25% under strongly unstable stability conditions, while the new Kader-Yaglom formulation compared well on average (R2 = 0.77) with the surface eddy correlation measurements for all atmospheric stability conditions. The unstable 100-m drag coefficient was found to be u*2/V1002 = 0.0182.

  12. Evaluation of Vertical Lacunarity Profiles in Forested Areas Using Airborne Laser Scanning Point Clouds

    NASA Astrophysics Data System (ADS)

    Székely, B.; Kania, A.; Standovár, T.; Heilmeier, H.

    2016-06-01

    The horizontal variation and vertical layering of the vegetation are important properties of the canopy structure determining the habitat; three-dimensional (3D) distribution of objects (shrub layers, understory vegetation, etc.) is related to the environmental factors (e.g., illumination, visibility). It has been shown that gaps in forests, mosaic-like structures are essential to biodiversity; various methods have been introduced to quantify this property. As the distribution of gaps in the vegetation is a multi-scale phenomenon, in order to capture it in its entirety, scale-independent methods are preferred; one of these is the calculation of lacunarity. We used Airborne Laser Scanning point clouds measured over a forest plantation situated in a former floodplain. The flat topographic relief ensured that the tree growth is independent of the topographic effects. The tree pattern in the plantation crops provided various quasi-regular and irregular patterns, as well as various ages of the stands. The point clouds were voxelized and layers of voxels were considered as images for two-dimensional input. These images calculated for a certain vicinity of reference points were taken as images for the computation of lacunarity curves, providing a stack of lacunarity curves for each reference points. These sets of curves have been compared to reveal spatial changes of this property. As the dynamic range of the lacunarity values is very large, the natural logarithms of the values were considered. Logarithms of lacunarity functions show canopy-related variations, we analysed these variations along transects. The spatial variation can be related to forest properties and ecology-specific aspects.

  13. Model predictions of wind and turbulence profiles associated with an ensemble of aircraft accidents

    NASA Technical Reports Server (NTRS)

    Williamson, G. G.; Lewellen, W. S.; Teske, M. E.

    1977-01-01

    The feasibility of predicting conditions under which wind/turbulence environments hazardous to aviation operations exist is studied by examining a number of different accidents in detail. A model of turbulent flow in the atmospheric boundary layer is used to reconstruct wind and turbulence profiles which may have existed at low altitudes at the time of the accidents. The predictions are consistent with available flight recorder data, but neither the input boundary conditions nor the flight recorder observations are sufficiently precise for these studies to be interpreted as verification tests of the model predictions.

  14. Expected Characteristics of Global Wind Profile Measurements with a Scanning, Hybrid, Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.

    2008-01-01

    Over 20 years of investigation by NASA and NOAA scientists and Doppler lidar technologists into a global wind profiling mission from earth orbit have led to the current favored concept of an instrument with both coherent- and direct-detection pulsed Doppler lidars (i.e., a hybrid Doppler lidar) and a stepstare beam scanning approach covering several azimuth angles with a fixed nadir angle. The nominal lidar wavelengths are 2 microns for coherent detection, and 0.355 microns for direct detection. The two agencies have also generated two sets of sophisticated wind measurement requirements for a space mission: science demonstration requirements and operational requirements. The requirements contain the necessary details to permit mission design and optimization by lidar technologists. Simulations have been developed that connect the science requirements to the wind measurement requirements, and that connect the wind measurement requirements to the Doppler lidar parameters. The simulations also permit trade studies within the multi-parameter space. These tools, combined with knowledge of the state of the Doppler lidar technology, have been used to conduct space instrument and mission design activities to validate the feasibility of the chosen mission and lidar parameters. Recently, the NRC Earth Science Decadal Survey recommended the wind mission to NASA as one of 15 recommended missions. A full description of the wind measurement product from these notional missions and the possible trades available are presented in this paper.

  15. The Effect of Wind-Turbine Wakes on Summertime US Midwest Atmospheric Wind Profiles as Observed with Ground-Based Doppler Lidar

    NASA Astrophysics Data System (ADS)

    Rhodes, Michael E.; Lundquist, Julie K.

    2013-07-01

    We examine the influence of a modern multi-megawatt wind turbine on wind and turbulence profiles three rotor diameters (D) downwind of the turbine. Light detection and ranging (lidar) wind-profile observations were collected during summer 2011 in an operating wind farm in central Iowa at 20-m vertical intervals from 40 to 220 m above the surface. After a calibration period during which two lidars were operated next to each other, one lidar was located approximately 2D directly south of a wind turbine; the other lidar was moved approximately 3D north of the same wind turbine. Data from the two lidars during southerly flow conditions enabled the simultaneous capture of inflow and wake conditions. The inflow wind and turbulence profiles exhibit strong variability with atmospheric stability: daytime profiles are well-mixed with little shear and strong turbulence, while nighttime profiles exhibit minimal turbulence and considerable shear across the rotor disk region and above. Consistent with the observations available from other studies and with wind-tunnel and large-eddy simulation studies, measurable reductions in wake wind-speeds occur at heights spanning the wind turbine rotor (43-117 m), and turbulent quantities increase in the wake. In generalizing these results as a function of inflow wind speed, we find the wind-speed deficit in the wake is largest at hub height or just above, and the maximum deficit occurs when wind speeds are below the rated speed for the turbine. Similarly, the maximum enhancement of turbulence kinetic energy and turbulence intensity occurs at hub height, although observations at the top of the rotor disk do not allow assessment of turbulence in that region. The wind shear below turbine hub height (quantified here with the power-law coefficient) is found to be a useful parameter to identify whether a downwind lidar observes turbine wake or free-flow conditions. These field observations provide data for validating turbine-wake models and wind

  16. Examination of objective analysis precision using wind profiler and radiosonde network data

    SciTech Connect

    Mace, G.G.; Ackerman, T.P.

    1996-04-01

    One of the principal research strategies that has emerged from the science team of the Atmospheric Radiation Measurement (ARM) Program is the use of a single column model (SCM). The basic assumption behind the SCM approach is that a cloud and radiation parameterization embedded in a general circulation model can be effectively tested and improved by extracting that column parameterization from the general circulation model and then driving this single column at the lateral boundaries of the column with diagnosed large-scale atmospheric forcing. A second and related assumption is that the large-scale atmospheric state, and hence the associated forcing, can be characterized directly from observations. One of the primary reasons that the Southern Great Plains (SGP) site is located in Lamont, Oklahoma, is because Lamont is at the approximate center of the NOM Wind Profiler Demonstration Array (WPDA). The assumption was that hourly average wind profiles provided by the 7 wind profilers (one Lamont and six surrounding it in a hexagon) coupled with radiosonde launches every three hours at 5 sites (Lamont plus four of the six profiler locations forming the hexagon) would be sufficient to characterize accurately the large-scale forcing at the site and thereby provide the required forcing for the SCM. The goal of this study was to examine these three assumptions.

  17. Radar Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory (BNL) Field Campaign Report

    SciTech Connect

    M. P. Jensen; Giangrande, S. E.; Bartholomew, M. J.

    2016-04-01

    The Radar Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory (BNL) [http://www.arm.gov/campaigns/osc2013rwpcf] campaign was scheduled to take place from 15 July 2013 through 15 July 2015 (or until shipped for the next U.S. Department of Energy Atmospheric Radiation Measurement [ARM] Climate Research Facility first Mobile Facility [AMF1] deployment). The campaign involved the deployment of the AMF1 Scintec 915 MHz Radar Wind Profiler (RWP) at BNL, in conjunction with several other ARM, BNL and National Weather Service (NWS) instruments. The two main scientific foci of the campaign were: 1) To provide profiles of the horizontal wind to be used to test and validate short-term cloud advection forecasts for solar-energy applications and 2) to provide vertical profiling capabilities for the study of dynamics (i.e., vertical velocity) and hydrometeors in winter storms. This campaign was a serendipitous opportunity that arose following the deployment of the RWP at the Two-Column Aerosol Project (TCAP) campaign in Cape Cod, Massachusetts and restriction from participation in the Green Ocean Amazon 2014/15 (GoAmazon 2014/15) campaign due to radio-frequency allocation restriction for international deployments. The RWP arrived at BNL in the fall of 2013, but deployment was delayed until fall of 2014 as work/safety planning and site preparation were completed. The RWP further encountered multiple electrical failures, which eventually required several shipments of instrument power supplies and the final amplifier to the vendor to complete repairs. Data collection began in late January 2015. The operational modes of the RWP were changed such that in addition to collecting traditional profiles of the horizontal wind, a vertically pointing mode was also included for the purpose of precipitation sensing and estimation of vertical velocities. The RWP operated well until the end of the campaign in July 2015 and collected observations for more than 20 precipitation

  18. Monthly and annual percentage levels of wind speed differences computed by using FPS-16 radar/Jimsphere wind profile data from Cape Kennedy, Florida

    NASA Technical Reports Server (NTRS)

    Susko, M.; Kaufman, J. W.

    1973-01-01

    The percentage levels of wind speed differences are presented computed from sequential FPS-16 radar/Jimsphere wind profiles. The results are based on monthly profiles obtained from December 1964 to July 1970 at Cape Kennedy, Florida. The profile sequences contain a series of three to ten Jimspheres released at approximately 1.5-hour intervals. The results given are the persistence analysis of wind speed difference at 1.5-hour intervals to a maximum time interval of 12 hours. The monthly percentage of wind speed differences and the annual percentage of wind speed differences are tabulated. The percentage levels are based on the scalar wind speed changes calculated over an altitude interval of approximately 50 meters and printed out every 25 meters as a function of initial wind speed within each five-kilometer layer from near sea level to 20 km. In addition, analyses were made of the wind speed difference for the 0.2 to 1 km layer as an aid for studies associated with take-off and landing of the space shuttle.

  19. Recent US Activities Toward Development of a Global Tropospheric 3D Wind Profiling System

    NASA Astrophysics Data System (ADS)

    Gentry, B. M.; Atlas, R.; Baker, W.; Emmitt, G. D.; Hardesty, R. M.; Kakar, R. K.; Kavaya, M. J.; Mango, S.; Miller, K.; Riishojgaard, L. P.

    2008-12-01

    The wind field plays a unique dynamical role in forcing the mass field to adjust to it at all scales in the tropics, and at small scales in the extra-tropics. Because of this unique role, knowledge of the wind field is required to accurately specify the global initial conditions for numerical weather forecasting. In addition to improving numerical weather prediction, there is also a need for improved accuracy of wind fields to assess long term sensitivity of the general circulation to climate change and to improve horizontal and vertical transport estimates of important atmospheric constituents. In spite of the significance, the 3-D structure of the wind field remains largely unobserved on a global scale. A new satellite mission to accurately measure the global wind field would fill this important gap in the Global Observing System. Space-based Doppler wind lidar has been identified as the key technology necessary to meet the global wind profiling requirement. The 2007 NRC Decadal Survey for Earth Science lists a Global Tropospheric 3-D Wind mission as one of the 15 priority missions recommended for NASA in the next decade. The NRC survey recommended a two phase approach to achieving an operational global wind measurement capability. The first recommended step is for NASA to develop the technology and fly a pre-operational mission to demonstrate the technology and measurement concept and establish the performance standards for an operational wind mission. Phase two would be to develop and fly an operational wind system in the 2025 timeframe. The technology approach recommended is a hybrid Doppler wind lidar (HDWL). The HDWL takes advantage of the complementary capabilities of two Doppler lidar technologies, a coherent Doppler lidar sensing winds from the aerosol backscattered laser signal at a wavelength of 2 microns and a direct detection Doppler lidar sensing winds from the molecular backscattered laser signal at 355 nm. The direct detection Doppler system

  20. Assessment of measurement error due to sampling perspective in the space-based Doppler lidar wind profiler

    NASA Technical Reports Server (NTRS)

    Houston, S. H.; Emmitt, G. D.

    1986-01-01

    A Multipair Algorithm (MPA) has been developed to minimize the contribution of the sampling error in the simulated Doppler lidar wind profiler measurements (due to angular and spatial separation between shots in a shot pair) to the total measurement uncertainty. Idealized wind fields are used as input to the profiling model, and radial wind estimates are passed through the MPA to yield a wind measurement for 300 x 300 sq km areas. The derived divergence fields illustrate the gradient patterns that are particular to the Doppler lidar sampling strategy and perspective.

  1. Integrating Wind Profiling Radars and Radiosonde Observations with Model Point Data to Develop a Decision Support Tool to Assess Upper-Level Winds for Space Launch

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Flinn, Clay

    2013-01-01

    On the day of launch, the 45th Weather Squadron (45 WS) Launch Weather Officers (LWOs) monitor the upper-level winds for their launch customers. During launch operations, the payload/launch team sometimes asks the LWOs if they expect the upper-level winds to change during the countdown. The LWOs used numerical weather prediction model point forecasts to provide the information, but did not have the capability to quickly retrieve or adequately display the upper-level observations and compare them directly in the same display to the model point forecasts to help them determine which model performed the best. The LWOs requested the Applied Meteorology Unit (AMU) develop a graphical user interface (GUI) that will plot upper-level wind speed and direction observations from the Cape Canaveral Air Force Station (CCAFS) Automated Meteorological Profiling System (AMPS) rawinsondes with point forecast wind profiles from the National Centers for Environmental Prediction (NCEP) North American Mesoscale (NAM), Rapid Refresh (RAP) and Global Forecast System (GFS) models to assess the performance of these models. The AMU suggested adding observations from the NASA 50 MHz wind profiler and one of the US Air Force 915 MHz wind profilers, both located near the Kennedy Space Center (KSC) Shuttle Landing Facility, to supplement the AMPS observations with more frequent upper-level profiles. Figure 1 shows a map of KSC/CCAFS with the locations of the observation sites and the model point forecasts.

  2. Levee crest elevation profiles derived from airborne lidar-based high resolution digital elevation models in south Louisiana

    USGS Publications Warehouse

    Palaseanu-Lovejoy, Monica; Thatcher, Cindy A.; Barras, John A.

    2014-01-01

    This study explores the feasibility of using airborne lidar surveys to construct high-resolution digital elevation models (DEMs) and develop an automated procedure to extract levee longitudinal elevation profiles for both federal levees in Atchafalaya Basin and local levees in Lafourche Parish, south Lousiana. This approach can successfully accommodate a high degree of levee sinuosity and abrupt changes in levee orientation (direction) in planar coordinates, variations in levee geometries, and differing DEM resolutions. The federal levees investigated in Atchafalaya Basin have crest elevations between 5.3 and 12 m while the local counterparts in Lafourche Parish are between 0.76 and 2.3 m. The vertical uncertainty in the elevation data is considered when assessing federal crest elevation against the U.S. Army Corps of Engineers minimum height requirements to withstand the 100-year flood. Only approximately 5% of the crest points of the two federal levees investigated in the Atchafalaya Basin region met this requirement.

  3. Solar wind plasma profiles during interplanetary field enhancements (IFEs): Consistent with charged-dust pickup

    NASA Astrophysics Data System (ADS)

    Lai, H. R.; Wei, H. Y.; Russell, C. T.

    2013-06-01

    The solar wind contains many magnetic structures, and most of them have identifiable correlated changes in the flowing plasma. However, the very characteristic rise and fall of the magnetic field in an interplanetary field enhancement has no clear solar wind counterpart. It appears to be a pure magnetic ``barrier'' that transfers solar wind momentum to charged dust produced in collisions of interplanetary bodies in the size range of tens to hundreds of meters. This transfer lifts the fine scale dust out of the Sun's gravitational well. We demonstrate the lack of field-plasma correlation with several examples from spacecraft records as well as show an ensemble average velocity profile during IFEs which is consistent with our IFE formation hypothesis.

  4. Airborne in situ vertical profiling of HDO/H216O in the subtropical troposphere during the MUSICA remote sensing validation campaign

    NASA Astrophysics Data System (ADS)

    Dyroff, C.; Sanati, S.; Christner, E.; Zahn, A.; Balzer, M.; Bouquet, H.; McManus, J. B.; González-Ramos, Y.; Schneider, M.

    2015-01-01

    Vertical profiles of water vapor (H2O) and its isotope ratio D / H expressed as δ D(H2O were measured in situ by the ISOWAT II diode-laser spectrometer during the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA) airborne campaign. We present recent modifications of the instrument design. The instrument calibration on the ground as well as in flight is described. Based on the calibration measurements, the humidity-dependent uncertainty of our airborne data is determined. For the majority of the airborne data we achieved an accuracy (uncertainty of the mean) of Δ(δ D) ≈ 10‰. Vertical profiles between 150 and ~7000 m were obtained during 7 days in July and August 2013 over the subtropical North Atlantic Ocean near Tenerife. The flights were coordinated with ground-based (Network for the Detection of Atmospheric Composition Change, NDACC) and space-based (Infrared Atmospheric Sounding Interferometer, IASI) FTIR remote-sensing measurements of δ D(H2O) as a means to validate the remote sensing humidity and δ D(H2O) data products. The results of the validation are presented in detail in a separate paper (Schneider et al., 2014). The profiles were obtained with a high vertical resolution of around 3 m. By analyzing humidity and δ D(H2O) correlations we were able to identify different layers of airmasses with specific isotopic signatures. The results are discussed.

  5. Airborne in situ vertical profiling of HDO / H216O in the subtropical troposphere during the MUSICA remote sensing validation campaign

    NASA Astrophysics Data System (ADS)

    Dyroff, C.; Sanati, S.; Christner, E.; Zahn, A.; Balzer, M.; Bouquet, H.; McManus, J. B.; Gonzalez-Ramos, Y.; Schneider, M.

    2015-05-01

    Vertical profiles of water vapor (H2O) and its isotope ratio D / H expressed as δD(H2O) were measured in situ by the ISOWAT II diode-laser spectrometer during the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA) airborne campaign. We present recent modifications of the instrument design. The instrument calibration on the ground as well as in flight is described. Based on the calibration measurements, the humidity-dependent uncertainty of our airborne data is determined. For the majority of the airborne data we achieved an accuracy (uncertainty of the mean) of Δ(δD) ≈10‰. Vertical profiles between 150 and ~7000 m were obtained during 7 days in July and August 2013 over the subtropical North Atlantic Ocean near Tenerife. The flights were coordinated with ground-based (Network for the Detection of Atmospheric Composition Change, NDACC) and space-based (Infrared Atmospheric Sounding Interferometer, IASI) FTIR remote sensing measurements of δD(H2O) as a means to validate the remote sensing humidity and δD(H2O) data products. The results of the validation are presented in detail in a separate paper (Schneider et al., 2014). The profiles were obtained with a high vertical resolution of around 3 m. By analyzing humidity and δD(H2O) correlations we were able to identify different layers of air masses with specific isotopic signatures. The results are discussed.

  6. Nowcasting Thermodynamic Profiles Using a Triangle of Wind Profilers in an Advection Model.

    DTIC Science & Technology

    1986-01-01

    actual soundings which were launched from fourteen sites in Kansas and Oklahoma during PRE-STORM (Fig. 1.1) (Topeka, KS did not participate). The...difference between the estimate and the actual observation is calculated for each station, then a new value is computed for each gridpoint using the following...Fig. 3.9). Although in time, the modeled wind field adjusts to generally agree with the actual frontal position, the modeled post-frontal air mass is

  7. KSC 50-MHz Doppler Radar Wind Profiler (DRWP) Operational Acceptance Test (OAT) Report

    NASA Technical Reports Server (NTRS)

    Barbre, Robert E.

    2015-01-01

    This report documents analysis results of the Kennedy Space Center updated 50-MHz Doppler Radar Wind Profiler (DRWP) Operational Acceptance Test (OAT). This test was designed to demonstrate that the new DRWP operates in a similar manner to the previous DRWP for use as a situational awareness asset for mission operations at the Eastern Range to identify rapid changes in the wind environment that weather balloons cannot depict. Data examination and two analyses showed that the updated DRWP meets the specifications in the OAT test plan and performs at least as well as the previous DRWP. Data examination verified that the DRWP provides complete profiles every five minutes from 1.8-19.5 km in vertical increments of 150 m. Analysis of 5,426 wind component reports from 49 concurrent DRWP and balloon profiles presented root mean square (RMS) wind component differences around 2.0 m/s. The DRWP's effective vertical resolution (EVR) was found to be 300 m for both the westerly and southerly wind component, which the best EVR possible given the DRWP's vertical sampling interval. A third analysis quantified the sensitivity to rejecting data that do not have adequate signal by assessing the number of first-guess propagations at each altitude. This report documents the data, quality control procedures, methodology, and results of each analysis. It also shows that analysis of the updated DRWP produced results that were at least as good as the previous DRWP with proper rationale. The report recommends acceptance of the updated DRWP for situational awareness usage as per the OAT's intent.

  8. Calibration of a TCCON FTS at Armstrong Flight Research Center (AFRC) Using Multiple Airborne Profiles

    NASA Astrophysics Data System (ADS)

    Hillyard, P. W.; Iraci, L. T.; Podolske, J. R.; Tanaka, T.; Yates, E. L.; Roehl, C. M.; Wunch, D.; Wennberg, P. O.; Albertson, R. T.; Blake, D. R.; Meinardi, S.; Marrero, J. E.; Yang, M. M.; Beyersdorf, A. J.; Wofsy, S. C.; Pittman, J. V.; Daube, B. C.

    2014-12-01

    Satellite missions including GOSAT, OCO-2 and ASCENDS measure column abundances of greenhouse gases. It is crucial to have calibrated ground-based measurements to which these satellite measurements can compare and refine their retrieval algorithms. To this end, a Fourier Transform Spectrometer has been deployed to the Armstrong Flight Research Center (AFRC) in Edwards, CA as a member of the Total Carbon Column Observing Network (TCCON). This location was selected due to its proximity to a highly reflective lakebed. Such surfaces have proven to be difficult for accurate satellite retrievals. This facility has been in operation since July 2013. The data collected to date at this site will be presented. In order to ensure the validity of the measurements made at this site, multiple vertical profiles have been performed using the Alpha jet, DC-8, and ER-2 as part of the AJAX (ongoing), SEAC4RS (August 2013), and SARP (July 2014) field campaigns. The integrated in-situ vertical profiles for CO2 and CH4 have been analyzed and compared with the TCCON FTS measurements, where good agreement between TCCON data and vertically-integrated aircraft in-situ data has been found.

  9. Combined Atmospheric and Ocean Profiling from an Airborne High Spectral Resolution Lidar

    NASA Astrophysics Data System (ADS)

    Hair, Johnathan; Hostetler, Chris; Hu, Yongxiang; Behrenfeld, Michael; Butler, Carolyn; Harper, David; Hare, Rich; Berkoff, Timothy; Cook, Antony; Collins, James; Stockley, Nicole; Twardowski, Michael; Cetinić, Ivona; Ferrare, Richard; Mack, Terry

    2016-06-01

    First of its kind combined atmospheric and ocean profile data were collected by the recently upgraded NASA Langley Research Center's (LaRC) High Spectral Resolution Lidar (HSRL-1) during the 17 July - 7 August 2014 Ship-Aircraft Bio-Optical Research Experiment (SABOR). This mission sampled over a region that covered the Gulf of Maine, open-ocean near Bermuda, and coastal waters from Virginia to Rhode Island. The HSRL-1 and the Research Scanning Polarimeter from NASA Goddard Institute for Space Studies collected data onboard the NASA LaRC King Air aircraft and flight operations were closely coordinated with the Research Vessel Endeavor that made in situ ocean optical measurements. The lidar measurements provided profiles of atmospheric backscatter and particulate depolarization at 532nm, 1064nm, and extinction (532nm) from approximately 9km altitude. In addition, for the first time HSRL seawater backscatter, depolarization, and diffuse attenuation data at 532nm were collected and compared to both the ship measurements and the Moderate Resolution Imaging Spectrometer (NASA MODIS-Aqua) satellite ocean retrievals.

  10. Observations of Wind Profile of Marine Atmosphere Boundary Layer by Shipborne Coherent Doppler Lidar

    NASA Astrophysics Data System (ADS)

    Wu, Songhua; Yin, Jiaping; Liu, Bingyi; Liu, Jintao; Zhang, Hongwei; Song, Xiaoquan; Zhang, Kailin

    2016-06-01

    Pulsed Coherent Doppler Lidar (CDL) system is so good as to prove the feasibility of the marine atmosphere boundary layer detection. A ship-mounted Coherent Doppler lidar was used to measure the wind profile and vertical velocity in the boundary layer over the Yellow sea in 2014. Furthermore, for the purpose of reducing the impact of vibration during movement and correcting the LOS velocity, the paper introduces the attitude correction algorithm and comparison results.

  11. Airborne and ground based lidar measurements of the atmospheric pressure profile

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Schwemmer, Geary K.; Dombrowski, Mark; Weng, Chi Y.

    1989-01-01

    The first high accuracy remote measurements of the atmospheric pressure profile have been made. The measurements were made with a differential absorption lidar system that utilizes tunable alexandrite lasers. The absorption in the trough between two lines in the oxygen A-band near 760 nm was used for probing the atmosphere. Measurements of the two-dimensional structure of the pressure field were made in the troposphere from an aircraft looking down. Also, measurements of the one-dimensional structure were made from the ground looking up. Typical pressure accuracies for the aircraft measurements were 1.5-2 mbar with a 30-m vertical resolution and a 100-shot average (20 s), which corresponds to a 2-km horizontal resolution. Typical accuracies for the upward viewing ground based measurements were 2.0 mbar for a 30-m resolution and a 100-shot average.

  12. Computational fluid dynamics study of wind turbine blade profiles at low Reynolds numbers for various angles of attack

    NASA Astrophysics Data System (ADS)

    Sayed, Mohamed A.; Kandil, Hamdy A.; Morgan, El-Sayed I.

    2012-06-01

    Airfoil data are rarely available for Angles Of Attack (AOA) over the entire range of ±180°. This is unfortunate for the wind turbine designers, because wind turbine airfoils do operate over this entire range. In this paper, an attempt is made to study the lift and drag forces on a wind turbine blade at various sections and the effect of angle of attack on these forces. Aerodynamic simulations of the steady flow past two-dimensional wind-turbine blade-profiles, developed by the National Renewable Energy Laboratory (NREL) at low Reynolds number, will be performed. The aerodynamic simulation will be performed using Computational Fluid Dynamics (CFD) techniques. The governing equations used in the simulations are the Reynolds-Average-Navier-Stokes (RANS) equations. The simulations at different wind speeds will be performed on the S809 and the S826 blade profiles. The S826 blade profile is considered in this study because it is the most suitable blade profile for the wind conditions in Egypt in the site of Gulf El-Zayt on the red sea. Lift and drag forces along with the angle of attack are the important parameters in a wind turbine system. These parameters determine the efficiency of the wind turbine. The lift and drag forces are computed over the entire range of AOA of ±180° at low Reynolds numbers. The results of the analysis showed that the AOA between 3° and 8° have high Lift/Drag ratio regardless of the wind speed and the blade profile. The numerical results are compared with wind tunnel measurements at the available limited range of the angle of attack. In addition, the numerical results are compared with the results obtained from the equations developed by Viterna and Janetzke for deep stall. The comparisons showed that the used CFD code can accurately predict the aerodynamic loads on the wind-turbine blades.

  13. A Comparison of Foliage Profiles in the Sierra National Forest Obtained with a Full-Waveform Under-Canopy EVI Lidar System with the Foliage Profiles Obtained with an Airborne Full-Waveform LVIS Lidar System

    NASA Technical Reports Server (NTRS)

    Zhao, Feng; Yang, Xiaoyuan; Strahler, Alan H.; Schaaf, Crystal L.; Yao, Tian; Wang, Zhuosen; Roman, Miguel O.; Woodcock, Curtis E.; Ni-Meister, Wenge; Jupp, David L. B.; Lovell, Jenny L.; Culvenor, Darius S.; Newnham, Glenn J.; Tang, Hao; Dubayah, Ralph O.

    2013-01-01

    Foliage profiles retrieved froma scanning, terrestrial, near-infrared (1064 nm), full-waveformlidar, the Echidna Validation Instrument (EVI), agree well with those obtained from an airborne, near-infrared, full-waveform, large footprint lidar, the Lidar Vegetation Imaging Sensor (LVIS). We conducted trials at 5 plots within a conifer stand at Sierra National Forest in August, 2008. Foliage profiles retrieved from these two lidar systems are closely correlated (e.g., r = 0.987 at 100 mhorizontal distances) at large spatial coverage while they differ significantly at small spatial coverage, indicating the apparent scanning perspective effect on foliage profile retrievals. Alsowe noted the obvious effects of local topography on foliage profile retrievals, particularly on the topmost height retrievals. With a fine spatial resolution and a small beam size, terrestrial lidar systems complement the strengths of the airborne lidars by making a detailed characterization of the crowns from a small field site, and thereby serving as a validation tool and providing localized tuning information for future airborne and spaceborne lidar missions.

  14. Wind profile measurements at the Mod-1 site at Boone, North Carolina

    SciTech Connect

    Brown, J.D.

    1980-06-18

    Three components of the wind field, temperature and pressure were measured by means of tethered balloon-borne sondes from the surface to 175 m (577 ft) and by means of a nacelle mounted system, from the surface to hub height of 43 m (140 ft). Measurements were taken over a ten day period at the Mod-1 Site in Boone, NC. Composite wind profiles are presented for different flow and stability regimes. The most extreme shears, on the order of .3 s/sup -1/, were found between 10 m (33 ft) and hub height. Individual profiles of wind and temperature show the effect of nocturnal cooling and accompanying surface stratification on the intensity of thw wind shear. Gustiness measured in terms of departures of one and two standard deviations above and below the mean, occurs at all heights across the rotor of the Mod-1 machine. Most frequent gustiness, however, occurs at and below hub height with periods up to 8 secs. Similar fluctuations are observed in the vertical component of the velocity field and in the direction of the horizontal wind. The depth of the shearing layer is critically related to hub height and rotor radius. The depth of the shearing layer appears to vary most significantly with thermal stratification; strong surface inversions producing shallow intense shearing layers; adiabatic conditions reflecting only topographically induced shear. For a given site and a given generator, hub height should be guided by the depth of the mean shear layer under adiabatic conditions plus the radius of the rotor.

  15. Gene expression profiling and pathway analysis of human bronchial epithelial cells exposed to airborne particulate matter collected from Saudi Arabia

    SciTech Connect

    Sun, Hong; Shamy, Magdy; Kluz, Thomas; Muñoz, Alexandra B.; Zhong, Mianhua; Laulicht, Freda; Alghamdi, Mansour A.; Khoder, Mamdouh I.; Chen, Lung-Chi; Costa, Max

    2012-12-01

    Epidemiological studies have established a positive correlation between human mortality and increased concentration of airborne particulate matters (PM). However, the mechanisms underlying PM related human diseases, as well as the molecules and pathways mediating the cellular response to PM, are not fully understood. This study aims to investigate the global gene expression changes in human cells exposed to PM{sub 10} and to identify genes and pathways that may contribute to PM related adverse health effects. Human bronchial epithelial cells were exposed to PM{sub 10} collected from Saudi Arabia for 1 or 4 days, and whole transcript expression was profiled using the GeneChip human gene 1.0 ST array. A total of 140 and 230 genes were identified that significantly changed more than 1.5 fold after PM{sub 10} exposure for 1 or 4 days, respectively. Ingenuity Pathway Analysis revealed that different exposure durations triggered distinct pathways. Genes involved in NRF2-mediated response to oxidative stress were up-regulated after 1 day exposure. In contrast, cells exposed for 4 days exhibited significant changes in genes related to cholesterol and lipid synthesis pathways. These observed changes in cellular oxidative stress and lipid synthesis might contribute to PM related respiratory and cardiovascular disease. -- Highlights: ► PM exposure modulated gene expression and associated pathways in BEAS-2B cells. ► One-day exposure to PM induced genes involved in responding to oxidative stress. ► 4-day exposure to PM changed genes associated to cholesterol and lipid synthesis.

  16. Lidar Measurements of Tropospheric Wind Profiles with the Double Edge Technique

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Korb, C. Laurence; Mathur, Savyasachee; Chen, Huailin

    1998-01-01

    have developed a variation of the edge technique called the double edge technique. In this paper a ground based aerosol double edge lidar is described and the first measurements of wind profiles in the free troposphere obtained with this lidar will be presented.

  17. Depth profiling analysis of solar wind helium collected in diamond-like carbon film from Genesis

    SciTech Connect

    Bajo, Ken-ichi; Olinger, Chad T.; Jurewicz, Amy J.G.; Burnett, Donald S.; Sakaguchi, Isao; Suzuki, Taku; Itose, Satoru; Ishihara, Morio; Uchino, Kiichiro; Wieler, Rainer; Yurimoto, Hisayoshi

    2015-01-01

    The distribution of solar-wind ions in Genesis mission collectors, as determined by depth profiling analysis, constrains the physics of ion solid interactions involving the solar wind. Thus, they provide an experimental basis for revealing ancient solar activities represented by solar-wind implants in natural samples. We measured the first depth profile of ⁴He in a collector; the shallow implantation (peaking at <20 nm) required us to use sputtered neutral mass spectrometry with post-photoionization by a strong field. The solar wind He fluence calculated using depth profiling is ~8.5 x 10¹⁴ cm⁻². The shape of the solar wind ⁴He depth profile is consistent with TRIM simulations using the observed ⁴He velocity distribution during the Genesis mission. It is therefore likely that all solar-wind elements heavier than H are completely intact in this Genesis collector and, consequently, the solar particle energy distributions for each element can be calculated from their depth profiles. Ancient solar activities and space weathering of solar system objects could be quantitatively reproduced by solar particle implantation profiles.

  18. Wind Profiler Observations of the Meiyu/Baiu Precipitation in the downstream of the Yangtze River

    NASA Astrophysics Data System (ADS)

    Reddy, K.; Geng, B.; Yamada, H.; Uyeda, H.

    2002-12-01

    Detailed observations of the Baiu/Meiyu frontal precipitation were acquired by several mobile platforms (three Doppler radars, a wind profiler system, three surface automatic weather stations) in the downstream of the Yangtze River for two campaigns of intensive observation (for about 50 days during June and July) period (IOP) in the years 2001 and 2001. For the first time, Frontier Observational Research System for Global Change (FORSGC) deployed a Lower Atmospheric Wind Profiler (LAWP) with Radio acoustic sounding System (RASS) at Dongshan (31°4'47" N; 120°26'3" E) in the Jiangsu province, about 120 km west of Shanghai, PR China. The two IOP data analysis suggested that the most of the time Meiyu/Baiu (heavy) precipitation tended to occur when the southwesterly low-level jet became strong under moist neutral stratification and strong gradient of equivalent potential temperature. During the heavy rainfall the LAWP can be used to provide clues for the forecasting of the maximum strength of winds and the arrival times of strong winds and gales. Observational results also indicate that the LAWP could help to improve the understanding of the atmospheric processes involved in severe weather during typhoon, clod front passage. The results suggest that convective boundary layer (CBL) height at Dongshan varies between 1 and 1.5 km and the CBL evolution depends on variety of factors and is not simply related to any local surface meteorological variables. The low boundary heights at Dongshan during July are probably related to low Bowen ratios (ratio of sensible to latent heat flux at the surface) and very high humidity. The CBL depth also indicates the prevailing synoptic situations during the Meiyu/Baiu season. We developed a simple algorithm to classify each profile into convective, transition (mixed convective-stratiform) and stratiform rain based on the wind profiler observations of the (Reflectivity, Doppler velocity and Spectral width) vertical structure of the

  19. Energy profiling of demersal fish: a case-study in wind farm artificial reefs.

    PubMed

    De Troch, Marleen; Reubens, Jan T; Heirman, Elke; Degraer, Steven; Vincx, Magda

    2013-12-01

    The construction of wind farms introduces artificial hard substrates in sandy sediments. As Atlantic cod (Gadus morhua) and pouting (Trisopterus luscus) tend to aggregate in order to feed around these reefs, energy profiling and trophic markers were applied to study their feeding ecology in a wind farm in the Belgian part of the North Sea. The proximate composition (carbohydrates, proteins and lipids) differed significantly between liver and muscle tissue but not between fish species or between their potential prey species. Atlantic cod showed to consume more energy than pouting. The latter had a higher overall energy reserve and can theoretically survive twice as long on the available energy than cod. In autumn, both fish species could survive longer on their energy than in spring. Polyunsaturated fatty acids were found in high concentrations in fish liver. The prey species Jassa and Pisidia were both rich in EPA while Jassa had a higher DHA content than Pisidia. Energy profiling supported the statement that wind farm artificial reefs are suitable feeding ground for both fish species. Sufficient energy levels were recorded and there is no indication of competition.

  20. Impact of Increasing Distributed Wind Power and Wind Turbine Siting on Rural Distribution Feeder Voltage Profiles: Preprint

    SciTech Connect

    Allen, A.; Zhang, Y. C.; Hodge, B. M.

    2013-09-01

    Many favorable wind energy resources in North America are located in remote locations without direct access to the transmission grid. Building transmission lines to connect remotely-located wind power plants to large load centers has become a barrier to increasing wind power penetration in North America. By connecting utility-sized megawatt-scale wind turbines to the distribution system, wind power supplied to consumers could be increased greatly. However, the impact of including megawatt-scale wind turbines on distribution feeders needs to be studied. The work presented here examined the impact that siting and power output of megawatt-scale wind turbines have on distribution feeder voltage. This is the start of work to present a general guide to megawatt-scale wind turbine impact on the distribution feeder and finding the amount of wind power that can be added without adversely impacting the distribution feeder operation, reliability, and power quality.

  1. The CU Airborne MAX-DOAS instrument: ground based validation, and vertical profiling of aerosol extinction and trace gases

    NASA Astrophysics Data System (ADS)

    Baidar, S.; Oetjen, H.; Coburn, S.; Dix, B.; Ortega, I.; Sinreich, R.; Volkamer, R.

    2012-09-01

    The University of Colorado Airborne Multi Axis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument uses solar stray light remote sensing to detect and quantify multiple trace gases, including nitrogen dioxide (NO2), glyoxal (CHOCHO), formaldehyde (HCHO), water vapor (H2O), nitrous acid (HONO), iodine monoxide (IO), bromine monoxide (BrO), and oxygen dimers (O4) at multiple wavelengths (360 nm, 477 nm, 577 nm and 632 nm) simultaneously, and sensitively in the open atmosphere. The instrument is unique, in that it presents the first systematic implementation of MAX-DOAS on research aircraft, i.e. (1) includes measurements of solar stray light photons from nadir, zenith, and multiple elevation angles forward and below the plane by the same spectrometer/detector system, and (2) features a motion compensation system that decouples the telescope field of view (FOV) from aircraft movements in real-time (< 0.35° accuracy). Sets of solar stray light spectra collected from nadir to zenith scans provide some vertical profile information within 2 km above and below the aircraft altitude, and the vertical column density (VCD) below the aircraft is measured in nadir view. Maximum information about vertical profiles is derived simultaneously for trace gas concentrations and aerosol extinction coefficients over similar spatial scales and with a vertical resolution of typically 250 m during aircraft ascent/descent. The instrument is described, and data from flights over California during the CalNex and CARES air quality field campaigns is presented. Horizontal distributions of NO2 VCDs (below the aircraft) maps are sampled with typically 1 km resolution, and show good agreement with two ground based CU MAX-DOAS instruments (slope 0.95 ± 0.09, R2 = 0.86). As a case study vertical profiles of NO2, CHOCHO, HCHO, and H2O mixing ratios and aerosol extinction coefficients, ɛ, at 477nm calculated from O4 measurements from a low approach at Brackett airfield inside the

  2. Compact, Engineered, 2-Micron Coherent Doppler Wind Lidar Prototype for Field and Airborne Validation: Doppler Aerosol WiNd Lidar (DAWN). Interim Review #1 (6 months)

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Singh, Upendra N.; Koch, Grady J.; Yu, Jirong; Amzajerdian, Farzin; Trieu, Bo C.; Petros, Mulugeta

    2006-01-01

    A new project, selected in 2005 by NASA's Science Mission Directorate (SMD), under the Instrument Incubator Program (IIP), will be described. The 3-year effort is intended to design, fabricate, and demonstrate a packaged, rugged, compact, space-qualifiable coherent Doppler wind lidar (DWL) transceiver capable of future validation in an aircraft and/or Unmanned Aerial Vehicle (UAV). The state-of-the-art 2-micron coherent DWL breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent DWL system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid DWL solution to the need for global tropospheric wind measurements.

  3. Background Pressure Profiles for Sonic Boom Vehicle Testing in the NASA Glenn 8- by 6-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Shaw, Stephen; Adamson, Eric; Simerly, Stephanie

    2013-01-01

    In an effort to identify test facilities that offer sonic boom measurement capabilities, an exploratory test program was initiated using wind tunnels at NASA research centers. The subject of this report is the sonic boom pressure rail data collected in the Glenn Research Center 8- by 6-Foot Supersonic Wind Tunnel. The purpose is to summarize the lessons learned based on the test activity, specifically relating to collecting sonic boom data which has a large amount of spatial pressure variation. The wind tunnel background pressure profiles are presented as well as data which demonstrated how both wind tunnel Mach number and model support-strut position affected the wind tunnel background pressure profile. Techniques were developed to mitigate these effects and are presented.

  4. Broadband Photon Spectrum and its Radial Profile of Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Ishizaki, Wataru; Tanaka, Shuta J.; Asano, Katsuaki; Terasawa, Toshio

    2017-04-01

    The observed radial profiles of the X-ray emission from pulsar wind nebulae (PWNe) have been claimed to contradict the standard 1D steady model. However, the 1D model has not been tested to simultaneously reproduce the volume-integrated spectrum and the radial profile of the surface brightness. We revisit the 1D steady model and apply it to PWNe 3C 58 and G21.5‑0.9. We find that the parameters of the pulsar wind, the radius of the termination shock {r}{{s}}, and magnetization σ greatly affect both the photon spectrum and radial profile of the emission. We have shown that the parameters constrained by the entire spectrum lead to an X-ray nebula smaller than the observed nebula. We have also tested the case that reproduces only the observations in X- and gamma-rays, ignoring the radio and optical components. In this case, there are parameter sets that reproduce both the spectrum and emission profile, but the advection time to the edge of the nebula becomes much smaller than the age. Our detailed discussion clarifies that the standard 1D steady model has severe difficulty to simultaneously reproduce both the volume-integrated spectrum and the surface brightness. This implies that the model should be improved by taking into account extra physical processes such as spatial diffusion of particles. Additionally, we calculate the surface brightness profile of the radio, optical, and TeV gamma-rays. The future observations in these wavelengths are also important to probe the spatial distributions of the relativistic plasma and the magnetic field of PWNe.

  5. A Comparison of the Automated Meteorological Profiling System High Resolution Flight Element to the Kennedy Space Center 50 MHz Doppler Wind Profiler

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.; Leahy, Frank

    2000-01-01

    Wind profile measurement and the simulation of aerodynamic loads on a launch vehicle play an important role in determining launch capability and post launch assessment of the vehicle's performance. To date, all United States range certified wind profile measurement systems have been based on balloon tracking. Since the 1960's, the standard used by the National Aeronautics and Space Administration and the Air Force at the Cape Canaveral Air Station (CCAS) for detailed wind profile measurements has been the radar tracked, aerodynamically stabilized Jimsphere balloon system. Currently, the Air Force is nearing certification and operational implementation of the Automated Meteorological Profiling System (AMPS) at CCAS and Vandenburg Air Force Base (VAFB). AMPS uses the Global Positioning System for tracking the Jimsphere balloon. It is anticipated that the AMPS/Jimsphere, named the High Resolution Flight Element (HRFE), will have equivalent, or better resolution than the radar tracked Jimsphere, especially when the balloon is far downrange, at a low elevation angle. By the 1980's, the development of Doppler Wind Profilers (DWP) had become sufficiently advanced to justify an experimental measurement program at Kennedy Space Center (KSC). In 1989 a 50 MHz DWP was installed at KSC. In principal, the 50 MHz DWP has the capability to track the evolution of wind profile dynamics within 5 minutes of a launch. Because of fundamental differences in the measurement technique, there is a significant time and space differential between 50 MHz DWP and HRFE wind profiles. This paper describes a study to quantify these differences from a sample of 50 MHz DWP/HRFE pairs obtained during the AMPS certification test program.

  6. 915-Mhz Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory

    SciTech Connect

    Jensen, M.; Bartholomew, M. J.; Giangrande, S.

    2016-03-01

    When considering the amount of shortwave radiation incident on a photovoltaic solar array and, therefore, the amount and stability of the energy output from the system, clouds represent the greatest source of short-term (i.e., scale of minutes to hours) variability through scattering and reflection of incoming solar radiation. Providing estimates of this short-term variability is important for determining and regulating the output from large solar arrays as they connect with the larger power infrastructure. In support of the installation of a 37-MW solar array on the grounds of Brookhaven National Laboratory (BNL), a study of the impacts of clouds on the output of the solar array has been undertaken. The study emphasis is on predicting the change in surface solar radiation resulting from the observed/forecast cloud field on a 5-minute time scale. At these time scales, advection of cloud elements over the solar array is of particular importance. As part of the BNL Aerosol Life Cycle Intensive Operational Period (IOP), a 915-MHz Radar Wind Profiler (RWP) was deployed to determine the profile of low-level horizontal winds and the depth of the planetary boundary layer. The initial deployment mission of the 915-MHz RWP for cloud forecasting has been expanded the deployment to provide horizontal wind measurements for estimating and constraining cloud advection speeds. A secondary focus is on the observation of dynamics and microphysics of precipitation during cold season/winter storms on Long Island. In total, the profiler was deployed at BNL for 1 year from May 2011 through May 2012.

  7. 915-MHz Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory

    SciTech Connect

    Jensen, M.; Bartholomew, M. J.; Giangrande, S.

    2016-03-01

    When considering the amount of shortwave radiation incident on a photovoltaic solar array and, therefore, the amount and stability of the energy output from the system, clouds represent the greatest source of short-term (i.e., scale of minutes to hours) variability through scattering and reflection of incoming solar radiation. Providing estimates of this short-term variability is important for determining and regulating the output from large solar arrays as they connect with the larger power infrastructure. In support of the installation of a 37-MW solar array on the grounds of Brookhaven National Laboratory (BNL), a study of the impacts of clouds on the output of the solar array has been undertaken. The study emphasis is on predicting the change in surface solar radiation resulting from the observed/forecast cloud field on a 5-minute time scale. At these time scales, advection of cloud elements over the solar array is of particular importance. As part of the BNL Aerosol Life Cycle Intensive Operational Period (IOP), a 915-MHz Radar Wind Profiler (RWP) was deployed to determine the profile of low-level horizontal winds and the depth of the planetary boundary layer. The initial deployment mission of the 915-MHz RWP for cloud forecasting has been expanded the deployment to provide horizontal wind measurements for estimating and constraining cloud advection speeds. A secondary focus is on the observation of dynamics and microphysics of precipitation during cold season/winter storms on Long Island. In total, the profiler was deployed at BNL for 1 year from May 2011 through May 2012.

  8. Temperature and horizontal wind measurements on the ER-2 aircraft during the 1987 Airborne Antarctic Ozone Experiment

    NASA Technical Reports Server (NTRS)

    Chan, K. R.; Scott, S. G.; Bui, T. P.; Bowen, S. W.; Day, J.

    1989-01-01

    The accuracy of temperature, pressure, potential temperature, and horizontal wind measurements is discussed in connection with the use of Meteorological Measurement System data in the AAOE. The vertical distribution of temperature measurements and latitudinal variations of the zonal wind for 12 flights over Antarctica during the 1987 AAOE campaign are summarized. Model atmospheres from 0 to 32 km at 70 deg and 55 deg S for the August-September period are constructed. Above the 420 K isentropic surface, the polar vortex remains strong throughout August and September of 1987.

  9. NASA airborne radar wind shear detection algorithm and the detection of wet microbursts in the vicinity of Orlando, Florida

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.; Bracalente, Emedio M.

    1992-01-01

    The algorithms used in the NASA experimental wind shear radar system for detection, characterization, and determination of windshear hazard are discussed. The performance of the algorithms in the detection of wet microbursts near Orlando is presented. Various suggested algorithms that are currently being evaluated using the flight test results from Denver and Orlando are reviewed.

  10. The Ly(alpha) Line Profiles of Ultraluminous Infrared Galaxies: Fast Winds and Lyman Continuum Leakage

    NASA Technical Reports Server (NTRS)

    Martin, Crystal L.; Dijkstra, Mark; Henry, Alaina L.; Soto, Kurt T.; Danforth, Charles W.; Wong, Joseph

    2015-01-01

    We present new Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet (far-UV) spectroscopy and Keck Echellete optical spectroscopy of 11 ultraluminous infrared galaxies (ULIRGs), a rare population of local galaxies experiencing massive gas inflows, extreme starbursts, and prominent outflows. We detect Ly(alpha) emission from eight ULIRGs and the companion to IRAS09583+4714. In contrast to the P Cygni profiles often seen in galaxy spectra, the Ly(alpha) profiles exhibit prominent, blueshifted emission out to Doppler shifts exceeding -1000 km/s in three H II-dominated and two AGN-dominated ULIRGs. To better understand the role of resonance scattering in shaping the Ly(alpha) line profiles, we directly compare them to non-resonant emission lines in optical spectra. We find that the line wings are already present in the intrinsic nebular spectra, and scattering merely enhances the wings relative to the line core. The Ly(alpha) attenuation (as measured in the COS aperture) ranges from that of the far-UV continuum to over 100 times more. A simple radiative transfer model suggests the Ly(alpha) photons escape through cavities which have low column densities of neutral hydrogen and become optically thin to the Lyman continuum in the most advanced mergers. We show that the properties of the highly blueshifted line wings on the Ly(alpha) and optical emission-line profiles are consistent with emission from clumps of gas condensing out of a fast, hot wind. The luminosity of the Ly(alpha) emission increases nonlinearly with the ULIRG bolometric luminosity and represents about 0.1-1% of the radiative cooling from the hot winds in the H II-dominated ULIRGs.

  11. THE Lyα LINE PROFILES OF ULTRALUMINOUS INFRARED GALAXIES: FAST WINDS AND LYMAN CONTINUUM LEAKAGE

    SciTech Connect

    Martin, Crystal L.; Wong, Joseph; Dijkstra, Mark; Henry, Alaina; Soto, Kurt T.; Danforth, Charles W.

    2015-04-10

    We present new Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet (far-UV) spectroscopy and Keck Echellete optical spectroscopy of 11 ultraluminous infrared galaxies (ULIRGs), a rare population of local galaxies experiencing massive gas inflows, extreme starbursts, and prominent outflows. We detect Lyα emission from eight ULIRGs and the companion to IRAS09583+4714. In contrast to the P Cygni profiles often seen in galaxy spectra, the Lyα profiles exhibit prominent, blueshifted emission out to Doppler shifts exceeding −1000 km s{sup −1} in three H ii-dominated and two AGN-dominated ULIRGs. To better understand the role of resonance scattering in shaping the Lyα line profiles, we directly compare them to non-resonant emission lines in optical spectra. We find that the line wings are already present in the intrinsic nebular spectra, and scattering merely enhances the wings relative to the line core. The Lyα attenuation (as measured in the COS aperture) ranges from that of the far-UV continuum to over 100 times more. A simple radiative transfer model suggests the Lyα photons escape through cavities which have low column densities of neutral hydrogen and become optically thin to the Lyman continuum in the most advanced mergers. We show that the properties of the highly blueshifted line wings on the Lyα and optical emission-line profiles are consistent with emission from clumps of gas condensing out of a fast, hot wind. The luminosity of the Lyα emission increases nonlinearly with the ULIRG bolometric luminosity and represents about 0.1–1% of the radiative cooling from the hot winds in the H ii-dominated ULIRGs.

  12. Wind Profiling from a New Compact, Pulsed, 2-Micron, Coherent-Detection Doppler Lidar Transceiver during Wind Measurement Intercomparison

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Koch, Grady J.; Kavaya, Michael J.; Yu, Jirong; Beyon, Jeffrey Y.; Demoz, B.; Veneable, D.

    2009-01-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. This lidar system was recently deployed at Howard University facility in Beltsville, Maryland, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other lidars and other sensors will be presented.

  13. ValidWind applications: wind power prospecting, aerosol transport

    NASA Astrophysics Data System (ADS)

    Wilkerson, T.; Marchant, A.; Apedaile, T.; Scholes, D.; Simmons, J.; Bradford, B.

    2010-10-01

    The ValidWind™ system employs an XL200 laser rangefinder to track small, lightweight, helium-filled balloons (0.33 meters, 0.015 kg). We record their trajectories (range resolution 0.5 meters) and automatically produce local wind profiles in real time. Tracking range is enhanced beyond 2 km by applying retro-reflector tape to the balloons. Aerodynamic analysis shows that ValidWind balloon motion is well coupled to the local wind within relaxation times { 1 second, due to drag forces at subcritical Reynolds numbers Re < 2×105. Such balloons are Lagrangian sensors; i.e., they move with the wind as opposed to being fixed in space. In a field campaign involving many balloons, slight variations in ground level winds at launch lead to trajectory patterns that we analyze to derive 3D maps of the vertical and horizontal wind profiles downwind of the launch area. Field campaigns are focused on likely sites for wind power generation and on facilities from which airborne particulates are emitted. We describe results of wind measurements in Utah near the cities of Clarkston, Logan, and Ogden. ValidWind is a relatively inexpensive wind sensor that is easily and rapidly transported and deployed at remote sites. It is an ideal instrument for wind prospecting to support early decisions required, for example, in siting meteorology towers. ValidWind provides high-resolution, real time characterization of the average and changing 3D wind fields in which wind power turbines and other remote sensors must operate.

  14. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    NASA Astrophysics Data System (ADS)

    Caccia, J.; Guénard, V.; Benech, B.; Campistron, B.; Drobinski, P.

    2004-11-01

    The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program) in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission) in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking), which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with thermal circulation, the vertical motions are

  15. Wind-Speed Profile and Roughness Sublayer Depth Modelling in Urban Boundary Layers

    NASA Astrophysics Data System (ADS)

    Pelliccioni, Armando; Monti, Paolo; Leuzzi, Giovanni

    2016-08-01

    We propose a new formulation for the wind-speed profile in the urban boundary layer, which can be viewed as a generalisation of the commonly used logarithmic law. The model is based on the assumption that the role played by the classical aerodynamic roughness length and the displacement height in the logarithmic law is taken by a sole variable, the local length scale, which follows a pattern of exponential decrease with height. Starting from wind-speed profiles collected at Villa Pamphili park, Rome, Italy, an empirical fit is used to determine the model parameters. The results show that the local length scale depends also on the friction velocity and that, with appropriate normalization, it reduces to a family of curves that spreads according to the planar area fraction. Another novel aspect is the estimation of the roughness sublayer depth, which can be expressed as a function of the friction velocity and morphometric quantities such as the building height and the planar area fraction. It is also found that the rate of growth with height of the Prandtl mixing length linked to the new formulation is, just above the canopy, lower than the canonical value 0.41, and approaches the latter value well above the roughness sublayer. The model performance is tested by comparison with laboratory and field data reported in the literature.

  16. Acoustic sounder system design for measurement of optical turbulence and wind profiles

    NASA Astrophysics Data System (ADS)

    Miller, Judith E.; Eaton, Frank D.; Stokes, Sheldon S.

    2000-07-01

    An Acoustic Sounder System has been installed on the side of the cliff at North Oscura Peak, WSMR to provide important refractive index structure parameter, Cn2 data for laser propagation tests. The acoustic sounder system records echo information that is used to provide 3D wind and optical turbulence profiles. The received signal is the product of the interaction of the transmitted acoustic pulse with the small scale atmospheric temperature variations. This information is displayed as a time-height display of the signal intensity. The frequency of the received signals are processed and converted into time histories of the horizontal wind field. The data from the Acoustic Sounder is calibrated with the hot-wire anemometer temperature structure parameter (Ct2) data, and meteorological data measured locally to produce the Cn2 profile. The design and location of the Acoustic Sounder System will be discussed along with the methodology of extracting the turbulence. Many days of data have been collected and representative data will be shown.

  17. Data Quality Assessment Methods for the Eastern Range 915 MHz Wind Profiler Network

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred C.; Taylor, Gregory E.

    1998-01-01

    The Eastern Range installed a network of five 915 MHz Doppler Radar Wind Profilers with Radio Acoustic Sounding Systems in the Cape Canaveral Air Station/Kennedy Space Center area to provide three-dimensional wind speed and direction and virtual temperature estimates in the boundary layer. The Applied Meteorology Unit, staffed by ENSCO, Inc., was tasked by the 45th Weather Squadron, the Spaceflight Meteorology Group, and the National Weather Service in Melbourne, Florida to investigate methods which will help forecasters assess profiler network data quality when developing forecasts and warnings for critical ground, launch and landing operations. Four routines were evaluated in this study: a consensus time period check a precipitation contamination check, a median filter, and the Weber-Wuertz (WW) algorithm. No routine was able to effectively flag suspect data when used by itself. Therefore, the routines were used in different combinations. An evaluation of all possible combinations revealed two that provided the best results. The precipitation contamination and consensus time routines were used in both combinations. The median filter or WW was used as the final routine in the combinations to flag all other suspect data points.

  18. Statistics of Convective Cores Using ARM UHF Wind Profilers During the Oklahoma MC3E Campaign

    NASA Astrophysics Data System (ADS)

    Giangrande, S.; Dulaney, N.; Collis, S. M.; Jensen, M. P.

    2011-12-01

    Measurements of vertical velocity and associated deep convective storm characteristics are observations of high priority for climate modelers. As part of an overall effort to improve our understanding of precipitating systems, the ARM Climate Research Facility (ACRF) in Oklahoma recently reconfigured its existing 915 MHz wind profilers to operate in vertically-pointing modes for the sampling through deep convective storms. Unique UHF profiler modes were designed to allow these radar systems to act as anchors for ARM scanning radar observations as well as to evaluate the errors for scanning radar retrievals. The first demonstration of these reconfigured profiler systems took place during the Midlatitude Convective Clouds and Storms Experiment (MC3E). In this study, we explore the properties of convective updraft and downdraft core properties as revealed by standalone ARM profilers using standard definitions for diameter, intensity and mass flux. Observations are obtained under the umbrella of the ACRF scanning radar facilities that will provide additional insight and guidance for storm intensity, hydrometeor contributions to fall speed and storm translational motion.

  19. Vertical velocity variance in the mixed layer from radar wind profilers

    USGS Publications Warehouse

    Eng, K.; Coulter, R.L.; Brutsaert, W.

    2003-01-01

    Vertical velocity variance data were derived from remotely sensed mixed layer turbulence measurements at the Atmospheric Boundary Layer Experiments (ABLE) facility in Butler County, Kansas. These measurements and associated data were provided by a collection of instruments that included two 915 MHz wind profilers, two radio acoustic sounding systems, and two eddy correlation devices. The data from these devices were available through the Atmospheric Boundary Layer Experiment (ABLE) database operated by Argonne National Laboratory. A signal processing procedure outlined by Angevine et al. was adapted and further built upon to derive vertical velocity variance, w_pm???2, from 915 MHz wind profiler measurements in the mixed layer. The proposed procedure consisted of the application of a height-dependent signal-to-noise ratio (SNR) filter, removal of outliers plus and minus two standard deviations about the mean on the spectral width squared, and removal of the effects of beam broadening and vertical shearing of horizontal winds. The scatter associated with w_pm???2 was mainly affected by the choice of SNR filter cutoff values. Several different sets of cutoff values were considered, and the optimal one was selected which reduced the overall scatter on w_pm???2 and yet retained a sufficient number of data points to average. A similarity relationship of w_pm???2 versus height was established for the mixed layer on the basis of the available data. A strong link between the SNR and growth/decay phases of turbulence was identified. Thus, the mid to late afternoon hours, when strong surface heating occurred, were observed to produce the highest quality signals.

  20. Titan's meridional wind profile and Huygens' orientation and swing inferred from the geometry of DISR imaging

    NASA Astrophysics Data System (ADS)

    Karkoschka, Erich

    2016-05-01

    The altitude and zonal motion of the Huygens probe descending through Titan's atmosphere was determined early under the assumption of no meridional motion (Bird et al. [2005]. Nature 438, 800-802). By comparing images taken during the descent, Karkoschka et al. (Karkoschka et al. [2007]. Planet. Space Sci. 55, 1895-1935) determined the meridional motion of Huygens, which was generally much smaller than its zonal motion. Here, we present a comprehensive geometrical analysis of all images taken during the descent that is four times more accurate than the previous study. The result is a meridional wind profile across Titan's troposphere with northward winds by up to 0.4 m/s with an average of 0.1 m/s above 1 km altitude, and southward winds below, peaking at 0.9 m/s near 0.4 km altitude. The imaging data extend down to 0.22 km altitude, although additional information came from the horizontal impact speed near 0.8 m/s southward (Schröder et al. [2012]. Planet. Space Sci. 73, 327-340). There is a region between 5 and 8 km altitude with no significant meridional wind. In the stratosphere, the average meridional wind was 1.2 ± 1.5 m/s northward, and zero meridional motion is possible down to 15 km altitude. We present the difference between the zonal speeds of Huygens and the wind that was ignored in previous publications and amounts to up to 7 m/s. We determined the three rotational angles of Huygens for the times of each exposure that showed surface features. During 26 exposures, the swing speed of Huygens was fast enough to smear images. Inferred swing speeds were up to 20°/s during the calm phase of the descent, consistent with up to 40°/s swings reported before during the rough phase. The improved geometric calibration of images allowed identification of many features also seen in Cassini radar images. This comparison yields the location of the Huygens LandingSite as 192.34 ± 02° West and 10.47 ± 0.02° South.

  1. An Observational Study of Wind Profiles in the Baroclinic Convective Mixed Layer

    NASA Astrophysics Data System (ADS)

    Lemone, Margaret A.; Zhou, Mingyu; Moeng, Chin-Hoh; Lenschow, Donald H.; Miller, L. Jay; Grossman, Robert L.

    A comprehensive planetary boundary-layer (PBL) and synoptic data set is used to isolate the mechanisms that determine the vertical shear of the horizontal wind in the convective mixed layer. To do this, we compare a fair-weather convective PBL with no vertical shear through the mixed layer (10 March 1992), with a day with substantial vertical shear in the north-south wind component (27 February). The approach involves evaluating the terms of the budget equations for the two components of the vertical shear of the horizontal wind; namely: the time-rate-of-change or time-tendency term, differential advection, the Coriolis terms (a thermal wind term and a shear term), and the second derivative of the vertical transport of horizontal momentum with respect to height (turbulent-transport term). The data, gathered during the 1992 STorm-scale Operational and Research Meteorology (STORM) Fronts Experiments Systems Test (FEST) field experiment, are from gust-probe aircraft horizontal legs and soundings, 915-MHz wind profilers, a 5-cm Doppler radar, radiosondes, and surface Portable Automated Mesonet (PAM) stations in a roughly 50 × 50 km boundary-layer array in north-eastern Kansas, nested in a mesoscale-to-synoptic array of radiosondes and surface data.We present evidence that the shear on 27 February is related to the rapid growth of the convective boundary layer. Computing the shear budget over a fixed depth (the final depth of the mixed layer), we find that the time-tendency term dominates, reflecting entrainment of high-shear air from above the boundary layer. We suggest that shear within the mixed layer occurs when the time-tendency term is sufficiently large that the shear-reduction terms - namely the turbulent-transport term and differential advection terms - cannot compensate. In contrast, the tendency term is small for the slowly-growing PBL of 10 March, resulting in a balance between the Coriolis terms and the turbulent-transport term. Thus, the thermal wind

  2. Integrating Wind Profiling Radars and Radiosonde Observations with Model Point Data to Develop a Decision Support Tool to Assess Upper-Level Winds for Space Launch

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Flinn, Clay

    2013-01-01

    On the day-of-launch, the 45th Weather Squadron (45 WS) Launch Weather Officers (LWOs) monitor the upper-level winds for their launch customers to include NASA's Launch Services Program and NASA's Ground Systems Development and Operations Program. They currently do not have the capability to display and overlay profiles of upper-level observations and numerical weather prediction model forecasts. The LWOs requested the Applied Meteorology Unit (AMU) develop a tool in the form of a graphical user interface (GUI) that will allow them to plot upper-level wind speed and direction observations from the Kennedy Space Center (KSC) 50 MHz tropospheric wind profiling radar, KSC Shuttle Landing Facility 915 MHz boundary layer wind profiling radar and Cape Canaveral Air Force Station (CCAFS) Automated Meteorological Processing System (AMPS) radiosondes, and then overlay forecast wind profiles from the model point data including the North American Mesoscale (NAM) model, Rapid Refresh (RAP) model and Global Forecast System (GFS) model to assess the performance of these models. The AMU developed an Excel-based tool that provides an objective method for the LWOs to compare the model-forecast upper-level winds to the KSC wind profiling radars and CCAFS AMPS observations to assess the model potential to accurately forecast changes in the upperlevel profile through the launch count. The AMU wrote Excel Visual Basic for Applications (VBA) scripts to automatically retrieve model point data for CCAFS (XMR) from the Iowa State University Archive Data Server (http://mtarchive.qeol.iastate.edu) and the 50 MHz, 915 MHz and AMPS observations from the NASA/KSC Spaceport Weather Data Archive web site (http://trmm.ksc.nasa.gov). The AMU then developed code in Excel VBA to automatically ingest and format the observations and model point data in Excel to ready the data for generating Excel charts for the LWO's. The resulting charts allow the LWOs to independently initialize the three models 0

  3. [Carbon sources metabolic characteristics of airborne microbial communities in constructed wetlands].

    PubMed

    Song, Zhi-Wen; Wang, Lin; Xu, Ai-Ling; Wu, Deng-Deng; Xia, Yan

    2015-02-01

    Using BIOLOG-GN plates, this article describes the carbon sources metabolic characteristics of airborne microbial communities in a free surface-flow constructed wetland in different seasons and clarify the correlation between airborne microbial metabolic functions and environmental factors. The average well color development (AWCD), carbon metabolic profiles and McIntosh values of airborne microbial communities in different seasons were quite different. Analysis of the variations showed that AWCD in spring and summer differed significantly from that in autumn and winter (P < 0.01). In the same season, the degree of utilization of different types of carbon by airborne microbes was different. Summer had a significant difference from other seasons (P < 0.05). Dominant communities of airborne microbes in four seasons were carboxylic acids metabolic community, carbohydrates metabolic community, polymers metabolic community and carboxylic acids metabolic community respectively. Principal component analysis showed that the carbon metabolic characteristics of airborne microbial community in autumn were similar to those in winter but different from those in spring and summer. The characteristics of carbon metabolism revealed differences between summer and spring, autumn, or winter. These differences were mainly caused by amines or amides while the differences between spring and autumn or winter were mainly caused by carboxylic acids. Environmental factors, including changes in wind speed, temperature, and humidity acted to influence the carbon sources metabolic properties of airborne microbial community. The dominant environmental factors that acted to influence the carbon sources metabolic properties of airborne microbial community varied between different seasons.

  4. Wind profiler data in a mesoscale experiment from a meteorological perspective

    NASA Technical Reports Server (NTRS)

    Zipser, E. J.; Augustine, J.; Cunning, J.

    1986-01-01

    During May and June of 1985, the Oklahoma-Kansas Preliminary Regional Experiment of STORM-Central (OK PRE-STORM) was carried out, with the major objectives of learning more about mesoscale convective systems (MCSs) and gaining experience in the use of new sensing systems and measurement strategies that will improve the design of STORM-Central. Three 50-MHz wind profilers were employed in a triangular array with sides about 275 km. It is far too soon to report any results of this effort, for it has barely begun. The purpose here is to show some examples of the data, some of the surrounding conventional data, and to discuss some of the issues important to meteorologists in evaluating the contribution of the profiler data. The case of 10 to 11 June 1985, featuring a major squall line system which crossed the dense observing network from northwest to southeast, passing the Liberal site about 2230 GMT/10 June, the McPherson site about 0100 GMT/11 June, and Wichita about 0300 GMT/11 June is discussed. Radar and satellite data show that the system was growing rapidly when it passed Liberal, and was large and mature when it passed through McPherson and Wichita. The radar depiction of the system during this stage is given, with the McPherson site in the intense convective echoes near the leading edge at 01 GMT and in the stratiform precipitation at 03 GMT. The profiler wind data for a 9-hour period encompassing the squall line passage at each site are given.

  5. A semi-analytical solution for the mean wind profile in the Atmospheric Boundary Layer: the convective case

    NASA Astrophysics Data System (ADS)

    Buligon, L.; Degrazia, G. A.; Acevedo, O. C.; Szinvelski, C. R. P.; Goulart, A. G. O.

    2010-03-01

    A novel methodology to derive the average wind profile from the Navier-Stokes equations is presented. The development employs the Generalized Integral Transform Technique (GITT), which combines series expansions with Integral Transforms. The new approach provides a solution described in terms of the quantities that control the wind vector with height. Parameters, such as divergence and vorticity, whose magnitudes represent sinoptic patterns are contained in the semi-analytical solution. The results of this new method applied to the convective boundary layer are shown to agree with wind data measured in Wangara experiment.

  6. A semi-analytical solution for the mean wind profile in the Atmospheric Boundary Layer: the convective case

    NASA Astrophysics Data System (ADS)

    Buligon, L.; Degrazia, G. A.; Acevedo, O. C.; Szinvelski, C. R. P.; Goulart, A. G. O.

    2009-09-01

    A novel methodology to derive the average wind profile from the Navier-Stokes equations is presented. The development employs the Generalized Integral Transform Technique (GITT), which joints series expansions with Integral Transforms. The new approach provides a solution described in terms of the quantities that control the wind vector with height. Parameters, such as divergence and vorticity, whose magnitudes represent sinoptic patterns are contained in the semi-analytical solution. The results of this new method applied to the convective boundary layer are shown to agree with wind data measured in Wangara experiment.

  7. [Airborne Japanese cedar allergens studied by immunoblotting technique using anti-Cry j I monoclonal antibody--comparison with actual pollen counts and effect of wind speed and directions].

    PubMed

    Iwaya, M; Murakami, G; Matsuno, M; Onoue, Y; Takayanagi, M; Kayahara, M; Adachi, Y; Adachi, Y; Okada, T; Kenda, S

    1995-07-01

    We collected airborne particles of Japanese cedar pollen with Burkard's sampling tape in Toyama from February to April 1992. The tape was cut into two pieces in parallel to time axis. The one of piece of the tapes was stained with glycerin-jerry and stained pollens were counted with a microscope. The other piece was treated according to the immunoblotting technique. The airborne pollen allergens, reacting with anti-Cry j I monoclonal antibody, were stained as blue spots. The spots were classified by diameter into two groups, large spots (> 50 microns) and small spots (< 50 microns). There were significant correlations found between the airborne Cry j I allergen spots (in large and small) and actual pollen counts obtained with the Burkard's sampler and the Durham's sampler (r = 0.729, 0.586 in large spots and r = 0.676, 0.489 in small spots, p < 0.001). The counts of small spots stayed in high level even in April when actual pollen counts decreased. We concluded that this discrepancy was caused by allergenic crushed cedar pollen particles staying floating longer than actual pollens. Secondly we set a gauge of wind speed and direction at the same point as the samplers. The actual pollen counts and large spots counts were significantly larger in the wind (SE wind in Toyama city) from cedar trees blooming area than other areas. However small spots counts did not differ significantly according to wind directions. Wind speed did not effect on actual pollen counts, large spots counts and small spots count.

  8. Design and Development of a Scanning Airborne Direct Detection Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott

    2006-01-01

    In the fall of 2005 we began developing an airborne scanning direct detection molecular Doppler lidar. The instrument is being built as part of the Tropospheric Wind Lidar Technology Experiment (TWiLiTE), a three year project selected by the NASA Earth Sun Technology Office under the Instrument Incubator Program. The TWiLiTE project is a collaboration involving scientists and engineers from NASA Goddard Space Flight Center, NOAA ESRL, Utah State University Space Dynamics Lab, Michigan Aerospace Corporation and Sigma Space Corporation. The TWiLiTE instrument will leverage significant research and development investments made by NASA Goddard and it's partners in the past several years in key lidar technologies and sub-systems (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. These sub-systems will be integrated into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57. The WB57 flies at an altitude of 18 km and from this vantage point the nadir viewing Doppler lidar will be able to profile winds through the full troposphere. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a future spaceborne tropospheric wind system. In addition to being a technology testbed for space based tropospheric wind lidar, when completed the TWiLiTE high altitude airborne lidar will be used for studying mesoscale dynamics and storm research (e.g. winter storms, hurricanes) and could be used for calibration and validation of satellite based wind systems such as ESA's Aeolus Atmospheric Dynamics Mission. The TWiLiTE Doppler lidar will have the capability to profile winds in clear air from the aircraft altitude of 18 km to the surface with 250 m vertical resolution and < 2mls

  9. Tropospheric Wind Profiles Obtained with the GLOW Molecular Doppler Lidar during the 2002 International H2O Project

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huailin; Li, Steven X.; Mathur, Savy Asachee; Dobler, Jeremy; Hasselbrack, William

    2003-01-01

    The Goddard Lidar Observatory for Winds (GLOW) is a mobile direct detection Doppler lidar system hich uses the double edge technique to measure the Doppler shift of the molecular backscattered laser signal at a wavelength of 355 nm. In the spring of 2002 GLOW was deployed to the western Oklahoma profiling site (36 deg 33.500 min N, 100 deg 36.371 min W) to participate in the International H2O Project (MOP). During the MOP campaign over 240 hours of wind profiles were obtained with the GLOW lidar in support of a variety of scientific investigations.

  10. Tropospheric Wind Profiles Obtained with the GLOW Molecular Doppler Lidar during the 2002 International H2O Project

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huai-Lin; Li, Steven X.; Mathur, S.; Dobler, Jeremy; Hasselbrack, William

    2003-01-01

    The Goddard Lidar Observatory for Winds (GLOW) is a mobile direct detection Doppler lidar system which uses the double edge technique to measure the Doppler shift of the molecular backscattered laser signal at a wavelength of 355 nm. In the spring of 2002 GLOW was deployed to the western Oklahoma profiling site (36 deg 33.500 min N, 100 deg 36.371 min W) to participate in the International H2O Project (IHOP). During the IHOP campaign over 240 hours of wind profiles were obtained with the GLOW lidar in support of a variety of scientific investigations.

  11. Measurements of the Spatial Variability of Mean Wind Profiles Using Multiple Doppler Lidars over Distances less than 1 Km

    NASA Astrophysics Data System (ADS)

    Banta, R. M.; Choukulkar, A.; Brewer, A.; Lundquist, J. K.; Iungo, V.; Pichugina, Y. L.; Quelet, P. T.; Wolfe, D. E.; Oncley, S.; Sandberg, S.; Weickmann, A. M.; Delgado, R.; McCaffrey, K.

    2015-12-01

    Small differences in wind speed can translate to large differences in wind energy (WE) revenues, so WE decision making requires accurate measurements of wind profiles through the turbine rotor layer of the lower atmosphere. Advances in understanding and modeling of boundary-layer processes, also needed by WE, requires such measurements through an even deeper layer—at least the lowest few hundreds of meters. An important use for such accurate measured wind-profile data is in the initiation and verification of NWP models. This prospect raises several fundamental questions, such as, what does the modeled profile represent, how was the measured profile determined, and what if the profile had been measured from a different site within the grid cell? To address these questions, two experiments were conducted at the Boulder Atmospheric Observatory (BAO) in modestly complex terrain downwind of the mountains. The Lidar Uncertainty Measurement Experiment (LUMEX) in June-July 2014 featured 5 Doppler lidars (2 scanning), and XPIA in April-May 2015, 11 Doppler lidars, including 5 scanning systems. Two broad goals of these projects were to assess differences in scanning and other data acquisition procedures on the measurements, addressed in (Pichugina et al.) at this conference, and to evaluate the effects of varying spatial separations on differences in the measured winds, addressed in the present paper. Sonic anemometers every 50 m on the 300-m BAO tower were used as a reference for the wind calculations, as well as another profile location. Lidar scan data indicated terrain-related regions of stronger flow within the scan volume of more than 1 m/s that were at least semi-recurrent. This variability produced significant differences in mean rotor-level winds by 2 identical profiling lidars separated by 500 m. During XPIA, four of the scanning Doppler lidars performed intersecting elevation scans (vertical-slice or "RHI") to create 'virtual towers' at various separation

  12. A comparison of vertical velocity variance measurements from wind profiling radars and sonic anemometers

    NASA Astrophysics Data System (ADS)

    McCaffrey, Katherine; Bianco, Laura; Johnston, Paul; Wilczak, James M.

    2017-03-01

    Observations of turbulence in the planetary boundary layer are critical for developing and evaluating boundary layer parameterizations in mesoscale numerical weather prediction models. These observations, however, are expensive and rarely profile the entire boundary layer. Using optimized configurations for 449 and 915 MHz wind profiling radars during the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA), improvements have been made to the historical methods of measuring vertical velocity variance through the time series of vertical velocity, as well as the Doppler spectral width. Using six heights of sonic anemometers mounted on a 300 m tower, correlations of up to R2 = 0. 74 are seen in measurements of the large-scale variances from the radar time series and R2 = 0. 79 in measurements of small-scale variance from radar spectral widths. The total variance, measured as the sum of the small and large scales, agrees well with sonic anemometers, with R2 = 0. 79. Correlation is higher in daytime convective boundary layers than nighttime stable conditions when turbulence levels are smaller. With the good agreement with the in situ measurements, highly resolved profiles up to 2 km can be accurately observed from the 449 MHz radar and 1 km from the 915 MHz radar. This optimized configuration will provide unique observations for the verification and improvement to boundary layer parameterizations in mesoscale models.

  13. Flight in low-level wind shear

    NASA Technical Reports Server (NTRS)

    Frost, W.

    1983-01-01

    Results of studies of wind shear hazard to aircraft operation are summarized. Existing wind shear profiles currently used in computer and flight simulator studies are reviewed. The governing equations of motion for an aircraft are derived incorporating the variable wind effects. Quantitative discussions of the effects of wind shear on aircraft performance are presented. These are followed by a review of mathematical solutions to both the linear and nonlinear forms of the governing equations. Solutions with and without control laws are presented. The application of detailed analysis to develop warning and detection systems based on Doppler radar measuring wind speed along the flight path is given. A number of flight path deterioration parameters are defined and evaluated. Comparison of computer-predicted flight paths with those measured in a manned flight simulator is made. Some proposed airborne and ground-based wind shear hazard warning and detection systems are reviewed. The advantages and disadvantages of both types of systems are discussed.

  14. Retrieval of effective leaf area index (LAIe) and leaf area density (LAD) profile at individual tree level using high density multi-return airborne LiDAR

    NASA Astrophysics Data System (ADS)

    Lin, Yi; West, Geoff

    2016-08-01

    As an important canopy structure indicator, leaf area index (LAI) proved to be of considerable implications for forest ecosystem and ecological studies, and efficient techniques for accurate LAI acquisitions have long been highlighted. Airborne light detection and ranging (LiDAR), often termed as airborne laser scanning (ALS), once was extensively investigated for this task but showed limited performance due to its low sampling density. Now, ALS systems exhibit more competing capacities such as high density and multi-return sampling, and hence, people began to ask the questions like-"can ALS now work better on the task of LAI prediction?" As a re-examination, this study investigated the feasibility of LAI retrievals at the individual tree level based on high density and multi-return ALS, by directly considering the vertical distributions of laser points lying within each tree crown instead of by proposing feature variables such as quantiles involving laser point distribution modes at the plot level. The examination was operated in the case of four tree species (i.e. Picea abies, Pinus sylvestris, Populus tremula and Quercus robur) in a mixed forest, with their LAI-related reference data collected by using static terrestrial laser scanning (TLS). In light of the differences between ALS- and TLS-based LAI characterizations, the methods of voxelization of 3D scattered laser points, effective LAI (LAIe) that does not distinguish branches from canopies and unified cumulative LAI (ucLAI) that is often used to characterize the vertical profiles of crown leaf area densities (LADs) was used; then, the relationships between the ALS- and TLS-derived LAIes were determined, and so did ucLAIs. Tests indicated that the tree-level LAIes for the four tree species can be estimated based on the used airborne LiDAR (R2 = 0.07, 0.26, 0.43 and 0.21, respectively) and their ucLAIs can also be derived. Overall, this study has validated the usage of the contemporary high density multi

  15. The Tropical Cyclone Response to Structural and Temporal Variability in the Environmental Wind Profile

    NASA Astrophysics Data System (ADS)

    Onderlinde, Matthew J.

    The aim of this dissertation is to attain a better understanding of how tropical cyclones (TCs) respond to variations in the three-dimensional environmental wind field. Much attention has been given to the impact of environmental wind shear in the 850 -- 200 hPa layer on tropical cyclones. However, even with the same magnitude of shear, helicity in this layer can vary significantly. A new parameter is presented, the tropical cyclone-relative environmental helicity (TCREH). Positive TCREH leads to a tilted storm that enhances local storm scale helicity in regions of convection within the TC. Initially we proposed that this enhanced local scale helicity may allow for more robust and longer lasting convection which is more effective at generating latent heat and subsequent TC intensification. Further investigation shows that this is a secondary influence on TC intensity and that variations in the azimuthal and radial position of convection in the TC play a stronger role. Vertical tilt of the vortex is often attributed to wind shear. Different values of helicity modulate this tilt and certain tilt configurations are more favorable for development or intensification than others, suggesting that mean positive environmental helicity is more favorable for development and intensification than mean negative helicity. Idealized modeling simulations demonstrate the impact of environmental helicity on TC development and intensification. Results show that wind profiles with the same 850-200 hPa wind shear but different values of helicity lead to different rates of development. TCREH also is computed from Era-Interim reanalysis (1979 -- 2011) and GFS analyses (2004 -- 2011) to determine if a significant signal exists between TCREH and TC intensification. Mean annular helicity is averaged over various time periods and correlated with the TC intensity change during those periods. Results suggest a weak but statistically significant correlation between environmental helicity and TC

  16. Long-Term Mean Vertical Motion over the Tropical Pacific: Wind-Profiling Doppler Radar Measurements

    NASA Astrophysics Data System (ADS)

    Gage, K. S.; McAfee, J. R.; Carter, D. A.; Ecklund, W. L.; Riddle, A. C.; Reid, G. C.; Balsley, B. B.

    1991-12-01

    Measurement from Christmas Island (2^circN, 157^circW) of long-term mean vertical motions in the tropical atmosphere using very-high-frequency wind-profiling Doppler radar show that there is a transition from downward motion in the free troposphere to upward motion in the upper troposphere and lower stratosphere. The observations in the free troposphere are consistent with a balance between adiabatic and diabatic heating and cooling rates in a clear atmosphere. Comparison of the results at Christmas Island during El Nino and non-El Nino conditions with earlier results obtained for stratiform rain conditions over Pohnpei, Federated States of Micronesia, show that cirrus clouds in the vicinity of the tropopause likely play an important role in determining the sense and magnitude of vertical motions in this region. These results have implications for the exchange of mass between the troposphere and stratosphere over the tropics.

  17. Radial Density Profile in the SSX Plasma Wind Tunnel using a Double Langmuir Probe

    NASA Astrophysics Data System (ADS)

    Weinhold, D. L.; Flanagan, K.; Gray, T.; Brown, M. R.

    2011-10-01

    We present preliminary results from a moveable double Langmuir probe in the present plasma wind tunnel configuration of SSX. The probe is designed to measure radial profiles of electron density (ne) and electron temperature (Te) across the midplane with a 1 cm resolution. Line-averaged densities from He-Ne interferometry show densities of 1 - 5 ×1015 cm-3 . In addition to mean values, we will also present electrostatic fluctuations and correlations with magnetic field measurements. The double Langmuir probe also measures local Te. Line-averaged measurements from VUV spectroscopy indicate Te ~ 10 eV . The Langmuir probe stalk diameter measures 6 . 5 mm and tip spacing is 1 . 1 mm . The SSX plasma wind tunnel has dimensions L ≅ 1 m and R = 0 . 08 m . Plasma flow speeds are v >= 50 km / s . The cylindrical copper boundary and probe surfaces are baked and cleaned in a He glow discharge to maintain excellent vacuum and surface conditions. Electrostatic measurements during merging will be presented if available. Work supported by US DOE and CMSO.

  18. Summary of Jimsphere wind profiles: Programs, data, comments, part 1. [for use in aeronautical vehicle design and engineering

    NASA Technical Reports Server (NTRS)

    Willett, J. A.

    1979-01-01

    Jimsphere wind profiles are documented for the following ranges and installations: Eastern Test Range, Cape Kennedy, Florida; Western Test Range; Point Mugu, California; White Sands Missile Range, New Mexico; Wallops Island, Virginia; Green River, Utah; and Vandenberg Air Force Base, California. Profile information for 1964-1977 includes data summaries, computer formats, frequency distributions, composite listings, etc., for use in establishing and interpreting natural environment criteria for aeronautical vehicle design and engineering operations.

  19. Determination of Planetary Boundary Layer Height from Ground Based Wind Profiler and Lidar Measurements using the Covariance Wavelet Transform (CWT)

    NASA Astrophysics Data System (ADS)

    Compton, Jaime Cole

    This thesis documents the application of the Covariance Wavelet Transform (CWT) to lidar and, for the first time to our knowledge, wind profiler data to examine the possibility of accurate and continuous planetary boundary layer height (PBLH) measurements on short temporal resolution (one and fifteen minute averages respectively). Comparisons between PBLHs derived from the Elastic Lidar Facility (ELF) through application of the CWT and daytime radiosonde launches from Beltsville and RFK Stadium as part of the September 2009 NOAA/ARL and NCEP field study show an R2 = 0.84 correlation. PBLHs from ELF aided in diagnosing issues with the automatic PBLH calculation from Aircraft Communications Addressing and Reporting System (ACARS) profiles in the Real-Time Mesoscale Analysis used by plume dispersion modelers. Determining the mixing in the PBL was one goal of a study of the spatial and diurnal variations of the PBL height over Maryland for July 2011, during NASA's Earth Venture mission DISCOVER-AQ. A semi-automated PBLH detection algorithm utilizing the CWT for wind profiler data was developed. This algorithm was tested on data from the 915 MHz wind profiler at Beltsville, Maryland, and compared against PBLHs derived from ground based radiosondes measured at Beltsville. Comparisons were also done between PBLHs derived from ground based lidars at UMBC and Beltsville. Results from the comparison show an R 2 = 0.89, 0.92, and 0.94 correlation between the radiosonde PBLHs and the lidars and wind profiler PBLHs, respectively. Accurate determination of the PBLH by applying the CWT to lidar and wind profilers will allow for improved air quality forecasting and understanding of regional pollution dynamics.

  20. Application of 50 MHz doppler radar wind profiler to launch operations at Kennedy Space Center and Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Schumann, Robin S.; Taylor, Gregory E.; Smith, Steve A.; Wilfong, Timothy L.

    1994-01-01

    This paper presents a case study where a significant wind shift, not detected by jimspheres, was detected by the 50 MHz DRWP (Doppler Radar Wind Profiler) and evaluated to be acceptable prior to the launch of a Shuttle. This case study illustrates the importance of frequent upper air wind measurements for detecting significant rapidly changing features as well as for providing confidence that the features really exist and are not due to instrumentation error. Had the release of the jimsphere been timed such that it would have detected the entire wind shift, there would not have been sufficient time to release another jimsphere to confirm the existence of the feature prior to the scheduled launch. We found that using a temporal median filter on the one minute spectral estimates coupled with a constraining window about a first guess velocity effectively removes nearly all spurious signals from the velocity profile generated by NASA's 50 MHz DRWP while boosting the temporal resolution to as high as one profile every 3 minutes. The higher temporal resolution of the 50 MHz DRWP using the signal processing algorithm described in this paper ensures the detection of rapidly changing features as well as provides the confidence that the features are genuine. Further benefit is gained when the profiles generated by the DRWP are examined in relation to the profiles measured by jimspheres and/or rawinsondes. The redundancy offered by using two independent measurements can dispel or confirm any suspicion regarding instrumentation error or malfunction and wind profiles can be examined in light of their respective instruments' strengths and weaknesses.

  1. The Selection of Q-Switch for a 350mJ Air-borne 2-micron Wind Lidar

    NASA Technical Reports Server (NTRS)

    Petros, Mulugeta; Yu, Jirong; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Singh, Upendra N.

    2008-01-01

    In the process of designing a coherent, high energy 2micron, Doppler wind Lidar, various types of Q-Switch materials and configurations have been investigated for the oscillator. Designing an oscillator with a relatively low gain laser material, presents challenges related to the management high internal circulating fluence due to high reflective output coupler. This problem is compounded by the loss of hold-off. In addition, the selection has to take into account the round trip optical loss in the resonator and the loss of hold-off. For this application, a Brewster cut 5mm aperture, fused silica AO Q-switch is selected. Once the Q-switch is selected various rf frequencies were evaluated. Since the Lidar has to perform in single longitudinal and transverse mode with transform limited line width, in this paper, various seeding configurations are presented in the context of Q-Switch diffraction efficiency. The master oscillator power amplifier has demonstrated over 350mJ output when the amplifier is operated in double pass mode and higher than 250mJ when operated in single pass configuration. The repetition rate of the system is 10Hz and the pulse length 200ns.

  2. Observing System Simulation Experiments to Determine the Potential Impact of Space-Based Lidar Wind Profiles on Weather Prediction

    NASA Technical Reports Server (NTRS)

    Atlas, Robert

    2003-01-01

    Observing system simulation experiments (OSSE's) provide an effective means to evaluate the potential impact of a proposed observing system, as well as to determine tradeoffs in their design, and to evaluate data assimilation methodology. Great care must be taken to ensure realism of the OSSE's, and in the interpretation of OSSE results. All of the OSSE's that have been conducted to date have demonstrated tremendous potential for space-based wind profile data to improve atmospheric analyses, forecasts, and research. This has been true for differing data assimilation systems, analysis methodology, and model resolutions. OSSE's clearly show much greater potential for observations of the complete wind profile than for single-level wind data or observations of the boundary layer alone.

  3. Wind Advisory System

    NASA Technical Reports Server (NTRS)

    Curto, Paul A. (Inventor); Brown, Gerald E. (Inventor); Zysko, Jan A. (Inventor)

    2001-01-01

    The present invention is a two-part wind advisory system comprising a ground station at an airfield and an airborne unit placed inside an aircraft. The ground station monitors wind conditions (wind speed, wind direction, and wind gust) at the airfield and transmits the wind conditions and an airfield ID to the airborne unit. The airborne unit identifies the airfield by comparing the received airfield ID with airfield IDs stored in a database. The airborne unit also calculates the headwind and crosswind for each runway in both directions at the airfield using the received wind conditions and runway information stored in the database. The airborne unit then determines a recommended runway for takeoff and landing operations of the aircraft based on th runway having the greatest headwind value and displays the airfield ID, wind conditions, and recommended runway to the pilot. Another embodiment of the present invention includes a wireless internet based airborne unit in which the airborne unit can receive the wind conditions from the ground station over the internet.

  4. Application of wind-profiling radar data to the analysis of dust weather in the Taklimakan Desert.

    PubMed

    Wang, Minzhong; Wei, Wenshou; Ruan, Zheng; He, Qing; Ge, Runsheng

    2013-06-01

    The Urumqi Institute of Desert Meteorology of the China Meteorological Administration carried out an atmospheric scientific experiment to detect dust weather using a wind-profiling radar in the hinterland of the Taklimakan Desert in April 2010. Based on the wind-profiling data obtained from this experiment, this paper seeks to (a) analyze the characteristics of the horizontal wind field and vertical velocity of a breaking dust weather in a desert hinterland; (b) calculate and give the radar echo intensity and vertical distribution of a dust storm, blowing sand, and floating dust weather; and (c) discuss the atmosphere dust counts/concentration derived from the wind-profiling radar data. Studies show that: (a) A wind-profiling radar is an upper-air atmospheric remote sensing system that effectively detects and monitors dust. It captures the beginning and ending of a dust weather process as well as monitors the sand and dust being transported in the air in terms of height, thickness, and vertical intensity. (b) The echo intensity of a blowing sand and dust storm weather episode in Taklimakan is about -1~10 dBZ while that of floating dust -1~-15 dBZ, indicating that the dust echo intensity is significantly weaker than that of precipitation but stronger than that of clear air. (c) The vertical shear of horizontal wind and the maintenance of low-level east wind are usually dynamic factors causing a dust weather process in Taklimakan. The moment that the low-level horizontal wind field finds a shear over time, it often coincides with the onset of a sand blowing and dust storm weather process. (d) When a blowing sand or dust storm weather event occurs, the atmospheric vertical velocity tends to be of upward motion. This vertical upward movement of the atmosphere supported with a fast horizontal wind and a dry underlying surface carries dust particles from the ground up to the air to form blown sand or a dust storm.

  5. Measurements of CO2 Concentration and Wind Profiles with A Scanning 1.6μm DIAL

    NASA Astrophysics Data System (ADS)

    Abo, M.; Shibata, Y.; Nagasawa, C.; Nagai, T.; Sakai, T.; Tsukamoto, M.

    2012-12-01

    Horizontal carbon dioxide (CO2) distribution and wind profiles are important information for understanding of the regional sink and source of CO2. The differential absorption lidar (DIAL) and the Doppler lidar with the range resolution is expected to bring several advantages over passive measurements. We have developed a new scanning 1.6μm DIAL and incoherent Doppler lidar system to perform simultaniously measurements of CO2 concentration and wind speed profiles in the atmosphere. The 1.6μm DIAL and Doppler lidar system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate (500 Hz). The receiving optics include the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode, a fiber Bragg grating (FBG) filter to detct Doppler shift, and a 25 cm telescope[1][2]. Laser beam is transmitted coaxially and motorized scanning mirror system can scan the laser beam and field of view 0-360deg horizontally and 0-52deg vertically. We report the results of vertical CO2 scanning measurenents and vertical wind profiles. The scanning elevation angles were from 12deg to 24deg with angular step of 4deg and CO2 concentration profiles were obtained up to 1 km altitude with 200 m altitude resolution. We also obtained vertical wind vector profiles by measuring line-of-sight wind profiles at two azimuth angles with a fixed elevation angle 52deg. Vertical wind vector profiles were obtained up to 5 km altitude with 1 km altitude rasolution. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References [1] L. B. Vann, et al., "Narrowband fiber-optic phase-shifted Fabry-Perot Bragg grating filters for atmospheric water vapor lidar measurements", Appl. Opt., 44, pp. 7371-7377 (2005). [2] Y. Shibata, et al., "1.5μm incoherent Doppler lidar using a FBG filter", Proceedings

  6. Boundary layer evolution over the central Himalayas from radio wind profiler and model simulations

    NASA Astrophysics Data System (ADS)

    Singh, Narendra; Solanki, Raman; Ojha, Narendra; Janssen, Ruud H. H.; Pozzer, Andrea; Dhaka, Surendra K.

    2016-08-01

    We investigate the time evolution of the Local Boundary Layer (LBL) for the first time over a mountain ridge at Nainital (79.5° E, 29.4° N, 1958 m a.m.s.l.) in the central Himalayan region, using a radar wind profiler (RWP) during November 2011 to March 2012, as a part of the Ganges Valley Aerosol Experiment (GVAX). We restrict our analysis to clear-sunny days, resulting in a total of 78 days of observations. The standard criterion of the peak in the signal-to-noise ratio (S / N) profile was found to be inadequate in the characterization of mixed layer (ML) top at this site. Therefore, we implemented a criterion of S / N > 6 dB for the characterization of the ML and the resulting estimations are shown to be in agreement with radiosonde measurements over this site. The daytime average (05:00-10:00 UTC) observed boundary layer height ranges from 440 ± 197 m in November (late autumn) to 766 ± 317 m above ground level (a.g.l.) in March (early spring). The observations revealed a pronounced impact of mountain topography on the LBL dynamics during March, when strong winds (> 5.6 m s-1) lead to LBL heights of 650 m during nighttime. The measurements are further utilized to evaluate simulations from the Weather Research and Forecasting (WRF) model. WRF simulations captured the day-to-day variations up to an extent (r2 = 0.5), as well as the mean diurnal variations (within 1σ variability). The mean biases in the daytime average LBL height vary from -7 % (January) to +30 % (February) between model and observations, except during March (+76 %). Sensitivity simulations using a mixed layer model (MXL/MESSy) indicated that the springtime overestimation of LBL would lead to a minor uncertainty in simulated surface ozone concentrations. However, it would lead to a significant overestimation of the dilution of black carbon aerosols at this site. Our work fills a gap in observations of local boundary layer over this complex terrain in the Himalayas, and highlights the need for

  7. Study of nonstationarity of the atmosphere of κ Cas. I. Variability of profiles of photospheric and He I wind lines

    NASA Astrophysics Data System (ADS)

    Rzaev, A. Kh.

    2017-01-01

    Temporal variations of radial velocities and line profiles in the spectrum of the supergiant κ Cas were investigated. Variability of radial velocities and profiles of photospheric lines Si III, OII, He I, H10-Hδ and wind lines He I λ 5875, 6678 Å ismainly caused by non-radial pulsations. For photospheric lines quasisinusoidal variabilities of the radial velocity were found. Temporal variability of radial velocity of the wind lines He I λ 5875, 6678 A˚ differ from each other and from the photospheric lines. Gamma velocities and amplitudes of radial velocity variability were determined. The amplitude of variability and the velocity of expansion increase from lower to upper layers of the atmosphere. Emission components are superimposed on the line profiles at positions about -135 ± 10.0, -20 ± 20 and 135 ± 10.0 kms-1 respectively. They are more obvious in the wind line profiles, although, there are signs of emissions also in the photospheric lines. Such a character of variability of all the lines in the κ Cas spectrum confirms its Be nature.

  8. Installation and Initial Operation of DOE's 449-MHz Wind Profiling Radars on the U.S. West Coast

    SciTech Connect

    Flaherty, Julia E.; Shaw, William J.; Morris, Victor R.; Wilczak, J. M.; White, A. B.; Ayers, Tom; Jordan, Jim; King, Clark W.

    2015-10-30

    The U.S. Department of Energy (DOE), in collaboration with the National Oceanic and Atmospheric Administration (NOAA), has recently completed the installation of three new wind profiling radars on the Washington and Oregon coasts. These systems operate at a frequency of 449 MHz and provide mean wind profiles to a height of roughly 8 km, with the maximum measurement height depending on time-varying atmospheric conditions. This is roughly half the depth of the troposphere at these latitudes. Each system is also equipped with a radio acoustic sounding system (RASS), which provides a measure of the temperature profile to heights of approximately 2 km. Other equipment deployed alongside the radar includes a surface meteorological station and GPS for column water vapor. This project began in fiscal year 2014, starting with equipment procurements and site selection. In addition, environmental reviews, equipment assembly and testing, site access agreements, and infrastructure preparations have been performed. Finally, with equipment deployment with data collection and dissemination, the primary tasks of this project have been completed. The three new wind profiling radars have been deployed at airports near Coos Bay, OR, and Astoria, OR, and at an industrial park near Forks, WA. Data are available through the NOAA Earth Systems Research Laboratory Data Display website, and will soon be made available through the DOE Atmosphere to Electrons data archive and portal as well.

  9. Evaluation of wind and temperature profiles from ECMWF analysis on two hemispheres using volcanic infrasound

    NASA Astrophysics Data System (ADS)

    Assink, J. D.; Pichon, A. Le; Blanc, E.; Kallel, M.; Khemiri, L.

    2014-07-01

    In this paper, we evaluate vertical wind and temperature profiles that are produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric analysis. The evaluation is carried out on both hemispheres: we make use of stratospheric infrasound arrivals from Mount Etna (37°N) and Mount Yasur (22°S). The near-continuous, high activity of both volcanoes permits the study of stratospheric propagation along well-defined paths with a time resolution ranging from hours to multiple years. Infrasound observables are compared to theoretical estimates obtained from acoustic propagation modeling using the ECMWF analysis. While a first-order agreement is found for both hemispheres, we report on significant discrepancies around some of the equinox periods and other intervals during which the atmosphere is in a state of transition and dynamical oscillations of the atmosphere dominate over the general circulation. We present an inversion study in which we make use of measured trace velocity estimates to estimate first-order effective sound speed model updates in a Bayesian framework. Deviations from the a priori models around the stratopause up to 10% (≈ 30 m s-1) are estimated. Such updates are in line with the results from comparisons between ECMWF analysis and observations from lidar and microwave Doppler spectroradiometer facilities that were colocated during the course of the 2012-2013 Atmospheric dynamics Research and InfraStructure in Europe (ARISE) measurement campaign.

  10. A Simple Method for Collecting Airborne Pollen

    ERIC Educational Resources Information Center

    Kevan, Peter G.; DiGiovanni, Franco; Ho, Rong H.; Taki, Hisatomo; Ferguson, Kristyn A.; Pawlowski, Agata K.

    2006-01-01

    Pollination is a broad area of study within biology. For many plants, pollen carried by wind is required for successful seed set. Airborne pollen also affects human health. To foster studies of airborne pollen, we introduce a simple device--the "megastigma"--for collecting pollen from the air. This device is flexible, yielding easily obtained data…

  11. Meeting Review: Airborne Aerosol Inlet Workshop

    NASA Technical Reports Server (NTRS)

    Baumgardner, Darrel; Huebert, Barry; Wilson, Chuck

    1991-01-01

    Proceedings from the Airborne Aerosol Inlet Workshop are presented. The two central topics of discussion were the role of aerosols in atmospheric processes and the difficulties in characterizing aerosols. The following topics were discussed during the working sessions: airborne observations to date; identification of inlet design issues; inlet modeling needs and directions; objectives for aircraft experiments; and future laboratory and wind tunnel studies.

  12. Determining the power-law wind-profile exponent under near-neutral stability conditions at sea

    NASA Technical Reports Server (NTRS)

    Hsu, S. A.; Meindl, Eric A.; Gilhousen, David B.

    1994-01-01

    On the basis of 30 samples from near-simultaneous overwater measurements by pairs of anemometers located at different heights in the Gulf of Mexico and off the Chesapeake Bay, Virginia, the mean and standard deviation for the exponent of the power-law wind profile over the ocean under near-neutral atmospheric stability conditions were determined to be 0.11 +/- 0.03. Because this mean value is obtained from both deep and shallow water environments, it is recommended for use at sea to adjust the wind speed measurements at different heights to the standard height of 10 m above the mean sea surface. An example to apply this P value to estimate the momentum flux or wind stress is provided.

  13. Results of the Updated NASA Kennedy Space Center 50-MHz Doppler Radar Wind Profiler Operational Acceptance Test

    NASA Technical Reports Server (NTRS)

    Barbre', Robert E., Jr.; Deker, Ryan K.; Leahy, Frank B.; Huddleston, Lisa

    2016-01-01

    We present here the methodology and results of the Operational Acceptance Test (OAT) performed on the new Kennedy Space Center (KSC) 50-MHz Doppler Radar Wind Profiler (DRWP). On day-of-launch (DOL), space launch vehicle operators have used data from the DRWP to invalidate winds in prelaunch loads and trajectory assessments due to the DRWP's capability to quickly identify changes in the wind profile within a rapidly-changing wind environment. The previous DRWP has been replaced with a completely new system, which needs to undergo certification testing before being accepted for use in range operations. The new DRWP replaces the previous three-beam system made of coaxial cables and a copper wire ground plane with a four-beam system that uses Yagi antennae with enhanced beam steering capability. In addition, the new system contains updated user interface software while maintaining the same general capability as the previous system. The new DRWP continues to use the Median Filter First Guess (MFFG) algorithm to generate a wind profile from Doppler spectra at each range gate. DeTect (2015) contains further details on the upgrade. The OAT is a short-term test designed so that end users can utilize the new DRWP in a similar manner to the previous DRWP during mission operations at the Eastern Range in the midst of a long-term certification process. This paper describes the Marshall Space Flight Center Natural Environments Branch's (MSFC NE's) analyses to verify the quality and accuracy of the DRWP's meteorological data output as compared to the previous DRWP. Ultimately, each launch vehicle program has the responsibility to certify the system for their own use.

  14. The Profile Envision and Splice Tool (PRESTO): Developing an Atmospheric Wind Analysis Tool for Space Launch Vehicles Using Python

    NASA Technical Reports Server (NTRS)

    Orcutt, John M.; Barbre, Robert E., Jr.; Brenton, James C.; Decker, Ryan K.

    2017-01-01

    Tropospheric winds are an important driver of the design and operation of space launch vehicles. Multiple types of weather balloons and Doppler Radar Wind Profiler (DRWP) systems exist at NASA's Kennedy Space Center (KSC), co-located on the United States Air Force's (USAF) Eastern Range (ER) at the Cape Canaveral Air Force Station (CCAFS), that are capable of measuring atmospheric winds. Meteorological data gathered by these instruments are being used in the design of NASA's Space Launch System (SLS) and other space launch vehicles, and will be used during the day-of-launch (DOL) of SLS to aid in loads and trajectory analyses. For the purpose of SLS day-of-launch needs, the balloons have the altitude coverage needed, but take over an hour to reach the maximum altitude and can drift far from the vehicle's path. The DRWPs have the spatial and temporal resolutions needed, but do not provide complete altitude coverage. Therefore, the Natural Environments Branch (EV44) at Marshall Space Flight Center (MSFC) developed the Profile Envision and Splice Tool (PRESTO) to combine balloon profiles and profiles from multiple DRWPs, filter the spliced profile to a common wavelength, and allow the operator to generate output files as well as to visualize the inputs and the spliced profile for SLS DOL operations. PRESTO was developed in Python taking advantage of NumPy and SciPy for the splicing procedure, matplotlib for the visualization, and Tkinter for the execution of the graphical user interface (GUI). This paper describes in detail the Python coding implementation for the splicing, filtering, and visualization methodology used in PRESTO.

  15. Analysis on atmospheric pressure, temperature, and wind speed profiles during total solar eclipse 9 March 2016 using time series clustering

    NASA Astrophysics Data System (ADS)

    Septem Riza, Lala; Wihardi, Yaya; Nurdin, Enjang Ali; Dwi Ardi, Nanang; Puji Asmoro, Cahyo; Wijaya, Agus Fany Chandra; Aria Utama, Judhistira; Bayu Dani Nandiyanto, Asep

    2016-11-01

    Air temperature, pressure, and wind speed measurements on the surface taken during the Total Solar Eclipse (TSE) of March 9, 2016, are made. They were taken in Terentang Beach, Bangka Island, Indonesia. In this paper, we propose to analyze them by using time series clustering. The following steps are conducted: data collecting, splitting, smoothing, distance calculation, and clustering. The final results show cluster memberships of the three parameters on 3 time frames: one day before, the TSE day, and one day after. After doing some simulations, it can be seen that the profiles of temperature and pressure on the TSE day are on the same cluster while the wind-speed profile on the TSE day is the same as on the one day after.

  16. Air/ground wind shear information integration: Flight test results

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1992-01-01

    An element of the NASA/FAA wind shear program is the integration of ground-based microburst information on the flight deck, to support airborne wind shear alerting and microburst avoidance. NASA conducted a wind shear flight test program in the summer of 1991 during which airborne processing of Terminal Doppler Weather Radar (TDWR) data was used to derive microburst alerts. High level microburst products were extracted from TDWR, transmitted to a NASA Boeing 737 in flight via data link, and processed to estimate the wind shear hazard level (F-factor) that would be experienced by the aircraft in the core of each microburst. The microburst location and F-factor were used to derive a situation display and alerts. The situation display was successfully used to maneuver the aircraft for microburst penetrations, during which in situ 'truth' measurements were made. A total of 19 penetrations were made of TDWR-reported microburst locations, resulting in 18 airborne microburst alerts from the TDWR data and two microburst alerts from the airborne in situ measurements. The primary factors affecting alerting performance were spatial offset of the flight path from the region of strongest shear, differences in TDWR measurement altitude and airplane penetration altitude, and variations in microburst outflow profiles. Predicted and measured F-factors agreed well in penetrations near microburst cores. Although improvements in airborne and ground processing of the TDWR measurement would be required to support an airborne executive-level alerting protocol, the feasibility of airborne utilization of TDWR data link data has been demonstrated.

  17. An evaluation of the accuracy of some radar wind profiling techniques

    NASA Technical Reports Server (NTRS)

    Koscielny, A. J.; Doviak, R. J.

    1983-01-01

    Major advances in Doppler radar measurement in optically clear air have made it feasible to monitor radial velocities in the troposphere and lower stratosphere. For most applications the three dimensional wind vector is monitored rather than the radial velocity. Measurement of the wind vector with a single radar can be made assuming a spatially linear, time invariant wind field. The components and derivatives of the wind are estimated by the parameters of a linear regression of the radial velocities on functions of their spatial locations. The accuracy of the wind measurement thus depends on the locations of the radial velocities. The suitability is evaluated of some of the common retrieval techniques for simultaneous measurement of both the vertical and horizontal wind components. The techniques considered for study are fixed beam, azimuthal scanning (VAD) and elevation scanning (VED).

  18. Proposed ground-based incoherent Doppler lidar with iodine filter discriminator for atmospheric wind profiling

    SciTech Connect

    Liu, Z.S.; Chen, W.B.; Hair, J.W.; She, C.Y.

    1996-12-31

    A new incoherent lidar for measuring atmospheric wind using iodine molecular filter is proposed. A unique feature of the proposed lidar lies in its capability for simultaneous measurement of aerosol mixing ratio, with which the radial wind can be determined uniquely from lidar return. A preliminary laboratory experiment using a dye laser at 589 nm and a rotating wheel has been performed demonstrating the feasibility of the proposed wind measurement.

  19. Comparison of glyoxal, BrO, and IO vertical profiles derived from both ground-based and airborne MAX-DOAS measurements

    NASA Astrophysics Data System (ADS)

    Coburn, Sean; Volkamer, Rainer; Baidar, Sunil; Dix, Barbara; Koenig, Theodore; Ortega, Ivan; Sinreich, Roman; van Roozendael, Michel; Hendrick, Francois; Kinnison, Doug

    2015-04-01

    The information content of ground-based MAX-DOAS retrievals is assessed by collocated aircraft measurements for a ship MAX-DOAS setup over the Eastern tropical Pacific Ocean (TORERO RF17), and a mountain-top MAX-DOAS setup at Mauna Loa Observatory, Hawaii (CONTRAST RF17). During both case studies the CU airborne MAX-DOAS (AMAX-DOAS) instrument aboard the NSF/NCAR GV aircraft measured profiles of glyoxal, BrO, and IO with 12-20 degrees of freedom and up to 500 m vertical resolution. The TORERO field campaign took place in 2012, while CONTRAST in 2014; both campaigns covered the months of January and February. Additional measurements aboard the aircraft helped to provide information/validation of the AMAX-DOAS derived profiles, such as in-situ water vapor from the Vertical-Cavity Surface-Emitting Laser hygrometer (VCSEL), in-situ hydrocarbon measurements from the Trace Organic Gas Analyzer (TOGA), and aerosol information constrained by the Ultra High Sensitivity Aerosol Spectrometer (UHSAS). The AMAX-DOAS profiles are compared with ground-based MAX-DOAS inversions. The latter explores the effect of using either the measured differential slant column density (dSCD) or SCD as input to the optimal estimation inversion, where SCD = dSCD + SCD_ref. SCD_ref is the residual column amount of the trace gas contained within the reference spectrum. For the AMAX-DOAS data, the values of SCD_ref were actively minimized, while SCD_ref is usually unknown for ground-based MAX-DOAS retrievals. In absence of independent measurements to constrain SCD_ref, the current state-of-the-art with ground-based MAX-DOAS applications is to use dSCDs as input to the inversion. Here we assess the effect of uncertain SCD_ref for ground-based MAX-DOAS profiles in form of a sensitivity study. Additionally for the ground-based data, different methods are compared for the determination of SCD_ref: 1) the collocated aircraft profiles described above present the opportunity to forward calculate the SCD

  20. Measurements from the Daytime Dynamo Sounding Rocket missions: Altitude Profiles of Neutral Temperature, Density, Winds, and Con Composition

    NASA Astrophysics Data System (ADS)

    Clemmons, J. H.; Bishop, R. L.; Pfaff, R. F., Jr.; Rowland, D. E.; Larsen, M. F.

    2015-12-01

    Results from the two Daytime Dynamo sounding rocket missions launched from Wallops Island, Virginia, in July 2011 and July 2013 are presented and discussed. Measurements returned by the rockets' multiple-sensor ionization gauge instrumentation are used to derive profiles vs. altitude of neutral temperature, density, and, using a new technique, winds. The techniques used are described in detail and the resulting profiles discussed in the context of the daytime atmospheric dynamo. The profiles are also compared to those of established models. Also presented are measurements returned by the high-speed ion mass spectrometer on the 2011 flight. The measurements show the dominance of NO+ ions up to apogee at 160 km, but also reveal a significant admixture of O2+ ions below an intense daytime sporadic-E layer observed at 100.5 km.

  1. Assimilation of wind profiler observations and its impact on three-dimensional transport of ozone over the Southeast Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Park, Soon-Young; Lee, Soon-Hwan; Lee, Hwa Woon

    2014-12-01

    In order to investigate the impact of data assimilation on the assessment of ozone concentration in inland regions in the eastern area of the Korean Peninsula, several numerical experiments have been carried out using the Weather Research and Forecasting (WRF) model to estimate atmospheric circulations and the Community Multiscale Air Quality (CMAQ) model to assess air quality. Observations of wind that are assimilated into the modeling system are obtained from a wind profiler located at Changwon (CW), which is an urbanized coastal region in the Korean Peninsula. The simulated wind and temperature that is related to a well-developed sea breeze circulation are more consistent with observations in the experiment with dada assimilation than that without the assimilation. The ozone concentrations at both the coastal area of CW and the inland region of DG are well reproduced in the simulation with application of profiler data assimilation. Results from experiments without data assimilation are less realistic than that from the experiment with data assimilation. However, the improvement in simulation of meteorological variables and ozone concentration due to data assimilation is greater in the inland area than in the coastal area, where the wind profiler is located. The ozone concentration in CW changes only over a limited area and below the altitude of 1 km with a maximum change of 25 ppb. In contrast, the simulated ozone concentration in DG has been improved from the ground to upper levels of the planetary boundary layer (PBL), despite the fact that the observations are collected and assimilated into the model at the coastal region. Based on the results of process analysis, we find that the horizontal and vertical transportation of ozone related to the sea-breeze is more important than the local contribution of chemical production in determining the ozone concentration over the inland area. Therefore, observations of wind profiles in the coastal area and assimilation

  2. An Abel transform for deriving line-of-sight wind profiles from LEO-LEO infrared laser occultation measurements

    NASA Astrophysics Data System (ADS)

    Syndergaard, S.; Kirchengast, G.

    2016-03-01

    We have developed a formula for the retrieval of the line-of-sight (l.o.s.) wind speed from future low Earth orbit (LEO) satellite-to-satellite infrared laser occultation measurements. The formula involves an Abelian integral transform akin to the Abel transform widely used for deriving refractive index from bending angle in Global Navigation Satellite System radio occultation measurements. Besides the Abelian integral transform, the formula is derived from a truncated series expansion of the volume absorption coefficient as a function of frequency and includes a simple absorption-line-asymmetry correction term. A first-order formulation (referred to as the standard formula) is complemented by higher-order terms that can be used for high-accuracy computations. Under the assumptions of spherical symmetry and perfect knowledge of spectroscopy, the residual l.o.s. wind error from using the standard formula rather than the high-accuracy formula is assessed to be small compared to that anticipated from measurement errors in a real experiment. Applying the new formula just in standard form to future infrared laser transmission profiles would therefore enable the retrieval of l.o.s. stratospheric wind profiles with an accuracy limited mainly by measurement errors, residual spectroscopic errors, and deviations from spherical symmetry.

  3. Simultaneous fine structure observation of wind and temperature profiles by the Arecibo 430-MHz radar and in situ measurements

    NASA Technical Reports Server (NTRS)

    Thomas, D.; Bertin, F.; Petitdidier, M.; Teitelbaum, H.; Woodman, R. F.

    1986-01-01

    A simultaneous campaign of balloon and radar measurements took place on March 14 to 16, 1984, above the Arecibo 430-MHz radar. This radar was operating with a vertical resolution of 150 m following two antenna beam directions: 15 deg. from the zenith, respectively, in the N-S and E-W directions. The main results concerning the comparison between the flight and simultaneous radar measurements obtained on March 15, 1984 are analyzed. The radar return power profile (S/N ratio in dB) exhibits maxima which are generally well correlated with step-like structures in the potential temperature profile. These structures are generally considered as the consequence of the mixing processes induced by the turbulence. A good correlation appears in the altitude range 12.5 to 19 km between wind shears induced by a wave structure observed in the meridional wind and the radar echo power maxima. This wave structure is characterized by a vertical wavelength of about 2.5 km, and a period in the range 30 to 40 hours. These characteristics are deduced from the twice daily rawinsonde data launched from the San Juan Airport by the National Weather Service. These results pointed out an example of the interaction between wave and turbulence in the upper troposphere and lower stratosphere. Turbulent layers are observed at locations where wind shears related to an internal inertia-gravity wave are maxima.

  4. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Kittaka, C.; Hostetler, C. A.; Hair, J. W.; Obland, M. D.; Rogers, R. R.; Cook, A. L.; Haper, D. B.

    2008-01-01

    Aerosol extinction profiles are derived from backscatter data by constraining the retrieval with column aerosol optical thickness (AOT), for example from coincident MODIS observations and without reliance on a priori assumptions about aerosol type or optical properties. The backscatter data were acquired with the NASA Langley High Spectral Resolution Lidar (HSRL). The HSRL also simultaneously measures extinction independently, thereby providing an ideal data set for evaluating the constrained retrieval of extinction from backscatter. We will show constrained extinction retrievals using various sources of column AOT, and examine comparisons with the HSRL extinction measurements and with a similar retrieval using data from the CALIOP lidar on the CALIPSO satellite.

  5. Airdata calibration of a high-performance aircraft for measuring atmospheric wind profiles

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.

    1990-01-01

    The research airdata system of an instrumented F-104 aircraft has been calibrated to measure winds aloft in support of the Space Shuttle wind measurement investigation. The F-104 aircraft was equipped with a research pitot-static noseboom with integral angle-of-attack and flank angle-of-attack vanes and a ring-laser-gyro inertial reference unit. The F-104 aircraft and instrumentation configuration, flight test maneuvers, data corrections, calibration techniques, and resulting calibrations and data repeatability are presented. Recommendations for future airdata systems on aircraft used to measure winds aloft are also given.

  6. Characterisation of the local topsoil contribution to airborne particulate matter in the area of Rome (Italy). Source profiles

    NASA Astrophysics Data System (ADS)

    Pietrodangelo, A.; Salzano, R.; Rantica, E.; Perrino, C.

    2013-04-01

    Elemental profiles of the local resuspended natural topsoil of Rome area have been studied. Relevant compositional differences were observed either among main geological domains and rock types of this area (volcanics, flysch, marlstone, travertine) or between the two considered dimensional fractions (50 μm and PM10 resuspended from the former). A significant enrichment in trace metals (especially Pb, Ni and Cr) has been observed in the PM10 resuspended fraction of either volcanics or sedimentary outcropping rocks; volcanics show larger trace metals enrichment than sedimentary. Profiles of this study have been compared with signatures of natural crustal dust of African origin (collected either in situ or at European receptor sites, including Rome and other sites in the Latium region) and with signatures of road dust, properly selected from literature. This comparison was performed for source apportionment goals, with the aim of improving discrimination among signatures of local and non-local natural crustal materials. Elemental ratios of major and trace elements of geochemical relevance were used for the comparative study. Mg/Ca and Ti/Ca ratios appear successful in separating, by dispersion diagram, the resuspended fraction of local Rome geological topsoil from road dust and from long-range transported dust from Africa.

  7. The Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Brendt. Emily; Zavodsky, Bradley; Jedlovec, Gary; Elmer, Nicholas

    2014-01-01

    Tropopause folds are identified by warm, dry, high-potential vorticity, ozone-rich air and are one explanation for damaging non-convective wind events. Could improved model representation of stratospheric air and associated tropopause folding improve non-convective wind forecasts and high wind warnings? The goal of this study is to assess the impact of assimilating Hyperspectral Infrared (IR) profiles on forecasting stratospheric air, tropopause folds, and associated non-convective winds: (1) AIRS: Atmospheric Infrared Sounder (2) IASI: Infrared Atmospheric Sounding Interferometer (3) CrIMSS: Cross-track Infrared and Microwave Sounding Suite

  8. On the relationship between hurricane cost and the integrated wind profile

    NASA Astrophysics Data System (ADS)

    Wang, S.; Toumi, R.

    2016-11-01

    It is challenging to identify metrics that best capture hurricane destructive potential and costs. Although it has been found that the sea surface temperature and vertical wind shear can both make considerable changes to the hurricane destructive potential metrics, it is still unknown which plays a more important role. Here we present a new method to reconstruct the historical wind structure of hurricanes that allows us, for the first time, to calculate the correlation of damage with integrated power dissipation and integrated kinetic energy of all hurricanes at landfall since 1988. We find that those metrics, which include the horizontal wind structure, rather than just maximum intensity, are much better correlated with the hurricane cost. The vertical wind shear over the main development region of hurricanes plays a more dominant role than the sea surface temperature in controlling these metrics and therefore also ultimately the cost of hurricanes.

  9. Estimating Mixing Heights Using Microwave Temperature Profiler

    NASA Technical Reports Server (NTRS)

    Nielson-Gammon, John; Powell, Christina; Mahoney, Michael; Angevine, Wayne

    2008-01-01

    A paper describes the Microwave Temperature Profiler (MTP) for making measurements of the planetary boundary layer thermal structure data necessary for air quality forecasting as the Mixing Layer (ML) height determines the volume in which daytime pollution is primarily concentrated. This is the first time that an airborne temperature profiler has been used to measure the mixing layer height. Normally, this is done using a radar wind profiler, which is both noisy and large. The MTP was deployed during the Texas 2000 Air Quality Study (TexAQS-2000). An objective technique was developed and tested for estimating the ML height from the MTP vertical temperature profiles. In order to calibrate the technique and evaluate the usefulness of this approach, estimates from a variety of measurements during the TexAQS-2000 were compared. Estimates of ML height were used from radiosondes, radar wind profilers, an aerosol backscatter lidar, and in-situ aircraft measurements in addition to those from the MTP.

  10. Performance simulation of a spaceborne infrared coherent lidar for measuring tropospheric wind profiles.

    NASA Astrophysics Data System (ADS)

    Baron, Philippe; Ishii, Shoken; Kyoka, Gamo; Mizutani, Kohei; Chikako, Takahashi; Itabe, Toshikazu; Iwasaki, Toshiki; Kubota, Takuji; Okamoto, Kozo; Oki, Riko; Satoh, Masaki; Satoh, Yohei

    2014-05-01

    An effort has begun in Japan to develop a spaceborne instrument for measuring tropospheric winds. This project is a collaboration between the Japan Aerospace Exploration Agency (JAXA), the Meteorological Research Institute (MRI, Japan) and the National Institute of Information and Communications Technology (NICT, Japan) [1,2]. The aim is to measure the horizontal wind field in the troposphere on a global scale with a precision better than 3 ms-1, and a vertical and horizontal (along the satellite ground track) resolution better than 1 km and 100 km, respectively. In order to support the definition and the development of the instrument, an end-to-end simulator has been implemented including modules for i) simulating the time-dependent laser shot return power, ii) for averaging the spectral power of several returns and iii) for estimating the line-of-sight wind from the Doppler shift of the averaged spectra. The simulations take into account the satellite position and motion along the orbit track, the observational and instrumental characteristics, a 3-D representation of the relevant atmospheric parameters (i.e. wind field, cloud coverage and aerosols distribution) and the Earth surface characteristics. The simulator and the method for estimating the line-of-sight wind will be presented. We will show the results obtained for a payload composed of two 2-μm coherent LIDARs looking in orthogonal directions, and for a satellite moving on a low orbit. The precision, accuracy and the vertical and horizontal resolution of the wind estimates will be discussed. References: [1] S. Ishii, T. Iwasaki, M. Sato, R. Oki, K. Okamoto, T. Ishibashi, P. Baron, and T. Nishizawa, Future Doppler lidar wind measurement from space in Japan, Proc. of SPIE Vol. 8529, 2012 [2] S. Ishii, H. Iwai, K. Mizutani, P. Baron, T. Itabe, H. Fukuoka, T. Ishikawa, A. Sato and A. Asai, 2-μm coherent LIDAR for CO2 and wind measurements, Proc. of SPIE Vol. 8872, 2013

  11. TRMM Precipitation Radar Reflectivity Profiles Compared to High-Resolution Airborne and Ground-Based Radar Measurements

    NASA Technical Reports Server (NTRS)

    Heymsfield, G. M.; Geerts, B.; Tian, L.

    1999-01-01

    In this paper, TRMM (Tropical Rainfall Measuring Mission Satellite) Precipitation Radar (PR) products are evaluated by means of simultaneous comparisons with data from the high-altitude ER-2 Doppler Radar (EDOP), as well as ground-based radars. The comparison is aimed primarily at the vertical reflectivity structure, which is of key importance in TRMM rain type classification and latent heating estimation. The radars used in this study have considerably different viewing geometries and resolutions, demanding non-trivial mapping procedures in common earth-relative coordinates. Mapped vertical cross sections and mean profiles of reflectivity from the PR, EDOP, and ground-based radars are compared for six cases. These cases cover a stratiform frontal rainband, convective cells of various sizes and stages, and a hurricane. For precipitating systems that are large relative to the PR footprint size, PR reflectivity profiles compare very well to high-resolution measurements thresholded to the PR minimum reflectivity, and derived variables such as bright band height and rain types are accurate, even at high PR incidence angles. It was found that for, the PR reflectivity of convective cells small relative to the PR footprint is weaker than in reality. Some of these differences can be explained by non-uniform beam filling. For other cases where strong reflectivity gradients occur within a PR footprint, the reflectivity distribution is spread out due to filtering by the PR antenna illumination pattern. In these cases, rain type classification may err and be biased towards the stratiform type, and the average reflectivity tends to be underestimated. The limited sensitivity of the PR implies that the upper regions of precipitation systems remain undetected and that the PR storm top height estimate is unreliable, usually underestimating the actual storm top height. This applies to all cases but the discrepancy is larger for smaller cells where limited sensitivity is compounded

  12. Aerobiology of Artemisia airborne pollen in Murcia (SE Spain) and its relationship with weather variables: annual and intradiurnal variations for three different species. Wind vectors as a tool in determining pollen origin

    NASA Astrophysics Data System (ADS)

    Giner, M. Munuera; Carrión García, José S.; García Sellés, Javier

    Detailed results from a 2-year survey of airborne pollen concentrations of Artemisia in Murcia are presented. Three consecutive pollen seasons of Artemisia occurring each year, related to three different species (A.campestris, A.herba-alba and A.barrelieri), were observed. A winter blooming of Artemisia could explain the incidence of subsequent pollinosis in the Murcia area. With regard to meteorological parameters, mathematical analyses showed relationships between daily pollen concentrations of Artemisia in summer-autumn and precipitations that occurred 6-8 weeks before. The cumulative percentage of insolation from 1 March seemed to be related to blooming onsets. Once pollination has begun, meteorological factors do not seem to influence pollen concentrations significantly. Intradiurnal patterns of pollen concentrations were similar for late summer and winter species (A. campestris and A.barrelieri). During autumn blooming (A.herba-alba), the intradiurnal pattern was particularly erratic. Theoretical values of wind run were obtained for each pollen season by the graphical sum of hourly wind vectors. When theoretical wind run was mapped onto the vegetation pattern, supposed pollen source locations were obtained for each hour. By comparing supposed hourly pollen origins with the intradiurnal patterns of pollen concentrations, it can be seen that this simple model explains variations in mean pollen concentrations throughout the day.

  13. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  14. Wind-tunnel tests on combinations of a wing with fixed auxiliary airfoils having various chords and profiles

    NASA Technical Reports Server (NTRS)

    Weick, Fred E; Sanders, Robert

    1934-01-01

    This report presents the results of wind tunnel tests on various auxiliary airfoils having three different airfoil sections and several different chord lengths in combination with a Clark y model wing in a sufficient number of relative positions to determine the optimum with regard to certain criterions of aerodynamic performance. The airfoil sections included a symmetrical profile, one of medium camber, and a highly cambered one. The chord sizes of the auxiliary airfoils ranged from 7.5 to 25 percent of the chord of the main wing, and the span was equal to that of the main wing.

  15. Proposal to Simultaneously Profile Wind and CO2 on Earth and Mars With 2-micron Pulsed Lidar Technologies

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Koch, Grady J.; Kavaya, Michael J.; Amzajerdian, Farzin; Ismail, Syed; Emmitt, David

    2005-01-01

    2-micron lidar technology has been in use and under continued improvement for many years toward wind measurements. But the 2-micron wavelength region is also rich in absorption lines of CO2 (and H2O to a lesser extent) that can be exploited with the differential absorption lidar (DIAL) technique to make species concentration measurements. A coherent detection receiver offers the possibility of making combined wind and DIAL measurements with wind derived from frequency shift of the backscatter spectrum and species concentration derived from power of the backscatter spectrum. A combined wind and CO2 measurement capability is of interest for applications on both Earth and Mars. CO2 measurements in the Earth atmosphere are of importance to studies of the global carbon cycle. Data on vertically-resolved CO2 profiles over large geographical observations areas are of particular interest that could potentially be made by deploying a lidar on an aircraft or satellite. By combining CO2 concentration with wind measurements an even more useful data product could be obtained in the calculation of CO2 flux. A challenge to lidar in this application is that CO2 concentration measurements must be made with a high level of precision and accuracy to better than 1%. The Martian atmosphere also presents wind and CO2 measurement problems that could be met with a combined DIAL/Doppler lidar. CO2 concentration in this scenario would be used to calculate atmospheric density since the Martian atmosphere is composed of 95% CO2. The lack of measurements of Mars atmospheric density in the 30-60 km range, dust storm formation and movements, and horizontal wind patterns in the 0-20 km range pose significant risks to aerocapture, and entry, descent, and landing of future robotic and human Mars missions. Systematic measurement of the Mars atmospheric density and winds will be required over several Mars years, supplemented with day-of-entry operational measurements. To date, there have been 5

  16. Parameterization of gaseous constituencies concentration profiles in the planetary boundary layer as required in support of airborne and satellite borne sensors

    NASA Technical Reports Server (NTRS)

    Kindle, E. C.; Condon, E.; Casas, J.

    1976-01-01

    The research to develop the capabilities for sensing air pollution constituencies using satellite or airborne remote sensors is reported. Sensor evaluation and calibration are analyzed including data reduction. The proposed follow-on research is presented.

  17. Self-sustainability of optical fibers in airborne communications

    NASA Astrophysics Data System (ADS)

    Dwivedi, Anurag; Finnegan, Eric J.

    2005-05-01

    A large number of communications technologies co-exist today in both civilian and military space with their relative strengths and weaknesses. The information carrying capacity of optical fiber communication, however, surpasses any other communications technology in use today. Additionally, optical fiber is immune to environmental effects and detection, and can be designed to be resistant to exploitation and jamming. However, fiber-optic communication applications are usually limited to static, pre-deployed cable systems. Enabling the fiber applications in dynamically deployed and ad-hoc conditions will open up a large number of communication possibilities in terrestrial, aerial, and oceanic environments. Of particular relevance are bandwidth intensive data, video and voice applications such as airborne imagery, multispectral and hyperspectral imaging, surveillance and communications disaster recovery through surveillance platforms like Airships (also called balloons, aerostats or blimps) and Unmanned Aerial Vehicles (UAVs). Two major considerations in the implementation of airborne fiber communications are (a) mechanical sustainability of optical fibers, and (b) variation in optical transmission characteristics of fiber in dynamic deployment condition. This paper focuses on the mechanical aspects of airborne optical fiber and examines the ability of un-cabled optical fiber to sustain its own weight and wind drag in airborne communications applications. Since optical fiber is made of silica glass, the material fracture characteristics, sub-critical crack growth, strength distribution and proof stress are the key parameters that determine the self-sustainability of optical fiber. Results are presented in terms of maximum self-sustainable altitudes for three types of optical fibers, namely silica-clad, Titania-doped Silica-clad, and carbon-coated hermetic fibers, for short and long service periods and a range of wind profiles and fiber dimensions.

  18. Development of Prototype Micro-Lidar using Narrow Linewidth Semiconductor Lasers for Mars Boundary Layer Wind and Dust Opacity Profiles

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.; Cardell, Greg; Chiao, Meng; Esproles, Carlos; Forouhar, Siamak; Hemmati, Hamid; Tratt, David

    1999-01-01

    We have developed a compact Doppler lidar concept which utilizes recent developments in semiconductor diode laser technology in order to be considered suitable for wind and dust opacity profiling in the Mars lower atmosphere from a surface location. The current understanding of the Mars global climate and meteorology is very limited, with only sparse, near-surface data available from the Viking and Mars Pathfinder landers, supplemented by long-range remote sensing of the Martian atmosphere. The in situ measurements from a lander-based Doppler lidar would provide a unique dataset particularly for the boundary layer. The coupling of the radiative properties of the lower atmosphere with the dynamics involves the radiative absorption and scattering effects of the wind-driven dust. Variability in solar irradiance, on diurnal and seasonal time scales, drives vertical mixing and PBL (planetary boundary layer) thickness. The lidar data will also contribute to an understanding of the impact of wind-driven dust on lander and rover operations and lifetime through an improvement in our understanding of Mars climatology. In this paper we discuss the Mars lidar concept, and the development of a laboratory prototype for performance studies, using, local boundary layer and topographic target measurements.

  19. A novel multi-beam correlation lidar for wind profiling and plume tracking for air quality applications

    NASA Astrophysics Data System (ADS)

    Prasad, N. S.

    2014-12-01

    Various types of in-situ and remote sensing techniques are being utilized for measuring air quality parameters. In this paper, the development and testing of a novel three beam multifunctional direct detection lidar for air quality applications will be discussed. Operating at 1030 nm wavelength, this lidar is a nanosecond class direct detection system with three transceivers and is capable of tracking the motion of aerosol structures using elastic backscatter. Designed with scalable and modular elements and advanced algorithms and graphical user display, this lidar is tripod mounted and measures three component (3D) winds by cross correlation of aerosol backscatter from three near-parallel beams. Besides extracting multi-component wind data, the system is designed provide various atmospheric elements including turbulence. Performance of this lidar in regard to crosswind profiling has been validated with ultrasonic anemometers under low and high wind conditions. From the field data, it shown that this lidar is capable of providing relatively high spatial resolution (<1.2 m) and line-of-sight error less than 0.1 m/s over a range of greater than 2 km. With a maximum operational range of over 15 km, this lidar was recently used to study effluents from a smokestack. The results of our plume tracking study will be presented and follow-on applications for studying air emissions due to hydraulic fracturing or fracking, will be discussed.

  20. Airborne Particles.

    ERIC Educational Resources Information Center

    Ojala, Carl F.; Ojala, Eric J.

    1987-01-01

    Describes an activity in which students collect airborne particles using a common vacuum cleaner. Suggests ways for the students to convert their data into information related to air pollution and human health. Urges consideration of weather patterns when analyzing the results of the investigation. (TW)

  1. Airborne Imagery

    NASA Technical Reports Server (NTRS)

    1983-01-01

    ATM (Airborne Thematic Mapper) was developed for NSTL (National Space Technology Companies) by Daedalus Company. It offers expanded capabilities for timely, accurate and cost effective identification of areas with prospecting potential. A related system is TIMS, Thermal Infrared Multispectral Scanner. Originating from Landsat 4, it is also used for agricultural studies, etc.

  2. Estimation of lava flow field volumes and volumetric effusion rates from airborne radar profiling and other data: Monitoring of the Nornahraun (Holuhraun) 2014/15 eruption in Iceland

    NASA Astrophysics Data System (ADS)

    Dürig, Tobias; Gudmundsson, Magnús; Högnadóttir, Thordís; Jónsdóttir, Ingibjörg; Gudbjörnsson, Snaebjörn; Lárusson, Örnólfur; Höskuldsson, Ármann; Thordarson, Thorvaldur; Riishuus, Morten; Magnússon, Eyjólfur

    2015-04-01

    Monitoring of lava-producing eruptions involves systematic measurement of flow field volumes, which in turn can be used to obtain average magma discharge over the period of observation. However, given inaccessibility to the interior parts of active lava fields, remote sensing techniques must be applied. Several satellite platforms provide data that can be geo-referenced, allowing area estimation. However, unless sterographic or tandem satellite data are available, the determination of thicknesses is non-trivial. The ongoing eruption ('Nornaeldar')at Dyngjusandurin the Icelandic highlands offers an opportunity to monitor the temporal and spatial evolution of a typical Icelandic lava flow field. The mode of emplacementis complex and includesboth horizontal and vertical stacking, inflation of lobes and topographic inversions. Due to the large extent of the flow field (>83 km2 on 5 Jan 2015, and still growing) and its considerable local variation in thickness (30 m) and surface roughness, obtaining robust quantification of lava thicknesses is very challenging,despite the lava is being emplaced onto a low-relief sandur plain. Creative methods have been implemented to obtain as reliable observation as possible into the third dimension: Next to areal extent measurements from satellites and maps generated with airborne synthetic-aperture radar (SAR), lava thickness profiles are regularly obtained by low-level flights with a fixed-wing aircraft that is equipped with a ground clearance radar coupled witha submeter DGPS,a system originally designed for monitoring surface changes of glaciers above geothermally active areas.The resulting radar profile data are supplemented by analyses of aerial photos and complemented by results from an array of ground based thickness measurement methods. The initial results indicate that average effusion ratewas ~200 m3/s in the first weeks of the eruption (end August, early September) but declined to 50-100 m3/s in November to December period

  3. Calculations of the heights, periods, profile parameters, and energy spectra of wind waves

    NASA Technical Reports Server (NTRS)

    Korneva, L. A.

    1975-01-01

    Sea wave behavior calculations require the precalculation of wave elements as well as consideration of the spectral functions of ocean wave formation. The spectrum of the random wave process is largely determined by the distribution of energy in the actual wind waves observed on the surface of the sea as expressed in statistical and spectral characteristics of the sea swell.

  4. Airdata calibration of a high-performance aircraft for measuring atmospheric wind profiles

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.

    1990-01-01

    The research airdata system of an instrumented F-104 aircraft has been calibrated to measure winds aloft in support of the space shuttle wind measurement investigation at the National Aeronautics and Space Administration Ames Research Center Dryden Flight Research Facility. For this investigation, wind measurement accuracies comparable to those obtained from Jimsphere balloons were desired. This required an airdata calibration more accurate than needed for most aircraft research programs. The F-104 aircraft was equipped with a research pilot-static noseboom with integral angle-of-attack and flank angle-of-attack vanes and a ring-laser-gyro inertial reference unit. Tower fly-bys and radar acceleration-decelerations were used to calibrate Mach number and total temperature. Angle of attack and angle of sideslip were calibrated with a trajectory reconstruction technique using a multiple-state linear Kalman filter. The F-104 aircraft and instrumentation configuration, flight test maneuvers, data corrections, calibration techniques, and resulting calibrations and data repeatability are presented. Recommendations for future airdata systems on aircraft used to measure winds aloft are also given.

  5. Doppler sodar and radar wind-profiler observations of gravity-wave activity associated with a gravity current

    SciTech Connect

    Ralph, F.M.; Venkateswaran, S.V. ); Mazaudier, C. ); Crochet, M. )

    1993-02-01

    Observations from two Doppler sodars and a radar wind profiler have been used in conjunction with data from a rawinsonde station and a mesoscale surface observation network to conduct a case study of a gravity current entering into an environment containing a nocturnal inversion and an elevated neutral layer. On the basis of synoptic and mesoscale analyses, it is concluded that the gravity current might have originated either as a scale-contracted cold front or as a gust front resulting from thunderstorm outflows observed very near the leading edge of a cold front. Despite this ambiguity, the detailed vertical structure of the gravity current itself is well resolved from the data. Moreover, the vertical velocity measurements provided by the sodars and the radar wind profiler at high time resolution have given unique information about the height structure of gravity waves excited by the gravity current. Although only wave periods, and not phase speeds or wavelengths, are directly measured, it is possible to make reasonable inferences about wave excitation mechanisms and about the influence and control of ambient stratification on wave-field characteristics. Both Kelvin-Helmholtz waves generated in the regions of high wind shear found in association with the gravity current and lee-type waves forced by the gravity current acting as an obstacle to opposing prefrontal flow are identified. It is also found that the propagation speed of the gravity current and the relative depths of the prefrontal inversion and the postfrontal cold air were not favorable for the formation of either internal bores or solitary waves at the time of day at which the gravity current was being observed. 42 refs., 18 figs., 1 tab.

  6. Investigation of the Air-Wave-Sea Interaction Modes Using an Airborne Doppler Wind Lidar: Analyses of the HRDL Data Taken During DYNAMO

    DTIC Science & Technology

    2012-09-30

    taken aboard the USS Revelle to investigate vertical motions within physically thick (optically thin) cirrus layers. During our evaluation of the...categories where most of the day was: 1) Mainly clear (no rain); 2) Rain; 3) Mix ( clouds , sun, some convection); 4) wind speeds greater than 5 m/s at...10 meters and no clouds ; and 5) wind speeds greater than 5m/s at 10 meters when cloud streets are reported or seen in the cloud imagery. The

  7. Double-Edge Molecular Measurement of Lidar Wind Profiles at 355 nm

    NASA Technical Reports Server (NTRS)

    Flesia, Cristina; Korb, C. Laurence; Hirt, Christian; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We built a direct detection Doppler lidar based on the double-edge molecular technique and made the first molecular based wind measurements using the eyesafe 355 nm wavelength. Three etalon bandpasses are obtained with Step etalons on a single pair of etalon plates. Long-term frequency drift of the laser and the capacitively stabilized etalon is removed by locking the etalon to the laser frequency. We use a low angle design to avoid polarization effects. Wind measurements of 1 to 2 m/s accuracy are obtained to 10 km altitude with 5 mJ of laser energy, a 750s integration, and a 25 cm telescope. Good agreement is obtained between the lidar and rawinsonde measurements.

  8. The Athena-OAWL Doppler Wind Lidar Mission

    NASA Astrophysics Data System (ADS)

    Tucker, Sara C.; Weimer, Carl; Hardesty, R. Michael

    2016-06-01

    With the objective of providing tropospheric wind profile data over the mid-latitude oceans and tropics for data-starved weather forecast models, the Earth Venture Instrument (EV-I) Mission concept "Atmospheric Transport, Hurricanes, and Extratropical Numerical weAther prediction with the Optical Autocovariance Wind Lidar" (ATHENA-OAWL) was proposed in November 2013. The mission concept is described here along with a brief history of the OAWL system development and current development of an ATHENA-OAWL airborne demonstrator under NASA's Venture Technology development.

  9. Source apportionment of PAHs and n-alkanes in respirable particles in Tehran, Iran by wind sector and vertical profile.

    PubMed

    Moeinaddini, Mazaher; Esmaili Sari, Abbas; Riyahi bakhtiari, Alireza; Chan, Andrew Yiu-Chung; Taghavi, Seyed Mohammad; Hawker, Darryl; Connell, Des

    2014-06-01

    The vertical concentration profiles and source contributions of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in respirable particle samples (PM4) collected at 10, 100, 200 and 300-m altitude from the Milad Tower of Tehran, Iran during fall and winter were investigated. The average concentrations of total PAHs and total n-alkanes were 16.7 and 591 ng/m(3), respectively. The positive matrix factorization (PMF) model was applied to the chemical composition and wind data to apportion the contributing sources. The five PAH source factors identified were: 'diesel' (56.3% of total PAHs on average), 'gasoline' (15.5%), 'wood combustion, and incineration' (13%), 'industry' (9.2%), and 'road soil particle' (6.0%). The four n-alkane source factors identified were: 'petrogenic' (65% of total n-alkanes on average), 'mixture of petrogenic and biomass burning' (15%), 'mixture of biogenic and fossil fuel' (11.5%), and 'biogenic' (8.5%). Source contributions by wind sector were also estimated based on the wind sector factor loadings from PMF analysis. Directional dependence of sources was investigated using the conditional probability function (CPF) and directional relative strength (DRS) methods. The calm wind period was found to contribute to 4.4% of total PAHs and 5.0% of total n-alkanes on average. Highest average concentrations of PAHs and n-alkanes were found in the 10 and 100 m samples, reflecting the importance of contributions from local sources. Higher average concentrations in the 300 m samples compared to those in the 200 m samples may indicate contributions from long-range transport. The vertical profiles of source factors indicate the gasoline and road soil particle-associated PAHs, and the mixture from biogenic and fossil fuel source-associated n-alkanes were mostly from local emissions. The smaller average contribution of diesel-associated PAHs in the lower altitude samples also indicates that the restriction of diesel-fueled vehicle use in the central area

  10. Analysis of vector wind change with respect to time for Cape Kennedy, Florida: Wind aloft profile change vs. time, phase 1

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.

    1977-01-01

    Wind vector change with respect to time at Cape Kennedy, Florida, is examined according to the theory of multivariate normality. The joint distribution of the four variables represented by the components of the wind vector at an initial time and after a specified elapsed time is hypothesized to be quadravariate normal; the fourteen statistics of this distribution, calculated from fifteen years of twice daily Rawinsonde data are presented by monthly reference periods for each month from 0 to 27 km. The hypotheses that the wind component changes with respect to time is univariate normal, the joint distribution of wind component changes is bivariate normal, and the modulus of vector wind change is Rayleigh, has been tested by comparison with observed distributions. Statistics of the conditional bivariate normal distributions of vector wind at a future time given the vector wind at an initial time are derived. Wind changes over time periods from one to five hours, calculated from Jimsphere data, are presented.

  11. Airborne remote sensing of forest biomes

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.

    1987-01-01

    Airborne sensor data of forest biomes obtained using an SAR, a laser profiler, an IR MSS, and a TM simulator are presented and examined. The SAR was utilized to investigate forest canopy structures in Mississippi and Costa Rica; the IR MSS measured forest canopy temperatures in Oregon and Puerto Rico; the TM simulator was employed in a tropical forest in Puerto Rico; and the laser profiler studied forest canopy characteristics in Costa Rica. The advantages and disadvantages of airborne systems are discussed. It is noted that the airborne sensors provide measurements applicable to forest monitoring programs.

  12. Microlensing of circumstellar envelopes. III. Line profiles from stellar winds in homologous expansion

    NASA Astrophysics Data System (ADS)

    Hendry, M. A.; Ignace, R.; Bryce, H. M.

    2006-05-01

    This paper examines line profile evolution due to the linear expansion of circumstellar material obsverved during a microlensing event. This work extends our previous papers on emission line profile evolution from radial and azimuthal flow during point mass lens events and fold caustic crossings. Both "flavours" of microlensing were shown to provide effective diagnostics of bulk motion in circumstellar envelopes. In this work a different genre of flow is studied, namely linear homologous expansion, for both point mass lenses and fold caustic crossings. Linear expansion is of particular relevance to the effects of microlensing on supernovae at cosmological distances. We derive line profiles and equivalent widths for the illustrative cases of pure resonance and pure recombination lines, modelled under the Sobolev approximation. The efficacy of microlensing as a diagnostic probe of the stellar environs is demonstrated and discussed.

  13. Wind turbines and bat mortality: Doppler shift profiles and ultrasonic bat-like pulse reflection from moving turbine blades.

    PubMed

    Long, Chloe V; Flint, James A; Lepper, Paul A

    2010-10-01

    Bat mortality resulting from actual or near-collision with operational wind turbine rotors is a phenomenon that is widespread but not well understood. Because bats rely on information contained in high-frequency echoes to determine the nature and movement of a target, it is important to consider how ultrasonic pulses similar to those used by bats for echolocation may be interacting with operational turbine rotor blades. By assessing the characteristics of reflected ultrasonic echoes, moving turbine blades operating under low wind speed conditions (<6 m s(-1)) were found to produce distinct Doppler shift profiles at different angles to the rotor. Frequency shifts of up to ±700-800 Hz were produced, which may not be perceptible by some bat species. Monte Carlo simulation of bat-like sampling by echolocation revealed that over 50 rotor echoes could be required by species such as Pipistrellus pipistrellus for accurate interpretation of blade movement, which may not be achieved in the bat's approach time-window. In summary, it was found that echoes returned from moving blades had features which could render them attractive to bats or which might make it difficult for the bat to accurately detect and locate blades in sufficient time to avoid a collision.

  14. Investigation of airborne foot-and-mouth disease virus transmission during low-wind conditions in the early phase of the UK 2001 epidemic

    NASA Astrophysics Data System (ADS)

    Mikkelsen, T.; Alexandersen, S.; Astrup, P.; Champion, H. J.; Donaldson, A. I.; Dunkerley, F. N.; Gloster, J.; Sørensen, J. H.; Thykier-Nielsen, S.

    2003-11-01

    Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed domesticated and wild animals. The highly contagious nature of FMD is a reflection of the wide range of host species, the enormous quantities of virus liberated by infected animals, the range of excretions and secretions which can be infectious, the stability of the virus in the environment, the multiplicity of routes of infection and the very small doses of the virus that can initiate infection. One of the mechanisms of spread is the carriage of droplets and droplet nuclei exhaled in the breath of infected animals. Such spread can be rapid and extensive, and it is known in certain circumstances to have transmitted disease over a distance of several hundred kilometres. During the 2001 FMD epidemic in the United Kingdom (UK), atmospheric dispersion models were applied in real time in order to assess the potential for atmospheric dispersion of the disease. The operational value of such modelling is primarily to identify premises which may have been exposed so that the human resources for surveillance and disease control purposes are employed most effectively.

    The paper describes the combined modelling techniques and presents the results obtained of detailed analyses performed during the early stages of the UK 2001 epidemic. This paper investigates the potential for disease spread in relation to two outbreaks (Burnside Farm, Heddon-on-the-Wall and Prestwick Hall Farm, Ponteland, Northumberland). A separate paper (Gloster et al., 2002) provides a more detailed analysis of the airborne disease transmission in the vicinity of Burnside Farm.

    The combined results are consistent with airborne transmission of disease to livestock in the Heddon-on-the-Wall area. Local topography may have played a significant role in influencing the pattern of disease spread.

  15. Investigation of airborne foot-and-mouth disease virus transmission during low-wind conditions in the early phase of the UK 2001 epidemic

    NASA Astrophysics Data System (ADS)

    Mikkelsen, T.; Alexandersen, S.; Astrup, P.; Champion, H. J.; Donaldson, A. I.; Dunkerley, F. N.; Gloster, J.; Sørensen, J. H.; Thykier-Nielsen, S.

    2003-02-01

    Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed domesticated and wild animals. The highly contagious nature of FMD is a reflection of the wide range of host species, the enormous quantities of virus liberated by infected animals, the range of excretions and secretions which can be infectious, the stability of the virus in the environment, the multiplicity of routes of infection and the very small doses of the virus that can initiate infection. One of the mechanisms of spread is the carriage of droplets and droplet nuclei exhaled in the breath of infected animals. Such spread can be rapid and extensive, and it is known in certain circumstances to have transmitted disease over a distance of several hundred kilometres. During the 2001 FMD epidemic in the United Kingdom (UK), atmospheric dispersion models were applied in real time in order to assess the potential for atmospheric dispersion of the disease. The operational value of such modelling is primarily to identify premises which may have been exposed so that the human resources for surveillance and disease control purposes are employed most effectively. The paper describes the combined modelling techniques and presents the results obtained of detailed analyses performed during the early stages of the UK 2001 epidemic. This paper investigates the potential for disease spread in relation to two outbreaks (Burnside Farm, Heddon-on-the-Wall and Prestwick Hall Farm, Ponteland, Northumberland). A separate paper (Gloster et al., 2002) provides a more detailed analysis of the airborne disease transmission in the vicinity of Burnside Farm. The combined results are consistent with airborne transmission of disease to livestock in the Heddon-on-the Wall area. Local topography may have played a significant role in influencing the pattern of disease spread.

  16. 2012 ARPA-E Energy Innovation Summit: Profiling General Compression: A River of Wind

    SciTech Connect

    Marcus, David; Ingersoll, Eric

    2012-02-29

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. A few videos were selected for showing during the Summit to attendees. These 'performer videos' highlight innovative research that is ongoing and related to the main topics of the Summit's sessions. Featured in this video are David Marcus, Founder of General Compression, and Eric Ingersoll, CEO of General Compression. General Compression, with the help of ARPA-E funding, has created an advanced air compression process which can store and release more than a weeks worth of the energy generated by wind turbines.

  17. 2012 ARPA-E Energy Innovation Summit: Profiling General Compression: A River of Wind

    ScienceCinema

    Marcus, David; Ingersoll, Eric

    2016-07-12

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. A few videos were selected for showing during the Summit to attendees. These 'performer videos' highlight innovative research that is ongoing and related to the main topics of the Summit's sessions. Featured in this video are David Marcus, Founder of General Compression, and Eric Ingersoll, CEO of General Compression. General Compression, with the help of ARPA-E funding, has created an advanced air compression process which can store and release more than a weeks worth of the energy generated by wind turbines.

  18. Changes in the High-Latitude Topside Ionospheric Vertical Electron-Density Profiles in Response to Solar-Wind Perturbations During Large Magnetic Storms

    NASA Astrophysics Data System (ADS)

    Benson, R. F.; Fainberg, J.; Osherovich, V. A.; Truhlik, V.; Wang, Y.; Arbacher, R. T.

    2011-12-01

    The latest results from an investigation to establish links between solar-wind and topside-ionospheric parameters will be presented including a case where high-latitude topside electron-density Ne(h) profiles indicated dramatic rapid changes in the scale height during the main phase of a large magnetic storm (Dst < -200 nT). These scale-height changes suggest a large heat input to the topside ionosphere at this time. The topside profiles were derived from ISIS-1 digital ionograms obtained from the NASA Space Physics Data Facility (SPDF) Coordinated Data Analysis Web (CDAWeb). Solar-wind data obtained from the NASA OMNIWeb database indicated that the magnetic storm was due to a magnetic cloud. This event is one of several large magnetic storms being investigated during the interval from 1965 to 1984 when both solar-wind and digital topside ionograms, from either Alouette-2, ISIS-1, or ISIS-2, are potentially available.

  19. Changes in the High-Latitude Topside Ionospheric Vertical Electron-Density Profiles in Response to Solar-Wind Perturbations During Large Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir; Truhlik, Vladimir; Wang, Yongli; Arbacher, Becca

    2011-01-01

    The latest results from an investigation to establish links between solar-wind and topside-ionospheric parameters will be presented including a case where high-latitude topside electron-density Ne(h) profiles indicated dramatic rapid changes in the scale height during the main phase of a large magnetic storm (Dst < -200 nT). These scale-height changes suggest a large heat input to the topside ionosphere at this time. The topside profiles were derived from ISIS-1 digital ionograms obtained from the NASA Space Physics Data Facility (SPDF) Coordinated Data Analysis Web (CDA Web). Solar-wind data obtained from the NASA OMNIWeb database indicated that the magnetic storm was due to a magnetic cloud. This event is one of several large magnetic storms being investigated during the interval from 1965 to 1984 when both solar-wind and digital topside ionograms, from either Alouette-2, ISIS-1, or ISIS-2, are potentially available.

  20. An Estimate of Solar Wind Velocity Profiles in a Coronal Hole and a Coronal Streamer Area (6-40 R(radius symbol)

    NASA Technical Reports Server (NTRS)

    Patzold, M.; Tsurutani, B. T.; Bird, M. K.

    1995-01-01

    Total electron content data obtained from the Ulysses Solar Corona Experiment (SCE) in 1991 were used to select two data sets, one associated with a coronal hole and the other with coronal streamer crossings. (This is largely equatorial data shortly after solar maximum.) The solar wind velocity profile is estimated for these areas.

  1. High resolution vertical profiles of wind, temperature and humidity obtained by computer processing and digital filtering of radiosonde and radar tracking data from the ITCZ experiment of 1977

    NASA Technical Reports Server (NTRS)

    Danielson, E. F.; Hipskind, R. S.; Gaines, S. E.

    1980-01-01

    Results are presented from computer processing and digital filtering of radiosonde and radar tracking data obtained during the ITCZ experiment when coordinated measurements were taken daily over a 16 day period across the Panama Canal Zone. The temperature relative humidity and wind velocity profiles are discussed.

  2. High altitude wind resource in the Middle East

    NASA Astrophysics Data System (ADS)

    Yip, Chak Man Andrew; Gunturu, Udaya B.; Stenchikov, Georgiy L.

    2016-04-01

    This study presents a first identification of areas favorable to Airborne Wind Energy (AWE) Systems deployment in the Middle East and illustrates their diurnal and seasonal characteristics. Optimal heights of AWE system deployment are computed. The AWE literature has conventionally used a top-down approach where AWE potentials are estimated as a fraction of wind power density. This study takes the bottom-up approach where the regional AWE potentials are estimated using realistic machine specification with assumptions upon deployment conditions. The annual energy production per capita illustrates the potential of AWE systems in fulfilling electricity needs at the current level for several countries in the region. Our estimate also compares favorably to the near-surface wind power potential using identical data source from a previous study. In addition, the non-monotonicity in the vertical profile is examined for areas with potential LLJ influences, where behaviors in wind speed and direction similar to that of inertial oscillations are identified.

  3. A Pluto Central-Flash Occultation: Constraints on Haze Abundances, Temperature Profiles and Zonal Winds

    NASA Astrophysics Data System (ADS)

    Young, Eliot; Young, Leslie; Olkin, Cathy; Barth, Erika

    2014-05-01

    Central flashes occur in occultation light curves when the observing station is located close to the center of the shadow path. We observed a double-peaked central flash event on 31-JUL-2007 from the Mt John Observatory in New Zealand, in two filters simultaneously. A stellar occultation by Pluto in 2002 was observed from various telescopes on Mauna Kea over wavelengths spanning B- through K-bands and showed compelling evidence of a wavelength-dependent opacity source. Unlike the 2002 results, the 2007 central flash light curve shows no difference between the 0.5 and 0.7 micron light curves, suggesting that the haze observed in 2002 is a variable phenomenon. In the absence of haze, the height of the central flash peaks must be due to differential refraction; the peaks therefore provide strong constraints on the location and magnitude of a thermal inversion in Pluto's atmosphere at the time of the event. Finally, the relative height and spacing of the two central flash peaks are extremely sensitive constraints on Pluto's oblateness, which in turn can constrain the magnitude of zonal winds.

  4. Relating high-Latitude Topside Ionospheric Vertical Electron-Density-Profile changes to Solar-Wind Parameters During Large Magnetic Storms

    NASA Astrophysics Data System (ADS)

    Benson, R. F.; Fainberg, J.; Osherovich, V.; Truhlik, V.; Wang, Y.; Bilitza, D.; Lam, H.

    2012-12-01

    Ten large magnetic storms (Dst < -100 nT) where high-latitude topside electron-density profiles Ne(h) could be obtained from Alouette/ISIS topside-sounder data, and where solar-wind data were available, were investigated. The former were obtained from the NASA Space Physics Data Facility (SPDF) and the latter were obtained from the NASA OMNIWeb database. Large Ne(h) changes were observed during the storms in all cases. In some cases large topside Ne(h) gradients were observed between adjacent ionograms (separated by ~ ½ minute) and even within a single ionogram (profiles separated by < 10 s). The changes in the winter profiles have a clear relationship with the solar-wind velocity Vsw in that the topside Ne(h) increases with increasing Vsw during nighttime and decreases with increasing Vsw during daytime.

  5. Methane at Ascension Island, southern tropical Atlantic Ocean: continuous ground measurement and vertical profiling above the Trade-Wind Inversion

    NASA Astrophysics Data System (ADS)

    Lowry, David; Brownlow, Rebecca; Fisher, Rebecca; Nisbet, Euan; Lanoisellé, Mathias; France, James; Thomas, Rick; Mackenzie, Rob; Richardson, Tom; Greatwood, Colin; Freer, Jim; Cain, Michelle; Warwick, Nicola; Pyle, John

    2015-04-01

    δ13CCH4. The marine boundary layer at the surface has CH4 mixing ratios below 1800ppb. In the mixing layer of the TWI, values increase, and above 2000m, methane is above 1820ppb. Back trajectory analysis shows that these inputs are from African savanna and wetland emissions. After vertical mixing events the difference across the TWI reduces to less than 10ppb. The experiment has demonstrated the feasibility of UAV work to observe methane at Ascension. In effect, Ascension becomes a 'virtual mountain observatory' - measurements here can both use the Trade Winds to monitor the wide South Atlantic and Southern Ocean, and also the air above the TWI to assess inputs from tropical Africa and S. America. Comparison of continuous ground measurements, vertical UAV profiles and data from the Ascension TCCON site, potentially allows observation of a complete atmospheric profile. Acknowledgement This work is supported by the Natural Environment Research Council Grant NE/K005979/1

  6. Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), 32-km North American Regional Reanalysis (NARR) interpolated to a 12-km grid, and 13-km Rapid Refresh analyses.

  7. Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Jedlovec, G. J.

    2014-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.

  8. The Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary; Elmer, Nicholas

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.

  9. Impact of the Assimilation of Hyperspectral Infrared Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, Emily B.; Zavodsky, Bradley T; Jedlovec, Gary J.; Elmer, Nicholas J.

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), North American Regional Reanalysis (NARR) reanalysis, and Rapid Refresh analyses.

  10. Vertical Aerosol Backscatter Variability from an Airborne Focused Continuous Wave CO2 Lidar

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; Rothermel, Jeffry

    1998-01-01

    Atmospheric aerosol backscatter measurements using a continuous wave focused Doppler lidar at 9.1 micron wavelength were obtained over western North America and the Pacific Ocean during 13 - 26 September, 1995 as part of National Aeronautics and Space Administration's (NASA) Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission on board the NASA DC8 aircraft. Backscatter variability was measured for approximately 52 flight hours, covering equivalent horizontal distance of approximately 25,000 km in the troposphere. Quasi-vertical backscatter profiles were also obtained during various ascents and descents which ranged between approximately 0.1 to 12.0 km altitude. Aerosol haze layers were encountered at different altitudes. Similarities and differences for aerosol loading over land and over ocean were observed. A mid-tropospheric aerosol backscatter background mode was found with modal value approximately 1O(exp -10)/m/sr, consistent with previous airborne and ground-based datasets.

  11. Role of synoptic- and meso-scales on the evolution of the boundary-layer wind profile over a coastal region: the near-coast diurnal acceleration

    NASA Astrophysics Data System (ADS)

    Jiménez, Pedro A.; de Arellano, Jordi Vilà-Guerau; Dudhia, Jimy; Bosveld, Fred C.

    2016-02-01

    The contributions of synoptic- and meso-scales to the boundary layer wind profile evolution in a coastal environment are examined. The analysis is based on observations of the wind profile within the first 200 m of the atmosphere continuously recorded during a 10 year period (2001-2010) at the 213-m meteorological tower at the Cabauw Experimental Site for Atmospheric Research (CESAR, The Netherlands). The analysis is supported by a numerical experiment based on the Weather Research and Forecasting (WRF) model performed at high horizontal resolution of 2 km and spanning the complete observational period (10 years). Results indicate that WRF is able to reproduce the inter-annual wind variability but with a tendency to be too geostrophic. At seasonal scales, we find a differentiated behavior between Winter and Summer seasons with the Spring and Autumn transition periods more similar to the Summer and Winter modes, respectively. The winter momentum budget shows a weak intradiurnal variability. The synoptic scale controls the shape of the near surface wind profile that is characterized by weaker and more ageostrophic winds near the surface than at higher altitudes within the planetary boundary layer (PBL) as a result of the frictional turning. In turn, during summer, mesoscale circulations associated with the differential heating of land and sea become important. As a result, the PBL winds show a stronger intradiurnal component that is characterized by an oscillation of the near surface winds around the geostrophic direction with the maximum departure in the afternoon. Although also driven by thermal land-sea differences, this mesoscale component is not associated with the classical concept of a sea-breeze front. It originates from the thermal expansion of the boundary layer over land and primarily differs from the sea-breeze in its propagation speed resulting in a wind rotation far ahead of any coastal front. We refer to it as the near-coast diurnal acceleration (NCDA

  12. Flight Testing of the TWiLiTE Airborne Molecular Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Machan, Roman; Reed, Daniel; Cargo, Ryan; Wilkens, David J.; Hart, William; Yorks, John; Scott, Stan; Wake, Shane; Hardesty, Michael; Brewer, Alan

    2010-01-01

    In September, 2009 the TWiLiTE (Tropospheric Wind Lidar Technology Experiment) direct detection Doppler lidar was integrated for engineering flight testing on the NASA ER-2 high altitude aircraft. The TWiI,iTE Doppler lidar measures vertical profiles of wind by transmitting a short ultraviolet (355 nm) laser pulse into the atmosphere, collecting the laser light scattered back to the lidar by air molecules and measuring the Doppler shifted frequency of that light. The magnitude of the Doppler shift is proportional to the wind speed of the air in the parcel scattering the laser light. TWiLiTE was developed with funding from the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (11P). The primary objectives of the TWiLiTE program are twofold: 1) to advance the development of key technologies and subsystems critical for a future space based Global 3-1) Wind Mission, as recommended by the National Research Council in the recent Decadal Survey for Earth Science [1] and 2) to develop, for the first time, a fully autonomous airborne Doppler lidar and to demonstrate tropospheric wind profile measurements from a high altitude downward looking, moving platform to simulate spaceborne measurements. In this paper we will briefly describe the instrument followed by a discussion of the results from the 2009 engineering test flights

  13. Flight effects on the aerodynamic and acoustic characteristics of inverted profile coannular nozzles, volume 1. [supersonic cruise aircraft research wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Kozlowski, H.; Packman, A. B.

    1978-01-01

    Jet noise spectra obtained at static conditions from an acoustic wind tunnel and an outdoor facility are compared. Data curves are presented for (1) the effect of relative velocity on OASPL directivity (all configurations); (2) the effect of relative velocity on noise spectra (all configurations); (3) the effect of velocity on PNL directivity (coannular nozzle configurations); (4) nozzle exhaust plume velocity profiles; and (5) the effect of relative velocity on aerodynamic performance.

  14. Measuring Vertical Profiles of Wind, Temperature and Humidity within the Atmospheric Boundary Layer using the Research UAVs 'M2AV Carolo'

    NASA Astrophysics Data System (ADS)

    Bange, J.; Martin, S.

    2009-09-01

    The measurement of vertical profiles is important to characterise the vertical structure of the atmospheric boundary layer (ABL). For instance, the dependence of the potential temperature on altitude defines the thermal stratification. The mechanical shear (i.e. the variation of wind speed and direction) produces turbulence and turbulent fluxes. The top of the ABL is required for scaling approaches (e.g. Deardorff scaling in the convective boundary layer, local scaling in the stable boundary layer). The Meteorological Mini Aerial Vehicles (M²AV) are self-constructed, automatically operating research aircraft of 6 kg in weight (including 1.5 kg scientific payload) and 2 m wingspan. These systems are capable of performing turbulence measurements (wind vector, temperature and humidity) and are used as a new instrument for measuring vertical profiles of the lower troposphere. Compared to a radiosonde, the spatial resolution of the M²AV is significantly higher. Especially the wind measurement is significantly more accurate compared to radiosonde data when using an aircraft that is equipped with a proper flow sensor (mainly a five-hole probe). It is important to maintain flow angles (sideslip and angle of attack) within the calibration range (typically 10 to 20 degree). This limits the vertical speed (the rate of climb and descent) of the research aircraft. In general there are two approaches to measure vertical profiles with research aircraft. Instantaneous profiles (slant flight pattern) are suitable if only little time is available, if the ABL is very in-stationary (or the aircraft is slow), if the dependence of the profile on time is requested (repeated slant flight patterns over one location) or if the dependence of the profile on the location is requested (saw-tooth pattern). For mean profiles (horizontal straight and level flights 'legs' at several altitudes within the ABL) it is necessary to use fast sensors. If the response time is too large, the vertical

  15. Convective cloud vertical velocity and mass-flux characteristics from radar wind profiler observations during GoAmazon2014/5

    DOE PAGES

    Giangrande, Scott E.; Toto, Tami; Jensen, Michael P.; ...

    2016-10-21

    A radar wind profiler (RWP) data set collected during the 2 year Department of Energy Atmospheric Radiation Measurement Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign is used to estimate convective cloud vertical velocity, area fraction, and mass flux profiles. Vertical velocity observations are presented using cumulative frequency histograms and weighted mean profiles to provide insights in a manner suitable for global climate model scale comparisons (spatial domains from 20 km to 60 km). Convective profile sensitivity to changes in environmental conditions and seasonal regime controls is also considered. Aggregate and ensemble average vertical velocity, convective area fraction,more » and mass flux profiles, as well as magnitudes and relative profile behaviors, are found consistent with previous studies. Updrafts and downdrafts increase in magnitude with height to midlevels (6 to 10 km), with updraft area also increasing with height. Updraft mass flux profiles similarly increase with height, showing a peak in magnitude near 8 km. Downdrafts are observed to be most frequent below the freezing level, with downdraft area monotonically decreasing with height. Updraft and downdraft profile behaviors are further stratified according to environmental controls. These results indicate stronger vertical velocity profile behaviors under higher convective available potential energy and lower low-level moisture conditions. Sharp contrasts in convective area fraction and mass flux profiles are most pronounced when retrievals are segregated according to Amazonian wet and dry season conditions. Lastly, during this deployment, wet season regimes favored higher domain mass flux profiles, attributed to more frequent convection that offsets weaker average convective cell vertical velocities.« less

  16. Convective cloud vertical velocity and mass-flux characteristics from radar wind profiler observations during GoAmazon2014/5

    SciTech Connect

    Giangrande, Scott E.; Toto, Tami; Jensen, Michael P.; Bartholomew, Mary Jane; Feng, Zhe; Protat, Alain; Williams, Christopher R.; Schumacher, Courtney; Machado, Luiz

    2016-10-21

    A radar wind profiler (RWP) data set collected during the 2 year Department of Energy Atmospheric Radiation Measurement Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign is used to estimate convective cloud vertical velocity, area fraction, and mass flux profiles. Vertical velocity observations are presented using cumulative frequency histograms and weighted mean profiles to provide insights in a manner suitable for global climate model scale comparisons (spatial domains from 20 km to 60 km). Convective profile sensitivity to changes in environmental conditions and seasonal regime controls is also considered. Aggregate and ensemble average vertical velocity, convective area fraction, and mass flux profiles, as well as magnitudes and relative profile behaviors, are found consistent with previous studies. Updrafts and downdrafts increase in magnitude with height to midlevels (6 to 10 km), with updraft area also increasing with height. Updraft mass flux profiles similarly increase with height, showing a peak in magnitude near 8 km. Downdrafts are observed to be most frequent below the freezing level, with downdraft area monotonically decreasing with height. Updraft and downdraft profile behaviors are further stratified according to environmental controls. These results indicate stronger vertical velocity profile behaviors under higher convective available potential energy and lower low-level moisture conditions. Sharp contrasts in convective area fraction and mass flux profiles are most pronounced when retrievals are segregated according to Amazonian wet and dry season conditions. Lastly, during this deployment, wet season regimes favored higher domain mass flux profiles, attributed to more frequent convection that offsets weaker average convective cell vertical velocities.

  17. Convective cloud vertical velocity and mass-flux characteristics from radar wind profiler observations during GoAmazon2014/5

    NASA Astrophysics Data System (ADS)

    Giangrande, Scott E.; Toto, Tami; Jensen, Michael P.; Bartholomew, Mary Jane; Feng, Zhe; Protat, Alain; Williams, Christopher R.; Schumacher, Courtney; Machado, Luiz

    2016-11-01

    A radar wind profiler data set collected during the 2 year Department of Energy Atmospheric Radiation Measurement Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign is used to estimate convective cloud vertical velocity, area fraction, and mass flux profiles. Vertical velocity observations are presented using cumulative frequency histograms and weighted mean profiles to provide insights in a manner suitable for global climate model scale comparisons (spatial domains from 20 km to 60 km). Convective profile sensitivity to changes in environmental conditions and seasonal regime controls is also considered. Aggregate and ensemble average vertical velocity, convective area fraction, and mass flux profiles, as well as magnitudes and relative profile behaviors, are found consistent with previous studies. Updrafts and downdrafts increase in magnitude with height to midlevels (6 to 10 km), with updraft area also increasing with height. Updraft mass flux profiles similarly increase with height, showing a peak in magnitude near 8 km. Downdrafts are observed to be most frequent below the freezing level, with downdraft area monotonically decreasing with height. Updraft and downdraft profile behaviors are further stratified according to environmental controls. These results indicate stronger vertical velocity profile behaviors under higher convective available potential energy and lower low-level moisture conditions. Sharp contrasts in convective area fraction and mass flux profiles are most pronounced when retrievals are segregated according to Amazonian wet and dry season conditions. During this deployment, wet season regimes favored higher domain mass flux profiles, attributed to more frequent convection that offsets weaker average convective cell vertical velocities.

  18. Convective cloud vertical velocity and mass-flux characteristics from radar wind profiler observations during GoAmazon2014/5: VERTICAL VELOCITY GOAMAZON2014/5

    SciTech Connect

    Giangrande, Scott E.; Toto, Tami; Jensen, Michael P.; Bartholomew, Mary Jane; Feng, Zhe; Protat, Alain; Williams, Christopher R.; Machado, Luiz

    2016-11-15

    A radar wind profiler data set collected during the 2 year Department of Energy Atmospheric Radiation Measurement Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign is used to estimate convective cloud vertical velocity, area fraction, and mass flux profiles. Vertical velocity observations are presented using cumulative frequency histograms and weighted mean profiles to provide insights in a manner suitable for global climate model scale comparisons (spatial domains from 20 km to 60 km). Convective profile sensitivity to changes in environmental conditions and seasonal regime controls is also considered. Aggregate and ensemble average vertical velocity, convective area fraction, and mass flux profiles, as well as magnitudes and relative profile behaviors, are found consistent with previous studies. Updrafts and downdrafts increase in magnitude with height to midlevels (6 to 10 km), with updraft area also increasing with height. Updraft mass flux profiles similarly increase with height, showing a peak in magnitude near 8 km. Downdrafts are observed to be most frequent below the freezing level, with downdraft area monotonically decreasing with height. Updraft and downdraft profile behaviors are further stratified according to environmental controls. These results indicate stronger vertical velocity profile behaviors under higher convective available potential energy and lower low-level moisture conditions. Sharp contrasts in convective area fraction and mass flux profiles are most pronounced when retrievals are segregated according to Amazonian wet and dry season conditions. During this deployment, wet season regimes favored higher domain mass flux profiles, attributed to more frequent convection that offsets weaker average convective cell vertical velocities.

  19. Doppler lidar wind measurements on the EOS - LAWS

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, Daniel E.

    1988-01-01

    This paper discusses the efforts currently underway to prepare for the deployment of the Laser Atmospheric Wind Sounder (LAWS) instrument on an Earth Observing System (EOS) polar orbiter and on the Space Station. Attention is given to the measurement techiques, which include ground-based and airborne measurements in the atmosphere, and to the scientific and the technical issues being addressed. Global wind profiles obtained with the LAWS will effect dramatic improvement in numerical weather prediction and will be useful in determining the midtroposphere steering currents that are important in hurricane track forecasts. The global wind data will also provide information on large-scale atmospheric circulation and climate dynamics and on biogeochemical and hydrologic cycles.

  20. Profiles.

    ERIC Educational Resources Information Center

    School Arts, 1979

    1979-01-01

    Profiles seven Black, Native American, and Chicano artists and art teachers: Hale A. Woodruff, Allan Houser, Luis Jimenez, Betrand D. Phillips, James E. Pate, I, and Fernando Navarro. This article is part of a theme issue on multicultural art. (SJL)

  1. Investigating wind turbine impacts on near-wake flow using profiling Lidar data and large-eddy simulations with an actuator disk model

    SciTech Connect

    Mirocha, Jeffrey D.; Rajewski, Daniel A.; Marjanovic, Nikola; Lundquist, Julie K.; Kosovic, Branko; Draxl, Caroline; Churchfield, Matthew J.

    2015-08-27

    In this study, wind turbine impacts on the atmospheric flow are investigated using data from the Crop Wind Energy Experiment (CWEX-11) and large-eddy simulations (LESs) utilizing a generalized actuator disk (GAD) wind turbine model. CWEX-11 employed velocity-azimuth display (VAD) data from two Doppler lidar systems to sample vertical profiles of flow parameters across the rotor depth both upstream and in the wake of an operating 1.5 MW wind turbine. Lidar and surface observations obtained during four days of July 2011 are analyzed to characterize the turbine impacts on wind speed and flow variability, and to examine the sensitivity of these changes to atmospheric stability. Significant velocity deficits (VD) are observed at the downstream location during both convective and stable portions of four diurnal cycles, with large, sustained deficits occurring during stable conditions. Variances of the streamwise velocity component, σu, likewise show large increases downstream during both stable and unstable conditions, with stable conditions supporting sustained small increases of σu , while convective conditions featured both larger magnitudes and increased variability, due to the large coherent structures in the background flow. Two representative case studies, one stable and one convective, are simulated using LES with a GAD model at 6 m resolution to evaluate the compatibility of the simulation framework with validation using vertically profiling lidar data in the near wake region. Virtual lidars were employed to sample the simulated flow field in a manner consistent with the VAD technique. Simulations reasonably reproduced aggregated wake VD characteristics, albeit with smaller magnitudes than observed, while σu values in the wake are more significantly underestimated. The results illuminate the limitations of using a GAD in combination with coarse model resolution in the simulation of near wake physics, and validation thereof using VAD data.

  2. Investigating wind turbine impacts on near-wake flow using profiling Lidar data and large-eddy simulations with an actuator disk model

    DOE PAGES

    Mirocha, Jeffrey D.; Rajewski, Daniel A.; Marjanovic, Nikola; ...

    2015-08-27

    In this study, wind turbine impacts on the atmospheric flow are investigated using data from the Crop Wind Energy Experiment (CWEX-11) and large-eddy simulations (LESs) utilizing a generalized actuator disk (GAD) wind turbine model. CWEX-11 employed velocity-azimuth display (VAD) data from two Doppler lidar systems to sample vertical profiles of flow parameters across the rotor depth both upstream and in the wake of an operating 1.5 MW wind turbine. Lidar and surface observations obtained during four days of July 2011 are analyzed to characterize the turbine impacts on wind speed and flow variability, and to examine the sensitivity of thesemore » changes to atmospheric stability. Significant velocity deficits (VD) are observed at the downstream location during both convective and stable portions of four diurnal cycles, with large, sustained deficits occurring during stable conditions. Variances of the streamwise velocity component, σu, likewise show large increases downstream during both stable and unstable conditions, with stable conditions supporting sustained small increases of σu , while convective conditions featured both larger magnitudes and increased variability, due to the large coherent structures in the background flow. Two representative case studies, one stable and one convective, are simulated using LES with a GAD model at 6 m resolution to evaluate the compatibility of the simulation framework with validation using vertically profiling lidar data in the near wake region. Virtual lidars were employed to sample the simulated flow field in a manner consistent with the VAD technique. Simulations reasonably reproduced aggregated wake VD characteristics, albeit with smaller magnitudes than observed, while σu values in the wake are more significantly underestimated. The results illuminate the limitations of using a GAD in combination with coarse model resolution in the simulation of near wake physics, and validation thereof using VAD data.« less

  3. Wind Profiling from a High Energy, Pulsed, 2-Micron, Coherent-Detection Doppler Lidar during Field Campaign

    NASA Astrophysics Data System (ADS)

    Singh, U. N.; Koch, G. J.; Kavaya, M. J.; Yu, J.; Beyon, J. Y.; Demoz, B.

    2009-12-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. The LaRC mobile lidar was deployed at Howard University facility in Beltsville, Maryland as part of NASA HQ funded (ROSES-2007, Wind Lidar Science Proposal entitled “Intercomparison of Multiple Lidars for Wind Measurements). During the campaign, testing of the lidar was combined with a field campaign to operate a 2-μm coherent lidar alongside a 355-nm direct detection lidar to demonstrate the hybrid wind lidar concept. Besides lidar, many other meteorological sensors were located at the campaign site, including wind measuring balloon sondes, sonic and propeller anemometers mounted on a tower, and a 915-MHz radio acoustic sounding system. Comparisons among these wind measurement sensors are currently being analyzed and should be available for presentation at the Conference.

  4. Instrumental intercomparison investigating vertical profiles of optical turbulence and wind speed in the lower atmospheric boundary layer during frontal passages in northwestern Germany

    NASA Astrophysics Data System (ADS)

    Sprung, Detlev; Stein, Karin; Sucher, Erik; Englander, Abraham; Fastig, Salomon; Porat, Omar

    2016-10-01

    The German-Israeli intercomparison experiment on the investigation of vertical profiles of horizontal wind speed and optical turbulence in the lower atmospheric boundary layer from 4th to 7th May 2015 was characterized by frontal activity in the atmosphere. The newly developed remote LIDAR-device of the Soreq institute for the investigation of the vertical wind and turbulence field was compared to the routinely performed measurements at the VerTurM (Vertical Turbulence Measurements) field site in Meppen, Germany. The long-term experiment VerTurM is focused on measurements of the optical turbulence and comprises scintillometer measurements close to the ground (1.15 m height), sonic anemometer measurements on a tall tower at 4 m, 8 m, 32 m, and 64 m and a SODAR-RASS-system. The temporal development of the vertical profiles of horizontal wind speed and optical turbulence Cn 2 during the frontal passage is investigated. Additional radiosonde measurements were performed to characterize the boundary layer height during the day.

  5. Stratigraphy of a proposed wind farm site southeast of Block Island: Utilization of borehole samples, downhole logging, and seismic profiles

    NASA Astrophysics Data System (ADS)

    Sheldon, Dane P. H.

    Seismic stratigraphy, sedimentology, lithostratigraphy, downhole geophysical logging, mineralogy, and palynology were used to study and interpret the upper 70 meters of the inner continental shelf sediments within a proposed wind farm site located approximately two to three nautical miles to the southeast of Block Island, Rhode Island. Core samples and downhole logging collected from borings drilled for geotechnical purposes at proposed wind turbine sites along with seismic surveys in the surrounding area provide the data for this study. Cretaceous coastal plain sediments that consist of non-marine to marine sand, silt, and clay are found overlying bedrock at a contact depth beyond the sampling depth of this study. The upper Cretaceous sediments sampled in borings are correlated with the Magothy/Matawan formations described regionally from New Jersey to Nantucket. An unconformity formed through sub-aerial, fluvial, marine, and glacial erosion marks the upper strata of the Cretaceous sediments separating them from the overlying deposits. The majority of Quaternary deposits overlying the unconformity represent the advance, pulsing, and retreat of the Laurentide ice sheet that reached its southern terminus in the area of Block Island approximately 25,000 to 21,000 years before present. The sequence consists of a basal glacial till overlain by sediments deposited by meltwater environments ranging from deltaic to proglacial lakefloor. A late Pleistocene to early Holocene unconformity marks the top of the glacial sequence and was formed after glacial retreat through fluvial and subaerial erosion/deposition. Overlying the glacial sequence are sediments deposited during the late Pleistocene and Holocene consisting of interbedded gravel, sand, silt, and clay. Sampling of these sediments was limited and surficial reflectors in seismic profiles were masked due to a hard bottom return. However, two depositional periods are interpreted as representing fluvial and estuarine

  6. Profile of the horizontal wind variance near the ground in near neutral flow - K-theory and the transport of the turbulent kinetic energy

    NASA Astrophysics Data System (ADS)

    Yahaya, S.; Frangi, J. P.

    2009-05-01

    This paper deals with the characteristics of the atmospheric turbulent flow in the vicinity of the ground, and particularly with the profile of the horizontal wind variance. The study is based on experimental measurements performed with fast cup anemometers located near the ground at 5 different levels (from 0.25 to 4 m) and sampled at 1 Hz. The experiment was carried over two agricultural plots with various tillage treatments in a fallow semiarid area (Central Aragon, Spain). The results of this study reveal that near the ground surface and under moderate wind, the horizontal wind variance logarithmically increases with height, in direct relationship with the friction velocity and the roughness length scale. A theoretical development has allowed us to link this behaviour to the modeling of the turbulent kinetic energy (TKE) transport through the eddy diffusivity. Thus, the study proposes a formulation of the similarity universal function of the horizontal wind variance. Besides, the formulation offers a new method for the determination of the friction velocity and the roughness length scale and can be used for the evaluation of the TKE transport rate.

  7. Discrimination and quantification of Fe and Ni abundances in Genesis solar wind implanted collectors using X-ray standing wave fluorescence yield depth profiling with internal referencing

    SciTech Connect

    Choi, Y.; Eng, P.; Stubbs, J.; Sutton, S. R.; Schmeling, M.; Veryovkin, I. V.; Burnett, D.

    2016-08-21

    In this paper, X-ray standing wave fluorescence yield depth profiling was used to determine the solar wind implanted Fe and Ni fluences in a silicon-on-sapphire (SoS) Genesis collector (60326). An internal reference standardization method was developed based on fluorescence from Si and Al in the collector materials. Measured Fe fluence agreed well with that measured previously by us on a sapphire collector (50722) as well as SIMS results by Jurewicz et al. Measured Ni fluence was higher than expected by a factor of two; neither instrumental errors nor solar wind fractionation effects are considered significant perturbations to this value. Impurity Ni within the epitaxial Si layer, if present, could explain the high Ni fluences and therefore needs further investigation. As they stand, these results are consistent with minor temporally-variable Fe and Ni fractionation on the timescale of a year.

  8. Discrimination and quantification of Fe and Ni abundances in Genesis solar wind implanted collectors using X-ray standing wave fluorescence yield depth profiling with internal referencing

    DOE PAGES

    Choi, Y.; Eng, P.; Stubbs, J.; ...

    2016-08-21

    In this paper, X-ray standing wave fluorescence yield depth profiling was used to determine the solar wind implanted Fe and Ni fluences in a silicon-on-sapphire (SoS) Genesis collector (60326). An internal reference standardization method was developed based on fluorescence from Si and Al in the collector materials. Measured Fe fluence agreed well with that measured previously by us on a sapphire collector (50722) as well as SIMS results by Jurewicz et al. Measured Ni fluence was higher than expected by a factor of two; neither instrumental errors nor solar wind fractionation effects are considered significant perturbations to this value. Impuritymore » Ni within the epitaxial Si layer, if present, could explain the high Ni fluences and therefore needs further investigation. As they stand, these results are consistent with minor temporally-variable Fe and Ni fractionation on the timescale of a year.« less

  9. A vertical/horizontal integration wind-induced circulation model (VH13D): A method for including surface and bottom logarithmic profiles

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Tsanis, Ioannis K.

    A three-dimensional model called VH13D is developed using the vertical/horizontal integration (VHI) approach. The double-logarithmic velocity profile including both the surface and bottom sublayer characteristic lengths is employed to accurately evaluate the bottom shear stress and depth-averaged advective terms. The model is verified using analytical solutions and laboratory data for shear-induced countercurrent flows and is compared with other two- and three-dimensional circulation models in a simplified basin. It is demonstrated that the newly developed model improves the conventional two-dimensional depth-averaged and Quasi-3D models and provides a new approach to the three-dimensional wind-induced circulation model. It can efficiently simulate the wind-induced 3D current structure in lakes and estuaries under isothermal conditions.

  10. BOREAS AFM-06 Mean Temperature Profile Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) tower from 21 May 1994 to 20 Sep 1994. The data set provides temperature profiles at 15 heights, containing the variables of virtual temperature, vertical velocity, the speed of sound, and w-bar. The data are stored in tabular ASCII files. The mean temperature profile data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  11. The chemical evolution of local star-forming galaxies: radial profiles of ISM metallicity, gas mass, and stellar mass and constraints on galactic accretion and winds

    NASA Astrophysics Data System (ADS)

    Kudritzki, Rolf-Peter; Ho, I.-Ting; Schruba, Andreas; Burkert, Andreas; Zahid, H. Jabran; Bresolin, Fabio; Dima, Gabriel I.

    2015-06-01

    The radially averaged metallicity distribution of the interstellar medium (ISM) and the young stellar population of a sample of 20 disc galaxies is investigated by means of an analytical chemical evolution model which assumes constant ratios of galactic wind mass-loss and accretion mass gain to star formation rate. Based on this model, the observed metallicities and their gradients can be described surprisingly well by the radially averaged distribution of the ratio of stellar mass to ISM gas mass. The comparison between observed and model-predicted metallicity is used to constrain the rate of mass-loss through galactic wind and accretion gain in units of the star formation rate. Three groups of galaxies are found: galaxies with either mostly winds and only weak accretion, or mostly accretion and only weak winds, and galaxies where winds are roughly balanced by accretion. The three groups are distinct in the properties of their gas discs. Galaxies with approximately equal rates of mass-loss and accretion gain have low metallicity, atomic-hydrogen-dominated gas discs with a flat spatial profile. The other two groups have gas discs dominated by molecular hydrogen out to 0.5 to 0.7 isophotal radii and show a radial exponential decline, which is on average steeper for the galaxies with small accretion rates. The rates of accretion ( ≲ 1.0 × SFR) and outflow ( ≲ 2.4 × SFR) are relatively low. The latter depend on the calibration of the zero-point of the metallicity determination from the use of H II region strong emission lines.

  12. 2-μm Coherent DIAL for CO2, H2O and Wind Field Profiling in the Lower Atmosphere: Instrumentation and Results

    NASA Astrophysics Data System (ADS)

    Gibert, Fabien; Edouart, Dimitri; Cénac, Claire; Pellegrino, Jessica; Le Mounier, Florian; Dumas, Arnaud

    2016-06-01

    We report on 2-μm coherent differential absorption lidar (CDIAL) measurements of carbon dioxide (CO2), water vapour (H2O) absorption and wind field profiling in the atmospheric boundary layer. The CDIAL uses a Tm:fiber pumped, single longitudinal mode Q-switched seeded Ho:YLF laser and a fibercoupled coherent detection. The laser operates at a pulse repetition frequency of 2 kHz and emits an output energy of 10 mJ with a pulse width of 40 ns (FWHM). Experimental horizontal and vertical range-resolved measurements were made in the atmospheric boundary layer and compared to colocated in-situ sensor data.

  13. First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer

    NASA Astrophysics Data System (ADS)

    Rüfenacht, R.; Kämpfer, N.; Murk, A.

    2012-07-01

    We report on the wind radiometer WIRA, a new ground-based microwave Doppler-spectro-radiometer specifically designed for the measurement of middle-atmospheric horizontal wind by observing ozone emission spectra at 142.17504 GHz. Currently, wind speeds in five levels between 30 and 79 km can be retrieved what makes WIRA the first instrument able to continuously measure horizontal wind in this altitude range. For an integration time of one day the measurement error on each level lies at around 25 m s-1. With a planned upgrade this value is expected to be reduced by a factor of 2 in the near future. On the altitude levels where our measurement can be compared to wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF) very good agreement in the long-term statistics as well as in short time structures with a duration of a few days has been found. WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen what makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance. In the present paper, a description of the instrument is given, and the used techniques for the wind retrieval based on the determination of the Doppler shift of the measured atmospheric ozone emission spectra are outlined. Their reliability was tested using MonteCarlo simulations. Finally, a first time series of 11 months of zonal wind measurements over Bern (46°57

  14. Towards an automatic system for monitoring of CN2 and wind speed profiles with GeMS

    NASA Astrophysics Data System (ADS)

    Masciadri, Elena; Neichel, Benoit; Guesalaga, Andres; Turchi, Alessio

    2016-07-01

    Wide Field Adaptive Optics (WFAO) systems represent the more sophisticated AO systems available today at large telescopes. One critical aspect for these WFAO systems in order to deliver an optimised performance is the knowledge of the vertical spatiotemporal distribution of the CN2 and the wind speed. Previous studies (Cortes et al., 2012[1]) already proved the ability of GeMS (the Gemini Multi-Conjugated AO system) in retrieving CN2 and wind vertical stratification using the telemetry data. To assess the reliability of the GeMS wind speed estimates a preliminary study (Neichel et al., 2014[2]) compared wind speed retrieved from GeMS with that obtained with the atmospherical model Meso-Nh on a small sample of nights providing promising results. The latter technique is very reliable for the wind speed vertical stratification. The model outputs gave, indeed, an excellent agreement with a large sample of radiosoundings ( 50) both in statistical terms and on individual flights (Masciadri et al., 2013[3]). Such a tool can therefore be used as a valuable reference in this exercise of cross calibrating GeMS on-sky wind estimates with model predictions. The main results of Neichel et al. (2014) analysis showed that, on a great number of cases, GeMS could reconstruct very good wind speed estimates. At the same time it has been put in evidence, on a number of cases, not negligible discrepancies from the atmospherical model. However we observed that these discrepancies strongly decreased or even disappear if GeMS data reduction is done with the a priori knowledge of the wind speed stratification provided by the model Meso-Nh. Basically the a priori knowledge helped the data reduction of GeMS acquisitions. In this contribution we achieved a two-fold results: (1) we extended analysis on a much richer statistical sample ( 43 nights), we confirmed the preliminary results and we found an even better correlation between GeMS observations and the atmospherical model with basically

  15. Radiative heating rates during AAOE and AASE. [Airborne Antarctic Ozone Experiment and Airborne Arctic Stratospheric Experiment

    NASA Technical Reports Server (NTRS)

    Rosenfield, Joan E.

    1990-01-01

    Radiative transit computations of heating rates utilizing data from the 1987 Airborne Antarctic Ozone Experiment (AAOE) (Tuck et al., 1989) and the 1989 Airborne Arctic Stratospheric Experiment (AASE) (Turco et al., 1990) are described. Observed temperature and ozone profiles and a radiative transfer model are used to compute the heating rates for the Southern Hemisphere during AAOE and the Northern Hemisphere during AASE. The AASE average cooling rates computed inside the vortex are in good agreement with the diabatic cooling rates estimated from the ER-2 profile data for N2O for the AASE period (Schoeberl et al., 1989).

  16. Aerosol Backscatter from Airborne Continuous Wave CO2 Lidars Over Western North America and the Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; Rothermel, Jeffry

    1999-01-01

    Atmospheric aerosol backscatter, beta, variability gives a direct indication of aerosol loading. Since aerosol variability is governed by regional sources and sinks as well as affected by its transport due to meteorological conditions, it is important to characterize this loading at different locations and times. Lidars are sensitive instruments that can effectively provide high-resolution, large-scale sampling of the atmosphere remotely by measuring aerosol beta, thereby capturing detailed temporal and spatial variability of aerosol loading, Although vertical beta profiles are usually obtained by pulsed lidars, airborne-focused CW lidars, with high sensitivity and short time integration, can provide higher resolution sampling in the vertical, thereby revealing detailed structure of aerosol layers. During the 1995 NASA Multicenter Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission, NASA MSFC airborne-focused CW CO2 Doppler lidars, operating at 9.1 and 10.6-micrometers wavelength, obtained high resolution in situ aerosol beta measurements to characterize aerosol variability. The observed variability in beta at 9.1-micrometers wavelength with altitude is presented as well as comparison with some pulsed lidar profiles.

  17. Report of preliminary analysis of data from dew-point hygrometer profiles during the ARM 1996 WVIOP

    SciTech Connect

    Porch, W.; Fernandez, A.; Spurgeon, W.

    1997-03-01

    Unique commercial light-weight chilled-mirror dew-point sensors were flown on tethered balloons during the Water Vapor Intensive Operation Period (WVIOP) in September 1996. Comparisons were made between in situ and remote sensing instruments that detect water vapor. We obtained a special waiver to fly the sensors up to 1 km both day and night from the FAA. Preliminary comparisons with tower mounted, surface-based temperature/relative humidity probes, rawinsonde, air-borne chilled-mirror dew point, and Raman lidar profiles are included. Profiles during nocturnal boundary layer wind jet occurrences are presented as special cases along with balloon-borne nephelometer light scattering profile comparisons.

  18. Quantitative detection of mass concentration of sand-dust storms via wind-profiling radar and analysis of Z-M relationship

    NASA Astrophysics Data System (ADS)

    Wang, Minzhong; Ming, Hu; Ruan, Zheng; Gao, Lianhui; Yang, Di

    2016-12-01

    With the aim to achieve quantitative monitoring of sand-dust storms in real time, wind-profiling radar is applied to monitor and study the process of four sand-dust storms in the Tazhong area of the Taklimakan Desert. Through evaluation and analysis of the spatial-temporal distribution of reflectivity factor, it is found that reflectivity factor ranges from 2 to 18 dBz under sand-dust storm weather. Using echo power spectrum of radar vertical beams, sand-dust particle spectrum and sand-dust mass concentration at the altitude of 600 ˜ 1500 m are retrieved. This study shows that sand-dust mass concentration reaches 700 μg/m3 under blowing sand weather, 2000 μg/m3 under sand-dust storm weather, and 400 μg/m3 under floating dust weather. The following equations are established to represent the relationship between the reflectivity factor and sand-dust mass concentration: Z = 20713.5 M 0.995 under floating dust weather, Z = 22988.3 M 1.006 under blowing sand weather, and Z = 24584.2 M 1.013 under sand-dust storm weather. The retrieval results from this paper are almost consistent with previous monitoring results achieved by former researchers; thus, it is implied that wind-profiling radar can be used as a new reference device to quantitatively monitor sand-dust storms.

  19. The Profile Envision and Splicing Tool (PRESTO): Developing an Atmospheric Wind Analysis Tool for Space Launch Vehicles Using Python

    NASA Technical Reports Server (NTRS)

    Orcutt, John M.; Barbre, Robert E., Jr.; Brenton, James C.; Decker, Ryan K.

    2017-01-01

    Launch vehicle programs require vertically complete atmospheric profiles. Many systems at the ER to make the necessary measurements, but all have different EVR, vertical coverage, and temporal coverage. MSFC Natural Environments Branch developed a tool to create a vertically complete profile from multiple inputs using Python. Forward work: Finish Formal Testing Acceptance Testing, End-to-End Testing. Formal Release

  20. Field observations of wind profiles and sand fluxes above the windward slope of a sand dune before and after the establishment of semi-buried straw checkerboard barriers

    NASA Astrophysics Data System (ADS)

    Zhang, Chunlai; Li, Qing; Zhou, Na; Zhang, Jiaqiong; Kang, Liqiang; Shen, Yaping; Jia, Wenru

    2016-03-01

    Straw checkerboard barriers are effective and widely used measures to control near-surface sand flow. The present study measured the wind profiles and sand mass flux above the windward slope of a transverse dune before and after the establishment of semi-buried straw checkerboards. The 0.2 m high checkerboards enhanced the aerodynamic roughness length to larger than 0.02 m, which was two to three orders of magnitude higher than that of the bare sand. The modified Charnock model predicted the roughness length of the sand bed during saltation well, with Cm = 0.138 ± 0.003. For the checkerboards, z0 increased slowly to a level around 0.037 m with increasing wind velocity and the rate of increase tended to slow down in strong wind. The barriers reduced sand flux and altered its vertical distribution. The total height-integrated dimensionless mass flux of saltating particles (q0) above bare sand followed the relationship ln q0 = a + b(u∗t/u∗) + c(u∗t/u∗)2, with a peak at u∗/u∗t ≈ 2, whereas a possible peak appeared at u∗/u∗t ≈ 1.5 above 1 m × 1 m straw checkerboards. The vertical distribution of mass flux above these barriers resembled an "elephant trunk", with maximum mass flux at 0.05-0.2 m above the bed, in contrast with the continuously and rapidly decreasing mass flux with increasing height above the bare sand. The influences of the barriers on the wind and sand flow prevent dune movement and alter the evolution of dune morphology.

  1. Astronomical site survey report on dust measurement, wind profile, optical turbulence, and their correlation with seeing over IAO-Hanle. Astronomical site survey report over IAO-Hanle

    NASA Astrophysics Data System (ADS)

    Ningombam, Shantikumar S.; Kathiravan, S.; Parihar, P. S.; L. Larson, E. J.; Mohanan, Sharika; Angchuk, Dorje; Jorphel, Sonam; Rangarajan, K. E.; Prabhu, K.

    2017-04-01

    The present work discusses astronomical site survey reports on dust content, vertical distribution of atmospheric turbulence, precipitable water vapor (PWV), surface and upper-air data, and their effects on seeing over the Indian Astronomical Observatory (IAO) Hanle. Using Laser Particulate Counter, ambient dust measurements at various sizes (0.3 μm to 25 μm) were performed at various locations at the site during November 2015. Estimated volume concentration for the particle size at 0.5 μm was around 10,000 per cubic foot, which is equivalent to ten thousand class of clean room standard protocol. During the measurement, surface wind speed varied from 0-20 m s -1, while estimated aerosol optical depth (AOD) using Sky radiometer (Prede) varied from 0.02-0.04 at 500 nm, which indicates the site is fairly clean. The two independent measurements of dust content and aerosol concentrations at the site agreed well. The turbulence or wind gust at the site was studied with wind profiles at three different heights above the ground. The strength of the wind gust varies with time and altitude. Nocturnal temperature across seasons varied with a moderate at summer (6-8 ∘C) and lower in winter (4-5 ∘C). However, the contrast between the two is significantly small due to cold and extremely dry typical climatic conditions of the site. The present study also examined the effects of surface and upper-air data along with Planetary Boundary Layer (PBL) dynamics with seeing measurement over the site. Further, a comparative study of such observed parameters was conducted with other high altitude astronomical observatories across the globe.

  2. Astronomical site survey report on dust measurement, wind profile, optical turbulence, and their correlation with seeing over IAO-Hanle - Astronomical site survey report over IAO-Hanle

    NASA Astrophysics Data System (ADS)

    Ningombam, Shantikumar S.; Kathiravan, S.; Parihar, P. S.; Larson, E. J. L.; Mohanan, Sharika; Angchuk, Dorje; Jorphel, Sonam; Rangarajan, K. E.; Prabhu, K.

    2017-02-01

    The present work discusses astronomical site survey reports on dust content, vertical distribution of atmospheric turbulence, precipitable water vapor (PWV), surface and upper-air data, and their effects on seeing over the Indian Astronomical Observatory (IAO) Hanle. Using Laser Particulate Counter, ambient dust measurements at various sizes (0.3 μm to 25 μm) were performed at various locations at the site during November 2015. Estimated volume concentration for the particle size at 0.5 μm was around 10,000 per cubic foot, which is equivalent to ten thousand class of clean room standard protocol. During the measurement, surface wind speed varied from 0-20 m s -1, while estimated aerosol optical depth (AOD) using Sky radiometer (Prede) varied from 0.02-0.04 at 500 nm, which indicates the site is fairly clean. The two independent measurements of dust content and aerosol concentrations at the site agreed well. The turbulence or wind gust at the site was studied with wind profiles at three different heights above the ground. The strength of the wind gust varies with time and altitude. Nocturnal temperature across seasons varied with a moderate at summer (6-8 ∘C) and lower in winter (4-5 ∘C). However, the contrast between the two is significantly small due to cold and extremely dry typical climatic conditions of the site. The present study also examined the effects of surface and upper-air data along with Planetary Boundary Layer (PBL) dynamics with seeing measurement over the site. Further, a comparative study of such observed parameters was conducted with other high altitude astronomical observatories across the globe.

  3. Sampling for Airborne Radioactivity

    DTIC Science & Technology

    2007-10-01

    compared to betas, gammas and neutrons. For an airborne radioactivity detection system, it is most important to be able to detect alpha particles and... Airborne radioactive particles may emit alpha, beta, gamma or neutron radiation, depending on which radioisotope is present. From a health perspective...

  4. Ground winds and winds aloft Edwards AFB, California

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Brown, S. C.

    1977-01-01

    Ground level runway wind statistics cover crosswind, tailwind, and headwind reversal percentage frequencies with respect to month and hour for the two major runways. Also presented are bivariate normal wind statistics for a 90 degree flight azimuth for altitudes 0 through 27 km. Wind probability distributions, synthetic vector wind profiles, and statistics for any rotation of axes are computed from five given parameters.

  5. Assessing the Role of Vegetation Fires in CO Vertical Profile Anomalies in 2002-2012 with MOZAIC-IAGOS Airborne Observations

    NASA Astrophysics Data System (ADS)

    Petetin, H.

    2015-12-01

    Vegetation fires represent a major source of pollution throughout the troposphere, with strong impacts on the atmospheric composition, air quality and radiative balance. Among the myriad of compounds emitted by these fires, carbon monoxide represents one of the dominant species, and due to its long lifetime, can be transported over very large distances. In the framework of the MOZAIC-IAGOS program, carbon monoxide is routinely measured since 2002 by several commercial aircraft, which provides a unique dataset of CO vertical profiles throughout troposphere. In this study, we investigate the role of vegetation fires in the strong CO anomalies observed in troposphere during the 2002-2012 period. FLEXPART backward simulations coupled with anthropogenic and biomass burning emission inventories are used to trace the geographical origin of these anomalies, which provides valuable informations on the long-range transport of vegetation fire plumes and their subsequent impact on downwind regions.

  6. An Analysis of Wintertime Winds in Washington, D.C.

    SciTech Connect

    Berg, Larry K.; Allwine, K Jerry

    2006-06-20

    This report consists of a description of the wintertime climatology of wind speed and wind direction around the National Mall in Washington, D.C. Meteorological data for this study were collected at Ronald Reagan Washington National Airport (Reagan National), Dulles International Airport (Dulles), and a set of surface meteorological stations that are located on a number of building tops around the National Mall. A five-year wintertime climatology of wind speed and wind direction measured at Reagan National and Dulles are presented. A more detailed analysis was completed for the period December 2003 through February 2004 using data gathered from stations located around the National Mall, Reagan National, and Dulles. Key findings of our study include the following: * There are systematic differences between the wind speed and wind direction observed at Reagan National and the wind speed and wind direction measured by building top weather stations located in the National Mall. Although Dulles is located much further from the National Mall than Reagan National, there is better agreement between the wind speed and wind direction measured at Dulles and the weather stations in the National Mall. * When the winds are light (less than 3 ms-1 or 7 mph), there are significant differences in the wind directions reported at the various weather stations within the Mall. * Although the mean characteristics of the wind are similar at the various locations, significant, short-term differences are found when the time series are compared. These differences have important implications for the dispersion of airborne contaminants. In support of wintertime special events in the area of the National Mall, we recommend placing four additional meteorological instruments: three additional surface stations, one on the east bank of the Potomac River, one south of the Reflecting Pool (to better define the flow within the Mall), and a surface station near the Herbert C. Hoover Building; and wind-profiling

  7. Magnetic characterization of airborne particulates

    NASA Astrophysics Data System (ADS)

    Kim, W.; Doh, S.; Yu, Y.

    2010-12-01

    Burning fossil fuels from vehicles, domestics, industries and power plants in the large urban or industrial areas emit significant quantity of anthropogenic particulates which become a potential threat to human health. Here, we present temporal variability of particulate pollution associated with compositional differences, using magnetic measurements and electron microscopic observations. Six different grain-sizes of airborne particulates have been collected by filtering from 10 precipitation events in Seoul, Korea from February 2009 to June 2009. Magnetic concentration proxies show relatively better (R2 >0.6) and poorer correlations (R2 <0.3) with the masses of samples filtered by >0.45 μm and <0.45 μm sizes, respectively, suggesting the usefulness of magnetic characterization for the >0.45 μm particulates. Temporally, magnetic concentrations are higher in the cold season than the warm season. In particular, a significant increase of magnetic concentration is observed in 3 μm and 1 μm filters after the Chinese wind-blown dust events, indicating additional influx of fine-grained anthropogenic particulates into Seoul. Microscopic observations identify that increase of magnetic concentration is highly linked with the frequent occurrence of combustion derived particulates (i.e., carbon and/or sulfur mixed particles) than natural alumino-silicates. Overall, the present study demonstrates that magnetic measurements efficiently reflect the concentration of particulates produced from fossil-fuel combustion among the airborne particles from various sources.

  8. Nondestructive testing using air-borne ultrasound.

    PubMed

    Hsu, David K

    2006-12-22

    Over the last two decades, more efficient transducers were developed for the generation and reception of air-borne ultrasound, thus enabling the non-contact, non-contaminating inspection of composite laminates and honeycomb structures widely used in the aerospace industry. This paper presents the fundamentals of making air-borne ultrasonic measurement, and point out special considerations unique to propagating ultrasound in air and through solids. Transducer beam profile characterization, thickness dependence and resonance effects in the transmission of air-coupled ultrasound through plates, and the detection and imaging of defects and damage in solid laminates and honeycomb sandwich will be discussed and illustrated with examples. Finally, a manual scan system developed for implementing air-borne ultrasonic imaging in the field and on aircraft will be introduced.

  9. Review of airborne emissions from agricultural fumigants: design and uncertainty considerations for the use of the integrated horizontal flux method.

    PubMed

    Sullivan, D A; Ajwa, H A

    2011-01-01

    Ground-level area sources, such as those associated with the use of agricultural fumigants, waste disposal sites, wastewater lagoons, and other applications, present a challenge in terms of characterizing atmospheric flux as a function of time. Studies are costly in terms of field activities and laboratory analysis. The optimization of field study design, therefore, is essential to conduct cost-effective research. The collection of on-field profile data for airborne concentration, wind speed, and wind direction can be used in conjunction with the integrated horizontal flux (IHF) method to empirically compute complex source terms as a function of time. This paper focuses on complicating factors and field study design issues for the use of the IHF method. Insights and examples are drawn from five field research studies. The methods and results of characterizing the uncertainty and method precision in the emission fitting for the IHF method also are presented.

  10. Monitoring of topographic changes in glacier ice and lava during the 2014-2015 Bárðarbunga unrest with airborne radar profiling

    NASA Astrophysics Data System (ADS)

    Högnadóttir, Thórdís; Gudmundsson, Magnús T.; Gudbjörnsson, Snæbjörn; Lárusson, Örnólfur; Magnússon, Eyjólfur; Pálsson, Finnur; Reynolds, Hannah I.; Oddsson, Björn

    2015-04-01

    The subsidence of the ice covered Bárðarbunga caldera, creation and evolution of ice cauldrons over the subglacial path of the lateral dyke, and the formation of a large lava to the north of the Vatnajökull glacier has called for repeated survey of the evolving ice and lava topography. For these measurements a system is used that was designed to monitor glacier surfaces, principally with the aim of detecting changes in subglacial geothermal activity, particularly at the ice-covered Katla and Grímsvötn calderas. The system is composed of ground clearance radar and a sub-meter differential GPS system aboard a Beech B200 Super King Air, two-engine survey aircraft. The system measures the aircraft position, elevation and air clearance four times a second, yielding surface elevation point readings at 15-20 m intervals. The absolute accuracy of the system is estimated 2-3 meters while the relative accuracy is 1-2 m along the profiles that are usually flown at an altitude of 80-120 m over the measured surface. During the ongoing unrest since August 2014, tasks that have been carried out using the aircraft profiling platform include: Survey of the: (i) shape, depth and volume of the subsidence bowl formed in the ice surface in the Bárðarbunga caldera since late August; (ii) shape, depth and volume of small cauldrons considered to have formed in minor, short-lived subglacial eruptions to the SE of the Bárðarbunga caldera and on three locations in the outlet glacier overlying the path of the dyke formed in the second part of August; (iii) evolution of three geothermal ice cauldrons located over the topographic rims of the Bárðarbunga caldera, (iv) mapping of the graben formed to the south of the volcanic fissure in Holuhraun, and (v) the topography of the new lava field. Many of the above tasks could possibly be carried out using satellite data, but the limited repeat rate, interfering cloud cover and short winter days, and timing of satellite overpasses restricts

  11. Direct and indirect drift assessment means. Part 2: wind tunnel experiments.

    PubMed

    Nuyttens, D; De Schampheleire, M; Baetens, K; Sonck, B

    2008-01-01

    Wind tunnel measurements, performed in Silsoe Research Institute (SRI), were used to measure airborne and fallout spray volumes under directly comparable and repeatable conditions for single and static nozzles. Based on these measurements, drift potential reduction percentages (DPRP), expressing the percentage reduction of the drift potential compared with the reference spraying, were calculated following three approaches. The first approach was based on the calculation of the first moment of the airborne spray profile (DPRPv1). In the second and third approach, the surface under the measured airborne (DPRPv2) and fallout (DPRP(H)) deposit curve were used. These DPRP values express the percentage reduction of the drift potential compared with the reference spraying. Ten different spray nozzles were tested. The results showed the expected fallout profiles with the highest deposits closest to the nozzle and a systematic decrease with distance from the nozzle. For the airborne deposit profiles, the highest deposits were found at the Lowest collectors with an important systematic decrease with increasing heights. For the same nozzle size and spray pressure, DPRP values are generally higher for the air inclusion nozzles followed by the low-drift nozzles and the standard flat fan nozzles and the effect of nozzle type is most important for smaller nozzle sizes. In general, the bigger the ISO nozzle size, the higher the DPRP values. Comparing results from the three different approaches namely, DPRPv1, DPRPv2 and DPRP(H), some interesting conclusions can be drawn. For the standard flat fan nozzles, DPRPv1, values were the highest followed by DPRPv2 and DPRP(H) while for the low-drift nozzles opposite results were found. For the air inclusion nozzles, there was a relatively good agreement between DPRPv1, DPRPv1 and DPRP(H) values. All of this is important in the interpretation of wind tunnel data for different nozzle types and sampling methodologies.

  12. Long Term Three-dimensional Model Parameterization and Evaluation By The Use of Combined Continuous Ozone Lidar Profiles, Vertical Wind Profiles and Ground Based Monitors Obtained During The Escompte Campaign

    NASA Astrophysics Data System (ADS)

    Frejafon, E.; Robin, D.; Kalthoff, N.; Pesch, M.

    ESCOMPTE 2001 is a field experiment that took place in the southeast of France, in order to understand chemical transformation and transport and then to improve numer- ical models devoted to pollution study and forecasting. To achieve this goal, a stand alone ozone LIDAR was installed from June 11th to July 13th in Cadarache, 30 km northeast of the cities of Marseilles and Aix-en-Provence, downwind from the ozone precursors emissions zones in case of sea-breeze development conditions. This full automatic LIDAR provided vertical profiles of ozone concentration and also the mix- ing height dynamics, between 100 m and 2 500 m, with a spatial resolution of less than 100 m and a temporal resolution of 3 minutes. Data obtained with the LIDAR were connected to ground based ozone monitor installed on the same location by the air quality network, in order to evaluate the data quality and to obtain ozone verti- cal profiles from the ground level up to the free troposphere, which is an optimized support for tree-dimensional photochemical models parameterization and evaluation. The ozone diurnal cycles and the daily atmospheric stratification recorded during this month show the fast dynamics during pollution episodes, resulting from combined photochemical and transport effects in case of sea-breeze. They also specify the re- maining ozone vertical structure during non polluted episodes. Such long-term infor- mation is then a consistent support for model parameterization and evaluation, as it can specify the ozone concentration and the PBL dynamics from the beginning to the last end of a pollution episode. This one month vertical ozone profiles, which were compiled in a movie, will be presented and discussed more precisely. The obtained results, combined with continuous vertical wind profiles obtained with a SODAR and a ground based meteorological station installed on the same location, give access to the continuous ozone flux vertical profiles and the PBL dynamics.

  13. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  14. Airborne myxomycete spores: detection using molecular techniques

    NASA Astrophysics Data System (ADS)

    Kamono, Akiko; Kojima, Hisaya; Matsumoto, Jun; Kawamura, Kimitaka; Fukui, Manabu

    2009-01-01

    Myxomycetes are organisms characterized by a life cycle that includes a fruiting body stage. Myxomycete fruiting bodies contain spores, and wind dispersal of the spores is considered important for this organism to colonize new areas. In this study, the presence of airborne myxomycetes and the temporal changes in the myxomycete composition of atmospheric particles (aerosols) were investigated with a polymerase chain reaction (PCR)-based method for Didymiaceae and Physaraceae. Twenty-one aerosol samples were collected on the roof of a three-story building located in Sapporo, Hokkaido Island, northern Japan. PCR analysis of DNA extracts from the aerosol samples indicated the presence of airborne myxomycetes in all the samples, except for the one collected during the snowfall season. Denaturing gradient gel electrophoresis (DGGE) analysis of the PCR products showed seasonally varying banding patterns. The detected DGGE bands were subjected to sequence analyses, and four out of nine obtained sequences were identical to those of fruiting body samples collected in Hokkaido Island. It appears that the difference in the fruiting period of each species was correlated with the seasonal changes in the myxomycete composition of the aerosols. Molecular evidence shows that newly formed spores are released and dispersed in the air, suggesting that wind-driven dispersal of spores is an important process in the life history of myxomycetes. This study is the first to detect airborne myxomycetes with the use of molecular ecological analyses and to characterize their seasonal distribution.

  15. Wind, rain and bacteria: The effect of weather on the microbial composition of roof-harvested rainwater.

    PubMed

    Evans, C A; Coombes, P J; Dunstan, R H

    2006-01-01

    The microbiological and chemical quality of tank-stored rainwater is impacted directly by roof catchment and subsequent run-off contamination, via direct depositions by birds and small mammals, decay of accumulated organic debris, and atmospheric deposition of airborne micro-organisms and chemical pollutants. Previous literature reports on roof water quality have given little consideration to the relative significance of airborne micro-organisms. This study involved analyses of direct roof run-off at an urban housing development in Newcastle, on the east coast of Australia. A total of 77 samples were collected during 11 separate rainfall events, and microbial counts and mean concentrations of several ionic contaminants were matched to climatic data corresponding to each of the monitored events. Conditions both antecedent to, and those prevailing during each event, were examined to investigate the influence of certain meteorological parameters on the bacterial composition of the roof water and indirectly assess the relative contribution of airborne micro-organisms to the total bacterial load. Results indicated that airborne micro-organisms represented a significant contribution to the bacterial load of roof water at this site, and that the overall contaminant load was influenced by wind velocities, while the profile (composition) of the load varied with wind direction. The implications of these findings to the issues of tank water quality and health risk analysis, appropriate usage and system design are discussed.

  16. A wind chart to characterize potential offshore wind energy sites

    NASA Astrophysics Data System (ADS)

    del Jesus, F.; Menéndez, M.; Guanche, R.; Losada, I. J.

    2014-10-01

    Offshore wind industry needs to improve wind assessment in order to decrease the uncertainty associated to wind resource and its influence on financial requirements. Here, several features related to offshore wind resource assessment are discussed, such as input wind data, estimation of long-term and extreme wind statistics, the wind profile and climate variations. This work proposes an analytical method to characterize wind resource. Final product is a wind chart containing useful wind information that can be applied to any offshore sites. Using long-term time series of meteorological variables (e.g. wind speed and direction at different heights), the methodology is applied to five pilot sites in different countries along European Atlantic corridor and it is used to describe and compare offshore wind behavior.

  17. Risk factors for injuries during airborne static line operations.

    PubMed

    Knapik, Joseph J; Steelman, Ryan

    2014-01-01

    US Army airborne operations began in World War II. Continuous improvements in parachute technology, aircraft exit procedures, and ground landing techniques have reduced the number of injuries over time from 27 per 1,000 descents to about 6 per 1,000 jumps. Studies have identified a number of factors that put parachutists at higher injury risk, including high wind speeds, night jumps, combat loads, higher temperatures, lower fitness, heavier body weight, and older age. Airborne injuries can be reduced by limiting risker training (higher wind speeds, night jumps, combat load) to the minimum necessary for tactical and operational proficiency. Wearing a parachute ankle brace (PAB) will reduce ankle injuries without increasing other injuries and should be considered by all parachutists, especially those with prior ankle problems. A high level of upper body muscular endurance and aerobic fitness is not only beneficial for general health but also associated with lower injury risk during airborne training.

  18. O Star Wind Mass-Loss Rates and Shock Physics from X-ray Line Profiles in Archival XMM RGS Data

    NASA Astrophysics Data System (ADS)

    Cohen, David

    O stars are characterized by their dense, supersonic stellar winds. These winds are the site of X-ray emission from shock-heated plasma. By analyzing high-resolution X-ray spectra of these O stars, we can learn about the wind-shock heating and X-ray production mechanism. But in addition, the X-rays can also be used to measure the mass-loss rate of the stellar wind, which is a key observational quantity whose value affects stellar evolution and energy, momentum, and mass input to the Galactic interstellar medium. We make this X-ray based mass-loss measurement by analyzing the profile shapes of the X-ray emission lines observed at high resolution with the Chandra and XMM-Newton grating spectrometers. One advantage of our method is that it is insensitive to small-scale clumping that affects density-squared diagnostics. We are applying this analysis technique to O stars in the Chandra archive, and are finding mass-loss rates lower than those traditionally assumed for these O stars, and in line with more recent independent determinations that do account for clumping. By extending this analysis to the XMM RGS data archive, we will make significant contributions to the understanding of both X-ray production in O stars and to addressing the issue of the actual mass-loss rates of O stars. The XMM RGS data archive provides several extensions and advantages over the smaller Chandra HETGS archive: (1) there are roughly twice as many O and early B stars in the XMM archive; (2) the longer wavelength response of the RGS provides access to diagnostically important lines of nitrogen and carbon; (3) the very long, multiple exposures of zeta Pup provide the opportunity to study this canonical O supergiant's X-ray spectrum in unprecedented detail, including looking at the time variability of X-ray line profiles. Our research team has developed a sophisticated empirical line profile model as well as a computational infrastructure for fitting the model to high-resolution X-ray spectra

  19. On the extraction of wind information from the assimilation of ozone profiles in Météo France 4D-Var operational NWP suite

    NASA Astrophysics Data System (ADS)

    Semane, N.; Peuch, V.-H.; Pradier, S.; Desroziers, G.; El Amraoui, L.; Brousseau, P.; Massart, S.; Chapnik, B.; Peuch, A.

    2008-08-01

    By applying four-dimensional variational data-assimilation (4D-Var) to a combined ozone and dynamics Numerical Weather Prediction model (NWP), ozone observations generate wind increments through the ozone-dynamics coupling. The dynamical impact of Aura/MLS satellite ozone profiles is investigated using Météo France operational ARPEGE NWP 4D-Var assimilation system for a period of 3 months. A data-assimilation procedure has been designed and run on 6-h windows. The procedure includes: (1) 4D-Var assimilating both ozone and operational NWP standard observations, (2) ARPEGE transporting ozone as a passive-tracer, (3) MOCAGE, the Météo France chemistry and transport model re-initializing the ARPEGE ozone background at the beginning time of the assimilation window. The Degrees of Freedom for Signal diagnostics show that the MLS data covering the 68.1 31.6 hPa vertical pressure range are the most informative and their information content is nearly of the same order as tropospheric humidity-sensitive radiances. Furthermore, with the help of error variance reduction diagnostics, the ozone contribution to the reduction of the horizontal divergence background-error variance is shown to be better than tropospheric humidity-sensitive radiances. Moreover, by using observation minus forecast statistics, it is found that the ozone assimilation reduces the wind bias in the lower stratosphere.

  20. On the extraction of wind information from the assimilation of ozone profiles in Météo-France 4-D-Var operational NWP suite

    NASA Astrophysics Data System (ADS)

    Semane, N.; Peuch, V.-H.; Pradier, S.; Desroziers, G.; El Amraoui, L.; Brousseau, P.; Massart, S.; Chapnik, B.; Peuch, A.

    2009-07-01

    By applying four-dimensional variational data-assimilation (4-D-Var) to a combined ozone and dynamics Numerical Weather Prediction model (NWP), ozone observations generate wind increments through the ozone-dynamics coupling. The dynamical impact of Aura/MLS satellite ozone profiles is investigated using Météo-France operational ARPEGE NWP 4-D-Var assimilation system for a period of 3 months. A data-assimilation procedure has been designed and run on 6-h windows. The procedure includes: (1) 4-D-Var assimilating both ozone and operational NWP standard observations, (2) ARPEGE transporting ozone as a passive-tracer, (3) MOCAGE, the Météo-France chemistry and transport model re-initializing the ARPEGE ozone background at the beginning time of the assimilation window. Using observation minus forecast statistics, it is found that the ozone assimilation reduces the wind bias in the lower stratosphere. Moreover, the Degrees of Freedom for Signal diagnostics show that the MLS data covering the 68.1-31.6 hPa vertical pressure range are the most informative and their information content is nearly of the same order as tropospheric humidity-sensitive radiances. Furthermore, with the help of error variance reduction diagnostics, the ozone contribution to the reduction of the horizontal divergence background-error variance is shown to be better than tropospheric humidity-sensitive radiances.

  1. Curved PVDF airborne transducer.

    PubMed

    Wang, H; Toda, M

    1999-01-01

    In the application of airborne ultrasonic ranging measurement, a partially cylindrical (curved) PVDF transducer can effectively couple ultrasound into the air and generate strong sound pressure. Because of its geometrical features, the ultrasound beam angles of a curved PVDF transducer can be unsymmetrical (i.e., broad horizontally and narrow vertically). This feature is desired in some applications. In this work, a curved PVDF air transducer is investigated both theoretically and experimentally. Two resonances were observed in this transducer. They are length extensional mode and flexural bending mode. Surface vibration profiles of these two modes were measured by a laser vibrometer. It was found from the experiment that the surface vibration was not uniform along the curvature direction for both vibration modes. Theoretical calculations based on a model developed in this work confirmed the experimental results. Two displacement peaks were found in the piezoelectric active direction of PVDF film for the length extensional mode; three peaks were found for the flexural bending mode. The observed peak positions were in good agreement with the calculation results. Transient surface displacement measurements revealed that vibration peaks were in phase for the length extensional mode and out of phase for the flexural bending mode. Therefore, the length extensional mode can generate a stronger ultrasound wave than the flexural bending mode. The resonance frequencies and vibration amplitudes of the two modes strongly depend on the structure parameters as well as the material properties. For the transducer design, the theoretical model developed in this work can be used to optimize the ultrasound performance.

  2. Estimation of viable airborne microbes downwind from a point source.

    PubMed Central

    Lighthart, B; Frisch, A S

    1976-01-01

    Modification of the Pasquill atmospheric diffusion equations for estimating viable microbial airborne cell concentrations downwind form a continuous point source is presented. A graphical method is given to estimate the ground level cell concentration given (i) microbial death rate, (ii) mean wind speed, (iii) atmospheric stability class, (iv) downwind sample distance from the source, and (v) source height. PMID:1275491

  3. User definition and mission requirements for unmanned airborne platforms, revised

    NASA Technical Reports Server (NTRS)

    Kuhner, M. B.; Mcdowell, J. R.

    1979-01-01

    The airborne measurement requirements of the scientific and applications experiment user community were assessed with respect to the suitability of proposed strawman airborne platforms. These platforms provide a spectrum of measurement capabilities supporting associated mission tradeoffs such as payload weight, operating altitude, range, duration, flight profile control, deployment flexibility, quick response, and recoverability. The results of the survey are used to examine whether the development of platforms is warranted and to determine platform system requirements as well as research and technology needs.

  4. Validation of Rain Rate Retrievals for the Airborne Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Jacob, Maria; Salemirad, Matin; Jones, Linwood; Biswas, Sayak; Cecil, Daniel

    2015-01-01

    NASA's Global Hawk aircraft (AV1)has two microwave sensors: the passive Hurricane Imaging Radiometer (HIRAD), and the active High-altitude Imaging Wind and Rain Airborne Profiler(HIWRAP). Results are presented for a rain measurement validation opportunity that occurred in 2013, when the AV1 flew over a tropical squall-line that was simultaneously observed by the Tampa NEXRAD radar. During this experiment, Global Hawk made 3 passes over the rapidly propagating thunderstorm, while the TAMPA NEXRAD performed volume scans every 5 minutes. In this poster, the three-way inter-comparison of HIRAD Tb (base temperature), HIWRAP dbZ (decibels relative to equivalent reflectivity) and NEXRAD rain rate imagery are presented. Also, observed HIRAD Tbs are compared with theoretical radiative transfer model results using HIWRAP Rain Rates.

  5. Validation of Rain Rate Retrievals for the Airborne Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Jacob, Maria; Salemirad, Matin; Jones, W. Linwood; Biswas, Sayak; Cecil, Daniel

    2015-01-01

    On board of the NASA's Global Hawk (AV1) aircraft there are two microwave, namely: the passive microwave Hurricane Imaging Radiometer (HIRAD), and the active microwave High-altitude Imaging Wind and Rain Airborne Profiler (HIWRAP). This paper presents results from an unplanned rain rate measurement validation opportunity that occurred in 2013, when the Global Hawk aircraft flew over an intense tropical squall-line that was simultaneously observed, by the Tampa NEXRAD meteorological radar. During this experiment, Global Hawk flying at an altitude of 18 km made 3 passes over the rapidly propagating thunderstorm, while the TAMPA NEXRAD perform volume scans on a 5-minute interval. NEXRAD 2D images of rain rate (mm/hr) were obtained at two altitudes (3 km & 6 km), which serve as surface truth for the HIRAD rain rate retrievals. In this paper, results are presented of the three-way inter-comparison of HIRAD Tb, HIWRAP dbZ and NEXRAD rain rate imagery.

  6. The Multi-Dimensional Nature of Wind Shear Investigations

    NASA Technical Reports Server (NTRS)

    Cox, W. J.

    1977-01-01

    The impact of air carrier accidents has lead to investigations into the wind shear phenomenon. This report includes such topics as wind shear characterization, aircraft pilot performance in shear conditions, terminology and language development, wind shear forecasting, ground and flight wind shear displays, wind shear data collection and dissemination, and pilot factors associated with wind shear encounters. Some areas which show promise for short term solutions to the wind shear hazards includes: (1) improved gust front warning through ground based sensors; (2) greater pilot awareness of wind shear through improved training; and (3) airborne displays based on groundspeed/airspeed comparisons.

  7. Simulation study for measurement of horizontal wind profiles in the polar stratosphere and mesosphere using ground-based observations of ozone and carbon monoxide lines in the 230-250 GHz region

    NASA Astrophysics Data System (ADS)

    Newnham, David A.; Ford, George P.; Moffat-Griffin, Tracy; Pumphrey, Hugh C.

    2016-07-01

    Meteorological and atmospheric models are being extended up to 80 km altitude but there are very few observing techniques that can measure stratospheric-mesospheric winds at altitudes between 20 and 80 km to verify model datasets. Here we demonstrate the feasibility of horizontal wind profile measurements using ground-based passive millimetre-wave spectroradiometric observations of ozone lines centred at 231.28, 249.79, and 249.96 GHz. Vertical profiles of horizontal winds are retrieved from forward and inverse modelling simulations of the line-of-sight Doppler-shifted atmospheric emission lines above Halley station (75°37' S, 26°14' W), Antarctica. For a radiometer with a system temperature of 1400 K and 30 kHz spectral resolution observing the ozone 231.28 GHz line we estimate that 12 h zonal and meridional wind profiles could be determined over the altitude range 25-74 km in winter, and 28-66 km in summer. Height-dependent measurement uncertainties are in the range 3-8 m s-1 and vertical resolution ˜ 8-16 km. Under optimum observing conditions at Halley a temporal resolution of 1.5 h for measuring either zonal or meridional winds is possible, reducing to 0.5 h for a radiometer with a 700 K system temperature. Combining observations of the 231.28 GHz ozone line and the 230.54 GHz carbon monoxide line gives additional altitude coverage at 85 ± 12 km. The effects of clear-sky seasonal mean winter/summer conditions, zenith angle of the received atmospheric emission, and spectrometer frequency resolution on the altitude coverage, measurement uncertainty, and height and time resolution of the retrieved wind profiles have been determined.

  8. Atmospheric dispersion of airborne pollen evidenced by near-surface and columnar measurements in Barcelona, Spain

    NASA Astrophysics Data System (ADS)

    Sicard, Michaël.; Izquierdo, Rebeca; Jorba, Oriol; Alarcón, Marta; Belmonte, Jordina; Comerón, Adolfo; De Linares, Concepción; Baldasano, José Maria

    2016-10-01

    Hourly measurements of pollen near-surface concentration and lidar-derived profiles of volume and particle depolarization ratios during a 5-day pollination event observed in Barcelona, Spain, between 27 - 31 March, 2015, are presented. Maximum hourly pollen concentrations of 4700 and 1200 m-3 h-1 were found for Platanus and Pinus, respectively, which represented together more than 80 % of the total pollen. . The pollen concentration was found positively correlated with temperature (correlation coefficient, r, of 0.95) and wind speed (r = 0.82) and negatively correlated with relative humidity (r = -0.18). The ground concentration shows a clear diurnal cycle although pollen activity is also detected during nighttime in three occasions and is clearly associated with periods of strong wind speeds. Everyday a clear diurnal cycle caused by the vertical transport of the airborne pollen was visible on the lidar-derived profiles of the volume depolarization ratio with maxima usually reached between 12 and 15 UT. On average the volume depolarization ratios in the pollen plume ranged between 0.08 and 0.22. Except in the cases of nocturnal pollen activity, the correlation coefficients between volume depolarization ratio and near-surface concentration are high (>0.68). The dispersion of the Platanus and Pinus in the atmosphere was simulated with the Nonhydrostatic Multiscale Meteorological Model on the B grid at the Barcelona Supercomputing Center with a newly developed Chemical Transport Model (NMMB/BSC-CTM). Model near-surface daily pollen concentrations were compared to our observations at two sites: in Barcelona and Bellaterra (12 km NE of Barcelona). Model hourly pollen concentrations were compared to our observations in Barcelona. Better results are obtained for Pinus than for Platanus. Guidelines are proposed to improve the dispersion of airborne pollen by atmospheric models.

  9. Backscatter Modeling at 2.1 Micron Wavelength for Space-Based and Airborne Lidars Using Aerosol Physico-Chemical and Lidar Datasets

    NASA Technical Reports Server (NTRS)

    Srivastava, V.; Rothermel, J.; Jarzembski, M. A.; Clarke, A. D.; Cutten, D. R.; Bowdle, D. A.; Spinhirne, J. D.; Menzies, R. T.

    1999-01-01

    Space-based and airborne coherent Doppler lidars designed for measuring global tropospheric wind profiles in cloud-free air rely on backscatter, beta from aerosols acting as passive wind tracers. Aerosol beta distribution in the vertical can vary over as much as 5-6 orders of magnitude. Thus, the design of a wave length-specific, space-borne or airborne lidar must account for the magnitude of 8 in the region or features of interest. The SPAce Readiness Coherent Lidar Experiment under development by the National Aeronautics and Space Administration (NASA) and scheduled for launch on the Space Shuttle in 2001, will demonstrate wind measurements from space using a solid-state 2 micrometer coherent Doppler lidar. Consequently, there is a critical need to understand variability of aerosol beta at 2.1 micrometers, to evaluate signal detection under varying aerosol loading conditions. Although few direct measurements of beta at 2.1 micrometers exist, extensive datasets, including climatologies in widely-separated locations, do exist for other wavelengths based on CO2 and Nd:YAG lidars. Datasets also exist for the associated microphysical and chemical properties. An example of a multi-parametric dataset is that of the NASA GLObal Backscatter Experiment (GLOBE) in 1990 in which aerosol chemistry and size distributions were measured concurrently with multi-wavelength lidar backscatter observations. More recently, continuous-wave (CW) lidar backscatter measurements at mid-infrared wavelengths have been made during the Multicenter Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiment in 1995. Using Lorenz-Mie theory, these datasets have been used to develop a method to convert lidar backscatter to the 2.1 micrometer wavelength. This paper presents comparison of modeled backscatter at wavelengths for which backscatter measurements exist including converted beta (sub 2.1).

  10. Raindrop size distribution and vertical velocity characteristics in the rainband of Hurricane Bolaven (2012) observed by a 1290 MHz wind profiler

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Kyun; Lee, Dong-In

    2017-03-01

    Microphysics and vertical velocity characteristics between weak and strong rainband regions of Hurricane Bolaven were investigated primarily from 1290 MHz (UHF) wind profiler measurements on 27-28 August 2012. With a focus on regions with radar reflectivities greater than 30 dBZ below a melting level, raindrop size distributions (DSDs) and related rain parameters retrieved from profiler Doppler spectra were examined. Temporal variations in vertical structure and bright band from a widespread stratiform to a relatively narrow, intense rainband were examined as the rainbands move over the land in the southern coast of Korea. Based on vertical characteristics in radar reflectivity, Doppler velocity, and vertical air motion (w) profiles, the rainbands were classified into a stratiform (S) region with a strong bright band and mixed stratiform-convective (S-C) region with a weak or non-existent bright band. The retrieved w fields showed that updrafts were dominant in the mixed S-C region and downdrafts in the S region. More broad histograms in both radar reflectivity (Z) and mass-weighted mean diameter (Dm) were found in the S period. Compared to the Z distribution, rain rate (R) was more widely distributed in the mixed S-C region than in the S region. This is largely because R values were more variable in association with stronger updrafts in this region since they depend on fall velocities of raindrops. Higher R and smaller Dm mean values were analyzed within relatively strong updrafts in the mixed S-C period compared to those in the S period. Even when the w correction is applied, the mean Dm was still slightly smaller in the mixed S-C region, indicating that there is a relatively larger number of small drops than those in the S region.

  11. Airborne Next: Rethinking Airborne Organization and Applying New Concepts

    DTIC Science & Technology

    2015-06-01

    structures since its employment on a large scale during World War II. It is puzzling to consider how little airborne organizational structures and employment...future potential of airborne concepts by rethinking traditional airborne organizational structures and employment concepts. Using a holistic approach in... structures of airborne forces to model a “small and many” approach over a “large and few” approach, while incorporating a “swarming” concept. Utilizing

  12. Airborne soil particulates as vehicles for Salmonella contamination of tomatoes.

    PubMed

    Kumar, Govindaraj Dev; Williams, Robert C; Al Qublan, Hamzeh M; Sriranganathan, Nammalwar; Boyer, Renee R; Eifert, Joseph D

    2017-02-21

    The presence of dust is ubiquitous in the produce growing environment and its deposition on edible crops could occur. The potential of wind-distributed soil particulate to serve as a vehicle for S. Newport transfer to tomato blossoms and consequently, to fruits, was explored. Blossoms were challenged with previously autoclaved soil containing S. Newport (9.39log CFU/g) by brushing and airborne transfer. One hundred percent of blossoms brushed with S. Newport-contaminated soil tested positive for presence of the pathogen one week after contact (P<0.0001). Compressed air was used to simulate wind currents and direct soil particulates towards blossoms. Airborne soil particulates resulted in contamination of 29% of the blossoms with S. Newport one week after contact. Biophotonic imaging of blossoms post-contact with bioluminescent S. Newport-contaminated airborne soil particulates revealed transfer of the pathogen on petal, stamen and pedicel structures. Both fruits and calyxes that developed from blossoms contaminated with airborne soil particulates were positive for presence of S. Newport in both fruit (66.6%) and calyx (77.7%). Presence of S. Newport in surface-sterilized fruit and calyx tissue tested indicated internalization of the pathogen. These results show that airborne soil particulates could serve as a vehicle for Salmonella. Hence, Salmonella contaminated dust and soil particulate dispersion could contribute to pathogen contamination of fruit, indicating an omnipresent yet relatively unexplored contamination route.

  13. Gulf stream ground truth project - Results of the NRL airborne sensors

    NASA Technical Reports Server (NTRS)

    Mcclain, C. R.; Chen, D. T.; Hammond, D. L.

    1980-01-01

    Results of an airborne study of the waves in the Gulf Stream are presented. These results show that the active microwave sensors (high-flight radar and wind-wave radar) provide consistent and accurate estimates of significant wave height and surface wind speed, respectively. The correlation between the wave height measurements of the high-flight radar and a laser profilometer is excellent.

  14. Concentrations of trace elements and compounds in the airborne suspended particulate matter in Cleveland, Ohio, from August 1971 to August 1972 and their dependence on wind direction: Complete data listing and concentration roses

    NASA Technical Reports Server (NTRS)

    King, R. B.; Neustadter, H. E.

    1976-01-01

    Concentrations of 75 chemical constituents in the airborne particulate matter were measured in Cleveland, Ohio during 1971 and 1972. Daily values, maxima, geometric means and their standard deviations covering a 1-year period (45 to 50 sampling days) at each of 16 sites are presented on microfiche for 60 elements, and for a lesser number of days for 10 polycyclic aromatic hydrocarbon compounds (PAH), the aliphatic hydrocarbon compounds (AH) as a group and carbon. In addition, concentration roses showing directional properties are presented for 39 elements, 10 PAH and the AH as a group. The elements (except carbon) are shown both in terms of concentration and percentage of the suspended particulate matter.

  15. Modelling airborne concentration and deposition rate of maize pollen

    NASA Astrophysics Data System (ADS)

    Jarosz, Nathalie; Loubet, Benjamin; Huber, Laurent

    2004-10-01

    The introduction of genetically modified (GM) crops has reinforced the need to quantify gene flow from crop to crop. This requires predictive tools which take into account meteorological conditions, canopy structure as well as pollen aerodynamic characteristics. A Lagrangian Stochastic (LS) model, called SMOP-2D (Stochastic Mechanistic model for Pollen dispersion and deposition in 2 Dimensions), is presented. It simulates wind dispersion of pollen by calculating individual pollen trajectories from their emission to their deposition. SMOP-2D was validated using two field experiments where airborne concentration and deposition rate of pollen were measured within and downwind from different sized maize (Zea mays) plots together with micrometeorological measurements. SMOP-2D correctly simulated the shapes of the concentration profiles but generally underestimated the deposition rates in the first 10 m downwind from the source. Potential explanations of this discrepancy are discussed. Incorrect parameterisation of turbulence in the transition from the crop to the surroundings is probably the most likely reason. This demonstrates that LS models for particle transfer need to be coupled with air-flow models under complex terrain conditions.

  16. A prospectus on airborne laser mapping systems

    NASA Technical Reports Server (NTRS)

    Link, L. E.; Krabill, W. B.; Swift, R. N.

    1983-01-01

    Airborne laser systems have demonstrated enormous potential for topographic and bathymetric mapping. Both profiling and scanning systems have been evaluated for terrain elevation mapping, stream valley cross-section determination, and nearshore bottom profiling. Performance of the laser systems has been impressive and for some applications matches current operational accuracy requirements. Determining the position of individual laser measurements remains a constraint for most applications. Laser technology constrains some terrain and bathymetric applications, particularly for water penetration and frequency of measurements for high-spatial resolution over large areas.

  17. Using airborne and satellite SAR for wake mapping offshore

    NASA Astrophysics Data System (ADS)

    Christiansen, Merete B.; Hasager, Charlotte B.

    2006-09-01

    Offshore wind energy is progressing rapidly around Europe. One of the latest initiatives is the installation of multiple wind farms in clusters to share cables and maintenance costs and to fully exploit premium wind resource sites. For siting of multiple nearby wind farms, the wind turbine wake effect must be considered. Synthetic aperture radar (SAR) is an imaging remote sensing technique which offers a unique opportunity to describe spatial variations of wind speed offshore. For the first time an airborne SAR instrument was used for data acquisition over a large offshore wind farm. The aim was to identify the turbine wake effect from SAR-derived wind speed maps as a downstream region of reduced wind speed. The aircraft SAR campaign was conducted on 12 October 2003 over the wind farm at Horns Rev in the North Sea. Nearly simultaneous measurements were acquired over the area by the SAR on board the ERS-2 satellite. In addition, meteorological data were collected. Both aircraft and satellite SAR-derived wind speed maps showed significant velocity deficits downstream of the wind farm. Wind speed maps retrieved from aircraft SAR suggested deficits of up to 20% downstream of the last turbine, whereas satellite SAR-derived maps showed deficits of the order of 10%. The difference originated partly from the two different reference methods used for normalization of measured wind speeds. The detected region of reduced wind speed had the same width as the wind turbine array, indicating a low degree of horizontal wake dispersion. The downstream wake extent was approximately 10 km, which corresponds well with results from previous studies and with wake model predictions. Copyright

  18. Airborne X-band SAR tomography for forest volumes

    NASA Astrophysics Data System (ADS)

    Muirhead, Fiona; Woodhouse, Iain H.; Mulgrew, Bernard

    2016-10-01

    We evaluate the usefulness of X-band, airborne (helicopter) data for tomography over forestry regions and discuss the use of compressive sensing algorithms to aid X-band airborne tomography. This work examines if there is any information that can be gained from forest volumes when analysing forestry sites using X-band data. To do so, different forest scenarios were simulated and a fast SAR simulator was used to model airborne multipass SAR data, at X-band, with parameters based on Leonardo's PicoSAR instrument. Model simulations considered varying factors that affect the height determination when using tomography. The main parameters that are considered here are: motion errors of the platform, the spacing of the flight paths, the resolution of the SAR images and plant life being present under the canopy (an understory). It was found that residual motion errors from the airborne platform cause the largest error in the tomographic profile.

  19. An Improved Airborne Wind Measurement Technique for the NAE (National Aeronautical Establishment) Twin Otter (Nouvelle Methode De Mesure Du Vent En Vol a Bord Du Twin Otter De L’ena)

    DTIC Science & Technology

    1989-11-01

    filtre de Kalman , laquelle rdsout ce probl~me et permet de mesurer le vent avec une exactitude sup6rieure A celle des anciennes m6thodes. D’apr6s les...premiers r6sultats bases sur ’application d’un filtre de Kalman aux donn6es des essaip en vol du Twin Otter, il semble qu’il soit possible d’obtenir...actually degrading wind computation accuracy compared with older techniques. A new wind measurement technique, based on a Kalman filter integrated

  20. Airborne Infrared Spectrograph for Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Golub, L.; Cheimets, P.; DeLuca, E. E.; Samra, J.; Judge, P. G.

    2015-12-01

    Direct measurements of the coronal magnetic field have significant potential to enhance our understanding of coronal dynamics, and improve forecasting models. Of particular interest are observations of coronal field lines in the Transition Corona, the transitional region between closed and open flux systems, providing important information on eruptive instabilities and on the origin of the slow solar wind. While current instruments routinely observe the photospheric and chromospheric magnetic fields, the proposed airborne spectrometer will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. The targeted lines are five forbidden magnetic dipole transitions between 1.4 and 4 um. The airborne system will consist of a telescope, grating spectrometer and pointing/stabilization system to be flown on the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) during the 21 August 2017 total solar eclipse. We will discuss the scientific objectives of the 2017 flight, describe details of the instrument design, and present the observing program for the eclipse.

  1. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  2. Observation of a tropopause fold by MARA VHF wind-profiler radar and ozonesonde at Wasa, Antarctica: comparison with ECMWF analysis and a WRF model simulation

    NASA Astrophysics Data System (ADS)

    Mihalikova, M.; Kirkwood, S.; Arnault, J.; Mikhaylova, D.

    2012-09-01

    Tropopause folds are one of the mechanisms of stratosphere-troposphere exchange, which can bring ozone rich stratospheric air to low altitudes in the extra-tropical regions. They have been widely studied at northern mid- or high latitudes, but so far almost no studies have been made at mid- or high southern latitudes. The Moveable Atmospheric Radar for Antarctica (MARA), a 54.5 MHz wind-profiler radar, has operated at the Swedish summer station Wasa, Antarctica (73° S, 13.5° W) during austral summer seasons from 2007 to 2011 and has observed on several occasions signatures similar to those caused by tropopause folds at comparable Arctic latitudes. Here a case study is presented of one of these events when an ozonesonde successfully sampled the fold. Analysis from European Center for Medium Range Weather Forecasting (ECMWF) is used to study the circumstances surrounding the event, and as boundary conditions for a mesoscale simulation using the Weather Research and Forecasting (WRF) model. The fold is well resolved by the WRF simulation, and occurs on the poleward side of the polar jet stream. However, MARA resolves fine-scale layering associated with the fold better than the WRF simulation.

  3. Constraints on Porosity and Mass Loss in O-star Winds from the Modeling of X-ray Emission Line Profile Shapes

    NASA Technical Reports Server (NTRS)

    Leutenegger, Maurice A.; Cohen, David H.; Sundqvist, Jon O.; Owocki, Stanley P.

    2013-01-01

    We fit X-ray emission line profiles in high resolution XMM-Newton and Chandra grating spectra of the early O supergiant Zeta Pup with models that include the effects of porosity in the stellar wind. We explore the effects of porosity due to both spherical and flattened clumps. We find that porosity models with flattened clumps oriented parallel to the photosphere provide poor fits to observed line shapes. However, porosity models with isotropic clumps can provide acceptable fits to observed line shapes, but only if the porosity effect is moderate. We quantify the degeneracy between porosity effects from isotropic clumps and the mass-loss rate inferred from the X-ray line shapes, and we show that only modest increases in the mass-loss rate (40%) are allowed if moderate porosity effects (h(sub infinity) less than approximately R(sub *)) are assumed to be important. Large porosity lengths, and thus strong porosity effects, are ruled out regardless of assumptions about clump shape. Thus, X-ray mass-loss rate estimates are relatively insensitive to both optically thin and optically thick clumping. This supports the use of X-ray spectroscopy as a mass-loss rate calibration for bright, nearby O stars

  4. Airborne Remote Sensing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA imaging technology has provided the basis for a commercial agricultural reconnaissance service. AG-RECON furnishes information from airborne sensors, aerial photographs and satellite and ground databases to farmers, foresters, geologists, etc. This service produces color "maps" of Earth conditions, which enable clients to detect crop color changes or temperature changes that may indicate fire damage or pest stress problems.

  5. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  6. Airborne asbestos in buildings.

    PubMed

    Lee, R J; Van Orden, D R

    2008-03-01

    The concentration of airborne asbestos in buildings nationwide is reported in this study. A total of 3978 indoor samples from 752 buildings, representing nearly 32 man-years of sampling, have been analyzed by transmission electron microscopy. The buildings that were surveyed were the subject of litigation related to suits alleging the general building occupants were exposed to a potential health hazard as a result the presence of asbestos-containing materials (ACM). The average concentration of all airborne asbestos structures was 0.01structures/ml (s/ml) and the average concentration of airborne asbestos > or = 5microm long was 0.00012fibers/ml (f/ml). For all samples, 99.9% of the samples were <0.01 f/ml for fibers longer than 5microm; no building averaged above 0.004f/ml for fibers longer than 5microm. No asbestos was detected in 27% of the buildings and in 90% of the buildings no asbestos was detected that would have been seen optically (> or = 5microm long and > or = 0.25microm wide). Background outdoor concentrations have been reported at 0.0003f/ml > or = 5microm. These results indicate that in-place ACM does not result in elevated airborne asbestos in building atmospheres approaching regulatory levels and that it does not result in a significantly increased risk to building occupants.

  7. Photoreactivation in Airborne Mycobacterium parafortuitum

    PubMed Central

    Peccia, Jordan; Hernandez, Mark

    2001-01-01

    Photoreactivation was observed in airborne Mycobacterium parafortuitum exposed concurrently to UV radiation (254 nm) and visible light. Photoreactivation rates of airborne cells increased with increasing relative humidity (RH) and decreased with increasing UV dose. Under a constant UV dose with visible light absent, the UV inactivation rate of airborne M. parafortuitum cells decreased by a factor of 4 as RH increased from 40 to 95%; however, under identical conditions with visible light present, the UV inactivation rate of airborne cells decreased only by a factor of 2. When irradiated in the absence of visible light, cellular cyclobutane thymine dimer content of UV-irradiated airborne M. parafortuitum and Serratia marcescens increased in response to RH increases. Results suggest that, unlike in waterborne bacteria, cyclobutane thymine dimers are not the most significant form of UV-induced DNA damage incurred by airborne bacteria and that the distribution of DNA photoproducts incorporated into UV-irradiated airborne cells is a function of RH. PMID:11526027

  8. The Wind Integration National Dataset (WIND) toolkit (Presentation)

    SciTech Connect

    Caroline Draxl: NREL

    2014-01-01

    Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

  9. Amplified wind turbine apparatus

    NASA Technical Reports Server (NTRS)

    Hein, L. A.; Myers, W. N. (Inventor)

    1982-01-01

    An invention related to the utilization of wind energy and increasing the effects thereof for power generation is described. Amplified wind turbine apparatus is disclosed wherein ambient inlet air is prerotated in a first air rotation chamber having a high pressure profile increasing the turbulence and Reynolds number thereof. A second rotation chamber adjacent and downstream of the turbine has a low pressure core profile whereby flow across the turbine is accelerated and thereafter exits the turbine apparatus through a draft anti-interference device. Interference with ambient winds at the outlet of the turbine apparatus is thus eliminated. Pivotable vanes controlled in response to prevailing wind direction admit air to the chambers and aid in imparting rotation. A central core may be utilized for creating the desired pressure profile in the chamber.

  10. Lidar Applications in Atmospheric Dynamics: Measurements of Wind, Moisture and Boundary Layer Evolution

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Whiteman, David; Gentry, Bruce; Schwemmer, Geary; Evans, Keith; DiGirolamo, Paolo; Comer, Joseph

    2005-01-01

    A large array of state-of-the-art ground-based and airborne remote and in-situ sensors were deployed during the International H2O Project (THOP), a field experiment that took place over the Southern Great Plains (SGP) of the United States from 13 May to 30 June 2002. These instruments provided extensive measurements of water vapor mixing ratio in order to better understand the influence of its variability on convection and on the skill of quantitative precipitation prediction (Weckwerth et all, 2004). Among the instrument deployed were ground based lidars from NASA/GSFC that included the Scanning Raman Lidar (SRL), the Goddard Laboratory for Observing Winds (GLOW), and the Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE). A brief description of the three lidars is given below. This study presents ground-based measurements of wind, boundary layer structure and water vapor mixing ratio measurements observed by three co-located lidars during MOP at the MOP ground profiling site in the Oklahoma Panhandle (hereafter referred as Homestead). This presentation will focus on the evolution and variability of moisture and wind in the boundary layer when frontal and/or convergence boundaries (e.g. bores, dry lines, thunderstorm outflows etc) were observed.

  11. MULTIPLY: Development of a European HSRL Airborne Facility

    NASA Astrophysics Data System (ADS)

    Binietoglou, Ioannis; Serikov, Ilya; Nicolae, Doina; Amiridis, Vassillis; Belegante, Livio; Boscornea, Andrea; Brugmann, Bjorn; Costa Suros, Montserrat; Hellmann, David; Kokkalis, Panagiotis; Linne, Holger; Stachlewska, Iwona; Vajaiac, Sorin-Nicolae

    2016-08-01

    MULTIPLY is a novel airborne high spectral resolution lidar (HSRL) currently under development by a consortium of European institutions from Romania, Germany, Greece, and Poland. Its aim is to contribute to calibration and validations activities of the upcoming ESA aerosol sensing missions like ADM-Aeolus, EarthCARE and the Sentinel-3/-4/-5/-5p which include products related to atmospheric aerosols. The effectiveness of these missions depends on independent airborne measurements to develop and test the retrieval methods, and validate mission products following launch. The aim of ESA's MULTIPLY project is to design, develop, and test a multi-wavelength depolarization HSRL for airborne applications. The MULTIPLY lidar will deliver the aerosol extinction and backscatter coefficient profiles at three wavelengths (355nm, 532nm, 1064nm), as well as profiles of aerosol intensive parameters (Ångström exponents, extinction- to-backscatter ratios, and linear particle depolarization ratios).

  12. Absolute airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Baumann, Henri

    This work consists of a feasibility study of a first stage prototype airborne absolute gravimeter system. In contrast to relative systems, which are using spring gravimeters, the measurements acquired by absolute systems are uncorrelated and the instrument is not suffering from problems like instrumental drift, frequency response of the spring and possible variation of the calibration factor. The major problem we had to resolve were to reduce the influence of the non-gravitational accelerations included in the measurements. We studied two different approaches to resolve it: direct mechanical filtering, and post-processing digital compensation. The first part of the work describes in detail the different mechanical passive filters of vibrations, which were studied and tested in the laboratory and later in a small truck in movement. For these tests as well as for the airborne measurements an absolute gravimeter FG5-L from Micro-G Ltd was used together with an Inertial navigation system Litton-200, a vertical accelerometer EpiSensor, and GPS receivers for positioning. These tests showed that only the use of an optical table gives acceptable results. However, it is unable to compensate for the effects of the accelerations of the drag free chamber. The second part describes the strategy of the data processing. It is based on modeling the perturbing accelerations by means of GPS, EpiSensor and INS data. In the third part the airborne experiment is described in detail, from the mounting in the aircraft and data processing to the different problems encountered during the evaluation of the quality and accuracy of the results. In the part of data processing the different steps conducted from the raw apparent gravity data and the trajectories to the estimation of the true gravity are explained. A comparison between the estimated airborne data and those obtained by ground upward continuation at flight altitude allows to state that airborne absolute gravimetry is feasible and

  13. Wind models for the NSTS ascent trajectory biasing for wind load alleviation

    NASA Technical Reports Server (NTRS)

    Smith, O. E.; Adelfang, S. I.; Batts, G. W.

    1990-01-01

    New concepts are presented for aerospace vehicle ascent wind profile biasing. The purpose for wind biasing the ascent trajectory is to provide ascent wind loads relief and thus decrease the probability for launch delays due to wind loads exceeding critical limits. Wind biasing trajectories to the the profile of monthly mean winds have been widely used for this purpose. The wind profile models presented give additional alternatives for wind biased trajectories. They are derived from the properties of the bivariate normal probability function using the available wind statistical parameters for the launch site. The analytical expressions are presented to permit generalizations. Specific examples are given to illustrate the procedures. The wind profile models can be used to establish the ascent trajectory steering commands to guide the vehicle through the first stage. For the National Space Transportation System (NSTS) program these steering commands are called I-loads.

  14. Wind models for the NSTS ascent trajectory biasing for wind load alleviation

    NASA Technical Reports Server (NTRS)

    Smith, O. E.; Adelfang, S. I.; Batts, G. W.; Hill, C. K.

    1989-01-01

    New concepts are presented for aerospace vehicle ascent wind profile biasing. The purpose for wind biasing the ascent trajectory is to provide ascent wind loads relief and thus decrease the probability for launch delays due to wind loads exceeding critical limits. Wind biasing trajectories to the profile of monthly mean winds have been widely used for this purpose. The wind profile models presented give additional alternatives for wind biased trajectories. They are derived from the properties of the bivariate normal probability function using the available wind statistical parameters for the launch site. The analytical expressions are presented to permit generalizations. Specific examples are given to illustrate the procedures. The wind profile models can be used to establish the ascent trajectory steering commands to guide the vehicle through the first stage. For the National Space Transportation System (NSTS) program these steering commands are called I-loads.

  15. Airborne Lidar Observations of Tropospheric Aerosols during the GLOBE Pacific Circumnavigation Missions of 1989 and 1990

    NASA Technical Reports Server (NTRS)

    Menzies, R.; Tratt, D.

    1995-01-01

    Tropospheric and lower stratospheric aerosol backscatter profiles were obtained with an airborne backscatter lidar during the NASA Globe Backscatter Experiment (GLOBE) missions in November 1989 and May/June 1990.

  16. Airborne Observations of Ozone and Other Trace Gases Upwind of National Parks in California and Nevada

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.

    2016-01-01

    The Alpha Jet Atmospheric eXperiment (AJAX) is a research project based at Moffett Field, CA, which collects airborne measurements of ozone, carbon dioxide, methane, water vapor, and formaldehyde, as well as 3-D winds, temperature, pressure, and location. Since its first science flight in 2011, AJAX has developed a wide a variety of mission types, combining vertical profiles (from approximately 8 km to near surface), boundary layer legs, and plume sampling as needed. With an ongoing five-year data set, the team has sampled over 160 vertical profiles, a dozen wildfires, and numerous stratospheric ozone intrusions. Our largest data collection includes 55 vertical profiles at Railroad Valley, NV, approximately 100 miles southwest of Great Basin National Park, and many of those flights include comparisons to surface monitors in the Nevada Rural Ozone Initiative network. We have also collected a smaller set of measurements northwest of Joshua Tree National Park, and are looking to develop partnerships that can put this data to use to assess or improve air quality in nearby Parks. AJAX also studies the plumes emitted by wildfires in California, as most emissions inventories are based on prescribed fires. We have sampled a dozen fires, and results will be presented from several, including the Rim (2013), Soberanes and Cedar (2016) Fires.

  17. Airborne Intercept Monitoring

    DTIC Science & Technology

    2006-04-01

    Primary mirror of Zerodur with Pilkington 747 coating • FOV = 0.104 degrees Airborne Intercept Monitoring RTO-MP-SET-105 16 - 3 UNCLASSIFIED...Pointing System (SPS). The STS is a 0.75 meter aperture Mersenne Cassegrain telescope and the SAT is a 0.34 meter aperture 3- mirror anastigmat telescope...UNLIMITED UNCLASSIFIED/UNLIMITED • Air Flow to Mitigate Thermal “Seeing” Effects • Light weighted primary mirror to reduce mass The SAT

  18. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  19. Airborne Infrared Astronomical Telescopes

    NASA Astrophysics Data System (ADS)

    Erickson, Edwin F.

    2017-01-01

    A unique program of infrared astronomical observations from aircraft evolved at NASA’s Ames Research Center, beginning in the 1960s. Telescopes were flown on a Convair 990, a Lear Jet, and a Lockheed C-141 - the Kuiper Airborne Observatory (KAO) - leading to the planning and development of SOFIA: a 2.7 m telescope now flying on a Boeing 747SP. The poster describes these telescopes and highlights of some of the scientific results obtained from them.

  20. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  1. Average Magnetic Field Magnitude Profiles of Wind Magnetic Clouds as a Function of Closest Approach to the Clouds' Axes and Comparison to Model

    NASA Astrophysics Data System (ADS)

    Lepping, R. P.; Berdichevsky, D. B.; Wu, C.-C.

    2017-02-01

    We examine the average magnetic field magnitude (| B | ≡ B) within magnetic clouds (MCs) observed by the Wind spacecraft from 1995 to July 2015 to understand the difference between this B and the ideal B-profiles expected from using the static, constant-α, force-free, cylindrically symmetric model for MCs of Lepping, Jones, and Burlaga ( J. Geophys. Res. 95, 11957, 1990, denoted here as the LJB model). We classify all MCs according to an assigned quality, Q0 (= 1, 2, 3, for excellent, good, and poor). There are a total of 209 MCs and 124 when only Q0 = 1, 2 cases are considered. The average normalized field with respect to the closest approach (CA) is stressed, where we separate cases into four CA sets centered at 12.5 %, 37.5 %, 62.5 %, and 87.5 % of the average radius; the averaging is done on a percentage-duration basis to treat all cases the same. Normalized B means that before averaging, the B for each MC at each point is divided by the LJB model-estimated B for the MC axis, B0. The actual averages for the 209 and 124 MC sets are compared to the LJB model, after an adjustment for MC expansion ( e.g. Lepping et al. in Ann. Geophys. 26, 1919, 2008). This provides four separate difference-relationships, each fitted with a quadratic ( Quad) curve of very small σ. Interpreting these Quad formulae should provide a comprehensive view of the variation in normalized B throughout the average MC, where we expect external front and rear compression to be part of its explanation. These formulae are also being considered for modifying the LJB model. This modification will be used in a scheme for forecasting the timing and magnitude of magnetic storms caused by MCs. Extensive testing of the Quad formulae shows that the formulae are quite useful in correcting individual MC B-profiles, especially for the first {≈ }1/3 of these MCs. However, the use of this type of B correction constitutes a (slight) violation of the force-free assumption used in the original LJB MC model.

  2. Airborne field strength monitoring

    NASA Astrophysics Data System (ADS)

    Bredemeyer, J.; Kleine-Ostmann, T.; Schrader, T.; Münter, K.; Ritter, J.

    2007-06-01

    In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper.

  3. Airborne Dial Remote Sensing of the Arctic Ozone Layer

    NASA Technical Reports Server (NTRS)

    Wirth, Martin; Renger, Wolfgang; Ehret, Gerhard

    1992-01-01

    A combined ozone and aerosol LIDAR was developed at the Institute of Physics of the Atmosphere at the DLR in Oberpfaffenhofen. It is an airborne version, that, based on the DIAL-principle, permits the recording of two-dimensional ozone profiles. This presentation will focus on the ozone-part; the aerosol subsection will be treated later.

  4. Measurement of airborne particle concentrations near the Sunset Crater volcano, Arizona.

    PubMed

    Benke, Roland R; Hooper, Donald M; Durham, James S; Bannon, Donald R; Compton, Keith L; Necsoiu, Marius; McGinnis, Ronald N

    2009-02-01

    Direct measurements of airborne particle mass concentrations or mass loads are often used to estimate health effects from the inhalation of resuspended contaminated soil. Airborne particle mass concentrations were measured using a personal sampler under a variety of surface-disturbing activities within different depositional environments at both volcanic and nonvolcanic sites near the Sunset Crater volcano in northern Arizona. Focused field investigations were performed at this analog site to improve the understanding of natural and human-induced processes at Yucca Mountain, Nevada. The level of surface-disturbing activity was found to be the most influential factor affecting the measured airborne particle concentrations, which increased over three orders of magnitude relative to ambient conditions. As the surface-disturbing activity level increased, the particle size distribution and the majority of airborne particle mass shifted from particles with aerodynamic diameters less than 10 mum (0.00039 in) to particles with aerodynamic diameters greater than 10 mum (0.00039 in). Under ambient conditions, above average wind speeds tended to increase airborne particle concentrations. In contrast, stronger winds tended to decrease airborne particle concentrations in the breathing zone during light and heavy surface-disturbing conditions. A slight increase in the average airborne particle concentration during ambient conditions was found above older nonvolcanic deposits, which tended to be finer grained than the Sunset Crater tephra deposits. An increased airborne particle concentration was realized when walking on an extremely fine-grained deposit, but the sensitivity of airborne particle concentrations to the resuspendible fraction of near-surface grain mass was not conclusive in the field setting when human activities disturbed the bulk of near-surface material. Although the limited sample size precluded detailed statistical analysis, the differences in airborne particle

  5. A year-round study on functional relationships of airborne fungi with meteorological factors

    NASA Astrophysics Data System (ADS)

    Li, De-Wei; Kendrick, Bryce

    1995-06-01

    Air sampling was conducted in Waterloo, Canada throughout 1992. Functional relationships between aeromycota and meteorological factors were analysed. The meteorological factors were, in descending order of importance: mean temperature, minimum temperature, maximum temperature, mean wind speed, relative humidity (RH), rain, maximum wind speed and snow. The most important airborne fungal propagules in descending order were: total fungal spores, unidentified Ascomycetes, Cladosporium, Coprinus, unidentified Basidiomycetes, Alternaria and unidentified fungi. Most airborne fungal taxa had highly significant relationship with temperature, but Aspergillus/Penicillium, hyphal fragments and Epicoccum did not. Epicoccum and hyphal fragments were positively associated with wind speed. In comparison with other airborne fungal taxa, Leptosphaeria and unidentified Ascomycetes were more closely correlated with rain and RH during the growing season.

  6. Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint

    SciTech Connect

    Draxl, C.; Hodge, B. M.; Orwig, K.; Jones, W.; Searight, K.; Getman, D.; Harrold, S.; McCaa, J.; Cline, J.; Clark, C.

    2013-10-01

    Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather prediction model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.

  7. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  8. NASA/LMSC coherent LIDAR airborne shear sensor: System capabilities and flight test plans

    NASA Technical Reports Server (NTRS)

    Robinson, Paul

    1992-01-01

    The primary objective of the NASA/LMSC Coherent Lidar Airborne Shear Sensor (CLASS) system flight tests is to evaluate the capability of an airborne coherent lidar system to detect, measure, and predict hazardous wind shear ahead of the aircraft with a view to warning flight crew of any impending dangers. On NASA's Boeing 737 Transport Systems Research Vehicle, the CLASS system will be used to measure wind velocity fields and, by incorporating such measurements with real-time aircraft state parameters, identify regions of wind shear that may be detrimental to the aircraft's performance. Assessment is to be made through actual wind shear encounters in flight. Wind shear measurements made by the class system will be compared to those made by the aircraft's in situ wind shear detection system as well as by ground-based Terminal Doppler Weather Radar (TDWR) and airborne Doppler radar. By examining the aircraft performance loss (or gain) due to wind shear that the lidar predicts with that actually experienced by the aircraft, the performance of the CLASS system as a predictive wind shear detector will be assessed.

  9. Prospecting by sampling and analysis of airborne particulates and gases

    DOEpatents

    Sehmel, G.A.

    1984-05-01

    A method is claimed for prospecting by sampling airborne particulates or gases at a ground position and recording wind direction values at the time of sampling. The samples are subsequently analyzed to determine the concentrations of a desired material or the ratios of the desired material to other identifiable materials in the collected samples. By comparing the measured concentrations or ratios to expected background data in the vicinity sampled, one can select recorded wind directions indicative of the upwind position of the land-based source of the desired material.

  10. Integration of the TDWR and LLWAS wind shear detection system

    NASA Technical Reports Server (NTRS)

    Cornman, Larry

    1991-01-01

    Operational demonstrations of a prototype TDWR/LLWAS (Terminal Doppler Weather Radar/Low Level Wind shear Alarm System) integrated wind shear detection system were conducted. The integration of wind shear detection systems is needed to provide end-users with a single, consensus source of information. A properly implemented integrated system provides wind shear warnings of a higher quality than stand-alone LLWAS or TDWR systems. The algorithmic concept used to generate the TDWR/LLWAS integrated products and several case studies are discussed, indicating the viability and potential of integrated wind shear detection systems. Implications for integrating ground and airborne wind shear detection systems are briefly examined.

  11. Wind Predictability and Remote Sensing Techniques,

    DTIC Science & Technology

    The report presents the unclassified findings from the Investigation of Airborne Wind Sensing Systems conducted under AIRTASK A30303/323/70F17311002. Included is a summary of the current accuracy of wind speed and direction forecasts, a list of possible methods for remote sensing meteorological data, a list of areas of application of the given methods and a list of contacts made for information relevant to this evaluation. (Author)

  12. Airborne flux measurements of biogenic volatile organic compounds over California

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-03-01

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK + MAC, methanol, monoterpenes, and MBO over ∼10 000 km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z / zi). Fluxes were generally measured by flying consistently at 400 ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  13. Atmospheric and wind modeling for ATC

    NASA Technical Reports Server (NTRS)

    Slater, Gary L.

    1990-01-01

    The section on atmospheric modeling covers the following topics: the standard atmosphere, atmospheric variations, atmosphere requirements for ATC, and implementation of a software model for Center/Tracon Advisory System (CTAS). The section on wind modeling covers the following topics: wind data -- NOAA profiler system; wind profile estimation; incorporation of various data types into filtering scheme; spatial and temporal variation; and software implementation into CTAS. The appendices contain Matlab codes for atmospheric routines and for wind estimation.

  14. Real-time decision aiding - Aircraft guidance for wind shear avoidance

    NASA Technical Reports Server (NTRS)

    Stratton, D. A.; Stengel, Robert F.

    1992-01-01

    Modern control theory and artificial intelligence technology are applied to the Wind Shear Safety Advisor, a conceptual airborne advisory system to help flight crews avoid or survive encounter with hazardous low-altitude wind shear. Numerical and symbolic processes of the system fuse diverse, time-varying data from ground-based and airborne measurements. Simulated wind-shear-encounter scenarios illustrate the need to consider a variety of factors for optimal decision reliability. The wind-shear-encounter simulations show the Wind Shear Safety Advisor's potential for effectively integrating the available information, highlighting the benefits of the computational techniques employed.

  15. Wind height distribution influence on offshore wind farm feasibility study

    NASA Astrophysics Data System (ADS)

    Benassai, Guido; Della Morte, Renata; Matarazzo, Antonio; Cozzolino, Luca

    2015-04-01

    The economic feasibility of offshore wind power utilization depends on the favourable wind conditions offshore as compared to sites on land. The higher wind speeds have to compensate the additional cost of offshore developments. However, not only the mean wind speed is different, but the whole flow regime, as can be seen in the vertical wind speed profile. The commonly used models to describe this profile have been developed mainly for land sites, so they have to be verified on the basis of field data. Monin-Obukhov theory is often used for the description of the wind speed profile at a different height with respect to a measurement height. Starting from the former, , the profile is predicted using two parameters, Obukhov length and sea surface roughness. For situations with near-neutral and stable atmospheric stratification and long (>30km) fetch, the wind speed increase with height is larger than what is predicted from Monin-Obukhov theory. It is also found that this deviation occurs at wind speeds important for wind power utilization, mainly at 5-9 ms-1. In the present study the influence of these aspects on the potential site productivity of an offshore wind farm were investigated, namely the deviation from the theory of Monin-Obukhov due to atmospheric stability and the influence of the fetch length on the Charnock model. Both these physical effects were discussed and examined in view of a feasibility study of a site for offshore wind farm in Southern Italy. Available data consisted of time histories of wind speeds and directions collected by National Tidegauge Network (Rete Mareografica Nazionale) at the height of 10m a.s.l. in ports. The theory of Monin-Obukhov was used to extrapolate the data to the height of the wind blades, while the Charnock model was used to extend the wind speed on the sea surface from the friction velocity on the ground. The models described were used to perform calculations for a feasibility study of an offshore wind farm in Southern

  16. Initial daytime and nighttime SOFDI observations of thermospheric winds from Fabry-Perot Doppler shift measurements of the 630-nm OI line-shape profile

    NASA Astrophysics Data System (ADS)

    Gerrard, A. J.; Meriwether, J. W.

    2011-09-01

    In this paper we present both night and day thermospheric wind observations made with the Second-generation, Optimized, Fabry-Perot Doppler Imager (SOFDI), a novel triple-etalon Fabry-Perot interferometer (FPI) designed to make 24-h measurements of thermospheric winds from OI 630-nm emission. These results were obtained from the northeastern United States and from under the magnetic equator at Huancayo, Peru and demonstrate the current instrument capability for measurements of Doppler shifts for either night or day. We found the uncertainties in the measurements agree with expected values based upon forward modeling calculations; nighttime wind components having an uncertainty of ~20-m s-1 at 30-min resolution and daytime wind components having an uncertainty of ~70-m s-1 at 20-min resolution. The nighttime uncertainties are typically larger than those seen with traditional single-etalon FPIs, which occur at the cost of being able to achieve daytime measurements. The thermospheric wind measurements from Huancayo replicate recently reported CHAMP zonal winds and are in disagreement with current empirical wind climatologies. In addition, we discuss the incorporation of how multiple point heads in the SOFDI instrument will allow for unique studies of gravity wave activity in future measurements.

  17. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  18. Observations and modelling of winds and waves during the surface wave dynamics experiment. Report 2. Intensive observation period IOP-3, 25 February-9 March 1991. Technical report

    SciTech Connect