Science.gov

Sample records for airbreathing laser propulsion

  1. Laser-driven hypersonic air-breathing propulsion simulator

    NASA Technical Reports Server (NTRS)

    Joshi, Prakash B.; Lo, Edmond Y.; Pugh, Evan R.

    1992-01-01

    A feasibility study is presented of simulating airbreathing propulsion on small scale hypersonic models using laser energy. The laser heat addition scheme allows simultaneous inlet and exhaust flows during wind tunnel testing of models with scramjet models. The proposed propulsion simulation concept has extended the Kantrowitz (1974) idea to propulsive wind tunnel models of hypersonic aircraft. Critical issues in aeropropulsive testing of models based on a ramjet power plant are addressed which include transfer of the correct amount of energy to the flowing gas, efficient absorption of laser energy into the gas, and test performance under tunnel reservoir conditions and at reasonable Reynolds numbers.

  2. Experimental investigation of a unique airbreathing pulsed laser propulsion concept

    NASA Technical Reports Server (NTRS)

    Myrabo, L. N.; Nagamatsu, H. T.; Manka, C.; Lyons, P. W.; Jones, R. A.

    1991-01-01

    Investigations were conducted into unique methods of converting pulsed laser energy into propulsive thrust across a flat impulse surface under atmospheric conditions. The propulsion experiments were performed with a 1-micron neodymium-glass laser at the Space Plasma Branch of the Naval Research Laboratory. Laser-induced impulse was measured dynamically by ballistic pendulums and statically using piezoelectric pressure transducers on a stationary impulse surface. The principal goal was to explore methods for increasing the impulse coupling performance of airbreathing laser-propulsion engines. A magnetohydrodynamic thrust augmentation effect was discovered when a tesla-level magnetic field was applied perpendicular to the impulse surface. The impulse coupling coefficient performance doubled and continued to improve with increasing laser-pulse energies. The resultant performance of 180 to 200 N-s/MJ was found to be comparable to that of the earliest afterburning turbojets.

  3. Airbreathing Laser Propulsion Experiments with 1 {mu}m Terawatt Pharos III Laser: Part 1

    SciTech Connect

    Myrabo, L. N.; Lyons, P. W.; Jones, R. A.; Liu, S.; Manka, C.

    2011-11-10

    This basic research study examines the physics of airbreathing laser propulsion at the extreme flux range of 1-2x10{sup 11} W/cm{sup 2}--within the air breakdown threshold for l {mu}m radiation--using the terawatt PHAROS III neodymium-glass pulsed laser. Six different experimental setups were tested using a 34 mm line focus with 66 {mu}m focal waist, positioned near the flat impulse surface. The first campaign investigated impulse generation with the beam oriented almost normal to the target surface, with energies ranging from 23 to 376 J, and pulses of 5 to 30 ns FWHM. Air breakdown/ plasma dynamics were diagnosed with GOI cameras and color photography. Laser generated impulse was quantified with both vertical pendulums and piezoelectric pressure transducers using the standard performance metric, C{sub M}--the momentum coupling coefficient. Part 1 of this 2-part paper covers Campaign no. 1 results including laser plasma diagnostics, pressure gage and vertical pendulum data.

  4. Static and Hypersonic Experimental Analysis of Impulse Generation in Air-Breathing Laser-Thermal Propulsion

    NASA Astrophysics Data System (ADS)

    Salvador, Israel Irone

    The present research campaign centered on static and hypersonic experiments performed with a two-dimensional, repetitively-pulsed (RP) laser Lightcraft model. The future application of interest for this basic research endeavor is the laser launch of nano- and micro-satellites (i.e., 1-100 kg payloads) into Low Earth Orbit (LEO), at low-cost and "on-demand". This research began with an international collaboration on Beamed Energy Propulsion between the United States Air Force and Brazilian Air Force to conduct experiments at the Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics (HTN-LAH). The laser propulsion (LP) experiments employed the T3 Hypersonic Shock Tunnel (HST), integrated with twin gigawatt pulsed Lumonics 620-TEA CO2 lasers to produce the required test conditions. Following an introduction of the pulsed laser thermal propulsion concept and a state-of-the-art review of the topic, the principal physical processes are outlined starting from the onset of the laser pulse and subsequent laser-induced air-breakdown, to the expansion and exhaust of the resulting blast wave. After installation of the 254 mm wide, 2D Lightcraft model into the T3 tunnel, static LP tests were performed under quiescent (no-flow) conditions at ambient pressures of 0.06, 0.15, 0.3 and 1 bar, using the T3 test-section/dump-tank as a vacuum chamber. Time-dependent surface pressure distributions were measured over the engine thrust-generating surfaces following laser energy deposition; the delivered impulse and momentum coupling coefficients (Cm) were calculated from that pressure data. A Schlieren visualization system (using a high-speed Cordin digital camera) captured the laser breakdown and blast wave expansion process. The 2D model's Cm performance of 600 to 3000 N/MW was 2.5-5x higher than theoretical projections available in the literature, but indeed in the realm of feasibility for static conditions. Also, these Cm values exceed that for smaller Lightcraft models

  5. Airbreathing Laser Propulsion Experiments with 1 {mu}m Terawatt Pharos IIILaser: Part 2

    SciTech Connect

    Myrabo, L. N.; Lyons, P. W.; Jones, R. A.; Liu, S.; Manka, C.

    2011-11-10

    This basic research study examines the physics of airbreathing laser propulsion at the extreme flux range of 1-2x10{sup 11} W/cm{sup 2}--within the air breakdown threshold for l {mu}m radiation--using the terawatt Pharos III neodymium-glass pulsed laser. Six different experimental setups were employed using a 34 mm line focus with 66 {mu}m focal waist, positioned near the flat impulse surface. The 2nd Campaign investigated impulse generation with the laser beam focused at grazing incidence across near horizontal target surfaces, with pulse energies ranging from 55 to 186 J, and pulse-widths of 2 to 30 ns FWHM. Laser generated impulse was measured with a horizontal Plexiglas registered ballistic pendulum equipped with either a steel target insert or 0.5 Tesla permanent magnet (NEIT-40), to quantify changes in the momentum coupling coefficient (C{sub M}). Part 2 of this 2-part paper covers Campaign no. 2 results including C{sub M} performance data, and long exposure color photos of LP plasma phenomena.

  6. Experimental Study of the Momentum Coupling Coefficient with the Pulse Frequency and Ambient Pressure for Air-Breathing Laser Propulsion

    NASA Astrophysics Data System (ADS)

    Tang, Zhiping; Cai, Jian; Gong, Ping; Hu, Xiaojun; Tan, Rongqin; Zheng, Zhijun; Wu, Jin; Lu, Yan

    2006-05-01

    The air-breathing laser propulsion tests are conducted for parabolic models by using a high power TEA-CO2 pulsed laser. It is found the momentum coupling coefficient Cm varies with the pulse repeatable frequency and reaches the maximum near 50Hz. With a multi-use pendulum chamber, the change of Cm at different ambient pressure is measured. The experimental results show that the propulsion efficiency Cm does not decrease below the altitude of 10km, even increases a little bit. The calculated Cm fits the experimental result up to altitude 3km, then, they are separated. One possible reason is the temperature which is constant in the experiments.

  7. Numerical Simulation of Flow Characteristics of Supersonic Airbreathing Laser Propulsion Vehicle

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Don; Pang, Jun-Sik; Jeung, In-Seuck; Choi, Jeong-Yeol

    2003-05-01

    LITA(Laser-Driven In-Tube Accelerator) is a new device for the propulsion of projectile under high velocity condition. LITA is a little different from other accelerators in that it needs continuous laser source energy for acceleration process. One of the issues for LITA is the optical design of the projectile, because the focusing point of laser behind projectile decides its performance. Laser-supported detonation wave is a main energy source mechanism. Present study shows the performance analysis of LITA using computational fluid dynamics (CFD). Laser power, laser energy, laser frequency, laser focusing point, and projectile base geometry play important roles in LITA's performance. In this research, blast wave produced by explicitly energy input is used.

  8. Guidance and control of an earth to orbit vehicle with optimum transition from airbreathing to concurrent airbreathing/rocket propulsion

    NASA Astrophysics Data System (ADS)

    Kauffman, H. G.; Grandhi, R. V.; Hankey, W. L.; Belcher, P. J.

    1990-07-01

    An efficient performance analysis method (suitable for PC operation) is developed to evaluate potential airbreathing/rocket propulsion systems for advanced technology single-stage-to-orbit (SSTO) launch vehicles. Evaluated are tradeoffs between airbreathing (AB), rocket, and concurrent airbreathing/rocket propulsion in minimizing fuel consumption for a given ascent flight trajectory. Many mission, flight, and vehicle related requirements and constraints are satisfied in the process. With the analysis method, several modes of airbreathing/rocket propulsion are compared to a baseline 'airbreather alone' propulsion system in terms of fuel required to attain orbital velocity. The optimal switch point (staging) is identified for the transition from airbreathing to rocket propulsion.

  9. Improved airbreathing launch vehicle performance with the use of rocket propulsion

    NASA Astrophysics Data System (ADS)

    Kauffman, H. G.; Grandhi, R. V.; Hankey, W. L.; Belcher, P. J.

    1991-04-01

    An efficient performance analysis method is developed to evaluate potential airbreathing/rocket propulsion systems for advanced technology single-stage-to-orbit launch vehicles. Evaluated are tradeoffs between airbreathing, rocket, and concurrent airbreathing/rocket propulsion in maximizing payload delivery to orbit for a given ascent flight trajectory. With the analysis method, several modes of airbreathing/rocket propulsion are compared to a baseline 'airbreather alone' propulsion system in terms of fuel/propellant required to attain orbital velocity. Concurrent airbreathing/rocket propulsion shows a reduction in fuel/propellant consumption over straight airbreather to rocket propulsion transition. The optimal switch point (staging) is identified for the transition from airbreathing to rocket propulsion.

  10. Optimization of Air-Breathing Propulsion Engine Concepts

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.

    1997-01-01

    Air-breathing propulsion engines play an important role in the development of both civil and military aircraft Design optimization of such engines can lead to higher power, or more thrust for less fuel consumption. A multimission propulsion engine design can be modeled mathematically as a multivariable global optimization problem, with a sequence of subproblems, which are specific to the mission events defined through Mach number, altitude, and power setting combinations.

  11. Aeronautical facilities catalogue. Volume 2: Airbreathing propulsion and flight simulators

    NASA Technical Reports Server (NTRS)

    Penaranda, F. E.; Freda, M. S.

    1985-01-01

    Volume two of the facilities catalogue deals with Airbreathing Propulsion and Flight Simulation Facilities. Data pertinent to managers and engineers are presented. Each facility is described on a data sheet that shows the facility's technical parameters on a chart and more detailed information in narratives. Facilities judged comparable in testing capability are noted and grouped together. Several comprehensive cross-indexes and charts are included.

  12. Fluid dynamic problems associated with air-breathing propulsive systems

    NASA Technical Reports Server (NTRS)

    Chow, W. L.

    1979-01-01

    A brief account of research activities on problems related to air-breathing propulsion is made in this final report for the step funded research grant NASA NGL 14-005-140. Problems include the aircraft ejector-nozzle propulsive system, nonconstant pressure jet mixing process, recompression and reattachment of turbulent free shear layer, supersonic turbulent base pressure, low speed separated flows, transonic boattail flow with and without small angle of attack, transonic base pressures, Mach reflection of shocks, and numerical solution of potential equation through hodograph transformation.

  13. 26th JANNAF Airbreathing Propulsion Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor)

    2002-01-01

    This volume, the first of four volumes, is a collection of 28 unclassified/unlimited-distribution papers which were presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 26th Airbreathing Propulsion Subcommittee (APS) was held jointly with the 38th Combustion Subcommittee (CS), 20th Propulsion Systems Hazards Subcommittee (PSHS), and 2nd Modeling and Simulation Subcommittee. The meeting was held 8-12 April 2002 at the Bayside Inn at The Sandestin Golf & Beach Resort and Eglin Air Force Base, Destin, Florida. Topics covered include: scramjet and ramjet R&D program overviews; tactical propulsion; space access; NASA GTX status; PDE technology; actively cooled engine structures; modeling and simulation of complex hydrocarbon fuels and unsteady processes; and component modeling and simulation.

  14. Laser propulsion

    NASA Technical Reports Server (NTRS)

    Rom, F. E.; Putre, H. A.

    1972-01-01

    The use of an earth-based high-power laser beam to provide energy for earth-launched rocket vehicle is investigated. The laser beam energy is absorbed in an opaque propellant gas and is converted to high-specific-impulse thrust by expanding the heated propellant to space by means of a nozzle. This laser propulsion scheme can produce specific impulses of several thousand seconds. Payload to gross-weight fractions about an order of magnitude higher than those for conventional chemical earth-launched vehicles appear possible. There is a potential for a significant reduction in cost per payload mass in earth orbit.

  15. Innovative Airbreathing Propulsion Concepts for High-speed Applications

    NASA Technical Reports Server (NTRS)

    Whitlow, Woodrow, Jr.

    2002-01-01

    The current cost to launch payloads to low earth orbit (LEO) is approximately loo00 U.S. dollars ($) per pound ($22000 per kilogram). This high cost limits our ability to pursue space science and hinders the development of new markets and a productive space enterprise. This enterprise includes NASA's space launch needs and those of industry, universities, the military, and other U.S. government agencies. NASA's Advanced Space Transportation Program (ASTP) proposes a vision of the future where space travel is as routine as in today's commercial air transportation systems. Dramatically lower launch costs will be required to make this vision a reality. In order to provide more affordable access to space, NASA has established new goals in its Aeronautics and Space Transportation plan. These goals target a reduction in the cost of launching payloads to LEO to $lo00 per pound ($2200 per kilogram) by 2007 and to $100' per pound by 2025 while increasing safety by orders of magnitude. Several programs within NASA are addressing innovative propulsion systems that offer potential for reducing launch costs. Various air-breathing propulsion systems currently are being investigated under these programs. The NASA Aerospace Propulsion and Power Base Research and Technology Program supports long-term fundamental research and is managed at GLenn Research Center. Currently funded areas relevant to space transportation include hybrid hyperspeed propulsion (HHP) and pulse detonation engine (PDE) research. The HHP Program currently is addressing rocket-based combined cycle and turbine-based combined cycle systems. The PDE research program has the goal of demonstrating the feasibility of PDE-based hybrid-cycle and combined cycle propulsion systems that meet NASA's aviation and access-to-space goals. The ASTP also is part of the Base Research and Technology Program and is managed at the Marshall Space Flight Center. As technologies developed under the Aerospace Propulsion and Power Base

  16. An Overview of SBIR Phase 2 Airbreathing Propulsion Technologies

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Bitler, Dean W.

    2014-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in Airbreathing Propulsion which is one of six core competencies at NASA Glenn Research Center. There are twenty technologies featured with emphasis on a wide spectrum of applications such as with a Turbo-Brayton cryocooler for aircraft superconducting systems, braided composite rotorcraft structures, engine air brake, combustion control valve, flexible composite driveshaft, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  17. Combining MHD Airbreathing and Fusion Rocket Propulsion for Earth-to-Orbit Flight

    SciTech Connect

    Froning, H. D. Jr; Yang, Yang; Momota, H.; Burton, E.; Miley, G. H.; Luo, Nie

    2005-02-06

    Previous studies have shown that Single-State-to-Orbit (SSTO) vehicle propellant can be reduced by Magnets-Hydro-Dynamic (MHD) processes that minimize airbreathing propulsion losses and propellant consumption during atmospheric flight. Similarly additional reduction in SSTO propellant is enabled by Inertial Electrostatic Confinement (IEC) fusion, whose more energetic reactions reduce rocket propellant needs. MHD airbreathing propulsion during an SSTO vehicle's initial atmospheric flight phase and IEC fusion propulsion during its final exo-atmospheric flight phase is therefore being explored. Accomplished work is not yet sufficient for claiming such a vehicle's feasibility. But takeoff and propellant mass for an MHD airbreathing and IEC fusion vehicle could be as much as 25 and 40 percent less than one with ordinary airbreathing and IEC fusion; and as much as 50 and 70 percent less than SSTO takeoff and propellant mass with MHD airbreathing and chemical rocket propulsion. Thus this unusual combined cycle engine shows great promise for performance gains beyond contemporary combined-cycle airbreathing engines.

  18. Research in Hypersonic Airbreathing Propulsion at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Kumar, Ajay; Drummond, J. Philip; McClinton, Charles R.; Hunt, James L.

    2001-01-01

    The NASA Langley Research Center has been conducting research for over four decades to develop technology for an airbreathing-propelled vehicle. Several other organizations within the United States have also been involved in this endeavor. Even though significant progress has been made over this period, a hypersonic airbreathing vehicle has not yet been realized due to low technology maturity. One of the major reasons for the slow progress in technology development has been the low level and cyclic nature of funding. The paper provides a brief historical overview of research in hypersonic airbreathing technology and then discusses current efforts at NASA Langley to develop various analytical, computational, and experimental design tools and their application in the development of future hypersonic airbreathing vehicles. The main focus of this paper is on the hypersonic airbreathing propulsion technology.

  19. A conceptual design of an unmanned test vehicle using an airbreathing propulsion system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    According to Aviation Week and Space Technology (Nov. 16, 1992), without a redefined approach to the problem of achieving single stage-to-orbit flight, the X-30 program is virtually assured of cancellation. One of the significant design goals of the X-30 program is to achieve single stage to low-earth orbit using airbreathing propulsion systems. In an attempt to avoid cancellation, the NASP Program has decided to design a test vehicle to achieve these goals. This report recommends a conceptual design of an unmanned test vehicle using an airbreathing propulsion system.

  20. Minimum-fuel ascent to orbit using air-breathing propulsion

    NASA Technical Reports Server (NTRS)

    Van Buren, Mark A.; Mease, Kenneth D.

    1989-01-01

    Single-stage vehicles using air-breathing propulsion hold promise for more economical delivery of payloads to orbit. The characterization of minimum-fuel trajectories over the range of possible engine and aerodynamic performance of such vehicles provides useful feedback to engine and vehicle designers and paves the way for the development of guidance logic. The minimum-fuel trajectory problem is formulated, propulsion system and aerodynamic models are presented, a numerical solution approach is described, and some preliminary results are discussed.

  1. Propulsion Airframe Integration Test Techniques for Hypersonic Airbreathing Configurations at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Witte, David W.; Huebner, Lawrence D.; Trexler, Carl A.; Cabell, Karen F.; Andrews, Earl H., Jr.

    2003-01-01

    The scope and significance of propulsion airframe integration (PAI) for hypersonic airbreathing vehicles is presented through a discussion of the PAI test techniques utilized at NASA Langley Research Center. Four primary types of PAI model tests utilized at NASA Langley for hypersonic airbreathing vehicles are discussed. The four types of PAI test models examined are the forebody/inlet test model, the partial-width/truncated propulsion flowpath test model, the powered exhaust simulation test model, and the full-length/width propulsion flowpath test model. The test technique for each of these four types of PAI test models is described, and the relevant PAI issues addressed by each test technique are illustrated through the presentation of recent PAI test data.

  2. Impact of aeroelasticity on propulsion and longitudinal flight dynamics of an air-breathing hypersonic vehicle

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Mcminn, John D.; Pototzky, Anthony S.; Wooley, Christine L.

    1993-01-01

    Many air-breathing hypersonic aerospacecraft design concepts incorporate an elongated fuselage forebody acting as the aerodynamic compression surface for a hypersonic combustion module, or scram jet. This highly integrated design approach creates the potential for an unprecedented form of aero-propulsive-elastic interaction in which deflections of the vehicle fuselage give rise to propulsion transients, producing force and moment variations that may adversely impact the rigid body flight dynamics and/or further excite the fuselage bending modes. To investigate the potential for such interactions, a math model was developed which included the longitudinal flight dynamics, propulsion system, and first seven elastic modes of a hypersonic air-breathing vehicle. Perturbation time histories from a simulation incorporating this math model are presented that quantify the propulsive force and moment variations resulting from aeroelastic vehicle deflections. Root locus plots are presented to illustrate the effect of feeding the propulsive perturbations back into the aeroelastic model. A concluding section summarizes the implications of the observed effects for highly integrated hypersonic air-breathing vehicle concepts.

  3. JANNAF Airbreathing Propulsion Subcommittee and 35th Combustion Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor); Rognan, Melanie (Editor)

    1998-01-01

    This document, CPIA Publication 682, Volume 1, is a compilation of 5 unclassified/unlimited technical papers (approved for public release) which were presented at the 1 998 meeting of the Joint Army-Navy-NASA-Air Force (JANNAF) Airbreathing Propulsion Subcommittee (APS) and Combustion Subcommittee (CS) held jointly with the Propulsion Systems Hazards Subcommittee (PSHS). The meeting was held on 7-11 December 1998 at Raytheon Systems Company and the Marriott Hotel, Tucson, AZ. Topics covered include HyTech technology development, hydrocarbon fuel development for hypersonic applications, pulse detonation propulsion system development and arc heaters for direct-connect scramjet testing.

  4. Survey of Aerothermodynamics Facilities Useful for the Design of Hypersonic Vehicles Using Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Deiwert, George S.

    1997-01-01

    This paper surveys the use of aerothermodynamic facilities which have been useful in the study of external flows and propulsion aspects of hypersonic, air-breathing vehicles. While the paper is not a survey of all facilities, it covers the utility of shock tunnels and conventional hypersonic blow-down facilities which have been used for hypersonic air-breather studies. The problems confronting researchers in the field of aerothermodynamics are outlined. Results from the T5 GALCIT tunnel for the shock-on lip problem are outlined. Experiments on combustors and short expansion nozzles using the semi-free jet method have been conducted in large shock tunnels. An example which employed the NASA Ames 16-Inch shock tunnel is outlined, and the philosophy of the test technique is described. Conventional blow-down hypersonic wind tunnels are quite useful in hypersonic air-breathing studies. Results from an expansion ramp experiment, simulating the nozzle on a hypersonic air-breather from the NASA Ames 3.5 Foot Hypersonic wind tunnel are summarized. Similar work on expansion nozzles conducted in the NASA Langley hypersonic wind tunnel complex is cited. Free-jet air-frame propulsion integration and configuration stability experiments conducted at Langley in the hypersonic wind tunnel complex on a small generic model are also summarized.

  5. Laser Propulsion - Quo Vadis

    SciTech Connect

    Bohn, Willy L.

    2008-04-28

    First, an introductory overview of the different types of laser propulsion techniques will be given and illustrated by some historical examples. Second, laser devices available for basic experiments will be reviewed ranging from low power lasers sources to inertial confinement laser facilities. Subsequently, a status of work will show the impasse in which the laser propulsion community is currently engaged. Revisiting the basic relations leads to new avenues in ablative and direct laser propulsion for ground based and space based applications. Hereby, special attention will be devoted to the impact of emerging ultra-short pulse lasers on the coupling coefficient and specific impulse. In particular, laser sources and laser propulsion techniques will be tested in microgravity environment. A novel approach to debris removal will be discussed with respect to the Satellite Laser Ranging (SRL) facilities. Finally, some non technical issues will be raised aimed at the future prospects of laser propulsion in the international community.

  6. Calibration of the Langley 8-Foot High Temperature Tunnel for Hypersonic Airbreathing Propulsion Testing

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Rock, Kenneth E.; Voland, Randall T.; Wieting, Allan R.

    1996-01-01

    The NASA Langley 8-Foot High Temperature Tunnel has recently been modified to produce a unique testing capability for hypersonic airbreathing propulsion systems. Prior to these modifications, the facility was used primarily for aerothermal loads and structural verification testing at true flight total enthalpy conditions for Mach numbers between 6 and 7. One of the recent modifications was an oxygen replenishment system which allows operating airbreathing propulsion systems to be tested at true flight total enthalpies. Following the modifications to the facility, calibration runs were performed at total enthalpies corresponding to flight Mach numbers of 6.3 and 6.8 to establish the flow characteristics of the facility with its new capabilities. The results of this calibration, as well as modifications to tunnel combustor hardware prior to calibration to improve tunnel flow quality, are described in this paper.

  7. Advances in computational design and analysis of airbreathing propulsion systems

    NASA Technical Reports Server (NTRS)

    Klineberg, John M.

    1989-01-01

    The development of commercial and military aircraft depends, to a large extent, on engine manufacturers being able to achieve significant increases in propulsion capability through improved component aerodynamics, materials, and structures. The recent history of propulsion has been marked by efforts to develop computational techniques that can speed up the propulsion design process and produce superior designs. The availability of powerful supercomputers, such as the NASA Numerical Aerodynamic Simulator, and the potential for even higher performance offered by parallel computer architectures, have opened the door to the use of multi-dimensional simulations to study complex physical phenomena in propulsion systems that have previously defied analysis or experimental observation. An overview of several NASA Lewis research efforts is provided that are contributing toward the long-range goal of a numerical test-cell for the integrated, multidisciplinary design, analysis, and optimization of propulsion systems. Specific examples in Internal Computational Fluid Mechanics, Computational Structural Mechanics, Computational Materials Science, and High Performance Computing are cited and described in terms of current capabilities, technical challenges, and future research directions.

  8. Airbreathing Propulsion System Analysis Using Multithreaded Parallel Processing

    NASA Technical Reports Server (NTRS)

    Schunk, Richard Gregory; Chung, T. J.; Rodriguez, Pete (Technical Monitor)

    2000-01-01

    In this paper, parallel processing is used to analyze the mixing, and combustion behavior of hypersonic flow. Preliminary work for a sonic transverse hydrogen jet injected from a slot into a Mach 4 airstream in a two-dimensional duct combustor has been completed [Moon and Chung, 1996]. Our aim is to extend this work to three-dimensional domain using multithreaded domain decomposition parallel processing based on the flowfield-dependent variation theory. Numerical simulations of chemically reacting flows are difficult because of the strong interactions between the turbulent hydrodynamic and chemical processes. The algorithm must provide an accurate representation of the flowfield, since unphysical flowfield calculations will lead to the faulty loss or creation of species mass fraction, or even premature ignition, which in turn alters the flowfield information. Another difficulty arises from the disparity in time scales between the flowfield and chemical reactions, which may require the use of finite rate chemistry. The situations are more complex when there is a disparity in length scales involved in turbulence. In order to cope with these complicated physical phenomena, it is our plan to utilize the flowfield-dependent variation theory mentioned above, facilitated by large eddy simulation. Undoubtedly, the proposed computation requires the most sophisticated computational strategies. The multithreaded domain decomposition parallel processing will be necessary in order to reduce both computational time and storage. Without special treatments involved in computer engineering, our attempt to analyze the airbreathing combustion appears to be difficult, if not impossible.

  9. JANNAF 24th Airbreathing Propulsion Subcommittee and 36th Combustion Subcommittee Joint Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor)

    1999-01-01

    Volume 1, the first of three volumes is a compilation of 16 unclassified/unlimited-technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 24th Airbreathing Propulsion Subcommittee and 36th Combustion Subcommittee held jointly with the 181 Propulsion Systems Hazards Subcommittee. The meeting was held on 18-21 October 1999 at NASA Kennedy Space Center and The DoubleTree Oceanfront Hotel, Cocoa Beach, Florida. Topics covered include overviews of RBCC and PDE hypersonic technology, Hyper-X propulsion ground testing, development of JP-8 for hypersonic vehicle applications, numerical simulation of dual-mode SJ combustion, V&V of M&S computer codes, MHD SJ and Rocket Based Combined Cycle (RBCC) launch vehicle concepts, and Pulse Detonation Engine (PDE) propulsion technology development including fundamental investigations, modeling, aerodynamics, operation and performance.

  10. Innovative Airbreathing Propulsion Concepts for Access to Space

    NASA Technical Reports Server (NTRS)

    Whitlow, Jr., Woodrow; Blech, Richard A.; Blankson, Isaiah M.

    2001-01-01

    This paper will present technologies and concepts for novel aeropropulsion systems. These technologies will enhance the safety of operations, reduce life cycle costs, and contribute to reduced costs of air travel and access to space. One of the goals of the NASA program is to reduce the carbon-dioxide emissions of aircraft engines. Engine concepts that use highly efficient fuel cell/electric drive technologies in hydrogen-fueled engines will be presented in the proposed paper. Carbon-dioxide emissions will be eliminated by replacing hydrocarbon fuel with hydrogen, and reduce NOx emissions through better combustion process control. A revolutionary exoskeletal engine concept, in which the engine drum is rotated, will be shown. This concept has the potential to allow a propulsion system that can be used for subsonic through hypersonic flight. Dual fan concepts that have ultra-high bypass ratios, low noise, and low drag will be presented. Flow-controlled turbofans and control-configured turbofans also will be discussed. To increase efficiency, a system of microengines distributed along lifting surfaces and on the fuselage is being investigated. This concept will be presented in the paper. Small propulsion systems for affordable, safe personal transportation vehicles will be discussed. These low-oil/oilless systems use technologies that enable significant cost and weight reductions. Pulse detonation engine-based hybrid-cycle and combined-cycle propulsion systems for aviation and space access will be presented.

  11. A Review of Laser Ablation Propulsion

    SciTech Connect

    Phipps, Claude; Bohn, Willy; Lippert, Thomas; Sasoh, Akihiro; Schall, Wolfgang; Sinko, John

    2010-10-08

    Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Saenger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing 'Lightcraft' and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important role in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser that is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.

  12. Laser space propulsion overview

    NASA Astrophysics Data System (ADS)

    Phipps, Claude; Luke, James; Helgeson, Wesley

    2007-05-01

    In this paper, we review the history of laser space propulsion from its earliest theoretical conceptions to modern practical applicatons. Applications begin with the "Lightcraft" flights of Myrabo and include practical thrusters for satellites now completing development as well as proposals for space debris removal and direct launch of payloads into orbit. We consider laser space propulsion in the most general sense, in which laser radiation is used to propel a vehicle in space. In this sense, the topic includes early proposals for pure photon propulsion, laser ablation propulsion, as well as propulsion using lasers to detonate a gas, expel a liquid, heat and expel a gas, or even to propagate power to a remote conventional electric thruster.

  13. Air-breathing aerospace plane development essential: Hypersonic propulsion flight tests

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B.

    1994-01-01

    Hypersonic air-breathing propulsion utilizing scramjets can fundamentally change transatmospheric accelerators for low earth-to-orbit and return transportation. The value and limitations of ground tests, of flight tests, and of computations are presented, and scramjet development requirements are discussed. It is proposed that near full-scale hypersonic propulsion flight tests are essential for developing a prototype hypersonic propulsion system and for developing computational-design technology so that it can be used for designing this system. In order to determine how these objectives should be achieved, some lessons learned from past programs are presented. A conceptual two-stage-to-orbit (TSTO) prototype/experimental aerospace plane is recommended as a means of providing access-to-space and for conducting flight tests. A road map for achieving these objectives is also presented.

  14. Hypersonic propulsion flight tests as essential to air-breathing aerospace plane development

    NASA Technical Reports Server (NTRS)

    Mehta, U.

    1995-01-01

    Hypersonic air-breathing propulsion utilizing scramjets can fundamentally change transatmospheric acclerators for transportation from low Earth orbits (LEOs). The value and limitations of ground tests, of flight tests, and of computations are presented, and scramjet development requirements are discussed. Near-full-scale hypersonic propulsion flight tests are essential for developing a prototype hypersonic propulsion system and for developing computation-design technology that can be used in designing that system. In order to determine how these objectives should be achieved, some lessons learned from past programs are presented. A conceptual two-stage-to-orbit (TSTO) prototype/experimental aerospace plane is recommended as a means of providing access-to-space and for conducting flight tests. A road map for achieving these objectives is also presented.

  15. The QED engine spectrum - Fusion-electric propulsion for air-breathing to interstellar flight

    NASA Technical Reports Server (NTRS)

    Bussard, Robert W.; Jameson, Lorin W.

    1993-01-01

    A new inertial-electrostatic-fusion direct electric power source can be used to drive a relativistic e-beam to heat propellant. The resulting system is shown to yield specific impulse and thrust/mass ratio 2-3 orders of magnitude larger than from other advanced propulsion concepts. This QED system can be applied to aerospace vehicles from air-breathing to near-interstellar flight. Examples are given for Earth/Mars flight missions, that show transit times of 40 d with 20 percent payload in single-stage vehicles.

  16. Turbojet-type engines for the airbreathing propulsion of reusable winged launchers

    NASA Astrophysics Data System (ADS)

    Duparcq, J. L.; Hermant, E.; Scherrer, D.

    Combined propulsion systems for hypersonic application have become new challenges for industrial and research organizations. In France, SNECMA and SEP, which have just joined together for a common effort on hypersonics within Hyperspace, and ONERA have been involved, under CNES (French space agency) contracts, in the assessment of new propulsion concepts for reusable winged launchers (SSTO or TSTO). As potential solutions for the airbreathing propulsion, some turbojet-type engines are presented: —the twin spool turbojet or turbofan with reheat —the turbojet with reheat —the twin-duct turbojet ramjet —the precooled turbojet with reheat. All these engines have been sized for a flight Mach number under seven with a cryogenic fuel (liquid hydrogen). Mainly due to total temperature and pressure encountered along the trajectory, the systems will have to withstand severe physical constraints. Coupled with performance and size requirements, like specific thrust and maximum air capture area, these operating conditions have been taken into account in order to select each engine cycle and technical arrangement. Performance and mass criteria make it possible to compare these systems and to emphasize their distinctive features among the propulsion concepts envisioned for the future reusable winged launchers (including airbreathing combined engines under study in France). The first step of the final selection, leading to the best adaptation between the engine and the vehicle, will then be tackled. This will be particularly enhanced by the analysis of potential advantages or technical difficulties, like thrust-to-weight ratio or needs of variable geometry and heat exchangers. The twin-duct turbojet ramjet, for example, is probably one of the best candidates for the first stages of propulsion of a reusable winged launcher.

  17. Air-breathing aerospace plane development essential: Hypersonic propulsion flight tests

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B.

    1995-01-01

    Hypersonic airbreathing propulsion utilizing scramjets can change transatmospheric accelerators for low earth-to-orbit and return transportation. The value and limitation of ground tests, of flight tests, and of computations are presented, and scramjet development requirements are discussed. It is proposed that near full-scale hypersonic propulsion flight tests are essential for developing computational design technology so that it can be used for designing this system. In order to determine how these objectives should be achieved, some lessons learned from past programs are presented. A conceptual two-stage-to-orbit (TSTO) prototype/experimental aerospace plane is recommended as a means of providing access-to-space and for conducting flight tests.

  18. Laser Propulsion Standardization Issues

    SciTech Connect

    Scharring, Stefan; Eckel, Hans-Albert; Roeser, Hans-Peter; Sinko, John E.; Sasoh, Akihiro

    2010-10-08

    It is a relevant issue in the research on laser propulsion that experimental results are treated seriously and that meaningful scientific comparison is possible between groups using different equipment and measurement techniques. However, critical aspects of experimental measurements are sparsely addressed in the literature. In addition, few studies so far have the benefit of independent confirmation by other laser propulsion groups. In this paper, we recommend several approaches towards standardization of published laser propulsion experiments. Such standards are particularly important for the measurement of laser ablation pulse energy, laser spot area, imparted impulse or thrust, and mass removal during ablation. Related examples are presented from experiences of an actual scientific cooperation between NU and DLR. On the basis of a given standardization, researchers may better understand and contribute their findings more clearly in the future, and compare those findings confidently with those already published in the laser propulsion literature. Relevant ISO standards are analyzed, and revised formats are recommended for application to laser propulsion studies.

  19. Laser space propulsion overview

    NASA Astrophysics Data System (ADS)

    Phipps, Claude; Luke, James; Helgeson, Wesley

    2007-03-01

    In this paper, we review the history of laser space propulsion from its earliest theoretical conceptions to modern practical applicatons. Applications begin with the "Lightcraft" flights of Myrabo and include practical thrusters for satellites now completing development as well as proposals for space debris removal and direct launch of payloads into orbit. We consider laser space propulsion in the most general sense, in which laser radiation is used to propel a vehicle in space. In this sense, the topic includes early proposals for pure photon propulsion, laser ablation propulsion, as well as propulsion using lasers to detonate a gas, expel a liquid, heat and expel a gas, or even to propagate power to a remote conventional electric thruster. We also discuss the most recent advances in LSP. For the first time, it is possible to consider space propulsion engines which exhibit thrust of one to several newtons while simultaneously delivering 3,000 seconds, or greater, specific impulse. No other engine concept can do both in a compact format. These willl use onboard, rather than remote, lasers. We will review the concept of chemically augmented electric propulsion, which can provide overall thrust efficiency greater than unity while maintaining very low mass to power ratio, high mean time to failure and broad operating range. The main advantage of LSP is exhaust velocity which can be instantaneously varied from 2km/s to 30km/s, simply by varying laser pulsewidth and focal spot size on target. The laser element will probably be a diode-pumped, fiber master-oscillator-power-amplifier (MOPA) system. Liquid fuels are necessary for volumetric efficiency and reliable performance at the multi-kW optical power levels required for multi-N thrust.

  20. Hypersonic Airbreathing Propulsion: An Aerodynamics, Aerothermodynamics, and Acoustics Competency White Paper

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip; Cockrell, Charles E., Jr.; Pellett, Gerald L.; Diskin, Glenn S.; Auslender, Aaron H.; Exton, Reginald J.; Guy, R. Wayne; Hoppe, John C.; Puster, Richard L.; Rogers, R. Clayton

    2002-01-01

    This White Paper examines the current state of Hypersonic Airbreathing Propulsion at the NASA Langley Research Center and the factors influencing this area of work and its personnel. Using this knowledge, the paper explores beyond the present day and suggests future directions and strategies for the field. Broad views are first taken regarding potential missions and applications of hypersonic propulsion. Then, candidate propulsion systems that may be applicable to these missions are suggested and discussed. Design tools and experimental techniques for developing these propulsion systems are then described, and approaches for applying them in the design process are considered. In each case, current strategies are reviewed and future approaches that may improve the techniques are considered. Finally, the paper concentrates on the needs to be addressed in each of these areas to take advantage of the opportunities that lay ahead for both the NASA Langley Research Center and the Aerodynamic Aerothermodynamic, and Aeroacoustics Competency. Recommendations are then provided so that the goals set forth in the paper may be achieved.

  1. Supersonic laser propulsion.

    PubMed

    Rezunkov, Yurii; Schmidt, Alexander

    2014-11-01

    To produce supersonic laser propulsion, a new technique based on the interaction of a laser-ablated jet with supersonic gas flow in a nozzle is proposed. It is shown that such parameters of the jet, such as gas-plasma pressure and temperature in the ablation region as well as the mass consumption rate of the ablated solid propellant, are characteristic in this respect. The results of numerical simulations of the supersonic laser propulsion are presented for two types of nozzle configuration. The feasibility to achieve the momentum coupling coefficient of C(m)∼10(-3) N/W is shown. PMID:25402938

  2. Spaceliner Class Operability Gains Via Combined Airbreathing/ Rocket Propulsion: Summarizing an Operational Assessment of Highly Reusable Space Transports

    NASA Technical Reports Server (NTRS)

    Nix, Michael B.; Escher, William J. d.

    1999-01-01

    In discussing a new NASA initiative in advanced space transportation systems and technologies, the Director of the NASA Marshall Space Flight Center, Arthur G. Stephenson, noted that, "It would use new propulsion technology, air-breathing engine so you don't have to carry liquid oxygen, at least while your flying through the atmosphere. We are calling it Spaceliner 100 because it would be 100 times cheaper, costing $ 100 dollars a pound to orbit." While airbreathing propulsion is directly named, rocket propulsion is also implied by, "... while you are flying through the atmosphere." In-space final acceleration to orbital speed mandates rocket capabilities. Thus, in this informed view, Spaceliner 100 will be predicated on combined airbreathing/rocket propulsion, the technical subject of this paper. Interestingly, NASA's recently concluded Highly Reusable Space Transportation (HRST) study focused on the same affordability goal as that of the Spaceliner 100 initiative and reflected the decisive contribution of combined propulsion as a way of expanding operability and increasing the design robustness of future space transports, toward "aircraft like" capabilities. The HRST study built on the Access to Space Study and the Reusable Launch Vehicle (RLV) development activities to identify and characterize space transportation concepts, infrastructure and technologies that have the greatest potential for reducing delivery cost by another order of magnitude, from $1,000 to $100-$200 per pound for 20,000 lb. - 40.000 lb. payloads to low earth orbit (LEO). The HRST study investigated a number of near-term, far-term, and very far-term launch vehicle concepts including all-rocket single-stage-to-orbit (SSTO) concepts, two-stage-to-orbit (TSTO) concepts, concepts with launch assist, rocket-based combined cycle (RBCC) concepts, advanced expendable vehicles, and more far term ground-based laser powered launchers. The HRST study consisted of preliminary concept studies, assessments

  3. Cascade Optimization Strategy for Aircraft and Air-Breathing Propulsion System Concepts

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Lavelle, Thomas M.; Hopkins, Dale A.; Coroneos, Rula M.

    1996-01-01

    Design optimization for subsonic and supersonic aircraft and for air-breathing propulsion engine concepts has been accomplished by soft-coupling the Flight Optimization System (FLOPS) and the NASA Engine Performance Program analyzer (NEPP), to the NASA Lewis multidisciplinary optimization tool COMETBOARDS. Aircraft and engine design problems, with their associated constraints and design variables, were cast as nonlinear optimization problems with aircraft weight and engine thrust as the respective merit functions. Because of the diversity of constraint types and the overall distortion of the design space, the most reliable single optimization algorithm available in COMETBOARDS could not produce a satisfactory feasible optimum solution. Some of COMETBOARDS' unique features, which include a cascade strategy, variable and constraint formulations, and scaling devised especially for difficult multidisciplinary applications, successfully optimized the performance of both aircraft and engines. The cascade method has two principal steps: In the first, the solution initiates from a user-specified design and optimizer, in the second, the optimum design obtained in the first step with some random perturbation is used to begin the next specified optimizer. The second step is repeated for a specified sequence of optimizers or until a successful solution of the problem is achieved. A successful solution should satisfy the specified convergence criteria and have several active constraints but no violated constraints. The cascade strategy available in the combined COMETBOARDS, FLOPS, and NEPP design tool converges to the same global optimum solution even when it starts from different design points. This reliable and robust design tool eliminates manual intervention in the design of aircraft and of air-breathing propulsion engines where it eases the cycle analysis procedures. The combined code is also much easier to use, which is an added benefit. This paper describes COMETBOARDS

  4. Evaluation of an Ejector Ramjet Based Propulsion System for Air-Breathing Hypersonic Flight

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Perkins, H. Douglas; Trefny, Charles J.

    1997-01-01

    A Rocket Based Combined Cycle (RBCC) engine system is designed to combine the high thrust to weight ratio of a rocket along with the high specific impulse of a ramjet in a single, integrated propulsion system. This integrated, combined cycle propulsion system is designed to provide higher vehicle performance than that achievable with a separate rocket and ramjet. The RBCC engine system studied in the current program is the Aerojet strutjet engine concept, which is being developed jointly by a government-industry team as part of the Air Force HyTech program pre-PRDA activity. The strutjet is an ejector-ramjet engine in which small rocket chambers are embedded into the trailing edges of the inlet compression struts. The engine operates as an ejector-ramjet from takeoff to slightly above Mach 3. Above Mach 3 the engine operates as a ramjet and transitions to a scramjet at high Mach numbers. For space launch applications the rockets would be re-ignited at a Mach number or altitude beyond which air-breathing propulsion alone becomes impractical. The focus of the present study is to develop and demonstrate a strutjet flowpath using hydrocarbon fuel at up to Mach 7 conditions.

  5. Laser thermal propulsion

    NASA Technical Reports Server (NTRS)

    Keefer, D.; Elkins, R.; Peters, C.; Jones, L.

    1984-01-01

    Laser thermal propulsion (LTP) is studied for the case in which laser power is absorbed by a small very high-temperature plasma (about 20,000 K) and transferred to the remainder of the pure hydrogen propellant by radiation and mixing. This concept could lead to the realization of a lightweight orbital transfer vehicle propulsion system having a specific impulse in the range 1000-2000 s. Approximately 12 percent of the input power may be radiated to the thruster walls, and 15 percent of the total propellant flow must be heated to 20,000 K to provide a bulk temperature of 5000 K prior to expansion. Three principal research issues identified are: (1) conditions for hydrogen plasma ignition, (2) control of the plasma position within the laser beam, plasma stability, and plasma absorption efficiency, and (3) characterization of the mixing of the plasma and buffer flows.

  6. Analysis of Laser-Generated Impulse In An Airbreathing Pulsed Detonation Engine: Part 1

    NASA Astrophysics Data System (ADS)

    Richard, Jacques C.; Myrabo, Leik N.

    2005-04-01

    An investigation is performed on an airbreathing laser propulsion (LP) system designed to propel a 1.4 m diameter, 120-kg (dry mass) vehicle called the Lightcraft Technology Demonstrator (LTD) into low Earth orbit, along with its opto-electronics payload. The LTD concept led directly to the model ♯200 lightcraft — recently demonstrated in laboratory and flight experiments at White Sands Missile Range, NM at the High Energy Laser Systems Test Facility (HELSTF), using the 10-kW PLVTS CO2 laser. The pulsed detonation wave engine (PDE) employs repetitively ignited, laser-supported detonation (LSD) waves to develop thrust by expanding high pressure blast waves over an annular, interior shroud surface. Numerical simulation of thruster impulse is accomplished with a 1-D cylindrical model of blast waves propagating radially outward from a laser-generated `line-source' of high temperature, high pressure air. External airflow over the LTD structure is also analyzed to predict basic engine/vehicle drag characteristics, including inlet total pressure recovery, and captured air mass flow rate — all projected vs. flight Mach number and altitude.

  7. Propulsion integration of hypersonic air-breathing vehicles utilizing a top-down design methodology

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Brad Kenneth

    In recent years, a focus of aerospace engineering design has been the development of advanced design methodologies and frameworks to account for increasingly complex and integrated vehicles. Techniques such as parametric modeling, global vehicle analyses, and interdisciplinary data sharing have been employed in an attempt to improve the design process. The purpose of this study is to introduce a new approach to integrated vehicle design known as the top-down design methodology. In the top-down design methodology, the main idea is to relate design changes on the vehicle system and sub-system level to a set of over-arching performance and customer requirements. Rather than focusing on the performance of an individual system, the system is analyzed in terms of the net effect it has on the overall vehicle and other vehicle systems. This detailed level of analysis can only be accomplished through the use of high fidelity computational tools such as Computational Fluid Dynamics (CFD) or Finite Element Analysis (FEA). The utility of the top-down design methodology is investigated through its application to the conceptual and preliminary design of a long-range hypersonic air-breathing vehicle for a hypothetical next generation hypersonic vehicle (NHRV) program. System-level design is demonstrated through the development of the nozzle section of the propulsion system. From this demonstration of the methodology, conclusions are made about the benefits, drawbacks, and cost of using the methodology.

  8. JANNAF 25Th Airbreathing Propulsion Subcommittee, 37Th Combustion Subcommittee and 1St Modeling and Simulation Subcommittee Joint Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Becker, Dorothy L. (Editor)

    2000-01-01

    Contents include the following: 1. Hyper-X program: Propulsion development and verification. 2. GTX program: Airbreathing launch vehicles. 3. Hypersonic technology development: Technology program overviews. Ramjet/scramjet research. 4. Hypersonic test methods: Test medium effects. 5. Advanced propulsion: RBCC engine design and performance assessments. Advanced and combined cycle engine technology.

  9. Evaluation of an Ejector Ramjet Based Propulsion System for Air-Breathing Hypersonic Flight

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Perkins, H. Douglas; Trefny, Charles J.

    1997-01-01

    A Rocket Based Combined Cycle (RBCC) engine system is designed to combine the high thrust to weight ratio of a rocket along with the high specific impulse of a ramjet in a single, integrated propulsion system. This integrated, combined cycle propulsion system is designed to provide higher vehicle performance than that achievable with a separate rocket and ramjet. The RBCC engine system studied in the current program is the Aerojet strutjet engine concept, which is being developed jointly by a government-industry team as part of the Air Force HyTech program pre-PRDA activity. The strutjet is an ejector-ramjet engine in which small rocket chambers are embedded into the trailing edges of the inlet compression struts. The engine operates as an ejector-ramjet from take-off to slightly above Mach 3. Above Mach 3 the engine operates as a ramjet and transitions to a scramjet at high Mach numbers. For space launch applications the rockets would be re-ignited at a Mach number or altitude beyond which air-breathing propulsion alone becomes impractical. The focus of the present study is to develop and demonstrate a strutjet flowpath using hydrocarbon fuel at up to Mach 7 conditions. Freejet tests of a candidate flowpath for this RBCC engine were conducted at the NASA Lewis Research Center's Hypersonic Tunnel Facility between July and September 1996. This paper describes the engine flowpath and installation, outlines the primary objectives of the program, and describes the overall results of this activity. Through this program 15 full duration tests, including 13 fueled tests were made. The first major achievement was the further demonstration of the HTF capability. The facility operated at conditions up to 1950 K and 7.34 MPa, simulating approximately Mach 6.6 flight. The initial tests were unfueled and focused on verifying both facility and engine starting. During these runs additional aerodynamic appliances were incorporated onto the facility diffuser to enhance starting

  10. An Airbreathing Launch Vehicle Design with Turbine-Based Low-Speed Propulsion and Dual Mode Scramjet High-Speed Propulsion

    NASA Technical Reports Server (NTRS)

    Moses, P. L.; Bouchard, K. A.; Vause, R. F.; Pinckney, S. Z.; Ferlemann, S. M.; Leonard, C. P.; Taylor, L. W., III; Robinson, J. S.; Martin, J. G.; Petley, D. H.

    1999-01-01

    Airbreathing launch vehicles continue to be a subject of great interest in the space access community. In particular, horizontal takeoff and horizontal landing vehicles are attractive with their airplane-like benefits and flexibility for future space launch requirements. The most promising of these concepts involve airframe integrated propulsion systems, in which the external undersurface of the vehicle forms part of the propulsion flowpath. Combining of airframe and engine functions in this manner involves all of the design disciplines interacting at once. Design and optimization of these configurations is a most difficult activity, requiring a multi-discipline process to analytically resolve the numerous interactions among the design variables. This paper describes the design and optimization of one configuration in this vehicle class, a lifting body with turbine-based low-speed propulsion. The integration of propulsion and airframe, both from an aero-propulsive and mechanical perspective are addressed. This paper primarily focuses on the design details of the preferred configuration and the analyses performed to assess its performance. The integration of both low-speed and high-speed propulsion is covered. Structural and mechanical designs are described along with materials and technologies used. Propellant and systems packaging are shown and the mission-sized vehicle weights are disclosed.

  11. CFD Study of Turbo-Ramjet Interactions in Hypersonic Airbreathing Propulsion System

    NASA Technical Reports Server (NTRS)

    Chang, Ing; Hunter, Louis G.

    1996-01-01

    Advanced airbreathing propulsion systems used in Mach 4-6 mission scenarios, usually involve turbo-ramjet configurations. As the engines transition from turbojet to ramjet, there is an operational envelope where both engines operate simultaneously. In the first phase of our study, an over/under nozzle configuration was analyzed. The two plumes from the turbojet and ramjet interact at the end of a common 2-D cowl, where they both reach an approximate Mach 3.0 condition and then jointly expand to Mach 3.6 at the common nozzle exit plane. For the problem analyzed, the turbojet engine operates at a higher nozzle pressure ratio than the ramjet, causes the turbojet plume overpowers the ramjet plume, deflecting it approximately 12 degrees downward and in turn the turbojet plume is deflected 6 degrees upward. In the process, shocks were formed at the deflections and a shear layer formed at the confluence of the two jets. This particular case was experimentally tested and the data were used to compare with a computational fluid dynamics (CFD) study using the PARC2D code. The CFD results were in good agreement with both static pressure distributions on the cowl separator and on nozzle walls. The thrust coefficients were also in reasonable agreement. In addition, inviscid relationships were developed around the confluence point, where the two exhaust jets meet, and these results compared favorably with the CFD results. In the second phase of our study, a 3-D CFD solution was generated to compare with the 2-D solution. The major difference between the 2-D and 3-D solutions was the interaction of the shock waves, generated by the plume interactions, on the sidewall. When a shock wave interacts with a sidewall and sidewall boundary layer, it is called a glancing shock sidewall interaction. These interactions entrain boundary layer flow down the shockline into a vortical flow pattern. The 3-D plots show the streamlines being entrained down the shockline. The pressure of the flow

  12. JANNAF 25th Airbreathing Propulsion Subcommittee, 37th Combustion Subcommittee and 1st Modeling and Simulation Subcommittee Joint Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S.; Becker, Dorothy L.

    2000-01-01

    Volume I, the first of three volumes, is a compilation of 24 unclassified/unlimited-distribution technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 25th Airbreathing Propulsion Subcommittee, 37th Combustion Subcommittee and 1st Modeling and Simulation Subcommittee (MSS) meeting held jointly with the 19th Propulsion Systems Hazards Subcommittee. The meeting was held 13-17 November 2000 at the Naval Postgraduate School and Hyatt Regency Hotel, Monterey, California. Topics covered include: a Keynote Address on Future Combat Systems, a review of the new JANNAF Modeling and Simulation Subcommittee, and technical papers on Hyper-X propulsion development and verification; GTX airbreathing launch vehicles; Hypersonic technology development, including program overviews, fuels for advanced propulsion, ramjet and scramjet research, hypersonic test medium effects; and RBCC engine design and performance, and PDE and UCAV advanced and combined cycle engine technologies.

  13. Study of Forebody Injection and Mixing with Application to Hypervelocity Airbreathing Propulsion

    NASA Technical Reports Server (NTRS)

    Axdahl, Erik; Kumar, Ajay; Wilhite, Alan

    2012-01-01

    The use of premixed, shock-induced combustion in the context of a hypervelocity, airbreathing vehicle requires effective injection and mixing of hydrogen fuel and air on the vehicle forebody. Three dimensional computational simulations of fuel injection and mixing from flush-wall and modified ramp and strut injectors are reported in this study. A well-established code, VULCAN, is used to conduct nonreacting, viscous, turbulent simulations on a flat plate at conditions relevant to a Mach 12 flight vehicle forebody. In comparing results of various fuel injection strategies, it is found that strut injection provides the greatest balance of performance between mixing efficiency and stream thrust potential.

  14. Laser Diagnostics for Spacecraft Propulsion

    NASA Astrophysics Data System (ADS)

    MacDonald-Tenenbaum, Natalia

    2015-09-01

    Over the past several decades, a variety of laser diagnostic techniques have been developed and applied to diagnose spacecraft propulsion devices. Laser diagnostics are inherently non-intrusive, and provide the opportunity to probe properties such as temperature, concentration or number density of plume species, and plume velocities in the harsh environments of combustion and plasma discharges. This presentation provides an overview of laser diagnostic capabilities for spacecraft propulsion devices such as small monopropellant thrusters, arcjets, ion engines and Hall thrusters. Particular emphasis is placed on recent developments for time-resolved ion velocity measurements in Hall thruster plumes. Results are presented for one such diagnostic method, a time-synchronized CW-laser induced fluorescence (LIF) technique based on a sample hold scheme. This method is capable of correlating measured fluorescence excitation lineshapes with high frequency current fluctuations in the plasma discharge of a Hall thruster and is tolerant of natural drifting in the current oscillation frequency.

  15. Survey of Aerothermodynamics Facilities Useful for the Design of Hypersonic Vehicles Using Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Deiwert, G. S.

    1997-01-01

    The dream of producing an air-breathing, hydrogen fueled, hypervelocity aircraft has been before the aerospace community for decades. However, such a craft has not yet been realized, even in an experimental form. Despite the simplicity and beauty of the concept, many formidable problems must be overcome to make this dream a reality. This paper summarizes the aero/aerothermodynamic issues that must be addressed to make the dream a reality and discusses how aerothermodynamics facilities and their modem companion, real-gas computational fluid dynamics (CFD), can help solve the problems blocking the way to realizing the dream. The approach of the paper is first to outline the concept of an air-breathing hypersonic vehicle and then discuss the nose-to-tail aerothermodynamics issues and special aerodynamic problems that arise with such a craft. Then the utility of aerothermodynamic facilities and companion CFD analysis is illustrated by reviewing results from recent United States publications wherein these problems have been addressed. Papers selected for the discussion have k e n chosen such that the review will serve to survey important U.S. aero/aerothermodynamic real gas and conventional wind tunnel facilities that are useful in the study of hypersonic, hydrogen propelled hypervelocity vehicles.

  16. Performance analysis of a turbofan as a part of an airbreathing propulsion system for space shuttles

    NASA Astrophysics Data System (ADS)

    Steinebach, D. A.; Kuehl, W.; Gallus, H. E.

    1993-04-01

    This paper presents the results of the design and performance analysis of airbreathing engines for aerospace planes. The analysis is illustrated by introducing an exemplary twin-shaft turbofan engine with post-combustion and bypass-combustion. Some modules of the performance analysis algorithm such as inlet pressure recovery or real gas effects are also presented. The jet engine is designed in view of increasing temperatures at high flight Mach numbers. Hence, the engine design data are dependent on the characteristics of the available materials as well as on the trajectory of the aerospace plane. The results illustrate the strong influence of the real gas effects on the engine thrust particularly in the case of over-stoichiometric combustion of hydrogen. Turbofan engines offer the following advantages in comparison with equivalent turbojet engines: higher thrust performance in supersonic flight range and lower fuel consumption due to operation management of post-combustion and bypass-combustion.

  17. Laser Ablation Propulsion A Study

    NASA Astrophysics Data System (ADS)

    Irfan, Sayed A.; Ugalatad, Akshata C.

    Laser Ablation Propulsion (LAP) will serve as an alternative propulsion system for development of microthrusters. The principle of LAP is that when a laser (pulsed or continuous wave) with sufficient energy (more than the vaporization threshold energy of material) is incident on material, ablation or vaporization takes place which leads to the generation of plasma. The generated plasma has the property to move away from the material hence pressure is generated which leads to the generation of thrust. Nowadays nano satellites are very common in different space and defence applications. It is important to build micro thruster which are useful for orienting and re-positioning small aircraft (like nano satellites) above the atmosphere. modelling of LAP using MATLAB and Mathematica. Schematic is made for the suitable optical configuration of LAP. Practical experiments with shadowgraphy and self emission techniques and the results obtained are analysed taking poly (vinyl-chloride) (PVC) as propellant to study the

  18. I(sup STAR), NASA's Next Step in Air-Breathing Propulsion for Space Access

    NASA Technical Reports Server (NTRS)

    Hutt, John J.; McArthur, Craig; Cook, Stephen (Technical Monitor)

    2001-01-01

    The United States' National Aeronautics and Space Administration (NASA) has established a strategic plan for future activities in space. A primary goal of this plan is to make drastic improvements in the cost and safety of earth to low-earth-orbit transportation. One approach to achieving this goal is through the development of highly reusable, highly reliable space transportation systems analogous to the commercial airline system. In the year 2000, NASA selected the Rocket Based Combined Cycle (RBCC) engine as the next logical step towards this goal. NASA will develop a complete flight-weight, pump-fed engine system under the Integrated System Test of an Airbreathing Rocket (I(sup STAR)) Project. The objective of this project is develop a reusable engine capable of self-powering a vehicle through the air-augmented rocket, ramjet and scramjet modes required in all RBCC based operational vehicle concepts. The project is currently approved and funded to develop the engine through ground test demonstration. Plans are in place to proceed with flight demonstration pending funding approval. The project is in formulation phase and the Preliminary Requirements Review has been completed. The engine system and vehicle have been selected at the conceptual level. The I(sup STAR) engine concept is based on an air-breathing flowpath downselected from three configurations evaluated in NASA's Advanced Reusable Technology contract. The selected flowpath features rocket thrust chambers integrated into struts separating modular flowpath ducts, a variable geometry inlet, and a thermally choked throat. The engine will be approximately 220 inches long and 79 inches wide and fueled with a hydrocarbon fuel using liquid oxygen as the primary oxidizer candidate. The primary concept for the pump turbine drive is pressure-fed catalyzed hydrogen peroxide. In order to control costs, the flight demonstration vehicle will be launched from a B-52 aircraft. The vehicle concept is based on the Air

  19. An Overview of the NASA FAP Hypersonics Project Airbreathing Propulsion Research

    NASA Technical Reports Server (NTRS)

    Auslender, A. H.; Suder, Kenneth L.; Thomas, Scott R.

    2009-01-01

    The propulsion research portfolio of the National Aeronautics and Space Administration Fundamental Aeronautics Program Hypersonics Project encompasses a significant number of technical tasks that are aligned to achieve mastery and intellectual stewardship of the core competencies in the hypersonic-flight regime. An overall coordinated programmatic and technical effort has been structured to advance the state-of-the-art, via both experimental and analytical efforts. A subset of the entire hypersonics propulsion research portfolio is presented in this overview paper. To this end, two programmatic research disciplines are discussed; namely, (1) the Propulsion Discipline, including three associated research elements: the X-51A partnership, the HIFiRE-2 partnership, and the Durable Combustor Rig, and (2) the Turbine-Based Combine Cycle Discipline, including three associated research elements: the Combined Cycle Engine Large Scale Inlet Mode Transition Experiment, the small-scale Inlet Mode Transition Experiment, and the High-Mach Fan Rig.

  20. Interactions between Flight Dynamics and Propulsion Systems of Air-Breathing Hypersonic Vehicles

    NASA Astrophysics Data System (ADS)

    Dalle, Derek J.

    The development and application of a first-principles-derived reduced-order model called MASIV (Michigan/AFRL Scramjet In Vehicle) for an air-breathing hypersonic vehicle is discussed. Several significant and previously unreported aspects of hypersonic flight are investigated. A fortunate coupling between increasing Mach number and decreasing angle of attack is shown to extend the range of operating conditions for a class of supersonic inlets. Detailed maps of isolator unstart and ram-to-scram transition are shown on the flight corridor map for the first time. In scram mode the airflow remains supersonic throughout the engine, while in ram mode there is a region of subsonic flow. Accurately predicting the transition between these two modes requires models for complex shock interactions, finite-rate chemistry, fuel-air mixing, pre-combustion shock trains, and thermal choking, which are incorporated into a unified framework here. Isolator unstart occurs when the pre-combustion shock train is longer than the isolator, which blocks airflow from entering the engine. Finally, cooptimization of the vehicle design and trajectory is discussed. An optimal control technique is introduced that greatly reduces the number of computations required to optimize the simulated trajectory.

  1. Overview of the development of heat exchangers for use in air-breathing propulsion pre-coolers

    NASA Astrophysics Data System (ADS)

    Murray, James J.; Guha, Abhijit; Bond, Alan

    High pressure heat exchangers used in closed cycle rocket engines and air-breathing propulsion pre-coolers are required to work at very high heat transfer rates. They work with high fluid flow rates and are fabricated from tubes or channels which have small hydraulic diameters. This increases the compactness of the unit and therefore reduces its mass. Novel designs of the manifold are required so that the pressure drop remains within acceptable limit. This paper reports on the progress of research work to investigate the manufacture of such heat exchangers and characterise their performance. The investigations centre on a heat exchanger constructed from tube of 0.4 mm diameter with potential heat transfer coefficients of up to 5000 W/m 2/K. The heat exchanger is subjected to pre-cooler operating conditions of 1000 K simulated air external flow and supercritical cryogenic internal flow. It seeks to validate extrapolations of aerodynamic and heat transfer design data under extreme temperatures and high mass flow rates. Due to the small size of the heat exchanger and the thin walls of the tubes, novel manufacturing methods are required. Work is being done to investigate compatibility of various high temperature brazing materials with thin walled tubes and special manufacturing automation processes to allow cost effective constant-quality fabrication of production units. It is concluded that heat exchangers capable of power transfer rates of up to 1 megawatt per kilogram mass are capable of being manufactured and used operationally. This is a technology where production to satisfy future aerospace demands for single-stage-to-orbit and hypersonic propulsion can be envisaged.

  2. A Conceptual Tree of Laser Propulsion

    SciTech Connect

    Pakhomov, Andrew V.; Sinko, John E.

    2008-04-28

    An original attempt to develop a conceptual tree for laser propulsion is offered. The tree provides a systematic view for practically all possible laser propulsion concepts and all inter-conceptual links, based on propellant phases and phase transfers. It also helps to see which fields of laser propulsion have been already thoroughly explored, where the next effort must be applied, and which paths should be taken with proper care or avoided entirely.

  3. Filtered Mass Density Function for Design Simulation of High Speed Airbreathing Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Givi, P.; Madnia, C. K.; Gicquel, L. Y. M.; Sheikhi, M. R. H.; Drozda, T. G.

    2002-01-01

    The objective of this research is to improve and implement the filtered mass density function (FDF) methodology for large eddy simulation (LES) of high speed reacting turbulent flows. NASA is interested in the design of various components involved in air breathing propulsion systems such as the scramjet. There is a demand for development of robust tools that can aid in the design procedure. The physics of high speed reactive flows is rich with many complexities. LES is regarded as one of the most promising means of simulating turbulent reacting flows.

  4. Modification of NASA Langley 8 foot high temperature tunnel to provide a unique national research facility for hypersonic air-breathing propulsion systems

    NASA Technical Reports Server (NTRS)

    Kelly, H. N.; Wieting, A. R.

    1984-01-01

    A planned modification of the NASA Langley 8-Foot High Temperature Tunnel to make it a unique national research facility for hypersonic air-breathing propulsion systems is described, and some of the ongoing supporting research for that modification is discussed. The modification involves: (1) the addition of an oxygen-enrichment system which will allow the methane-air combustion-heated test stream to simulate air for propulsion testing; and (2) supplemental nozzles to expand the test simulation capability from the current nominal Mach number to 7.0 include Mach numbers 3.0, 4.5, and 5.0. Detailed design of the modifications is currently underway and the modified facility is scheduled to be available for tests of large scale propulsion systems by mid 1988.

  5. Modification of NASA Langley 8 Foot High Temperature Tunnel to provide a unique national research facility for hypersonic air-breathing propulsion systems

    NASA Technical Reports Server (NTRS)

    Kelly, H. N.; Wieting, A. R.

    1984-01-01

    A planned modification of the NASA Langley 8-Foot High Temperature Tunnel to make it a unique national research facility for hypersonic air-breathing propulsion systems is described, and some of the ongoing supporting research for that modification is discussed. The modification involves: (1) the addition of an oxygen-enrichment system which will allow the methane-air combustion-heated test stream to simulate air for propulsion testing; and (2) supplemental nozzles to expand the test simulation capability from the current nominal Mach number to 7.0 include Mach numbers 3.0, 4.5, and 5.0. Detailed design of the modifications is currently underway and the modified facility is scheduled to be available for tests of large scale propulsion systems by mid 1988.

  6. An Overview of 2014 SBIR Phase 1 and Phase 2 Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights nine of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Air-Breathing Propulsion. The technologies cover a wide spectrum of applications such as development of X-ray computed tomography (CT) imaging method for the measurement of complex 3D ice shapes, phased array techniques for low signal-to-noise ratio wind tunnels, compact kinetic mechanisms for petroleum-derived and alternative aviation fuels, and hybrid electric propulsion systems for a multirotor aircraft. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides as an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  7. In-Tube Laser Propulsion Configurations

    NASA Astrophysics Data System (ADS)

    Kim, Sukyum; Urabe, Naohide; Torikai, Hiroyuki; Sasoh, Akihiro; Jeung, In-Seuck

    2003-05-01

    Laser propulsion research activities at Shock Wave Research Center, Institute of Fluid Science, Tohoku University, focus themselves on `in-tube' configurations. The thrust is enhanced in a confined acceleration region. Other advantages are obtained from the viewpoint of practical application. We are now investigating various extensions of the Laser-driven In-Tube Accelerator (LITA) (1) ablative in-tube propulsion, (2) thrust enhancement using applied magnetic field, (3) plasma pre-generation using a pilot laser irradiation, (4) demonstration of supersonic laser propulsion. The progresses in these subjects are presented.

  8. A US History of Airbreathing/Rocket Combined-Cycle (RBCC) Propulsion for Powering Future Aerospace Transports, with a Look Ahead to the Year 2020

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1999-01-01

    A technohistorical and forward-planning overview of U.S. developments in combined airbreathing/rocket propulsion for advanced aerospace vehicle applications is presented. Such system approaches fall into one of two categories: (1) Combination propulsion systems (separate, non-interacting engines installed), and (2) Combined-Cycle systems. The latter, and main subject, comprises a large family of closely integrated engine types, made up of both airbreathing and rocket derived subsystem hardware. A single vehicle-integrated, multimode engine results, one capable of operating efficiently over a very wide speed and altitude range, atmospherically and in space. While numerous combination propulsion systems have reached operational flight service, combined-cycle propulsion development, initiated ca. 1960, remains at the subscale ground-test engine level of development. However, going beyond combination systems, combined-cycle propulsion potentially offers a compelling set of new and unique capabilities. These capabilities are seen as enabling ones for the evolution of Spaceliner class aerospace transportation systems. The following combined-cycle hypersonic engine developments are reviewed: (1) RENE (rocket engine nozzle ejector), (2) Cryojet and LACE, (3) Ejector Ramjet and its derivatives, (4) the seminal NASA NAS7-377 study, (5) Air Force/Marquardt Hypersonic Ramjet, (6) Air Force/Lockheed-Marquardt Incremental Scramjet flight-test project, (7) NASA/Garrett Hypersonic Research Engine (HRE), (8) National Aero-Space Plane (NASP), (9) all past projects; and such current and planned efforts as (10) the NASA ASTP-ART RBCC project, (11) joint CIAM/NASA DNSCRAM flight test,(12) Hyper-X, (13) Trailblazer,( 14) W-Vehicle and (15) Spaceliner 100. Forward planning programmatic incentives, and the estimated timing for an operational Spaceliner powered by combined-cycle engines are discussed.

  9. Analysis of the Magneto-Hydrodynamic (MHD) Energy Bypass Engine for High-Speed Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Riggins, David W.

    2002-01-01

    The performance of the MHD energy bypass air-breathing engine for high-speed propulsion is analyzed in this investigation. This engine is a specific type of the general class of inverse cycle engines. In this paper, the general relationship between engine performance (specific impulse and specific thrust) and the overall total pressure ratio through an engine (from inlet plane to exit plane) is first developed and illustrated. Engines with large total pressure decreases, regardless of cause or source, are seen to have exponentially decreasing performance. The ideal inverse cycle engine (of which the MHD engine is a sub-set) is then demonstrated to have a significant total pressure decrease across the engine; this total pressure decrease is cycle-driven, degrades rapidly with energy bypass ratio, and is independent of any irreversibility. The ideal MHD engine (inverse cycle engine with no irreversibility other than that inherent in the MHD work interaction processes) is next examined and is seen to have an additional large total pressure decrease due to MHD-generated irreversibility in the decelerator and the accelerator. This irreversibility mainly occurs in the deceleration process. Both inherent total pressure losses (inverse cycle and MHD irreversibility) result in a significant narrowing of the performance capability of the MHD bypass engine. The fundamental characteristics of MHD flow acceleration and flow deceleration from the standpoint of irreversibility and second-law constraints are next examined in order to clarify issues regarding flow losses and parameter selection in the MM modules. Severe constraints are seen to exist in the decelerator in terms of allowable deceleration Mach numbers and volumetric (length) required for meaningful energy bypass (work interaction). Considerable difficulties are also encountered and discussed due to thermal/work choking phenomena associated with the deceleration process. Lastly, full engine simulations utilizing inlet

  10. Experimental Research on Plasma Induced by TEA CO2 Laser Propulsion

    NASA Astrophysics Data System (ADS)

    Lu, Hong; Cheng, Zuhai; Zuo, Duluo; Zhai, Bingjie; Yu, Liangying; Zhu, Haihong

    2008-04-01

    Results in the air-breathing propulsion experiments with a parabolic light craft and a self-made UV-preionized 100 J TEA CO2 laser device are presented. Air disturbance and the spectrum of the plasma after the interaction of pulsed laser radiation with the light craft were studied. It was found that the focal length of the parabolic light craft had a significant effect on the air-disturbance. Two shock waves were detected for the longer focal length, while only one shock wave detected for the short focal length. The spectrum of the laser-induced plasma, the distribution of the characteristic lines, and the temporal behaviors of the air plasma were studied in detail. The results showed that, the evolution of the laser-induced plasma lasted 20 μs, and the plasma spectrum would reach the maximum intensity at 7 μs.

  11. Integrated System Test of an Airbreathing Rocket

    NASA Technical Reports Server (NTRS)

    Mack, Gregory; Beaudry, Charles; Ketchum, Andrew; McArthur, J. Craig (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on NASA's attempts to develop an air-breathing propulsion in an effort to make future space transportation safer, more reliable and significantly less expensive than today's missions. Spacecraft powered by air-breathing rocket engines would be completely reusable, able to take off and land at airport runways and ready to fly again within days. A radical new engine project is called the Integrated System Tests of an Air-breathing Rocket, or ISTAR.

  12. Instrumentation for airbreathing propulsion; Proceedings of the Symposium, U.S. Naval Postgraduate School, Monterey, Calif., September 19-21, 1972

    NASA Technical Reports Server (NTRS)

    Fuhs, A. E. (Editor); Kingery, M.

    1974-01-01

    New developments and refinements in measuring techniques used for both ground testing and in-flight control, diagnosis, and monitoring of airbreathing combustors are analyzed in a number of papers. Some of the techniques studied include the application of laser velocimeters for flow measurements; on-the-shaft data systems for rotating engine components; total pressure averaging in pulsating flows; fiber optic and laser digital pressure transducers; holography of nozzles, jets, and spraying systems; application of the Raman effect fo flowfield diagnostics; holography of JP-4 droplets and combusting boron particles; the use of a laser-powered optical proximity probe in advanced turbofan engine development; pyrometry for measurement of surface temperature distribution on a rotating turbine blade; an ultrasonic turbine inlet gas temperature sensor; automatic detection and suppression of inlet buzz; and electrostatic probes for sensing incipient engine failure. Individual items are announced in this issue.

  13. Nuclear Powered Laser Driven Plasma Propulsion System

    NASA Astrophysics Data System (ADS)

    Kammash, T.

    A relativistic plasma thruster that could open up the solar system to near-term human exploration is presented. It is based on recent experimental and theoretical research, which show that ultrafast (very short pulse length) lasers can accelerate charged particles to relativistic speeds. In table top-type experiments charge-neutral proton beams containing more than 1014 particles with mean energies of tens of MeV's have been produced when high intensity lasers with femtosecond (10-15 s) pulse lengths are made to strike thin solid targets. When viewed from a propulsion standpoint such systems can produce specific impulses of several million seconds albeit at modest thrusts and require nuclear power systems to drive them. Several schemes are proposed to enhance the thrust and make these systems suitable for manned interplanetary missions. In this paper we set forth the physics principles that make relativistic plasma driven by ultrafast lasers particularly attractive for propulsion applications. We introduce the “Laser Accelerated Plasma Propulsion System” LAPPS, and demonstrate its potential propulsive capability by addressing an interstellar mission to the Oort Cloud, and a planetary mission to Mars. We show that the first can be carried out in a human's lifetime and the second in a matter of months. In both instances we identify the major technological problems that must be addressed if this system is to evolve into a leading contender among the advance propulsion concepts currently under consideration.

  14. Measurement Issues In Pulsed Laser Propulsion

    SciTech Connect

    Sinko, John E.; Scharring, Stefan; Eckel, Hans-Albert; Roeser, Hans-Peter; Sasoh, Akihiro

    2010-05-06

    Various measurement techniques have been used throughout the over 40-year history of laser propulsion. Often, these approaches suffered from inconsistencies in definitions of the key parameters that define the physics of laser ablation impulse generation. Such parameters include, but are not limited to the pulse energy, spot area, imparted impulse, and ablated mass. The limits and characteristics of common measurement techniques in each of these areas will be explored as they relate to laser propulsion. The idea of establishing some standardization system for laser propulsion data is introduced in this paper, so that reported results may be considered and studied by the general community with more certain understanding of particular merits and limitations. In particular, it is the intention to propose a minimum set of requirements a literature study should meet. Some international standards for measurements are already published, but modifications or revisions of such standards may be necessary for application to laser ablation propulsion. Issues relating to development of standards will be discussed, as well as some examples of specific experimental circumstances in which standardization would have prevented misinterpretation or misuse of past data.

  15. Laser propulsion for the orbital transfer mission

    NASA Technical Reports Server (NTRS)

    Frisbee, R. H.; Horvath, J. C.; Sercel, J. C.

    1985-01-01

    America's space activities in the 1990s and beyond will partly consist of missions involving the transportation of cargo from low earth orbit (LEO) to higher orbits or to an escape trajectory. Such missions are to be performed with the aid of an orbit transfer vehicle (OTV). The operation of the OTV can be based on different propulsion concepts. A chemical OTV is characterized by a high thrust and low specific impulse. The result is a short trip time at the cost of large quantities of propellant. On the other hand, low-thrust systems such as electric propulsion units, consume very little propellant, but would have a long trip time. The present paper is concerned with a compromise between these two extremes. The employed propulsion system utilizes laser thermal propulsion, in which a ground or space-based laser is used to beam energy to a thruster on the OTV. The laser light is absorbed by a propellant. The resulting heating of the propellant causes an expansion of the propellant through a nozzle to produce thrust. Details regarding this propulsion concept are discussed, taking into account operational questions and missions.

  16. Plasma ignition for laser propulsion

    NASA Technical Reports Server (NTRS)

    Askew, R. F.

    1982-01-01

    For a specific optical system a pulsed carbon dioxide laser having an energy output of up to 15 joules was used to initiate a plasma in air at one atmosphere pressure. The spatial and temporal development of the plasma were measured using a multiframe image converter camera. In addition the time dependent velocity of the laser supported plasma front which moves opposite to the direction of the laser pulse was measured in order to characterize the type of wavefront developed. Reliable and reproducible spark initiation was achieved. The lifetime of the highly dense plasma at the initial focal spot was determined to be less than 100 nanoseconds. The plasma front propagates toward the laser at a variable speed ranging from zero to 1.6 x 1,000,000 m/sec. The plasma front propagates for a total distance of approximately five centimeters for the energy and laser pulse shape employed.

  17. Advanced propulsion concepts study: Comparative study of solar electric propulsion and laser electric propulsion

    NASA Technical Reports Server (NTRS)

    Forward, R. L.

    1975-01-01

    Solar electric propulsion (SEP) and laser electric propulsion (LEP) was compared. The LEP system configuration consists of an 80 kW visible laser source on earth, transmitting via an 8 m diameter adaptively controlled phased array through the atmosphere to a 4 m diameter synchronous relay mirror that tracks the LEP spacecraft. The only significant change in the SEP spacecraft for an LEP mission is the replacement of the two 3.7 m by 33.5 m solar cell arrays with a single 8 m diameter laser photovoltaic array. The solar cell array weight is decreased from 320 kg to 120 kg for an increase in payload of 200 kg and a decrease in specific mass of the power system from 20.5 kg/kW to 7.8 kg/kW.

  18. Laser Propulsion - Is it another myth or a real potential?

    SciTech Connect

    Cook, Joung R.

    2008-04-28

    This paper discusses different principles of inducing propulsive power using lasers and examines the performance limits along with pros and cons with respect to different space propulsion applications: satellite launching, orbital transfer, space debris clearing, satellite propulsion, and space travels. It concludes that a use of electrical propulsion, in conjunction with laser power beaming, is the most feasible application with technological and economic advantages for commercial use within the next decades.

  19. A Status Report of the X-50LR Program: A Laser Propulsion Program

    NASA Astrophysics Data System (ADS)

    Mead, Frank B., Jr.; Larson, C. W.; Kalliomaa, Wayne M.

    2001-10-01

    In 1996, the Air Force Research Lab's Propulsion Division at Edwards AFB initiated a program that had as its main objective to launch a laser-propelled vehicle into a suborbital trajectory within a period of 5 years in order to demonstrate the concept and its attractive features. The concept was to be a nanosatellite in which the laser propulsion engine and satellite hardware were intimately shared. This concept was based upon a 1989 design developed at Rensselaer Polytechnic Institute under a Space Defense Initiative Office laser propulsion program. The forebody aeroshell had been designed to act as an external compression surface (i.e. the airbreathing engine inlet). The afterbody served a dual function as a primary receptive optic (parabolic mirror) for the laser beam and as an external expansion surface (plug nozzle). The primary thrust structure was the centrally located annular shroud. The shroud provided air through inlets and acts as a energy absorption chamber for plasma formation. In the rocket mode, the air inlets were closed, and the afterbody and shroud combined to form the rocket thrust chamber and plug ('aerospike-type') nozzle. The fully-scale vehicle was 1.4 meters in diameter with a dry mass of 120 kg. Fully fueled, this vehicle would have an initial mass of about 240 kg (i.e., a mass fraction of 0.5), and would be launched into orbit with a 100 megawatt-class infrared ground-based laser (GBL). This laser propelled vehicle would be a single-stage-to-orbit (i.e., airbreathing only to M=5 and 30 km; a laser thermal rocket, using liquid propellants, at higher altitudes and in space) using a combined-cycle pulsed detonation engine. Once in space, the Lightcraft was to use its one meter diameter optical system to provide, for example, Earth surveys from low Earth orbit with 8-15 cm resolution in the visible light frequencies. Such a device was simple, reliable, safe, environmentally clean, and could have a very high all azimuth on demand launch rate.

  20. Laser propulsion for orbit transfer - Laser technology issues

    NASA Technical Reports Server (NTRS)

    Horvath, J. C.; Frisbee, R. H.

    1985-01-01

    Using reasonable near-term mission traffic models (1991-2000 being the assumed operational time of the system) and the most current unclassified laser and laser thruster information available, it was found that space-based laser propulsion orbit transfer vehicles (OTVs) can outperform the aerobraked chemical OTV over a 10-year life-cycle. The conservative traffic models used resulted in an optimum laser power of about 1 MW per laser. This is significantly lower than the power levels considered in other studies. Trip time was taken into account only to the extent that the system was sized to accomplish the mission schedule.

  1. Numerical modeling of laser thermal propulsion flows

    NASA Technical Reports Server (NTRS)

    Mccay, T. D.; Thoenes, J.

    1984-01-01

    An review of the problems associated with modeling laser thermal propulsion flows, a synopsis of the status of such models, and the attributes of a successful model are presented. The continuous gaseous hydrogen laser-supported combustion wave (LSCW) thruster, for which a high-energy laser system (preferably space-based) should exist by the time the propulsion technology is developed, is considered in particular. The model proposed by Raizer (1970) is based on the assumptions of one-dimensional flow at constant pressure with heat conduction as the principal heat transfer mechanism. Consideration is given to subsequent models which account for radiative transfer into the ambient gas; provide a two-dimensional generalization of Raizer's analysis for the subsonic propagation of laser sparks in air; include the effect of forward plasma radiation in a one-dimensional model; and attempt a time-dependent (elliptic) solution of the full Navier-Stokes equations for the flow in a simple axisymmetric thruster. Attention is also given to thruster and nozzle flow models and thermodynamic and transport properties.

  2. Status of the Ablative Laser Propulsion Studies

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Lin, Jun; Cohen, Tinothy; Pakhomov, Andrew V.; Thompson, M. Shane

    2004-01-01

    We present a short review of our laser-propulsion research as well as some of the current results of the Ablative Laser Propulsion (ALP) studies currently underway at the University of Alabama in Huntsville. It has been shown that direct surface ablation of a solid material produces high specific impulse (Isp) at relatively high energy conversion efficiency (20 - 40%). We detail measurements of specific impulse, thrust and coupling coefficients for elemental target materials both with single and with double pulse laser shots. We also present measurements taken using three independent methods for determination of Isp. The three methods produce consistent values from ion time-of-flight technique, impulse measurements and imaging of the expansion front of plasma plume. We present a demonstration of our ALP lightcraft, a small free-flying micro-vehicle that is propelled by ablation. For ALP lightcraft we use a subscale thin shell of nickel replicated over a diamond turned mandrel that produces a highly polished self-focusing, truncated at the focus parabolic mirror. The mass of the lightcraft is 54 mg and it is driven by 100-ps wide, 35-mJ laser pulses at 532 nm wavelength. This is an ongoing research. We also present the latest work on laserdriven micro-thrusters and detail some the near term goals of our program.

  3. Study of underwater laser propulsion using different target materials.

    PubMed

    Qiang, Hao; Chen, Jun; Han, Bing; Shen, Zhong-Hua; Lu, Jian; Ni, Xiao-Wu

    2014-07-14

    In order to investigate the influence of target materials, including aluminum (Al), titanium (Ti) and copper (Cu), on underwater laser propulsion, the analytical formula of the target momentum IT is deduced from the enhanced coupling theory of laser propulsion in atmosphere with transparent overlay metal target. The high-speed photography method and numerical simulation are employed to verify the IT model. It is shown that the enhanced coupling theory, which was developed originally for laser propulsion in atmosphere, is also applicable to underwater laser propulsion with metal targets. PMID:25090568

  4. Airbreathing Acceleration Toward Earth Orbit

    SciTech Connect

    Whitehead, J C

    2007-05-09

    As flight speed increases, aerodynamic drag rises more sharply than the availability of atmospheric oxygen. The ratio of oxygen mass flux to dynamic pressure cannot be improved by changing altitude. The maximum possible speed for airbreathing propulsion is limited by the ratio of air capture area to vehicle drag area, approximately Mach 6 at equal areas. Simulation of vehicle acceleration shows that the use of atmospheric oxygen offers a significant potential for minimizing onboard consumables at low speeds. These fundamental calculations indicate that a practical airbreathing launch vehicle would accelerate to near steady-state speed while consuming only onboard fuel, then transition to rocket propulsion. It is suggested that an aircraft carrying a rocket-propelled vehicle to approximately Mach 5 could be a realistic technical goal toward improving access to orbit.

  5. Time-resolved imaging for the dynamic study of ablative laser propulsion

    NASA Astrophysics Data System (ADS)

    Lin, Jun

    Time-resolved imaging techniques have been developed and used for a study of plasma dynamics in Ablative Laser Propulsion (ALP), an advanced propulsion technique utilizing the momentum of laser-ablated solid propellants for rocket thrust. We used a gated Intensified Charge Coupled Device camera to record light emission from laser-induced plasma. The plasma was ignited by 100-ps wide laser pulses, of energy 35 mJ at 532 nm wavelength. The required algorithms for processing 2-D digital images of the plasma and deriving the plasma edge velocities were also developed. The 2-D angular distribution functions for both plasma velocity and emission intensity were deduced from these measurements for the first time. The fitting functions for observed angular distributions were derived for a wide range of elements, such as C (graphite), Al, Si, Cu, Fe, Zn, Sn and Pb. Results show that the specific impulses (I sp) vary between 2.6 x 103 s (carbon) and 1.2 x 103 s (zinc), which are in excellent agreement with previously conducted Force Measurements. We also developed a digital video imaging (DVI) technique to study the dynamics of a ballistic pendulum driven by TEA CO2 laser pulses. The pulses had 200 ns pulsewidth and 10.6 J energy at 10.6 mum wavelength. The experiment using the DVI technique in the range of pressures from 3.5 mTorr to 1 atmosphere has been developed for the first time. Coupling coefficients (Cm) and mass removal rates as functions of pressure were deduced from these measurements. The technique allowed the addressing of the partition of the energy and momentum between air breakdown and target ablation. The study was performed on Aluminum targets. The partition functions show a sharp transition region between 1.0 and 10 Torr, where the momentum and energy imparted to the target via ablation appear comparable to those due to air breakdown. Our observations show that currently developing air-breathing laser-propulsion schemes would hardly support launching

  6. Specific Impulse Definition for Ablative Laser Propulsion

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Gregory, Don A.

    2004-01-01

    The term "specific impulse" is so ingrained in the field of rocket propulsion that it is unlikely that any fundamental argument would be taken seriously for its removal. It is not an ideal measure but it does give an indication of the amount of mass flow (mass loss/time), as in fuel rate, required to produce a measured thrust over some time period This investigation explores the implications of being able to accurately measure the ablation rate and how the language used to describe the specific impulse results may have to change slightly, and recasts the specific impulse as something that is not a time average. It is not currently possible to measure the ablation rate accurately in real time so it is generally just assumed that a constant amount of material will be removed for each laser pulse delivered The specific impulse dependence on the ablation rate is determined here as a correction to the classical textbook definition.

  7. Laser-supported detonation waves and pulsed laser propulsion

    SciTech Connect

    Kare, J.T.

    1989-01-01

    A laser thermal rocket uses the energy of a large remote laser, possibly ground-based, to heat an inert propellant and generate thrust. Use of a pulsed laser allows the design of extremely simple thrusters with very high performance compared to chemical rockets. The temperatures, pressures, and fluxes involved in such thrusters (10{sup 4} K, 10{sup 2} atmospheres, 10{sup 7} w/cm{sup 2}) typically result in the creation of laser-supported detonation (LSD) waves. The thrust cycle thus involves a complex set of transient shock phenomena, including laser-surface interactions in the ignition if the LSD wave, laser-plasma interactions in the LSD wave itself, and high-temperature nonequilibrium chemistry behind the LSD wave. The SDIO Laser Propulsion Program is investigating these phenomena as part of an overall effort to develop the technology for a low-cost Earth-to-orbit laser launch system. We will summarize the program's approach to developing a high performance thruster, the double-pulse planar thruster, and present an overview of some results obtained to date, along with a discussion of the many research questions still outstanding in this area. 16 refs., 7 figs.

  8. Laser-supported detonation waves and pulsed laser propulsion

    SciTech Connect

    Kare, J. )

    1990-07-30

    A laser thermal rocket uses the energy of a large remote laser, possibly ground-based, to heat an inert propellant and generate thrust. Use of a pulsed laser allows the design of extremely simple thrusters with very high performance compared to chemical rockets. The temperatures, pressures, and fluxes involved in such thrusters (10{sup 4} K, 10{sup 2} atmospheres, 10{sup 7} w/cm{sup 2}) typically result in the creation of laser-supported detonation (LSD) waves. The thrust cycle thus involves a complex set of transient shock phenomena, including laser-surface interactions in the ignition of the LSD wave, laser-plasma interactions in the LSD wave itself, and high-temperature nonequilibrium chemistry behind the LSD wave. The SDIO Laser Propulsion Program is investigating these phenomena as part of an overall effort to develop the technology for a low-cost Earth-to-orbit laser launch system. We will summarize the Program's approach to developing a high performance thruster, the double-pulse planar thruster, and present an overview of some results obtained to date, along with a discussion of the many research question still outstanding in this area.

  9. Space transfer with ground-based laser/electric propulsion

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Stavnes, Mark; Oleson, Steve; Bozek, John

    1992-01-01

    Ground-based high-power CW lasers can be used to beam power to photovoltaic receivers in space that furnish electricity to space vehicles; this energy can also be used to power electric-propulsion orbital transfer vehicles. An account is presently given of the anticipated requirements for the pulsed FEL lasers, large adaptive optics, photovoltaic receivers, and high specific impulse electrical propulsion. Preliminary system analysis results are presented.

  10. Air-Breathing Launch Vehicle Technology Being Developed

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.

    2003-01-01

    Of the technical factors that would contribute to lowering the cost of space access, reusability has high potential. The primary objective of the GTX program is to determine whether or not air-breathing propulsion can enable reusable single-stage-to-orbit (SSTO) operations. The approach is based on maturation of a reference vehicle design with focus on the integration and flight-weight construction of its air-breathing rocket-based combined-cycle (RBCC) propulsion system.

  11. Numerical Investigation of Laser Propulsion for Transport in Water Environment

    SciTech Connect

    Han Bing; Li Beibei; Zhang Hongchao; Chen Jun; Shen Zhonghua; Lu Jian; Ni Xiaowu

    2010-10-08

    Problems that cumber the development of the laser propulsion in atmosphere and vacuum are discussed. Based on the theory of interaction between high-intensity laser and materials, as air and water, it is proved that transport in water environment can be impulsed by laser. The process of laser propulsion in water is investigated theoretically and numerically. It shows that not only the laser induced plasma shock wave, but also the laser induced bubble oscillation shock waves and the pressure induced by the collapsing bubble can be used. Many experimental results show that the theory and the numerical results are valid. The numerical result of the contribution of every propulsion source is given in percentage. And the maximum momentum coupling coefficient Cm is given. Laser propulsion in water environment can be applied in many fields. For example, it can provide highly controllable forces of the order of micro-Newton ({mu}N) in microsystems, such as the MEMS (Micro-electromechanical Systems). It can be used as minimally invasive surgery tools of high temporal and spatial resolution. It can be used as the propulsion source in marine survey and exploitation.

  12. Airbreathing/Rocket Single-Stage-to-Orbit Design Matrix

    NASA Technical Reports Server (NTRS)

    Hunt, James L.

    1995-01-01

    A definitive design/performance study was performed on a single-stage-to-orbit (SSTO) airbreathing propelled orbital vehicle with rocket propulsion augmentation in the Access to Space activities during 1993. A credible reference design was established, but by no means an optimum. The results supported the viability of SSTO airbreathing/rocket vehicles for operational scenarios and indicated compelling reasons to continue to explore the design matrix. This paper will (1) summarize the Access to Space design activity from the SSTO airbreathing/rocket perspective, (2) present an airbreathing/rocket SSTO design matrix established for continued optimization of the design space, and (3) focus on the compelling reasons for airbreathing vehicles in Access to Space scenarios.

  13. Hypersonic Inlet for a Laser Powered Propulsion System

    NASA Astrophysics Data System (ADS)

    Harrland, Alan; Doolan, Con; Wheatley, Vincent; Froning, Dave

    2011-11-01

    Propulsion within the lightcraft concept is produced via laser induced detonation of an incoming hypersonic air stream. This process requires suitable engine configurations that offer good performance over all flight speeds and angles of attack to ensure the required thrust is maintained. Stream traced hypersonic inlets have demonstrated the required performance in conventional hydrocarbon fuelled scramjet engines, and has been applied to the laser powered lightcraft vehicle. This paper will outline the current methodology employed in the inlet design, with a particular focus on the performance of the lightcraft inlet at angles of attack. Fully three-dimensional turbulent computational fluid dynamics simulations have been performed on a variety of inlet configurations. The performance of the lightcraft inlets have been evaluated at differing angles of attack. An idealized laser detonation simulation has also been performed to validate that the lightcraft inlet does not unstart during the laser powered propulsion cycle.

  14. Combined Experimental and Numerical Investigations into Laser Propulsion Engineering Physics

    NASA Astrophysics Data System (ADS)

    Kenoyer, David Adam

    The RPI pulsed Laser Propulsion (LP) research effort focuses on the future application of launching nano- and micro-satellites (1-10 kg payloads) into Low Earth Orbit (LEO), using a remote Ground Based Laser (GBL) power station to supply the required energy for flight. This research program includes both experimental and numerical studies investigating the propulsive performance of several engine geometries (constituting a lightcraft family). Using the Lumonics twin K-922m TEA pulsed laser system, axial and lateral thrust, C m, Isp, and η measurements were made for these engine geometries, examining the effects of several critical factors including: engine orientation (e.g. lateral and angular offset), laser pulse energy, pulse repetition frequency, pulse duration, propellant type, and engine size-scaling effects. Investigation into the origins of lateral "beam riding" forces was of particular interest. Lateral impulse measurements and high speed Schlieren photography were utilized to provide an understanding of laser beam-riding/propulsive physics. The acquired lightcraft database was used to further develop an existing 7-Degree Of Freedom (DOF) flight dynamics model extensively calibrated against 16 actual trajectories of small scale model lightcraft flown at White Sands Missile Range, NM on a 10 kW pulsed CO2 laser called PLVTS. The full system 7-DOF model is comprised of updated individual aerodynamics, engine, laser beam propagation, variable vehicle inertia, reaction controls system, and dynamics models, integrated to represent all major phenomena in a consistent framework. This flight dynamics model and associated 7-DOF code provide a physics-based predictive tool for basic research investigations into laser launched lightcraft for suborbital and orbital missions. Simulations were performed to demonstrate the flight capabilities of each engine geometry using the updated lightcraft propulsion database, the results of which further demonstrate that autonomous

  15. Investigation of performance and mechanism for chemical laser propulsion

    NASA Astrophysics Data System (ADS)

    Tang, Zhiping; Li, Long

    2013-05-01

    Chemical laser propulsion (CLP) is accompanied by the release of chemical energy in the process of laser propulsion, which can improve laser propulsion performance. In this article the propulsion performance of POM propellant under the constraint of a cylindrical tube-type thruster in atmospheric and nitrogen environments, respectively, has been conducted experimentally. The results indicate that the ablation masses of a single pulse under two gas environments are close, but the momentum coupling coefficient Cm and specific impulse Isp in atmospheric environment are higher than that in nitrogen environment, which demonstrates an exothermic reaction occurred between the ablation product and the environment oxygen. To learn the mechanism of CLP the molecular spectra for ablation products of POM propellant in atmospheric and vacuum environments are measured and analyzed, respectively, and it reveals that the final product in a vacuum is CH2O, while the final products are CO2 and H2O in the atmosphere. Then the chemical reaction, composition and chemical energy release have been confirmed in the atmospheric environment. By using Arrhenius finite rate chemical reaction model with the code Fluent the flow field evolution of ablation product was simulated numerically. The results show the intensity of chemical energy release is related to the contact and mixing degree of the ablation product and the oxygen in the atmosphere, mixing more fully, the chemical energy released more intensively.

  16. Tailoring Laser Propulsion for Future Applications in Space

    SciTech Connect

    Eckel, Hans-Albert; Scharring, Stefan

    2010-10-08

    Pulsed laser propulsion may turn out as a low cost alternative for the transportation of small payloads in future. In recent years DLR investigated this technology with the goal of cheaply launching small satellites into low earth orbit (LEO) with payload masses on the order of 5 to 10 kg. Since the required high power pulsed laser sources are yet not at the horizon, DLR focused on new applications based on available laser technology. Space-borne, i.e. in weightlessness, there exist a wide range of missions requiring small thrusters that can be propelled by laser power. This covers space logistic and sample return missions as well as position keeping and attitude control of satellites.First, a report on the proof of concept of a remote controlled laser rocket with a thrust vector steering device integrated in a parabolic nozzle will be given. Second, the road from the previous ground-based flight experiments in earth's gravity using a 100-J class laser to flight experiments with a parabolic thruster in an artificial 2D-zero gravity on an air cushion table employing a 1-J class laser and, with even less energy, new investigations in the field of laser micro propulsion will be reviewed.

  17. Tailoring Laser Propulsion for Future Applications in Space

    NASA Astrophysics Data System (ADS)

    Eckel, Hans-Albert; Scharring, Stefan

    2010-10-01

    Pulsed laser propulsion may turn out as a low cost alternative for the transportation of small payloads in future. In recent years DLR investigated this technology with the goal of cheaply launching small satellites into low earth orbit (LEO) with payload masses on the order of 5 to 10 kg. Since the required high power pulsed laser sources are yet not at the horizon, DLR focused on new applications based on available laser technology. Space-borne, i.e. in weightlessness, there exist a wide range of missions requiring small thrusters that can be propelled by laser power. This covers space logistic and sample return missions as well as position keeping and attitude control of satellites. First, a report on the proof of concept of a remote controlled laser rocket with a thrust vector steering device integrated in a parabolic nozzle will be given. Second, the road from the previous ground-based flight experiments in earth's gravity using a 100-J class laser to flight experiments with a parabolic thruster in an artificial 2D-zero gravity on an air cushion table employing a 1-J class laser and, with even less energy, new investigations in the field of laser micro propulsion will be reviewed.

  18. Airbreathing hypersonic vehicle design and analysis methods

    NASA Technical Reports Server (NTRS)

    Lockwood, Mary Kae; Petley, Dennis H.; Hunt, James L.; Martin, John G.

    1996-01-01

    The design, analysis, and optimization of airbreathing hypersonic vehicles requires analyses involving many highly coupled disciplines at levels of accuracy exceeding those traditionally considered in a conceptual or preliminary-level design. Discipline analysis methods including propulsion, structures, thermal management, geometry, aerodynamics, performance, synthesis, sizing, closure, and cost are discussed. Also, the on-going integration of these methods into a working environment, known as HOLIST, is described.

  19. Laser propulsion to earth orbit. Has its time come?

    NASA Technical Reports Server (NTRS)

    Kantrowitz, Arthur

    1989-01-01

    Recent developments in high energy lasers, adaptive optics, and atmospheric transmission bring laser propulsion much closer to realization. Proposed here is a reference vehicle for study which consists of payload and solid propellant (e.g. ice). A suitable laser pulse is proposed for using a Laser Supported Detonation wave to produce thrust efficiently. It seems likely that a minimum system (10 Mw CO2 laser and 10 m dia. mirror) could be constructed for about $150 M. This minimum system could launch payloads of about 13 kg to a 400 km orbit every 10 minutes. The annual launch capability would be about 683 tons times the duty factor. Laser propulsion would be an order of magnitude cheaper than chemical rockets if the duty factor was 20 percent (10,000 launches/yr). Launches beyond that would be even cheaper. The chief problem which needs to be addressed before these possibilities could be realized is the design of a propellant to turn laser energy into thrust efficiently and to withstand the launch environment.

  20. Ground-to-orbit laser propulsion: Advanced applications

    SciTech Connect

    Kare, J.T.

    1990-01-01

    Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance -- particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10--1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of order $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for large systems. Although the individual payload size would be small, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities -- geosynchronous transfer, Earth escape, or beyond -- at a relatively small premium over launches to LEO. In this paper, we briefly review the status of pulsed laser propulsion, including proposals for advanced vehicles. We then discuss qualitatively several unique applications appropriate to the early part of the next century, and perhaps valuable well into the next millenium: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.

  1. Ground-to-orbit laser propulsion: Advanced applications

    NASA Technical Reports Server (NTRS)

    Kare, Jordin T.

    1990-01-01

    Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance, particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10 to 1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of an order of $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for larger systems. Although the individual payload size would be smaller, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities - geosynchronous transfer, Earth escape, or beyond - at a relatively small premium over launches to LEO. The status of pulsed laser propulsion is briefly reviewed including proposals for advanced vehicles. Several applications appropriate to the early part of the next century and perhaps valuable well into the next millennium are discussed qualitatively: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.

  2. Hypersonic Airbreathing Vehicles/Technologies

    NASA Technical Reports Server (NTRS)

    Hunt, James L.

    1996-01-01

    Hypersonic airbreathing horizontal takeoff and landing (HTOL) vehicles are highly integrated systems involving many advanced technologies. The design environment is variable rich, intricately networked, and sensitivity intensive; as such, it represents a tremendous challenge. Creating a viable design requires addressing three main elements: (1) an understanding of the 'figures of merit' and their relationship, (2) the development of sophisticated configuration discipline prediction methods and a synthesis procedure, and (3) the synergistic integration of advanced technologies across the discipline spectrum. This paper will focus on the vision for hypersonic airbreathing vehicles and the advanced technologies that forge the designs. Airbreathing hypersonics encompass endoatmospheric (airplanes...missiles are a part of the matrix but will not be included in this paper since they are an air force focus) and space access vehicles with speed from Mach 4 up to Mach 25 (orbital). These vehicles can be divided into two classes...cruisers and accelerators. The cruiser designs reflect high lift-to-drag whereas the accelerators reflect low drag per unit inlet capture; thus, the cross section of the accelerator attributes a much larger percentage to propulsion. One of the more design influencing items is fuel. The hydrogen fueled vehicles must be very volumetric efficient to contain the low density fuel and thus tend to be a bit bulgy (more conducive to lifting bodies or wing bodies) whereas with hydrocarbon fueled vehicles, the concern is loading because of the high density fuel; thus, they may tend to be more towards waveriders which are not usually very volumetric efficient. Hydrocarbon fuels (endothermic) are limited in their engine cooling capacity to below Mach 8.

  3. Ablation of carbon-doped liquid propellant in laser plasma propulsion

    NASA Astrophysics Data System (ADS)

    Zheng, Z. Y.; Liang, T.; Zhang, S. Q.; Gao, L.; Gao, H.; Zhang, Z. L.

    2016-04-01

    Carbon-doped liquid glycerol ablated by nanosecond pulse laser is investigated in laser plasma propulsion. It is found that the propulsion is much more correlated with the carbon content. The doped carbon can change the laser intensity and laser focal position so as to reduce the splashing quantity of the glycerol. Less consumption of the liquid volume results in a high specific impulse.

  4. Laser Launch-The Second Wave

    NASA Astrophysics Data System (ADS)

    Kare, Jordin T.

    2003-05-01

    In the spring of 1986, a Workshop on Laser Propulsion was held to discuss the feasibility of using large free electron lasers to launch payloads into Earth orbit. This workshop kicked off a four-year program, supported by the U.S. Strategic Defense Initiative Organization (SDIO), to develop laser propulsion technology. This talk reviews the concepts addressed by the SDIO Laser Propulsion Program, and the results of both modeling and experiments on double-pulse planar ablative thrusters, which remain a promising approach to laser launch. Other program topics to be discussed include trajectory and system modeling, and air-breathing thruster and vehicle concepts.

  5. Experimental Investigations of Laser Propulsion by Using Gas-Dynamic Laser

    NASA Astrophysics Data System (ADS)

    Rachuk, V. S.; Guterman, V. Yu.; Ivanov, A. V.; Rebrov, S. G.; Golikov, A. N.; Ponomarev, N. B.; Rezunkov, Yu. A.

    2006-05-01

    To launch vehicles with using of laser propulsion engines, promising direction is employing powerful Gas-dynamic Lasers (GDL) operating in a continuous mode. Russian enterprises have enough experience of creating such type of lasers. Experiments conducted with the continuous mode GDL on investigating of characteristics of Laser Propulsion (LP) at different schematics of operation processes in the LP are described in this article. The investigations are conducted by using the facility equipped with a CO2 GDL of a 10.6 μm wavelength.

  6. Laser propulsion for space applications: Is it another myth or a real potential?

    NASA Astrophysics Data System (ADS)

    Cook, Joung R.

    2007-05-01

    This paper discusses different principles of inducing propulsive power using lasers and examines the performance limits along with pros and cons with respect to different space propulsion applications: satellite launching, orbital transfer, space debris clearing, satellite propulsion, and space travels. It concludes that a use of electrical propulsion, in conjunction with laser power beaming, is the most feasible application with technological and economic advantages for commercial use within the next decades.

  7. Impulse enhancement by in-tube operation in laser propulsion

    NASA Astrophysics Data System (ADS)

    Sasoh, Akihiro; Urabe, Naohide; Kim, Sukyum

    2002-09-01

    The laser-driven in-tube accelerator (LITA) is a unique concept of laser propulsion. It is characterized by accelerating an object in a tube. Owing to a confinement effect, the thrust performance can be improved. This device has other advantages over the existing technology on the simplicity and suitability to environment. Experiments on the thrust performance of LITA were conducted. The thrust was determined from the object hovering condition. The measured dimensionless momentum coupling coefficient agrees between xenon and argon as the working gas. This implies that in order to obtain a high impulse chemical species with a low speed of sound is useful.

  8. Active space debris removal by using laser propulsion

    NASA Astrophysics Data System (ADS)

    Rezunkov, Yu. A.

    2013-03-01

    At present, a few projects on the space debris removal by using highpower lasers are developed. One of the established projects is the ORION proposed by Claude Phipps from Photonics Associates Company and supported by NASA (USA) [1]. But the technical feasibility of the concept is limited by sizes of the debris objects (from 1 to 10 cm) because of a small thrust impulse generated at the laser ablation of the debris materials. At the same time, the removal of rocket upper stages and satellites, which have reached the end of their lives, has been carried out only in a very small number of cases and most of them remain on the Low Earth Orbits (LEO). To reduce the amount of these large-size objects, designing of space systems allowing deorbiting upper rocket stages and removing large-size satellite remnants from economically and scientifically useful orbits to disposal ones is considered. The suggested system is based on high-power laser propulsion. Laser-Orbital Transfer Vehicle (LOTV) with the developed aerospace laser propulsion engine is considered as applied to the problem of mitigation of man-made large-size space debris in LEO.

  9. A Nuclear-Powered Laser-Accelerated Plasma Propulsion System

    NASA Astrophysics Data System (ADS)

    Kammash, Terry

    2003-01-01

    Recent experiments at the University of Michigan and other laboratories throughout the world have demonstrated that ultrafast (very short pulse length) lasers can accelerate charged particles to relativistic speeds. The terrawatt laser at the University of Michigan has generated a beam of protons containing more than 1010 particles at a mean energy of over one Mev while the petawatt laser at the Lawrence Livermore National Laboratory has produced proton beams containing more than 1014 particles with maximum energy of 58 Mev and a mean energy of about 6 Mev. Using the latter data as a basis for a present-day LAPPS (Laser Accelerated Plasma Propulsion System) propulsion device we show that it can produce a specific impulse of several million seconds albeit at a fraction of a Newton of thrust. We show that if the thrust can be increased to a modest 25 Newtons a fly-by robotic interstellar mission to 10,000 AU can be achieved in about 26 years, while a round trip to Mars will be accomplished in about 6 months. In both instances a one MWe nuclear power system with a mass of about 5 MT will be needed to drive the laser, and the recently announced NASA's Nuclear Space Initiative should be able to address such reactors in the near future.

  10. Propulsion

    ERIC Educational Resources Information Center

    Air and Space, 1978

    1978-01-01

    An introductory discussion of aircraft propulsion is included along with diagrams and pictures of piston, turbojet, turboprop, turbofan, and jet engines. Also, a table on chemical propulsion is included. (MDR)

  11. Photon Flux Amplification for Enhancing Photonic Laser Propulsive Forces

    NASA Technical Reports Server (NTRS)

    Gray, Perry A.; Carruth, M. Ralph, Jr.; Edwards, David L.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    An enhancement to the available force from a solar/laser sail is being investigated. This enhancement involves the use of a high power laser as the main source of propulsion or as a supplement to a solar sail. The enhancement utilizes a high power laser and multiple photon reflections to amplify the laser photon flux impinging on a sail. It is thus possible to amplify the force by as much as a factor of 50 or more. This paper explores the use of a stable optical cavity and will illustrate the optics involved in producing a stable cavity. A breadboard of the optical system was constructed and a stable cavity was demonstrated. Once the breadboard system was complete and a stable cavity achieved, the system was placed in vacuum and photon force amplification was measured using a vacuum compatible microbalance.

  12. Laser-fusion rocket for interplanetary propulsion

    SciTech Connect

    Hyde, R.A.

    1983-09-27

    A rocket powered by fusion microexplosions is well suited for quick interplanetary travel. Fusion pellets are sequentially injected into a magnetic thrust chamber. There, focused energy from a fusion Driver is used to implode and ignite them. Upon exploding, the plasma debris expands into the surrounding magnetic field and is redirected by it, producing thrust. This paper discusses the desired features and operation of the fusion pellet, its Driver, and magnetic thrust chamber. A rocket design is presented which uses slightly tritium-enriched deuterium as the fusion fuel, a high temperature KrF laser as the Driver, and a thrust chamber consisting of a single superconducting current loop protected from the pellet by a radiation shield. This rocket can be operated with a power-to-mass ratio of 110 W gm/sup -1/, which permits missions ranging from occasional 9 day VIP service to Mars, to routine 1 year, 1500 ton, Plutonian cargo runs.

  13. Thrust Measurements in Ballistic Pendulum Ablative Laser Propulsion Experiments

    SciTech Connect

    Brazolin, H.; Rodrigues, N. A. S.; Minucci, M. A. S.

    2008-04-28

    This paper describes a setup for thrust measurement in ablative laser propulsion experiments, based on a simple ballistic pendulum associated to an imaging system, which is being assembled at IEAv. A light aluminium pendulum holding samples is placed inside a 100 liters vacuum chamber with two optical windows: the first (in ZnSe) for the laser beam and the second (in fused quartz) for the pendulum visualization. A TEA-CO{sub 2} laser beam is focused to the samples providing ablation and transferring linear moment to the pendulum as a whole. A CCD video camera captures the oscillatory movement of the pendulum and the its trajectory is obtained by image processing. By fitting the trajectory of the pendulum to a dumped sinusoidal curve is possible to obtain the amplitude of the movement which is directly related to the momentum transfered to the sample.

  14. Experimental study and numerical simulation of the propulsion of microbeads by femtosecond laser filament

    SciTech Connect

    Zhang Nan; Liu Weiwei; Xu Zhijun; Wang Mingwei; Zhu Xiaonong

    2008-08-01

    The light filament formed by intense femtosecond laser pulses in air can be used to generate the effective impulse to propel a micro glass bead. In this report, through both experimental studies and the corresponding numerical simulations that involve the dynamics of the nonlinear propagation of light and the laser ablation mechanism, we confirm that this propulsion scheme is based on the laser ablation of the target material. The fundamental characteristics of laser propulsion using a single ultrafast laser filament is also revealed.

  15. Prospects for future hypersonic air-breathing vehicles

    NASA Technical Reports Server (NTRS)

    Beach, H. L., Jr.; Blankson, Isaiah M.

    1991-01-01

    An overview of the technical progress achieved in key areas of hypersonic airbreathing vehicle development is presented. The context for hypersonic applications is discussed with emphasis placed on technology issues and requirements, particularly for propulsion and technology integration. Attention is given to CFD technology which allows the consideration of configurations and extrapolations to flight conditions that cannot be simulated on the ground.

  16. An advanced optical system for laser ablation propulsion in space

    NASA Astrophysics Data System (ADS)

    Bergstue, Grant; Fork, Richard; Reardon, Patrick

    2014-03-01

    We propose a novel space-based ablation driven propulsion engine concept utilizing transmitted energy in the form of a series of ultra-short optical pulses. Key differences are generating the pulses at the transmitting spacecraft and the safe delivery of that energy to the receiving spacecraft for propulsion. By expanding the beam diameter during transmission in space, the energy can propagate at relatively low intensity and then be refocused and redistributed to create an array of ablation sites at the receiver. The ablation array strategy allows greater control over flight dynamics and eases thermal management. Research efforts for this transmission and reception of ultra-short optical pulses include: (1) optical system design; (2) electrical system requirements; (3) thermal management; (4) structured energy transmission safety. Research has also been focused on developing an optical switch concept for the multiplexing of the ultra-short pulses. This optical switch strategy implements multiple reflectors polished into a rotating momentum wheel device to combine the pulses from different laser sources. The optical system design must minimize the thermal load on any one optical element. Initial specifications and modeling for the optical system are being produced using geometrical ray-tracing software to give a better understanding of the optical requirements. In regards to safety, we have advanced the retro-reflective beam locking strategy to include look-ahead capabilities for long propagation distances. Additional applications and missions utilizing multiplexed pulse transmission are also presented. Because the research is in early development, it provides an opportunity for new and valuable advances in the area of transmitted energy for propulsion as well as encourages joint international efforts. Researchers from different countries can cooperate in order to find constructive and safe uses of ordered pulse transmission for propulsion in future space

  17. Integrated System Test of an Airbreathing Rocket (ISTAR)

    NASA Technical Reports Server (NTRS)

    Faulkner, Robert F.; Lyles, Garry (Technical Monitor)

    2001-01-01

    Rocket Based Combined Cycle (RBCC) propulsion system development and ground test is being conducted as part of the NASA Marshall Space Flight Center Integrated System Test of an Airbreathing Rocket (ISTAR) program. Rocketdyne, Aerojet and Pratt & Whitney have teamed as the Rocket Based Combined Cycle Consortium (RBC3) to work the propulsion system development. Each company offered unique RBCC propulsion concepts as candidates for the ISTAR propulsion system. A team of engine contractor, vehicle contractor and NASA representatives reviewed the concepts proposed by each company, reviewed the available data and selected the Aerojet RBCC propulsion system concept as the team propulsion system baseline for the ISTAR program. The ISTAR program is currently in a "Jumpstart" phase for development of the engine system leading to ground test of a thermally and power balanced RBCC propulsion system at Stennis Space Center in 2005. A parallel flight test demonstration of this propulsion system is anticipated to lead to first flight in the 2007 timeframe.

  18. Comparative study of femtosecond and nanosecond laser ablation for propulsion applications

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Seleznev, L. V.; Sinitsyn, D. V.

    2012-07-01

    Dependences of absolute vapor/plasma pressure on femtosecond and nanosecond laser intensities were obtained for graphitic materials using a non-contact broadband ultrasonic technique, and propulsion prospects of femtosecond and nanosecond laser launching approaches are discussed.

  19. Laser ablation with applied magnetic field for electric propulsion

    NASA Astrophysics Data System (ADS)

    Batishcheva, Alla; Batishchev, Oleg; Cambier, Jean-Luc

    2012-10-01

    Using ultrafast lasers with tera-watt-level power allows efficient ablation and ionization of solid-density materials [1], creating dense and hot (˜100eV) plasma. We propose ablating small droplets in the magnetic nozzle configurations similar to mini-helicon plasma source [2]. Such approach may improve the momentum coupling compared to ablation of solid surfaces and facilitate plasma detachment. Results of 2D modeling of solid wire ablation in the applied magnetic field are presented and discussed. [4pt] [1] O. Batishchev et al, Ultrafast Laser Ablation for Space Propulsion, AIAA technical paper 2008-5294, -16p, 44th JPC, Hartford, 2008.[0pt] [2] O. Batishchev and J.L. Cambier, Experimental Study of the Mini-Helicon Thruster, Air Force Research Laboratory Report, AFRL-RZ-ED-TR-2009-0020, 2009.

  20. CO{sub 2} Laser Ablation Propulsion Tractor Beams

    SciTech Connect

    Sinko, John E.; Schlecht, Clifford A.

    2010-05-06

    Manipulation of objects at a distance has already been achieved with no small measure of success in the realm of microscopic objects on the scale size of nanometers to micrometers in applications including laser trapping and laser tweezers. However, there has been relatively little effort to apply such remote control to macroscopic systems. A space tractor beam could be applied to a wide range of applications, including removal of orbital debris, facilitation of spacecraft docking, adjustment of satellite attitude or orbital position, etc. In this paper, an ablative laser propulsion tractor beam is demonstrated based on radiation from a CO{sub 2} laser. Cooperative, layered polymer targets were used for remote impulse generation using a CO{sub 2} laser. The use of a structured ablatant enabling switching between thrust directional parity (i.e., forward or reverse) and imparting torque to a remote target. Fluence-dependent results are presented in the context of polymer ablation modeling work and with consideration of confined ablation effects.

  1. Laser Photonic Propulsion Force for Station-Keeping Applications

    NASA Technical Reports Server (NTRS)

    Perez, Andres Dono; Yang, Fan Yang; Foster, Cyrus; Faber, Nicolas; Jonsson, Jonas; Stupl, Jan

    2014-01-01

    Small satellites, e.g. cubesats, do not tend to incorporate propulsion subsystems that can compensate for perturbation forces, which causes orbital decay. Cubesats are especially susceptible to the phenomenon of orbital decay, which limits their potential performance, since these effects are more noticeable in Low Earth Orbit (LEO). We postulate that a network of ground-based lasers could extend the operational lifetimes of these satellites by applying a photonic force onto their surfaces. This boosting force would help to counteract the degrading force, which is mainly produced by the drag of the atmosphere. This solution may present an advantage for low cost missions, in that it would enable longer mission durations without the need to incorporate a propulsion system, which comprises a large part of the mass budget and the power constraints of a satellite. This poster presents an analysis of the trade space for both the required network of laser ground stations and the satellite orbits. The analysis is based on simulations of the orbital decay of model satellites.

  2. Experimental Investigation of the Reflection Mode Micro Laser Propulsion under Highly Frequent and Multi Pulse Laser

    SciTech Connect

    Zhang Xinghua; Cai Jian; Li Long

    2011-11-10

    Micro laser propulsion used for some space tasks of micro-satellites are preferred to providing small thrust and high specific impulse while keeping power consumption low. Most previous work on micro laser propulsion are about transmission mode (T-mode) using a CW laser. In this article, a pulsed fiber laser is used to study the micro laser propulsion performance under reflection mode. Multi pulse (ranged from 100 to 2000) tests are conducted on a double base propellant with the vacuum less than 10 Pa. The laser frequency is 20 kHz and two kinds of instantaneous power density 4.77x10{sup 6} W/cm{sup 2} and 2.39x10{sup 7} W/cm{sup 2} are used. It is found that the momentum coupling coefficient C{sub m} and the mean thrust F increases with the increasing pulse numbers, which is different to the previous work. By adjusting the irradiation time T, it is easy to get a large mean thrust, up to mN. When the energy density is the same, C{sub m}, I{sub sp}, F and {eta} increase with the increasing power density. Also I{sub sp} and {eta} are very low, laser ablation is insufficiently under the current condition. 3D Morphology of the ablation hole is obtained by confocal microscope for the first time.

  3. Laser Ablation of Materials for Propulsion of Spacecraft

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Carruth, Ralph; Campbell, Jonathan; Gray, Perry

    2004-01-01

    A report describes experiments performed as part of a continuing investigation of the feasibility of laser ablation of materials as a means of propulsion for small spacecraft. In each experiment, a specimen of ablative material was mounted on a torsion pendulum and irradiated with a laser pulse having an energy of 5 J. The amplitude of the resulting rotation of the torsion pendulum was taken to be an indication of the momentum transferred from the laser beam. Of the ablative materials tested, aluminum foils yielded the smallest rotation amplitudes of the order of 10 degrees. Black coating materials yielded rotation amplitudes of the order of 90 degrees. Samples of silver coated with a fluorinated ethylene propylene (FEP) copolymer yielded the largest rotation amplitudes 6 to 8 full revolutions. The report presents a theory involving heating of a confined plasma followed by escape of the plasma to explain the superior momentum transfer performance of the FEP specimens. It briefly discusses some concepts for optimizing designs of spacecraft engines to maximize the thrust obtainable by exploiting the physical mechanisms of the theory. Also discussed is the use of laser-ablation engines with other types of spacecraft engines.

  4. Optimal air-breathing launch vehicle design

    NASA Technical Reports Server (NTRS)

    Hattis, P. D.

    1981-01-01

    A generalized two-point boundary problem methodology, similar to techniques used in deterministic optimal control studies, is applied to the design and flight analysis of a two-stage air-breathing launch vehicle. Simultaneous consideration is given to configuration and trajectory by treating geometry, dynamic discontinuities, and time-dependent flight variables all as controls to be optimized with respect to a single mathematical performance measure. While minimizing fuel consumption, inequality constraints are applied to dynamic pressure and specific force. The optimal system fuel consumption and staging Mach number are found to vary little with changes in the inequality constraints due to substantial geometry and trajectory adjustments. Staging, from an air-breathing first stage to a rocket-powered second stage, consistently occurs near Mach 3.5. The dynamic pressure bound has its most pronounced effects on vehicle geometry, particularly the air-breathing propulsion inlet area, and on the first-stage altitude profile. The specific force has its greatest influence on the second-stage thrust history.

  5. Measurement of ablative laser propulsion parameters for aluminum, Co-Ni ferrite and polyurethane polymer

    NASA Astrophysics Data System (ADS)

    Jamil, Yasir; Saeed, Humaima; Raza Ahmad, M.; Ahmad Khan, Shakeel; Farooq, Hashim; Shahid, Muhammad; Zia, K. M.; Amin, Nasir

    2013-01-01

    Laser ablation propulsion is a form of beam-powered propulsion in which a pulsed laser ablates a target material thus producing thrust. We report in this work the measurements of various parameters related to laser-induced micropropulsion in toluene diisocyanate-based polyurethane polymer, aluminum and Co-Ni ferrite. The targets were irradiated by a Q-switched pulsed Nd-YAG laser at 1064 nm (pulse duration 5 ns) under atmospheric conditions. A contact-free optical triangulation method was used to measure the laser ablation induced thrust in the samples. The measurements and calculations depict that Co-Ni ferrite is better in terms of critical propulsion parameters C m and I sp. It has been observed that the propulsion parameters depend on the energy per pulse of the incident laser beam.

  6. Matter-antimatter gigaelectron volt gamma ray laser rocket propulsion

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2012-12-01

    It is shown that the idea of a photon rocket through the complete annihilation of matter with antimatter, first proposed by Sänger, is not a utopian scheme as it is widely believed. Its feasibility appears to be possible by the radiative collapse of a relativistic high current pinch discharge in a hydrogen-antihydrogen ambiplasma down to a radius determined by Heisenberg's uncertainty principle. Through this collapse to ultrahigh densities the proton-antiproton pairs in the center of the pinch can become the upper gigaelectron volt laser level for the transition into a coherent gamma ray beam by proton-antiproton annihilation, with the magnetic field of the collapsed pinch discharge absorbing the recoil momentum of the beam and transmitting it by the Moessbauer effect to the spacecraft. The gamma ray laser beam is launched as a photon avalanche from one end of the pinch discharge channel. Because of the enormous technical problems to produce and store large amounts of anti-matter, such a propulsion concept may find its first realization in small unmanned space probes to explore nearby solar systems. The laboratory demonstration of a gigaelectron volt gamma ray laser by comparison requiring small amounts of anti-matter may be much closer.

  7. Fission-activated laser as primary power for CW laser propulsion

    SciTech Connect

    Monroe, D.K.

    1993-12-31

    Recent advances in the development of reactor-pumped lasers (RPL`s) have stimulated renewed interest in the concept of laser-powered propulsion. This paper surveys a number of laser propulsion concepts and identifies the one that is most promising from the standpoint of practicality. It is proposed that a ground-based FALCON (Fission-Activated Laser CONcept) RPL can provide primary for this launch vehicle design. The laser-vehicle system could launch small payloads into low-earth orbit (LEO) with high repetition rates and at low costs per kilogram. For the favored design, thruster efficiencies are currently estimated to be about 50%, with 80% being seen as a potentially realizable goal after further design refinements. Laser launch system simulations indicate that with a buy-in laser power of 10 MW, it will be possible to obtain specific impulses in the range of 600 to 800 seconds and payload-to-power ratios of 1 to 3 kg/MW.

  8. Fission-activated laser as primary power for CW laser propulsion

    SciTech Connect

    Monroe, D.K.

    1994-12-31

    Recent advances in the development of reactor-pumped lasers (RPL`s) have stimulated renewed interest in the concept of laser-powered propulsion. This paper surveys a number of laser propulsion concepts and identifies the one that is most promising from the standpoint of practicality. It is proposed that a ground-based FALCON (Fission-Activated Laser CONcept) RPL can provide primary power for this launch vehicle design. The laser-vehicle system could launch small payloads into low-earth orbit (LEO) with high repetition rates and at low costs per kilogram. For the favored design, thruster efficiencies are currently estimated to be about 500%, with 800% being seen as a potentially realizable goal after further design refinements. Laser launch system simulations indicate that, with a buy-in laser power of 10 MW, it will be possible to obtain specific impulses in the range of 600 to 800 seconds and payload-to-power ratios of 1 to 3 kg/MW.

  9. Effect of nozzle geometry on the performance of laser ablative propulsion thruster

    NASA Astrophysics Data System (ADS)

    Li, Long; Jiao, Long; Tang, Zhiping; Hu, Xiaojun; Peng, Jie

    2016-05-01

    The performance of "ablation mode" laser propulsion thrusters can be improved obviously by nozzle constraint. The nozzle geometry of "ablation mode" laser propulsion thrusters has been studied experimentally with CO2 lasers. Experimental results indicate that the propulsion performance of cylindrical nozzle thrusters is better than expansionary nozzle thrusters at the same lengths. The cylindrical nozzle thrusters were optimized by different laser energies. The results show that two important factors, the length-to-diameter ratio α and the thruster diameter to laser-spot diameter ratio β, affect the propulsion performance of the thruster obviously. The momentum coupling coefficient C m increases with the increase of α, while C m increases at first and then decreases with the increase of β.

  10. Plasma Propulsion of a Metallic Microdroplet and its Deformation upon Laser Impact

    NASA Astrophysics Data System (ADS)

    Kurilovich, Dmitry; Klein, Alexander L.; Torretti, Francesco; Lassise, Adam; Hoekstra, Ronnie; Ubachs, Wim; Gelderblom, Hanneke; Versolato, Oscar O.

    2016-07-01

    The propulsion of a liquid indium-tin microdroplet by nanosecond-pulse laser impact is experimentally investigated. We capture the physics of the droplet propulsion in a scaling law that accurately describes the plasma-imparted momentum transfer over nearly three decades of pulse energy, enabling the optimization of the laser-droplet coupling. The subsequent deformation of the droplet is described by an analytical model that accounts for the droplet's propulsion velocity and the liquid properties. Comparing our findings to those from vaporization-accelerated millimeter-sized water droplets, we demonstrate that the fluid-dynamic response of laser-impacted droplets is scalable and decoupled from the propulsion mechanism. By contrast, the physics behind the propulsion of liquid-metal droplets differs from that of water. It is studied here in detail and under industrially relevant conditions as found in next-generation nanolithography machines.

  11. Optimization of Air-Breathing Engine Concept

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Lavelle, Thomas M.; Hopkins, Dale A.

    1996-01-01

    The design optimization of air-breathing propulsion engine concepts has been accomplished by soft-coupling the NASA Engine Performance Program (NEPP) analyzer with the NASA Lewis multidisciplinary optimization tool COMETBOARDS. Engine problems, with their associated design variables and constraints, were cast as nonlinear optimization problems with thrust as the merit function. Because of the large number of mission points in the flight envelope, the diversity of constraint types, and the overall distortion of the design space; the most reliable optimization algorithm available in COMETBOARDS, when used by itself, could not produce satisfactory, feasible, optimum solutions. However, COMETBOARDS' unique features-which include a cascade strategy, variable and constraint formulations, and scaling devised especially for difficult multidisciplinary applications-successfully optimized the performance of subsonic and supersonic engine concepts. Even when started from different design points, the combined COMETBOARDS and NEPP results converged to the same global optimum solution. This reliable and robust design tool eliminates manual intervention in the design of air-breathing propulsion engines and eases the cycle analysis procedures. It is also much easier to use than other codes, which is an added benefit. This paper describes COMETBOARDS and its cascade strategy and illustrates the capabilities of the combined design tool through the optimization of a high-bypass- turbofan wave-rotor-topped subsonic engine and a mixed-flow-turbofan supersonic engine.

  12. Airbreathing nuclear propulsion: A new look

    NASA Technical Reports Server (NTRS)

    Rom, F. E.

    1971-01-01

    Nuclear-powered air-cushion vehicles using lightweight aircraft-type nuclear powerplants show promise of carrying transoceanic cargo at cost-per-metric-ton-kilometer (cost-per-ton-n mi) rates comparable to railroad rates. These rates are independent of the distance traveled. Cargo rates for nonstop distances of 4000 n mi are expected to be less than one-half those for similar fossil-fueled air-cushion vehicles. For 6000-n mi nonstop distances, the rates are expected to be less than one-sixth as much. There are no fundamental technical reasons why subsonic nuclear aircraft cannot be made to fly successfully if the gross weight is over 1 million lb. Public safety of airborne nuclear powerplants is receiving the greatest attention in low-level experimental and analytical investigations. Idealized model containment vessels which have been impacted on reinforced concrete showed no leaks after impact at velocities to 400 mph. The experiments indicate feasibility of impacting at speeds over 600 mph with no leaks.

  13. Frontiers in propulsion research: Laser, matter-antimatter, excited helium, energy exchange thermonuclear fusion

    NASA Technical Reports Server (NTRS)

    Papailiou, D. D. (Editor)

    1975-01-01

    Concepts are described that presently appear to have the potential for propulsion applications in the post-1990 era of space technology. The studies are still in progress, and only the current status of investigation is presented. The topics for possible propulsion application are lasers, nuclear fusion, matter-antimatter annihilation, electronically excited helium, energy exchange through the interaction of various fields, laser propagation, and thermonuclear fusion technology.

  14. Flight test of multi-pulses vertical laser propulsion in air breathing mode

    NASA Astrophysics Data System (ADS)

    Wen, Ming; Wu, Jie; Wang, Guangyu

    2013-05-01

    The air breathing vertical laser propulsion experiment refers to that in the air breathing mode the light craft under the irradiation of incident laser of vertical direction will turn pulse laser energy into the vertical propulsion thrust of the light craft and continue along the fixed rail upward propulsion flight. It is an important experiment to test the minimum single pulse energy, the optimization degree of light craft structure, and the characteristics of turning the laser energy into the thrust. The experiment is to be conducted dozens of meters in height away the ground generally. The article gives a detailed explanation of the whole process of the air breathing vertical propulsion test, including vertical propulsion light craft design, the connections design, the connections performance test, the frictional resistance detection and the whole process of movement performance test. A vertical propulsion tower was used to conduct the single pulse experiment and multi-pulse performance was predicted with a multiple-pulse thrust measuring system. The impulse coupling coefficient was estimated from fight height. Finally, through the experiments of air breathing vertical laser propulsion, the relation of the movement time and flight height was obtained. In the curve, the mean acceleration of the light craft can arrive to 6m/s2 in the first 20 pulses and the propulsion height can reach 3.5m in 1.12s. After 0.65s, the acceleration of the light craft decreased significantly. The results of the article lay the good foundation for the laser propulsion launch system verification.

  15. 2-D Air-Breathing Lightcraft Engine Experiments in Hypersonic Conditions

    NASA Astrophysics Data System (ADS)

    Salvador, Israel I.; Myrabo, Leik N.; Minucci, Marco A. S.; de Oliveira, Antonio C.; Toro, Paulo G. P.; Chanes, José B.; Rego, Israel S.

    2011-11-01

    Experiments were performed with a 2-D, repetitively-pulsed (RP) laser Lightcraft model in hypersonic flow conditions. The main objective was the feasibility analysis for impulse generation with repetitively-pulsed air-breathing laser Lightcraft engines at hypersonic speeds. The future application of interest for this basic research endeavor is the laser launch of pico-, nano-, and micro-satellites (i.e., 0.1-100 kg payloads) into Low-Earth-Orbit, at low-cost and on-demand. The laser propulsion experiments employed a Hypersonic Shock Tunnel integrated with twin gigawatt pulsed Lumonics 620-TEA CO2 lasers (˜ 1 μs pulses), to produce the required test conditions. This hypersonic campaign was carried out at nominal Mach numbers ranging from 6 to 10. Time-dependent surface pressure distributions were recorded together with Schlieren movies of the flow field structure resulting from laser energy deposition. Results indicated laser-induced pressure increases of 0.7-0.9 bar with laser pulse energies of ˜ 170 J, on off-shroud induced breakdown condition, and Mach number of 7.

  16. Survey Of CO{sub 2} Laser Ablation Propulsion With Polyoxymethylene Propellant

    SciTech Connect

    Sinko, John E.; Sasoh, Akihiro

    2010-05-06

    Polyoxymethylene (POM) has been widely studied as a laser propulsion propellant paired to CO{sub 2} laser radiation. POM is a good test case for studying ablation properties of polymer materials, and within limits, for study of general trends in laser ablation-induced impulse. Despite many studies, there is no general understanding of POM ablation that takes into account the ambient pressure, spot area, fluence, and effects from confinement and combustion. This paper reviews and synthesizes CO{sub 2} laser ablation propulsion research using POM targets. Necessary directions for future study are indicated to address incomplete regions of the various parameter spaces. Literature data is compared in terms of propulsion parameters such as momentum coupling coefficient and specific impulse, within a range of fluences from about 1-500 J/cm{sup 2}, ambient pressures from about 10{sup -2}-10{sup 5} Pa, and laser spot areas from about 0.01-10 cm{sup 2}.

  17. Propulsion Utilizing Laser-Driven Ponderomotive Fields for Deep-Space Missions

    NASA Astrophysics Data System (ADS)

    Williams, George J.; Gilland, James H.

    2009-03-01

    The generation of large amplitude electric fields in plasmas by high-power lasers has been studied for several years in the context of high-energy particle acceleration. Fields on the order of GeV/m are generated in the plasma wake of the laser by non-linear ponderomotive forces. The laser fields generate longitudinal and translational electron plasma waves with phase velocities close to the speed of light. These fields and velocities offer the potential to revolutionize spacecraft propulsion, leading to extended deep space robotic probes. Based on these initial calculations, plasma acceleration by means of laser-induced ponderomotive forces appears to offer significant potential for spacecraft propulsion. Relatively high-efficiencies appear possible with proper beam conditioning, resulting in an order of magnitude more thrust than alternative concepts for high ISP (>105 s) and elimination of the primary life-limiting erosion phenomena associated with conventional electric propulsion systems. Ponderomotive propulsion readily lends itself to beamed power which might overcome some of the constraints of power-limited propulsion concepts. A preliminary assessment of the impact of these propulsion systems for several promising configurations on mission architectures has been conducted. Emphasizing interstellar and interstellar-precursor applications, performance and technical requirements are identified for a number of missions. The use of in-situ plasma and gas for propellant is evaluated as well.

  18. Propulsion Utilizing Laser-Driven Ponderomotive Fields for Deep-Space Missions

    SciTech Connect

    Williams, George J.; Gilland, James H.

    2009-03-16

    The generation of large amplitude electric fields in plasmas by high-power lasers has been studied for several years in the context of high-energy particle acceleration. Fields on the order of GeV/m are generated in the plasma wake of the laser by non-linear ponderomotive forces. The laser fields generate longitudinal and translational electron plasma waves with phase velocities close to the speed of light. These fields and velocities offer the potential to revolutionize spacecraft propulsion, leading to extended deep space robotic probes. Based on these initial calculations, plasma acceleration by means of laser-induced ponderomotive forces appears to offer significant potential for spacecraft propulsion. Relatively high-efficiencies appear possible with proper beam conditioning, resulting in an order of magnitude more thrust than alternative concepts for high I{sub SP} (>10{sup 5} s) and elimination of the primary life-limiting erosion phenomena associated with conventional electric propulsion systems. Ponderomotive propulsion readily lends itself to beamed power which might overcome some of the constraints of power-limited propulsion concepts. A preliminary assessment of the impact of these propulsion systems for several promising configurations on mission architectures has been conducted. Emphasizing interstellar and interstellar-precursor applications, performance and technical requirements are identified for a number of missions. The use of in-situ plasma and gas for propellant is evaluated as well.

  19. Analytical and Numerical Study of the Air Breathing Model for Laser Propulsion

    NASA Astrophysics Data System (ADS)

    Gong, Ping; Tang, Zhiping

    2004-03-01

    Laser propulsion is a new concept technique of propulsion and will have important application in future space technology. In this paper, the analytic formulas for the impulse and momentum coupling coefficient based on point explosion theory have been derived by considering the restraint of the reflector. In the numerical study, a new method that combining the self-similarity solution for point-explosion at the first stage and the high resolution PPM mesh at the second stage, has been applied to calculate the high-temperature plasma flow field generated by the focused laser beam. The simulated results show that the efficiency of laser propulsion, such as thrust, total impulse, momentum coupling coefficient etc are strongly related to the geometry of the reflector and the power of the input laser beam.

  20. Evaluation of some significant issues affecting trajectory and control management for air-breathing hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Hattis, Philip D.; Malchow, Harvey L.

    1992-01-01

    Horizontal takeoff airbreathing-propulsion launch vehicles require near-optimal guidance and control which takes into account performance sensitivities to atmospheric characteristics while satisfying physically-derived operational constraints. A generic trajectory/control analysis tool that deepens insight into these considerations has been applied to two versions of a winged-cone vehicle model. Information that is critical to the design and trajectory of these vehicles is derived, and several unusual characteristics of the airbreathing propulsion model are shown to have potentially substantial effects on vehicle dynamics.

  1. Overcoming the specific power limitations of nuclear electric propulsion by laser radiators

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    1997-07-01

    It is shown that the specific power of nuclear electric propulsion can be greatly increased by replacing black body radiators with laser radiators. In black body radiators the atomic oscillators have a random phase with the emission rate for black body radiators proportional to the sum of the squared amplitudes. In laser radiators the oscillators are all in phase with the emission rate proportional to the squared sum of the amplitudes, which is the reason for the much larger emission rate of laser radiators. In a laser radiator the low entropy low temperature laser beam removes the waste heat by resonance absorption and isotropic reemission of the laser radiation into space.

  2. Effects of Propellant Surface Morphology on Laser Ablative Propulsion Performance

    NASA Astrophysics Data System (ADS)

    Ogita, Naoya; Shikida, Mitsuhiro; Sasoh, Akihiro

    2011-11-01

    The effects of surface structure made using Micro Electro Mechanical System (MEMS) technology on the propulsion performance are investigated. Up to 30% increase in the momentum coupling coefficient is obtained.

  3. The microspace launcher: first step to the fully air-breathing space launcher

    NASA Astrophysics Data System (ADS)

    Falempin, F.; Bouchez, M.; Calabro, M.

    2009-09-01

    A possible application for the high-speed air-breathing propulsion is the fully or partially reusable space launcher. Indeed, by combining the high-speed air-breathing propulsion with a conventional rocket engine (combined cycle or combined propulsion system), it should be possible to improve the average installed specific impulse along the ascent trajectory and then make possible more performing launchers and, hopefully, a fully reusable one. During the last 15 years, a lot of system studies have been performed in France on that subject within the framework of different and consecutive programs. Nevertheless, these studies never clearly demonstrated that a space launcher could take advantage of using a combined propulsion system. During last years, the interest to air-breathing propulsion for space application has been revisited. During this review and taking into account technologies development activities already in progress in Europe, clear priorities have been identified regarding a minimum complementary research and technology program addressing specific needs of space launcher application. It was also clearly identified that there is the need to restart system studies taking advantage of recent progress made regarding knowledge, tools, and technology and focusing on more innovative airframe/propulsion system concepts enabling better trade-off between structural efficiency and propulsion system performance. In that field, a fully axisymmetric configuration has been considered for a microspace launcher (10 kg payload). The vehicle is based on a main stage powered by air-breathing propulsion, combined or not with liquid rocket mode. A "kick stage," powered by a solid rocket engine provides the final acceleration. A preliminary design has been performed for different variants: one using a separated booster and a purely air-breathing main stage, a second one using a booster and a main stage combining air-breathing and rocket mode, a third one without separated

  4. Characteristics of droplets ejected from liquid glycerol doped with carbon in laser ablation propulsion

    NASA Astrophysics Data System (ADS)

    Zhi-Yuan, Zheng; Si-Qi, Zhang; Tian, Liang; Lu, Gao; Hua, Gao; Zi-Li, Zhang

    2016-04-01

    The characteristics of droplets ejected from liquid glycerol doped with carbon are investigated in laser ablation propulsion. Results show that carbon content has an effect on both the coupling coefficient and the specific impulse. The doped-carbon moves the laser focal position from the glycerol interior to the surface. This results in a less consumed glycerol and a high specific impulse. An optimal propulsion can be realized by varying carbon content in glycerol. Project supported by the National Natural Science Foundation of China (Grant No. 10905049) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 53200859165 and 2562010050).

  5. Dedicated Laboratory Setup for CO{sub 2} TEA Laser Propulsion Experiments at Rensselaer Polytechnic Institute

    SciTech Connect

    Salvador, Israel I.; Kenoyer, David; Myrabo, Leik N.; Notaro, Samuel

    2010-10-08

    Laser propulsion research progress has traditionally been hindered by the scarcity of photon sources with desirable characteristics, as well as integrated specialized flow facilities in a dedicated laboratory environment. For TEA CO{sub 2} lasers, the minimal requirements are time-average powers of >100 W), and pulse energies of >10 J pulses with short duration (e.g., 0.1 to 1 {mu}s); furthermore, for the advanced pulsejet engines of interest here, the laser system must simulate pulse repetition frequencies of 1-10 kilohertz or more, at least for two (carefully sequenced) pulses. A well-equipped laser propulsion laboratory should have an arsenal of sensor and diagnostics tools (such as load cells, thrust stands, moment balances, pressure and heat transfer gages), Tesla-level electromagnet and permanent magnets, flow simulation facilities, and high-speed visualization systems, in addition to other related equipment, such as optics and gas supply systems. In this paper we introduce a cutting-edge Laser Propulsion Laboratory created at Rensselaer Polytechnic Institute, one of the very few in the world to be uniquely set up for beamed energy propulsion (BEP) experiments. The present BEP research program is described, along with the envisioned research strategy that will exploit current and expanded facilities in the near future.

  6. Dedicated Laboratory Setup for CO2 TEA Laser Propulsion Experiments at Rensselaer Polytechnic Institute

    NASA Astrophysics Data System (ADS)

    Salvador, Israel I.; Kenoyer, David; Myrabo, Leik N.; Notaro, Samuel

    2010-10-01

    Laser propulsion research progress has traditionally been hindered by the scarcity of photon sources with desirable characteristics, as well as integrated specialized flow facilities in a dedicated laboratory environment. For TEA CO2 lasers, the minimal requirements are time-average powers of >100 W), and pulse energies of >10 J pulses with short duration (e.g., 0.1 to 1 μs); furthermore, for the advanced pulsejet engines of interest here, the laser system must simulate pulse repetition frequencies of 1-10 kilohertz or more, at least for two (carefully sequenced) pulses. A well-equipped laser propulsion laboratory should have an arsenal of sensor and diagnostics tools (such as load cells, thrust stands, moment balances, pressure and heat transfer gages), Tesla-level electromagnet and permanent magnets, flow simulation facilities, and high-speed visualization systems, in addition to other related equipment, such as optics and gas supply systems. In this paper we introduce a cutting-edge Laser Propulsion Laboratory created at Rensselaer Polytechnic Institute, one of the very few in the world to be uniquely set up for beamed energy propulsion (BEP) experiments. The present BEP research program is described, along with the envisioned research strategy that will exploit current and expanded facilities in the near future.

  7. Airbreathing Hypersonic Vision-Operational-Vehicles Design Matrix

    NASA Technical Reports Server (NTRS)

    Hunt, James L.; Pegg, Robert J.; Petley, Dennis H.

    1999-01-01

    This paper presents the status of the airbreathing hypersonic airplane and space-access vision-operational-vehicle design matrix, with emphasis on horizontal takeoff and landing systems being, studied at Langley, it reflects the synergies and issues, and indicates the thrust of the effort to resolve the design matrix including Mach 5 to 10 airplanes with global-reach potential, pop-up and dual-role transatmospheric vehicles and airbreathing launch systems. The convergence of several critical systems/technologies across the vehicle matrix is indicated. This is particularly true for the low speed propulsion system for large unassisted horizontal takeoff vehicles which favor turbines and/or perhaps pulse detonation engines that do not require LOX which imposes loading concerns and mission Flexibility restraints.

  8. Airbreathing Hypersonic Vision-Operational-Vehicles Design Matrix

    NASA Technical Reports Server (NTRS)

    Hunt, James L.; Pegg, Robert J.; Petley, Dennis H.

    1999-01-01

    This paper presents the status of the airbreathing hypersonic airplane and space-access vision-operational-vehicle design matrix, with emphasis on horizontal takeoff and landing systems being studied at Langley; it reflects the synergies and issues, and indicates the thrust of the effort to resolve the design matrix including Mach 5 to 10 airplanes with global-reach potential, pop-up and dual-role transatmospheric vehicles and airbreathing launch systems. The convergence of several critical systems/technologies across the vehicle matrix is indicated. This is particularly true for the low speed propulsion system for large unassisted horizontal takeoff vehicles which favor turbines and/or perhaps pulse detonation engines that do not require LOX which imposes loading concerns and mission flexibility restraints.

  9. A study of laser ablation propulsion using polyoxymethelyne and a high power diode laser

    NASA Astrophysics Data System (ADS)

    Kolesar, Michael D.

    With an increased interest by universities, government and commercial groups in using constellations of pico and nano satellites, the need for micro-thrusters to aid in the station-keeping capabilities has become strong. This report examines using polymers and a laser to ablate material as a potential propulsion option for station-keeping. Homopolymer polyoxymethelyne (POM), commonly known as Delrin(TM), was tested as a fuel for a high powered (20 Watt 980 nm) solid state diode laser ablation thruster to be used for station-keeping on pico and nano sized satellites. The experiments required a partial vacuum to reduce the effects of air decomposition and remove water vapor during the ablation event. The vacuum chamber, shadowgraph, and an impulse measurement system were all designed and built around the 20-Watt laser. Three different sample thicknesses were tested (.005", .010", and .020") to determine the behavior of the polymer. The laser was focused onto the POM sample, which was mounted to a load cell and calibrated to measure the impulse of the system imparted by the laser pulse. The calculated thrust values ranged from 600 microN to 1300 microN with a high uncertainty due to the small sample size. The exhaust plume from the ablation event was captured using a shadowgraph. A low velocity was recorded because the chamber was not a complete vacuum, causing the exhaust plume to collide with the air molecules in the test chamber. However the load cell results suggested that 1.30 mN per burst can be produced with an uncertainty of 30%. With the work outlined in this paper, POM shows the promise and challenge of being a good candidate as a fuel material. POM warrants further development and investment as a fuel to be used with a laser ablation micro-thruster.

  10. Perspective on One Decade of Laser Propulsion Research at Air Force Research Laboratory

    NASA Astrophysics Data System (ADS)

    Larson, C. William

    2008-04-01

    The Air Force Laser Propulsion Program spanned nearly 10-years and included about 35-weeks of experimental research with the Pulsed Laser Vulnerability Test System of the High Energy Laser Systems Test Facility at White Sands Missile Range, New Mexico, WSMR/HELSTF/PLVTS. PLVTS is a pulsed CO2 laser that produces up to 10 kW of power in ˜10 cm2 spot at wavelength of 10.6 microns. The laser is capable of a pulse repetition rate up to 25 Hz, with pulse durations of about 20 microseconds. During the program basic research was conducted on the production of propulsion thrust from laser energy through heating of air and ablation of various candidate rocket propellant fuels. Flight tests with an ablation fuel (Delrin) and air were accomplished with a model Laser Lightcraft vehicle that was optimized for propulsion by the PLVTS at its maximum power output, 10 kW at 25 Hz, 400 J/pulse. Altitudes exceeding 200-feet were achieved with ablation fuels. The most recent contributions to the technology included development of a mini-thruster standard for testing of chemically enhanced fuels and theoretical calculations on the performance of formulations containing ammonium nitrate and Delrin. Results of these calculations will also be reported here.

  11. Perspective on One Decade of Laser Propulsion Research at Air Force Research Laboratory

    SciTech Connect

    Larson, C. William

    2008-04-28

    The Air Force Laser Propulsion Program spanned nearly 10-years and included about 35-weeks of experimental research with the Pulsed Laser Vulnerability Test System of the High Energy Laser Systems Test Facility at White Sands Missile Range, New Mexico, WSMR/HELSTF/PLVTS. PLVTS is a pulsed CO2 laser that produces up to 10 kW of power in {approx}10 cm{sup 2} spot at wavelength of 10.6 microns. The laser is capable of a pulse repetition rate up to 25 Hz, with pulse durations of about 20 microseconds. During the program basic research was conducted on the production of propulsion thrust from laser energy through heating of air and ablation of various candidate rocket propellant fuels. Flight tests with an ablation fuel (Delrin) and air were accomplished with a model Laser Lightcraft vehicle that was optimized for propulsion by the PLVTS at its maximum power output, 10 kW at 25 Hz, 400 J/pulse. Altitudes exceeding 200-feet were achieved with ablation fuels. The most recent contributions to the technology included development of a mini-thruster standard for testing of chemically enhanced fuels and theoretical calculations on the performance of formulations containing ammonium nitrate and Delrin. Results of these calculations will also be reported here.

  12. Efficient space propulsion engines based on laser ablation

    SciTech Connect

    Phipps, C.R.

    1993-08-01

    Recent results have shown laser momentum transfer coefficients C{sub m} as large as 700 dynes/J from visible and near-infrared laser pulses with heterogeneous targets. Using inexpensive target materials, it is now possible to deliver a 1-tonne satellite from LEO to GEO in 21 days using a 10-kW onboard laser ablation engine, or to maintain several 1-tonne GEO satellites on station from Earth indefinitely using a laser with 100-W average power.

  13. Laser propulsion of nanobullets by adiabatic compression of surface plasmon polaritons

    PubMed Central

    Folli, Viola; Ruocco, Giancarlo; Conti, Claudio

    2015-01-01

    Laser propulsion and guide of nanosized objects is fundamental for a wide number of applications. These applications are often limited by the fact that the optical forces acting on nanoparticles are almost negligible even in the favorable case of metallic particles and hence large laser powers are needed to accelerate and guide nanosize devices in practical applications. Furthermore, metallic nanoparticles exhibit strong absorption bands and scattering and this makes more difficult controlling nanopropulsion. Thus, finding some mechanism enhancing the optomechanical interaction at the nanoscale controlled by laser is specifically challenging and pivotal. Here, we demonstrate a novel physical effect where the well-known adiabatic localization of the enhanced plasmonic surface field on the apex of metallic nanocones produces a significant optical pressure employable as a propulsive mechanism. The proposed method gives the possibility to develop new photonics devices to accelerate metallic nanobullets over long distances for a variety of applications. PMID:26631719

  14. Aerodynamic characteristics of a series of airbreathing missile configurations

    NASA Technical Reports Server (NTRS)

    Hayes, C.

    1981-01-01

    The results of an experimental program conducted in order to compile a data base useful in the application of airbreathing propulsion to missiles are presented. The configurations investigated used two-dimensional or axisymmetric twin inlets located at three alternative circumferential positions: 90, 115 and 135 deg to the vertical centerline. The effects of a wing located above the inlets and of various tail configurations were investigated, with a view to longitudinal stability/control and lateral-directional stability characteristics. It is noted that of the three tail configurations tested, the 'X' tail showed (1) the most linear pitch-moment curve, (2) control effectiveness, and (3) positive lateral-directional stability.

  15. Prospects for future hypersonic air-breathing vehicles

    NASA Technical Reports Server (NTRS)

    Beach, H. L., Jr.; Blankson, Isaiah M.

    1991-01-01

    The age of hypersonics is (almost) here. This is evident from the amount of activity in the United States, Europe, the USSR and Japan; this activity is a reflection of technical progress in key areas which will enable new vehicle systems, as well as renewed interest in the utilization of these systems. The current situation, at least in the United States, is the product of an interesting history which is briefly reviewed here. The context for hypersonic applications is discussed, but the emphasis is on hypersonic technology issues and needs, particularly for propulsion and technology integration. The paper concludes with prospects for accomplishing the objective of air-breathing hypersonic vehicle systems.

  16. Space transfer with ground-based laser/electric propulsion

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Stavnes, Mark; Oleson, Steve; Bozek, John

    1993-01-01

    A new method of providing power to space vehicles consists of using ground-based lasers to beam power to photovoltaic receivers in space. This can be used as a power source for electrically propelled orbital transfer vehicles.

  17. Stability of absorption phenomena in laser-thermal propulsion

    NASA Technical Reports Server (NTRS)

    Merkle, C. L.; Tsai, Y.-L. P.

    1984-01-01

    The mean flow and stability characteristics of laser absorption phenomena in a choked converging-diverging nozzle are considered. Calculations are presented for a given nozzle geometry and a series of laser intensities. Gas absorptivities corresponding to a hydrogen-cesium mixture are used with different initial temperatures being selected to investigate the effects of changes in the shape of the k-T curve. Both stability and mean flow calculations are limited to the one-dimensional case. The mean flow results show a decrease in mass flow as laser power is increased, along with increasingly steep temperature profiles. Calculations span regions of partial and complete absorption. One region is found where multiple solutions exist. Local stability results indicate the u-c characteristic is the only unstable mode in the unheated case. Laser heat addition makes this mode more unstable and also destabilizes the u-characteristic. Numerical calculations of disturbance propagation show that the instability of the u-c disturbances is counteracted by their reflection to u + c disturbances at the upstream end. The growth of the u-disturbances is localized in regions where the temperature profile is steep and they are damped in other regions. The increasing destabilization that is observed with increased laser power is probably the reason for difficulty in obtaining converged mean flow solutions at high laser intensities.

  18. CO{sub 2} Laser Ablation Propulsion Area Scaling With Polyoxymethylene Propellant

    SciTech Connect

    Sinko, John E.; Ichihashi, Katsuhiro; Ogita, Naoya; Sakai, Takeharu; Sasoh, Akihiro; Tsukiyama, Yosuke; Umehara, Noritsugu

    2010-05-06

    The topic of area scaling is of great importance in the laser propulsion field, including applications to removal of space debris and to selection of size ranges for laser propulsion craft in air or vacuum conditions. To address this issue experimentally, a CO{sub 2} laser operating at up to 10 J was used to irradiate targets. Experiments were conducted in air and vacuum conditions over a range of areas from about 0.05-5 cm{sup 2} to ablate flat polyoxymethylene targets at several fluences. Theoretical effects affecting area scaling, such as rarefaction waves, thermal diffusion, and diffraction, are discussed in terms of the experimental results. Surface profilometry was used to characterize the ablation samples. A CFD model is used to facilitate analysis, and key results are compared between experimental and model considerations. The dependence of key laser propulsion parameters, including the momentum coupling coefficient and specific impulse, are calculated based on experimental data, and results are compared to existing literature data.

  19. Large-scale numerical simulation of laser propulsion by parallel computing

    NASA Astrophysics Data System (ADS)

    Zeng, Yaoyuan; Zhao, Wentao; Wang, Zhenghua

    2013-05-01

    As one of the most significant methods to study laser propelled rocket, the numerical simulation of laser propulsion has drawn an ever increasing attention at present. Nevertheless, the traditional serial simulation model cannot satisfy the practical needs because of insatiable memory overhead and considerable computation time. In order to solve this problem, we study on a general algorithm for laser propulsion design, and bring about parallelization by using a twolevel hybrid parallel programming model. The total computing domain is decomposed into distributed data spaces, and each partition is assigned to a MPI process. A single step of computation operates in the inter loop level, where a compiler directive is used to split MPI process into several OpenMP threads. Finally, parallel efficiency of hybrid program about two typical configurations on a China-made supercomputer with 4 to 256 cores is compared with pure MPI program. And, the hybrid program exhibits better performance than the pure MPI program on the whole, roughly as expected. The result indicates that our hybrid parallel approach is effective and practical in large-scale numerical simulation of laser propulsion.

  20. An Air-Breathing Launch Vehicle Concept for Single-Stage-to-Orbit

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.

    1999-01-01

    The "Trailblazer" is a 300-lb payload, single-stage-to-orbit launch vehicle concept that uses air-breathing propulsion to reduce the required propellant fraction. The integration of air-breathing propulsion is done considering performance, structural and volumetric efficiency, complexity, and design risk. The resulting configuration is intended to be viable using near-term materials and structures. The aeropropulsion performance goal for the Trailblazer launch vehicle is an equivalent effective specific impulse (I*) of 500 sec. Preliminary analysis shows that this requires flight in the atmosphere to about Mach 10, and that the gross lift-off weight is 130,000 lb. The Trailblazer configuration and proposed propulsion system operating modes are described. Preliminary performance results are presented, and key technical issues are highlighted. An overview of the proposed program plan is given.

  1. Radiant energy absorption studies for laser propulsion. [gas dynamics

    NASA Technical Reports Server (NTRS)

    Caledonia, G. E.; Wu, P. K. S.; Pirri, A. N.

    1975-01-01

    A study of the energy absorption mechanisms and fluid dynamic considerations for efficient conversion of high power laser radiation into a high velocity flow is presented. The objectives of the study are: (1) to determine the most effective absorption mechanisms for converting laser radiation into translational energy, and (2) to examine the requirements for transfer of the absorbed energy into a steady flow which is stable to disturbances in the absorption zone. A review of inverse Bremsstrahlung, molecular and particulate absorption mechanisms is considered and the steady flow and stability considerations for conversion of the laser power to a high velocity flow in a nozzle configuration is calculated. A quasi-one-dimensional flow through a nozzle was formulated under the assumptions of perfect gas.

  2. Ablative Laser Propulsion Using Multi-Layered Material Systems

    NASA Technical Reports Server (NTRS)

    Nehls, Mary; Edwards, David; Gray, Perry; Schneider, T.

    2002-01-01

    Experimental investigations are ongoing to study the force imparted to materials when subjected to laser ablation. When a laser pulse of sufficient energy density impacts a material, a small amount of the material is ablated. A torsion balance is used to measure the momentum produced by the ablation process. The balance consists of a thin metal wire with a rotating pendulum suspended in the middle. The wire is fixed at both ends. Recently, multi-layered material systems were investigated. These multi-layered materials were composed of a transparent front surface and opaque sub surface. The laser pulse penetrates the transparent outer surface with minimum photon loss and vaporizes the underlying opaque layer.

  3. Delrin registered for Propulsion with CO{sub 2} Laser: Carbon Doping Effects

    SciTech Connect

    Sinko, John E.; Pakhomov, Andrew V.; Millen, Stewart; Zhu, Jane; Sinko, Robert J.; Potts, Kenneth

    2008-04-28

    Polyoxymethylene (POM) a.k.a. Delrin has been commonly used for propulsion with carbon dioxide (CO{sub 2}) lasers as a solid fuel providing excellent combination of coupling coefficient and specific impulse. In this paper the propulsive characteristics of white and black (carbon-doped) Delrin will be examined and compared. A Transverse Electric discharge in gas at Atmospheric pressure (TEA) CO{sub 2} laser with 300 ns pulse width was operated at up to 20 J pulse energy to produce irradiances on the order of 1-500 MW/cm{sup 2} on Delrin targets. Fourier Transform Infrared (FTIR) spectroscopy, time-resolved force sensors, a ballistic pendulum, and Schlieren imaging techniques were used to determine absorption spectra, coupling coefficient, specific impulse, and internal efficiency of Delrin. An analysis will be made of the possible routes for force generation.

  4. Air-Breathing Rocket Engines

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph depicts an air-breathing rocket engine prototype in the test bay at the General Applied Science Lab facility in Ronkonkoma, New York. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced Space Transportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  5. A laser driven fusion plasma for space propulsion

    SciTech Connect

    Kammash, T.; Galbraith, D.L. )

    1992-07-01

    The present inertial-confinement fusion concept employs a magnetized target pellet that is driven by a laser beam in conjunction with a tungsten shell whose inner surface is coated with a deuterium-tritium fusion fuel mixture. A laser beam that enters the pellet through a hole simultaneously creates a fusion-grade plasma and gives rise to a powerful, instantaneous magnetic field which thermally insulates the plasma from the material wall. The plasma lifetime of this self-generated magnetic field scheme is dictated by the shock speed in the tungsten shell rather than by the speed of sound in the plasma: it consequently burns much longer and efficiently than plausible alternatives. A manned mission could by these means be completed in a few months rather than a few years, in virtue of the great specific impulse achieved. 8 refs.

  6. An Experimental and Conceptual Investigation of Laser Micro Propulsion

    SciTech Connect

    Cai Jian; Hu Xiaojun; Tang Zhiping

    2006-05-02

    The laser micro-impulse torsion pendulum has been developed in this lab. A thin glass plate of about 80{mu}m thick is made as the target holder where the propellant film sticks on. Such structure can be used for both the R-mode and the T-mode measurements. The minimal resolution of this apparatus is 3x10-9N.s. A package, which combines a 2W single LD with its lenses, is evaluated by the pendulum under R-mode and T-mode conditions, respectively, in this lab. the momentum coupling coefficient Cm is about 2dyn/W and the specific impulsion Isp is about 170s. A new conceptual fiber-distributed structure of laser micropropulsion system for microsatellites has been proposed and discussed in this article.

  7. Effects of Two-Pulse Sequencing on Characteristics of Elementary Propellants for Ablative Laser Propulsion

    NASA Technical Reports Server (NTRS)

    Thompson, M. Shane; Pakhomov, Andrew V.; Herren, Kenneth A.

    2003-01-01

    This work continues on previous investigations of elementary propellants for Ablative Laser Propulsion (ALP). This paper details the experimental methods used for alignment of a non-colinear temporal pulse splitting apparatus. Spatial coincidence of the separate pulses is established, the pulses are delayed, and first data is reported on this pulse spacing effect on time-of-fight (TOF) measurements. This includes ion velocity and number density measurements, and this data is compared to results from a previous work. Also, first data on the experimental determination of the time required for the laser-induced plasma to become purely reflective to incident pulses is presented.

  8. Target micro-displacement measurement by a "comb" structure of intensity distribution in laser plasma propulsion

    NASA Astrophysics Data System (ADS)

    Zheng, Z. Y.; Zhang, S. Q.; Gao, L.; Gao, H.

    2015-05-01

    A "comb" structure of beam intensity distribution is designed and achieved to measure a target displacement of micrometer level in laser plasma propulsion. Base on the "comb" structure, the target displacement generated by nanosecond laser ablation solid target is measured and discussed. It is found that the "comb" structure is more suitable for a thin film target with a velocity lower than tens of millimeters per second. Combing with a light-electric monitor, the `comb' structure can be used to measure a large range velocity.

  9. Usage Of Polyacetal Powders As Laser Ablation Propulsion Propellants

    SciTech Connect

    Sasoh, Akihiro; Ogita, Naoya; Sinko, John E.

    2010-05-06

    We examined impulse characteristics of polyoxymeythylene (POM) powders under irradiation by a TEA (Transversely-Excited at Atmospheric pressure)CO{sub 2} laser pulse. The impulse performance exhibited large scatter due to splashing particles. When the powder was hydraulically compacted to form a disk, the momentum coupling coefficient became comparable with that for bulk material, but the mass consumption was increased by several times.

  10. Preliminary Sizing of an Hypersonic Airbreathing Airliner

    NASA Astrophysics Data System (ADS)

    Ingenito, Antonella; Gulli, Stefano; Bruno, Claudio

    The purpose of this paper is to identify, for given technology levels (TRL) and mission requirements, those parameters that are critical for preliminary sizing of a hypersonic airbreathing airliner. Mission requirements will dictate a solution space of possible vehicle architecture capable of meeting cruise conditions as well as of taking-off (TO) and landing. In practice, once defined a range of cruise vehicle architectures, constraints are imposed (as to all passenger airliners), such as: 1. take off (=TO) and landing distance (so-called field length, FL): FL no longer than for the B-747-400, or 10000 ft; 2. completing TO with one engine off; 3. max acceleration at TO and climb-out (CO) = 0.4 g; 4. Hydrogen fuel (Meeting NOx emission limits (EINOx) is a further constraint not discussed in this paper). These constraints enable focusing on a realistic design out of the broad range of vehicles capable of performing the given mission. Thus a realistic vehicle must not only integrate aerodynamics and propulsion system; in fact, it is the result of many iterations in the design space, until performance and constraints are successfully achieved and met. The Gross Weight at Take Off (TOGW) was deliberately discarded as a constraint, based on Previous studies by Czysz. Typically, limiting from the beginning the TOGW leads to a vicious spiral where weight and propulsion system requirements keep growing, eventually denying convergence. In designing passenger airliners, in fact, it is the payload that is assumed fixed from the start, not the total weight. A parametric analysis of the hypersonic vehicle architecture is presented: in particular, optimal size, weight and geometrical shape are defined for different mission requirements. This analysis has shown that, it is possible to define a range of possible successful solutions for the European LAPCAT II project.

  11. Computational model of collisional-radiative nonequilibrium plasma in an air-driven type laser propulsion

    SciTech Connect

    Ogino, Yousuke; Ohnishi, Naofumi

    2010-05-06

    A thrust power of a gas-driven laser-propulsion system is obtained through interaction with a propellant gas heated by a laser energy. Therefore, understanding the nonequilibrium nature of laser-produced plasma is essential for increasing available thrust force and for improving energy conversion efficiency from a laser to a propellant gas. In this work, a time-dependent collisional-radiative model for air plasma has been developed to study the effects of nonequilibrium atomic and molecular processes on population densities for an air-driven type laser propulsion. Many elementary processes are considered in the number density range of 10{sup 12}/cm{sup 3}<=N<=10{sup 19}/cm{sup 3} and the temperature range of 300 K<=T<=40,000 K. We then compute the unsteady nature of pulsively heated air plasma. When the ionization relaxation time is the same order as the time scale of a heating pulse, the effects of unsteady ionization are important for estimating air plasma states. From parametric computations, we determine the appropriate conditions for the collisional-radiative steady state, local thermodynamic equilibrium, and corona equilibrium models in that density and temperature range.

  12. Three-Dimensional Numerical Analysis for Posture Stability of Laser Propulsion Vehicle

    NASA Astrophysics Data System (ADS)

    Takahashi, Masayuki; Ohnishi, Naofumi

    2011-11-01

    We have developed a three-dimensional hydrodynamics code coupling equation of motion of a rigid body for analyzing posture stability of laser propulsion vehicle through numerical simulations of flowfield interacting with unsteady motion of the vehicle. Asymmetric energy distribution is initially added around the focal spot (ring) in order to examine posture stability against an asymmetric blast wave resulting from a laser offset for a lightcraft-type vehicle. The vehicle moves to cancel out the offset from initial offset. However, the Euler angle grows and never returns to zero in a time scale of laser pulse. Also, we found that the vehicle moves to cancel tipping angle when the laser is irradiated to the vehicle with initial tipping angle over the wide angle range, through the vehicle cannot get sufficient restoring force in particular angle, and the tipping angle does not decrease from the initial value for that case.

  13. Spot Size Limited Carbon Propellant Characterization for Efficient High Isp Laser Propulsion

    SciTech Connect

    Uchida, Shigeaki; Shimada, Yoshinori; Hashimoto, Kazuhisa; Yamaura, Michiteru; Birou, Tomoya; Yoshida, Minoru

    2005-04-27

    Laser propulsion has very unique advantage of producing exhausting gas (ions) of very high velocity. Specific impulse from laser plasma could easily exceed 10,000 seconds that reduce the current propellant consumption rate on space born thrusters significantly. For efficient propellant usage, it is desirable that the exhaust plasma has rather narrow velocity distribution of fast ions. In order to accomplish the requirements, thermal conduction and neutral particle losses at and vicinity of the laser heated region have to be eliminated. A concept of spot size limited propellant shape has been proposed and tested in terms of the effects of the loss reduction. Ion and neutral particle measurements from laser plasmas produced on the above mentioned carbon targets are used to characterize the performance of the propellant.

  14. Study of laser heated propulsion devices. Part 1: Evaluation of laser devices, fuels and energy coupling mechanisms

    NASA Technical Reports Server (NTRS)

    Hofer, O. C.

    1982-01-01

    Closed cycle, CW waveform and short wavelength laser devices are desirable characteristics for laser propulsion. The choice of specific wavelengths for hydrogen fuel affects the operational conditions under which a laser supported absorption (LSA) wave is initiated and maintained. The mechanisms of initiating and maintaining LSA waves depend on the wavelength of the laser. Consequently, the shape and size of the hot core plasma is also dependent on wavelength and pressure. Detailed modeling of these mechanisms must be performed before their actual significance can be ascertained. Inverse bremsstrahlung absorption mechanism is the dominant mechanism for coupling energy into the plasma, but other mechanisms which are wavelength dependent can dictate the LSA wave plasma initiation and maintenance conditions. Multiphoton mechanisms become important at visible or shorter wavelengths. These are important mechanisms in creating the initial H2 gas breakdown and supplying the precursor electrons required to sustain the plasma.

  15. Airbreathing engines for space shuttle

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.; Stewart, W. L.; Nosek, S. M.

    1972-01-01

    The requirements imposed on the airbreathing engines by the shuttle mission and some results from engine design studies are discussed. In particular, some of the engine system weight study results are presented, potential problem areas and required engine modifications are identified, and testing requirements for a development and qualification program are discussed. The engines of interest for the shuttle are engines that are currently being developed for other applicatons. The potential problems, engine modifications, and testing requirements result primarily from the new environments associated with launch, space residence, and reentry.

  16. Laser ablation in a running hall effect thruster for space propulsion

    NASA Astrophysics Data System (ADS)

    Balika, L.; Focsa, C.; Gurlui, S.; Pellerin, S.; Pellerin, N.; Pagnon, D.; Dudeck, M.

    2013-07-01

    Hall Effect Thrusters (HETs) are promising electric propulsion devices for the station-keeping of geostationary satellites (more than 120 in orbit to date). Moreover, they can offer a cost-effective solution for interplanetary journey, as proved by the recent ESA SMART-1 mission to the Moon. The main limiting factor of the HETs lifetime is the erosion of the annular channel ceramics walls. In order to provide a better understanding of the energy deposition on the insulated walls, a laser irradiation study has been carried out on a PPS100-ML thruster during its run in the PIVOINE-2G ground test facility (CNRS Orléans, France). Two distinct approaches have been followed: continuous wave fiber laser irradiation (generation of thermal defects) and nanosecond pulsed laser ablation (generation of topological defects). The irradiated zones have been monitored in situ by IR thermography and optical emission spectroscopy and further investigated ex situ by scanning electron microscopy and profilometry.

  17. Low Power Ground-Based Laser Illumination for Electric Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.; Oleson, Steven R.

    1994-01-01

    A preliminary evaluation of low power, ground-based laser powered electric propulsion systems is presented. A review of available and near-term laser, photovoltaic, and adaptive optic systems indicates that approximately 5-kW of ground-based laser power can be delivered at an equivalent one-sun intensity to an orbit of approximately 2000 km. Laser illumination at the proper wavelength can double photovoltaic array conversion efficiencies compared to efficiencies obtained with solar illumination at the same intensity, allowing a reduction in array mass. The reduced array mass allows extra propellant to be carried with no penalty in total spacecraft mass. The extra propellant mass can extend the satellite life in orbit, allowing additional revenue to be generated. A trade study using realistic cost estimates and conservative ground station viewing capability was performed to estimate the number of communication satellites which must be illuminated to make a proliferated system of laser ground stations economically attractive. The required number of satellites is typically below that of proposed communication satellite constellations, indicating that low power ground-based laser beaming may be commercially viable. However, near-term advances in low specific mass solar arrays and high energy density batteries for LEO applications would render the ground-based laser system impracticable.

  18. Pulsed laser propulsion for low cost, high volume launch to orbit

    SciTech Connect

    Kare, J.

    1989-06-02

    Pulsed laser propulsion offers the prospect of delivering high thrust at high specific impulse (500-1000 seconds) from a very simple thruster, using the energy of a remote ground-based laser to heat an inert propellant. Current analyses indicate that payloads of approximately 1 kg per megawatt of average laser power can be launched at a rate of one payload every 15 minutes and a marginal cost of $20 to $200 per kg. A 20 MW entry-level launch system could be built using current technology at a cost of $500 million or less; it would be capable of placing 600 tons per year into LEO. The SDIO Laser Propulsion Program has been developing the technology for such a launch system since 1987. The program has conducted theoretical and experimental research on a particular class of laser-driven thruster, the planar double-pulse LSD-wave thruster, which could be used for a near-term launcher. The double-pulse thruster offers several advantages, including extreme simplicity, design flexibility, and the ability to guide a vehicle remotely by precise control of the laser beam. Small-scale experiments have demonstrated the operation of this thruster at a specific impulse of 600 seconds and 10% efficiency; larger experiments now under way are expected to increase this to at least 20% efficiency. Systems-level issues, from guidance and tracking to possible unique applications, have also been considered and will be briefly discussed. There appear to be no fundamental obstacles to creating, in the next five to ten years, a new low-cost ''pipe-line to space.'' 7 refs., 2 figs., 1 tab.

  19. Laser power beaming: an emerging technology for power transmission and propulsion in space

    NASA Astrophysics Data System (ADS)

    Bennett, Harold E.

    1997-05-01

    A ground based laser beam transmitted to space can be used as an electric utility for satellites. It can significantly increase the electric power available to operate a satellite or to transport it from low earth orbit (LEO) to mid earth or geosynchronous orbits. The increase in electrical power compared to that obtainable from the sun is as much as 1000% for the same size solar panels. An increase in satellite electric power is needed to meet the increasing demands for power caused by the advent of 'direct to home TV,' for increased telecommunications, or for other demands made by the burgeoning 'space highway.' Monetary savings as compared to putting up multiple satellites in the same 'slot' can be over half a billion dollars. To obtain propulsion, the laser power can be beamed through the atmosphere to an 'orbit transfer vehicle' (OTV) satellite which travels back and forth between LEO and higher earth orbits. The OTV will transport the satellite into orbit as does a rocket but does not require the heavy fuel load needed if rocket propulsion is used. Monetary savings of 300% or more in launch costs are predicted. Key elements in the proposed concept are a 100 to 200 kW free- electron laser operating at 0.84 m in the photographic infrared region of the spectrum and a novel adaptive optic telescope.

  20. Laser/space material uncooperative propulsion for orbital debris removal and asteroid, meteoroid, and comet deflection

    NASA Astrophysics Data System (ADS)

    Campbell, Jonathan W.; Taylor, Charles R.; Smalley, Larry L.; Dickerson, Thomas

    1999-01-01

    Orbital debris in low-Earth orbit in the size range from 1 to 10 cm in diameter can be detected but not tracked reliably enough to be avoided by spacecraft. It can cause catastrophic damage even to a shielded spacecraft. With adaptive optics, a ground-based pulsed laser ablating the debris surface can produce enough propulsion in several hundred pulses to cause such debris to reenter the atmosphere. A single laser station could remove all of the 1-10 cm debris in three years or less. A technology demonstration of laser space propulsion is proposed which would pave the way for the implementation of such a debris removal system. The cost of the proposed demonstration is comparable with the estimated annual cost of spacecraft operations in the present orbital debris environment. Orbital debris is not the only space junk that is deleterious to the Earth's environment. Collisions with asteroids have caused major havoc to the Earth's biosphere many times in the ancient past. Since the possibility still exists for major impacts, it is shown that it is possible to scale up the systems to prevent these catastrophic collisions given sufficient early warning.

  1. Experimental and Numerical Investigation of Propellant of Different Thickness for Laser Micro Propulsion

    SciTech Connect

    Jian Cai; Long Li; Yu Du; Tang Zhiping; Hu Xiaojun

    2010-05-06

    The thickness of propellant is an important experimental parameter under T-mode, which has a direct impact on the performance of the laser Micro propulsion. In this paper, the prolusion performance of four propellants with different thickness is measured respectively, the experimental results show that the momentum coupling coefficient C{sub m} rises with the increase of thickness, while the specific impulse I{sub sp} falls on the contrary. The same trend for I{sub sp} also has been obtained from the simulated result by the Discrete Element Program (DEM).

  2. Experimental Study of Coupling Coefficients for Propulsion on TEA CO2 Laser

    SciTech Connect

    Tan Rongqing; Lin Jun; Hughes, Jeremy; Pakhomov, Andrew V.

    2004-03-30

    The original purpose of this study was to address a partition of propulsive energy between air and metal, when the breakdown is initiated at the metal surface and/or in adjacent air space. Coupling coefficient as a function of air pressure varied in the range 4 mTorr - 1 atm is presented. The experiments were conducted by focusing output pulses of a TEA CO2 laser system (0.2-{mu}s pulsewidth at 10.6 {mu}m wavelength and {approx} 10.0 J energy) on aluminum targets. Coupling coefficients were derived from the pendulum displacements.

  3. Experimental Investigation of Liquid-propellant Laser Propulsion with a Horizontal Momentum Measuring Lever

    SciTech Connect

    Wang Bin; Li Long; Tang Zhiping; Cai Jian

    2010-05-06

    Thrust performance of Liquid-propellant laser propulsion (LLP) is seriously influenced by factors like laser parameters, choice of propellants and ablation materials. For the purpose of studying these influences, series of impulse measuring experiments for various propellants and ablation materials were conducted. The key device is a Horizontal Momentum Measuring Lever, which covers a C{sub m} measuring range from 10{sup 3} Ns/MJ to about 1.6x10{sup 4} Ns/MJ. A Nd:YAG laser was used as the laser source. From the result, it is found that laser energy density plays an important role on LLP efficiency, higher energy density leads to higher C{sub m} and I{sub sp}. Highest C{sub m} of about 10{sup 4} Ns/MJ with the I{sub sp} of 3.57s was achieved by focusing the laser to the average energy density of 8.83x10{sup 8} W/cm{sup 2}. Besides of that, it is also found that when the energy density is certainly high, C{sub m} of LLP increases stably with the increase of the propellant thickness, which gives a potential way to further improve the thrust performance in LLP.

  4. Performance Validation Approach for the GTX Air-Breathing Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.; Roche, Joseph M.

    2002-01-01

    The primary objective of the GTX effort is to determine whether or not air-breathing propulsion can enable a launch vehicle to achieve orbit in a single stage. Structural weight, vehicle aerodynamics, and propulsion performance must be accurately known over the entire flight trajectory in order to make a credible assessment. Structural, aerodynamic, and propulsion parameters are strongly interdependent, which necessitates a system approach to design, evaluation, and optimization of a single-stage-to-orbit concept. The GTX reference vehicle serves this purpose, by allowing design, development, and validation of components and subsystems in a system context. The reference vehicle configuration (including propulsion) was carefully chosen so as to provide high potential for structural and volumetric efficiency, and to allow the high specific impulse of air-breathing propulsion cycles to be exploited. Minor evolution of the configuration has occurred as analytical and experimental results have become available. With this development process comes increasing validation of the weight and performance levels used in system performance determination. This paper presents an overview of the GTX reference vehicle and the approach to its performance validation. Subscale test rigs and numerical studies used to develop and validate component performance levels and unit structural weights are outlined. The sensitivity of the equivalent, effective specific impulse to key propulsion component efficiencies is presented. The role of flight demonstration in development and validation is discussed.

  5. Low level laser intensity improves propulsive appliance effects on condylar cartilage

    NASA Astrophysics Data System (ADS)

    Figueiredo, Augusto C. R.; dos Santos, Fernanda C. A.; Capeletti, Lucas R.; Galdino, Marcos V. B.; Araújo, Renan V.; Marques, Mara R.

    2012-01-01

    Mandibular propulsive appliance (MPA) stimulates cell proliferation and gene expression on mandible condylar cartilage (Marques et al., 2008). However, its association with low level laser therapy (LLLT) is unknown. This study evaluated the effects of LLLT associated to MPA on mandibular condyle. Twenty Wistar rats were divided into four groups. Group I received any treatment. Group II was bilaterally irradiated on temporomandibular joint with 10 J/cm2 low level laser (780nm, 40mW and 10s) on alternate days. Group III used the propulsive appliance for ten hours daily and Group IV used the appliance daily and was irradiated on alternate days. After 15 days the animals were killed by lethal doses of anesthetics. The condyles were fixed in Methacarn solution and decalcified in 4.13% EDTA solution for 30 days. Seriate saggital 5 μm-thick sections were stained by the hematoxilin-eosin method. Morphological and morphometric analyses were performed to measure the length and the height of the mandibular condyle, the thickness of the condilar cartilage and the bone mass. Results were expressed as mean +/- standard deviation (one-way ANOVA, Tukey's post-test.) The appliance increased all measures compared to the control group, except bone mass. Alone, LLLT had no effects on all measures, however, the association of the appliance with the LLLT increased condylar cartilage and bone mass significantly compared to the others groups. These results suggest that LLLT improves the effects of mandibular propulsive appliance in the condylar cartilage growth and formation of bone mass.

  6. Propulsion concepts for high speed aircraft

    NASA Technical Reports Server (NTRS)

    Stull, F. D.; Jones, R. A.; Zima, W. P.

    1975-01-01

    A wide variety of potentially useful and effective airbreathing aircraft have been postulated to operate at speeds in excess of Mach 3.0 by NASA and the USAF. These systems include hydrogen-fueled transports of interest for very long ranges and airbreathing launch vehicles which are aircraft-type first stage candidates for future space shuttle systems. Other high speed airbreathing systems for possible future military applications include advanced reconnaissance and fighter/interceptor type aircraft and strategic systems. This paper presents (1) a chronology of Air Force technical activity on future propulsion concepts, (2) a status report on NASA research on scramjet technology for future systems which may require speeds above Mach 5, and (3) a description of a research vehicle by which advanced propulsion technology and other technologies related to high speed can be demonstrated.

  7. Aerodynamic characteristics of a series of airbreathing missile configurations

    NASA Technical Reports Server (NTRS)

    Hayes, C.

    1981-01-01

    Due to the interest in the application of airbreathing propulsion to missiles and the lack of a suitable data base, an experimental program has been conducted to contribute to such a data base. The configurations investigated were with twin-inlets, either two-dimensional or axisymmetric, each located at three circumferential locations. The effects of a wing located above the inlets and of tail configuration were investigated. Longitudinal stability and control and lateral-directional stability were included in the data obtained. This paper presents a summary of the program and some of the results obtained. Certain trends of the data, as well as problem areas, are discussed. Due to the large volume of data obtained, a detailed analysis is not presented.

  8. Affordable Flight Demonstration of the GTX Air-Breathing SSTO Vehicle Concept

    NASA Technical Reports Server (NTRS)

    Krivanek, Thomas M.; Roche, Joseph M.; Riehl, John P.; Kosareo, Daniel N.

    2002-01-01

    The rocket based combined cycle (RBCC) powered single-stage-to-orbit (SSTO) reusable launch vehicle has the potential to significantly reduce the total cost per pound for orbital payload missions. To validate overall system performance, a flight demonstration must be performed. This paper presents an overview of the first phase of a flight demonstration program for the GTX SSTO vehicle concept. Phase 1 will validate the propulsion performance of the vehicle configuration over the supersonic and hypersonic airbreathing portions of the trajectory. The focus and goal of Phase 1 is to demonstrate the integration and performance of the propulsion system flowpath with the vehicle aerodynamics over the air-breathing trajectory. This demonstrator vehicle will have dual mode ramjet/scramjets, which include the inlet, combustor, and nozzle with geometrically scaled aerodynamic surface outer mold lines (OML) defining the forebody, boundary layer diverter, wings, and tail. The primary objective of this study is to demonstrate propulsion system performance and operability including the ram to scram transition, as well as to validate vehicle aerodynamics and propulsion airframe integration. To minimize overall risk and development cost the effort will incorporate proven materials, use existing turbomachinery in the propellant delivery systems, launch from an existing unmanned remote launch facility, and use basic vehicle recovery techniques to minimize control and landing requirements. A second phase would demonstrate propulsion performance across all critical portions of a space launch trajectory (lift off through transition to all-rocket) integrated with flight-like vehicle systems.

  9. Power Reduction of the Air-Breathing Hall-Effect Thruster

    NASA Astrophysics Data System (ADS)

    Kim, Sungrae

    Electric propulsion system is spotlighted as the next generation space propulsion system due to its benefits; one of them is specific impulse. While there are a lot of types in electric propulsion system, Hall-Effect Thruster, one of electric propulsion system, has higher thrust-to-power ratio and requires fewer power supplies for operation in comparison to other electric propulsion systems, which means it is optimal for long space voyage. The usual propellant for Hall-Effect Thruster is Xenon and it is used to be stored in the tank, which may increase the weight of the thruster. Therefore, one theory that uses the ambient air as a propellant has been proposed and it is introduced as Air-Breathing Hall-Effect Thruster. Referring to the analysis on Air-Breathing Hall-Effect Thruster, the goal of this paper is to reduce the power of the thruster so that it can be applied to real mission such as satellite orbit adjustment. To reduce the power of the thruster, two assumptions are considered. First one is changing the altitude for the operation, while another one is assuming the alpha value that is electron density to ambient air density. With assumptions above, the analysis was done and the results are represented. The power could be decreased to 10s˜1000s with the assumptions. However, some parameters that do not satisfy the expectation, which would be the question for future work, and it will be introduced at the end of the thesis.

  10. Design and characterization of nozzles and solid propellants for IR laser propulsion

    NASA Astrophysics Data System (ADS)

    Toro, Cinthya; Gómez, Nicolás D.; Boggio, Norberto G.; Codnia, Jorge; Azcárate, M. Laura; Rinaldi, Carlos

    2014-10-01

    In this article, we present an experimental study of the effect of conical section nozzles coupled to solid targets on laser ablation propulsion. The impulse produced on the target by laser ablation was measured in terms of the coupling coefficient C m using a piezoelectric (PZT) sensor. The standard deviation of the PZT signal was used as an estimator of the transferred impulse. The ablation was performed with a TEA CO2 laser at room temperature and atmospheric pressure. The targets were pellets of 90/10 % w/w Zn/CaCO3 concentration ratio. Aluminum nozzles with conical section were coupled to these propellant pellets. A comparative study of the variation of C m using nozzles of different inlet and outlet diameters of the ejected material as well as of different heights was made. The results demonstrate that for the pellet composition analyzed, as the nozzle's height increases and its diameter decreases improvements up to 250 % respect to the target without nozzle are obtained. These are promising results for the potential development of laser ablation microthrusters.

  11. Rocket-Based Combined-Cycle (RBCC) Propulsion Technology Workshop. Tutorial session

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The goal of this workshop was to illuminate the nation's space transportation and propulsion engineering community on the potential of hypersonic combined cycle (airbreathing/rocket) propulsion systems for future space transportation applications. Four general topics were examined: (1) selections from the expansive advanced propulsion archival resource; (2) related propulsion systems technical backgrounds; (3) RBCC engine multimode operations related subsystem background; and (4) focused review of propulsion aspects of current related programs.

  12. Airbreathing combined cycle engine systems

    NASA Technical Reports Server (NTRS)

    Rohde, John

    1992-01-01

    The Air Force and NASA share a common interest in developing advanced propulsion systems for commercial and military aerospace vehicles which require efficient acceleration and cruise operation in the Mach 4 to 6 flight regime. The principle engine of interest is the turboramjet; however, other combined cycles such as the turboscramjet, air turborocket, supercharged ejector ramjet, ejector ramjet, and air liquefaction based propulsion are also of interest. Over the past months careful planning and program implementation have resulted in a number of development efforts that will lead to a broad technology base for those combined cycle propulsion systems. Individual development programs are underway in thermal management, controls materials, endothermic hydrocarbon fuels, air intake systems, nozzle exhaust systems, gas turbines and ramjet ramburners.

  13. Flight testing of airbreathing hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Hicks, John W.

    1993-01-01

    Using the scramjet engine as the prime example of a hypersonic airbreathing concept, this paper reviews the history of and addresses the need for hypersonic flight tests. It also describes how such tests can contribute to the development of airbreathing technology. Aspects of captive-carry and free-flight concepts are compared. An incremental flight envelope expansion technique for manned flight vehicles is also described. Such critical issues as required instrumentation technology and proper scaling of experimental devices are addressed. Lastly, examples of international flight test approaches, existing programs, or concepts currently under study, development, or both, are given.

  14. Laser-induced breakdown spectroscopy in a running Hall Effect Thruster for space propulsion

    NASA Astrophysics Data System (ADS)

    Balika, L.; Focsa, C.; Gurlui, S.; Pellerin, S.; Pellerin, N.; Pagnon, D.; Dudeck, M.

    2012-08-01

    Hall Effect Thrusters (HETs) are promising electric propulsion devices for the station-keeping of geostationary satellites and for interplanetary missions. The main limiting factor of the HET lifetime is the erosion of the annular channel ceramic walls. Erosion monitoring has been performed in the laboratory using optical emission spectroscopy (OES) measurements and data treatment based on the coronal model and the actinometric hypothesis. This study uses laser ablation of the ceramic wall in a running HET in order to introduce controlled amounts of sputtered material in the thruster plasma. The transient laser-induced breakdown plasma expands orthogonally in a steady-state plasma jet created by the HET discharge. The proposed spectroscopic method involves species from both plasmas (B, Xe, Xe+). The optical emission signal is correlated to the ablated volume (measured by profilometry) leading to the first direct validation of the actinometric hypothesis in this frame and opening the road for calibration of in-flight erosion monitoring based on the OES method.

  15. Beamed energy propulsion

    NASA Technical Reports Server (NTRS)

    Shoji, James M.

    1992-01-01

    Beamed energy concepts offer an alternative for an advanced propulsion system. The use of a remote power source reduces the weight of the propulsion system in flight and this, combined with the high performance, provides significant payload gains. Within the context of this study's baseline scenario, two beamed energy propulsion concepts are potentially attractive: solar thermal propulsion and laser thermal propulsion. The conceived beamed energy propulsion devices generally provide low thrust (tens of pounds to hundreds of pounds); therefore, they are typically suggested for cargo transportation. For the baseline scenario, these propulsion system can provide propulsion between the following nodes: (1) low Earth orbit to geosynchronous Earth orbit; (2) low Earth orbit to low lunar orbit; (3) low lunar orbit to low Mars orbit--only solar thermal; and (4) lunar surface to low lunar orbit--only laser thermal.

  16. CFD for hypersonic propulsion

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    1990-01-01

    An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.

  17. CFD for hypersonic propulsion

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    1991-01-01

    An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.

  18. JTEC panel report on space and transatmospheric propulsion technology

    NASA Technical Reports Server (NTRS)

    Shelton, Duane

    1990-01-01

    An assessment of Japan's current capabilities in the areas of space and transatmospheric propulsion is presented. The report focuses primarily upon Japan's programs in liquid rocket propulsion and in propulsion for spaceplanes and related transatmospheric areas. It also includes brief reference to Japan's solid rocket programs, as well as to supersonic air-breathing propulsion efforts that are just getting underway. The results are based upon the findings of a panel of U.S. engineers made up of individuals from academia, government, and industry, and are derived from a review of a broad array of the open literature, combined with visits to the primary propulsion laboratories and development agencies in Japan.

  19. Fitting aerodynamics and propulsion into the puzzle

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick J.; Whitehead, Allen H., Jr.; Chapman, Gary T.

    1987-01-01

    The development of an airbreathing single-stage-to-orbit vehicle, in particular the problems of aerodynamics and propulsion integration, is examined. The boundary layer transition on constant pressure surfaces at hypersonic velocities, and the effects of noise on the transition are investigated. The importance of viscosity, real-gas effects, and drag at hypersonic speeds is discussed. A propulsion system with sufficient propulsive lift to enhance the performance of the vehicle is being developed. The difficulties of engine-airframe integration are analyzed.

  20. Long-distance laser propulsion and deformation- monitoring of cells in optofluidic photonic crystal fiber.

    PubMed

    Unterkofler, Sarah; Garbos, Martin K; Euser, Tijmen G; St J Russell, Philip

    2013-09-01

    We introduce a unique method for laser-propelling individual cells over distances of 10s of cm through stationary liquid in a microfluidic channel. This is achieved by using liquid-filled hollow-core photonic crystal fiber (HC-PCF). HC-PCF provides low-loss light guidance in a well-defined single mode, resulting in highly uniform optical trapping and propulsive forces in the core which at the same time acts as a microfluidic channel. Cells are trapped laterally at the center of the core, typically several microns away from the glass interface, which eliminates adherence effects and external perturbations. During propagation, the velocity of the cells is conveniently monitored using a non-imaging Doppler velocimetry technique. Dynamic changes in velocity at constant optical powers up to 350 mW indicate stress-induced changes in the shape of the cells, which is confirmed by bright-field microscopy. Our results suggest that HC-PCF will be useful as a new tool for the study of single-cell biomechanics. PMID:23281270

  1. A new perspective of ablative pulsed laser propulsion: study on different morphologies of nano-structured ZnO

    NASA Astrophysics Data System (ADS)

    Ahmad, Muhammad Raza; Jamil, Yasir; Saeed, Humaima; Hussain, Tousif

    2015-05-01

    We report for the first time a new application of four different morphologies including nano-noodles of zinc oxide as a laser ablation micro-thruster. Nano-noodles represent a unique class of materials in which the electrons are confined near the surface owing to the majority of the near surface atoms. The synthesized samples of ZnO were of single phase, having a wurtzite hexagonal structure. Three different morphologies, viz. initial (nanoparticles), intermediate (nano-noodles) and final (complete nano-noodles) of zinc oxide were ablated using a Nd : YAG laser operating at 1064 nm for the measurement of propulsion parameters. The momentum coupling coefficient (Cm) and the specific impulse (Isp) were evaluated using the non-contact optical triangulation method. It has been observed that the morphology of the material affects the laser ablation propulsion (LAP) parameters. For each sample, the laser fluence for the optimum coupling coefficient owing to the plasma shielding effect has also been found. The synthesized nanostructured zinc oxide samples have been found useful as efficient laser propellants that can be used in a variety of applications due to diversity in their momentum coupling coefficient and specific impulse values.

  2. The Design of Future Airbreathing Engine Systems within an Intelligent Synthesis Environment

    NASA Technical Reports Server (NTRS)

    Malone, J. B.; Housner, J. M.; Lytle, J. K.

    1999-01-01

    This paper describes a new Initiative proposed by the National Aeronautics and Space Administration (NASA). The purpose of this initiative is to develop a future design environment for engineering and science mission synthesis for use by NASA scientists and engineers. This new initiative is called the Intelligent Synthesis Environment (ISE). The paper describes the mission of NASA, future aerospace system characteristics, the current engineering design process, the ISE concept, and concludes with a description of possible ISE applications for the decision of air-breathing propulsion systems.

  3. Ultrashort pulse lasers applied to propulsion/control in space- and atmospheric-flight

    NASA Astrophysics Data System (ADS)

    Kremeyer, Kevin

    2008-05-01

    An impulse measurement device and analysis package was conceived, designed, constructed, tested, and demonstrated to be capable of: measuring nanoNewton-seconds to milliNewton-seconds of impulse due to laser-ablation; being transported as carry-on baggage; set-up and tear-down times of less than an hour; target exchange times of less than two minutes (targets can be ablated at multiple positions for thousands of shots); measurements in air and in vacuum; error of just a few percent; repeatability over a wide range of potential systematic error sources; and time between measurements, including ring-down and analysis, of less than 30 seconds. The instrument consists of a cantilever (i.e. leaf spring), whose time-dependent displacement/oscillation is measured and analyzed to determine the impulse imparted by a laser pulse to a target. These shapes are readily/commercially available, and any target material can be used, provided it can be fashioned in the form of a cantilever, or as a coating/film/tape, suitable for mounting on a cantilever of known geometry. The instrument was calibrated both statically and dynamically, and measurements were performed on brass, steel, and Aluminum, using laser pulses of ~7ns, ~500ps, and ~500fs. The results agree well with those published in the literature, with surface effects, atmosphere, and pre-/post-pulses demonstrating interesting effects and indicating areas for further study. In addition to exploring space-propulsion applications, measurements were performed to explore the strong beneficial effects of depositing lines of energy ahead of supersonic and hypersonic vehicles. This deposition creates a low-density channel, through which a vehicle can travel with dramatically reduced drag. Temperature and pressure are both also reduced on the front surfaces of the vehicle, while density and pressure are increased at the vehicle base. When applied off-center, this technique can be used to control the vehicle, employing the entire

  4. Supersonic Air-Breathing Stage For Commercial Launch Rocket

    NASA Technical Reports Server (NTRS)

    Martin, James A.

    1993-01-01

    Concept proposed to expand use of air-breathing, reusable stages to put more payload into orbit at less cost. Stage with supersonic air-breathing engines added to carry expendable stages from subsonic airplane to supersonic velocity. Carry payload to orbit. Expendable stages and payload placed in front of supersonic air-breathing stage. After releasing expendable stages, remotely piloted supersonic air-breathing stage returns to takeoff site and land for reuse. New concept extends use of low-cost reusable hardware and increases payload delivered from B-52.

  5. Air-breathing Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Quick Time movie depicts the Rocketdyne static test of an air-breathing rocket. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's advanced Transportation Program at the Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  6. Field resonance propulsion concept

    NASA Technical Reports Server (NTRS)

    Holt, A. C.

    1979-01-01

    A propulsion concept was developed based on a proposed resonance between coherent, pulsed electromagnetic wave forms, and gravitational wave forms (or space-time metrics). Using this concept a spacecraft propulsion system potentially capable of galactic and intergalactic travel without prohibitive travel times was designed. The propulsion system utilizes recent research associated with magnetic field line merging, hydromagnetic wave effects, free-electron lasers, laser generation of megagauss fields, and special structural and containment metals. The research required to determine potential, field resonance characteristics and to evaluate various aspects of the spacecraft propulsion design is described.

  7. Airframe Research and Technology for Hypersonic Airbreathing Vehicles

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Merski, N. Ronald; Glass, Christopher E.

    2002-01-01

    The Hypersonics Investment Area (HIA) within NASA's Advanced Space Transportation Program (ASTP) has the responsibility to develop hypersonic airbreathing vehicles for access to space. The Airframe Research and Technology (AR and T) Project, as one of six projects in the HIA, will push the state-of-the-art in airframe and vehicle systems for low-cost, reliable, and safe space transportation. The individual technologies within the project are focused on advanced, breakthrough technologies in airframe and vehicle systems and cross-cutting activities that are the basis for improvements in these disciplines. Both low and medium technology readiness level (TRL) activities are being pursued. The key technical areas that will be addressed by the project include analysis and design tools, integrated vehicle health management (IVHM), composite (polymer, metal, and ceramic matrix) materials development, thermal/structural wall concepts, thermal protection systems, seals, leading edges, aerothermodynamics, and airframe/propulsion flowpath technology. Each of the technical areas or sub-projects within the Airframe R and T Project is described in this paper.

  8. Thermodynamic Cycle Analysis of Magnetohydrodynamic-Bypass Hypersonic Airbreathing Engines

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Cole, J. W.; Bityurin, V. A.; Lineberry, J. T.

    2000-01-01

    The prospects for realizing a magnetohydrodynamic (MHD) bypass hypersonic airbreathing engine are examined from the standpoint of fundamental thermodynamic feasibility. The MHD-bypass engine, first proposed as part of the Russian AJAX vehicle concept, is based on the idea of redistributing energy between various stages of the propulsion system flow train. The system uses an MHD generator to extract a portion of the aerodynamic heating energy from the inlet and an MHD accelerator to reintroduce this power as kinetic energy in the exhaust stream. In this way, the combustor entrance Mach number can be limited to a specified value even as the flight Mach number increases. Thus, the fuel and air can be efficiently mixed and burned within a practical combustor length, and the flight Mach number operating envelope can be extended. In this paper, we quantitatively assess the performance potential and scientific feasibility of MHD-bypass engines using a simplified thermodynamic analysis. This cycle analysis, based on a thermally and calorically perfect gas, incorporates a coupled MHD generator-accelerator system and accounts for aerodynamic losses and thermodynamic process efficiencies in the various engin components. It is found that the flight Mach number range can be significantly extended; however, overall performance is hampered by non-isentropic losses in the MHD devices.

  9. Thermodynamic Cycle Analysis of Magnetohydrodynamic-Bypass Airbreathing Hypersonic Engines

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Bityurin, Valentine A.; Lineberry, John T.

    1999-01-01

    Established analyses of conventional ramjet/scramjet performance characteristics indicate that a considerable decrease in efficiency can be expected at off-design flight conditions. This can be explained, in large part, by the deterioration of intake mass flow and limited inlet compression at low flight speeds and by the onset of thrust degradation effects associated with increased burner entry temperature at high flight speeds. In combination, these effects tend to impose lower and upper Mach number limits for practical flight. It has been noted, however, that Magnetohydrodynamic (MHD) energy management techniques represent a possible means for extending the flight Mach number envelope of conventional engines. By transferring enthalpy between different stages of the engine cycle, it appears that the onset of thrust degradation may be delayed to higher flight speeds. Obviously, the introduction of additional process inefficiencies is inevitable with this approach, but it is believed that these losses are more than compensated through optimization of the combustion process. The fundamental idea is to use MHD energy conversion processes to extract and bypass a portion of the intake kinetic energy around the burner. We refer to this general class of propulsion system as an MHD-bypass engine. In this paper, we quantitatively assess the performance potential and scientific feasibility of MHD-bypass airbreathing hypersonic engines using ideal gasdynamics and fundamental thermodynamic principles.

  10. Ascent performance of an air-breathing horizontal-takeoff launch vehicle

    NASA Technical Reports Server (NTRS)

    Powell, Richard W.; Shaughnessy, John D.; Cruz, Christopher I.; Naftel, J. C.

    1991-01-01

    Simulations are conducted to investigate a proposed NASA launch vehicle that is fully reusable, takes off horizontally, and uses airbreathing propulsion in a single stage. The propulsion model is based on a cycle analysis method, and the vehicle is assumed to be a rigid structure with distributed fuel, operating under a range of atmospheric conditions. The program to optimize simulated trajectories (POST) is modified to include a predictor-corrector guidance capability and then used to generate the trajectories. Significant errors are encountered during the unpowered coast phase due to uncertainty in the atmospheric density profile. The amount of ascent propellant needed is shown to be directly related to the thrust-vector angle and the location of the center of gravity of the vehicle because of the importance of aim-drag losses to total ideal velocity.

  11. Affordable Flight Demonstration of the GTX Air-Breathing SSTO Vehicle Concept

    NASA Technical Reports Server (NTRS)

    Krivanek, Thomas M.; Roche, Joseph M.; Riehl, John P.; Kosareo, Daniel N.

    2003-01-01

    The rocket based combined cycle (RBCC) powered single-stage-to-orbit (SSTO) reusable launch vehicle has the potential to significantly reduce the total cost per pound for orbital payload missions. To validate overall system performance, a flight demonstration must be performed. This paper presents an overview of the first phase of a flight demonstration program for the GTX SSTO vehicle concept. Phase 1 will validate the propulsion performance of the vehicle configuration over the supersonic and hypersonic air- breathing portions of the trajectory. The focus and goal of Phase 1 is to demonstrate the integration and performance of the propulsion system flowpath with the vehicle aerodynamics over the air-breathing trajectory. This demonstrator vehicle will have dual mode ramjetkcramjets, which include the inlet, combustor, and nozzle with geometrically scaled aerodynamic surface outer mold lines (OML) defining the forebody, boundary layer diverter, wings, and tail. The primary objective of this study is to demon- strate propulsion system performance and operability including the ram to scram transition, as well as to validate vehicle aerodynamics and propulsion airframe integration. To minimize overall risk and develop ment cost the effort will incorporate proven materials, use existing turbomachinery in the propellant delivery systems, launch from an existing unmanned remote launch facility, and use basic vehicle recovery techniques to minimize control and landing requirements. A second phase would demonstrate propulsion performance across all critical portions of a space launch trajectory (lift off through transition to all-rocket) integrated with flight-like vehicle systems.

  12. Structural Sizing of a 25,000-lb Payload, Air-breathing Launch Vehicle for Single-stage-to-orbit

    NASA Technical Reports Server (NTRS)

    Roche, Joseph M.; Kosareo, Daniel N.

    2001-01-01

    In support of NASA's Air-Breathing Launch Vehicle (ABLV) study, a 25,000-lb payload version of the GTX (formerly Trailblazer) reference vehicle concept was developed. The GTX is a vertical lift-off, reusable, single-stage-to-orbit launch vehicle concept that uses hypersonic air-breathing propulsion in a rocket-based combined-cycle (RBCC) propulsion system to reduce the required propellant fraction. To achieve this goal the vehicle and propulsion system must be well integrated both aerodynamically and structurally to reduce weight. This study demonstrates the volumetric and structural efficiency of a vertical takeoff, horizontal landing, hypersonic vehicle with a circular cross section. A departure from the lifting body concepts, this design philosophy is even extended to the engines, which have semicircular nacelles symmetrically mounted on the vehicle. Material candidates with a potential for lightweight and simplicity have been selected from a set of near term technologies (five to ten years). To achieve the mission trajectory, preliminary weight estimates show the vehicle's gross lift-off weight is 1.26 x 10(exp 6) lb. The structural configuration of the GTX vehicle and its propulsion system are described. The vehicle design benefits are presented, and key technical issues are highlighted.

  13. Structural Sizing of a 25,000-lb Payload, Air-Breathing Launch Vehicle For Single-Stage-To-Orbit

    NASA Technical Reports Server (NTRS)

    Roche, Joseph M.; Kosareo, Daniel N.; Palac, Don (Technical Monitor)

    2000-01-01

    In support of NASA's Air-Breathing Launch Vehicle (ABLV) study, a 25,000-lb payload version of the GTX (formerly Trailblazer) reference vehicle concept was developed. The GTX is a vertical lift-off, reusable, single-stage-to-orbit launch vehicle concept that uses hypersonic air-breathing propulsion in a rocket-based combined-cycle (RBCC) propulsion system to reduce the required propellant fraction. To achieve this goal the vehicle and propulsion system must be well integrated both aerodynamically and structurally to reduce weight. This study demonstrates the volumetric and structural efficiency of a vertical takeoff, horizontal landing, hypersonic vehicle with a circular cross section. A departure from the lifting body concepts, this design philosophy is even extended to the engines, which have semicircular nacelles symmetrically mounted on the vehicle. Material candidates with a potential for lightweight and simplicity have been selected from a set of near term technologies (5 to 10 years). To achieve the mission trajectory, preliminary weight estimates show the vehicle's gross lift-off weight is 1.26 x 10(exp 6) lb. The structural configuration of the GTX vehicle and its propulsion system are described. The vehicle design benefits are presented, and key technical issues are highlighted.

  14. NASA electric propulsion technology

    NASA Technical Reports Server (NTRS)

    Berkopec, F. D.; Stone, J. R.; Aston, G.

    1985-01-01

    It is pointed out that the requirements for future electric propulsion cover an extremely large range of technical and programmatic characteristics. A NASA program is to provide options for the many potential mission applications, taking into account work on electrostatic, electromagnetic, and electrothermal propulsion systems. The present paper is concerned with developments regarding the three classes of electric propulsion. Studies concerning electrostatic propulsion are concerned with ion propulsion for primary propulsion for planetary and earth-orbit transfer vehicles, stationkeeping for geosynchronous spacecraft, and ion thruster systems. In connection with investigations related to electromagnetic propulsion, attention is given to electromagnetic launchers, the Hall current thruster, and magnetoplasmadynamic thrusters. In a discussion of electrothermal developments, space station resistojets are considered along with high performance resistojets, arcjets, and a laser thruster.

  15. Advanced space propulsion concepts

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.

    1993-01-01

    The NASA Lewis Research Center has been actively involved in the evaluation and development of advanced spacecraft propulsion. Recent program elements have included high energy density propellants, electrode less plasma thruster concepts, and low power laser propulsion technology. A robust advanced technology program is necessary to develop new, cost-effective methods of spacecraft propulsion, and to continue to push the boundaries of human knowledge and technology.

  16. 100 MW 1.6-μm Pr+3:LaCl3 Propulsion Laser Pumped by a Nuclear-Pumped He/Ar/Xe Laser

    NASA Astrophysics Data System (ADS)

    Boody, Frederick P.

    2003-05-01

    A 20 kHz, 100-MW average power, pulsed 1.6-μm Pr+3:LaCl3 up-conversion laser for space propulsion, pumped at high intensity by a continuous 212-MW, 2.026-μm He/Ar/Xe nuclear-pumped laser, is proposed. 1.6 μm falls within the 1.72 μm > λ > 1.53 μm atmospheric transmission window and is sufficiently distant from 1.4 μm to be relatively eye safe. The high pulse rate minimizes dribble and thus maximizes specific impulse. The nuclear-pumped laser is also a steady-state nuclear reactor. The Pr+3:LaCl3 solid-state laser combines the many small beams produced by the reactor-laser with high beam quality. It consists of an array of face-pumped thin disks at Brewster's angle, face-cooled by high-pressure turbulent helium. The inhomogeneities introduced by the disk array are corrected by using a double pass geometry with a phase-conjugate mirror, as suggested by Magda. The fraction of the pump energy extracted from the Pr+3:LaCl3 laser is 47% at a pump intensity of 2×105 W/cm2. The He/Ar/Xe laser is 0.4% efficient, giving an overall efficiency of 0.2%, equivalent to ~0.8% if electrically pumped.

  17. Numerical Simulation of Plasma Behavior in a Magnetic Nozzle of a Laser-plasma Driven Nuclear Electric Propulsion System

    NASA Astrophysics Data System (ADS)

    Kajimura, Y.; Matsuda, N.; Hayashida, K.; Maeno, A.; Nakashima, H.

    2008-12-01

    Numerical simulations of plasma behavior in a magnetic nozzle of a Laser-Plasma Driven Nuclear Electric Propulsion System are conducted. The propellant is heated and accelerated by the laser and expanded isotropically. The magnetic nozzle is a combination of solenoidal coils and used to collimate and guide the plasma to produce thrust. Simulation calculations by a three-dimensional hybrid code are conducted to examine the plasma behaviors in the nozzle and to estimate the thrust efficiency. We also estimate a fraction (α) of plasma particles leaking in the forward (spacecraft) direction. By a combination of a few coils, we could decrease α value without degrading the thrust efficiency. Finally, the shaped propellant is proposed to increase the thrust efficiency.

  18. Numerical Simulation of Plasma Behavior in a Magnetic Nozzle of a Laser-plasma Driven Nuclear Electric Propulsion System

    SciTech Connect

    Kajimura, Y.; Matsuda, N.; Hayashida, K.; Maeno, A.; Nakashima, H.

    2008-12-31

    Numerical simulations of plasma behavior in a magnetic nozzle of a Laser-Plasma Driven Nuclear Electric Propulsion System are conducted. The propellant is heated and accelerated by the laser and expanded isotropically. The magnetic nozzle is a combination of solenoidal coils and used to collimate and guide the plasma to produce thrust. Simulation calculations by a three-dimensional hybrid code are conducted to examine the plasma behaviors in the nozzle and to estimate the thrust efficiency. We also estimate a fraction ({alpha}) of plasma particles leaking in the forward (spacecraft) direction. By a combination of a few coils, we could decrease {alpha} value without degrading the thrust efficiency. Finally, the shaped propellant is proposed to increase the thrust efficiency.

  19. Air-Breathing Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This photograph depicts an air-breathing rocket engine that completed an hour or 3,600 seconds of testing at the General Applied Sciences Laboratory in Ronkonkoma, New York. Referred to as ARGO by its design team, the engine is named after the mythological Greek ship that bore Jason and the Argonauts on their epic voyage of discovery. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced SpaceTransportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  20. Hypersonic airbreathing vehicle visions and enhancing technologies

    SciTech Connect

    Hunt, J.L.; Lockwood, M.K.; Petley, D.H.; Pegg, R.J.

    1997-01-01

    This paper addresses the visions for hypersonic airbreathing vehicles and the advanced technologies that forge and enhance the designs. The matrix includes space access vehicles (single-stage-to-orbit (SSTO), two-stage-to-orbit (2STO) and three-stage-to-orbit (3STO)) and endoatmospheric vehicles (airplanes{emdash}missiles are omitted). The characteristics, the performance potential, the technologies and the synergies will be discussed. A common design constraint is that all vehicles (space access and endoatmospheric) have enclosed payload bays. {copyright} {ital 1997 American Institute of Physics.}

  1. Numerical Propulsion System Simulation

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia

    2006-01-01

    The NASA Glenn Research Center, in partnership with the aerospace industry, other government agencies, and academia, is leading the effort to develop an advanced multidisciplinary analysis environment for aerospace propulsion systems called the Numerical Propulsion System Simulation (NPSS). NPSS is a framework for performing analysis of complex systems. The initial development of NPSS focused on the analysis and design of airbreathing aircraft engines, but the resulting NPSS framework may be applied to any system, for example: aerospace, rockets, hypersonics, power and propulsion, fuel cells, ground based power, and even human system modeling. NPSS provides increased flexibility for the user, which reduces the total development time and cost. It is currently being extended to support the NASA Aeronautics Research Mission Directorate Fundamental Aeronautics Program and the Advanced Virtual Engine Test Cell (AVETeC). NPSS focuses on the integration of multiple disciplines such as aerodynamics, structure, and heat transfer with numerical zooming on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS development includes capabilities to facilitate collaborative engineering. The NPSS will provide improved tools to develop custom components and to use capability for zooming to higher fidelity codes, coupling to multidiscipline codes, transmitting secure data, and distributing simulations across different platforms. These powerful capabilities extend NPSS from a zero-dimensional simulation tool to a multi-fidelity, multidiscipline system-level simulation tool for the full development life cycle.

  2. Space and transatmospheric propulsion technology

    NASA Technical Reports Server (NTRS)

    Merkle, Charles; Stangeland, Maynard L.; Brown, James R.; Mccarty, John P.; Povinelli, Louis A.; Northam, G. Burton; Zukoski, Edward E.

    1994-01-01

    This report focuses primarily on Japan's programs in liquid rocket propulsion and propulsion for spaceplane and related transatmospheric areas. It refers briefly to Japan's solid rocket programs and to new supersonic air-breathing propulsion efforts. The panel observed that the Japanese had a carefully thought-out plan, a broad-based program, and an ambitious but achievable schedule for propulsion activity. Japan's overall propulsion program is behind that of the United States at the time of this study, but the Japanese are gaining rapidly. The Japanese are at the forefront in such key areas as advanced materials, enjoying a high level of project continuity and funding. Japan's space program has been evolutionary in nature, while the U.S. program has emphasized revolutionary advances. Projects have typically been smaller in Japan than in the United States, focusing on incremental advances in technology, with an excellent record of applying proven technology to new projects. This evolutionary approach, coupled with an ability to take technology off the shelf from other countries, has resulted in relatively low development costs, rapid progress, and enhanced reliability. Clearly Japan is positioned to be a world leader in space and transatmospheric propulsion technology by the year 2000.

  3. Review of laser-solid interaction and its possibilities for space propulsion

    NASA Technical Reports Server (NTRS)

    Harstad, K. G.

    1972-01-01

    Literature on laser-solid interaction is surveyed and the important regimes of this process are delineated. This information is used to discuss the possibility of a laser induced ablation thruster. It is concluded that such a thruster may be feasible if a sufficiently high intensity, high frequency laser beam is available and that further study of interaction is needed.

  4. Air-breathing hypersonic vehicle guidance and control studies: An integrated trajectory/control analysis methodology, phase 2

    NASA Technical Reports Server (NTRS)

    Hattis, Philip D.; Malchow, Harvey L.

    1992-01-01

    An integrated trajectory/control analysis algorithm has been used to generate trajectories and desired control strategies for two different hypersonic air-breathing vehicle models and orbit targets. Both models used cubic spline curve fit tabulated winged-cone accelerator vehicle representations. Near-fuel-optimal, horizontal takeoff trajectories, imposing a dynamic pressure limit of 1000 psf, were developed. The first model analysis case involved a polar orbit and included the dynamic effects of using elevons to maintain longitudinal trim. Analysis results indicated problems with the adequacy of the propulsion model and highlighted dynamic pressure/altitude instabilities when using vehicle angle of attack as a control variable. Also, the magnitude of computed elevon deflections to maintain trim suggested a need for alternative pitch moment management strategies. The second analysis case was reformulated to use vehicle pitch attitude relative to the local vertical as the control variable. A new, more realistic, air-breathing propulsion model was incorporated. Pitch trim calculations were dropped and an equatorial orbit was specified. Changes in flight characteristics due to the new propulsion model have been identified. Flight regimes demanding rapid attitude changes have been noted. Also, some issues that would affect design of closed-loop controllers were ascertained.

  5. High-speed flight propulsion systems. Progress in Astronautics and Aeronautics. Vol. 137

    SciTech Connect

    Murthy, S.N.B.; Curran, E.T. USAF, Wright Laboratory, Wright-Patterson AFB, OH )

    1991-01-01

    Various papers on high-speed flight propulsion systems are presented. The topics addressed are: propulsion systems from takeoff to high-speed flight, propulsion system performance and integration for high Mach air-breathing flight, energy analysis of high-speed flight systems, waves and thermodynamics in high Mach number propulsive ducts, turbulent free shear layer mixing and combustion, turbulent mixing in supersonic combustion systems, mixing and mixing enhancement in supersonic reacting flowfields, study of combustion and heat-exchange processes in high-enthalpy short-duration facilities, and facility requirements for hypersonic propulsion system testing.

  6. A Pulsed Laser-Electromagnetic Hybrid Accelerator For Space Propulsion Application

    SciTech Connect

    Shinohara, Tadaki; Horisawa, Hideyuki; Baba, Msahumi; Tei, Kazuyoku

    2010-05-06

    A fundamental study of a newly developed rectangular pulsed laser-electromagnetic hybrid thruster was conducted, in which laser-ablation plasma was induced through laser beam irradiation onto a solid target and accelerated by electrical means instead of direct acceleration only by using a laser beam. The performance of the thruster was evaluated by measuring the mass per shot and impulse bit. As results, significantly high specific impulse ranging from 5,000 approx6,000 sec were obtained at energies of 0.1 and 8.6 J, respectively. In addition, the typical thrust efficiency varied from 17% to 19% depending on the charge energy.

  7. High-Isp Mode Of Pulsed Laser-Electromagnetic Hybrid Accelerator For Space Propulsion Applications

    SciTech Connect

    Horisawa, Hideyuki; Kishida, Yoshiaki; Funaki, Ikkoh

    2010-10-08

    A fundamental study of a newly developed rectangular pulsed laser-electromagnetic hybrid thruster was conducted. Laser-ablation plasma in the thruster was induced through laser beam irradiation onto a solid target and accelerated by electrical means instead of direct acceleration only by using a laser beam. The performance of the thrusters was evaluated by measuring the mass shot and impulse bit. As results, significantly high specific impulses up to 7,200 sec were obtained at the charge energies of 8.6 J. In addition, typical thrust efficiency varied between 11.8% and 21.3% depending on the charge energy.

  8. Numerical Modeling of Laser Supported Propulsion with an Aluminum Surface Breakdown Model

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Sen; Liu, Jiwen; Wang, Ten-See

    2003-05-01

    In this paper, a multidimensional unstructured-grid computational plasma aerodynamics methodology is developed for pulsed wave devices, with emphases on nonequilibrium effects and laser-induced physics. The present numerical model couples the Navier-Stokes equations, three-temperature energy equations, finite-rate chemistry model and ray-tracing model with radiative energy absorption using realistic absorption coefficient formulation. With the model, the focused laser beam creates high energy concentration at focal point on aluminum surface and causes the ionization of aluminum, which starts the air plasma. Laser lightcraft designs of Myrabo, using pulsed laser as the energy source, are selected for numerical simulation and data comparisons.

  9. Airbreathing Hypersonic Technology Vision Vehicles and Development Dreams

    NASA Technical Reports Server (NTRS)

    McClinton, C. R.; Hunt, J. L.; Ricketts, R. H.; Reukauf, P.; Peddie, C. L.

    1999-01-01

    Significant advancements in hypersonic airbreathing vehicle technology have been made in the country's research centers and industry over the past 40 years. Some of that technology is being validated with the X-43 flight tests. This paper presents an overview of hypersonic airbreathing technology status within the US, and a hypersonic technology development plan. This plan builds on the nation's large investment in hypersonics. This affordable, incremental plan focuses technology development on hypersonic systems, which could be operating by the 2020's.

  10. Thrust Generating Mechanism of Nozzle Powered by Single Laser Pulse

    NASA Astrophysics Data System (ADS)

    Li, Qian; Hong, Yanji; She, Jinhu; Cao, Zhengrui; Wang, Junhua

    2006-05-01

    Using Sedov's strong explosion theory, the process of gas dynamics after air is broken down under the irradiation of single laser pulse is analyzed, and the analytic formulas of the fluid field parameters of the gas disturbed by shock wave inside the nozzle are educed. The theoretical values are validated by numerical simulation, and the thrust generating mechanism is disclosed. The result indicates that the thrust generated by the interaction of laser induced shock wave and nozzle is equal to the one generated by the reactive jet on nozzle exit during a period, but the trends of the thrust-time evolvement are different, which provides some available information for further study of the mechanism of air-breathing laser propulsion.

  11. Experiment of Flow Control Using Laser Energy Deposition Around High Speed Propulsion System

    NASA Astrophysics Data System (ADS)

    Lee, HyoungJin; Jeung, InSeuck; Lee, SangHun; Kim, Seihwan

    2011-11-01

    An experimental investigation was conducted to examine the effect of a pulsed Nd:YAG laser energy deposition on the shock structures in supersonic/hypersonic flow and quiescent air. The effect of the laser energy and pressure in the blast wave generation were also investigated. As a result, the strength of plasma and blast wave becomes stronger as pressure or laser energy increase. And the breakdown threshold of air by laser energy deposition is 0.015 bar at 508 mJ laser energy, the blast wave threshold generation in air by laser energy deposition is 0.100 bar at same laser energy. As qualitative analysis, schlieren images are also obtained. After the series of experiments, the effect of laser energy deposition (LED) on high speed flow around the shock—shock interaction created by a wedge and blunt body. By LED, the structure of shock—shock interaction was collapsed momentary and the pressure of the stagnation point was fluctuated while interference of wave.

  12. Hypersonic airbreathing vehicle conceptual design (focus on aero-space plane)

    NASA Technical Reports Server (NTRS)

    Hunt, James L.; Martin, John G.

    1989-01-01

    The airbreathing single stage to orbit (SSTO) vehicle design environment is variable-rich, intricately networked and sensitivity intensive. As such, it represents a tremondous technology challenge. Creating a viable design will require sophisticated configuration/synthesis and the synergistic integration of advanced technologies across the discipline spectrum. In design exercises, reductions in the fuel weight-fraction requirements projected for an orbital vehicle concept can result from improvements in aerodynamics/controls, propulsion efficiencies and trajectory optimization; also, gains in the fuel weight-fraction achievable for such a concept can result from improvements in structural design, heat management techniques, and material properties. As these technology advances take place, closure on a viable vehicle design will be realizable.

  13. Geometry Modeling and Adaptive Control of Air-Breathing Hypersonic Vehicles

    NASA Astrophysics Data System (ADS)

    Vick, Tyler Joseph

    Air-breathing hypersonic vehicles have the potential to provide global reach and affordable access to space. Recent technological advancements have made scramjet-powered flight achievable, as evidenced by the successes of the X-43A and X-51A flight test programs over the last decade. Air-breathing hypersonic vehicles present unique modeling and control challenges in large part due to the fact that scramjet propulsion systems are highly integrated into the airframe, resulting in strongly coupled and often unstable dynamics. Additionally, the extreme flight conditions and inability to test fully integrated vehicle systems larger than X-51 before flight leads to inherent uncertainty in hypersonic flight. This thesis presents a means to design vehicle geometries, simulate vehicle dynamics, and develop and analyze control systems for hypersonic vehicles. First, a software tool for generating three-dimensional watertight vehicle surface meshes from simple design parameters is developed. These surface meshes are compatible with existing vehicle analysis tools, with which databases of aerodynamic and propulsive forces and moments can be constructed. A six-degree-of-freedom nonlinear dynamics simulation model which incorporates this data is presented. Inner-loop longitudinal and lateral control systems are designed and analyzed utilizing the simulation model. The first is an output feedback proportional-integral linear controller designed using linear quadratic regulator techniques. The second is a model reference adaptive controller (MRAC) which augments this baseline linear controller with an adaptive element. The performance and robustness of each controller are analyzed through simulated time responses to angle-of-attack and bank angle commands, while various uncertainties are introduced. The MRAC architecture enables the controller to adapt in a nonlinear fashion to deviations from the desired response, allowing for improved tracking performance, stability, and

  14. Low-Power Laser-Metal Interaction for Space Propulsion Applications

    SciTech Connect

    Horisawa, Hideyuki; Sumida, Sota; Funaki, Ikkoh

    2010-10-08

    The micro-Newton thrust generation was observed through low-power continuous-wave laser and aluminum foil interaction without any remarkable ablation of the target surface. To evaluate the thrust characteristics, a torsion-balance thrust stand capable for the measurement of the thrust level down to micro-Newton ranges was developed. In the case of an aluminum foil target with 12.5 micrometer thickness, the maximum thrust level was 15 micro-Newtons when the laser power was 20 W. It was also found that the laser intensity, or laser power per unit area, irradiated on the target was significantly important on the control of the thrust even under the low-intensity level.

  15. An experimental study of laser-supported plasmas for laser propulsion: Center director's discretionary fund project DFP-82-33

    NASA Technical Reports Server (NTRS)

    Eskridge, R. H.; Mccay, T. D.; Vanzandt, D. M.

    1987-01-01

    The rudiments of a rocket thruster, which receives its enthalpy from an energy source which is remotely beamed from a laser, is described. An experimental study, now partially complete, is discussed which will eventually provide a detailed understanding of the physics for assessing the feasibility of using hydrogen plasmas for accepting and converting this energy to enthalpy. A plasma ignition scheme which uses a pulsed CO2 laser was develped and the properites of the ignition spark documented, including breakdown intensities in hydrogen. A complete diagnostic system capable of determining plasma temperature and the plasma absorptivitiy for subsequent steady-state absorption of a high power CO2 laser beam are developed and demonstrative use is discussed for the preliminary case study, a two atmosphere laser supported argon plasma.

  16. 2-D Airbreathing Lightcraft Engine Experiments in Quiescent Conditions

    NASA Astrophysics Data System (ADS)

    Salvador, Israel I.; Myrabo, Leik N.; Minucci, Marco A. S.; de Oliveira, Antonio C.; Toro, Paulo G. P.; Chanes, José B.; Rego, Israel S.

    2011-11-01

    Ground-breaking laser propulsion (LP) experiments were performed under quiescent conditions with a 25 cm wide, two-dimensional Lightcraft model using a Lumonics TEA-622 CO2 laser emitting ˜ 1 μs pulses. In preparation for subsequent hypersonic experiments, this static test campaign was conducted at ambient pressures of 0.06, 0.15, 0.30 and 1 bar with laser pulse energies of 150 to 230 J. Time-variant pressure distributions, generated over engine "absorption chamber" walls, were integrated to obtain total impulse and momentum coupling coefficients (Cm) representative of a single propulsion cycle. Schlieren visualization of laser-induced air breakdown and expanding blast waves was also accomplished. Surprisingly, the Cm results of 600-3000 Ns/MJ were 2.5x to 5x greater than previous results from smaller Lightcraft models; this suggests that higher static Cm performance can likely be achieved in larger scale LP engines. This research collaboration, forged between the USAF and Brazilian Air Force, was carried out at the Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics in Brazil.

  17. NASA's Launch Propulsion Systems Technology Roadmap

    NASA Technical Reports Server (NTRS)

    McConnaughey, Paul K.; Femminineo, Mark G.; Koelfgen, Syri J.; Lepsch, Roger A; Ryan, Richard M.; Taylor, Steven A.

    2012-01-01

    Safe, reliable, and affordable access to low-Earth (LEO) orbit is necessary for all of the United States (US) space endeavors. In 2010, NASA s Office of the Chief Technologist commissioned 14 teams to develop technology roadmaps that could be used to guide the Agency s and US technology investment decisions for the next few decades. The Launch Propulsion Systems Technology Area (LPSTA) team was tasked to address the propulsion technology challenges for access to LEO. The developed LPSTA roadmap addresses technologies that enhance existing solid or liquid propulsion technologies and their related ancillary systems or significantly advance the technology readiness level (TRL) of less mature systems like airbreathing, unconventional, and other launch technologies. In developing this roadmap, the LPSTA team consulted previous NASA, military, and industry studies as well as subject matter experts to develop their assessment of this field, which has fundamental technological and strategic impacts for US space capabilities.

  18. Hybrid nuclear light bulb-nuclear-pumped laser propulsion for advanced missions

    NASA Astrophysics Data System (ADS)

    Miley, G. H.

    1999-01-01

    A hybrid ``nuclear light bulb'' gaseous core reactor that can radiantly transfer energy to a propellant or alternately activate laser action is proposed for advanced space missions. The propellant mode would be employed in the phases of the mission requiring a higher thrust. However, for the bulk of the travel, the propellant would be turned off and the ultrahigh specific impulse laser mode of operation would be employed. The concept is reviewed, research and development issues are identified, and steps necessary for a feasibility demonstration are discussed.

  19. JANNAF 35th Combustion Subcommittee and 17th Propulsion Systems Hazards Subcommittee Meeting: Joint Sessions

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor); Rognan, Melanie (Editor)

    1998-01-01

    This publication is a compilation of 15 unclassified/unlimited technical papers presented at the 1998 meeting of the Joint Army-Navy-NASA-Air Force (JANNAF) Combustion Subcommittee (CS) and Propulsion Systems Hazards Subcommittee (PSHS) held jointly with the Airbreathing Propulsion Subcommittee (APS). The meeting was held on 7 - 11 December 1 998 at Raytheon Systems Company and the Marriott Hotel, Tucson, AZ. Topics covered include advanced ingredients and reaction kinetics in solid propellants and experimental diagnostic techniques.

  20. Evaluation of the propulsion control system of a planetary rover and design of a mast for an elevation scanning laser/multi-detector system

    NASA Technical Reports Server (NTRS)

    Knaub, D.; Yerazunis, S. W.

    1978-01-01

    Vertical wheel loads, wheel speeds, and torque relationships are considered in the design of a propulsion system capable of responding to steering, slope climbing, and irregular local terrains. The system developed is applied to the RPI Mars roving vehicle. The mechanical system required to implement the elevation laser scanning/multidetector principle was the design and construction of a mechanical system for implementing the elevation scanning/multidetector principle is also discussed.

  1. Rocket Based Combined Cycle (RBCC) Propulsion Workshop, volume 2

    NASA Technical Reports Server (NTRS)

    Chojnacki, Kent T.

    1992-01-01

    The goal of the Rocket Based Combined Cycle (RBCC) Propulsion Technology Workshop, was to impart technology information to the propulsion community with respect to hypersonic combined cycle propulsion capabilities. The major recommendation resulting from this technology workshop was as follows: conduct a systems-level applications study to define the desired propulsion system and vehicle technology requirements for LEO launch vehicles. All SSTO and TSTO options using the various propulsion systems (airbreathing combined cycle, rocket-based combined cycle, and all rocket) must be considered. Such a study should be accomplished as soon as possible. It must be conducted with a consistent set of ground rules and assumptions. Additionally, the study should be conducted before any major expenditures on a RBCC technology development program occur.

  2. Characterization of energetic and non-energetic polymers for laser ablation propulsion applications

    NASA Astrophysics Data System (ADS)

    Paturi, Prem Kiran; Chelikani, Leela; Billa, Narasimha Rao; Guthikonda, Nagaraju; Jana, Tushar; Acrhem Team; School Of Chemistry Team

    2015-06-01

    Energetic Polymers, considered to be cleaner, environmental friendly materials are one of the primary candidates for future plasma thrusters. For e.g., energetic hydroxyl terminated polybutadiene (HTPB) is being used as a binder for high-performance composite propellants. Understanding the conversion of optical energy to kinetic energy is essential in evaluating these materials as thrusters. Spatio-temporal evolution of laser ablative (LA) and blow-off (BO) shock waves (SW) during laser excitation provide a valuable insight into the energy release of the polymers. LASW and LBOSW during 7 ns laser pulse (532 nm, 10Hz) interaction with ~ 200 micron thick HTPB and its variants with energetic additives taken in the form of a sheet were studied simultaneously using defocused shadowgraphic imaging over 0.2 - 30 μs time scales. The results were compared with non-energetic polyvinyl chloride (PVC) under same experimental conditions. The SW was observed to propagate faster through the HTPB variant compared to HTPB. Appearance of LBOSW at different time scales for the polymers revealed the shock propagation characteristics through the polymers. The work is supported by Defence Research and Developement Organization, India through Grants-in-Aid Program.

  3. Ground-to-space optical power transfer. [using laser propulsion for orbit transfer

    NASA Technical Reports Server (NTRS)

    Mevers, G. E.; Hayes, C. L.; Soohoo, J. F.; Stubbs, R. M.

    1978-01-01

    Using laser radiation as the energy input to a rocket, it is possible to consider the transfer of large payloads economically between low initial orbits and higher energy orbits. In this paper we will discuss the results of an investigation to use a ground-based High Energy Laser (HEL) coupled to an adaptive antenna to transmit multi-megawatts of power to a satellite in low-earth orbit. Our investigation included diffraction effects, atmospheric transmission efficiency, adaptive compensation for atmospheric turbulence effects, including the servo bandwidth requirements for this correction, and the adaptive compensation for thermal blooming. For these evaluations we developed vertical profile models of atmospheric absorption, strength of optical turbulence (CN2), wind, temperature, and other parameters necessary to calculate system performance. Our atmospheric investigations were performed for CO2, 12C18O2 isotope, CO and DF wavelengths. For all of these considerations, output antenna locations of both sea level and mountain top (3.5 km above sea level) were used. Several adaptive system concepts were evaluated with a multiple source phased array concept being selected. This system uses an adaption technique of phase locking independent laser oscillators. When both system losses and atmospheric effects were assessed, the results predicted an overall power transfer efficiency of slightly greater than 50%.

  4. Laser doppler velocimeter system for subsonic jet mixer nozzle testing at the NASA Lewis Aeroacoustic Propulsion Lab

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.; Bridges, James E.; Saiyed, Naseem H.; Krupar, Martin J.

    1995-01-01

    A laser Doppler velocimeter (LDV) system developed for the Aeroacoustic Propulsion Laboratory (APL) at the NASA Lewis Research Center is described. This system was developed to acquire detailed flow field data which could be used to quantify the effectiveness of internal exhaust gas mixers (IEGM's) and to verify and calibrate computational codes. The LDV was used as an orthogonal, three component system to measure the flow field downstream of the exit of a series of IEGM's and a reference axisymmetric splitter configuration. The LDV system was also used as a one component system to measure the internal axial flow within the nozzle tailpipe downstream of the mixers. These IEGM's were designed for low-bypass ratio turbofan engines. The data were obtained at a simulated low flight speed, high-power operating condition. The optical, seeding, and data acquisition systems of the LDV are described in detail. Sample flow field measurements are provided to illustrate the capabilities of the system at the time of this test, which represented the first use of LDV at the APL. A discussion of planned improvements to the LDV is also included.

  5. High Temperature Nanocomposites For Nuclear Thermal Propulsion and In-Space Fabrication by Hyperbaric Pressure Laser Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Maxwell, J. L.; Webb, N. D.; Espinoza, M.; Cook, S.; Houts, M.; Kim, T.

    Nuclear Thermal Propulsion (NTP) is an indispensable technology for the manned exploration of the solar system. By using Hyperbaric Pressure Laser Chemical Vapor Deposition (HP-LCVD), the authors propose to design and build a promising next-generation fuel element composed of uranium carbide UC embedded in a latticed matrix of highly refractory Ta4HfC5 for an NTP rocket capable of sustaining temperatures up to 4000 K, enabling an Isp of up to 1250 s. Furthermore, HP-LCVD technology can also be harnessed to enable 3D rapid prototyping of a variety of materials including metals, ceramics and composites, opening up the possibility of in-space fabrication of components, replacement parts, difficult-to-launch solar sails and panels and a variety of other space structures. Additionally, rapid prototyping with HP-LCVD makes a feasible "live off the land" strategy of interplanetary and interstellar exploration ­ the precursors commonly used in the technology are found, often in abundance, on other solar system bodies either as readily harvestable gas (e.g. methane) or as a raw material that could be converted into a suitable precursor (e.g. iron oxide into ferrocene on Mars).

  6. Aerothermodynamics of gas turbine and rocket propulsion

    NASA Astrophysics Data System (ADS)

    Oates, G. C.

    The present book is intended to serve as a text for both graduate and under-graduate courses in aerospace propulsion. After introducing fundamental concepts of thermodynamics and quasi-one-dimensional flows, these are applied to rocket nozzle behavior prediction. Airbreathing engines are considered within the framework of ideal cycle analysis at first, and then real engine effects are introduced through definition of component measures. Selected examples of nonideal cycles are considered in detail, design concepts are extended to off-design estimation, and the restrictive effects of fixed geometry engines are revealed. Attention is also given to the elementary aerodynamics of turbomachinery.

  7. Laser-boosted lightcraft technology demonstrator

    NASA Technical Reports Server (NTRS)

    Antonison, M.; Myrabo, Leik; Chen, S.; Decusatis, C.; Kusche, K.; Minucci, M.; Moder, J.; Morales, C.; Nelson, C.; Richard, J.

    1989-01-01

    The ultimate goal for this NASA/USRA-sponsored 'Apollo Lightcraft Project' is to develop a revolutionary manned launch vehicle technology that can potentially reduce payload transport costs by a factor of 1000 below the space shuttle orbiter. The Rensellaer design team proposes to utilize advanced, highly energetic, beamed-energy sources (laser, microwave) and innovative combined-cycle (airbreathing/rocket) engines to accomplish this goal. This year's effort, the detailed description and performance analysis of an unmanned 1.4-m Lightcraft Technology Demonstrator (LTD) drone, is presented. The novel launch system employs a 100-MW-class ground-based laser to transmit power directly to an advanced combined-cycle engine that propels the 120-kg LTD to orbit, with a mass ratio of two. The single-stage-to-orbit (SSTO) LTD machine then becomes an autonomous sensor satellite that can deliver precise, high-quality information typical of today's large orbital platforms. The dominant motivation behind this study is to provide an example of how laser propulsion and its low launch costs can induce a comparable order-of-magnitude reduction in sensor satellite packaging costs. The issue is simply one of production technology for future, survivable SSTO aerospace vehicles that intimately share both laser propulsion engine and satellite functional hardware. A mass production cost goal of 10(exp 3)/kg for the LTD vehicle is probably realizable.

  8. Exotic power and propulsion concepts

    NASA Technical Reports Server (NTRS)

    Forward, Robert L.

    1990-01-01

    The status of some exotic physical phenomena and unconventional spacecraft concepts that might produce breakthroughs in power and propulsion in the 21st Century are reviewed. The subjects covered include: electric, nuclear fission, nuclear fusion, antimatter, high energy density materials, metallic hydrogen, laser thermal, solar thermal, solar sail, magnetic sail, and tether propulsion.

  9. Computational analysis of hypersonic airbreathing aircraft flow fields

    NASA Technical Reports Server (NTRS)

    Dwoyer, Douglas L.; Kumar, Ajay

    1987-01-01

    The general problem of calculating the flow fields associated with hypersonic airbreathing aircraft is presented. Unique aspects of hypersonic aircraft aerodynamics are introduced and their demands on computational fluid dynamics are outlined. Example calculations associated with inlet/forebody integration and hypersonic nozzle design are presented to illustrate the nature of the problems considered.

  10. A Comparison of Propulsion Concepts for SSTO Reusable Launchers

    NASA Astrophysics Data System (ADS)

    Varvill, R.; Bond, A.

    This paper discusses the relevant selection criteria for a single stage to orbit (SSTO) propulsion system and then reviews the characteristics of the typical engine types proposed for this role against these criteria. The engine types considered include Hydrogen/Oxygen (H2/O2) rockets, Scramjets, Turbojets, Turborockets and Liquid Air Cycle Engines. In the authors opinion none of the above engines are able to meet all the necessary criteria for an SSTO propulsion system simultaneously. However by selecting appropriate features from each it is possible to synthesise a new class of engines which are specifically optimised for the SSTO role. The resulting engines employ precooling of the airstream and a high internal pressure ratio to enable a relatively conventional high pressure rocket combustion chamber to be utilised in both airbreathing and rocket modes. This results in a significant mass saving with installation advantages which by careful design of the cycle thermodynamics enables the full potential of airbreathing to be realised. The SABRE engine which powers the SKYLON launch vehicle is an example of one of these so called `Precooled hybrid airbreathing rocket engines' and the concep- tual reasoning which leads to its main design parameters are described in the paper.

  11. Advanced Space Propulsion

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1996-01-01

    This presentation describes a number of advanced space propulsion technologies with the potential for meeting the need for dramatic reductions in the cost of access to space, and the need for new propulsion capabilities to enable bold new space exploration (and, ultimately, space exploitation) missions of the 21st century. For example, current Earth-to-orbit (e.g., low Earth orbit, LEO) launch costs are extremely high (ca. $10,000/kg); a factor 25 reduction (to ca. $400/kg) will be needed to produce the dramatic increases in space activities in both the civilian and government sectors identified in the Commercial Space Transportation Study (CSTS). Similarly, in the area of space exploration, all of the relatively 'easy' missions (e.g., robotic flybys, inner solar system orbiters and landers; and piloted short-duration Lunar missions) have been done. Ambitious missions of the next century (e.g., robotic outer-planet orbiters/probes, landers, rovers, sample returns; and piloted long-duration Lunar and Mars missions) will require major improvements in propulsion capability. In some cases, advanced propulsion can enable a mission by making it faster or more affordable, and in some cases, by directly enabling the mission (e.g., interstellar missions). As a general rule, advanced propulsion systems are attractive because of their low operating costs (e.g., higher specific impulse, ISD) and typically show the most benefit for relatively 'big' missions (i.e., missions with large payloads or AV, or a large overall mission model). In part, this is due to the intrinsic size of the advanced systems as compared to state-of-the-art (SOTA) chemical propulsion systems. Also, advanced systems often have a large 'infrastructure' cost, either in the form of initial R&D costs or in facilities hardware costs (e.g., laser or microwave transmission ground stations for beamed energy propulsion). These costs must then be amortized over a large mission to be cost-competitive with a SOTA

  12. Electric propulsion: Experimental research

    NASA Technical Reports Server (NTRS)

    Ruyten, W. M.; Friedly, V. J.; Keefer, D.

    1992-01-01

    This paper describes experimental electric propulsion research which was carried out at the University of Tennessee Space Institute with support from the Center for Space Transportation and Applied Research. Specifically, a multiplexed laser induced fluorescence (LIF) technique for obtaining vector velocities, Doppler temperatures, and relative number densities in the exhaust plumes from electric propulsion devices is described, and results are presented that were obtained on a low power argon arcjet. Also, preliminary Langmuir probe measurements on an ion source are described, and an update on the vacuum facility is presented.

  13. Transcriptomic Analysis of Compromise Between Air-Breathing and Nutrient Uptake of Posterior Intestine in Loach (Misgurnus anguillicaudatus), an Air-Breathing Fish.

    PubMed

    Huang, Songqian; Cao, Xiaojuan; Tian, Xianchang

    2016-08-01

    Dojo loach (Misgurnus anguillicaudatus) is an air-breathing fish species by using its posterior intestine to breathe on water surface. So far, the molecular mechanism about accessory air-breathing in fish is seldom addressed. Five cDNA libraries were constructed here for loach posterior intestines form T01 (the initial stage group), T02 (mid-stage of normal group), T03 (end stage of normal group), T04 (mid-stage of air-breathing inhibited group), and T05 (the end stage of air-breathing inhibited group) and subjected to perform RNA-seq to compare their transcriptomic profilings. A total of 92,962 unigenes were assembled, while 37,905 (40.77 %) unigenes were successfully annotated. 2298, 1091, and 3275 differentially expressed genes (fn1, ACE, EGFR, Pxdn, SDF, HIF, VEGF, SLC2A1, SLC5A8 etc.) were observed in T04/T02, T05/T03, and T05/T04, respectively. Expression levels of many genes associated with air-breathing and nutrient uptake varied significantly between normal and intestinal air-breathing inhibited group. Intraepithelial capillaries in posterior intestines of loaches from T05 were broken, while red blood cells were enriched at the surface of intestinal epithelial lining with 241 ± 39 cells per millimeter. There were periodic acid-schiff (PAS)-positive epithelial mucous cells in posterior intestines from both normal and air-breathing inhibited groups. Results obtained here suggested an overlap of air-breathing and nutrient uptake function of posterior intestine in loach. Intestinal air-breathing inhibition in loach would influence the posterior intestine's nutrient uptake ability and endothelial capillary structure stability. This study will contribute to our understanding on the molecular regulatory mechanisms of intestinal air-breathing in loach. PMID:27457889

  14. Airbreathing Hypersonic Systems Focus at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Hunt, James L.; Rausch, Vincent L.

    1998-01-01

    This paper presents the status of the airbreathing hypersonic airplane and space-access vehicle design matrix, reflects on the synergies and issues, and indicates the thrust of the effort to resolve the design matrix and to focus/advance systems technology maturation. Priority is given to the design of the vision operational vehicles followed by flow-down requirements to flight demonstrator vehicles and their design for eventual consideration in the Future-X Program.

  15. Biannular Airbreathing Nozzle Rig (BANR) facility checkout and plug nozzle performance test data

    NASA Astrophysics Data System (ADS)

    Cummings, Chase B.

    2010-09-01

    The motivation for development of a supersonic business jet (SSBJ) platform lies in its ability to create a paradigm shift in the speed and reach of commercial, private, and government travel. A full understanding of the performance capabilities of exhaust nozzle configurations intended for use in potential SSBJ propulsion systems is critical to the design of an aircraft of this type. Purdue University's newly operational Biannular Airbreathing Nozzle Rig (BANR) is a highly capable facility devoted to the testing of subscale nozzles of this type. The high accuracy, six-axis force measurement system and complementary mass flowrate measurement capabilities of the BANR facility make it rather ideally suited for exhaust nozzle performance appraisal. Detailed accounts pertaining to methods utilized in the proper checkout of these diagnostic capabilities are contained herein. Efforts to quantify uncertainties associated with critical BANR test measurements are recounted, as well. Results of a second hot-fire test campaign of a subscale Gulfstream Aerospace Corporation (GAC) axisymmetric, shrouded plug nozzle are presented. Determined test article performance parameters (nozzle thrust efficiencies and discharge coefficients) are compared to those of a previous test campaign and numerical simulations of the experimental set-up. Recently acquired data is compared to published findings pertaining to plug nozzle experiments of similar scale and operating range. Suggestions relating to the future advancement and improvement of the BANR facility are provided. Lessons learned with regards to test operations and calibration procedures are divulged in an attempt to aid future facility users, as well.

  16. The Sensitivity of Precooled Air-Breathing Engine Performance to Heat Exchanger Design Parameters

    NASA Astrophysics Data System (ADS)

    Webber, H.; Bond, A.; Hempsell, M.

    The issues relevant to propulsion design for Single Stage To Orbit (SSTO) vehicles are considered. In particular two air- breathing engine concepts involving precooling are compared; SABRE (Synergetic Air-Breathing and Rocket Engine) as designed for the Skylon SSTO launch vehicle, and a LACE (Liquid Air Cycle Engine) considered in the 1960's by the Americans for an early generation spaceplane. It is shown that through entropy minimisation the SABRE has made substantial gains in performance over the traditional LACE precooled engine concept, and has shown itself as the basis of a viable means of realising a SSTO vehicle. Further, it is demonstrated that the precooler is a major source of thermodynamic irreversibility within the engine cycle and that further reduction in entropy can be realised by increasing the heat transfer coefficient on the air side of the precooler. If this were to be achieved, it would improve the payload mass delivered to orbit by the Skylon launch vehicle by between 5 and 10%.

  17. Investigation of air-breathing, hypersonic missile configurations within external box constraints

    NASA Astrophysics Data System (ADS)

    Starkey, Ryan Peter

    2000-12-01

    Aspects relating to the aerodynamic, geometric, and propulsive design and analysis of missile-class, waverider-based hypersonic vehicles are explored. A quasi-one-dimensional engine model, including the effects of fuel injection, mixing, chemical production rates, heat transfer, and viscous losses is developed and utilized to assess the effects of finite rate hydrocarbon chemistry on optimized missile configurations. Resultant optimized single and double engine missile designs are shown for changes in fuel mixing length, fuel mixing efficiency, fuel injector location, and assumed fuel mass fraction. The effects of these different design conditions on the cruise range are explored, as well as perturbations around these design points for optimized vehicles. Aerodynamics are evaluated using a newly developed modified shock-expansion method. Missiles are optimized for steady-state trim conditions at the beginning of cruise using parallelized genetic algorithm optimization software developed for this study. All missile designs are assumed to reach cruising altitude and velocity through the use of an external rocket booster. The missile is geometrically constrained to fit within the 0.61 m x 0.61 m x 4.27 m [2 foot x 2 foot x 14 foot] box limits for a Naval vertical launch tube and has a desired cruise range of 750 km [400 nm] at Mach 6. Investigations are also shown for the effects of various modeling assumptions: (1) shock-expansion method versus a new modified shock-expansion aerodynamic method, (2) boundary layer assumptions, (3) assumed combustor temperature profile versus finite rate chemistry computations, and (4) ratio of specific heats assumptions. An overall analysis and optimization toolkit is developed for quick calculation of hypersonic aerodynamics and propulsion with added insight into externally constrained vehicles. Results show that the optimized combustor designs were extremely sensitive to small changes in flow conditions and that high

  18. JANNAF 17th Propulsion Systems Hazards Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Cocchiaro, James E. (Editor); Gannaway, Mary T. (Editor); Rognan, Melanie (Editor)

    1998-01-01

    Volume 1, the first of two volumes is a compilation of 16 unclassified/unlimited technical papers presented at the 17th meeting of the Joint Army-Navy-NASA-Air Force (JANNAF) Propulsion Systems Hazards Subcommittee (PSHS) held jointly with the 35th Combustion Subcommittee (CS) and Airbreathing Propulsion Subcommittee (APS). The meeting was held on 7 - 11 December 1998 at Raytheon Systems Company and the Marriott Hotel, Tucson, AZ. Topics covered include projectile and shaped charge jet impact vulnerability of munitions; thermal decomposition and cookoff behavior of energetic materials; damage and hot spot initiation mechanisms with energetic materials; detonation phenomena of solid energetic materials; and hazard classification, insensitive munitions, and propulsion systems safety.

  19. JANNAF 19th Propulsion Systems Hazards Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Cocchiaro, James E. (Editor); Kuckels, Melanie C. (Editor)

    2000-01-01

    This volume, the first of two volumes is a compilation of 25 unclassified/unlimited-distribution technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 19th Propulsion Systems Hazards Subcommittee (PSHS) meeting held jointly with the 37th Combustion Subcommittee (CS) and 25th Airbreathing Propulsion Subcommittee (APS), and 1st Modeling and Simulation Subcommittee (MSS) meetings. The meeting was held 13-17 November 2000 at the Naval Postgraduate School and Hyatt Regency Hotel, Monterey, California. Topics covered at the PSHS meeting include: impact and thermal vulnerability of gun propellants; thermal decomposition and cookoff behavior of energetic materials; violent reaction and detonation phenomena of solid energetic materials subjected to shock and impact loading; and hazard classification, and insensitive munitions testing of propellants and propulsion systems.

  20. JANNAF 18th Propulsion Systems Hazards Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Cocchiaro, James E. (Editor); Gannaway, Mary T. (Editor)

    1999-01-01

    This volume, the first of two volumes is a compilation of 18 unclassified/unlimited-distribution technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 18th Propulsion Systems Hazards Subcommittee (PSHS) meeting held jointly with the 36th Combustion Subcommittee (CS) and 24th Airbreathing Propulsion Subcommittee (APS) meetings. The meeting was held 18-21 October 1999 at NASA Kennedy Space Center and The DoubleTree Oceanfront Hotel, Cocoa Beach, Florida. Topics covered at the PSHS meeting include: shaped charge jet and kinetic energy penetrator impact vulnerability of gun propellants; thermal decomposition and cookoff behavior of energetic materials; violent reaction; detonation phenomena of solid energetic materials subjected to shock and impact stimuli; and hazard classification, insensitive munitions, and propulsion systems safety.

  1. Focused technology: Nuclear propulsion

    NASA Technical Reports Server (NTRS)

    Miller, Thomas J.

    1993-01-01

    Five viewgraphs are presented that outline the objectives and elements of the Nuclear Propulsion Program, mission considerations, propulsion technologies, and the logic flow path for nuclear propulsion development.

  2. Prospective new transportation application initiatives in NASA's earth-to-orbit propulsion technology program

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1992-01-01

    NASA's Earth-to-Orbit (ETO) Propulsion Technology Program, a multi-year/multi-task focused technology effort is, today, highly focused on conventional high-thrust cryogenic liquid chemical rocket engines and their envisioned future technology needs. But as highlighted in the U.S. National Ten-Year Space Launch Technology Plan, a set of less-conventional propulsion subjects, ones which offer significant promise for both, improving the state of the art and opening up new propulsion-capability possibilities, is now directed to the space propulsion planning community's attention. In conducting its forward-planning activities, it is highly appropriate that the ETO Program (and other programs as well) carefully consider integrating these "new initiative" subjects into the taskwork of future years. After an introductory consideration of the National Plan's propulsion-related directives, followed by a brief background overview of the ETO Program, the following specific new-initiative candidates are discussed from the standpoint of technology-program planning: operationally efficient propulsion systems; high-thrust hybrid rocket propulsion; low-cost, low-pressure expendable propulsion subsystems; advanced cryogenic in-space propulsion systems; integrated modular engine (IME) configured propulsion systems, and combined-cycle airbreathing/rocket propulsion systems.

  3. Replacement of chemical rocket launchers by beamed energy propulsion.

    PubMed

    Fukunari, Masafumi; Arnault, Anthony; Yamaguchi, Toshikazu; Komurasaki, Kimiya

    2014-11-01

    Microwave Rocket is a beamed energy propulsion system that is expected to reach space at drastically lower cost. This cost reduction is estimated by replacing the first-stage engine and solid rocket boosters of the Japanese H-IIB rocket with Microwave Rocket, using a recently developed thrust model in which thrust is generated through repetitively pulsed microwave detonation with a reed-valve air-breathing system. Results show that Microwave Rocket trajectory, in terms of velocity versus altitude, can be designed similarly to the current H-IIB first stage trajectory. Moreover, the payload ratio can be increased by 450%, resulting in launch-cost reduction of 74%. PMID:25402933

  4. Heat transfer in space power and propulsion systems

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.; Dunning, J. W., Jr.

    1986-01-01

    NASA's planned Space Station has projected power requirements in the 75-300 kW range; attention is presently given to the range of power system configurations thus far proposed. These are a silicon solar cell system incorporating regenerative fuel cell or battery storage, with a 10-year lifetime, a solar-dynamic power system with phase-change or regenerative fuel cell energy storage, and a combination of these two alternatives. A development status evaluation is also given for the propulsion systems that may be used by next-generation boosters. These include such novel airbreathing systems as turboramjets, air liquefaction cycle rockets, airturboramjet/rockets, and supersonic combustion ramjets.

  5. Computer Simulation of a Solid-State Laser System for Propulsion of a Space ``Tugboat'' from LEO to GEO

    NASA Astrophysics Data System (ADS)

    Sherstobitov, V. E.; Kaliteevskiy, N. A.; Kuprenyuk, V. I.; Rodionov, A. Yu.; Romanov, N. A.; Semenov, V. E.; Soms, L. N.; Vysotina, N. V.

    2005-04-01

    Development of Laser Orbital Transfer Vehicles (LOTV) driven by an aircraft-based laser requires correction for laser beam distortion caused by the aircraft vibration, thermal deformation of laser optics, turbulence and nonlinear effects in upper layers of the atmosphere, etc. We have analyzed a possibility of combined use of an adaptive optics system (AOS) and phase conjugate mirrors (PCM) for the beam clean up and correction for turbulent distortion using a beacon laser at the "tugboat". The analysis is performed for a repetitively pulsed 200 kW Yb:YAG diode-pumped solid-state laser with a 1 meter class beam-director. The results of computer simulation of the system performance for different distances from 300 to 36000 km are presented.

  6. Electromagnetic Propulsion

    NASA Technical Reports Server (NTRS)

    Schafer, Charles

    2000-01-01

    The design and development of an Electromagnetic Propulsion is discussed. Specific Electromagnetic Propulsion Topics discussed include: (1) Technology for Pulse Inductive Thruster (PIT), to design, develop, and test of a multirepetition rate pulsed inductive thruster, Solid-State Switch Technology, and Pulse Driver Network and Architecture; (2) Flight Weight Magnet Survey, to determine/develop light weight high performance magnetic materials for potential application Advanced Space Flight Systems as these systems develop; and (3) Magnetic Flux Compression, to enable rapid/robust/reliable omni-planetary space transportation within realistic development and operational costs constraints.

  7. Air-breathing hypersonic vehicle guidance and control studies; An integrated trajectory/control analysis methodology: Phase 1

    NASA Technical Reports Server (NTRS)

    Hattis, Philip D.; Malchow, Harvey L.

    1991-01-01

    A tool which generates optimal trajectory/control histories in an integrated manner is generically adapted to the treatment of single-stage-to-orbit air-breathing hypersonic vehicles. The methodology is implemented as a two point boundary value problem solution technique. Its use permits an assessment of an entire near-minimum-fuel trajectory and desired control strategy from takeoff to orbit while satisfying physically derived inequality constraints and while achieving efficient propulsive mode phasing. A simpler analysis strategy that partitions the trajectory into several boundary condition matched segments is also included to construct preliminary trajectory and control history representations with less computational burden than is required for the overall flight profile assessment. A demonstration was accomplished using a tabulated example (winged-cone accelerator) vehicle model that is combined with a newly developed multidimensional cubic spline data smoothing routine. A constrained near-fuel-optimal trajectory, imposing a dynamic pressure limit of 1000 psf, was developed from horizontal takeoff to 20,000 ft/sec relative air speed while aiming for a polar orbit. Previously unspecified propulsive discontinuities were located. Flight regimes demanding rapid attitude changes were identified, dictating control effector and closed-loop controller authority was ascertained after evaluating effector use for vehicle trim. Also, inadequacies in vehicle model representations and specific subsystem models with insufficient fidelity were determined based on unusual control characteristics and/or excessive sensitivity to uncertainty.

  8. Role of Air-Breathing Pulse Detonation Engines in High Speed Propulsion

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Lee, Jin-Ho; Anderberg, Michael O.

    2001-01-01

    In this paper, the effect of flight Mach number on the relative performance of pulse detonation engines and gas turbine engines is investigated. The effect of ram and mechanical compression on combustion inlet temperature and the subsequent sensible heat release is determined. Comparison of specific thrust, fuel consumption and impulse for the two engines show the relative benefits over the Mach number range.

  9. Filtered Mass Density Function for Design Simulation of High Speed Airbreathing Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Drozda, T. G.; Sheikhi, R. M.; Givi, Peyman

    2001-01-01

    The objective of this research is to develop and implement new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. We have just completed two (2) years of Phase I of this research. This annual report provides a brief and up-to-date summary of our activities during the period: September 1, 2000 through August 31, 2001. In the work within the past year, a methodology termed "velocity-scalar filtered density function" (VSFDF) is developed and implemented for large eddy simulation (LES) of turbulent flows. In this methodology the effects of the unresolved subgrid scales (SGS) are taken into account by considering the joint probability density function (PDF) of all of the components of the velocity and scalar vectors. An exact transport equation is derived for the VSFDF in which the effects of the unresolved SGS convection, SGS velocity-scalar source, and SGS scalar-scalar source terms appear in closed form. The remaining unclosed terms in this equation are modeled. A system of stochastic differential equations (SDEs) which yields statistically equivalent results to the modeled VSFDF transport equation is constructed. These SDEs are solved numerically by a Lagrangian Monte Carlo procedure. The consistency of the proposed SDEs and the convergence of the Monte Carlo solution are assessed by comparison with results obtained by an Eulerian LES procedure in which the corresponding transport equations for the first two SGS moments are solved. The unclosed SGS convection, SGS velocity-scalar source, and SGS scalar-scalar source in the Eulerian LES are replaced by corresponding terms from VSFDF equation. The consistency of the results is then analyzed for a case of two dimensional mixing layer.

  10. Sensor/actuator failure detection and isolation for airbreathing propulsion systems

    NASA Technical Reports Server (NTRS)

    Leininger, G. G.; Behbehani, K.

    1980-01-01

    In this paper, the Generalized Likelihood Ratio (GLR) test is used to detect and isolate sensor and/or actuator failures when a digital computer simulation model of the physical system is available. The input to the GLR detector is an innovation sequence formed by subtracting the model outputs from the sensed outputs. Application of the GLR detector to the General Electric QCSEE turbofan engine demonstrates the utility of the proposed procedure.

  11. Study of Unsteady, Sphere-Driven, Shock-Induced Combustion for Application to Hypervelocity Airbreathing Propulsion

    NASA Technical Reports Server (NTRS)

    Axdahl, Erik; Kumar, Ajay; Wilhite, Alan

    2011-01-01

    A premixed, shock-induced combustion engine has been proposed in the past as a viable option for operating in the Mach 10 to 15 range in a single stage to orbit vehicle. In this approach, a shock is used to initiate combustion in a premixed fuel/air mixture. Apparent advantages over a conventional scramjet engine include a shorter combustor that, in turn, results in reduced weight and heating loads. There are a number of technical challenges that must be understood and resolved for a practical system: premixing of fuel and air upstream of the combustor without premature combustion, understanding and control of instabilities of the shock-induced combustion front, ability to produce sufficient thrust, and the ability to operate over a range of Mach numbers. This study evaluated the stability of the shock-induced combustion front in a model problem of a sphere traveling in a fuel/air mixture at high Mach numbers. A new, rapid analysis method was developed and applied to study such flows. In this method the axisymmetric, body-centric Navier-Stokes equations were expanded about the stagnation streamline of a sphere using the local similarity hypothesis in order to reduce the axisymmetric equations to a quasi-1D set of equations. These reduced sets of equations were solved in the stagnation region for a number of flow conditions in a premixed, hydrogen/air mixture. Predictions from the quasi-1D analysis showed very similar stable or unstable behavior of the shock-induced combustion front as compared to experimental studies and higher-fidelity computational results. This rapid analysis tool could be used in parametric studies to investigate effects of fuel rich/lean mixtures, non-uniformity in mixing, contaminants in the mixture, and different chemistry models.

  12. Screening studies of advanced control concepts for airbreathing engines

    NASA Technical Reports Server (NTRS)

    Ouzts, Peter J.; Lorenzo, Carl F.; Merrill, Walter C.

    1993-01-01

    The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Accordingly, the NASA Lewis Research Center has conducted screening studies of advanced control concepts for airbreathing engines to determine their potential impact on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed concepts was formulated by NASA and industry. These concepts were evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation, three target aircraft/engine combinations were considered: a military high performance fighter mission, a high speed civil transport mission, and a civil tiltrotor mission. Each of the advanced control concepts considered in the study were defined and described. The concept's potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts were also determined. Finally, the concepts were ranked with respect to the target aircraft/engine missions.

  13. Screening studies of advanced control concepts for airbreathing engines

    NASA Technical Reports Server (NTRS)

    Ouzts, Peter J.; Lorenzo, Carl F.; Merrill, Walter C.

    1992-01-01

    The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Accordingly, the NASA Lewis Research Center has conducted screening studies of advanced control concepts for airbreathing engines to determine their potential impact on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed concepts was formulated by NASA and industry. These concepts were evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation, three target aircraft/engine combinations were considered: a military high performance fighter mission, a high speed civil transport mission, and a civil tiltrotor mission. Each of the advanced control concepts considered in the study were defined and described. The concept's potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts were also determined. Finally, the concepts were ranked with respect to the target aircraft/engine missions.

  14. Advanced controls for airbreathing engines, volume 3: Allison gas turbine

    NASA Technical Reports Server (NTRS)

    Bough, R. M.

    1993-01-01

    The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for airbreathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two-phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 3 of these reports describes the studies performed by the Allison Gas Turbine Division.

  15. Experimental Investigation of Axial and Beam-Riding Propulsive Physics with TEA CO{sub 2} laser

    SciTech Connect

    Kenoyer, D. A.; Salvador, I.; Myrabo, L. N.; Notaro, S. N.; Bragulla, P. W.

    2010-10-08

    A twin Lumonics K922M pulsed TEA CO{sub 2} laser system (pulse duration of approximately 100 ns FWHM spike, with optional 1 {mu}s tail, depending upon laser gas mix) was employed to experimentally measure both axial thrust and beam-riding behavior of Type no. 200 lightcraft engines, using a ballistic pendulum and Angular Impulse Measurement Device (AIMD, respectively. Beam-riding forces and moments were examined along with engine thrust-vectoring behavior, as a function of: a) laser beam lateral offset from the vehicle axis of symmetry; b) laser pulse energy ({approx}12 to 40 joules); c) pulse duration (100 ns, and 1 {mu}s); and d) engine size (97.7 mm to 161.2 mm). Maximum lateral momentum coupling coefficients (C{sub M}) of 75 N-s/MJ were achieved with the K922M laser whereas previous PLVTS laser (420 J, 18 {mu}s duration) results reached only 15 N-s/MJ--an improvement of 5x. Maximum axial C{sub M} performance with the K922M reached 225 N-s/MJ, or about {approx}3x larger than the lateral C{sub M} values. These axial C{sub M} results are sharply higher than the 120 N/MW previously reported for long pulse (e.g., 10-18 {mu}s)CO{sub 2} electric discharge lasers.

  16. New energy conversion techniques in space, applicable to propulsion. [powering of aircraft with laser energy from SPS

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.; Sun, K. C.

    1979-01-01

    The powering of aircraft with laser energy from a solar power satellite may be a promising new approach to the critical problem of the rising cost of fuel for aircraft transportation systems. The result is a nearly fuelless, pollution-free flight transportation system which is cost-competitive with the fuel-conservative airplane of the future. The major components of this flight system include a laser power satellite, relay satellites, laser-powered turbofans and a conventional airframe. The relay satellites are orbiting optical systems which intercept the beam from a power satellite and refocus and redirect the beam to its next target.

  17. Technology Roadmap for Dual-Mode Scramjet Propulsion to Support Space-Access Vision Vehicle Development

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Auslender, Aaron H.; Guy, R. Wayne; McClinton, Charles R.; Welch, Sharon S.

    2002-01-01

    Third-generation reusable launch vehicle (RLV) systems are envisioned that utilize airbreathing and combined-cycle propulsion to take advantage of potential performance benefits over conventional rocket propulsion and address goals of reducing the cost and enhancing the safety of systems to reach earth orbit. The dual-mode scramjet (DMSJ) forms the core of combined-cycle or combination-cycle propulsion systems for single-stage-to-orbit (SSTO) vehicles and provides most of the orbital ascent energy. These concepts are also relevant to two-stage-to-orbit (TSTO) systems with an airbreathing first or second stage. Foundation technology investments in scramjet propulsion are driven by the goal to develop efficient Mach 3-15 concepts with sufficient performance and operability to meet operational system goals. A brief historical review of NASA scramjet development is presented along with a summary of current technology efforts and a proposed roadmap. The technology addresses hydrogen-fueled combustor development, hypervelocity scramjets, multi-speed flowpath performance and operability, propulsion-airframe integration, and analysis and diagnostic tools.

  18. Propulsion controls

    NASA Technical Reports Server (NTRS)

    Harkney, R. D.

    1980-01-01

    Increased system requirements and functional integration with the aircraft have placed an increased demand on control system capability and reliability. To provide these at an affordable cost and weight and because of the rapid advances in electronic technology, hydromechanical systems are being phased out in favor of digital electronic systems. The transition is expected to be orderly from electronic trimming of hydromechanical controls to full authority digital electronic control. Future propulsion system controls will be highly reliable full authority digital electronic with selected component and circuit redundancy to provide the required safety and reliability. Redundancy may include a complete backup control of a different technology for single engine applications. The propulsion control will be required to communicate rapidly with the various flight and fire control avionics as part of an integrated control concept.

  19. Propulsion materials

    SciTech Connect

    Wall, Edward J.; Sullivan, Rogelio A.; Gibbs, Jerry L.

    2008-01-01

    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  20. Instrumentation requirements from the user's view. [For airbreathing hypersonic engines

    SciTech Connect

    Harsha, P.T.

    1988-01-01

    The use of combustor diagnostics is considered from the point of view of demonstration of performance of an airbreathing hypersonic engine. The basic need is seen to be that of providing the data necessary to verify performance predictions for the engine as installed in the airplane. This necessitates the use of a diagnostics capability that can provide the inputs required by the computational analyses that will be used to assess this performance. Because of the cost of ground test facilities, a premium is placed on measurement technique reliability and redundancy of instrumentation. A mix of nonintrusive optical techniques and probe-based measurements is seen to be the best approach using current diagnostics capability; one such instrument mix is outlined for a ramjet/scramjet test program. 11 references.

  1. Engines and innovation: Lewis Laboratory and American propulsion technology

    NASA Technical Reports Server (NTRS)

    Dawson, Virginia Parker

    1991-01-01

    This book is an institutional history of the NASA Lewis Research Center, located in Cleveland, Ohio, from 1940, when Congress authorized funding for a third laboratory for the National Advisory Committee for Aeronautics, through the 1980s. The history of the laboratory is discussed in relation to the development of American propulsion technology, with particular focus on the transition in the 1940s from the use of piston engines in airplanes to jet propulsion and that from air-breathing engines to rocket technology when the National Aeronautics and Space Administration was established in 1958. The personalities and research philosophies of the people who shaped the history of the laboratory are discussed, as is the relationship of Lewis Research Center to the Case Institute of Technology.

  2. Air-breathing fuel cell stacks for portable power applications

    SciTech Connect

    Wilson, M.S.; DeCaro, D.; Neutzler, J.K.; Zawodzinski, C.; Gottesfeld, S.

    1996-10-01

    Increasing attention is being directed towards polymer electrolyte fuel cells as battery replacements because of their potentially superior energy densities and the possibility of `mechanical` refueling. On the low end of the power requirement scale (ca. 10 W), fuel cells can compete with primary and secondary batteries only if the fuel cell systems are simple, inexpensive, and reliable. Considerations of cost and simplicity (and minimal parasitic power) discourage the use of conventional performance enhancing subsystems (e.g., humidification, cooling, or forced-reactant flow). We are developing a stack design that is inherently self-regulating to allow effective operation without the benefit of such auxiliary components. The air cathode does not use forced flow to replenish the depleted oxygen. Instead, the oxygen in the air must diffuse into the stack from the periphery of the unit cells. For this reason the stack is described as `air-breathing.` This configuration limits the ability of water to escape which prevents the polymer electrolyte membranes from drying out, even at relatively high continuous operation temperatures (+60 degrees C). This results in stacks with reliable and stable performance. This air-breathing configuration assumes a unique stack geometry that utilizes circular flow-field plates with an annular hydrogen feed manifold and the single tie-bolt extending up through the central axis of the stack. With this geometry, the hydrogen supply to the unit cells is radially outward, and the air supply is from the periphery inward. This configuration has several advantages. The entire periphery is free to air access and allows greater heat conduction to enhance cooling. Furthermore, all of the components in the stack (e.g., the flow-fields, seals and membrane/electrode assemblies), are radially symmetrical, so part fabrication is simple and the entire system is potentially low-cost. Lastly, this configuration is compact and lightweight.

  3. Analytical Investigation of an Airbreathing, Repetitively Pulsed LSC-Wave Thruster: Part 1

    NASA Astrophysics Data System (ADS)

    Myrabo, L. N.; Borkowski, C. A.; Kaminski, D. A.

    2006-05-01

    The prospects for an airbreathing repetitively pulsed, LSC-wave thruster are assessed from the perspective of both thrust production and radiation heat transfer rates into the vehicle undersurface. Pulsed LSC wave thrusters are characterized by high plasma temperatures (e.g., 11,000 K), moderate overpressures (a function of laser intensity), and subsonic LSC wave propagation velocities. The axisymmetric Lightcraft engine configuration examined in this study has a flat underbody impulsive surface of radius 1.25 m. Energy is supplied to the LSC wave by an annular laser beam converging uniformly from the edges of the disk (i.e., reflected inward towards the axis of symmetry from secondary optics positioned around the entire disc circumference). The LSC wave propagates radially outward toward the edge of the disc. At some point the beam is extinguished, and a new LSC wave is initiated at the disk center. The process is repeated at a frequency that produces the desired thrust, and continued until maximum temperatures are exceeded. Results indicate that thrust levels in the range of 104 to 4×105 N are indeed feasible — i.e., sufficient to sustain a 1 tonne Lightcraft in hover, or accelerate it vertically at 40 g. Depending on the desired thrust and LSC wave geometry, viable PRFs can range from ˜100 Hz up to 750 Hz (or more), pulse energies from 0.01 to 4 MJ, and pulse durations from 10 to 350 ms. Momentum coupling coefficients range from 100 to 1000 N/MW, varying as a function of laser intensity incident upon the LSC wave.

  4. LISA propulsion module separation study

    NASA Astrophysics Data System (ADS)

    Merkowitz, S. M.; Ahmad, A.; Hyde, T. T.; Sweetser, T.; Ziemer, J.; Conkey, S.; Kelly, W., III; Shirgur, B.

    2005-05-01

    The Laser Interferometer Space Antenna (LISA) mission is a space-borne gravitational wave detector consisting of three sciencecraft in heliocentric orbit. Each sciencecraft is delivered to its operational orbit by a propulsion module. Because of the strict thermal and mass balancing requirements of LISA, the baseline mission concept requires that the propulsion module separate from the sciencecraft after delivery. The only propulsion system currently included in the sciencecraft design are micronewton level thrusters, such as field emission electric propulsion (FEEP) or colloid thrusters, that are used to balance the 30 40 µN of solar radiation pressure and provide the drag-free and attitude control of the sciencecraft. Due to these thrusters' limited authority, the separation of the propulsion module from the sciencecraft must be well controlled to not induce a large tip-off rotation of the sciencecraft. We present here the results of a study of the propulsion module separation system requirements that are necessary to safely deliver the three LISA sciencecraft to their final operational orbits.

  5. NASA's Advanced Propulsion Technology Activities for Third Generation Fully Reusable Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe

    2000-01-01

    NASA's Office of Aeronautics and Space Transportation Technology (OASTT) established the following three major goals, referred to as "The Three Pillars for Success": Global Civil Aviation, Revolutionary Technology Leaps, and Access to Space. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, Ala. focuses on future space transportation technologies under the "Access to Space" pillar. The Propulsion Projects within ASTP under the investment area of Spaceliner100, focus on the earth-to-orbit (ETO) third generation reusable launch vehicle technologies. The goals of Spaceliner 100 is to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The ETO Propulsion Projects in ASTP, are actively developing combination/combined-cycle propulsion technologies that utilized airbreathing propulsion during a major portion of the trajectory. System integration, components, materials and advanced rocket technologies are also being pursued. Over the last several years, one of the main thrusts has been to develop rocket-based combined cycle (RBCC) technologies. The focus has been on conducting ground tests of several engine designs to establish the RBCC flowpaths performance. Flowpath testing of three different RBCC engine designs is progressing. Additionally, vehicle system studies are being conducted to assess potential operational space access vehicles utilizing combined-cycle propulsion systems. The design, manufacturing, and ground testing of a scale flight-type engine are planned. The first flight demonstration of an airbreathing combined cycle propulsion system is envisioned around 2005. The paper will describe the advanced propulsion technologies that are being being developed under the ETO activities in the ASTP program. Progress, findings, and future activities for the propulsion technologies will be discussed.

  6. Highlights of NASA's Special ETO Program Planning Workshop on rocket-based combined-cycle propulsion system technologies

    NASA Technical Reports Server (NTRS)

    Escher, W. J. D.

    1992-01-01

    A NASA workshop on rocket-based combined-cycle propulsion technologies is described emphasizing the development of a starting point for earth-to-orbit (ETO) rocket technologies. The tutorial is designed with attention given to the combined development of aeronautical airbreathing propulsion and space rocket propulsion. The format, agenda, and group deliberations for the tutorial are described, and group deliberations include: (1) mission and space transportation infrastructure; (2) vehicle-integrated propulsion systems; (3) development operations, facilities, and human resource needs; and (4) spaceflight fleet applications and operations. Although incomplete the workshop elevates the subject of combined-cycle hypersonic propulsion and develops a common set of priniciples regarding the development of these technologies.

  7. Rocket based combined cycle (RBCC) propulsion systems offer additional options

    NASA Astrophysics Data System (ADS)

    Czysz, Paul A.

    The propulsion cycles presented at the 1991 IAF Congress in Montreal, and at The World Hydrogen Conference 1992 in Paris were the subject of an IAF paper for the 1992 World Space Conference in Washington DC. RBCC propulsion systems from several nations were analyzed in terms of a SSTO space launcher with a 7-Mg payload. The RBCC concept emerged from the advanced injector ramjet research of the early 1960s. The performance of the current RBCC propulsion systems such that the specific thrust of a rocket is combined with the specific impulse of an airbreather. This performance offers a new perspective to the options available. In a brief review of the present RBCC the reasons for these options are developed. The spectrum of the system options is presented in three examples, a LACE VTOL SSTO, an HTOL SSTO and a HTOL TSTO. Results using the present RBCC are dramatically different from the past concept of the Conventional Combined Cycle propulsion system, i.e., combinations of separate engines. The integration of the engine cycles into a single thermodynamically integrated system significantly changes the propulsion performance.

  8. Propulsion Systems Panel deliberations

    NASA Technical Reports Server (NTRS)

    Bianca, Carmelo J.; Miner, Robert; Johnston, Lawrence M.; Bruce, R.; Dennies, Daniel P.; Dickenson, W.; Dreshfield, Robert; Karakulko, Walt; Mcgaw, Mike; Munafo, Paul M.

    1993-01-01

    The Propulsion Systems Panel was established because of the specialized nature of many of the materials and structures technology issues related to propulsion systems. This panel was co-chaired by Carmelo Bianca, MSFC, and Bob Miner, LeRC. Because of the diverse range of missions anticipated for the Space Transportation program, three distinct propulsion system types were identified in the workshop planning process: liquid propulsion systems, solid propulsion systems and nuclear electric/nuclear thermal propulsion systems.

  9. Electric vehicle propulsion alternatives

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.; Schuh, R. M.; Beach, R. F.

    1983-01-01

    Propulsion technology development for electric vehicles is summarized. Analytical studies, technology evaluation, and the development of technology for motors, controllers, transmissions, and complete propulsion systems are included.

  10. Some perspectives on pulse detonation propulsion systems

    NASA Astrophysics Data System (ADS)

    Lu, F. K.; Wilson, D. R.

    Pulse detonation engines and rockets (PDE/Rs) can potentially revolutionize air breathing and rocket propulsion [1-6]. While the PDE concept is over five decades old, it has recently enjoyed renewed interest, due mostly to theoretical and computational studies indicating high cycle efficiencies. When modeled by a constant volume, Humphrey cycle, the detonation engine is found to be superior to that of existing constant pressure, Brayton cycles, with claims of as much as 10-40% improvement in specific impulse [4,7-9]. The constant volume process is derived from the Zeldovich-von Neumann-Döring (ZND) model of the detonation wave as a high strength shock wave, followed by a region of chemical reaction and a subsequent isentropic rarefaction. Amongst other advantages of the PDE is simplicity, where the PDE is easy to manufacture and requires few moving parts, with the possibility of eliminating high-pressure pumps in rocket applications, or reducing turbomachinery stages in air-breathing propulsion systems.

  11. Effect of aeroelastic-propulsive interactions on flight dynamics of a hypersonic vehicle

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Mcminn, John D.; Pototzky, Anthony S.; Wooley, Christine L.

    1993-01-01

    The desire to achieve orbit-on-demand access to space with rapid turn-around capability and aircraft-like processing operations has given rise to numerous hypersonic aerospace plane design concepts which would take off horizontally from a conventional runway and employ air-breathing scramjet propulsion systems for acceleration to orbital speeds. Most of these air-breathing hypersonic vehicle concepts incorporate an elongated fuselage forebody to act as the aerodynamic compression surface for a scramjet combustor module. This type of airframe-integrated scramjet propulsion system tends to be highly sensitive to inlet conditions and angle-of-attack perturbations. Furthermore, the basic configuration of the fuselage, with its elongated and tapered forebody, produces relatively low frequency elastic modes which will cause perturbations in the combustor inlet conditions due to the oscillation of the forebody compression surface. The flexibility of the forebody compression surface, together with sensitivity of scramjet propulsion systems to inlet conditions, creates the potential for an unprecedented form of aeroelastic-propulsive interaction in which deflections of the vehicle fuselage give rise to propulsion transients, producing force and moment variations that may adversely impact the longitudinal flight dynamics and/or excite the elastic modes. These propulsive force and moment variations may have an appreciable impact on the performance, guidance, and control of a hypersonic aerospace plane. The objectives of this research are to quantify the magnitudes of propulsive force and moment perturbations resulting from elastic deformation of a representative hypersonic vehicle, and to assess the potential impact of these perturbations on the vehicle's longitudinal flight dynamics.

  12. Inlet Aerodynamics and Ram Drag of Laser-Propelled Lightcraft Vehicles

    NASA Astrophysics Data System (ADS)

    Langener, Tobias; Myrabo, Leik; Rusak, Zvi

    2010-05-01

    Numerical simulations are used to study the aerodynamic inlet properties of three axisymmetric configurations of laser-propelled Lightcraft vehicles operating at subsonic, transonic and supersonic speeds up to Mach 5. The 60 cm vehicles were sized for launching 0.1-1.0 kg nanosatellites with combined-cycle airbreathing/rocket engines, transitioning between propulsion modes at roughly Mach 5-6. Results provide the pressure, temperature, density, and velocity flowfields around and through the three representative vehicle/engine configurations, as well as giving the resulting ram drag and total drag coefficients—all as a function of flight Mach number. Simulations with rotating boundaries were also carried out, since for stability reasons, Lightcraft are normally spun up before lift-off. Given the three alternatives, it is demonstrated that the optimal geometry for minimum drag is the configuration with a parabola nose; hence, these inlet flow conditions are being applied in subsequent "direct connect" 2D laser propulsion experiments in a small transonic flow facility.

  13. A Technology Pathway for Airbreathing, Combined-Cycle, Horizontal Space Launch Through SR-71 Based Trajectory Modeling

    NASA Technical Reports Server (NTRS)

    Kloesel, Kurt J.; Ratnayake, Nalin A.; Clark, Casie M.

    2011-01-01

    Access to space is in the early stages of commercialization. Private enterprises, mainly under direct or indirect subsidy by the government, have been making headway into the LEO launch systems infrastructure, of small-weight-class payloads of approximately 1000 lbs. These moderate gains have emboldened the launch industry and they are poised to move into the middle-weight class (roughly 5000 lbs). These commercially successful systems are based on relatively straightforward LOX-RP, two-stage, bi-propellant rocket technology developed by the government 40 years ago, accompanied by many technology improvements. In this paper we examine a known generic LOX-RP system with the focus on the booster stage (1st stage). The booster stage is then compared to modeled Rocket-Based and Turbine-Based Combined Cycle booster stages. The air-breathing propulsion stages are based on/or extrapolated from known performance parameters of ground tested RBCC (the Marquardt Ejector Ramjet) and TBCC (the SR-71/J-58 engine) data. Validated engine models using GECAT and SCCREAM are coupled with trajectory optimization and analysis in POST-II to explore viable launch scenarios using hypothetical aerospaceplane platform obeying the aerodynamic model of the SR-71. Finally, and assessment is made of the requisite research technology advances necessary for successful commercial and government adoption of combined-cycle engine systems for space access.

  14. Kite propulsion

    NASA Astrophysics Data System (ADS)

    Du Pontavice, Emmanuel; Clanet, Christophe; Quéré, David

    2014-11-01

    Kite propulsion is one way to harvest wind energy. The typical force is 1 kilo Newton per square meter, which means that with kites in the range 100 to 1000 square meters, one is able to propel ships from the trawler to the tanker. Several scientific issues arise when trying to design kites of these sizes. They first need to take off and land autonomously. This leads to the use of kites with an inflatable structure that can be compact when stored but very rigid and light once in the air. For that matter, we studied the behavior of large inflatable structures under static and dynamic load. Then, the kite needs to stay in the air. However, it appears that under certain conditions, kites without active control tend to engage into large oscillations and eventually crash. Through wind tunnel experiments, we try to understand this flight behavior to find the conditions of stability.

  15. Rapid near-optimal trajectory generation and guidance law development for single-stage-to-orbit airbreathing vehicles

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Flandro, G. A.; Corban, J. E.

    1990-01-01

    General problems associated with on-board trajectory optimization, propulsion system cycle selection, and with the synthesis of guidance laws were addressed for an ascent to low-earth-orbit of an air-breathing single-stage-to-orbit vehicle. The NASA Generic Hypersonic Aerodynamic Model Example and the Langley Accelerator aerodynamic sets were acquired and implemented. Work related to the development of purely analytic aerodynamic models was also performed at a low level. A generic model of a multi-mode propulsion system was developed that includes turbojet, ramjet, scramjet, and rocket engine cycles. Provisions were made in the dynamic model for a component of thrust normal to the flight path. Computational results, which characterize the nonlinear sensitivity of scramjet performance to changes in vehicle angle of attack, were obtained and incorporated into the engine model. Additional trajectory constraints were introduced: maximum dynamic pressure; maximum aerodynamic heating rate per unit area; angle of attack and lift limits; and limits on acceleration both along and normal to the flight path. The remainder of the effort focused on required modifications to a previously derived algorithm when the model complexity cited above was added. In particular, analytic switching conditions were derived which, under appropriate assumptions, govern optimal transition from one propulsion mode to another for two cases: the case in which engine cycle operations can overlap, and the case in which engine cycle operations are mutually exclusive. The resulting guidance algorithm was implemented in software and exercised extensively. It was found that the approximations associated with the assumed time scale separation employed in this work are reasonable except over the Mach range from roughly 5 to 8. This phenomenon is due to the very large thrust capability of scramjets in this Mach regime when sized to meet the requirement for ascent to orbit. By accounting for flight path

  16. LISA Propulsion Module Separation Study

    NASA Technical Reports Server (NTRS)

    Merkowitz, Stephen

    2004-01-01

    The Laser Interferometer Space Antenna (LISA) mission is a space-borne gravitational wave detector consisting of three spacecraft in heliocentric orbit. Each spacecraft is delivered to it operational orbit by a propulsion module. Because of the strict thermal and mass balancing requirements of LISA, the baseline mission concept requires that the propulsion module separate from the sciencecraft after delivery. The only propulsion system currently baselined for the sciencecraft are micronewton level thrusters, such as FEEP or colloid thrusters, that are used to balance the 30-40 microN of solar radiation pressure and provide the drag-free and attitude control of the spacecraft. Due to these thrusters limited authority, the separation of the propulsion module from the sciencecraft must be well controlled to not induce a large tip-off rotation of the sciencecraft. We present here the results of a design study of the propulsion module separation system that is shown to safely deliver the LISA sciencecraft to its final operational orbit.

  17. Solar Thermal Propulsion Concept

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Harnessing the Sun's energy through Solar Thermal Propulsion will propel vehicles through space by significantly reducing weight, complexity, and cost while boosting performance over current conventional upper stages. Another solar powered system, solar electric propulsion, demonstrates ion propulsion is suitable for long duration missions. Pictured is an artist's concept of space flight using solar thermal propulsion.

  18. Future of space propulsion

    SciTech Connect

    Weiss, R.R.; Mackay, D.S. )

    1992-03-01

    A development status-and-prospects evaluation is presented for the range of spacecraft propulsion alternatives under consideration by the USAF's Phillips Laboratory, encompassing technologies broadly characterizable as 'conventional' (solid, storable liquid, cryogenic) and 'nonconventional'. Nonconventional spacecraft propulsion system types include arcjets, magnetoplasmadynamic thrusters, solar thermal propulsion, and nuclear propulsion. The prospects for high energy density materials' application to more coventional propulsion concepts are noted.

  19. Propulsion Flight-Test Fixture

    NASA Technical Reports Server (NTRS)

    Palumbo, Nate; Vachon, M. Jake; Richwine, Dave; Moes, Tim; Creech, Gray

    2003-01-01

    NASA Dryden Flight Research Center s new Propulsion Flight Test Fixture (PFTF), designed in house, is an airborne engine-testing facility that enables engineers to gather flight data on small experimental engines. Without the PFTF, it would be necessary to obtain such data from traditional wind tunnels, ground test stands, or laboratory test rigs. Traditionally, flight testing is reserved for the last phase of engine development. Generally, engines that embody new propulsion concepts are not put into flight environments until their designs are mature: in such cases, either vehicles are designed around the engines or else the engines are mounted in or on missiles. However, a captive carry capability of the PFTF makes it possible to test engines that feature air-breathing designs (for example, designs based on the rocket-based combined cycle) economically in subscale experiments. The discovery of unknowns made evident through flight tests provides valuable information to engine designers early in development, before key design decisions are made, thereby potentially affording large benefits in the long term. This is especially true in the transonic region of flight (from mach 0.9 to around 1.2), where it can be difficult to obtain data from wind tunnels and computational fluid dynamics. In January 2002, flight-envelope expansion to verify the design and capabilities of the PFTF was completed. The PFTF was flown on a specially equipped supersonic F-15B research testbed airplane, mounted on the airplane at a center-line attachment fixture, as shown in Figure 1. NASA s F-15B testbed has been used for several years as a flight-research platform. Equipped with extensive research air-data, video, and other instrumentation systems, the airplane carries externally mounted test articles. Traditionally, the majority of test articles flown have been mounted at the centerline tank-attachment fixture, which is a hard-point (essentially, a standardized weapon-mounting fixture

  20. New Technology and Lunar Power Option for Power Beaming Propulsion

    SciTech Connect

    Kare, J; Early, J; Krupke, W; Beach, R

    2004-10-11

    Orbit raising missions (LEO to GEO or beyond) are the only missions with enough current traffic to be seriously considered for near-term power beaming propulsion. Even these missions cannot justify the development expenditures required to deploy the required new laser, optical and propulsion technologies or the programmatic risks. To be deployed, the laser and optics technologies must be spin-offs of other funded programs. The manned lunar base nighttime power requirements may justify a major power beaming program with 2MW lasers and large optical systems. New laser and optical technologies may now make this mission plausible. If deployed these systems could be diverted for power beaming propulsion applications. Propulsion options include a thermal system with an Isp near 1000 sec., a new optical coupled thermal system with an Isp over 2000 sec. photovoltaic-ion propulsion systems with an Isp near 3000 sec., and a possible new optical coupled thermal system with an Isp over 2000 sec.

  1. Flight experiments and evolutionary development of a laser-propelled transatmospheric vehicle

    NASA Astrophysics Data System (ADS)

    Mead, Franklin B., Jr.; Myrabo, Leik N.; Messitt, Donald G.

    1998-09-01

    In a series of spectacular experiments conducted at the High Energy Laser Systems Test Facility (HELSTF), White Sands Missile Range (WSMR), NM, using 13- to 15-cm diameter, 40- to 60-g vehicles designed to fly on the 10 kW PLVTS pulsed carbon dioxide laser (1 kJ pulses for 30 microsecond duration at 10 Hz), Prof. Leik Myrabo of Rensselaer Polytechnic Institute (RPI) and Dr. Franklin Mead of the Air Force Research Laboratory's (AFRL) Propulsion Directorate, have been successfully flying laser propelled Lightcraft under a joint Air Force/NASA flight demonstration program. The axisymmetric Lightcraft vehicles are propelled by airbreathing, pulsed- detonation engines with an infinite fuel specific impulse. Impulse coupling coefficients have been measured with ballistic pendulums as well as a piezoelectric load cell and fall in the range of 100 to 200 N/MW. Horizontal wire-guided flights up to 400 ft, using a unique laser beam pointing and tracking guidance system, have demonstrated up to 2.0 G's acceleration measured by a photo-optic array. Spin-stabilized free-flights with active tracking/beam control have been accomplished to altitudes of 15.25 meters. This paper will summarize the progress made to date on the Lightcraft Technology Demonstration flight test program, since the first 12 - 14 July 1996, experiments at HELSTF.

  2. Beamed Energy Propulsion: Research Status And Needs--Part 1

    SciTech Connect

    Birkan, Mitat

    2008-04-28

    One promising solution to the operationally responsive space is the application of remote electromagnetic energy to propel a launch vehicle into orbit. With beamed energy propulsion, one can leave the power source stationary on the ground or space, and direct heat propellant on the spacecraft with a beam from a fixed station. This permits the spacecraft to leave its power source at home, saving significant amounts of mass, greatly improving performance. This concept, which removes the mass penalty of carrying the propulsion energy source on board the vehicle, was first proposed by Arthur Kantrowitz in 1972; he invoked an extremely powerful ground based laser. The same year Michael Minovich suggested a conceptually similar 'in-space' laser rocket system utilizing a remote laser power station. In the late 1980's, Air Force Office of Scientific Research (AFOSR) funded continuous, double pulse laser and microwave propulsion while Strategic Defense Initiative Office (SDIO) funded ablative laser rocket propulsion. Currently AFOSR has been funding the concept initiated by Leik Myrabo, repetitively pulsed laser propulsion, which has been universally perceived, arguably, to be the closest for mid-term applications. This 2-part paper examines the investment strategies in beamed energy propulsion and technical challenges to be overcome. Part 1 presents a world-wide review of beamed energy propulsion research, including both laser and microwave arenas.

  3. Developing Conceptual Hypersonic Airbreathing Engines Using Design of Experiments Methods

    NASA Technical Reports Server (NTRS)

    Ferlemann, Shelly M.; Robinson, Jeffrey S.; Martin, John G.; Leonard, Charles P.; Taylor, Lawrence W.; Kamhawi, Hilmi

    2000-01-01

    Designing a hypersonic vehicle is a complicated process due to the multi-disciplinary synergy that is required. The greatest challenge involves propulsion-airframe integration. In the past, a two-dimensional flowpath was generated based on the engine performance required for a proposed mission. A three-dimensional CAD geometry was produced from the two-dimensional flowpath for aerodynamic analysis, structural design, and packaging. The aerodynamics, engine performance, and mass properties arc inputs to the vehicle performance tool to determine if the mission goals were met. If the mission goals were not met, then a flowpath and vehicle redesign would begin. This design process might have to be performed several times to produce a "closed" vehicle. This paper will describe an attempt to design a hypersonic cruise vehicle propulsion flowpath using a Design of' Experiments method to reduce the resources necessary to produce a conceptual design with fewer iterations of the design cycle. These methods also allow for more flexible mission analysis and incorporation of additional design constraints at any point. A design system was developed using an object-based software package that would quickly generate each flowpath in the study given the values of the geometric independent variables. These flowpath geometries were put into a hypersonic propulsion code and the engine performance was generated. The propulsion results were loaded into statistical software to produce regression equations that were combined with an aerodynamic database to optimize the flowpath at the vehicle performance level. For this example, the design process was executed twice. The first pass was a cursory look at the independent variables selected to determine which variables are the most important and to test all of the inputs to the optimization process. The second cycle is a more in-depth study with more cases and higher order equations representing the design space.

  4. Antimatter Assisted Inertial Confinement Fusion Propulsion Systems for Interstellar Missions

    NASA Astrophysics Data System (ADS)

    Halyard, R. J.

    Current developments such as the Ion Compressed Antimatter Nuclear (ICAN-II) propulsion system proposed by the Pennsylvania State University Center for Space Propulsion Engineering open the way to the possible use of available supplies of antiprotons to power antimatter assisted inertial confinement fusion (AAICF) propulsion systems for interstellar missions. Analysis indicates that light weight AAICF propulsion systems with specific impulses in excess of seven hundred thousand seconds may be feasible within the next 30 years. AAICF should prove to be the optimum propulsion system since it possesses high thrust, low weight and high exhaust velocity. The purpose of this paper is to evaluate the potential of AAICF propulsion for interstellar missions such as NASA Administrator Dan Goldin's Alpha Centauri Flyby and a Barnard's Star Orbital Mission, and to compare these projections with previous performance estimates for ICF Laser Beam propulsion systems.

  5. OTV Propulsion Issues

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The statistical technology needs of aero-assist maneuvering, propulsion, and usage of cryogenic fluids were presented. Industry panels discussed the servicing of reusable space based vehicles and propulsion-vehicle interation.

  6. Propulsion of nanowire diodes.

    PubMed

    Calvo-Marzal, Percy; Sattayasamitsathit, Sirilak; Balasubramanian, Shankar; Windmiller, Joshua R; Dao, Cuong; Wang, Joseph

    2010-03-14

    The propulsion of semiconductor diode nanowires under external AC electric field is described. Such fuel-free electric field-induced nanowire propulsion offers considerable promise for diverse technological applications. PMID:20177595

  7. Hybrid rocket propulsion

    NASA Technical Reports Server (NTRS)

    Holzman, Allen L.

    1993-01-01

    Topics addressed are: (1) comparison of the theoretical impulses; (2) comparison of the density-specific impulses; (3) general propulsion system features comparison; (4) hybrid systems, booster applications; and (5) hybrid systems, upper stage propulsion applications.

  8. Electrodynamic Tether Propulsion System

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This picture is an artist's concept of an orbiting vehicle using the Electrodynamic Tethers Propulsion System. Relatively short electrodynamic tethers can use solar power to push against a planetary magnetic field to achieve propulsion without the expenditure of propellant.

  9. Robust control of hypersonic vehicles considering propulsive and aeroelastic effects

    NASA Technical Reports Server (NTRS)

    Buschek, Harald; Calise, Anthony J.

    1993-01-01

    The influence of propulsion system variations and elastic fuselage behavior on the flight control system of an airbreathing hypersonic vehicle is investigated. Thrust vector magnitude and direction changes due to angle of attack variations affect the pitching moment. Low structural vibration frequencies may occur close to the rigid body modes influencing the angle of attack and lead to possible cross coupling. These effects are modeled as uncertainties in the context of a robust control study of a hypersonic vehicle model accelerating through Mach 8 using H-infinity and mu synthesis techniques. Various levels of uncertainty are introduced into the system. Both individual and simultaneous appearance of uncertainty are considered. The results indicate that the chosen design technique is suitable for this kind of problem provided that a fairly good knowledge of the effects mentioned above is available. The order of the designed controller is reduced but robust performance is lost which shows the need for fixed order design techniques.

  10. NASA spacecraft propulsion activities

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Tyburski, Timothy E.; Sankovic, John M.; Jankovsky, Robert S.; Reed, Brian D.; Schneider, Steven J.; Hamley, John A.; Patterson, Michael J.; Sovey, James S.

    1997-01-01

    The NASA's activities in the development of spacecraft propulsion systems are reviewed, with emphasis on program directions and recent progress made in this domain. The recent trends towards the use of smaller spacecraft and launch vehicles call for new onboard propulsion systems. The NASA's efforts are conducted within the framework of the onboard propulsion program. The research and development work carried out in relation to the different propulsion system technologies are considered: electromagnetic systems; electrostatic systems; electrothermal systems; bipropellant systems; and monopropellant systems.

  11. Analysis of a Nuclear Enhanced Airbreathing Rocket for Earth to Orbit Applications

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.; Landrum, D. Brian; Brown, Norman (Technical Monitor)

    2001-01-01

    The proposed engine concept is the Nuclear Enhanced Airbreathing Rocket (NEAR). The NEAR concept uses a fission reactor to thermally heat a propellant in a rocket plenum. The rocket is shrouded, thus the exhaust mixes with ingested air to provide additional thermal energy through combustion. The combusted flow is then expanded through a nozzle to provide thrust.

  12. European auxiliary propulsion, 1972

    NASA Technical Reports Server (NTRS)

    Holcomb, L. B.

    1972-01-01

    The chemical and electric auxiliary propulsion technology of the United Kingdom, France, and West Germany is discussed in detail, and the propulsion technology achievements of Italy, India, Japan, and Russia are reviewed. A comparison is presented of Shell 405 catalyst and a European spontaneous hydrazine catalyst called CNESRO I. Finally, conclusions are drawn regarding future trends in European auxiliary propulsion technology development.

  13. Directions in propulsion control

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.

    1990-01-01

    Discussed here is research at NASA Lewis in the area of propulsion controls as driven by trends in advanced aircraft. The objective of the Lewis program is to develop the technology for advanced reliable propulsion control systems and to integrate the propulsion control with the flight control for optimal full-system control.

  14. Propulsion and Power Generation Capabilities of a Dense Plasma Focus (DPF) Fusion System for Future Military Aerospace Vehicles

    NASA Astrophysics Data System (ADS)

    Knecht, Sean D.; Thomas, Robert E.; Mead, Franklin B.; Miley, George H.; Froning, David

    2006-01-01

    The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF) fusion system in support of a USAF advanced military aerospace vehicle concept study. This vehicle is an aerospace plane that combines clean ``aneutronic'' dense plasma focus (DPF) fusion power and propulsion technology, with advanced ``lifting body''-like airframe configurations utilizing air-breathing MHD propulsion and power technology within a reusable single-stage-to-orbit (SSTO) vehicle. The applied approach was to evaluate the fusion system details (geometry, power, T/W, system mass, etc.) of a baseline p-11B DPF propulsion device with Q = 3.0 and thruster efficiency, ɛprop = 90% for a range of thrust, Isp and capacitor specific energy values. The baseline details were then kept constant and the values of Q and ɛprop were varied to evaluate excess power generation for communication systems, pulsed-train plasmoid weapons, ultrahigh-power lasers, and gravity devices. Thrust values were varied between 100 kN and 1,000 kN with Isp of 1,500 s and 2,000 s, while capacitor specific energy was varied from 1 - 15 kJ/kg. Q was varied from 3.0 to 6.0, resulting in gigawatts of excess power. Thruster efficiency was varied from 0.9 to 1.0, resulting in hundreds of megawatts of excess power. Resulting system masses were on the order of 10's to 100's of metric tons with thrust-to-weight ratios ranging from 2.1 to 44.1, depending on capacitor specific energy. Such a high thrust/high Isp system with a high power generation capability would allow military versatility in sub-orbital space, as early as 2025, and beyond as early as 2050. This paper presents the results that coincide with a total system mass between 15 and 20 metric tons.

  15. Propulsion and Power Generation Capabilities of a Dense Plasma Focus (DPF) Fusion System for Future Military Aerospace Vehicles

    SciTech Connect

    Knecht, Sean D.; Mead, Franklin B.; Miley, George H.; Froning, David

    2006-01-20

    The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF) fusion system in support of a USAF advanced military aerospace vehicle concept study. This vehicle is an aerospace plane that combines clean 'aneutronic' dense plasma focus (DPF) fusion power and propulsion technology, with advanced 'lifting body'-like airframe configurations utilizing air-breathing MHD propulsion and power technology within a reusable single-stage-to-orbit (SSTO) vehicle. The applied approach was to evaluate the fusion system details (geometry, power, T/W, system mass, etc.) of a baseline p-11B DPF propulsion device with Q = 3.0 and thruster efficiency, {eta}prop = 90% for a range of thrust, Isp and capacitor specific energy values. The baseline details were then kept constant and the values of Q and {eta}prop were varied to evaluate excess power generation for communication systems, pulsed-train plasmoid weapons, ultrahigh-power lasers, and gravity devices. Thrust values were varied between 100 kN and 1,000 kN with Isp of 1,500 s and 2,000 s, while capacitor specific energy was varied from 1 - 15 kJ/kg. Q was varied from 3.0 to 6.0, resulting in gigawatts of excess power. Thruster efficiency was varied from 0.9 to 1.0, resulting in hundreds of megawatts of excess power. Resulting system masses were on the order of 10's to 100's of metric tons with thrust-to-weight ratios ranging from 2.1 to 44.1, depending on capacitor specific energy. Such a high thrust/high Isp system with a high power generation capability would allow military versatility in sub-orbital space, as early as 2025, and beyond as early as 2050. This paper presents the results that coincide with a total system mass between 15 and 20 metric tons.

  16. Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.

    2003-01-01

    This paper presents viewgraphs on Solar Thermal Propulsion (STP). Some of the topics include: 1) Ways to use Solar Energy for Propulsion; 2) Solar (fusion) Energy; 3) Operation in Orbit; 4) Propulsion Concepts; 5) Critical Equations; 6) Power Efficiency; 7) Major STP Projects; 8) Types of STP Engines; 9) Solar Thermal Propulsion Direct Gain Assembly; 10) Specific Impulse; 11) Thrust; 12) Temperature Distribution; 13) Pressure Loss; 14) Transient Startup; 15) Axial Heat Input; 16) Direct Gain Engine Design; 17) Direct Gain Engine Fabrication; 18) Solar Thermal Propulsion Direct Gain Components; 19) Solar Thermal Test Facility; and 20) Checkout Results.

  17. Identification of propulsion systems

    NASA Technical Reports Server (NTRS)

    Merrill, Walter; Guo, Ten-Huei; Duyar, Ahmet

    1991-01-01

    This paper presents a tutorial on the use of model identification techniques for the identification of propulsion system models. These models are important for control design, simulation, parameter estimation, and fault detection. Propulsion system identification is defined in the context of the classical description of identification as a four step process that is unique because of special considerations of data and error sources. Propulsion system models are described along with the dependence of system operation on the environment. Propulsion system simulation approaches are discussed as well as approaches to propulsion system identification with examples for both air breathing and rocket systems.

  18. Space Propulsion Technology Program Overview

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1991-01-01

    The topics presented are covered in viewgraph form. Focused program elements are: (1) transportation systems, which include earth-to-orbit propulsion, commercial vehicle propulsion, auxiliary propulsion, advanced cryogenic engines, cryogenic fluid systems, nuclear thermal propulsion, and nuclear electric propulsion; (2) space platforms, which include spacecraft on-board propulsion, and station keeping propulsion; and (3) technology flight experiments, which include cryogenic orbital N2 experiment (CONE), SEPS flight experiment, and cryogenic orbital H2 experiment (COHE).

  19. Space propulsion systems. Present performance limits and application and development trends

    NASA Technical Reports Server (NTRS)

    Buehler, R. D.; Lo, R. E.

    1981-01-01

    Typical spaceflight programs and their propulsion requirements as a comparison for possible propulsion systems are summarized. Chemical propulsion systems, solar, nuclear, or even laser propelled rockets with electrical or direct thermal fuel acceleration, nonrockets with air breathing devices and solar cells are considered. The chemical launch vehicles have similar technical characteristics and transportation costs. A possible improvement of payload by using air breathing lower stages is discussed. The electrical energy supply installations which give performance limits of electrical propulsion and the electrostatic ion propulsion systems are described. The development possibilities of thermal, magnetic, and electrostatic rocket engines and the state of development of the nuclear thermal rocket and propulsion concepts are addressed.

  20. Beamed Energy Propulsion: Research Status And Needs--Part 2

    SciTech Connect

    Birkan, Mitat

    2008-04-28

    One promising solution to the operationally responsive space is the application of remote electromagnetic energy to propel a launch vehicle into orbit. With beamed energy propulsion, one can leave the power source stationary on the ground or space, and direct heat propellant on the spacecraft with a beam from a fixed station. This permits the spacecraft to leave its power source at home, saving significant amounts of mass, greatly improving performance. This concept, which removes the mass penalty of carrying the propulsion energy source on board the vehicle, was first proposed by Arthur Kantrowitz in 1972; he invoked an extremely powerful ground based laser. The same year Michael Minovich suggested a conceptually similar 'in-space' laser rocket system utilizing a remote laser power station. In the late 1980's, Air Force Office of Scientific Research (AFOSR) funded continuous, double pulse laser and microwave propulsion while Strategic Defense Initiative Office (SDIO) funded ablative laser rocket propulsion. Currently AFOSR has been funding the concept initiated by Leik Myrabo, repetitively pulsed laser propulsion, which has been universally perceived, arguably, to be the closest for mid-term applications. This 2-part paper examines the investment strategies in beamed energy propulsion and technical challenges to be covers Part 2 covers the present research status and needs.

  1. Aerosciences, Aero-Propulsion and Flight Mechanics Technology Development for NASA's Next Generation Launch Technology Program

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.

    2003-01-01

    The Next Generation Launch Technology (NGLT) program, Vehicle Systems Research and Technology (VSR&T) project is pursuing technology advancements in aerothermodynamics, aeropropulsion and flight mechanics to enable development of future reusable launch vehicle (RLV) systems. The current design trade space includes rocket-propelled, hypersonic airbreathing and hybrid systems in two-stage and single-stage configurations. Aerothermodynamics technologies include experimental and computational databases to evaluate stage separation of two-stage vehicles as well as computational and trajectory simulation tools for this problem. Additionally, advancements in high-fidelity computational tools and measurement techniques are being pursued along with the study of flow physics phenomena, such as boundary-layer transition. Aero-propulsion technology development includes scramjet flowpath development and integration, with a current emphasis on hypervelocity (Mach 10 and above) operation, as well as the study of aero-propulsive interactions and the impact on overall vehicle performance. Flight mechanics technology development is focused on advanced guidance, navigation and control (GN&C) algorithms and adaptive flight control systems for both rocket-propelled and airbreathing vehicles.

  2. Nuclear propulsion for orbital transfer

    SciTech Connect

    Beale, G.A.; Lawrence, T.J. )

    1989-06-01

    The state of the art in nuclear propulsion for orbital transfer is discussed. Cryogenic propulsion, electric propulsion, solar-thermal propulsion and direct nuclear propulsion are examined in this context. New technologies with exceptional promise are addressed, emphasizing the particle test bed nuclear engine.

  3. Expendable launch vehicle propulsion

    NASA Technical Reports Server (NTRS)

    Fuller, Paul N.

    1991-01-01

    The current status is reviewed of the U.S. Expendable Launch Vehicle (ELV) fleet, the international competition, and the propulsion technology of both domestic and foreign ELVs. The ELV propulsion technology areas where research, development, and demonstration are most needed are identified. These propulsion technology recommendations are based on the work performed by the Commercial Space Transportation Advisory Committee (COMSTAC), an industry panel established by the Dept. of Transportation.

  4. Overview of electric propulsion

    NASA Astrophysics Data System (ADS)

    Daniłko, Dariusz

    2014-11-01

    Space Electric Rocket Test (SERT 1) was the first experiment in which electric propulsion device was sent into space. The present year marks the 50th anniversary of that particular mission that opened the door for the application of electric propulsion on board spacecrafts. We present an overview of existing electric propulsion technology along with the description of the most successful missions that followed the success of the SERT 1mission.

  5. Air-breathing hypersonic cruise - Prospects for Mach 4-7 waverider aircraft

    NASA Technical Reports Server (NTRS)

    Blankson, Isaiah M.

    1992-01-01

    In the Mach 4-7 range, waverider aircraft are considered as candidates for both short- and long-range cruise missions, as hypersonic missiles, and as high L/D highly maneuverable craft. The potential for near- and far-term application of airbreathing engines to the waverider vehicle missions and concepts is presented. Attention is focused on the cruise mission and attempts are made to compare and contrast it with the accelerator mission.

  6. Advanced Propulsion Concepts at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.

    1997-01-01

    Current interest in advanced propulsion within NASA and research activities in advanced propulsion concepts at the Jet Propulsion Laboratory are reviewed. The concepts, which include high power plasma thrusters such as lithuim-fueled Lorentz-Force-Accelerators, MEMS-scale propulsion systems, in-situ propellant utilization techniques, fusion propulsion systems and methods of using antimatter, offer the potential for either significantly enhancing space transportation capability as compared with that of traditional chemical propulsion, or enabling ambitious new missions.

  7. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  8. A high velocity impact experiment of micro-scale ice particles using laser-driven system

    NASA Astrophysics Data System (ADS)

    Yu, Hyeonju; Kim, Jungwook; Yoh, Jack J.

    2014-11-01

    A jet engine for high speed air breathing propulsion is subject to continuous wear as a result of impacts of micro-scale ice particles during a flight in the atmosphere. The inlet duct and compressor blades are exposed to on-coming frozen moisture particles that may result in the surface damage and significantly shorten the designed lifetime of the aircraft. Under such prolonged high-speed impact loading, the performance parameters such as flight instability and power loss of a jet engine can be significantly degraded. In this work, a laser-driven system was designed to accelerate micro-scale ice particles to the velocity up to Mach 2 using a Q-switched Nd:YAG laser beam at 100-600 mJ with 1064 nm wavelength and 9 ns pulse duration. The high speed images (Phantom v711) and double exposure shadowgraphs were used to calculate the average velocity of ice particles and their deceleration. Velocity Interferometer System for Any Reflector measurements were also utilized for the analysis of free surface velocity of a metal foil in order to understand the interfacial dynamics between the impacting particles and accepting metal target. The velocity of our ice particles is sufficiently fast for studying the effect of moisture particle collision on an air-breathing duct of high speed aircraft, and thus the results can provide insight into how minute space debris or micrometeorites cause damage to the orbiting spacecraft at large.

  9. Sensor failure and multivariable control for airbreathing propulsion systems. Ph.D. Thesis - Dec. 1979 Final Report

    NASA Technical Reports Server (NTRS)

    Behbehani, K.

    1980-01-01

    A new sensor/actuator failure analysis technique for turbofan jet engines was developed. Three phases of failure analysis, namely detection, isolation, and accommodation are considered. Failure detection and isolation techniques are developed by utilizing the concept of Generalized Likelihood Ratio (GLR) tests. These techniques are applicable to both time varying and time invariant systems. Three GLR detectors are developed for: (1) hard-over sensor failure; (2) hard-over actuator failure; and (3) brief disturbances in the actuators. The probability distribution of the GLR detectors and the detectability of sensor/actuator failures are established. Failure type is determined by the maximum of the GLR detectors. Failure accommodation is accomplished by extending the Multivariable Nyquest Array (MNA) control design techniques to nonsquare system designs. The performance and effectiveness of the failure analysis technique are studied by applying the technique to a turbofan jet engine, namely the Quiet Clean Short Haul Experimental Engine (QCSEE). Single and multiple sensor/actuator failures in the QCSEE are simulated and analyzed and the effects of model degradation are studied.

  10. Net ion fluxes in the facultative air-breather Hoplosternum littorale (tamoata) and the obligate air-breather Arapaima gigas (pirarucu) exposed to different Amazonian waters.

    PubMed

    Baldisserotto, Bernardo; Copatti, Carlos E; Gomes, Levy C; Chagas, Edsandra C; Brinn, Richard P; Roubach, Rodrigo

    2008-12-01

    Fishes that live in the Amazon environment may be exposed to several kinds of water: black water (BW), acidic black water (pH 3.5) (ABW) and white water (WW), among others. The aim of the present study was to analyze net ion fluxes in the facultative air-breather Hoplosternum littorale (tamoata) and the obligate air-breather Arapaima gigas (pirarucu) exposed to different types of water. Fishes were acclimated in well water and later placed in individual chambers containing one type of water for ion flux measurements. After 4 h, the water in the chambers was replaced by a different type of water. The transfer of both species to ABW (independent of previous water exposure) increased net ion loss. Tamoatas transferred from ABW to BW or WW presented a net ion influx, but pirarucus showed only small changes on net ion efflux. These results allow us to conclude that tamoatas and pirarucus present differences in terms of ion regulation but that the general aspects of the ion flux are similar: (1) exposure to ABW led to net ion loss; (2) transfer from BW to WW or vice-versa induced only minor changes on net ion fluxes. These observations demonstrate that any osmoregulatory difficulties encountered by either species during changes between these latter two waters can be easily overcome. PMID:18958598

  11. Optimal propulsive efficiency of vortex enhanced propulsion

    NASA Astrophysics Data System (ADS)

    Whittlesey, Robert; Dabiri, John

    2013-11-01

    The formation of coherent vortex rings in the jet wake of a vehicle has been shown to increase the propulsive efficiency of self-propelled vehicles. However, the effect of varying vortex ring formation characteristics has not been explored for vehicles at Reynolds numbers comparable to autonomous or manned submersible vehicles. In this work, we considered a range of vortex ring formation characteristics and found a peak in the propulsive efficiency where the vortex rings generated are coincident with the onset of vortex ring pinch off. This peak corresponds to a 22% increase in the propulsive efficiency for the vortex-enhanced wake compared to a steady jet. We gratefully acknowledge the support of the Office of Naval Research Grants N000140810918 and N000141010137.

  12. Electric Propulsion Apparatus

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor)

    2013-01-01

    An electric propulsion machine includes an ion thruster having an annular discharge chamber housing an anode having a large surface area. The ion thruster includes flat annular ion optics with a small span to gap ratio. Optionally, a second electric propulsion thruster may be disposed in a cylindrical space disposed within an interior of the annulus.

  13. NASA's Propulsion Research Laboratory

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

  14. Nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1991-01-01

    This document is presented in viewgraph form, and the topics covered include the following: (1) the direct fission-thermal propulsion process; (2) mission applications of direct fission-thermal propulsion; (3) nuclear engines for rocket vehicles; (4) manned mars landers; and (5) particle bed reactor design.

  15. Advanced Chemical Propulsion

    NASA Technical Reports Server (NTRS)

    Alexander, Leslie, Jr.

    2006-01-01

    Advanced Chemical Propulsion (ACP) provides near-term incremental improvements in propulsion system performance and/or cost. It is an evolutionary approach to technology development that produces useful products along the way to meet increasingly more demanding mission requirements while focusing on improving payload mass fraction to yield greater science capability. Current activities are focused on two areas: chemical propulsion component, subsystem, and manufacturing technologies that offer measurable system level benefits; and the evaluation of high-energy storable propellants with enhanced performance for in-space application. To prioritize candidate propulsion technology alternatives, a variety of propulsion/mission analyses and trades have been conducted for SMD missions to yield sufficient data for investment planning. They include: the Advanced Chemical Propulsion Assessment; an Advanced Chemical Propulsion System Model; a LOx-LH2 small pumps conceptual design; a space storables propellant study; a spacecraft cryogenic propulsion study; an advanced pressurization and mixture ratio control study; and a pump-fed vs. pressure-fed study.

  16. Electric propulsion cost estimation

    NASA Technical Reports Server (NTRS)

    Palaszewski, B. A.

    1985-01-01

    A parametric cost model for mercury ion propulsion modules is presented. A detailed work breakdown structure is included. Cost estimating relationships were developed for the individual subsystems and the nonhardware items (systems engineering, software, etc.). Solar array and power processor unit (PPU) costs are the significant cost drivers. Simplification of both of these subsystems through applications of advanced technology (lightweight solar arrays and high-efficiency, self-radiating PPUs) can reduce costs. Comparison of the performance and cost of several chemical propulsion systems with the Hg ion module are also presented. For outer-planet missions, advanced solar electric propulsion (ASEP) trip times and O2/H2 propulsion trip times are comparable. A three-year trip time savings over the baselined NTO/MMH propulsion system is possible with ASEP.

  17. Large eddy simulation modelling of combustion for propulsion applications.

    PubMed

    Fureby, C

    2009-07-28

    Predictive modelling of turbulent combustion is important for the development of air-breathing engines, internal combustion engines, furnaces and for power generation. Significant advances in modelling non-reactive turbulent flows are now possible with the development of large eddy simulation (LES), in which the large energetic scales of the flow are resolved on the grid while modelling the effects of the small scales. Here, we discuss the use of combustion LES in predictive modelling of propulsion applications such as gas turbine, ramjet and scramjet engines. The LES models used are described in some detail and are validated against laboratory data-of which results from two cases are presented. These validated LES models are then applied to an annular multi-burner gas turbine combustor and a simplified scramjet combustor, for which some additional experimental data are available. For these cases, good agreement with the available reference data is obtained, and the LES predictions are used to elucidate the flow physics in such devices to further enhance our knowledge of these propulsion systems. Particular attention is focused on the influence of the combustion chemistry, turbulence-chemistry interaction, self-ignition, flame holding burner-to-burner interactions and combustion oscillations. PMID:19531515

  18. Beamed energy for space craft propulsion - Conceptual status and development potential

    NASA Technical Reports Server (NTRS)

    Sercel, Joel C.; Frisbee, Robert H.

    1987-01-01

    This paper outlines the results of a brief study that sought to identify and characterize beamed energy spacecraft propulsion concepts that may have positive impact on the economics of space industrialization. It is argued that the technology of beamed energy propulsion systems may significantly improve the prospects for near-term colonization of outer space. It is tentatively concluded that, for space industrialization purposes, the most attractive near-term beamed energy propulsion systems are based on microwave technology. This conclusion is reached based on consideration of the common features that exist between beamed microwave propulsion and the Solar Power Satellite (SPS) concept. Laser power beaming also continues to be an attractive option for spacecraft propulsion due to the reduced diffraction-induced beam spread afforded by laser radiation wavelengths. The conceptual status and development potential of a variety of beamed energy propulsion concepts are presented. Several alternative space transportation system concepts based on beamed energy propulsion are described.

  19. Distributed Propulsion Vehicles

    NASA Technical Reports Server (NTRS)

    Kim, Hyun Dae

    2010-01-01

    Since the introduction of large jet-powered transport aircraft, the majority of these vehicles have been designed by placing thrust-generating engines either under the wings or on the fuselage to minimize aerodynamic interactions on the vehicle operation. However, advances in computational and experimental tools along with new technologies in materials, structures, and aircraft controls, etc. are enabling a high degree of integration of the airframe and propulsion system in aircraft design. The National Aeronautics and Space Administration (NASA) has been investigating a number of revolutionary distributed propulsion vehicle concepts to increase aircraft performance. The concept of distributed propulsion is to fully integrate a propulsion system within an airframe such that the aircraft takes full synergistic benefits of coupling of airframe aerodynamics and the propulsion thrust stream by distributing thrust using many propulsors on the airframe. Some of the concepts are based on the use of distributed jet flaps, distributed small multiple engines, gas-driven multi-fans, mechanically driven multifans, cross-flow fans, and electric fans driven by turboelectric generators. This paper describes some early concepts of the distributed propulsion vehicles and the current turboelectric distributed propulsion (TeDP) vehicle concepts being studied under the NASA s Subsonic Fixed Wing (SFW) Project to drastically reduce aircraft-related fuel burn, emissions, and noise by the year 2030 to 2035.

  20. Advanced Propulsion Research Interest in Materials for Propulsion

    NASA Technical Reports Server (NTRS)

    Cole, John

    2003-01-01

    This viewgraph presentation provides an overview of material science and technology in the area of propulsion energetics. The authors note that conventional propulsion systems are near peak performance and further refinements in manufacturing, engineering design and materials will only provide incremental increases in performance. Energetic propulsion technologies could potential solve the problems of energy storage density and energy-to-thrust conversion efficiency. Topics considered include: the limits of thermal propulsion systems, the need for energetic propulsion research, emerging energetic propulsion technologies, materials research needed for advanced propulsion, and potential research opportunities.

  1. Space station propulsion technology

    NASA Technical Reports Server (NTRS)

    Norman, A. M.; Briley, G. L.; Evans, S. A.

    1987-01-01

    The objectives of this program are to provide a demonstration of hydrogen/oxygen propulsion technology readiness for the initial operational capability (IOC) space station application, specifically gaseous hydrogen/oxygen and warm hydrogen thruster concepts, and to establish a means for evolving from the IOC space station propulsion system (SSPS) to that required to support and interface with advanced station functions. These objectives were met by analytical studies and by furnishing a propulsion test bed to the Marshall Space Flight Center for testing.

  2. Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced NEP.

  3. Ion propulsion cost effectivity

    NASA Technical Reports Server (NTRS)

    Zafran, S.; Biess, J. J.

    1978-01-01

    Ion propulsion modules employing 8-cm thrusters and 30-cm thrusters were studied for Multimission Modular Spacecraft (MMS) applications. Recurring and nonrecurring cost elements were generated for these modules. As a result, ion propulsion cost drivers were identified to be Shuttle charges, solar array, power processing, and thruster costs. Cost effective design approaches included short length module configurations, array power sharing, operation at reduced thruster input power, simplified power processing units, and power processor output switching. The MMS mission model employed indicated that nonrecurring costs have to be shared with other programs unless the mission model grows. Extended performance missions exhibited the greatest benefits when compared with monopropellant hydrazine propulsion.

  4. Prospective of Photon Propulsion for Interstellar Flight

    NASA Astrophysics Data System (ADS)

    Bae, Young K.

    Mastering photon propulsion is proposed to be the key to overcoming the limit of the current propulsion technology based on conventional rocketry and potentially opening a new space era. A perspective on photon propulsion is presented here to elucidate that interstellar manned roundtrip flight could be achievable in a century within a frame of exiting scientific principles, once the required existing technologies are further developed. It is shown that the developmental pathway towards the interstellar flight demands not only technological breakthroughs, but consistent long-term world-scale economic interest and investment. Such interest and investment will result from positive financial returns from routine interstellar commutes that can transport highly valuable commodities in a profitable manner. The Photonic Railway, a permanent energy-efficient transportation structure based on the Beamed-Laser Propulsion (BLP) by Forward and the Photonic Laser Thruster (PLT) by the author, is proposed to enable such routine interstellar commutes via Spacetrains. A four-phased evolutionary developmental pathway towards the Interstellar Photonic Railway is proposed. Each phase poses evolutionary, yet daunting, technological and financial challenges that need to be overcome within each time frame of 20 _ 30 years, and is projected to generate multitudes of applications that would lead to sustainable reinvestment into its development. If successfully developed, the Photonic Railway would bring about a quantum leap in the human economic and social interests in space from explorations to terraforming, mining, colonization, and permanent habitation in exoplanets.

  5. Advanced beamed-energy and field propulsion concepts

    NASA Technical Reports Server (NTRS)

    Myrabo, L. N.

    1983-01-01

    Specific phenomena which might lead to major advances in payload, range and terminal velocity of very advanced vehicle propulsion are studied. The effort focuses heavily on advanced propulsion spinoffs enabled by current government-funded investigations in directed-energy technology: i.e., laser, microwave, and relativistic charged particle beams. Futuristic (post-year 2000) beamed-energy propulsion concepts which indicate exceptional promise are identified and analytically investigated. The concepts must be sufficiently developed to permit technical understanding of the physical processes involved, assessment of the enabling technologies, and evaluation of their merits over conventional systems. Propulsion concepts that can be used for manned and/or unmanned missions for purposes of solar system exploration, planetary landing, suborbital flight, transport to orbit, and escape are presented. Speculations are made on the chronology of milestones in beamed-energy propulsion development, such as in systems applications of defense, satellite orbit-raising, global aerospace transportation, and manned interplanetary carriers.

  6. Propulsion technology discipline

    NASA Technical Reports Server (NTRS)

    Jones, Lee W.

    1990-01-01

    Viewgraphs on propulsion technology discipline for Space Station Freedom are presented. Topics covered include: water electrolysis O2/H2 system; hydrazine system advancements; common technology; fluids disposal; and storable bipropellant system.

  7. Nuclear Thermal Propulsion (NTP)

    NASA Video Gallery

    NASA's history with nuclear thermal propulsion (NTP) technology goes back to the earliest days of the Agency. The Manned Lunar Rover Vehicle and the Nuclear Engine for Rocket Vehicle Applications p...

  8. Space propulsion technology overview

    NASA Technical Reports Server (NTRS)

    Pelouch, J. J., Jr.

    1979-01-01

    Chemical and electric propulsion technologies for operations beyond the shuttle's orbit with focus on future mission needs and economic effectiveness is discussed. The adequacy of the existing propulsion state-of-the-art, barriers to its utilization, benefit of technology advances, and the prognosis for advancement are the themes of the discussion. Low-thrust propulsion for large space systems is cited as a new technology with particularly high benefit. It is concluded that the shuttle's presence for at least two decades is a legitimate basis for new propulsion technology, but that this technology must be predicted on an awareness of mission requirements, economic factors, influences of other technologies, and real constraints on its utilization.

  9. Space propulsion technology overview

    NASA Technical Reports Server (NTRS)

    Pelouch, J. J., Jr.

    1979-01-01

    This paper discusses Shuttle-era, chemical and electric propulsion technologies for operations beyond the Shuttle's orbit with focus on future mission needs and economic effectiveness. The adequacy of the existing propulsion state-of-the-art, barriers to its utilization, benefit of technology advances, and the prognosis for advancement are the themes of the discussion. Low-thrust propulsion for large space systems is cited as a new technology with particularly high benefit. It is concluded that the Shuttle's presence for at least two decades is a legitimate basis for new propulsion technology, but that this technology must be predicated on an awareness of mission requirements, economic factors, influences of other technologies, and real constraints on its utilization.

  10. Solar Electric Propulsion (SEP)

    NASA Video Gallery

    Future Human Exploration requires high power solar electric propulsion vehicles to move cargo and humans beyond Low Earth Orbit, which requires large light weight arrays, high power processing, and...

  11. Solar Thermal Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Sercel, J. C.

    1986-01-01

    Paper analyzes potential of solar thermal rockets as means of propulsion for planetary spacecraft. Solar thermal rocket uses concentrated Sunlight to heat working fluid expelled through nozzle to produce thrust.

  12. Advanced propulsion on a shoestring

    SciTech Connect

    Lerner, E.J.

    1990-05-01

    Consideration is given to propulsion concepts under study by NASA Advanced Propulsion Research Program. These concepts include fusion, antimatter-matter annihilation, microwave electrothermal, and electron cyclotron resonance propulsion. Results from programs to develop fusion technologies are reviewed, including compact fusion devices and inertial confinement experiments. Problems concerning both antimatter and fusion propulsion concepts are examined and the economic issues related to propulsion research are discussed.

  13. Mission applications of electric propulsion

    NASA Technical Reports Server (NTRS)

    Atkins, K. L.

    1974-01-01

    This paper reviews the mission applications of electric propulsion. The energy requirements of candidate high-energy missions gaining in NASA priority are used to highlight the potential of electric propulsion. Mission-propulsion interfaces are examined to point out differences between chemical and electric applications. Brief comparisons between ballistic requirements and capabilities and those of electric propulsion show that electric propulsion is presently the most practical and perhaps the only technology which can accomplish missions with these energy requirements.

  14. Vehicle propulsion system

    SciTech Connect

    Ridgway, S.L.

    1981-11-17

    A hybrid vehicle propulsion system is disclosed which utilizes an internal combustion engine, an afterburner, and a steam engine in combination for improved efficiency and reduced emission of pollutants. The afterburner is provided to reduce the level of pollutants emitted and to increase the temperature of the exhaust gases from the internal combustion engine. The heat from the exhaust gases, together with the heat removed from the internal combustion cylinders, is then utilized in the steam engine to provide additional propulsion.

  15. Electric propulsion - Now

    NASA Technical Reports Server (NTRS)

    Gerpheide, J. H.

    1974-01-01

    The state of the art of electric propulsion technology is discussed with a review of the many difficult engineering problems which must be resolved before the incorporation of electric propulsion in space missions. Interferences with the spacecraft and its scientific instrumentation, conducted and radiated electromagnetic interferences during the switching and processing of large electrical loads, and mercury and other eroded materials deposition on the spacecraft are indicated among the engineering and design challenges to be overcome and resolved.

  16. Electric propulsion technology

    NASA Technical Reports Server (NTRS)

    Finke, R. C.

    1980-01-01

    The advanced electric propulsion program is directed towards lowering the specific impulse and increasing the thrust per unit of ion thruster systems. In addition, electrothermal and electromagnetic propulsion technologies are being developed to attempt to fill the gap between the conventional ion thruster and chemical rocket systems. Most of these new concepts are exagenous and are represented by rail accelerators, ablative Teflon thrusters, MPD arcs, Free Radicals, etc. Endogenous systems such as metallic hydrogen offer great promise and are also being pursued.

  17. Advanced propulsion concepts

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1991-01-01

    A variety of Advanced Propulsion Concepts (APC) is discussed. The focus is on those concepts that are sufficiently near-term that they could be developed for the Space Exploration Initiative. High-power (multi-megawatt) electric propulsion, solar sails, tethers, and extraterrestrial resource utilization concepts are discussed. A summary of these concepts and some general conclusions on their technology development needs are presented.

  18. Transonic airframe propulsion integration

    NASA Technical Reports Server (NTRS)

    Coltrin, Robert E.; Sanders, Bobby W.; Bencze, Daniel P.

    1992-01-01

    This chart shows the time line for HSR propulsion/airframe integration program. HSR Phase 1 efforts are underway in both propulsion and aerodynamics. The propulsion efforts focus on cycles, inlets combustors and nozzles that will be required to reduce nitrogen oxide (NOX) at cruise and noise at takeoff and landing to acceptable levels. The aerodynamic efforts concentrate on concepts that will reduce sonic booms and increase the lift/drag (L/D) ratio for the aircraft. The Phase 2 critical propulsion component technology program will focus on large scale demonstrators of the inlet, fan, combustor, and nozzle. The hardware developed here will feed into the propulsion system program which will demonstrate overall system technology readiness, particularly in the takeoff and supersonic cruise speed ranges. The Phase 2 aerodynamic performance and vehicle integration program will provide a validated data base for advanced airframe/control/integration concepts over the full HSR speed range. The results of this program will also feed into the propulsion system demonstration program, particularly in the critical transonic arena.

  19. Ion Beam Propulsion Study

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.

  20. Solar Thermal Propulsion Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. This image, taken during the test, depicts the light being concentrated into the focal point inside the vacuum chamber. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  1. Hypersonic airbreathing missile concepts under study at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Johnston, P. J.; Cubbage, J. M.; Dillon, J. L.; Richie, C. B.; Marcum, D. C., Jr.; Carlson, C. H.

    1982-01-01

    The design and performance of several tactical and strategic hypersonic airbreathing missile concepts under study at the NASA Langley Research Center are discussed from an evolutionary perspective. A mid- and chin inlet missile design, constrained to the Navy's vertical box launcher, was investigated; a performance comparison is presented that is favorable to the mid-inlet approach. Parasol wing, confined flow field, and spatula-like cruise missile configurations were examined with strategic applications in mind. The preliminary results are encouraging with respect to aerodynamic and volumetric efficiency and choice of engine integration schemes.

  2. Cubic PdNP-based air-breathing cathodes integrated in glucose hybrid biofuel cells

    NASA Astrophysics Data System (ADS)

    Faggion Junior, D.; Haddad, R.; Giroud, F.; Holzinger, M.; Maduro de Campos, C. E.; Acuña, J. J. S.; Domingos, J. B.; Cosnier, S.

    2016-05-01

    Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm-2 at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone/glucose dehydrogenase-based anode to form a complete glucose/O2 hybrid bio-fuel cell providing an open circuit voltage of 0.554 V and delivering a maximal power output of 184 +/- 21 μW cm-2 at 0.19 V and pH 7.0.Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm-2 at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone

  3. Comparisons of rocket and air-breathing vehicle concepts for earth-to-orbit transportarion

    NASA Astrophysics Data System (ADS)

    Dorrington, G. E.

    1990-07-01

    To illustrate that there is ample room for improvement in earth-to-orbit reliability, transportation cost and environmental cleanliness, some future European launch vehicle concepts are presented. Varying assumptions of technology level and operational strategy offer a wide range of system/subsystem options for consideration. Specific examples cited include: the advanced reusable single-stage VTOL all-rocket vehicles, the all-liquid hydrogen-oxygen variants of Ariane 5, and the advanced one-and-a-half-stage horizontal take-off air-breathing vehicles.

  4. Stability and control characteristics of an air-breathing missile configuration having a forward located inlet

    NASA Technical Reports Server (NTRS)

    Sawyer, W. C.; Hayes, C.

    1976-01-01

    An investigation was made to determine the aerodynamic characteristics of an airbreathing missile configuration having a forward located inlet. Control was provided by cruciform tail surfaces. Aerodynamic data were obtained for the body-tail configuration alone and with planar or cruciform wings. At Mach numbers from 2.86 to 4.63, the model had internal flow. At Mach numbers from 1.70 to 2.86, the internal duct was closed, and an inlet fairing was installed to simulate boost conditions.

  5. Aerodynamic characteristics of a series of single-inlet air-breathing missile configurations

    NASA Technical Reports Server (NTRS)

    Hayes, C.

    1983-01-01

    A series of air-breathing missile configurations was investigated to provide a data base for the design of such missiles. The model could be configured with either a single axisymmetric or a two dimensional inlet located at the bottom of the body. Two tail configurations were investigated: a tri-tail and an X-tail. The tail surfaces could be deflected to provide pitch control. A wing could be located above the inlet on the center line of the model. Tests were made at supersonic Mach numbers with the inlet open and internal flow, and at subsonic-transonic Mach numbers with the internal duct closed and no internal flow.

  6. Analysis of efficiency of using hybrid propulsion for accelerating small-size rockets starting from the earth surface

    NASA Astrophysics Data System (ADS)

    Fomin, V. M.; Zvegintsev, V. I.; Mazhuls, I. I.; Shumskii, V. V.

    2010-12-01

    The flight trajectories of a hypothetical small-size rocket starting from the Earth surface and driven by hybrid propulsion, which involves a solid-propellant rocket motor (SRM) and a ramjet-type air-breathing engine (ramjet), are calculated and analyzed. The basic varied parameter is the ratio of the fuel masses used for operation of various engine types with the total fuel mass being unchanged. The objective function is the flight range of the rocket under different initial conditions. Based on a model problem considered as an example, it is demonstrated that the flight range can be substantially increased by using hybrid propulsion (SRM and ramjet), as compared with the vehicle having identical mass and size characteristics and using the SRM only.

  7. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schmidt, George R.; Santarius, John F.; Turchi, Peter J.; Siemon, Richard E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The need for fusion propulsion for interplanetary flights is discussed. For a propulsion system, there are three important system attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For efficient and affordable human exploration of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion obviously cannot meet the requirement in propellant exhaust velocity. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the fission energy to heat a low atomic weight propellant produces propellant velocity of the order of 10 kinds. Alternatively the fission energy can be converted into electricity that is used to accelerate particles to high exhaust velocity. However, the necessary power conversion and conditioning equipment greatly increases the mass of the propulsion system. Fundamental considerations in waste heat rejection and power conditioning in a fission electric propulsion system place a limit on its jet specific power to the order of about 0.2 kW/kg. If fusion can be developed for propulsion, it appears to have the best of all worlds - it can provide the largest absolute amount of energy, the propellant exhaust velocity (> 100 km/s), and the high specific jet power (> 10 kW/kg). An intermediate step towards fusion propulsion might be a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. There are similarities as well as differences between applying fusion to propulsion and to terrestrial electrical power generation. The similarities are the underlying plasma and fusion physics, the enabling component technologies, the computational and the diagnostics capabilities. These physics and

  8. Cold-Flow Propulsion Research Test

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An engineer at the Marshall Space Flight Center (MSFC) Wind Tunnel Facility uses lasers to measure the velocity and gradient distortion across an eight inch curved pipe with joints and turning valves during a cold-flow propulsion research test; simulating the conditions found in the X-33's hydrogen feedline. Lasers are used because they are non-intrusive and do not disturb the flow like a probe would. The feedline supplies propellants to the turbo pump. The purpose of this project was to design the feedline to provide uniform flow into the turbo pump.

  9. Gravitational Wave Propulsion

    NASA Astrophysics Data System (ADS)

    Fontana, Giorgio

    2005-02-01

    There is only one experimental proof that gravitational waves exist. With such a limitation, it may seem premature to suggest the possibility that gravitational waves can became a preferred space propulsion technique. The present understanding of the problem indicates that this is not the case. The emission of gravitational waves from astrophysical sources has been confirmed by observation, the respective detection at large distance from the source is difficult and actually we have no confirmation of a successful detection. Therefore the required preliminary discovery has been already made. This opinion is enforced by many different proposals for building the required powerful gravitational wave generators that have recently appeared in the literature and discussed at conferences. It is no longer reasonable to wait for additional confirmation of the existence of gravitational waves to start a program for building generators and testing their possible application to space travel. A vast literature shows that gravitational waves can be employed for space propulsion. Gravitational wave rockets have been proposed, non-linearity of Einstein equations allows the conversion of gravitational waves to a static gravitational field and ``artificial gravity assist'' may become a new way of travelling in space-time. Different approaches to gravitational wave propulsion are reviewed and compared. Gravitational wave propulsion is also compared to traditional rocket propulsion and an undeniable advantage can be demonstrated in terms of efficiency and performance. Testing the predictions will require gravitational wave generators with high power and wavelength short enough for producing high energy densities. Detectors designed for the specific application must be developed, taking into account that non-linearity effects are expected. The study and development of Gravitational wave propulsion is a very challenging endeavor, involving the most complex theories, sophisticated

  10. The NASA ASTP Combined-Cycle Propulsion Database Project

    NASA Technical Reports Server (NTRS)

    Hyde, Eric H.; Escher, Daric W.; Heck, Mary T.; Roddy, Jordan E.; Lyles, Garry (Technical Monitor)

    2000-01-01

    The National Aeronautics and Space Administration (NASA) communicated its long-term R&D goals for aeronautics and space transportation technologies in its 1997-98 annual progress report (Reference 1). Under "Pillar 3, Goal 9" a 25-year-horizon set of objectives has been stated for the Generation 3 Reusable Launch Vehicle ("Gen 3 RLV") class of space transportation systems. An initiative referred to as "Spaceliner 100" is being conducted to identify technology roadmaps in support of these objectives. Responsibility for running "Spaceliner 100" technology development and demonstration activities have been assigned to NASA's agency-wide Advanced Space Transportation Program (ASTP) office located at the Marshall Space Flight Center. A key technology area in which advances will be required in order to meet these objectives is propulsion. In 1996, in order to expand their focus beyond "allrocket" propulsion systems and technologies (see Appendix A for further discussion), ASTP initiated technology development and demonstration work on combined-cycle airbreathing/rocket propulsion systems (ARTT Contracts NAS8-40890 through 40894). Combined-cycle propulsion (CCP) activities (see Appendix B for definitions) have been pursued in the U.S. for over four decades, resulting in a large documented knowledge base on this subject (see Reference 2). In the fall of 1999 the Combined-Cycle Propulsion Database (CCPD) project was established with the primary purpose of collecting and consolidating CCP related technical information in support of the ASTP's ongoing technology development and demonstration program. Science Applications International Corporation (SAIC) was selected to perform the initial development of the Database under its existing support contract with MSFC (Contract NAS8-99060) because of the company's unique combination of capabilities in database development, information technology (IT) and CCP knowledge. The CCPD is summarized in the descriptive 2-page flyer appended

  11. Experimental Research on Induction Systems of an Air-breathing Valveless Pulse Detonation Engine

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-wu; Chen, Xinggu; Zheng, Long-xi; Peng, Changxin; Yan, Chuan-jun

    2012-06-01

    An air-breathing valveless PDE model was designed and manufactured, which was made up of subsonic inlet, mixing chamber, ignition chamber, detonation chamber. The total pressure recovery coefficient, flux coefficient and intake resistance with six different induction systems were measured by a semi free subsonic flow field. The proof-of-principle experiments of PDE model with different induction systems were all successfully carried out, by using liquid gasoline-air mixture with low-energy system (total stored energy less than 50 mJ). The measured detonation wave pressure ratio was very close to that of C-J detonation. The air-breathing PDE model was easy to initiate and worked in good condition. The deflagration to detonation transition (DDT) and operation frequency effect on pressure traces were also investigated by experiments. The results indicated the oscillation of pressure peak at P6 enhanced with the operation frequency increased. DDT accomplished before P6 and the DDT distance was about 0.9 m (from the ignitor).

  12. Ammonia as a respiratory gas in water and air-breathing fishes.

    PubMed

    Randall, David J; Ip, Yuen K

    2006-11-01

    Ammonia is produced in the liver and excreted as NH(3) by diffusion across the gills. Elevated ammonia results in an increase in gill ventilation, perhaps via stimulation of gill oxygen chemo-receptors. Acidification of the water around the fish by carbon dioxide and acid excretion enhances ammonia excretion and constitutes "environmental ammonia detoxification". Fish have difficulties in excreting ammonia in alkaline water or high concentrations of environmental ammonia, or when out of water. The mudskipper, Periphthalmodon schlosseri, is capable of active NH(4)(+) transport, maintaining low internal levels of ammonia. To prevent a back flux of NH(3), these air-breathing fish can increase gill acid excretion and reduce the membrane NH(3) permeability by modifying the phospholipid and cholesterol compositions of their skin. Several air-breathing fish species can excrete ammonia into air through NH(3) volatilization. Some fish detoxify ammonia to glutamine or urea. The brains of some fish can tolerate much higher levels of ammonia than other animals. Studies of these fish may offer insights into the nature of ammonia toxicity in general. PMID:16731054

  13. Cubic PdNP-based air-breathing cathodes integrated in glucose hybrid biofuel cells.

    PubMed

    Faggion Junior, D; Haddad, R; Giroud, F; Holzinger, M; Maduro de Campos, C E; Acuña, J J S; Domingos, J B; Cosnier, S

    2016-05-21

    Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm(-2) at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone/glucose dehydrogenase-based anode to form a complete glucose/O2 hybrid bio-fuel cell providing an open circuit voltage of 0.554 V and delivering a maximal power output of 184 ± 21 μW cm(-2) at 0.19 V and pH 7.0. PMID:27142300

  14. Ion propulsion for communications satellites

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.

    1984-01-01

    In a recent study of potential applications for electric propulsion, it was determined that ion propulsion can provide North-South stationkeeping (NSSK) for communication satellites in geosynchronous orbit with appreciably less mass than chemical propulsion. While this finding is not new, the margin of benefit over advanced chemical propulsion technology depends strongly on the ion propulsion system specifications. Full advantage must be taken of the under-utilized stored energy available from the communication satellite's batteries. This paper describes a methodology for evaluating the benefits obtained in using ion propulsion for NSSK, both in terms of the mass reduction and its economic value.

  15. Efficiency of fish propulsion.

    PubMed

    Maertens, A P; Triantafyllou, M S; Yue, D K P

    2015-08-01

    The system efficiency of a self-propelled flexible body is ill-defined, hence we introduce the concept of quasi-propulsive efficiency, defined as the ratio of the power needed to tow a body in rigid-straight condition over the power it requires for self-propulsion, both measured for the same speed. Through examples we show that the quasi-propulsive efficiency is a rational non-dimensional metric of the propulsive fitness of fish and fish-like mechanisms, consistent with the goal to minimize fuel consumption under size and velocity constraints. We perform two-dimensional viscous simulations and apply the concept of quasi-propulsive efficiency to illustrate and discuss the efficiency of two-dimensional undulating foils employing first carangiform and then anguilliform kinematics. We show that low efficiency may be due to adverse body-propulsor hydrodynamic interactions, which cannot be accounted for by an increase in friction drag, as done previously, since at the Reynolds number Re = 5 000 considered in the simulations, pressure is a major contributor to both thrust and drag. PMID:26226349

  16. Nanosatellite Propulsion Development Program

    NASA Technical Reports Server (NTRS)

    Gagosian, J. S.; Rhee, M. S.; Zakrzwski, C. M.

    1999-01-01

    Earth-orbiting nanosatellite constellations are a unique and exciting means toward fulfilling part of the mission of the Goddard Space Flight Center (GSFC). These constellations, which may consist of several hundred 10-kg spacecraft, present unique challenges in the area of propulsion. Many mission concepts require significant delta-v and attitude control capability to reside in the nanosatellites. In response to requirements from mission feasibility studies, such as the Magnetospheric Constellation study, the GSFC has initiated industry and government partnerships to develop enabling propulsion technologies. The largest challenge has been to meet the power constraints of nanosatellites. These power issues, combined with the high thrust required by many of the missions studied, have led the GSFC to concentrate its efforts on chemical propulsion technology. Electric propulsion technologies capable of performing efficiently at very low power are also of interest to the GSFC as potential candidates for nanosatellite formation flying missions. This paper provides the status of specific industrial or government partnerships undertaken by the GSFC to develop nano/micro propulsion components. Three specific technologies are described in detail: 1) Nanosatellite Solid Rocket Motor Prototype 2) Ultra-Low-Power Cold Gas Thruster for Spin-Axis Precession 3) Micro-Machined Solid-Propellant Gas Generators.

  17. Mechanisms of Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Fisch, Nathaniel J.

    2004-11-01

    The technology of electric propulsion evolved to overcome the high propellant weight associated with propulsion by chemical means. As opposed to ejecting propellant at velocities of kilometers per second, exhaust velocities of plasma at tens of kilometers per second and more could be accomplished through electrical means. Although higher exhaust velocities require higher on-board power, the reduced propellant requirements facilitate a large variety of space transportation missions, such as orbit-raising, station-keeping, or other propulsion missions requiring the conservation of propellant mass such as interplanetary flight. To produce thrust by the application of electric forces, plasma can be accelerated directly, or ions can be accelerated and then neutralized to form flowing neutral plasma. The different mechanisms of acceleration are embodied in such thrust devices as ion thrusters, Hall thrusters, magnetoplasmadynamic thrusters, or arcjets. In each method of electric propulsion, different technological limitations arise from basic plasma properties. This talk reviews the basic acceleration mechanisms at play in contemporary means of electric propulsion within the broader context of accelerating plasma by any means.

  18. Nuclear concepts/propulsion

    NASA Technical Reports Server (NTRS)

    Miller, Thomas J.

    1993-01-01

    Nuclear thermal and nuclear electric propulsion systems will enable and/or enhance important space exploration missions to the moon and Mars. Current efforts are addressing certain research areas, although NASA and DOE still have much work yet to do. Relative to chemical systems, nuclear thermal propulsion offers the potential of reduced vehicle weight, wider launch windows. and shorter transit times, even without aerobrakes. This would improve crew safety by reducing their exposure to cosmic radiation. Advanced materials and structures will be an important resource in responding to the challenges posed by safety and test facility requirements, environmental concerns, high temperature fuels and the high radiation, hot hydrogen environment within nuclear thermal propulsion systems. Nuclear electric propulsion (NEP) has its own distinct set of advantages relative to chemical systems. These include low resupply mass, the availability of large amounts of onboard electric power for other uses besides propulsion, improved launch windows, and the ability to share technology with surface power systems. Development efforts for NEP reactors will emphasize long life operation of compact designs. This will require designs that provide high fuel burnup and high temperature operation along with personnel and environmental safety.

  19. Propulsion IVHM Technology Experiment

    NASA Technical Reports Server (NTRS)

    Chicatelli, Amy K.; Maul, William A.; Fulton, Christopher E.

    2006-01-01

    The Propulsion IVHM Technology Experiment (PITEX) successfully demonstrated real-time fault detection and isolation of a virtual reusable launch vehicle (RLV) main propulsion system (MPS). Specifically, the PITEX research project developed and applied a model-based diagnostic system for the MPS of the X-34 RLV, a space-launch technology demonstrator. The demonstration was simulation-based using detailed models of the propulsion subsystem to generate nominal and failure scenarios during captive carry, which is the most safety-critical portion of the X-34 flight. Since no system-level testing of the X-34 Main Propulsion System (MPS) was performed, these simulated data were used to verify and validate the software system. Advanced diagnostic and signal processing algorithms were developed and tested in real time on flight-like hardware. In an attempt to expose potential performance problems, the PITEX diagnostic system was subjected to numerous realistic effects in the simulated data including noise, sensor resolution, command/valve talkback information, and nominal build variations. In all cases, the PITEX system performed as required. The research demonstrated potential benefits of model-based diagnostics, defined performance metrics required to evaluate the diagnostic system, and studied the impact of real-world challenges encountered when monitoring propulsion subsystems.

  20. The NASA Advanced Propulsion Concepts at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Leifer, S. D.; Frisbee, R. H.; Brophy, J. R.

    1997-01-01

    Research activities in advanced propulsion concepts at the Jet Propulsion Laboratory are reviewed. The concepts were selected for study because each offers the potential for either significantly enhancing space transportation capability or enabling bold, ambitious new missions.

  1. Nuclear-electric propulsion - Manned Mars propulsion options

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan; Brophy, John; King, David

    1989-01-01

    Nuclear-electric propulsion can significantly reduce the launch mass for manned Mars missions. By using high-specific-impulse (lsp) electric propulsion systems with advanced nuclear reactors, the total mass-to-orbit for a series of manned Mars flight is reduced. Propulsion technologies required for the manned Mars mission are described. Multi-megawatt Ion and Magneto-Plasma-Dynamic (MPD) propulsion thrusters, Power-Processing Units and nuclear power source are needed. Xenon (Xe)-Ion and MPD thruster performance are detailed. Mission analyses for several Mars mission options are addressed. Both MPD and Ion propulsion were investigated. A four-megawatt propulsion system power level was assumed. Mass comparisons for all-chemical oxygen/hydrogen propulsion missions and combined chemical and nuclear-electric propulsion Mars fleets are included. With fleets of small nuclear-electric vehicles, short trip times to Mars are also enabled.

  2. Electric Propulsion Applications and Impacts

    NASA Technical Reports Server (NTRS)

    Curran, Frank M.; Wickenheiser, Timothy J.

    1996-01-01

    Most space missions require on-board propulsion systems and these systems are often dominant spacecraft mass drivers. Presently, on-board systems account for more than half the injected mass for commercial communications systems and even greater mass fractions for ambitious planetary missions. Anticipated trends toward the use of both smaller spacecraft and launch vehicles will likely increase pressure on the performance of on-board propulsion systems. The acceptance of arcjet thrusters for operational use on commercial communications satellites ushered in a new era in on-board propulsion and exponential growth of electric propulsion across a broad spectrum of missions is anticipated. NASA recognizes the benefits of advanced propulsion and NASA's Office of Space Access and Technology supports an aggressive On-Board Propulsion program, including a strong electric propulsion element, to assure the availability of high performance propulsion systems to meet the goals of the ambitious missions envisioned in the next two decades. The program scope ranges from fundamental research for future generation systems through specific insertion efforts aimed at near term technology transfer. The On-Board propulsion program is committed to carrying technologies to levels required for customer acceptance and emphasizes direct interactions with the user community and the development of commercial sources. This paper provides a discussion of anticipated missions, propulsion functions, and electric propulsion impacts followed by an overview of the electric propulsion element of the NASA On-Board Propulsion program.

  3. Advanced rocket propulsion

    NASA Technical Reports Server (NTRS)

    Obrien, Charles J.

    1993-01-01

    Existing NASA research contracts are supporting development of advanced reinforced polymer and metal matrix composites for use in liquid rocket engines of the future. Advanced rocket propulsion concepts, such as modular platelet engines, dual-fuel dual-expander engines, and variable mixture ratio engines, require advanced materials and structures to reduce overall vehicle weight as well as address specific propulsion system problems related to elevated operating temperatures, new engine components, and unique operating processes. High performance propulsion systems with improved manufacturability and maintainability are needed for single stage to orbit vehicles and other high performance mission applications. One way to satisfy these needs is to develop a small engine which can be clustered in modules to provide required levels of total thrust. This approach should reduce development schedule and cost requirements by lowering hardware lead times and permitting the use of existing test facilities. Modular engines should also reduce operational costs associated with maintenance and parts inventories.

  4. Free radical propulsion concept

    NASA Technical Reports Server (NTRS)

    Hawkins, C. E.; Nakanishi, S.

    1981-01-01

    A free radical propulsion concept utilizing the recombination energy of dissociated low molecular weight gases to produce thrust was examined. The concept offered promise of a propulsion system operating at a theoretical impulse, with hydrogen, as high as 2200 seconds at high thrust to power ratio, thus filling the gas existing between chemical and electrostatic propulsion capabilities. Microwave energy used to dissociate a continuously flowing gas was transferred to the propellant via three body recombination for conversion to propellant kinetic energy. Power absorption by the microwave plasma discharge was in excess of 90 percent over a broad range of pressures. Gas temperatures inferred from gas dynamic equations showed much higher temperatures from microwave heating than from electrothermal heating. Spectroscopic analysis appeared to corroborate the inferred temperatures of one of the gases tested.

  5. Nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Keaton, Paul W.; Tubb, David J.

    1986-01-01

    The feasibility is investigated of using nuclear electric propulsion (NEP) for slow freighter ships traveling from a 500 km low Earth orbit (LEO) to the Moon's orbit about the Earth, and on to Mars. NEP is also shown to be feasible for transporting people to Mars on long conjunction-class missions lasting about nine months one way, and on short sprint missions lasting four months one way. Generally, it was not attempted to optimize ion exhaust velocities, but rather suitable parameters to demonstrate NEP feasibility were chosen. Various combinations of missions are compared with chemical and nuclear thermal propulsion (NTR) systems. Typically, NEP and NTR can accomplish the same lifting task with similar mass in LEO. When compared to chemical propulsion, NEP was found to accomplish the same missions with 40% less mass in LEO. These findings are sufficiently encouraging as to merit further studies with optimum systems.

  6. Space station propulsion technology

    NASA Technical Reports Server (NTRS)

    Briley, G. L.

    1986-01-01

    The progress on the Space Station Propulsion Technology Program is described. The objectives are to provide a demonstration of hydrogen/oxygen propulsion technology readiness for the Initial Operating Capability (IOC) space station application, specifically gaseous hydrogen/oxygen and warm hydrogen thruster concepts, and to establish a means for evolving from the IOC space station propulsion to that required to support and interface with advanced station functions. The evaluation of concepts was completed. The accumulator module of the test bed was completed and, with the microprocessor controller, delivered to NASA-MSFC. An oxygen/hydrogen thruster was modified for use with the test bed and successfully tested at mixture ratios from 4:1 to 8:1.

  7. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    There is little doubt that humans will attempt to explore and develop the solar system in this century. A large amount of energy will be required for accomplishing this. The need for fusion propulsion is discussed. For a propulsion system, there are three important thermodynamical attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion can produce exhaust velocity up to about 5 km/s. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a hydrogen propellant increases the exhaust velocity by only a factor of about two. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. The principal advantage of the fission process is that its development is relatively mature and is available right now. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. The technical priorities for developing and applying fusion for propulsion are

  8. Advanced rocket propulsion

    NASA Astrophysics Data System (ADS)

    Obrien, Charles J.

    1993-02-01

    Existing NASA research contracts are supporting development of advanced reinforced polymer and metal matrix composites for use in liquid rocket engines of the future. Advanced rocket propulsion concepts, such as modular platelet engines, dual-fuel dual-expander engines, and variable mixture ratio engines, require advanced materials and structures to reduce overall vehicle weight as well as address specific propulsion system problems related to elevated operating temperatures, new engine components, and unique operating processes. High performance propulsion systems with improved manufacturability and maintainability are needed for single stage to orbit vehicles and other high performance mission applications. One way to satisfy these needs is to develop a small engine which can be clustered in modules to provide required levels of total thrust. This approach should reduce development schedule and cost requirements by lowering hardware lead times and permitting the use of existing test facilities. Modular engines should also reduce operational costs associated with maintenance and parts inventories.

  9. Nuclear electric propulsion

    NASA Astrophysics Data System (ADS)

    Keaton, Paul W.; Tubb, David J.

    1986-05-01

    The feasibility is investigated of using nuclear electric propulsion (NEP) for slow freighter ships traveling from a 500 km low Earth orbit (LEO) to the Moon's orbit about the Earth, and on to Mars. NEP is also shown to be feasible for transporting people to Mars on long conjunction-class missions lasting about nine months one way, and on short sprint missions lasting four months one way. Generally, it was not attempted to optimize ion exhaust velocities, but rather suitable parameters to demonstrate NEP feasibility were chosen. Various combinations of missions are compared with chemical and nuclear thermal propulsion (NTR) systems. Typically, NEP and NTR can accomplish the same lifting task with similar mass in LEO. When compared to chemical propulsion, NEP was found to accomplish the same missions with 40% less mass in LEO. These findings are sufficiently encouraging as to merit further studies with optimum systems.

  10. Advanced Chemical Propulsion Study

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon; Byers, Dave; Alexander, Leslie A.; Krebsbach, Al

    2004-01-01

    A study was performed of advanced chemical propulsion technology application to space science (Code S) missions. The purpose was to begin the process of selecting chemical propulsion technology advancement activities that would provide greatest benefits to Code S missions. Several missions were selected from Code S planning data, and a range of advanced chemical propulsion options was analyzed to assess capabilities and benefits re these missions. Selected beneficial applications were found for higher-performing bipropellants, gelled propellants, and cryogenic propellants. Technology advancement recommendations included cryocoolers and small turbopump engines for cryogenic propellants; space storable propellants such as LOX-hydrazine; and advanced monopropellants. It was noted that fluorine-bearing oxidizers offer performance gains over more benign oxidizers. Potential benefits were observed for gelled propellants that could be allowed to freeze, then thawed for use.

  11. Space transportation propulsion USSR launcher technology, 1990

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Space transportation propulsion U.S.S.R. launcher technology is discussed. The following subject areas are covered: Energia background (launch vehicle summary, Soviet launcher family) and Energia propulsion characteristics (booster propulsion, core propulsion, and growth capability).

  12. Electric Propulsion Orbital Platform

    NASA Technical Reports Server (NTRS)

    Friedly, V. J.; Ruyten, Wilhelmus M.; Litchford, R. J.; Garrison, G. W.

    1993-01-01

    This paper describes the Electric Propulsion Orbital Platform (EPOP), of which the primary objective is to provide an instrumented platform for testing electric propulsion devices in space. It is anticipated that the first flight, EPOP-1, will take place on the Shuttle-deployed Wake Shield Facility in 1996, and will be designed around a commercial 1.8 kW arcjet system which will be operated on gaseous hydrogen propellant. Specific subsystems are described, including the arcjet system, the propellant and power systems, and the diagnostics systems.

  13. Electric Propulsion: Experimental Research

    NASA Technical Reports Server (NTRS)

    Ruyten, W. M.; Friedly, V. J.; Keefer, D.

    1995-01-01

    This paper describes experimental electric propulsion research which was carried out at the University of Tennessee Space Institute with support from the Center for Space Transportation and Applied Research. Specifically, a multiplexed LIF technique for obtaining vector velocities, Doppler temperatures, and relative number densities in the exhaust plumes form electric propulsion devices is described, and results are presented that were obtained on a low power argon arcjet. Also, preliminary Langmuir probe measurements on an ion source are described, and an update on the vacuum facility is presented.

  14. Propulsion controlled aircraft computer

    NASA Technical Reports Server (NTRS)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  15. Focused technology: Nuclear propulsion

    NASA Technical Reports Server (NTRS)

    Miller, Thomas J.

    1991-01-01

    The topics presented are covered in viewgraph form and include: nuclear thermal propulsion (NTP), which challenges (1) high temperature fuel and materials, (2) hot hydrogen environment, (3) test facilities, (4) safety, (5) environmental impact compliance, and (6) concept development, and nuclear electric propulsion (NEP), which challenges (1) long operational lifetime, (2) high temperature reactors, turbines, and radiators, (3) high fuel burn-up reactor fuels, and designs, (4) efficient, high temperature power conditioning, (5) high efficiency, and long life thrusters, (6) safety, (7) environmental impact compliance, and (8) concept development.

  16. Nuclear thermal propulsion program overview

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1991-01-01

    Nuclear thermal propulsion program is described. The following subject areas are covered: lunar and Mars missions; national space policy; international cooperation in space exploration; propulsion technology; nuclear rocket program; and budgeting.

  17. Methods for Prediction of High-Speed Reacting Flows in Aerospace Propulsion

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip

    2014-01-01

    Research to develop high-speed airbreathing aerospace propulsion systems was underway in the late 1950s. A major part of the effort involved the supersonic combustion ramjet, or scramjet, engine. Work had also begun to develop computational techniques for solving the equations governing the flow through a scramjet engine. However, scramjet technology and the computational methods to assist in its evolution would remain apart for another decade. The principal barrier was that the computational methods needed for engine evolution lacked the computer technology required for solving the discrete equations resulting from the numerical methods. Even today, computer resources remain a major pacing item in overcoming this barrier. Significant advances have been made over the past 35 years, however, in modeling the supersonic chemically reacting flow in a scramjet combustor. To see how scramjet development and the required computational tools finally merged, we briefly trace the evolution of the technology in both areas.

  18. Operating system for a real-time multiprocessor propulsion system simulator. User's manual

    NASA Technical Reports Server (NTRS)

    Cole, G. L.

    1985-01-01

    The NASA Lewis Research Center is developing and evaluating experimental hardware and software systems to help meet future needs for real-time, high-fidelity simulations of air-breathing propulsion systems. Specifically, the real-time multiprocessor simulator project focuses on the use of multiple microprocessors to achieve the required computing speed and accuracy at relatively low cost. Operating systems for such hardware configurations are generally not available. A real time multiprocessor operating system (RTMPOS) that supports a variety of multiprocessor configurations was developed at Lewis. With some modification, RTMPOS can also support various microprocessors. RTMPOS, by means of menus and prompts, provides the user with a versatile, user-friendly environment for interactively loading, running, and obtaining results from a multiprocessor-based simulator. The menu functions are described and an example simulation session is included to demonstrate the steps required to go from the simulation loading phase to the execution phase.

  19. Modification to the Langley 8-foot high temperature tunnel for hypersonic propulsion testing

    NASA Technical Reports Server (NTRS)

    Reubush, D. E.; Puster, R. L.; Kelly, H. N.

    1987-01-01

    Described are the modifications currently under way to the Langley 8-Foot High Temperature Tunnel to produce a new, unique national resource for testing hypersonic air-breathing propulsion systems. The current tunnel, which has been used for aerothermal loads and structures research since its inception, is being modified with the addition of a LOX system to bring the oxygen content of the test medium up to that of air, the addition of alternate Mach number capability (4 and 5) to augment the current M=7 capability, improvements to the tunnel hardware to reduce maintenance downtime, the addition of a hydrogen system to allow the testing of hydrogen powered engines, and a new data system to increase both the quantity and quality of the data obtained.

  20. Modification to the Langley 8-foot high temperature tunnel for hypersonic propulsion testing

    NASA Astrophysics Data System (ADS)

    Reubush, D. E.; Puster, R. L.; Kelly, H. N.

    1987-06-01

    Described are the modifications currently under way to the Langley 8-Foot High Temperature Tunnel to produce a new, unique national resource for testing hypersonic air-breathing propulsion systems. The current tunnel, which has been used for aerothermal loads and structures research since its inception, is being modified with the addition of a LOX system to bring the oxygen content of the test medium up to that of air, the addition of alternate Mach number capability (4 and 5) to augment the current M=7 capability, improvements to the tunnel hardware to reduce maintenance downtime, the addition of a hydrogen system to allow the testing of hydrogen powered engines, and a new data system to increase both the quantity and quality of the data obtained.

  1. The NASA Electric Propulsion Program

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Byers, David C.; King, David Q.

    1988-01-01

    The NASA OAST Propulsion, Power, and Energy Division supports an electric propulsion program aimed at providing benefits to a broad class of missions. Concepts which have the potential to enable or significantly benefit space exploration and exploitation are identified and advanced toward application in the near and far term. This paper summarizes recent program progress in mission/system analysis; in electrothermal, electrostatic, and electromagnetic propulsion technologies; and in propulsion/spacecraft integration.

  2. SPE propulsion electrolyzer for NASA's integrated propulsion test article

    NASA Astrophysics Data System (ADS)

    1991-08-01

    Hamilton Standard has delivered a 3000 PSI SPE Propulsion Electrolyzer Stack and Special Test Fixture to the NASA Lyndon B. Johnson Space Center (JSC) Integrated Propulsion Test Article (IPTA) program in June 1990, per contract NAS9-18030. This prototype unit demonstrates the feasibility of SPE-high pressure water electrolysis for future space applications such as Space Station propulsion and Lunar/Mars energy storage. The SPE-Propulsion Electrolyzer has met or exceeded all IPTA program goals. It continues to function as the primary hydrogen and oxygen source for the IPTA test bed at the NASA/JSC Propulsion and Power Division Thermochemical Test Branch.

  3. SPE propulsion electrolyzer for NASA's integrated propulsion test article

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Hamilton Standard has delivered a 3000 PSI SPE Propulsion Electrolyzer Stack and Special Test Fixture to the NASA Lyndon B. Johnson Space Center (JSC) Integrated Propulsion Test Article (IPTA) program in June 1990, per contract NAS9-18030. This prototype unit demonstrates the feasibility of SPE-high pressure water electrolysis for future space applications such as Space Station propulsion and Lunar/Mars energy storage. The SPE-Propulsion Electrolyzer has met or exceeded all IPTA program goals. It continues to function as the primary hydrogen and oxygen source for the IPTA test bed at the NASA/JSC Propulsion and Power Division Thermochemical Test Branch.

  4. General Aviation Propulsion

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Programs exploring and demonstrating new technologies in general aviation propulsion are considered. These programs are the quiet, clean, general aviation turbofan (QCGAT) program; the general aviation turbine engine (GATE) study program; the general aviation propeller technology program; and the advanced rotary, diesel, and reciprocating engine programs.

  5. Rarefaction wave gun propulsion

    NASA Astrophysics Data System (ADS)

    Kathe, Eric Lee

    A new species of gun propulsion that dramatically reduces recoil momentum imparted to the gun is presented. First conceived by the author on 18 March 1999, the propulsion concept is explained, a methodology for the design of a reasonable apparatus for experimental validation using NATO standard 35mm TP anti-aircraft ammunition is developed, and the experimental results are presented. The firing results are juxtaposed by a simple interior ballistic model to place the experimental findings into a context within which they may better be understood. Rarefaction wave gun (RAVEN) propulsion is an original contribution to the field of armament engineering. No precedent is known, and no experimental results of such a gun have been published until now. Recoil reduction in excess of 50% was experimentally achieved without measured loss in projectile velocity. RAVEN achieves recoil reduction by means of a delayed venting of the breech of the gun chamber that directs the high enthalpy propellant gases through an expansion nozzle to generate forward thrust that abates the rearward momentum applied to the gun prior to venting. The novel feature of RAVEN, relative to prior recoilless rifles, is that sufficiently delayed venting results in a rarefaction wave that follows the projectile though the bore without catching it. Thus, the projectile exits the muzzle without any compromise to its propulsion performance relative to guns that maintain a sealed chamber.

  6. Turboprop Propulsion Mechanic.

    ERIC Educational Resources Information Center

    Chanute AFB Technical Training Center, IL.

    This instructional package consists of a plan of instruction, glossary, and student handouts and exercises for use in training Air Force personnel to become turboprop propulsion mechanics. Addressed in the individual lessons of the course are the following: common hand tools, hardware, measuring devices, and safety wiring; aircraft and engine…

  7. Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael

    2006-01-01

    The Solar Electric Propulsion (SEP) technology area is tasked to develop near and mid-term SEP technology to improve or enable science mission capture while minimizing risk and cost to the end user. The solar electric propulsion investments are primarily driven by SMD cost-capped mission needs. The technology needs are determined partially through systems analysis tasks including the recent "Re-focus Studies" and "Standard Architecture Study." These systems analysis tasks transitioned the technology development to address the near term propulsion needs suitable for cost-capped open solicited missions such as Discovery and New Frontiers Class missions. Major SEP activities include NASA's Evolutionary Xenon Thruster (NEXT), implementing a Standard Architecture for NSTAR and NEXT EP systems, and developing a long life High Voltage Hall Accelerator (HiVHAC). Lower level investments include advanced feed system development and xenon recovery testing. Future plans include completion of ongoing ISP development activities and evaluating potential use of commercial electric propulsion systems for SMD applications. Examples of enhanced mission capability and technology readiness dates shall be discussed.

  8. NASA Now: Propulsion

    NASA Video Gallery

    In this episode of NASA Now, you’ll visit NASA’s Spacecraft Propulsion Research Facility, called B-2, at NASA Plum Brook Station. You’ll meet Dr. Louis Povinelli and Brian Jones who explain w...

  9. Propulsion simulation for magnetically suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Joshi, Prakash B.; Beerman, Henry P.; Chen, James; Krech, Robert H.; Lintz, Andrew L.; Rosen, David I.

    1990-01-01

    The feasibility of simulating propulsion-induced aerodynamic effects on scaled aircraft models in wind tunnels employing Magnetic Suspension and Balance Systems. The investigation concerned itself with techniques of generating exhaust jets of appropriate characteristics. The objectives were to: (1) define thrust and mass flow requirements of jets; (2) evaluate techniques for generating propulsive gas within volume limitations imposed by magnetically-suspended models; (3) conduct simple diagnostic experiments for techniques involving new concepts; and (4) recommend experiments for demonstration of propulsion simulation techniques. Various techniques of generating exhaust jets of appropriate characteristics were evaluated on scaled aircraft models in wind tunnels with MSBS. Four concepts of remotely-operated propulsion simulators were examined. Three conceptual designs involving innovative adaptation of convenient technologies (compressed gas cylinders, liquid, and solid propellants) were developed. The fourth innovative concept, namely, the laser-assisted thruster, which can potentially simulate both inlet and exhaust flows, was found to require very high power levels for small thrust levels.

  10. Advanced Chemical Propulsion

    NASA Astrophysics Data System (ADS)

    Alexander, L.

    2004-11-01

    Improving the performance and reliability characteristics of chemical propulsion systems requires research and testing of higher-performance propellants, higher efficiency thrusters, cryogenics technology, lightweight components and advancements in propulsion system design and assessment. Propellants are being investigated to identify practical combinations with higher efficiencies and better thermal properties to reduce thermal control requirements. This includes combinations with modest increases, such as LOX-hydrazine, as well as a new evaluation of major improvements available from fluorine-bearing oxidizers. Practical ways of implementing cryogenic propulsion to further increase efficiency are also being studied. Some potential advances include small pump-fed engines, and improvements in cryocooler technology and tank pressure control. Gelled propellants will be tested to determine the practicality of letting propellants freeze at low environmental temperatures and thawing them only when required for use. The propellant tank is typically the single highest non-expendable mass in a chemical propulsion system. Lightweight tank designs, materials and methods of fabrication are being investigated. These are projected to offer a 45-50 percent decrease in tank mass, representing the potential inert system mass savings. Mission and systems analyses are being conducted to guide the technology research and set priorities for technology investment, based on estimated gains in payload and mission capabilities. This includes development of advanced assessment tools and analyses of specific missions selected from Science Missions' Directorate. The goal is to mature a suite of reliable advanced propulsion technologies that will promote more cost efficient missions through the reduction of interplanetary trip time, increased scientific payload mass fraction and longer on-station operations. This talk will review the Advanced Chemical technology development roadmap, current

  11. Center for Advanced Space Propulsion

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Center for Advanced Space Propulsion (CASP) is part of the University of Tennessee-Calspan Center for Aerospace Research (CAR). It was formed in 1985 to take advantage of the extensive research faculty and staff of the University of Tennessee and Calspan Corporation. It is also one of sixteen NASA sponsored Centers established to facilitate the Commercial Development of Space. Based on investigators' qualifications in propulsion system development, and matching industries' strong intent, the Center focused its efforts in the following technical areas: advanced chemical propulsion, electric propulsion, AI/Expert systems, fluids management in microgravity, and propulsion materials processing. This annual report focuses its discussion in these technical areas.

  12. A review of pulse fusion propulsion

    NASA Astrophysics Data System (ADS)

    Cassenti, Brice N.

    2002-01-01

    During the last forty years there has been considerable interest in both internal and external pulse propulsion systems. Over this time the nuclear devices being considered have grown considerably smaller than those initially examined. Now pellets are normally in the range from 15 cm down to 2 cm in diameter, and fusion devices are generally preferred. High energy density triggers (such as lasers, particle beams or antiprotons) have been considered for detonating the fusion fuel. When antiprotons are considered it is more efficient to annihilate the antiprotons in a fissionable material, and then use the energy from the fission reaction to drive the fusion reaction in the pellet, than to use the annihilation energy directly. Finally, fissionable material can be used to boost the performance of a fusion system. The early concepts, which used critical mass devices, do not satisfy the ban on nuclear weapons in space, and are only rarely considered today. Concepts based on inertial confinement fusion are heavier than those that use antiprotons for the trigger since the mass associated with the lasers, or particle beams and their power supplies are considerably heavier than the traps used for antiprotons. Hence, from a performance, and even a political, point of view the antiproton-triggered approach is the most desirable, but it also requires more development. Not only is the trigger lighter but an external pulse propulsion rocket does not necessarily need radiators to reject excess heat and, hence, can be even lighter. Propulsion systems based on critical mass devices are clearly feasible, so the primary problem is to reduce the size of the explosive devices so that a critical mass is not required. If pulse nuclear fusion propulsion can become a reality then the performance is enough to complete manned missions to the inner planets in weeks and the outer planets in months. .

  13. Highlights from a Mach 4 Experimental Demonstration of Inlet Mode Transition for Turbine-Based Combined Cycle Hypersonic Propulsion

    NASA Technical Reports Server (NTRS)

    Foster, Lancert E.; Saunders, John D., Jr.; Sanders, Bobby W.; Weir, Lois J.

    2012-01-01

    NASA is focused on technologies for combined cycle, air-breathing propulsion systems to enable reusable launch systems for access to space. Turbine Based Combined Cycle (TBCC) propulsion systems offer specific impulse (Isp) improvements over rocket-based propulsion systems in the subsonic takeoff and return mission segments along with improved safety. Among the most critical TBCC enabling technologies are: 1) mode transition from the low speed propulsion system to the high speed propulsion system, 2) high Mach turbine engine development and 3) innovative turbine based combined cycle integration. To address these challenges, NASA initiated an experimental mode transition task including analytical methods to assess the state-of-the-art of propulsion system performance and design codes. One effort has been the Combined-Cycle Engine Large Scale Inlet Mode Transition Experiment (CCE-LIMX) which is a fully integrated TBCC propulsion system with flowpath sizing consistent with previous NASA and DoD proposed Hypersonic experimental flight test plans. This experiment was tested in the NASA GRC 10 by 10-Foot Supersonic Wind Tunnel (SWT) Facility. The goal of this activity is to address key hypersonic combined-cycle engine issues including: (1) dual integrated inlet operability and performance issues-unstart constraints, distortion constraints, bleed requirements, and controls, (2) mode-transition sequence elements caused by switching between the turbine and the ramjet/scramjet flowpaths (imposed variable geometry requirements), and (3) turbine engine transients (and associated time scales) during transition. Testing of the initial inlet and dynamic characterization phases were completed and smooth mode transition was demonstrated. A database focused on a Mach 4 transition speed with limited off-design elements was developed and will serve to guide future TBCC system studies and to validate higher level analyses.

  14. Continuous high order sliding mode controller design for a flexible air-breathing hypersonic vehicle.

    PubMed

    Wang, Jie; Zong, Qun; Su, Rui; Tian, Bailing

    2014-05-01

    This paper investigates the problem of tracking control with uncertainties for a flexible air-breathing hypersonic vehicle (FAHV). In order to overcome the analytical intractability of this model, an Input-Output linearization model is constructed for the purpose of feedback control design. Then, the continuous finite time convergence high order sliding mode controller is designed for the Input-Output linearization model without uncertainties. In addition, a nonlinear disturbance observer is applied to estimate the uncertainties in order to compensate the controller and disturbance suppression, where disturbance observer and controller synthesis design is obtained. Finally, the synthesis of controller and disturbance observer is used to achieve the tracking for the velocity and altitude of the FAHV and simulations are presented to illustrate the effectiveness of the control strategies. PMID:24534328

  15. Robust tracking control for an air-breathing hypersonic vehicle with input constraints

    NASA Astrophysics Data System (ADS)

    Gao, Gang; Wang, Jinzhi; Wang, Xianghua

    2014-12-01

    The focus of this paper is on the design and simulation of robust tracking control for an air-breathing hypersonic vehicle (AHV), which is affected by high nonlinearity, uncertain parameters and input constraints. The linearisation method is employed for the longitudinal AHV model about a specific trim condition, and then considering the additive uncertainties of three parameters, the linearised model is just in the form of affine parameter dependence. From this point, the linear parameter-varying method is applied to design the desired controller. The poles for the closed-loop system of the linearised model are placed into a desired vertical strip, and the quadratic stability of the closed-loop system is guaranteed. Input constraints of the AHV are addressed by additional linear matrix inequalities. Finally, the designed controller is evaluated on the nonlinear AHV model and simulation results demonstrate excellent tracking performance with good robustness.

  16. Mach 6 flow field surveys beneath the forebody of an airbreathing missile

    NASA Technical Reports Server (NTRS)

    Johnson, P. J.; Hunt, J. L.

    1986-01-01

    Wall static, local stream static, and pitot pressure surveys were made on the windward side of a hypersonic airbreathing missile at full-scale length Reynolds numbers. In the inviscid part of the flow field, the experimental massflow ratios agreed with trends predicted by a three-dimensional method-of-characteristics solution. At a longitudinal station 3.5 diameters downstrea of the nose, the boundary layer was transitional or turbulent at zero incidence but became laminar as the angle of attack increased. The bell-shaped distribution of the boundary layer across the width of the body affected the mass flow distribution out to the bow shock and decreased the mass flow available the engine inlet.

  17. Multi-Disciplinary Design Optimization of Hypersonic Air-Breathing Vehicle

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Tang, Zhili; Sheng, Jianda

    2016-06-01

    A 2D hypersonic vehicle shape with an idealized scramjet is designed at a cruise regime: Mach number (Ma) = 8.0, Angle of attack (AOA) = 0 deg and altitude (H) = 30kms. Then a multi-objective design optimization of the 2D vehicle is carried out by using a Pareto Non-dominated Sorting Genetic Algorithm II (NSGA-II). In the optimization process, the flow around the air-breathing vehicle is simulated by inviscid Euler equations using FLUENT software and the combustion in the combustor is modeled by a methodology based on the well known combination effects of area-varying pipe flow and heat transfer pipe flow. Optimization results reveal tradeoffs among total pressure recovery coefficient of forebody, lift to drag ratio of vehicle, specific impulse of scramjet engine and the maximum temperature on the surface of vehicle.

  18. Planar array stack design aided by rapid prototyping in development of air-breathing PEMFC

    NASA Astrophysics Data System (ADS)

    Chen, Chen-Yu; Lai, Wei-Hsiang; Weng, Biing-Jyh; Chuang, Huey-Jan; Hsieh, Ching-Yuan; Kung, Chien-Chih

    The polymer electrolyte membrane fuel cell (PEMFC) is one of the most important research topics in the new and clean energy area. The middle or high power PEMFCs can be applied to the transportation or the distributed power system. But for the small power application, it is needed to match the power requirement of the product generally. On the other hand, the direct methanol fuel cell (DMFC) is one of the most common type that researchers are interested in, but recently the miniature or the micro-PEMFCs attract more attention due to their advantages of high open circuit voltage and high power density. The objective of this study is to develop a new air-breathing planar array fuel cell stacked from 10 cells made by rapid prototyping technology which has potential for fast commercial design, low cost manufacturing, and even without converters/inverters for the system. In this paper, the main material of flow field plates is acrylonitrile-butadiene-styrene (ABS) which allows the fuel cell be mass-manufactured by plastic injection molding technology. The rapid prototyping technology is applied to construct the prototype and verify the practicability of the proposed stack design. A 10-cell air-breathing miniature PEMFC stack with a volume of 6 cm × 6 cm × 0.9 cm is developed and tested. Its segmented membrane electrode assembly (MEA) is designed with the active surface area of 1.3 cm × 1.3 cm in each individual MEA. The platinum loading at anode and cathode are 0.2 mg cm -2 and 0.4 mg cm -2, respectively. Results show that the peak power densities of the parallel connected and serial connected stack are 99 mW cm -2 at 0.425 V and 92 mW cm -2 at 4.25 V, respectively under the conditions of 70 °C relative saturated humidity (i.e., dew point temperature), ambient temperature and free convection air. Besides, the stack performance is increased under forced convection. If the cell surface air is blown by an electric fan, the peak power densities of parallel connected and

  19. Micro electric propulsion feasibility

    NASA Technical Reports Server (NTRS)

    Aston, Graeme; Aston, Martha

    1992-01-01

    Miniature, 50 kg class, strategic satellites intended for extended deployment in space require an on-board propulsion capability to perform needed attitude control adjustments and drag compensation maneuvers. Even on such very small spacecraft, these orbit maintenance functions can be significant and result in a substantial propellant mass requirement. Development of advanced propulsion technology could reduce this propellant mass significantly, and thereby maximize the payload capability of these spacecraft. In addition, spacecraft maneuverability could be enhanced and/or multi-year mission lifetimes realized. These benefits cut spacecraft replacement costs, and reduce services needed to maintain the launch vehicles. For SDIO brilliant pebble spacecraft, a miniaturized hydrazine propulsion system provides both boost and divert thrust control. This type of propulsion system is highly integrated and is capable of delivering large thrust levels for short time periods. However, orbit maintenance functions such as drag make-up require only very small velocity corrections. Using the boost and/or divert thrusters for these small corrections exposes this highly integrated propulsion system to continuous on/off cycling and thereby increases the risk of system failure. Furthermore, since drag compensation velocity corrections would be orders of magnitude less than these thrusters were designed to deliver, their effective specific impulse would be expected to be lower when operated at very short pulse lengths. The net result of these effects would be a significant depletion of the on-board hydrazine propellant supply throughout the mission, and a reduced propulsion system reliability, both of which would degrade the interceptors usefulness. In addition to SDIO brilliant pebble spacecraft, comparably small spacecraft can be anticipated for other future strategic defense applications such as surveillance and communication. For such spacecraft, high capability and reliability

  20. The Propulsion Center at MSFC

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold; Schmidt, George R. (Technical Monitor)

    2000-01-01

    The Propulsion Research Center at MSFC serves as a national resource for research of advanced, revolutionary propulsion technologies. Our mission is to move the nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft like access to earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space. Current efforts cover a wide range of exciting areas, including high-energy plasma thrusters, advanced fission and fusion engines, antimatter propulsion systems, beamed energy rockets and sails, and fundamental motive physics. Activities involve concept investigation, proof-of-concept demonstration, and breadboard validation of new propulsion systems. The Propulsion Research Center at MSFC provides an environment where NASA, national laboratories, universities, and industry researchers can pool their skills together to perform landmark propulsion achievements. We offer excellent educational opportunities to students and young researchers-fostering a wellspring of innovation that will revolutionize space transportation.

  1. Electric propulsion for communications satellites

    NASA Technical Reports Server (NTRS)

    Free, B. A.; Guman, W. J.; Herron, B. G.; Zafran, S.

    1978-01-01

    Electric propulsion systems derive their low overall mass, relative to chemical propulsion systems, from an optimized mix of independently controlled power and mass flow rate. A significant reduction in mass can be secured by substituting electric propulsion for conventional hydrazine systems for all the major propulsion tasks of a communications satellite. Additional advantages for all electric propulsion maneuvers are precision location and higher pointing accuracy. Three auxiliary electric propulsion systems are now available for application on communications satellites: the electrically augmented hydrazine system, the Teflon pulsed plasma system, and the mercury ion thruster system. Primary electric propulsion will be available in the mid to late 1980s as a spin-off of NASA's program of interplanetary exploration.

  2. The NASA Electric Propulsion program

    NASA Technical Reports Server (NTRS)

    Byers, D. C.

    1984-01-01

    It is pointed out that the NASA Electric Propulsion program is aimed at providing technology for auxiliary and primary propulsion functions for earth-orbital and planetary space missions. Efforts in electrostatic propulsion include analyses of ion propulsion for Geosynchronous (GEO) and planetary spacecraft, continued preflight efforts associated with the Ion Auxiliary Propulsion System (IAPS), and research and technology for advanced and simplified ion thruster systems. In the area of electromagnetic propulsion, studies were conducted regarding the feasibility and impacts of the use of electromagnetic launchers. Research on magnetoplasmadynamic (MPD) thrusters, electromagnetic launchers, and Hall current thrusters was also performed. Studies in the electrothermal sector included an evaluation of electric propulsion options for the Space Station, taking into account also resistojets, a pulsed electrothermal thruster, and arc jets.

  3. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    There is little doubt that humans will attempt to explore and develop the solar system in this century. A large amount of energy will be required for accomplishing this. The need for fusion propulsion is discussed. For a propulsion system, there are three important thermodynamical attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion can produce exhaust velocity up to about 5 km/s. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a hydrogen propellant increases the exhaust velocity by only a factor of about two. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. The principal advantage of the fission process is that its development is relatively mature and is available right now. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. The technical priorities for developing and applying fusion for propulsion are

  4. STOL propulsion systems

    NASA Technical Reports Server (NTRS)

    Denington, R. J.; Koenig, R. W.; Vanco, M. R.; Sagerser, D. A.

    1972-01-01

    The selection and the characteristics of quiet, clean propulsion systems for STOL aircraft are discussed. Engines are evaluated for augmentor wing and externally blown flap STOL aircraft with the engines located both under and over the wings. Some supporting test data are presented. Optimum engines are selected based on achieving the performance, economic, acoustic, and pollution goals presently being considered for future STOL aircraft. The data and results presented were obtained from a number of contracted studies and some supporting NASA inhouse programs, most of which began in early 1972. The contracts include: (1) two aircraft and mission studies, (2) two propulsion system studies, (3) the experimental and analytic work on the augmentor wing, and (4) the experimental programs on Q-Fan. Engines are selected and discussed based on aircraft economics using the direct operating cost as the primary criterion. This cost includes the cost of the crew, fuel, aircraft, and engine maintenance and depreciation.

  5. Electromagnetic propulsion for spacecraft

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1993-01-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT) have been developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters have been flown in space, though only PPTs have been used on operational satellites. The performance of operational PPTs is quite poor, providing only about 8 percent efficiency at about 1000 sec specific impulse. Laboratory PPTs yielding 34 percent efficiency at 5170 sec specific impulse have been demonstrated. Laboratory MPD thrusters have been demonstrated with up to 70 percent efficiency and 7000 sec specific impulse. Recent PIT performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 and 8000 sec.

  6. Hydrodynamics of Peristaltic Propulsion

    NASA Astrophysics Data System (ADS)

    Athanassiadis, Athanasios; Hart, Douglas

    2014-11-01

    A curious class of animals called salps live in marine environments and self-propel by ejecting vortex rings much like jellyfish and squid. However, unlike other jetting creatures that siphon and eject water from one side of their body, salps produce vortex rings by pumping water through siphons on opposite ends of their hollow cylindrical bodies. In the simplest cases, it seems like some species of salp can successfully move by contracting just two siphons connected by an elastic body. When thought of as a chain of timed contractions, salp propulsion is reminiscent of peristaltic pumping applied to marine locomotion. Inspired by salps, we investigate the hydrodynamics of peristaltic propulsion, focusing on the scaling relationships that determine flow rate, thrust production, and energy usage in a model system. We discuss possible actuation methods for a model peristaltic vehicle, considering both the material and geometrical requirements for such a system.

  7. Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Jones, David

    2011-01-01

    The CPS is an in-space cryogenic propulsive stage based largely on state of the practice design for launch vehicle upper stages. However, unlike conventional propulsive stages, it also contains power generation and thermal control systems to limit the loss of liquid hydrogen and oxygen due to boil-off during extended in-space storage. The CPS provides the necessary (Delta)V for rapid transfer of in-space elements to their destinations or staging points (i.e., E-M L1). The CPS is designed around a block upgrade strategy to provide maximum mission/architecture flexibility. Block 1 CPS: Short duration flight times (hours), passive cryo fluid management. Block 2 CPS: Long duration flight times (days/weeks/months), active and passive cryo fluid management.

  8. Hybrid propulsion technology program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Technology was identified which will enable application of hybrid propulsion to manned and unmanned space launch vehicles. Two design concepts are proposed. The first is a hybrid propulsion system using the classical method of regression (classical hybrid) resulting from the flow of oxidizer across a fuel grain surface. The second system uses a self-sustaining gas generator (gas generator hybrid) to produce a fuel rich exhaust that was mixed with oxidizer in a separate combustor. Both systems offer cost and reliability improvement over the existing solid rocket booster and proposed liquid boosters. The designs were evaluated using life cycle cost and reliability. The program consisted of: (1) identification and evaluation of candidate oxidizers and fuels; (2) preliminary evaluation of booster design concepts; (3) preparation of a detailed point design including life cycle costs and reliability analyses; (4) identification of those hybrid specific technologies needing improvement; and (5) preperation of a technology acquisition plan and large scale demonstration plan.

  9. Plasmas for space propulsion

    NASA Astrophysics Data System (ADS)

    Ahedo, Eduardo

    2011-12-01

    Plasma thrusters are challenging the monopoly of chemical thrusters in space propulsion. The specific energy that can be deposited into a plasma beam is orders of magnitude larger than the specific chemical energy of known fuels. Plasma thrusters constitute a vast family of devices ranging from already commercial thrusters to incipient laboratory prototypes. Figures of merit in plasma propulsion are discussed. Plasma processes and conditions differ widely from one thruster to another, with the pre-eminence of magnetized, weakly collisional plasmas. Energy is imparted to the plasma via either energetic electron injection, biased electrodes or electromagnetic irradiation. Plasma acceleration can be electrothermal, electrostatic or electromagnetic. Plasma-wall interaction affects energy deposition and erosion of thruster elements, and thus is central for thruster efficiency and lifetime. Magnetic confinement and magnetic nozzles are present in several devices. Oscillations and turbulent transport are intrinsic to the performances of some thrusters. Several thrusters are selected in order to discuss these relevant plasma phenomena.

  10. Hypersonic missile propulsion system

    SciTech Connect

    Kazmar, R.R.

    1998-11-01

    Pratt and Whitney is developing the technology for hypersonic components and engines. A supersonic combustion ramjet (scramjet) database was developed using hydrogen fueled propulsion systems for space access vehicles and serves as a point of departure for the current development of hydrocarbon scramjets. The Air Force Hypersonic Technology (HyTech) Program has put programs in place to develop the technologies necessary to demonstrate the operability, performance and structural durability of an expendable, liquid hydrocarbon fueled scramjet system that operates from Mach 4 to 8. This program will culminate in a flight type engine test at representative flight conditions. The hypersonic technology base that will be developed and demonstrated under HyTech will establish the foundation to enable hypersonic propulsion systems for a broad range of air vehicle applications from missiles to space access vehicles. A hypersonic missile flight demonstration is planned in the DARPA Affordable Rapid Response Missile Demonstrator (ARRMD) program in 2001.

  11. Interstellar Propulsion Concepts Assessment

    NASA Technical Reports Server (NTRS)

    Forward, Robert L.

    2000-01-01

    NASA is investigating the feasibility of conducting extra-solar and interstellar missions over the next 10 to 50 years. An assessment of technologies supporting these near and far term objectives is required. To help meet these objectives the Principal Investigator assessed the feasibility of candidate propulsion systems for the proposed 'Interstellar Probe', a mission to send a spacecraft to the Heliopause at 250 AU and beyond.

  12. Emerging Propulsion Technologies

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.

    2006-01-01

    The Emerging Propulsion Technologies (EPT) investment area is the newest area within the In-Space Propulsion Technology (ISPT) Project and strives to bridge technologies in the lower Technology Readiness Level (TRL) range (2 to 3) to the mid TRL range (4 to 6). A prioritization process, the Integrated In-Space Transportation Planning (IISTP), was developed and applied in FY01 to establish initial program priorities. The EPT investment area emerged for technologies that scored well in the IISTP but had a low technical maturity level. One particular technology, the Momentum-eXchange Electrodynamic-Reboost (MXER) tether, scored extraordinarily high and had broad applicability in the IISTP. However, its technical maturity was too low for ranking alongside technologies like the ion engine or aerocapture. Thus MXER tethers assumed top priority at EPT startup in FY03 with an aggressive schedule and adequate budget. It was originally envisioned that future technologies would enter the ISP portfolio through EPT, and EPT developed an EPT/ISP Entrance Process for future candidate ISP technologies. EPT has funded the following secondary, candidate ISP technologies at a low level: ultra-lightweight solar sails, general space/near-earth tether development, electrodynamic tether development, advanced electric propulsion, and in-space mechanism development. However, the scope of the ISPT program has focused over time to more closely match SMD needs and technology advancement successes. As a result, the funding for MXER and other EPT technologies is not currently available. Consequently, the MXER tether tasks and other EPT tasks were expected to phased out by November 2006. Presentation slides are presented which provide activity overviews for the aerocapture technology and emerging propulsion technology projects.

  13. NASA propulsion controls research

    NASA Technical Reports Server (NTRS)

    Teren, F.

    1983-01-01

    Multivariable control theory is applied to the design of multiple input and output engine controls. Highly-accurate, real-time engine simulations are utilized for control development and checkout. Electro-optical control components are developed for use in electronic control systems having fiber optic data links. Integrated controls are developed for VSTOL and Rotorcraft propulsion systems. Post-stall models of engine systems are developed to aid in understanding and control of post-stall engine behavior.

  14. Free radical propulsion concept

    NASA Technical Reports Server (NTRS)

    Hawkins, C. E.; Nakanishi, S.

    1981-01-01

    The concept of a free radical propulsion system, utilizing the recombination energy of dissociated low molecular weight gases to produce thrust, is analyzed. The system, operating at a theoretical impulse with hydrogen, as high as 2200 seconds at high thrust to power ratio, is hypothesized to bridge the gap between chemical and electrostatic propulsion capabilities. A comparative methodology is outlined by which characteristics of chemical and electric propulsion for orbit raising mission can be investigated. It is noted that free radicals proposed in rockets previously met with difficulty and complexity in terms of storage requirements; the present study proposes to eliminate the storage requirements by using electric energy to achieve a continuous-flow product of free radicals which are recombined to produce a high velocity propellant. Microwave energy used to dissociate a continuously flowing gas is transferred to the propellant via three-body-recombination for conversion to propellant kinetic energy. Microwave plasma discharge was found in excess of 90 percent over a broad range of pressure in preliminary experiments, and microwave heating compared to electrothermal heating showed much higher temperatures in gasdynamic equations.

  15. The MAP Propulsion Subsystem

    NASA Technical Reports Server (NTRS)

    Davis, Gary T.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    This paper describes the requirements, design, integration, test, performance, and lessons learned of NASA's Microwave Anisotropy Probe (MAP) propulsion subsystem. MAP was launched on a Delta-II launch vehicle from NASA's Kennedy Space Center on June 30, 2001. Due to instrument thermal stability requirements, the Earth-Sun L2 Lagrange point was selected for the mission orbit. The L2 trajectory incorporated phasing loops and a lunar gravity assist. The propulsion subsystem's requirements are to manage momentum, perform maneuvers during the phasing loops to set up the lunar swingby, and perform stationkeeping at L2 for 2 years. MAP's propulsion subsystem uses 8 thrusters which are located and oriented to provide attitude control and momentum management about all axes, and delta-V in any direction without exposing the instrument to the sun. The propellant tank holds 72 kg of hydrazine, which is expelled by unregulated blowdown pressurization. Thermal management is complex because no heater cycling is allowed at L2. Several technical challenges presented themselves during I and T, such as in-situ weld repairs and in-situ bending of thruster tubes to accommodate late changes in the observatory CG. On-orbit performance has been nominal, and all phasing loop, mid-course correction, and stationkeeping maneuvers have been successfully performed to date.

  16. Geosynchronous earth orbit base propulsion - electric propulsion options

    SciTech Connect

    Palaszewski, B.

    1987-01-01

    Electric propulsion and chemical propulsion requirements for a geosynchronous earth orbit (GEO) base were analyzed. The base is resupplied from the Space Station's low earth orbit. Orbit-transfer Delta-Vs, nodal-regression Delta-Vs and orbit-maintenance Delta-Vs were considered. For resupplying the base, a cryogenic oxygen/hydrogen (O2/H2) orbital transfer vehicle (OTV) is currently-baselined. Comparisons of several electric propulsion options with the O2/H2 OTV were conducted. Propulsion requirements for missions related to the GEO base were also analyzed. Payload data for the GEO missions were drawn from current mission data bases. Detailed electric propulsion module designs are presented. Mission analyses and propulsion analyses for the GEO-delivered payloads are included. 23 references.

  17. Solar pumped laser

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F.; Weaver, W. R. (Inventor)

    1984-01-01

    A solar pumped laser is described in which the lasant is a gas that will photodissociate and lase when subjected to sunrays. Sunrays are collected and directed onto the gas lasant to cause it to lase. Applications to laser propulsion and laser power transmission are discussed.

  18. Nuclear pulse propulsion for interplanetary travel

    NASA Astrophysics Data System (ADS)

    Cassenti, Brice N.

    2001-02-01

    Over the last forty years there has been continuous interest in both internal and external pulse propulsion systems. The nuclear devices being considered are now considerably smaller than those initially examined. Pellets are normally in the range from 15 cm down to 2 cm in diameter, and fusion is generally preferred. Detonation can occur using high energy density triggers such as lasers, particle beams or antiprotons. In inertial confinement fusion the energy can be provided using laser beams or particle beams. When antiprotons are considered it is more efficient to annihilate the antiprotons in a fissionable material, and then use the energy from the fission reaction to drive the fusion reaction in the pellet. Finally, it is also possible to include fissionable material that can boost the performance of a fusion system. The early concepts, which used critical mass devices, do not satisfy the ban on nuclear weapons in space, and are only rarely considered today. Concepts based on inertial confinement fusion are heavier than those that use antiprotons for the trigger due to the mass associated with the lasers, or particle beams and their power supplies. Hence, from a performance, and political, point of view the antiproton triggered approach is the most desirable, but it also requires more development. Propulsion systems based on critical mass devices are clearly feasible, so the primary problem is to reduce the size of the explosive devices so that a critical mass is not required. If pulse nuclear fusion propulsion can become a reality then the performance is enough to complete manned missions to the inner planets in weeks and the outer planets in months. .

  19. In-Space Propulsion Solar Electric Propulsion Technology Overview

    NASA Astrophysics Data System (ADS)

    Dankanich, John W.

    2006-12-01

    NASA’s In-space Propulsion Technology Project is developing new propulsion technologies that can enable or enhance near and mid-term NASA science missions. The solar electric propulsion technology area has been investing in NASA’s Evolutionary Xenon Thruster (NEXT), the High Voltage Hall Accelerator (HiVHAC), lightweight reliable feed systems, wear testing and thruster modeling. These investments are specifically targeted to increase planetary science payload capability, expand the envelope of planetary science destinations, and significantly reduce the travel times, risk and cost of NASA planetary science missions. Current status and expected capabilities of the solar electric propulsion technologies will be discussed.

  20. NASA Breakthrough Propulsion Physics Program

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1998-01-01

    In 1996, NASA established the Breakthrough Propulsion Physics program to seek the ultimate breakthroughs in space transportation: propulsion that requires no propellant mass, propulsion that attains the maximum transit speeds physically possible, and breakthrough methods of energy production to power such devices. Topics of interest include experiments and theories regarding the coupling of gravity and electromagnetism, vacuum fluctuation energy, warp drives and worm-holes, and superluminal quantum effects. Because these propulsion goals are presumably far from fruition, a special emphasis is to identify affordable, near-term, and credible research that could make measurable progress toward these propulsion goals. The methods of the program and the results of the 1997 workshop are presented. This Breakthrough Propulsion Physics program, managed by Lewis Research Center, is one part of a comprehensive, long range Advanced Space Transportation Plan managed by Marshall Space Flight Center.

  1. Embedded Wing Propulsion Conceptual Study

    NASA Technical Reports Server (NTRS)

    Kim, Hyun D.; Saunders, John D.

    2003-01-01

    As a part of distributed propulsion work under NASA's Revolutionary Aeropropulsion Concepts or RAC project, a new propulsion-airframe integrated vehicle concept called Embedded Wing Propulsion (EWP) is developed and examined through system and computational fluid dynamics (CFD) studies. The idea behind the concept is to fully integrate a propulsion system within a wing structure so that the aircraft takes full benefits of coupling of wing aerodynamics and the propulsion thrust stream. The objective of this study is to assess the feasibility of the EWP concept applied to large transport aircraft such as the Blended-Wing-Body aircraft. In this paper, some of early analysis and current status of the study are presented. In addition, other current activities of distributed propulsion under the RAC project are briefly discussed.

  2. The Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP). Nuclear propulsion can be affordable and viable compared to other propulsion systems and must overcome a biased public fear due to hyper-environmentalism and a false perception of radiation and explosion risk.

  3. Heat transfer in aerospace propulsion

    NASA Technical Reports Server (NTRS)

    Simoneau, Robert J.; Hendricks, Robert C.; Gladden, Herbert J.

    1988-01-01

    Presented is an overview of heat transfer related research in support of aerospace propulsion, particularly as seen from the perspective of the NASA Lewis Research Center. Aerospace propulsion is defined to cover the full spectrum from conventional aircraft power plants through the Aerospace Plane to space propulsion. The conventional subsonic/supersonic aircraft arena, whether commercial or military, relies on the turbine engine. A key characteristic of turbine engines is that they involve fundamentally unsteady flows which must be properly treated. Space propulsion is characterized by very demanding performance requirements which frequently push systems to their limits and demand tailored designs. The hypersonic flight propulsion systems are subject to severe heat loads and the engine and airframe are truly one entity. The impact of the special demands of each of these aerospace propulsion systems on heat transfer is explored.

  4. A membraneless air-breathing hydrogen biofuel cell based on direct wiring of thermostable enzymes on carbon nanotube electrodes.

    PubMed

    Lalaoui, Noémie; de Poulpiquet, Anne; Haddad, Raoudha; Le Goff, Alan; Holzinger, Michael; Gounel, Sébastien; Mermoux, Michel; Infossi, Pascale; Mano, Nicolas; Lojou, Elisabeth; Cosnier, Serge

    2015-05-01

    A biocathode was designed by the modification of a carbon nanotube (CNT) gas-diffusion electrode with bilirubin oxidase from Bacillus pumilus, achieving high current densities up to 3 mA cm(-2) for the reduction of O2 from air. A membraneless air-breathing hydrogen biofuel cell was designed by combination of this cathode with a functionalized CNT-based hydrogenase anode. PMID:25845356

  5. Relativistic propulsion using directed energy

    NASA Astrophysics Data System (ADS)

    Bible, Johanna; Johansson, Isabella; Hughes, Gary B.; Lubin, Philip M.

    2013-09-01

    We propose a directed energy orbital planetary defense system capable of heating the surface of potentially hazardous objects to the evaporation point as a futuristic but feasible approach to impact risk mitigation. The system is based on recent advances in high efficiency photonic systems. The system could also be used for propulsion of kinetic or nuclear tipped asteroid interceptors or other interplanetary spacecraft. A photon drive is possible using direct photon pressure on a spacecraft similar to a solar sail. Given a laser power of 70GW, a 100 kg craft can be propelled to 1AU in approximately 3 days achieving a speed of 0.4% the speed of light, and a 10,000 kg craft in approximately 30 days. We call the system DE-STAR for Directed Energy System for Targeting of Asteroids and exploRation. DE-STAR is a modular phased array of solid-state lasers, powered by photovoltaic conversion of sunlight. The system is scalable and completely modular so that sub elements can be built and tested as the technology matures. The sub elements can be immediately utilized for testing as well as other applications including space debris mitigation. The ultimate objective of DE-STAR would be to begin direct asteroid vaporization and orbital modification starting at distances beyond 1 AU. Using phased array technology to focus the beam, the surface spot temperature on the asteroid can be raised to more than 3000K, allowing evaporation of all known substances. Additional scientific uses of DE-STAR are also possible.

  6. Electrolysis Propulsion for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    deGroot, Wim A.; Arrington, Lynn A.; McElroy, James F.; Mitlitsky, Fred; Weisberg, Andrew H.; Carter, Preston H., II; Myers, Blake; Reed, Brian D.

    1997-01-01

    Electrolysis propulsion has been recognized over the last several decades as a viable option to meet many satellite and spacecraft propulsion requirements. This technology, however, was never used for in-space missions. In the same time frame, water based fuel cells have flown in a number of missions. These systems have many components similar to electrolysis propulsion systems. Recent advances in component technology include: lightweight tankage, water vapor feed electrolysis, fuel cell technology, and thrust chamber materials for propulsion. Taken together, these developments make propulsion and/or power using electrolysis/fuel cell technology very attractive as separate or integrated systems. A water electrolysis propulsion testbed was constructed and tested in a joint NASA/Hamilton Standard/Lawrence Livermore National Laboratories program to demonstrate these technology developments for propulsion. The results from these testbed experiments using a I-N thruster are presented. A concept to integrate a propulsion system and a fuel cell system into a unitized spacecraft propulsion and power system is outlined.

  7. Reactors for nuclear electric propulsion

    SciTech Connect

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades.

  8. Propulsion technologies for near term

    NASA Technical Reports Server (NTRS)

    Mehta, Gopal

    1991-01-01

    Propulsion system requirements and considerations; cost effective approach; booster recovery module; and commercial vehicles - evolutionary approach are outlined. This presentation is represented by viewgraphs.

  9. A comparison of chemical propulsion, nuclear thermal propulsion, and multimegawatt electric propulsion for Mars missions

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.; Blandino, John J.; Leifer, Stephanie D.

    1991-01-01

    Various propulsion systems are considered for a split-mission piloted exploration of Mars in terms of reducing total initial mass in low earth orbit (IMLEO) as well as trip time. Aerobraked nuclear thermal propulsion (NTP), multimegawatt (MMW) nuclear electric propulsion (NEP), and MMW solar electric propulsion (SEP) are discussed and compared to a baseline aerobraked chemical propulsion system. NTP offers low IMLEO, MMW NEP allows both low IMLEO and a short trip time, and both nuclear systems offer better mission characteristics than the chemical system. The MMW SEP is concluded to be less efficient in spite of a lower IMLEO because of the system's higher specific mass and nonconstant power production. It is recommended that MMW NEP and SEP systems be considered for application to Mars cargo missions. The NEP system is concluded to be the most effective propulsion configuration for piloted Mars missions and lunar base missions.

  10. Nuclear propulsion systems engineering

    SciTech Connect

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-12-31

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960`s and early 1970`s was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts.

  11. Nuclear propulsion systems engineering

    SciTech Connect

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-01-01

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960's and early 1970's was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts.

  12. Miniature propulsion systems

    NASA Astrophysics Data System (ADS)

    Campbell, John G.

    1992-07-01

    Miniature solenoid valves, check valves and a hydrazine gas generator typify the miniaturization used in the liquid propulsion system for the Army Light Weight Exo-Atmospheric Projectile (LEAP). The pressure control subsystem uses a solenoid valve weighing 24 grams to control flow of helium to pressurize the propellant tanks. The attitude control subsystem uses a gas generator weighing 71 grams to produce decomposed hydrazine as the gaseous propellant for miniature 1 lbf ACS thrusters weighing 5.4 grams. The successful use of these miniature components in development tests and a hover test of the LEAP is described.

  13. Electromagnetic propulsion test facility

    NASA Technical Reports Server (NTRS)

    Gooder, S. T.

    1984-01-01

    A test facility for the exploration of electromagnetic propulsion concept is described. The facility is designed to accommodate electromagnetic rail accelerators of various lengths (1 to 10 meters) and to provide accelerating energies of up to 240 kiloJoules. This accelerating energy is supplied as a current pulse of hundreds of kiloAmps lasting as long as 1 millisecond. The design, installation, and operating characteristics of the pulsed energy system are discussed. The test chamber and its operation at pressures down to 1300 Pascals (10 mm of mercury) are described. Some aspects of safety (interlocking, personnel protection, and operating procedures) are included.

  14. Advanced propulsion concepts

    NASA Technical Reports Server (NTRS)

    Sercel, Joel C.

    1991-01-01

    The topics presented are covered in viewgraph form. The programmatic objective is to establish the feasibility of propulsion technologies for vastly expanded space activity. The technical objective is a revolutionary performance sought, such as: (1) about 1 kg/kW specific mass; (2) specific impulse tailored to mission requirements; (3) ability to use in-situ resources; (4) round-trips to Mars in months; (5) round-trips to outer planets in 1 to 2 years; and (6) the capability for robotic mission beyond the solar system.

  15. Investigation of advanced propulsion technologies: The RAM accelerator and the flowing gas radiation heater

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Knowlen, C.; Mattick, A. T.; Hertzberg, A.

    1992-01-01

    The two principal areas of advanced propulsion investigated are the ram accelerator and the flowing gas radiation heater. The concept of the ram accelerator is presented as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerothermodynamics research. The ram accelerator is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled in a stationary tube filled with a tailored combustible gas mixture. Combustion on and behind the projectile generates thrust which accelerates it to very high velocities. The acceleration can be tailored for the 'soft launch' of instrumented models. The distinctive reacting flow phenomena that have been observed in the ram accelerator are relevant to the aerothermodynamic processes in airbreathing hypersonic propulsion systems and are useful for validating sophisticated CFD codes. The recently demonstrated scalability of the device and the ability to control the rate of acceleration offer unique opportunities for the use of the ram accelerator as a large-scale hypersonic ground test facility. The flowing gas radiation receiver is a novel concept for using solar energy to heat a working fluid for space power or propulsion. Focused solar radiation is absorbed directly in a working gas, rather than by heat transfer through a solid surface. Previous theoretical analysis had demonstrated that radiation trapping reduces energy loss compared to that of blackbody receivers, and enables higher efficiencies and higher peak temperatures. An experiment was carried out to measure the temperature profile of an infrared-active gas and demonstrate the effect of radiation trapping. The success of this effort validates analytical models of heat transfer in this receiver, and confirms the potential of this approach for achieving high efficiency space power and propulsion.

  16. Advanced charged particle beam ignited nuclear pulse propulsion

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2009-06-01

    It is shown that the mass of the driver for nuclear microexplosion—Orion type—pulse propulsion can be substantially reduced with a special fusion-fast fission configuration, which permits to replace an inefficient laser beam driver with a much more efficient and less massive relativistic electron beam (or light ion beam) driver. The driver mass can be further reduced, and the propulsion efficiency increased, by surrounding the nuclear microexplosion assembly with a shell of conventional hydrogen-rich explosive, helping to ignite the nuclear reaction and dissipating the otherwise lost kinetic neutron energy in the shell which becomes part of the propellant.

  17. Influence of cathode opening size and wetting properties of diffusion layers on the performance of air-breathing PEMFCs

    NASA Astrophysics Data System (ADS)

    Schmitz, A.; Tranitz, M.; Eccarius, S.; Weil, A.; Hebling, C.

    Air-breathing PEMFCs consist of an open cathodic side to allow an entirely passive supply of oxygen by diffusion. Furthermore, a large fraction of the produced water is removed by evaporation from the open cathode. Gas diffusion layers (GDLs) and the opening size of the cathode have a crucial influence on the performance of an air-breathing PEMFC. In order to assure an unobstructed supply of oxygen the water has to be removed efficiently and condensation in the GDL has to be avoided. On the other hand good humidification of the membrane has to be achieved to obtain high protonic conductivity. In this paper the influence of varying cathodic opening sizes (33%, 50% and 80% opening ratios) and of GDLs with different wetting properties are analysed. GDLs with hydrophobic and hydrophilic properties are prepared by coating of untreated GDLs (Toray ® carbon paper TGP-H-120, thickness of 350 μm). The air-breathing PEMFC test samples are realised using printed circuit board (PCB) technology. The cell samples were characterised over the entire potential range (0-0.95 V) by extensive measurements of the current density, the temperature and the cell impedance at 1 kHz. Additionally, measurements of the water balance were carried out at distinct operation points. The best cell performance was achieved with the largest opening ratio (80%) and an untreated GDL. At the maximum power point, this cell sample achieved a power density of 100 mW cm -2 at a moderate cell temperature of 43 °C. Furthermore, it could be shown that GDLs with hydrophilic or intense hydrophobic properties do not improve the performance of an air-breathing PEMFC. Based on the extensive characterisations, two design rules for air-breathing PEMFCs could be formulated. Firstly, it is crucial to maximise the cathode opening as far as an appropriate compression pressure of the cell assembly and therewith low contact resistance can be assured. Secondly, it is advantageous to use an untreated, slightly hydrophobic

  18. Additive Manufacturing of Aerospace Propulsion Components

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.; Grady, Joseph E.; Carter, Robert

    2015-01-01

    The presentation will provide an overview of ongoing activities on additive manufacturing of aerospace propulsion components, which included rocket propulsion and gas turbine engines. Future opportunities on additive manufacturing of hybrid electric propulsion components will be discussed.

  19. Space propulsion technology and cryogenic fluid depot

    NASA Technical Reports Server (NTRS)

    Diehl, Larry A.

    1988-01-01

    Information on space propulsion and technology and the cryogenic fluid depot is given in viewgraph form. Information is given on orbit transfer, electric propulsion, spacecraft propulsion, and program objectives.

  20. Hybrid propulsion systems for space exploration missions

    NASA Technical Reports Server (NTRS)

    Darooka, D. K.

    1991-01-01

    Combinations of nuclear thermal propulsion (NTP), nuclear electric propulsion (NEP), and chemical propulsion are discussed. Technical details are given in viewgraph form. The characteristics of each configuration are discussed, particularly thrust characteristics.

  1. Lasers in space

    NASA Astrophysics Data System (ADS)

    Michaelis, M. M.; Forbes, A.; Bingham, R.; Kellett, B. J.; Mathye, A.

    2008-05-01

    A variety of laser applications in space, past, present, future and far future are reviewed together with the contributions of some of the scientists and engineers involved, especially those that happen to have South African connections. Historically, two of the earliest laser applications in space, were atmospheric LIDAR and lunar ranging. These applications involved atmospheric physicists, several astronauts and many of the staff recruited into the Soviet and North American lunar exploration programmes. There is a strong interest in South Africa in both LIDAR and lunar ranging. Shortly after the birth of the laser (and even just prior) theoretical work on photonic propulsion and space propulsion by laser ablation was initiated by Georgii Marx, Arthur Kantrowitz and Eugen Saenger. Present or near future experimental programs are developing in the following fields: laser ablation propulsion, possibly coupled with rail gun or gas gun propulsion; interplanetary laser transmission; laser altimetry; gravity wave detection by space based Michelson interferometry; the de-orbiting of space debris by high power lasers; atom laser interferometry in space. Far future applications of laser-photonic space-propulsion were also pioneered by Carl Sagan and Robert Forward. They envisaged means of putting Saenger's ideas into practice. Forward also invented a laser based method for manufacturing solid antimatter or SANTIM, well before the ongoing experiments at CERN with anti-hydrogen production and laser-trapping. SANTIM would be an ideal propellant for interstellar missions if it could be manufactured in sufficient quantities. It would be equally useful as a power source for the transmission of information over light year distances. We briefly mention military lasers. Last but not least, we address naturally occurring lasers in space and pose the question: "did the Big Bang lase?"

  2. Assessing Potential Propulsion Breakthroughs

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    2005-01-01

    The term, propulsion breakthrough, refers to concepts like propellantless space drives and faster-than-light travel, the kind of breakthroughs that would make interstellar exploration practical. Although no such breakthroughs appear imminent, a variety of investigations into these goals have begun. From 1996 to 2002, NASA supported the Breakthrough Propulsion Physics Project to examine physics in the context of breakthrough spaceflight. Three facets of these assessments are now reported: (1) predicting benefits, (2) selecting research, and (3) recent technical progress. Predicting benefits is challenging since the breakthroughs are still only notional concepts, but kinetic energy can serve as a basis for comparison. In terms of kinetic energy, a hypothetical space drive could require many orders of magnitude less energy than a rocket for journeys to our nearest neighboring star. Assessing research options is challenging when the goals are beyond known physics and when the implications of success are profound. To mitigate the challenges, a selection process is described where: (a) research tasks are constrained to only address the immediate unknowns, curious effects or critical issues, (b) reliability of assertions is more important than their implications, and (c) reviewers judge credibility rather than feasibility. The recent findings of a number of tasks, some selected using this process, are discussed. Of the 14 tasks included, six reached null conclusions, four remain unresolved, and four have opportunities for sequels. A dominant theme with the sequels is research about the properties of space, inertial frames, and the quantum vacuum.

  3. Electromagnetic propulsion for spacecraft

    NASA Astrophysics Data System (ADS)

    Myers, Roger M.

    1993-09-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT), were developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters were flown in space, though only PPT's were used on operational satellites. The performance of operational PPT's is quite poor, providing only approximately 8 percent efficiency at approximately 1000 s specific impulse. However, laboratory PPT's yielding 34 percent efficiency at 2000 s specific impulse were extensively tested, and peak performance levels of 53 percent efficiency at 5170 s specific impulse were demonstrated. MPD thrusters were flown as experiments on the Japanese MS-T4 spacecraft and the Space Shuttle and were qualified for a flight in 1994. The flight MPD thrusters were pulsed, with a peak performance of 22 percent efficiency at 2500 s specific impulse using ammonia propellant. Laboratory MPD thrusters were demonstrated with up to 70 percent efficiency and 700 s specific impulse using lithium propellant. While the PIT thruster has never been flown, recent performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 to 8000 s. The fundamental operating principles, performance measurements, and system level design for the three types of electromagnetic thrusters are reviewed, and available data on flight tests are discussed for the PPT and MPD thrusters.

  4. Electromagnetic propulsion for spacecraft

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1993-01-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT), were developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters were flown in space, though only PPT's were used on operational satellites. The performance of operational PPT's is quite poor, providing only approximately 8 percent efficiency at approximately 1000 s specific impulse. However, laboratory PPT's yielding 34 percent efficiency at 2000 s specific impulse were extensively tested, and peak performance levels of 53 percent efficiency at 5170 s specific impulse were demonstrated. MPD thrusters were flown as experiments on the Japanese MS-T4 spacecraft and the Space Shuttle and were qualified for a flight in 1994. The flight MPD thrusters were pulsed, with a peak performance of 22 percent efficiency at 2500 s specific impulse using ammonia propellant. Laboratory MPD thrusters were demonstrated with up to 70 percent efficiency and 700 s specific impulse using lithium propellant. While the PIT thruster has never been flown, recent performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 to 8000 s. The fundamental operating principles, performance measurements, and system level design for the three types of electromagnetic thrusters are reviewed, and available data on flight tests are discussed for the PPT and MPD thrusters.

  5. Quality Issues in Propulsion

    NASA Technical Reports Server (NTRS)

    McCarty, John P.; Lyles, Garry M.

    1997-01-01

    Propulsion system quality is defined in this paper as having high reliability, that is, quality is a high probability of within-tolerance performance or operation. Since failures are out-of-tolerance performance, the probability of failures and their occurrence is the difference between high and low quality systems. Failures can be described at 3 levels: the system failure (which is the detectable end of a failure), the failure mode (which is the failure process), and the failure cause (which is the start). Failure causes can be evaluated & classified by type. The results of typing flight history failures shows that most failures are in unrecognized modes and result from human error or noise, i.e. failures are when engineers learn how things really work. Although the study based on US launch vehicles, a sampling of failures from other countries indicates the finding has broad application. The parameters of the design of a propulsion system are not single valued, but have dispersions associated with the manufacturing of parts. Many tests are needed to find failures, if the dispersions are large relative to tolerances, which could contribute to the large number of failures in unrecognized modes.

  6. Integrated airframe propulsion control

    NASA Technical Reports Server (NTRS)

    Fennell, R. E.; Black, S. B.

    1982-01-01

    Perturbation equations which describe flight dynamics and engine operation about a given operating point are combined to form an integrated aircraft/propulsion system model. Included in the model are the dependence of aerodynamic coefficients upon atmospheric variables along with the dependence of engine variables upon flight condition and inlet performance. An off-design engine performance model is used to identify interaction parameters in the model. Inclusion of subsystem interaction effects introduces coupling between flight and propulsion variables. To analyze interaction effects on control, consideration is first given to control requirements for separate flight and engine models. For the separate airframe model, feedback control provides substantial improvement in short period damping. For the integrated system, feedback control compensates for the coupling present in the model and provides good overall system stability. However, this feedback control law involves many non-zero gains. Analysis of suboptimal control strategies indicates that performance of the closed loop integrated system can be maintained with a feedback matrix in which the number of non-zero gains is small relative to the number of components in the feedback matrix.

  7. Emergent Propulsion Systems

    NASA Astrophysics Data System (ADS)

    El-Fakdi Sencianes, Andres

    2002-01-01

    almost an Engineer (2002 will be my last year as student) and the studies that I'm now ending here, in Girona, are closely related not only with science and technology subjects but with optimization and economic result obtention, too. Huge distances that separate us from everything in space have launched scientists and engineers into a new challenge: How to reach maximum speeds keeping high ratios payload/total spacecraft mass? The key limitation of chemical rockets is that their exhaust velocity is relatively low. Because achieving Earth orbit requires a high velocity change a rocket must carry far more propellant than payload. The answer to all this complications seems to stare in one way: electric propulsion systems and the possibility of taking advantatge of solar winds to thrust our crafts. possible solutions, some of them have been studied for years and now they are not a project but a reality; also newest theories bring us the possibility of dream. Improve of commom propellants, search of new ones: Investigators continued research on use of atomic species as high-energy-density propellants, which could increase the specific impulse of hydrogen/oxygen rockets by 50-150%. Nuclear fission propulsion: Centered in development of reactors for nearterm nuclear electric propulsion aplications. Multimegawatt systems based on vapor core reactors and magnetohydrodynamic power conversion. Engineers investigated new fuels for compact nuclear thermal propulsion systems. What is called plasma state?: When a gas is heated to tens of thousands or millions of degrees, atoms lose their electrons. The result is a "soup" of charged particles, or plasma, made up of negatively charged electrons and positively charged ions. No known material can contain the hot plasma necessary for rocket propulsion, but specially designed magnetic fields can. Plasma rockets: This rockets are not powered by conventional chemical reactions as today's rockets are, but by electrical energy that heats

  8. Nuclear electric propulsion systems overview

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1993-01-01

    The topics are presented in viewgraph form and include the following: nuclear propulsion background; schedule for the nuclear electric propulsion (NEP) project; NEP for the Space Exploration Initiative; NEP on-going systems tasks; 20KWe mission/system study; and agenda.

  9. Progress in NASA Rotorcraft Propulsion

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Johnson, Susan M.

    2008-01-01

    This presentation reviews recent progress made under NASA s Subsonic Rotary Wing (SRW) propulsion research activities. Advances in engines, drive systems and optimized propulsion systems are discussed. Progress in wide operability compressors, modeling of variable geometry turbine performance, foil gas bearings and multi-speed transmissions are presented.

  10. Nuclear propulsion for space exploration

    NASA Technical Reports Server (NTRS)

    Miller, Thomas J.; Bennett, Gary L.

    1992-01-01

    The results of some recent studies of the application of both nuclear electric and nuclear thermal propulsion systems in space exploration are presented. Issues that require further study and which have a significant effect on the propulsion system design and selection are identified. Attention is given to robotic missions, lunar piloted and cargo missions, and Mars missions.

  11. The NASA Electric Propulsion Program

    NASA Technical Reports Server (NTRS)

    Byers, David C.; Wasel, Robert A.

    1987-01-01

    The NASA OAST Propulsion, Power and Energy Division supports electric propulsion for a broad class of missions. Concepts with potential to significantly benefit or enable space exploration and exploitation are identified and advanced toward applications in the near to far term. Recent program progress in mission/system analyses and in electrothermal, ion, and electromagnetic technologies are summarized.

  12. The NASA Electric Propulsion Program

    NASA Technical Reports Server (NTRS)

    Callahan, Lisa Wood; Curran, Francis M.

    1996-01-01

    Nearly all space missions require on-board propulsion systems and these systems typically have a major impact on spacecraft mass and cost. Electric propulsion systems offer major performance advantages over conventional chemical systems for many mission functions and the NASA Office of Space Access and Technology (OSAT) supports an extensive effort to develop the technology for high-performance, on-board electric propulsion system options to enhance and enable near- and far-term US space missions. This program includes research and development efforts on electrothermal, electrostatic, and electromagnetic propulsion system technologies to cover a wide range of potential applications. To maximize expectations of technology transfer, the program emphasizes strong interaction with the user community through a variety of cooperative and contracted approaches. This paper provides an overview of the OSAT electric propulsion program with an emphasis on recent progress and future directions.

  13. Air-breathing direct formic acid microfluidic fuel cell with an array of cylinder anodes

    NASA Astrophysics Data System (ADS)

    Zhu, Xun; Zhang, Biao; Ye, Ding-Ding; Li, Jun; Liao, Qiang

    2014-02-01

    An air-breathing direct formic acid membraneless microfluidic fuel cell using graphite cylinder arrays as the anode is proposed. The three dimensional anode volumetrically extends the reactive surface area and improves fuel utilization. The effects of spacer configuration, fuel and electrolyte concentration as well as reactant flow rate on the species transport and cell performance are investigated. The dynamic behavior of generated CO2 bubbles is visualized and its effect on current generation is discussed. The results show that the absence of two spacers adjacent to the cathode surface improves the cell performance by reducing the proton transfer resistance. The CO2 gas bubbles are constrained within the anode array and expelled by the fluid flow periodically. Proper reactant concentration and flow rate are crucial for cell operation. At optimum conditions, a maximum current density of 118.3 mA cm-3 and a peak power density of 21.5 mW cm-3 are obtained. In addition, benefit from the volumetrically stacked anodes and enhanced fuel transfer, the maximum single pass fuel utilization rate reaches up to 87.6% at the flow rate of 1 mL h-1.

  14. Computational modeling of alkaline air-breathing microfluidic fuel cells with an array of cylinder anodes

    NASA Astrophysics Data System (ADS)

    Ye, Ding-Ding; Zhang, Biao; Zhu, Xun; Sui, Pang-Chieh; Djilali, Ned; Liao, Qiang

    2015-08-01

    A three-dimensional computational model is developed for an alkaline air-breathing microfluidic fuel cell (AMFC) with an array of cylinder anodes. The model is validated against experimental data from an in-house prototype AMFC. The distributions of fluid velocity, fuel concentration and current density of the fuel cell are analyzed in detail. The effect of reactant flow rate on the cell performance and electrode potentials is also studied. The model results suggest that fuel crossover is minimized by the fast electrolyte flow in the vicinity of the cathode. The current production of each anode is uneven and is well correlated with internal ohmic resistance. Fuel transfer limitation occurs at low flow rates (<100 μL min-1) but diminishes at high flow rates. The model results also indicate that cathode potential reversal takes place at combined low flow rate and high current density conditions, mainly due to the improved overpotential downstream where fuel starvation occurs. The anode reaction current distribution is found to be relatively uniform, which is a result of a compensating mechanism that improves the current production of the bottom anodes downstream.

  15. Uncertainty analysis and robust trajectory linearization control of a flexible air-breathing hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Pu, Zhiqiang; Tan, Xiangmin; Fan, Guoliang; Yi, Jianqiang

    2014-08-01

    Flexible air-breathing hypersonic vehicles feature significant uncertainties which pose huge challenges to robust controller designs. In this paper, four major categories of uncertainties are analyzed, that is, uncertainties associated with flexible effects, aerodynamic parameter variations, external environmental disturbances, and control-oriented modeling errors. A uniform nonlinear uncertainty model is explored for the first three uncertainties which lumps all uncertainties together and consequently is beneficial for controller synthesis. The fourth uncertainty is additionally considered in stability analysis. Based on these analyses, the starting point of the control design is to decompose the vehicle dynamics into five functional subsystems. Then a robust trajectory linearization control (TLC) scheme consisting of five robust subsystem controllers is proposed. In each subsystem controller, TLC is combined with the extended state observer (ESO) technique for uncertainty compensation. The stability of the overall closed-loop system with the four aforementioned uncertainties and additional singular perturbations is analyzed. Particularly, the stability of nonlinear ESO is also discussed from a Liénard system perspective. At last, simulations demonstrate the great control performance and the uncertainty rejection ability of the robust scheme.

  16. Migration history of air-breathing fishes reveals Neogene atmospheric circulation patterns

    NASA Astrophysics Data System (ADS)

    Böhme, M.

    2004-05-01

    The migration history of an air-breathing fish group (Channidae; snakehead fishes) is used for reconstructing Neogene Eurasian precipitation and atmospheric circulation patterns. The study shows that snakeheads are sensitive indicators of summer precipitation maxima in subtropical and temperate regions, and are present regularly if the wettest month exceeds 150 mm precipitation and 20 °C mean temperature. The analysis of 515 fossil freshwater fish deposits of the past 50 m.y. from Africa and Eurasia shows two continental-scale migration events from the snakeheads' center of origin in the south Himalayan region, events that can be related to changes in the Northern Hemisphere circulation pattern. The first migration, ca. 17.5 Ma, into western and central Eurasia may have been caused by a northward shift of the Intertropical Convergence Zone that brought western Eurasia under the influence of trade winds that produced a zonal and meridional precipitation gradient in Europe. During the second migration, between 8 and 4 Ma, into Africa and East Asia, snakeheads reached their present-day distribution. This migration could have been related to the intensification of the Asian monsoon that brought summer precipitation to their migratory pathways in East Africa Arabia and East Asia.

  17. Navier-Stokes predictions of dynamic stability derivatives for air-breathing hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Liu, Xu; Liu, Wei; Zhao, Yunfei

    2016-01-01

    Dynamic derivatives are important parameters for designing vehicle trajectory and attitude control system that directly decide the divergence behavior of vibration of the aircraft open-loop system under interference. After calibration model validation, the dynamic behavior of air-breathing hypersonic vehicle WR-A is characterized. The unsteady flow field of aircraft forced simple harmonic vibration (SHV) is simulated using N-S equation. The direct damping derivatives, cross derivatives, acceleration derivatives and rotary derivatives of WR-A under different frequencies, amplitudes and positions of centroid are obtained. Research demonstrates that the proportion of acceleration derivatives, which represents the flow time lag effect, in the direct damping derivatives can be as high as 40% but is opposite to the damping derivative value symbols in some cases, contributing to dynamic instability. Numerical simulation on large-amplitude forced vibration of WR-A indicates that the aerodynamic behavior predicted by the dynamic derivative model agrees well with unsteady calculations. The inlet performance parameter derivatives are solved using the Etkin theory. The inlet performance parameters under large-amplitude vibration are successfully predicted using the dynamic derivative model. This offers a guideline for characterizing the dynamic internal flow field and unsteady inlet performance.

  18. Design Evolution and Performance Characterization of the GTX Air-Breathing Launch Vehicle Inlet

    NASA Technical Reports Server (NTRS)

    DeBonis, J. R.; Steffen, C. J., Jr.; Rice, T.; Trefny, C. J.

    2002-01-01

    The design and analysis of a second version of the inlet for the GTX rocket-based combine-cycle launch vehicle is discussed. The previous design did not achieve its predicted performance levels due to excessive turning of low-momentum comer flows and local over-contraction due to asymmetric end-walls. This design attempts to remove these problems by reducing the spike half-angle to 10- from 12-degrees and by implementing true plane of symmetry end-walls. Axisymmetric Reynolds-Averaged Navier-Stokes simulations using both perfect gas and real gas, finite rate chemistry, assumptions were performed to aid in the design process and to create a comprehensive database of inlet performance. The inlet design, which operates over the entire air-breathing Mach number range from 0 to 12, and the performance database are presented. The performance database, for use in cycle analysis, includes predictions of mass capture, pressure recovery, throat Mach number, drag force, and heat load, for the entire Mach range. Results of the computations are compared with experimental data to validate the performance database.

  19. Correlation and analysis of oil flow data for an air-breathing missile model

    NASA Technical Reports Server (NTRS)

    Stoy, S. L.; Dillon, J. L.; Roman, A. P.

    1985-01-01

    This paper will present the results of an oil flow investigation on an airbreathing missile model. This oil flow study examined the flow around the model, which can be configured with both axisymmetric and two-dimensional inlets. Flow visualization analyses were conducted for both types of geometries by examining the surface flow patterns made visible by the oil flows for Mach numbers of 2.5 and 3.95. The analysis has shown the extent of flow spillage around the inlet which has helped explain the force and moment data collected during previous testing of the model. The oil flow data has also been used to develop guidelines for modeling the location of the crossflow separation line along inlet fairings. Finally, the oil flow analysis has been used to identify unique features of the boattail flow. These boattail flow characteristics have been correlated with previous oil flow analysis of noncircular body models. This paper demonstrates the use of this type of oil flow analysis in developing missile flow field analysis and aerodynamic predictions ranging from impact angle methods through Navier-Stokes methods.

  20. Australian Science and Technology with Relevance to Beamed Energy Propulsion

    SciTech Connect

    Froning, H. David Jr

    2008-04-28

    Although Australia has no Beamed Energy Propulsion programs at the present time, it is accomplishing significant scientific and technological activity that is of potential relevance to Beamed Energy Propulsion (BEP). These activities include: continual upgrading and enhancement of the Woomera Test Facility, Which is ideal for development and test of high power laser or microwave systems and the flight vehicles they would propel; collaborative development and test, with the US and UK of hypersonic missiles that embody many features needed by beam-propelled flight vehicles; hypersonic air breathing propulsion systems that embody inlet-engine-nozzle features needed for beam-riding agility by air breathing craft; and research on specially conditioned EM fields that could reduce beamed energy lost during atmospheric propagation.

  1. Developmental transcriptome analysis and identification of genes involved in formation of intestinal air-breathing function of Dojo loach, Misgurnus anguillicaudatus.

    PubMed

    Luo, Weiwei; Cao, Xiaojuan; Xu, Xiuwen; Huang, Songqian; Liu, Chuanshu; Tomljanovic, Tea

    2016-01-01

    Dojo loach, Misgurnus anguillicaudatus is a freshwater fish species of the loach family Cobitidae, using its posterior intestine as an accessory air-breathing organ. Little is known about the molecular regulatory mechanisms in the formation of intestinal air-breathing function of M. anguillicaudatus. Here high-throughput sequencing of mRNAs was performed from six developmental stages of posterior intestine of M. anguillicaudatus: 4-Dph (days post hatch) group, 8-Dph group, 12-Dph group, 20-Dph group, 40-Dph group and Oyd (one-year-old) group. These six libraries were assembled into 81300 unigenes. Totally 40757 unigenes were annotated. Subsequently, 35291 differentially expressed genes (DEGs) were scanned among different developmental stages and clustered into 20 gene expression profiles. Finally, 15 key pathways and 25 key genes were mined, providing potential targets for candidate gene selection involved in formation of intestinal air-breathing function in M. anguillicaudatus. This is the first report of developmental transcriptome of posterior intestine in M. anguillicaudatus, offering a substantial contribution to the sequence resources for this species and providing a deep insight into the formation mechanism of its intestinal air-breathing function. This report demonstrates that M. anguillicaudatus is a good model for studies to identify and characterize the molecular basis of accessory air-breathing organ development in fish. PMID:27545457

  2. Developmental transcriptome analysis and identification of genes involved in formation of intestinal air-breathing function of Dojo loach, Misgurnus anguillicaudatus

    PubMed Central

    Luo, Weiwei; Cao, Xiaojuan; Xu, Xiuwen; Huang, Songqian; Liu, Chuanshu; Tomljanovic, Tea

    2016-01-01

    Dojo loach, Misgurnus anguillicaudatus is a freshwater fish species of the loach family Cobitidae, using its posterior intestine as an accessory air-breathing organ. Little is known about the molecular regulatory mechanisms in the formation of intestinal air-breathing function of M. anguillicaudatus. Here high-throughput sequencing of mRNAs was performed from six developmental stages of posterior intestine of M. anguillicaudatus: 4-Dph (days post hatch) group, 8-Dph group, 12-Dph group, 20-Dph group, 40-Dph group and Oyd (one-year-old) group. These six libraries were assembled into 81300 unigenes. Totally 40757 unigenes were annotated. Subsequently, 35291 differentially expressed genes (DEGs) were scanned among different developmental stages and clustered into 20 gene expression profiles. Finally, 15 key pathways and 25 key genes were mined, providing potential targets for candidate gene selection involved in formation of intestinal air-breathing function in M. anguillicaudatus. This is the first report of developmental transcriptome of posterior intestine in M. anguillicaudatus, offering a substantial contribution to the sequence resources for this species and providing a deep insight into the formation mechanism of its intestinal air-breathing function. This report demonstrates that M. anguillicaudatus is a good model for studies to identify and characterize the molecular basis of accessory air-breathing organ development in fish. PMID:27545457

  3. Advanced transportation system studies. Alternate propulsion subsystem concepts: Propulsion database

    NASA Technical Reports Server (NTRS)

    Levack, Daniel

    1993-01-01

    The Advanced Transportation System Studies alternate propulsion subsystem concepts propulsion database interim report is presented. The objective of the database development task is to produce a propulsion database which is easy to use and modify while also being comprehensive in the level of detail available. The database is to be available on the Macintosh computer system. The task is to extend across all three years of the contract. Consequently, a significant fraction of the effort in this first year of the task was devoted to the development of the database structure to ensure a robust base for the following years' efforts. Nonetheless, significant point design propulsion system descriptions and parametric models were also produced. Each of the two propulsion databases, parametric propulsion database and propulsion system database, are described. The descriptions include a user's guide to each code, write-ups for models used, and sample output. The parametric database has models for LOX/H2 and LOX/RP liquid engines, solid rocket boosters using three different propellants, a hybrid rocket booster, and a NERVA derived nuclear thermal rocket engine.

  4. Advanced transportation system studies. Alternate propulsion subsystem concepts: Propulsion database

    NASA Astrophysics Data System (ADS)

    Levack, Daniel

    1993-04-01

    The Advanced Transportation System Studies alternate propulsion subsystem concepts propulsion database interim report is presented. The objective of the database development task is to produce a propulsion database which is easy to use and modify while also being comprehensive in the level of detail available. The database is to be available on the Macintosh computer system. The task is to extend across all three years of the contract. Consequently, a significant fraction of the effort in this first year of the task was devoted to the development of the database structure to ensure a robust base for the following years' efforts. Nonetheless, significant point design propulsion system descriptions and parametric models were also produced. Each of the two propulsion databases, parametric propulsion database and propulsion system database, are described. The descriptions include a user's guide to each code, write-ups for models used, and sample output. The parametric database has models for LOX/H2 and LOX/RP liquid engines, solid rocket boosters using three different propellants, a hybrid rocket booster, and a NERVA derived nuclear thermal rocket engine.

  5. Magnetohydrodynamic Augmented Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Cole, John; Lineberry, John; Chapman, Jim; Schmidt, Harold; Cook, Stephen (Technical Monitor)

    2002-01-01

    A fundamental obstacle to routine space access is the specific energy limitations associated with chemical fuels. In the case of vertical take-off, the high thrust needed for vertical liftoff and acceleration to orbit translates into power levels in the 10 GW range. Furthermore, useful payload mass fractions are possible only if the exhaust particle energy (i.e., exhaust velocity) is much greater than that available with traditional chemical propulsion. The electronic binding energy released by the best chemical reactions (e.g., LOX/LH2 for example, is less than 2 eV per product molecule (approx. 1.8 eV per H2O molecule), which translates into particle velocities less than 5 km/s. Useful payload fractions, however, will require exhaust velocities exceeding 15 km/s (i.e., particle energies greater than 20 eV). As an added challenge, the envisioned hypothetical RLV (reusable launch vehicle) should accomplish these amazing performance feats while providing relatively low acceleration levels to orbit (2-3g maximum). From such fundamental considerations, it is painfully obvious that planned and current RLV solutions based on chemical fuels alone represent only a temporary solution and can only result in minor gains, at best. What is truly needed is a revolutionary approach that will dramatically reduce the amount of fuel and size of the launch vehicle. This implies the need for new compact high-power energy sources as well as advanced accelerator technologies for increasing engine exhaust velocity. Electromagnetic acceleration techniques are of immense interest since they can be used to circumvent the thermal limits associated with conventional propulsion systems. This paper describes the Magnetohydrodynamic Augmented Propulsion Experiment (MAPX) being undertaken at NASA Marshall Space Flight Center (MSFC). In this experiment, a 1-MW arc heater is being used as a feeder for a 1-MW magnetohydrodynamic (MHD) accelerator. The purpose of the experiment is to demonstrate

  6. Electric propulsion system technology

    NASA Astrophysics Data System (ADS)

    Brophy, John R.; Garner, Charles E.; Goodfellow, Keith D.; Pivirotto, Thomas J.; Polk, James E.

    1992-11-01

    The work performed in fiscal year (FY) 1991 under the Propulsion Technology Program RTOP (Research and Technology Objectives and Plans) No. (55) 506-42-31 for Low-Thrust Primary and Auxiliary Propulsion technology development is described. The objectives of this work fall under two broad categories. The first of these deals with the development of ion engines for primary propulsion in support of solar system exploration. The second with the advancement of steady-state magnetoplasmadynamic (MPD) thruster technology at 100 kW to multimegawatt input power levels. The major technology issues for ion propulsion are demonstration of adequate engine life at the 5 to 10 kW power level and scaling ion engines to power levels of tens to hundreds of kilowatts. Tests of a new technique in which the decelerator grid of a three-grid ion accelerator system is biased negative of neutralizer common potential in order to collect facility induced charge-exchange ions are described. These tests indicate that this SAND (Screen, Accelerator, Negative Decelerator) configuration may enable long duration ion engine endurance tests to be performed at vacuum chamber pressures an order of magnitude higher than previously possible. The corresponding reduction in pumping speed requirements enables endurance tests of 10 kW class ion engines to be performed within the resources of existing technology programs. The results of a successful 5,000-hr endurance of a xenon hollow cathode operating at an emission current of 25 A are described, as well as the initial tests of hollow cathodes operating on a mixture of argon and 3 percent nitrogen. Work performed on the development of carbon/carbon grids, a multi-orifice hollow cathode, and discharge chamber erosion reduction through the addition of nitrogen are also described. Critical applied-field MPD thruster technical issues remain to be resolved, including demonstration of reliable steady-state operation at input powers of hundreds to thousands of

  7. Pulsed plasmoid electric propulsion

    NASA Technical Reports Server (NTRS)

    Bourque, Robert F.; Parks, Paul B.; Tamano, Teruo

    1990-01-01

    A method of electric propulsion is explored where plasmoids such as spheromaks and field reversed configurations (FRC) are formed and then allowed to expand down a diverging conducting shell. The plasmoids contain a toroidal electric current that provides both heating and a confining magnetic field. They are free to translate because there are no externally supplied magnetic fields that would restrict motion. Image currents in the diverging conducting shell keep the plasmoids from contacting the wall. Because these currents translate relative to the wall, losses due to magnetic flux diffusion into the wall are minimized. During the expansion of the plasma in the diverging cone, both the inductive and thermal plasma energy are converted to directed kinetic energy producing thrust. Specific impulses can be in the 4000 to 20000 sec range with thrusts from 0.1 to 1000 Newtons, depending on available power.

  8. Electric propulsion system technology

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Garner, Charles E.; Goodfellow, Keith D.; Pivirotto, Thomas J.; Polk, James E.

    1992-01-01

    The work performed in fiscal year (FY) 1991 under the Propulsion Technology Program RTOP (Research and Technology Objectives and Plans) No. (55) 506-42-31 for Low-Thrust Primary and Auxiliary Propulsion technology development is described. The objectives of this work fall under two broad categories. The first of these deals with the development of ion engines for primary propulsion in support of solar system exploration. The second with the advancement of steady-state magnetoplasmadynamic (MPD) thruster technology at 100 kW to multimegawatt input power levels. The major technology issues for ion propulsion are demonstration of adequate engine life at the 5 to 10 kW power level and scaling ion engines to power levels of tens to hundreds of kilowatts. Tests of a new technique in which the decelerator grid of a three-grid ion accelerator system is biased negative of neutralizer common potential in order to collect facility induced charge-exchange ions are described. These tests indicate that this SAND (Screen, Accelerator, Negative Decelerator) configuration may enable long duration ion engine endurance tests to be performed at vacuum chamber pressures an order of magnitude higher than previously possible. The corresponding reduction in pumping speed requirements enables endurance tests of 10 kW class ion engines to be performed within the resources of existing technology programs. The results of a successful 5,000-hr endurance of a xenon hollow cathode operating at an emission current of 25 A are described, as well as the initial tests of hollow cathodes operating on a mixture of argon and 3 percent nitrogen. Work performed on the development of carbon/carbon grids, a multi-orifice hollow cathode, and discharge chamber erosion reduction through the addition of nitrogen are also described. Critical applied-field MPD thruster technical issues remain to be resolved, including demonstration of reliable steady-state operation at input powers of hundreds to thousands of

  9. Space station propulsion

    NASA Technical Reports Server (NTRS)

    Jones, Robert E.; Morren, W. Earl; Sovey, James S.; Tacina, Robert R.

    1987-01-01

    Two propulsion systems have been selected for the space station: gaseous H/O rockets for high thrust applications and the multipropellant resistojets for low thrust needs. These two thruster systems integrate very well with the fluid systems on the space station, utilizing waste fluids as their source of propellant. The H/O rocket will be fueled by electrolyzed water and the resistojets will use waste gases collected from the environmental control system and the various laboratories. The results are presented of experimental efforts with H/O and resistojet thrusters to determine their performance and life capability, as well as results of studies to determine the availability of water and waste gases.

  10. Anatomy of Nanoscale Propulsion.

    PubMed

    Yadav, Vinita; Duan, Wentao; Butler, Peter J; Sen, Ayusman

    2015-01-01

    Nature supports multifaceted forms of life. Despite the variety and complexity of these forms, motility remains the epicenter of life. The applicable laws of physics change upon going from macroscales to microscales and nanoscales, which are characterized by low Reynolds number (Re). We discuss motion at low Re in natural and synthetic systems, along with various propulsion mechanisms, including electrophoresis, electrolyte diffusiophoresis, and nonelectrolyte diffusiophoresis. We also describe the newly uncovered phenomena of motility in non-ATP-driven self-powered enzymes and the directional movement of these enzymes in response to substrate gradients. These enzymes can also be immobilized to function as fluid pumps in response to the presence of their substrates. Finally, we review emergent collective behavior arising from interacting motile species, and we discuss the possible biomedical applications of the synthetic nanobots and microbots. PMID:26098511

  11. Pulsed hydrojet propulsion

    SciTech Connect

    Bohachevsky, I.O.; Torrey, M.D.

    1985-01-01

    The pulsed hydrojet is a device in which the water ingested from the free stream is accelerated out of the exhaust pipe to produce thrust. In this report we describe and analyze a way of accelerating the stream of water with pockets of high pressure steam and gas generated inside the stream by an exothermal reaction of suitable propellant injected and dispersed in the water. The velocity increment that must be imparted to the water to produce a substantial thrust need not be very large because the density of the water is comparable to the average density of the accelerated body. Results of the numerical modeling of the proposed jet acceleration mechanism indicate that the hydrojet propulsion device is potentially capable of propelling underwater projectiles at speeds three to five times greater than those currently attainable. Several promising applications of the hydrojet thruster are discussed and evaluated.

  12. Physics of magnetic propulsion

    NASA Astrophysics Data System (ADS)

    Pulatov, V.

    2005-01-01

    The flight of a magnetic vehicle is expected at the expense of the electrodynamic lift and thrust force of interaction with the natural magnetic field and with the eddy currents in ground or water at low altitudes. It would present in future an alternative to rocketry and aviation owing to the expected better efficiency, constant mass and pure ecology. The principles of the magnetic propulsion (Prog Aerospace Sci 2001;37:245-61) allow to substantiate the proposed application and variant of design of the magnetic flight vehicle, to clarify its advantageous properties and to determine the main problems to be solved for its creation. The reviewed questions of its theory show a number of its important advantages. One of them is the possible performance of aerospace and interplanetary flights by the same unit. The proposed calculation basis for the numerical estimations and corresponding numerical examples would allow to image this vehicle structural features and to compare variants.

  13. Hypersonic propulsion research

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton

    1990-01-01

    The development of technology for the modular airframe integrated scramjet has been the focus of hypersonic propulsion research for several years. An part of this research, a variety of inlet concepts have been explored and characterized. The emphasis of the inlet program has been the development of the short (light weight), fixed geometry, side wall compression inlets that operate efficiently over a wide Mach number range. As hypersonic combustion tunnels were developed, programs to study the parameters controlling fuel mixing and combustion with single and multiple strut models were conducted using direct connect test techniques. These various tests supported the design of subscale engine test hardware that integrated inlet and combustor technology and allowed the study of the effect of heat release on thrust and combustor/inlet interaction. A number of subscale engine tests have shown predicted performance levels at Mach 4 and 7 simulated flight conditions. A few of the highlights from this research program are summarized.

  14. Hypersonic propulsion research

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton

    1987-01-01

    The NASA Langley Research Center has conducted hypersonic propulsion research since the 1960s. A variety of inlet concepts were explored and characterized. The emphasis of the inlet program was the development of the short (light weight), fixed geometry, side-wall-compression inlets that operate efficiently over a wide Mach number range. As hypersonic combustion tunnels were developed, programs to study the parameters controlling fuel mixing and combustion with single and multiple strut models were conducted using direct connect test techniques. These various tests supported the design of subscale engine test hardware that integrated inlet and combustor technology and allowed the study of the effect of heat release on thrust and combustor/inlet interaction. A number of subscale engine tests have demonstrated predicted performance levels at Mach 4 and 7 simulated flight conditions.

  15. Magnetohydrodynamic Augmented Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.

    2008-01-01

    Over the past several years, efforts have been under way to design and develop an operationally flexible research facility for investigating the use of cross-field MHD accelerators as a potential thrust augmentation device for thermal propulsion systems. The baseline configuration for this high-power experimental facility utilizes a 1.5-MWe multi-gas arc-heater as a thermal driver for a 2-MWe MHD accelerator, which resides in a large-bore 2-tesla electromagnet. A preliminary design study using NaK seeded nitrogen as the working fluid led to an externally diagonalized segmented MHD channel configuration based on an expendable heat-sink design concept. The current status report includes a review of engineering/design work and performance optimization analyses and summarizes component hardware fabrication and development efforts, preliminary testing results, and recent progress toward full-up assembly and testing

  16. Advanced energy conversion concept for beamed-energy propulsion

    NASA Astrophysics Data System (ADS)

    Myrabo, Leik N.

    1987-08-01

    Basic research was performed on an innovative power conversion concept for trans atmospheric, beamed energy propulsion: a new class of External Surface Impulse (ESI) thrusters. This advanced thruster principle could be used for atmospheric VTOL, high acceleration, and lateral flight (e.g., short-term cruise) propulsion of Single-Stage-To-Orbit (SSTO) beam-powered shuttlecraft of the next century. Three classes of ESI thrusters were initially examined: (1) simple thermal, (2) electrostatic, and (3) electromagnetic. Beam power wavelengths from 10 cm (microwave) to 0.3 micron (laser) were considered. The subsequent effort concentrated on the simple thermal repetitively-pulsed ESI thrusters, energized with laser power and using air as the working fluid. Laser frequencies were selected because of the relative wealth of experimental data and theoretical research on laser impulse coupling existing in the literature. The first year analytical effort has proven conclusively that such an engine can deliver high levels of thrust-to-beam-power at liftoff (e.g., at least an order of magnitude greater than beam-powered hydrogen-fueled rockets), with infinite specific impulse (decreased only, perhaps, by ablation of the thruster surface). Later along an orbital trajectory, the primary propulsion function would transition to other modes; upon leaving the atmosphere, the SSTO vehicle would continue in a pure rocket mode.

  17. Instellar Exploration: Propulsion Options for Precursors and Beyond

    NASA Technical Reports Server (NTRS)

    Johnson, Charles Les; Leifer, Stephanie

    1999-01-01

    NASA is considering a mission to explore near-interstellar space early in the next decade as the first step toward a vigorous interstellar exploration program. A key enabling technology for such an ambitious science and exploration effort is the development of propulsion systems capable of providing fast trip times; mission duration should not exceed the professional lifetime of the investigative team. Advanced propulsion technologies that might support an interstellar precursor mission early in the next century include some combination of solar sails, nuclear electric propulsion systems, and aerogravity assists. Follow-on missions to far beyond the heliopause will require the development of propulsion technologies that are only at the conceptual stage today. These include 1) matter-antimatter annihilation, 2) beamed-energy sails, and 3) fusion systems. For years, the scientific community has been interested in the development of solar sail technology to support exploration of the inner and outer planets. Progress in thin-film technology and the development of technologies that may enable the remote assembly of large sails in space are only now maturing to the point where ambitious interstellar precursor missions can be considered. Electric propulsion is now being demonstrated for planetary exploration by the Deep Space 1 mission. The primary issues for it's adaptation to interstellar precursor applications include the nuclear reactor that would be required and the engine lifetime. For further term interstellar missions, matter-antimatter annihilation propulsion system concepts have the highest energy density of any propulsion systems using onboard propellants. However, there are numerous challenges to production and storage of antimatter that must be overcome before it can be seriously considered for interstellar flight. Off-board energy systems (laser sails) are candidates for long-distance interstellar flight but development of component technologies and

  18. Solar Thermal Propulsion Test Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph, taken at MSFC's Solar Thermal Propulsion Test Facility, shows a concentrator mirror, a combination of 144 mirrors forming this 18-ft diameter concentrator, and a vacuum chamber that houses the focal point. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-foot diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  19. Combined microwave science and propulsion

    SciTech Connect

    Palaszewski, B.

    1989-01-01

    The combined use of high-power active science instruments and high-power electric propulsion is investigated with a view to new science opportunities and measurements on future planetary missions. An example of a comet rendezvous mission that could benefit from this combination is discussed. It was found that, with electric propulsion, the launch mass of the comet spacecraft could be reduced by 61-68 percent over the chemical propulsion baseline mission. This high-power spacecraft is also capable of delivering a significant high-power radar science payload to the comet. 28 references.

  20. NASA's Nuclear Thermal Propulsion Project

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.; Scott, John; Power, Kevin P.

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC- 3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP).