Sample records for airbreathing pulse detonation

  1. Ignition Study on a Rotary-valved Air-breathing Pulse Detonation Engine

    NASA Astrophysics Data System (ADS)

    Wu, Yuwen; Han, Qixiang; Shen, Yujia; Zhao, Wei

    2017-05-01

    In the present study, the ignition effect on detonation initiation was investigated in the air-breathing pulse detonation engine. Two kinds of fuel injection and ignition methods were applied. For one method, fuel and air was pre-mixed outside the PDE and then injected into the detonation tube. The droplet sizes of mixtures were measured. An annular cavity was used as the ignition section. For the other method, fuel-air mixtures were mixed inside the PDE, and a pre-combustor was utilized as the ignition source. At firing frequency of 20 Hz, transition to detonation was obtained. Experimental results indicated that the ignition position and initial flame acceleration had important effects on the deflagration-to-detonation transition.

  2. Airbreathing Pulse Detonation Engine Performance

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Yungster, Shaye

    2002-01-01

    This paper presents performance results for pulse detonation engines taking into account the effects of dissociation and recombination. The amount of sensible heat recovered through recombination in the PDE chamber and exhaust process was found to be significant. These results have an impact on the specific thrust, impulse and fuel consumption of the PDE.

  3. Airbreathing Pulse Detonation Engine Performance

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Yungster, Shaye

    2002-01-01

    This paper presents performance results for pulse detonation engines (PDE) taking into account the effects of dissociation and recombination. The amount of sensible heat recovered through recombination in the PDE chamber and exhaust process was found to be significant. These results have an impact on the specific thrust, impulse and fuel consumption of the PDE.

  4. Thermodynamic Cycle and CFD Analyses for Hydrogen Fueled Air-breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Yungster, Shaye

    2002-01-01

    This paper presents the results of a thermodynamic cycle analysis of a pulse detonation engine (PDE) using a hydrogen-air mixture at static conditions. The cycle performance results, namely the specific thrust, fuel consumption and impulse are compared to a single cycle CFD analysis for a detonation tube which considers finite rate chemistry. The differences in the impulse values were indicative of the additional performance potential attainable in a PDE.

  5. Role of Air-Breathing Pulse Detonation Engines in High Speed Propulsion

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Lee, Jin-Ho; Anderberg, Michael O.

    2001-01-01

    In this paper, the effect of flight Mach number on the relative performance of pulse detonation engines and gas turbine engines is investigated. The effect of ram and mechanical compression on combustion inlet temperature and the subsequent sensible heat release is determined. Comparison of specific thrust, fuel consumption and impulse for the two engines show the relative benefits over the Mach number range.

  6. Dissociation and Recombination Effects on the Performance of Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    2003-01-01

    This paper summarizes major theoretical results for pulse detonation engine performance taking into account real gas chemistry, as well as significant performance differences resulting from the presence of ram and compression heating. An unsteady CFD analysis, as well as a thermodynamic cycle analysis, was conducted in order to determine the actual and the ideal performance for an air-breathing pulse detonation engine (PDE) using either a hydrogen-air or ethylene-air mixture over a flight Mach number range from 0 to 4. The results clearly elucidate the competitive regime of PDE application relative to ramjets and gas turbines.

  7. The Use of Steady and Unsteady Detonation Waves for Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Adelman, Henry G.; Menees, Gene P.; Cambier, Jean-Luc; Bowles, Jeffrey V.; Cavolowsky, John A. (Technical Monitor)

    1995-01-01

    Detonation wave enhanced supersonic combustors such as the Oblique Detonation Wave Engine (ODWE) are attractive propulsion concepts for hypersonic flight. These engines utilize detonation waves to enhance fuel-air mixing and combustion. The benefits of wave combustion systems include shorter and lighter engines which require less cooling and generate lower internal drag. These features allow air-breathing operation at higher Mach numbers than the diffusive burning scramjet delaying the need for rocket engine augmentation. A comprehensive vehicle synthesis code has predicted the aerodynamic characteristics and structural size and weight of a typical single-stage-to-orbit vehicle using an ODWE. Other studies have focused on the use of unsteady or pulsed detonation waves. For low speed applications, pulsed detonation engines (PDE) have advantages in low weight and higher efficiency than turbojets. At hypersonic speeds, the pulsed detonations can be used in conjunction with a scramjet type engine to enhance mixing and provide thrust augmentation.

  8. Optical engine initiation: multiple compartment applications

    NASA Astrophysics Data System (ADS)

    Hunt, Jeffrey H.

    2009-05-01

    Modern day propulsion systems are used in aerospace applications for different purposes. The aerospace industry typically requires propulsion systems to operate in a rocket mode in order to drive large boost vehicles. The defense industry generally requires propulsion systems to operate in an air-breathing mode in order to drive missiles. A mixed system could use an air-breathing first stage and a rocket-mode upper stage for space access. Thus, propulsion systems can be used for high mass payloads and where the payload is dominated by the fuel/oxidizer mass being used by the propulsion system. The pulse detonation wave engine (PDWE) uses an alternative type of detonation cycle to achieve the same propulsion results. The primary component of the PDWE is the combustion chamber (or detonation tube). The PDWE represents an attractive propulsion source since its engine cycle is thermodynamically closest to that of a constant volume reaction. This characteristic leads to the inference that a maximum of the potential energy of the PDWE is put into thrust and not into flow work. Consequently, the volume must be increased. The technical community has increasingly adopted the alternative choice of increasing total volume by designing the engine to include a set of banks of smaller combustion chambers. This technique increases the complexity of the ignition subsystem because the inter-chamber timing must be considered. Current approaches to igniting the PDWE have involved separate shock or blast wave initiators and chemical additives designed to enhance detonatibility. An optical ignition subsystem generates a series of optical pulses, where the optical pulses ignite the fuel/oxidizer mixture such that the chambers detonate in a desired order. The detonation system also has an optical transport subsystem for transporting the optical pulses from the optical ignition subsystem to the chambers. The use of optical ignition and transport provides a non-toxic, small, lightweight, precisely controlled detonation system.

  9. Investigation of Sustained Detonation Devices: the Pulse Detonation Engine-Crossover System and the Rotating Detonation Engine System

    NASA Astrophysics Data System (ADS)

    Driscoll, Robert B.

    An experimental study is conducted on a Pulse Detonation Engine-Crossover System to investigate the feasibility of repeated, shock-initiated combustion and characterize the initiation performance. A PDE-crossover system can decrease deflagration-to-detonation transition length while employing a single spark source to initiate a multi-PDE system. Visualization of a transferred shock wave propagating through a clear channel reveals a complex shock train behind the leading shock. Shock wave Mach number and decay rate remains constant for varying crossover tube geometries and operational frequencies. A temperature gradient forms within the crossover tube due to forward flow of high temperature ionized gas into the crossover tube from the driver PDE and backward flow of ionized gas into the crossover tube from the driven PDE, which can cause intermittent auto-ignition of the driver PDE. Initiation performance in the driven PDE is strongly dependent on initial driven PDE skin temperature in the shock wave reflection region. An array of detonation tubes connected with crossover tubes is developed using optimized parameters and successful operation utilizing shock-initiated combustion through shock wave reflection is achieved and sustained. Finally, an air-breathing, PDE-Crossover System is developed to characterize the feasibility of shock-initiated combustion within an air-breathing pulse detonation engine. The initiation effectiveness of shock-initiated combustion is compared to spark discharge and detonation injection through a pre-detonator. In all cases, shock-initiated combustion produces improved initiation performance over spark discharge and comparable detonation transition run-up lengths relative to pre-detonator initiation. A computational study characterizes the mixing processes and injection flow field within a rotating detonation engine. Injection parameters including reactant flow rate, reactant injection area, placement of the fuel injection, and fuel injection distribution are varied to assess the impact on mixing. Decreasing reactant injection areas improves fuel penetration into the cross-flowing air stream, enhances turbulent diffusion of the fuel within the annulus, and increases local equivalence ratio and fluid mixedness. Staggering fuel injection holes produces a decrease in mixing when compared to collinear fuel injection. Finally, emulating nozzle integration by increasing annulus back-pressure increases local equivalence ratio in the injection region due to increased convection residence time.

  10. Pulse Detonation Engines for High Speed Flight

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    2002-01-01

    Revolutionary concepts in propulsion are required in order to achieve high-speed cruise capability in the atmosphere and for low cost reliable systems for earth to orbit missions. One of the advanced concepts under study is the air-breathing pulse detonation engine. Additional work remains in order to establish the role and performance of a PDE in flight applications, either as a stand-alone device or as part of a combined cycle system. In this paper, we shall offer a few remarks on some of these remaining issues, i.e., combined cycle systems, nozzles and exhaust systems and thrust per unit frontal area limitations. Currently, an intensive experimental and numerical effort is underway in order to quantify the propulsion performance characteristics of this device. In this paper, we shall highlight our recent efforts to elucidate the propulsion potential of pulse detonation engines and their possible application to high-speed or hypersonic systems.

  11. Airbreathing Hypersonic Vision-Operational-Vehicles Design Matrix

    NASA Technical Reports Server (NTRS)

    Hunt, James L.; Pegg, Robert J.; Petley, Dennis H.

    1999-01-01

    This paper presents the status of the airbreathing hypersonic airplane and space-access vision-operational-vehicle design matrix, with emphasis on horizontal takeoff and landing systems being studied at Langley; it reflects the synergies and issues, and indicates the thrust of the effort to resolve the design matrix including Mach 5 to 10 airplanes with global-reach potential, pop-up and dual-role transatmospheric vehicles and airbreathing launch systems. The convergence of several critical systems/technologies across the vehicle matrix is indicated. This is particularly true for the low speed propulsion system for large unassisted horizontal takeoff vehicles which favor turbines and/or perhaps pulse detonation engines that do not require LOX which imposes loading concerns and mission flexibility restraints.

  12. Airbreathing Hypersonic Vision-Operational-Vehicles Design Matrix

    NASA Technical Reports Server (NTRS)

    Hunt, James L.; Pegg, Robert J.; Petley, Dennis H.

    1999-01-01

    This paper presents the status of the airbreathing hypersonic airplane and space-access vision-operational-vehicle design matrix, with emphasis on horizontal takeoff and landing systems being, studied at Langley, it reflects the synergies and issues, and indicates the thrust of the effort to resolve the design matrix including Mach 5 to 10 airplanes with global-reach potential, pop-up and dual-role transatmospheric vehicles and airbreathing launch systems. The convergence of several critical systems/technologies across the vehicle matrix is indicated. This is particularly true for the low speed propulsion system for large unassisted horizontal takeoff vehicles which favor turbines and/or perhaps pulse detonation engines that do not require LOX which imposes loading concerns and mission Flexibility restraints.

  13. JANNAF Airbreathing Propulsion Subcommittee and 35th Combustion Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor); Rognan, Melanie (Editor)

    1998-01-01

    This document, CPIA Publication 682, Volume 1, is a compilation of 5 unclassified/unlimited technical papers (approved for public release) which were presented at the 1 998 meeting of the Joint Army-Navy-NASA-Air Force (JANNAF) Airbreathing Propulsion Subcommittee (APS) and Combustion Subcommittee (CS) held jointly with the Propulsion Systems Hazards Subcommittee (PSHS). The meeting was held on 7-11 December 1998 at Raytheon Systems Company and the Marriott Hotel, Tucson, AZ. Topics covered include HyTech technology development, hydrocarbon fuel development for hypersonic applications, pulse detonation propulsion system development and arc heaters for direct-connect scramjet testing.

  14. Review on factors affecting the performance of pulse detonation engine

    NASA Astrophysics Data System (ADS)

    Tripathi, Saurabh; Pandey, Krishna Murari

    2018-04-01

    Now a day's rocket engines (air-breathing type) are being used for aerospace purposes but the studies have shown that these are less efficient, so alternatives are being searched for these. Pulse Detonation Engine (PDE) is one such efficient engine which can replace the rocket engines. In this review paper, different researches have been cited. As can be observed from various researches, insertion of obstacles is better. Deflagration to Detonation(DDT) transition process is found to be most important factor. So a lot of researches are being done considering this DDT chamber. Also, the ignition chamber and ejector were found to improve the effectiveness of PDE. The PDE works with a range of Mach 0-4. Flame acceleration is also found to increase the DDT process. Use of valve and valveless engine has also been compared. Various other factors have been focused in this review paper which is found to boost PDE performance.

  15. Development and testing of pulsed and rotating detonation combustors

    NASA Astrophysics Data System (ADS)

    St. George, Andrew C.

    Detonation is a self-sustaining, supersonic, shock-driven, exothermic reaction. Detonation combustion can theoretically provide significant improvements in thermodynamic efficiency over constant pressure combustion when incorporated into existing cycles. To harness this potential performance benefit, countless studies have worked to develop detonation combustors and integrate these devices into existing systems. This dissertation consists of a series of investigations on two types of detonation combustors: the pulse detonation combustor (PDC) and the rotating detonation combustor (RDC). In the first two investigations, an array of air-breathing PDCs is integrated with an axial power turbine. The system is initially operated with steady and pulsed cold air flow to determine the effect of pulsed flow on turbine performance. Various averaging approaches are employed to calculate turbine efficiency, but only flow-weighted (e.g., mass or work averaging) definitions have physical significance. Pulsed flow turbine efficiency is comparable to steady flow efficiency at high corrected flow rates and low rotor speeds. At these conditions, the pulse duty cycle expands and the variation of the rotor incidence angle is constrained to a favorable range. The system is operated with pulsed detonating flow to determine the effect of frequency, fill fraction, and rotor speed on turbine performance. For some conditions, output power exceeds the maximum attainable value from steady constant pressure combustion due to a significant increase in available power from the detonation products. However, the turbine component efficiency estimated from classical thermodynamic analysis is four times lower than the steady design point efficiency. Analysis of blade angles shows a significant penalty due to the detonation, fill, and purge processes simultaneously imposed on the rotor. The latter six investigations focus on fundamental research of the RDC concept. A specially-tailored RDC data analysis approach is developed, which employs cross-correlations to detect the combustor operating state as it evolves during a test. This method enables expedient detection of the operating state from sensors placed outside the combustor, and can also identify and quantify instabilities. An investigation is conducted on a tangentially-injecting initiator tube to characterize the RDC ignition process. Maximum energy deposition for this ignition method is an order of magnitude lower than the required energy for direct initiation, and detonation develops via a deflagration-to-detonation transition process. Stable rotating detonation is preceded by a transitory onset phase with a stochastic duration, which appears to be a function of the reactant injection pressure ratio. Hydrogen-ethylene fuel blends are explored as an interim strategy to transition to stable detonation in ethylene-air mixtures. While moderate hydrogen addition enables stable operation, removal of the supplemental hydrogen triggers instability and failure. Chemical kinetic analysis indicates that elevated reactant pressure is far more significant than hydrogen addition, and suggests that the stabilizing effect of hydrogen is physical, rather than kinetic. The role of kinetic effects (e.g., cell width) is also assessed, using H2-O2-N2 mixtures. Detonation is observed when the normalized channel width exceeds the classical limit of wch/lambda = 0.5, and the number of detonations increases predictably when the detonation perimeter exceeds a critical value.

  16. JANNAF 24th Airbreathing Propulsion Subcommittee and 36th Combustion Subcommittee Joint Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor)

    1999-01-01

    Volume 1, the first of three volumes is a compilation of 16 unclassified/unlimited-technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 24th Airbreathing Propulsion Subcommittee and 36th Combustion Subcommittee held jointly with the 181 Propulsion Systems Hazards Subcommittee. The meeting was held on 18-21 October 1999 at NASA Kennedy Space Center and The DoubleTree Oceanfront Hotel, Cocoa Beach, Florida. Topics covered include overviews of RBCC and PDE hypersonic technology, Hyper-X propulsion ground testing, development of JP-8 for hypersonic vehicle applications, numerical simulation of dual-mode SJ combustion, V&V of M&S computer codes, MHD SJ and Rocket Based Combined Cycle (RBCC) launch vehicle concepts, and Pulse Detonation Engine (PDE) propulsion technology development including fundamental investigations, modeling, aerodynamics, operation and performance.

  17. Optimal Area Profiles for Ideal Single Nozzle Air-Breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2003-01-01

    The effects of cross-sectional area variation on idealized Pulse Detonation Engine performance are examined numerically. A quasi-one-dimensional, reacting, numerical code is used as the kernel of an algorithm that iteratively determines the correct sequencing of inlet air, inlet fuel, detonation initiation, and cycle time to achieve a limit cycle with specified fuel fraction, and volumetric purge fraction. The algorithm is exercised on a tube with a cross sectional area profile containing two degrees of freedom: overall exit-to-inlet area ratio, and the distance along the tube at which continuous transition from inlet to exit area begins. These two parameters are varied over three flight conditions (defined by inlet total temperature, inlet total pressure and ambient static pressure) and the performance is compared to a straight tube. It is shown that compared to straight tubes, increases of 20 to 35 percent in specific impulse and specific thrust are obtained with tubes of relatively modest area change. The iterative algorithm is described, and its limitations are noted and discussed. Optimized results are presented showing performance measurements, wave diagrams, and area profiles. Suggestions for future investigation are also discussed.

  18. Preliminary Studies of a Pulsed Detonation Rocket Engine

    NASA Technical Reports Server (NTRS)

    Cambier, Jean-Luc; Adelman, H. G.; Menees, G. P.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    In the new era of space exploration, there is a strong need for more efficient, cheaper and more reliable propulsion devices. With dramatic increase in specific impulse, the overall mass of fuel to be lifted into orbit is decreased, and this leads, in turn, to much lower mass requirements at lift-off, higher payload ratios and lower launch costs. The Pulsed Detonation engine (PDE) has received much attention lately due to its unique combination of simplicity, light-weight and efficiency. Current investigations focus principally on its use as a low speed, airbreathing engine, although other applications have also been proposed. Its use as a rocket propulsion device was first proposed in 1988 by the present authors. The superior efficiency of the Pulsed Detonation Rocket Engine (PDRE) is due to the near constant volume combustion process of a detonation wave. Our preliminary estimates suggest that the PDRE is theoretically capable of achieving specific impulses as high as 720 sec, a dramatic improvement over the current 480 sec of conventional rocket engines, making it competitive with nuclear thermal rockets. In addition to this remarkable efficiency, the PDRE may eliminate the need for high pressure cryogenic turbopumps, a principal source of failures. The heat transfer rates are also much lower, eliminating the need for nozzle cooling. Overall, the engine is more reliable and has a much lower weight. This paper will describe in detail the operation of the PDRE and calculate its performance, through numerical simulations. Engineering issues will be addressed and discussed, and the impact on mission profiles will also be presented. Finally, the performance of the PDRE using in-situ resources, such as CO and O2 from the martian atmosphere, will also be computed.

  19. Replacement of chemical rocket launchers by beamed energy propulsion.

    PubMed

    Fukunari, Masafumi; Arnault, Anthony; Yamaguchi, Toshikazu; Komurasaki, Kimiya

    2014-11-01

    Microwave Rocket is a beamed energy propulsion system that is expected to reach space at drastically lower cost. This cost reduction is estimated by replacing the first-stage engine and solid rocket boosters of the Japanese H-IIB rocket with Microwave Rocket, using a recently developed thrust model in which thrust is generated through repetitively pulsed microwave detonation with a reed-valve air-breathing system. Results show that Microwave Rocket trajectory, in terms of velocity versus altitude, can be designed similarly to the current H-IIB first stage trajectory. Moreover, the payload ratio can be increased by 450%, resulting in launch-cost reduction of 74%.

  20. Engine Cycle Analysis of Air Breathing Microwave Rocket with Reed Valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukunari, Masafumi; Komatsu, Reiji; Yamaguchi, Toshikazu

    The Microwave Rocket is a candidate for a low cost launcher system. Pulsed plasma generated by a high power millimeter wave beam drives a blast wave, and a vehicle acquires impulsive thrust by exhausting the blast wave. The thrust generation process of the Microwave Rocket is similar to a pulse detonation engine. In order to enhance the performance of its air refreshment, the air-breathing mechanism using reed valves is under development. Ambient air is taken to the thruster through reed valves. Reed valves are closed while the inside pressure is high enough. After the time when the shock wave exhaustsmore » at the open end, an expansion wave is driven and propagates to the thrust-wall. The reed valve is opened by the negative gauge pressure induced by the expansion wave and its reflection wave. In these processes, the pressure oscillation is important parameter. In this paper, the pressure oscillation in the thruster was calculated by CFD combined with the flux through from reed valves, which is estimated analytically. As a result, the air-breathing performance is evaluated using Partial Filling Rate (PFR), the ratio of thruster length to diameter L/D, and ratio of opening area of reed valves to superficial area {alpha}. An engine cycle and predicted thrust was explained.« less

  1. Simulation of Acoustic Noise Generated by an Airbreathing, Beam-Powered Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Kennedy, W. C.; Van Laak, P.; Scarton, H. A.; Myrabo, L. N.

    2005-04-01

    A simple acoustic model is developed for predicting the noise signature vs. power level for advanced laser-propelled lightcraft — capable of single-stage flights into low Earth orbit. This model predicts the noise levels generated by a pulsed detonation engine (PDE) during the initial lift-off and acceleration phase, for two representative `tractor-beam' lightcraft designs: a 1-place `Mercury' vehicle (2.5-m diameter, 900-kg); and a larger 5-place `Apollo' vehicle (5-m diameter, 5555-kg) — both the subject of an earlier study. The use of digital techniques to simulate the expected PDE noise signature is discussed, and three examples of fly-by noise signatures are presented. The reduction, or complete elimination of perceptible noise from such engines, can be accomplished by shifting the pulse frequency into the supra-audible or sub-audible range.

  2. A study of low emissions gas turbine combustions

    NASA Technical Reports Server (NTRS)

    Adelman, Henry G.

    1994-01-01

    Analytical studies have been conducted to determine the best methods of reducing NO(x) emissions from proposed civilian supersonic transports. Modifications to the gas turbine engine combustors and the use of additives were both explored. It was found that combustors which operated very fuel rich or lean appear to be able to meet future emissions standards. Ammonia additives were also effective in removing NO(x), but residual ammonia remained a problem. Studies of a novel combustor which reduces emissions and improves performance were initiated. In a related topic, a study was begun on the feasibility of using supersonic aircraft to obtain atmospheric samples. The effects of shock heating and compression on sample integrity were modeled. Certain chemical species, including NO2, HNO3, and ClONO2 were found to undergo changes to their composition after they passed through shock waves at Mach 2. The use of detonation waves to enhance mixing and combustion in supersonic airflows was also investigated. This research is important to the use of airbreathing propulsion to obtain orbital speeds and access to space. Both steady and pulsed detonation waves were shown to improve engine performance.

  3. Initiation Mechanisms of Low-loss Swept-ramp Obstacles for Deflagration to Detonation Transition in Pulse Detonation Combustors

    DTIC Science & Technology

    2009-12-01

    minimal pressure losses. 15. NUMBER OF PAGES 113 14. SUBJECT TERMS Pulse Detonation Combustors, PDC, Pulse Detonation Engines, PDE , PDE ...Postgraduate School PDC Pulse Detonation Combustor PDE Pulse Detonation Engine RAM Random Access Memory RDT Research, Design and Test RPL...inhibiting the implementation of this advanced propulsion system. The primary advantage offered by pulse detonation engines ( PDEs ) is the high efficiency

  4. Confined Detonations and Pulse Detonation Engines

    DTIC Science & Technology

    2003-01-01

    chemically reacting flow was described by the 2D Euler equations &q OF(q) +G(q) W (1) 75 CONFINED DETONATIONS AND PULSE DETONATION ENGINES where q = (p...DETONATIONS AND PULSE DETONATION ENGINES 5 CONCLUDING REMARKS Numerical investigations of RR and MR in a supersonic chemically reacting flows have...formalism of hetero- geneous medium mechanics supplemented with an overall chemical reaction was 141 CONFINED DETONATIONS AND PULSE DETONATION ENGINES

  5. Performance Characterization of Swept Ramp Obstacle Fields in Pulse Detonation Applications

    DTIC Science & Technology

    2010-03-01

    field of practical obstacle geometries. 15. NUMBER OF PAGES 97 14. SUBJECT TERMS Pulse Detonation , PDE , Transient Plasma Ignition, TPI, Swept... Detonation Transition NI - National Instruments NPS - Naval Postgraduate School PDC - Pulse Detonation Combustor PDE - Pulse Detonation Engine...with incredible grace. xvi THIS PAGE INTENTIONALLY LEFT BLANK 1 I. INTRODUCTION Pulse detonation engines ( PDE ) continue to be explored due to

  6. Pulse detonation engines and components thereof

    NASA Technical Reports Server (NTRS)

    Tangirala, Venkat Eswarlu (Inventor); Rasheed, Adam (Inventor); Vandervort, Christian Lee (Inventor); Dean, Anthony John (Inventor)

    2009-01-01

    A pulse detonation engine comprises a primary air inlet; a primary air plenum located in fluid communication with the primary air inlet; a secondary air inlet; a secondary air plenum located in fluid communication with the secondary air inlet, wherein the secondary air plenum is substantially isolated from the primary air plenum; a pulse detonation combustor comprising a pulse detonation chamber, wherein the pulse detonation chamber is located downstream of and in fluid communication with the primary air plenum; a coaxial liner surrounding the pulse detonation combustor defining a cooling plenum, wherein the cooling plenum is in fluid communication with the secondary air plenum; an axial turbine assembly located downstream of and in fluid communication with the pulse detonation combustor and the cooling plenum; and a housing encasing the primary air plenum, the secondary air plenum, the pulse detonation combustor, the coaxial liner, and the axial turbine assembly.

  7. Transient Heat Transfer Properties in a Pulse Detonation Combustor

    DTIC Science & Technology

    2011-03-01

    strategies for future systems. 15. NUMBER OF PAGES 89 14. SUBJECT TERMS Pulse Detonation Engines, PDE , Heat Transfer 16. PRICE CODE 17. SECURITY...GUI Graphical User Interface NPS Naval Postgraduate School PDC Pulse Detonation Combustion PDE Pulse Detonation Engine RPL Rocket...a tactical missile with a Pulse Detonation Engine ( PDE ) and provide greater range for the same amount of fuel as compared to other current

  8. Branch Detonation of a Pulse Detonation Engine With Flash Vaporized JP-8

    DTIC Science & Technology

    2006-12-01

    Mark F. Reeder (Member) date iii Abstract Pulse Detonation Engines ( PDE ) operating on liquid hydrocarbon fuels are... Detonation Transition FF – Fill Fraction FN – Flow Number NPT – National Pipe Thread OH – Hydroxyl PDE – Pulse Detonation Engine PF – Purge...Introduction Motivation Research on Pulsed Detonation Engines ( PDE ) has increased over the past ten years due to the potential for increased

  9. Design and Evaluation of a Single-Inlet Pulse Detonation Combustor

    DTIC Science & Technology

    2011-06-01

    Kilogram/second m/s Meters/ second N Nitrogen NPS Naval Postgraduate School O Oxygen PDC Pulse Detonation Combustion PDE Pulse Detonation Engine...EVALUATION OF A SINGLE-INLET PULSE DETONATION COMBUSTOR by Danny Soria June 2011 Thesis Advisor: Christopher M. Brophy Second Reader: Garth V...COVERED Master’s Thesis 4. TITLE AND SUBTITLE Design and Evaluation of a Single-Inlet Pulse Detonation Combustor 6. AUTHOR(S) Danny Soria 5

  10. Heat Exchanger Design and Testing for a 6-Inch Rotating Detonation Engine

    DTIC Science & Technology

    2013-03-01

    Engine Research Facility HHV Higher heating value LHV Lower heating value PDE Pulsed detonation engine RDE Rotating detonation engine RTD...the combustion community are pulse detonation engines ( PDEs ) and rotating detonation engines (RDEs). 1.1 Differences between Pulsed and Rotating ...steadier than that of a PDE (2, 3). (2) (3) Figure 1. Unrolled rotating detonation wave from high-speed video (4) Another difference that

  11. Characterization of Transient Plasma Ignition Flame Kernel Growth for Varying Inlet Conditions

    DTIC Science & Technology

    2009-12-01

    unlimited 12b. DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) Pulse detonation engines ( PDEs ) have the...Instruments NPS - Naval Postgraduate School PDC - Pulse Detonation Combustor PDE - Pulse Detonation Engine Phi The Greek letter Φ PSIA...produced little to no new chemical propulsion developments; only improvements to existing architectures. The Pulse Detonation Engine ( PDE ) is a

  12. Performance Evaluation of the NASA GTX RBCC Flowpath

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Palac, Donald T.; Trefny, Charles J.; Roche, Joseph M.

    2001-01-01

    The NASA Glenn Research Center serves as NASAs lead center for aeropropulsion. Several programs are underway to explore revolutionary airbreathing propulsion systems in response to the challenge of reducing the cost of space transportation. Concepts being investigated include rocket-based combined cycle (RBCC), pulse detonation wave, and turbine-based combined cycle (TBCC) engines. The GTX concept is a vertical launched, horizontal landing, single stage to orbit (SSTO) vehicle utilizing RBCC engines. The propulsion pod has a nearly half-axisymmetric flowpath that incorporates a rocket and ram-scramjet. The engine system operates from lift-off up to above Mach 10, at which point the airbreathing engine flowpath is closed off, and the rocket alone powers the vehicle to orbit. The paper presents an overview of the research efforts supporting the development of this RBCC propulsion system. The experimental efforts of this program consist of a series of test rigs. Each rig is focused on development and optimization of the flowpath over a specific operating mode of the engine. These rigs collectively establish propulsion system performance over all modes of operation, therefore, covering the entire speed range. Computational Fluid Mechanics (CFD) analysis is an important element of the GTX propulsion system development and validation. These efforts guide experiments and flowpath design, provide insight into experimental data, and extend results to conditions and scales not achievable in ground test facilities. Some examples of important CFD results are presented.

  13. Operational Characteristics of a Rotating Detonation Engine Using Hydrogen and Air

    DTIC Science & Technology

    2011-06-01

    Naval Research Laboratory PDE Pulsed detonation engine RDE Rotating detonation engine TDW Transverse detonation wave Symbols [SI units...primarily been on pulsed detonation engines ( PDEs ). Recently, however, detonation research has begun to also focus on rotating , or continuous... rotating detonation engines have been studied, however, more progress was initially made regarding PDEs . Recently, though, there has been a renewed

  14. A Hydrocarbon Fuel Flash Vaporization System for a Pulsed Detonation Engine

    DTIC Science & Technology

    2006-12-01

    Experiments were performed in the Air Force Research Laboratory (AFRL) Pulsed Detonation Research Facility at Wright Patterson AFB, Ohio. The PDE ...AFRL-MN-EG-TP-2006-7420 A HYDROCARBON FUEL FLASH VAPORIZATION SYSTEM FOR A PULSED DETONATION ENGINE (PREPRINT) K. Colin Tucker...85,7<&/$66,),&$7,212) E7(/(3+21(180%(5 ,QFOXGHDUHDFRGH A Hydrocarbon Fuel Flash Vaporization System for a Pulsed Detonation Engine K

  15. [Research on diagnosis of gas-liquid detonation exhaust based on double optical path absortion spectroscopy technique].

    PubMed

    Lü, Xiao-Jing; Li, Ning; Weng, Chun-Sheng

    2014-03-01

    The effect detection of detonation exhaust can provide measurement data for exploring the formation mechanism of detonation, the promotion of detonation efficiency and the reduction of fuel waste. Based on tunable diode laser absorption spectroscopy technique combined with double optical path cross-correlation algorithm, the article raises the diagnosis method to realize the on-line testing of detonation exhaust velocity, temperature and H2O gas concentration. The double optical path testing system is designed and set up for the valveless pulse detonation engine with the diameter of 80 mm. By scanning H2O absorption lines of 1343nm with a high frequency of 50 kHz, the on-line detection of gas-liquid pulse detonation exhaust is realized. The results show that the optical testing system based on tunable diode laser absorption spectroscopy technique can capture the detailed characteristics of pulse detonation exhaust in the transient process of detonation. The duration of single detonation is 85 ms under laboratory conditions, among which supersonic injection time is 5.7 ms and subsonic injection time is 19.3 ms. The valveless pulse detonation engine used can work under frequency of 11 Hz. The velocity of detonation overflowing the detonation tube is 1,172 m x s(-1), the maximum temperature of detonation exhaust near the nozzle is 2 412 K. There is a transitory platform in the velocity curve as well as the temperature curve. H2O gas concentration changes between 0-7% during detonation under experimental conditions. The research can provide measurement data for the detonation process diagnosis and analysis, which is of significance to advance the detonation mechanism research and promote the research of pulse detonation engine control technology.

  16. New detonation concepts for propulsion and power generation

    NASA Astrophysics Data System (ADS)

    Braun, Eric M.

    A series of related analytical and experimental studies are focused on utilizing detonations for emerging propulsion and power generation devices. An understanding of the physical and thermodynamic processes for this unsteady thermodynamic cycle has taken over 100 years to develop. An overview of the thermodynamic processes and development history is provided. Thermodynamic cycle analysis of detonation-based systems has often been studied using surrogate models. A real gas model is used for a thermal efficiency prediction of a detonation wave based on the work and heat specified by process path diagrams and a control volume analysis. A combined first and second law analysis aids in understanding performance trends for different initial conditions. A cycle analysis model for an airbreathing, rotating detonation wave engine (RDE) is presented. The engine consists of a steady inlet system with an isolator which delivers air into an annular combustor. A detonation wave continuously rotates around the combustor with side relief as the flow expands towards the nozzle. Air and fuel enter the combustor when the rarefaction wave pressure behind the detonation front drops to the inlet supply pressure. To create a stable RDE, the inlet pressure is matched in a convergence process with the average combustor pressure by increasing the annulus channel width with respect to the isolator channel. Performance of this engine is considered using several parametric studies. RDEs require a fuel injection system that can cycle beyond the limits of mechanical valves. Fuel injectors composed of an orifice connected to a small plenum cavity were mounted on a detonation tube. These fuel injectors, termed fluidic valves, utilize their geometry and a supply pressure to deliver fuel and contain no moving parts. Their behavior is characterized in order to determine their feasibility for integration with high-frequency RDEs. Parametric studies have been conducted with the type of fuel injected, the orifice diameter, and the plenum cavity pressure. Results indicate that the detonation wave pressure temporarily interrupts the fluidic valve supply, but the wave products can be quickly expelled by the fresh fuel supply to allow for refueling. The interruption time of the valve scales with injection and detonation wave pressure ratios as well as a characteristic time. The feasibility of using a detonation wave as a source for producing power in conjunction with a linear generator is considered. Such a facility can be constructed by placing a piston--spring system at the end of a pulsed detonation engine (PDE). Once the detonation wave reflects off the piston, oscillations of the system drive the linear generator. An experimental facility was developed to explore the interaction of a gaseous detonation wave with the piston. Experimental results were then used to develop a model for the interaction. Governing equations for two engine designs are developed and trends are established to indicate a feasible design space for future development.

  17. Comparative Analysis of a High Bypass Turbofan Using a Pulsed Detonation Combustor

    DTIC Science & Technology

    2007-03-01

    Thrust Specific Fuel Consumption . . . . . . . . . . . . . 67 xiii List of Abbreviations Abbreviation Page PDE Pulsed Detonation Engine...past ten years to develop pulsed det- onation engines ( PDE ) as a means of aircraft propulsion. Detonation combustion holds the promise of a more...aviation engine, and detonation creates more of it than previous aircraft engines. It is hoped that a marriage of the PDE with traditional

  18. Impact of Dissociation and Sensible Heat Release on Pulse Detonation and Gas Turbine Engine Performance

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    2001-01-01

    A thermodynamic cycle analysis of the effect of sensible heat release on the relative performance of pulse detonation and gas turbine engines is presented. Dissociation losses in the PDE (Pulse Detonation Engine) are found to cause a substantial decrease in engine performance parameters.

  19. Wave combustors for trans-atmospheric vehicles

    NASA Technical Reports Server (NTRS)

    Menees, Gene P.; Adelman, Henry G.; Cambier, Jean-Luc; Bowles, Jeffrey V.

    1989-01-01

    The Wave Combustor is an airbreathing hypersonic propulsion system which utilizes shock and detonation waves to enhance fuel-air mixing and combustion in supersonic flow. In this concept, an oblique shock wave in the combustor can act as a flameholder by increasing the pressure and temperature of the air-fuel mixture and thereby decreasing the ignition delay. If the oblique shock is sufficiently strong, then the combustion front and the shock wave can couple into a detonation wave. In this case, combustion occurs almost instantaneously in a thin zone behind the wave front. The result is a shorter, lighter engine compared to the scramjet. This engine, which is called the Oblique Detonation Wave Engine (ODWE), can then be utilized to provide a smaller, lighter vehicle or to provide a higher payload capability for a given vehicle weight. An analysis of the performance of a conceptual trans-atmospheric vehicle powered by an ODWE is given here.

  20. Detonation Propagation Through Ducts in a Pulsed Detonation Engine

    DTIC Science & Technology

    2011-03-01

    PDE head. This convention is used based on the fill and purge flow directions, not the detonation direction. Figure 21. Adapter used to rotate ...presented for the development of a continuously operating pulsed detonation engine ( PDE ). A PDE without a high energy ignition system or a... detonation wave. Propagation is left to right in the bottom tube. ..... 19  Figure 15. Research PDE head

  1. Investigation of Various Novel Air-Breathing Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Wilhite, Jarred M.

    The current research investigates the operation and performance of various air-breathing propulsion systems, which are capable of utilizing different types of fuel. This study first focuses on a modular RDE configuration, which was mainly studied to determine which conditions yield stable, continuous rotating detonation for an ethylene-air mixture. The performance of this RDE was analyzed by studying various parameters such as mass flow rate, equivalence ratios, wave speed and cell size. For relatively low mass flow rates near stoichiometric conditions, a rotating detonation wave is observed for an ethylene-RDE, but at speeds less than an ideal detonation wave. The current research also involves investigating the newly designed, Twin Oxidizer Injection Capable (TOXIC) RDE. Mixtures of hydrogen and air were utilized for this configuration, resulting in sustained rotating detonation for various mass flow rates and equivalence ratios. A thrust stand was also developed to observe and further measure the performance of the TOXIC RDE. Further analysis was conducted to accurately model and simulate the response of thrust stand during operation of the RDE. Also included in this research are findings and analysis of a propulsion system capable of operating on the Inverse Brayton Cycle. The feasibility of this novel concept was validated in a previous study to be sufficient for small-scale propulsion systems, namely UAV applications. This type of propulsion system consists of a reorganization of traditional gas turbine engine components, which incorporates expansion before compression. This cycle also requires a heat exchanger to reduce the temperature of the flow entering the compressor downstream. While adding a heat exchanger improves the efficiency of the cycle, it also increases the engine weight, resulting in less endurance for the aircraft. Therefore, this study focuses on the selection and development of a new heat exchanger design that is lightweight, and is capable of transferring significant amounts of heat and improving the efficiency and performance of the propulsion system.

  2. Research on laser detonation pulse circuit with low-power based on super capacitor

    NASA Astrophysics Data System (ADS)

    Wang, Hao-yu; Hong, Jin; He, Aifeng; Jing, Bo; Cao, Chun-qiang; Ma, Yue; Chu, En-yi; Hu, Ya-dong

    2018-03-01

    According to the demand of laser initiating device miniaturization and low power consumption of weapon system, research on the low power pulse laser detonation circuit with super capacitor. Established a dynamic model of laser output based on super capacitance storage capacity, discharge voltage and programmable output pulse width. The output performance of the super capacitor under different energy storage capacity and discharge voltage is obtained by simulation. The experimental test system was set up, and the laser diode of low power pulsed laser detonation circuit was tested and the laser output waveform of laser diode in different energy storage capacity and discharge voltage was collected. Experiments show that low power pulse laser detonation based on super capacitor energy storage circuit discharge with high efficiency, good transient performance, for a low power consumption requirement, for laser detonation system and low power consumption and provide reference light miniaturization of engineering practice.

  3. Direct Initiation Through Detonation Branching in a Pulsed Detonation Engine

    DTIC Science & Technology

    2008-03-01

    important features noted ................................. 33  Figure 20. GM Quad 4 engine head used as the PDE research engine with the detonation tube...Deflagration to Detonation Transition EF – Engine Frequency FF – Fill Fraction NPT – National Pipe Thread MPT – Male National Pipe Thread PDE – Pulsed... Detonation Engines ( PDE ) has increased greatly in recent years due in part to the potential for increased thermal efficiency derived from constant

  4. Effect of Detonation through a Turbine Stage

    NASA Technical Reports Server (NTRS)

    Ellis, Matthew T.

    2004-01-01

    Pulse detonation engines (PDE) have been investigated as a more efficient means of propulsion due to its constant volume combustion rather than the more often used constant pressure combustion of other propulsion systems. It has been proposed that a hybrid PDE-gas turbine engine would be a feasible means of improving the efficiency of the typical constant pressure combustion gas turbine cycle. In this proposed system, multiple pulse detonation tubes would replace the conventional combustor. Also, some of the compressor stages may be removed due to the pressure rise gained across the detonation wave. The benefits of higher thermal efficiency and reduced compressor size may come at a cost. The first question that arises is the unsteadiness in the flow created by the pulse detonation tubes. A constant pressure combustor has the advantage of supplying a steady and large mass flow rate. The use of the pulse detonation tubes will create an unsteady mass flow which will have currently unknown effects on the turbine located downstream of the combustor. Using multiple pulse detonation tubes will hopefully improve the unsteadiness. The interaction between the turbine and the shock waves exiting the tubes will also have an unknown effect. Noise levels are also a concern with this hybrid system. These unknown effects are being investigated using TURBO, an unsteady turbomachinery flow simulation code developed at Mississippi State University. A baseline case corresponding to a system using a constant pressure combustor with the same mass flow rate achieved with the pulse detonation hybrid system will be investigated first.

  5. Heat Transfer Experiments on a Pulse Detonation Driven Combustor

    DTIC Science & Technology

    2011-03-01

    steps that need to take place before such a hybrid is successfully developed. PDEs obtain their increased efficiency by means of detonation , a pressure...combustion in the Brayton cycle. A PDE utilizes detonations , which offer much higher pressures at the site of fuel ignition, generating less...HEAT TRANSFER EXPERIMENTS ON A PULSE DETONATION DRIVEN COMBUSTOR THESIS Nicholas C. Longo, Captain, USAF AFIT/GAE/ENY/11-M18

  6. Pressure and Thrust Measurements of a High-Frequency Pulsed-Detonation Actuator

    NASA Technical Reports Server (NTRS)

    Nguyen, Namtran C.; Cutler, Andrew D.

    2008-01-01

    This paper describes the development of a small-scale, high-frequency pulsed detonation actuator. The device utilized a fuel mixture of H2 and air, which was injected into the device at frequencies of up to 1200 Hz. Pulsed detonations were demonstrated in an 8-inch long combustion volume, at approx.600 Hz, for the lambda/4 mode. The primary objective of this experiment was to measure the generated thrust. A mean value of thrust was measured up to 6.0 lb, corresponding to specific impulse of 2611 s. This value is comparable to other H2-fueled pulsed detonation engines (PDEs) experiments. The injection and detonation frequency for this new experimental case was approx.600 Hz, and was much higher than typical PDEs, where frequencies are usually less than 100 Hz. The compact size of the model and high frequency of detonation yields a thrust-per-unit-volume of approximately 2.0 lb/cu in, and compares favorably with other experiments, which typically have thrust-per-unit-volume values of approximately 0.01 lb/cu in.

  7. Detonation Jet Engine. Part 2--Construction Features

    ERIC Educational Resources Information Center

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. Detonation engines of various concepts, pulse detonation, rotational and engine with stationary detonation wave, are reviewed. Main trends in detonation engine development are discussed. The most important works that carried out…

  8. Numerical Modeling of Pulse Detonation Rocket Engine Gasdynamics and Performance

    NASA Technical Reports Server (NTRS)

    Morris, C. I.

    2003-01-01

    Pulse detonation engines (PDB) have generated considerable research interest in recent years as a chemical propulsion system potentially offering improved performance and reduced complexity compared to conventional gas turbines and rocket engines. The detonative mode of combustion employed by these devices offers a theoretical thermodynamic advantage over the constant-pressure deflagrative combustion mode used in conventional engines. However, the unsteady blowdown process intrinsic to all pulse detonation devices has made realistic estimates of the actual propulsive performance of PDES problematic. The recent review article by Kailasanath highlights some of the progress that has been made in comparing the available experimental measurements with analytical and numerical models.

  9. Schlieren Imaging of a Single-Ejector, Multi-Tube Pulsed Detonation Engine (Postprint)

    DTIC Science & Technology

    2009-01-01

    studies have shown the potential of an ejector to almost double the thrust of a pulsed detonation engine ( PDE ) tube [1-3]. Axial misalignment of the... Detonation Research Facility in the Air Force Research Laboratory were used for this study. The PDE utilizes automotive valving to feed up to four... detonation tubes. The damped thrust stand was setup to measure PDE thrust alone for baseline tests or total thrust from ejector and PDE . This

  10. Propulsion Systems Integration for a `Tractor Beam' Mercury Lightcraft: Liftoff Engine

    NASA Astrophysics Data System (ADS)

    Myrabo, L. N.

    2003-05-01

    Described herein is the concept and propulsion systems integration for a revolutionary beam-propelled shuttle called the ``Mercury'' lightcraft - emphasizing the liftoff engine mode. This one-person, ultra-energetic vehicle is designed to ride `tractor beams' into space, transmitted from a future network of satellite solar power stations. The objective is to create a safe, very low cost (e.g., 1000X below chemical rockets) space transportation system for human life, one that is completely `green' and independent of Earth's limited fossil fuel reserves. The lightcraft's airbreathing combined-cycle engine operates in a rotary pulsed detonation mode PDE for lift-offs and landings; at hypersonic speeds it transitions into a magnetohydrodynamic (MHD) slipstream accelerator mode. For the latter, the transatmospheric flight path is momentarily transformed into an extremely long, electromagnetic ``mass-driver'' channel with an effective `fuel' specific impulse in the range of 6000 to 16,000 seconds. These future single-stage-to-orbit, highly-reusuable vehicles will ride ``Highways of Light,'' accelerating at 3 Gs into space, with their throttles just barely beyond `idle' power.

  11. A Performance Map for Ideal Air Breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2001-01-01

    The performance of an ideal, air breathing Pulse Detonation Engine is described in a manner that is useful for application studies (e.g., as a stand-alone, propulsion system, in combined cycles, or in hybrid turbomachinery cycles). It is shown that the Pulse Detonation Engine may be characterized by an averaged total pressure ratio, which is a unique function of the inlet temperature, the fraction of the inlet flow containing a reacting mixture, and the stoichiometry of the mixture. The inlet temperature and stoichiometry (equivalence ratio) may in turn be combined to form a nondimensional heat addition parameter. For each value of this parameter, the average total enthalpy ratio and total pressure ratio across the device are functions of only the reactant fill fraction. Performance over the entire operating envelope can thus be presented on a single plot of total pressure ratio versus total enthalpy ratio for families of the heat addition parameter. Total pressure ratios are derived from thrust calculations obtained from an experimentally validated, reactive Euler code capable of computing complete Pulse Detonation Engine limit cycles. Results are presented which demonstrate the utility of the described method for assessing performance of the Pulse Detonation Engine in several potential applications. Limitations and assumptions of the analysis are discussed. Details of the particular detonative cycle used for the computations are described.

  12. Transient analysis of a pulsed detonation combustor using the numerical propulsion system simulation

    NASA Astrophysics Data System (ADS)

    Hasler, Anthony Scott

    The performance of a hybrid mixed flow turbofan (with detonation tubes installed in the bypass duct) is investigated in this study and compared with a baseline model of a mixed flow turbofan with a standard combustion chamber as a duct burner. Previous studies have shown that pulsed detonation combustors have the potential to be more efficient than standard combustors, but they also present new challenges that must be overcome before they can be utilized. The Numerical Propulsion System Simulation (NPSS) will be used to perform the analysis with a pulsed detonation combustor model based on a numerical simulation done by Endo, Fujiwara, et. al. Three different cases will be run using both models representing a take-off situation, a subsonic cruise and a supersonic cruise situation. Since this study investigates a transient analysis, the pulse detonation combustor is run in a rig setup first and then its pressure and temperature are averaged for the cycle to obtain quasi-steady results.

  13. Parametric Investigation of Thrust Augmentation by Ejectors on a Pulsed Detonation Tube

    NASA Technical Reports Server (NTRS)

    Wilson, Jack; Sgondea, Alexandru; Paxson, Daniel E.; Rosenthal, Bruce N.

    2006-01-01

    A parametric investigation has been made of thrust augmentation of a 1 in. diameter pulsed detonation tube by ejectors. A set of ejectors was used which permitted variation of the ejector length, diameter, and nose radius, according to a statistical design of experiment scheme. The maximum augmentation ratios for each ejector were fitted using a polynomial response surface, from which the optimum ratios of ejector diameter to detonation tube diameter, and ejector length and nose radius to ejector diameter, were found. Thrust augmentation ratios above a factor of 2 were measured. In these tests, the pulsed detonation device was run on approximately stoichiometric air-hydrogen mixtures, at a frequency of 20 Hz. Later measurements at a frequency of 40 Hz gave lower values of thrust augmentation. Measurements of thrust augmentation as a function of ejector entrance to detonation tube exit distance showed two maxima, one with the ejector entrance upstream, and one downstream, of the detonation tube exit. A thrust augmentation of 2.5 was observed using a tapered ejector.

  14. Parametric Study of High Frequency Pulse Detonation Tubes

    NASA Technical Reports Server (NTRS)

    Cutler, Anderw D.

    2008-01-01

    This paper describes development of high frequency pulse detonation tubes similar to a small pulse detonation engine (PDE). A high-speed valve injects a charge of a mixture of fuel and air at rates of up to 1000 Hz into a constant area tube closed at one end. The reactants detonate in the tube and the products exit as a pulsed jet. High frequency pressure transducers are used to monitor the pressure fluctuations in the device and thrust is measured with a balance. The effects of injection frequency, fuel and air flow rates, tube length, and injection location are considered. Both H2 and C2H4 fuels are considered. Optimum (maximum specific thrust) fuel-air compositions and resonant frequencies are identified. Results are compared to PDE calculations. Design rules are postulated and applications to aerodynamic flow control and propulsion are discussed.

  15. Rotary wave-ejector enhanced pulse detonation engine

    NASA Astrophysics Data System (ADS)

    Nalim, M. R.; Izzy, Z. A.; Akbari, P.

    2012-01-01

    The use of a non-steady ejector based on wave rotor technology is modeled for pulse detonation engine performance improvement and for compatibility with turbomachinery components in hybrid propulsion systems. The rotary wave ejector device integrates a pulse detonation process with an efficient momentum transfer process in specially shaped channels of a single wave-rotor component. In this paper, a quasi-one-dimensional numerical model is developed to help design the basic geometry and operating parameters of the device. The unsteady combustion and flow processes are simulated and compared with a baseline PDE without ejector enhancement. A preliminary performance assessment is presented for the wave ejector configuration, considering the effect of key geometric parameters, which are selected for high specific impulse. It is shown that the rotary wave ejector concept has significant potential for thrust augmentation relative to a basic pulse detonation engine.

  16. The microspace launcher: first step to the fully air-breathing space launcher

    NASA Astrophysics Data System (ADS)

    Falempin, F.; Bouchez, M.; Calabro, M.

    2009-09-01

    A possible application for the high-speed air-breathing propulsion is the fully or partially reusable space launcher. Indeed, by combining the high-speed air-breathing propulsion with a conventional rocket engine (combined cycle or combined propulsion system), it should be possible to improve the average installed specific impulse along the ascent trajectory and then make possible more performing launchers and, hopefully, a fully reusable one. During the last 15 years, a lot of system studies have been performed in France on that subject within the framework of different and consecutive programs. Nevertheless, these studies never clearly demonstrated that a space launcher could take advantage of using a combined propulsion system. During last years, the interest to air-breathing propulsion for space application has been revisited. During this review and taking into account technologies development activities already in progress in Europe, clear priorities have been identified regarding a minimum complementary research and technology program addressing specific needs of space launcher application. It was also clearly identified that there is the need to restart system studies taking advantage of recent progress made regarding knowledge, tools, and technology and focusing on more innovative airframe/propulsion system concepts enabling better trade-off between structural efficiency and propulsion system performance. In that field, a fully axisymmetric configuration has been considered for a microspace launcher (10 kg payload). The vehicle is based on a main stage powered by air-breathing propulsion, combined or not with liquid rocket mode. A "kick stage," powered by a solid rocket engine provides the final acceleration. A preliminary design has been performed for different variants: one using a separated booster and a purely air-breathing main stage, a second one using a booster and a main stage combining air-breathing and rocket mode, a third one without separated booster, the main stage ensuring the initial acceleration in liquid rocket mode and a complementary acceleration phase in rocket mode beyond the air-breathing propulsion system operation. Finally, the liquid rocket engine of this third variant can be replaced by a continuous detonation wave rocket engine. The paper describes the main guidelines for the design of these variants and provides their main characteristics. On this basis, the achievable performance, estimated by trajectory simulation, are detailed.

  17. Proximity fuze

    DOEpatents

    Harrison, Thomas R.

    1989-08-22

    A proximity fuze system includes an optical ranging apparatus, a detonation circuit controlled by the optical ranging apparatus, and an explosive charge detonated by the detonation cirtcuit. The optical ranging apparatus includes a pulsed laser light source for generating target ranging light pulses and optical reference light pulses. A single lens directs ranging pulses to a target and collects reflected light from the target. An optical fiber bundle is used for delaying the optical reference pulses to correspond to a predetermined distance from the target. The optical ranging apparatus includes circuitry for providing a first signal depending upon the light pulses reflected from the target, a second signal depending upon the light pulses from the optical delay fiber bundle, and an output signal when the first and second signals coincide with each other. The output signal occurs when the distance from the target is equal to the predetermined distance form the target. Additional circuitry distinguishes pulses reflected from the target from background solar radiation.

  18. Laser High-Cycle Thermal Fatigue of Pulse Detonation Engine Combustor Materials Tested

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Fox, Dennis S.; Miller, Robert A.

    2001-01-01

    Pulse detonation engines (PDE's) have received increasing attention for future aerospace propulsion applications. Because the PDE is designed for a high-frequency, intermittent detonation combustion process, extremely high gas temperatures and pressures can be realized under the nearly constant-volume combustion environment. The PDE's can potentially achieve higher thermodynamic cycle efficiency and thrust density in comparison to traditional constant-pressure combustion gas turbine engines (ref. 1). However, the development of these engines requires robust design of the engine components that must endure harsh detonation environments. In particular, the detonation combustor chamber, which is designed to sustain and confine the detonation combustion process, will experience high pressure and temperature pulses with very short durations (refs. 2 and 3). Therefore, it is of great importance to evaluate PDE combustor materials and components under simulated engine temperatures and stress conditions in the laboratory. In this study, a high-cycle thermal fatigue test rig was established at the NASA Glenn Research Center using a 1.5-kW CO2 laser. The high-power laser, operating in the pulsed mode, can be controlled at various pulse energy levels and waveform distributions. The enhanced laser pulses can be used to mimic the time-dependent temperature and pressure waves encountered in a pulsed detonation engine. Under the enhanced laser pulse condition, a maximum 7.5-kW peak power with a duration of approximately 0.1 to 0.2 msec (a spike) can be achieved, followed by a plateau region that has about one-fifth of the maximum power level with several milliseconds duration. The laser thermal fatigue rig has also been developed to adopt flat and rotating tubular specimen configurations for the simulated engine tests. More sophisticated laser optic systems can be used to simulate the spatial distributions of the temperature and shock waves in the engine. Pulse laser high-cycle thermal fatigue behavior has been investigated on a flat Haynes 188 alloy specimen, under the test condition of 30-Hz cycle frequency (33-msec pulse period and 10-msec pulse width including a 0.2-msec pulse spike; ref. 4). Temperature distributions were calculated with one-dimensional finite difference models. The calculations show that that the 0.2-msec pulse spike can cause an additional 40 C temperature fluctuation with an interaction depth of 0.08 mm near the specimen surface region. This temperature swing will be superimposed onto the temperature swing of 80 C that is induced by the 10-msec laser pulse near the 0.53-mm-deep surface interaction region.

  19. 2-D Air-Breathing Lightcraft Engine Experiments in Hypersonic Conditions

    NASA Astrophysics Data System (ADS)

    Salvador, Israel I.; Myrabo, Leik N.; Minucci, Marco A. S.; de Oliveira, Antonio C.; Toro, Paulo G. P.; Chanes, José B.; Rego, Israel S.

    2011-11-01

    Experiments were performed with a 2-D, repetitively-pulsed (RP) laser Lightcraft model in hypersonic flow conditions. The main objective was the feasibility analysis for impulse generation with repetitively-pulsed air-breathing laser Lightcraft engines at hypersonic speeds. The future application of interest for this basic research endeavor is the laser launch of pico-, nano-, and micro-satellites (i.e., 0.1-100 kg payloads) into Low-Earth-Orbit, at low-cost and on-demand. The laser propulsion experiments employed a Hypersonic Shock Tunnel integrated with twin gigawatt pulsed Lumonics 620-TEA CO2 lasers (˜ 1 μs pulses), to produce the required test conditions. This hypersonic campaign was carried out at nominal Mach numbers ranging from 6 to 10. Time-dependent surface pressure distributions were recorded together with Schlieren movies of the flow field structure resulting from laser energy deposition. Results indicated laser-induced pressure increases of 0.7-0.9 bar with laser pulse energies of ˜ 170 J, on off-shroud induced breakdown condition, and Mach number of 7.

  20. Wave combustors for trans-atmospheric vehicles

    NASA Technical Reports Server (NTRS)

    Menees, Gene P.; Bowles, Jeffrey V.; Adelman, Henry G.; Cambier, Jean-Luc

    1989-01-01

    A performance analysis is given of a conceptual transatmospheric vehicle (TAV). The TAV is powered by a an oblique detonation wave engine (ODWE). The ODWE is an airbreathing hypersonic propulsion system which utilizes shock and detonation waves to enhance fuel-air mixing and combustion in supersonic flow. In this wave combustor concept, an oblique shock wave in the combustor can act as a flameholder by increasing the pressure and temperature of the air-fuel mixture, thereby decreasing the ignition delay. If the oblique shock is sufficiently strong, then the combustion front and the shock wave can couple into a detonation wave. In this case, combustion occurs almost instantaneously in a thin zone behind the wave front. The result is a shorter lighter engine compared to the scramjet. The ODWE-powered hypersonic vehicle performance is compared to that of a scramjet-powered vehicle. Among the results outlined, it is found that the ODWE trades a better engine performance above Mach 15 for a lower performance below Mach 15. The overall higher performance of the ODWE results in a 51,000-lb weight savings and a higher payload weight fraction of approximately 12 percent.

  1. Investigation of the effect of the ejector on the performance of the pulse detonation engine nozzle extension

    NASA Astrophysics Data System (ADS)

    Korobov, A. E.; Golovastov, S. V.

    2015-11-01

    Influence of an ejector nozzle extension on gas flow at a pulse detonation engine was investigated numerically and experimentally. Detonation formation was organized in stoichiometric hydrogen-oxygen mixture in cylindrical detonation tube. Cylindrical ejector was constructed and mounted at the open end of the tube. Thrust, air consumption and parameters of the detonation were measured in single and multiple regimes of operation. Axisymmetric model was used in numerical investigation. Equations of Navies-Stokes were solved using a finite-difference scheme Roe of second order of accuracy. Initial conditions were estimated on a base of experimental data. Numerical results were validated with experiments data.

  2. Numerical study of chemically reacting viscous flow relevant to pulsed detonation engines

    NASA Astrophysics Data System (ADS)

    Yi, Tae-Hyeong

    2005-11-01

    A computational fluid dynamics code for two-dimensional, multi-species, laminar Navier-Stokes equations is developed to simulate a recently proposed engine concept for a pulsed detonation based propulsion system and to investigate the feasibility of the engine of the concept. The governing equations that include transport phenomena such as viscosity, thermal conduction and diffusion are coupled with chemical reactions. The gas is assumed to be thermally perfect and in chemically non-equilibrium. The stiffness due to coupling the fluid dynamics and the chemical kinetics is properly taken care of by using a time-operator splitting method and a variable coefficient ordinary differential equation solver. A second-order Roe scheme with a minmod limiter is explicitly used for space descretization, while a second-order, two-step Runge-Kutta method is used for time descretization. In space integration, a finite volume method and a cell-centered scheme are employed. The first-order derivatives in the equations of transport properties are discretized by a central differencing with Green's theorem. Detailed chemistry is involved in this study. Two chemical reaction mechanisms are extracted from GRI-Mech, which are forty elementary reactions with thirteen species for a hydrogen-air mixture and twenty-seven reactions with eight species for a hydrogen-oxygen mixture. The code is ported to a high-performance parallel machine with Message-Passing Interface. Code validation is performed with chemical kinetic modeling for a stoichiometric hydrogen-air mixture, an one-dimensional detonation tube, a two-dimensional, inviscid flow over a wedge and a viscous flow over a flat plate. Detonation is initiated using a numerically simulated arc-ignition or shock-induced ignition system. Various freestream conditions are utilized to study the propagation of the detonation in the proposed concept of the engine. Investigation of the detonation propagation is performed for a pulsed detonation rocket and a supersonic combustion chamber. For a pulsed detonation rocket case, the detonation tube is embedded in a mixing chamber where an initiator is added to the main detonation chamber. Propagating detonation waves in a supersonic combustion chamber is investigated for one- and two-dimensional cases. The detonation initiated by an arc and a shock wave is studied in the inviscid and viscous flow, respectively. Various features including a detonation-shock interaction, a detonation diffraction, a base flow and a vortex are observed.

  3. Optically detonated explosive device

    NASA Technical Reports Server (NTRS)

    Yang, L. C.; Menichelli, V. J. (Inventor)

    1974-01-01

    A technique and apparatus for optically detonating insensitive high explosives, is disclosed. An explosive device is formed by containing high explosive material in a house having a transparent window. A thin metallic film is provided on the interior surface of the window and maintained in contact with the high explosive. A laser pulse provided by a Q-switched laser is focussed on the window to vaporize the metallic film and thereby create a shock wave which detonates the high explosive. Explosive devices may be concurrently or sequentially detonated by employing a fiber optic bundle to transmit the laser pulse to each of the several individual explosive devices.

  4. Experimental investigation of a unique airbreathing pulsed laser propulsion concept

    NASA Technical Reports Server (NTRS)

    Myrabo, L. N.; Nagamatsu, H. T.; Manka, C.; Lyons, P. W.; Jones, R. A.

    1991-01-01

    Investigations were conducted into unique methods of converting pulsed laser energy into propulsive thrust across a flat impulse surface under atmospheric conditions. The propulsion experiments were performed with a 1-micron neodymium-glass laser at the Space Plasma Branch of the Naval Research Laboratory. Laser-induced impulse was measured dynamically by ballistic pendulums and statically using piezoelectric pressure transducers on a stationary impulse surface. The principal goal was to explore methods for increasing the impulse coupling performance of airbreathing laser-propulsion engines. A magnetohydrodynamic thrust augmentation effect was discovered when a tesla-level magnetic field was applied perpendicular to the impulse surface. The impulse coupling coefficient performance doubled and continued to improve with increasing laser-pulse energies. The resultant performance of 180 to 200 N-s/MJ was found to be comparable to that of the earliest afterburning turbojets.

  5. Proximity fuze

    DOEpatents

    Harrison, T.R.

    1987-07-10

    A proximity fuze system includes an optical ranging apparatus, a detonation circuit controlled by the optical ranging apparatus, and an explosive charge detonated by the detonation circuit. The optical ranging apparatus includes a pulsed laser light source for generating target ranging light pulses and optical reference light pulses. A single lens directs ranging pulses to a target and collects reflected light from the target. An optical fiber bundle is used for delaying the optical reference pulses to correspond to a predetermined distance from the target. The optical ranging apparatus includes circuitry for providing a first signal depending upon the light pulses reflected from the target, a second signal depending upon the light pulses from the optical delay fiber bundle, and an output signal when the first and second signals coincide with each other. The output signal occurs when the distance from the target is equal to the predetermined distance from the target. Additional circuitry distinguishes pulses reflected from the target from background solar radiation. 3 figs.

  6. Proximity fuze

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, T.R.

    1987-07-10

    A proximity fuze system includes an optical ranging apparatus, a detonation circuit controlled by the optical ranging apparatus, and an explosive charge detonated by the detonation circuit. The optical ranging apparatus includes a pulsed laser light source for generating target ranging light pulses and optical reference light pulses. A single lens directs ranging pulses to a target and collects reflected light from the target. An optical fiber bundle is used for delaying the optical reference pulses to correspond to a predetermined distance from the target. The optical ranging apparatus includes circuitry for providing a first signal depending upon the lightmore » pulses reflected from the target, a second signal depending upon the light pulses from the optical delay fiber bundle, and an output signal when the first and second signals coincide with each other. The output signal occurs when the distance from the target is equal to the predetermined distance from the target. Additional circuitry distinguishes pulses reflected from the target from background solar radiation. 3 figs.« less

  7. Proximity fuze

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, T.R.

    1989-08-22

    A proximity fuze system is described. It includes an optical ranging apparatus, a detonation circuit controlled by the optical ranging apparatus, and an explosive charge detonated by the detonation circuit. The optical ranging apparatus includes a pulsed laser light source for generating target ranging light pulses and optical reference light pulses. A single lens directs ranging pulses to a target and collects reflected light from the target. An optical fiber bundle is used for delaying the optical reference pulses to correspond to a predetermined distance from the target. The optical ranging apparatus includes circuitry for providing a first signal dependingmore » upon the light pulses reflected from the target, a second signal depending upon the light pulses from the optical delay fiber bundle, and an output signal when the first and second signals coincide with each other. The output signal occurs when the distance from the target is equal to the predetermined distance from the target. Additional circuitry distinguishes pulses reflected from the target from background solar radiation.« less

  8. Parametric Investigation of Thrust Augmentation by Ejectors on a Pulsed Detonation Tube

    NASA Technical Reports Server (NTRS)

    Wilson, Jack; Sgondea, Alexandru; Paxson, Daniel E.; Rosenthal, Bruce N.

    2005-01-01

    A parametric investigation has been made of thrust augmentation of a 1 inch diameter pulsed detonation tube by ejectors. A set of ejectors was used which permitted variation of the ejector length, diameter, and nose radius, according to a statistical design of experiment scheme. The maximum augmentations for each ejector were fitted using a polynomial response surface, from which the optimum ejector diameters, and nose radius, were found. Thrust augmentations above a factor of 2 were measured. In these tests, the pulsed detonation device was run on approximately stoichiometric air-hydrogen mixtures, at a frequency of 20 Hz. Later measurements at a frequency of 40 Hz gave lower values of thrust augmentation. Measurements of thrust augmentation as a function of ejector entrance to detonation tube exit distance showed two maxima, one with the ejector entrance upstream, and one downstream, of the detonation tube exit. A thrust augmentation of 2.5 was observed using a tapered ejector.

  9. Pressure and Thrust Measurements of a High-Frequency Pulsed Detonation Tube

    NASA Technical Reports Server (NTRS)

    Nguyen, N.; Cutler, A. D.

    2008-01-01

    This paper describes measurements of a small-scale, high-frequency pulsed detonation tube. The device utilized a mixture of H2 fuel and air, which was injected into the device at frequencies of up to 1200 Hz. Pulsed detonations were demonstrated in an 8-inch long combustion volume, at about 600 Hz, for the quarter wave mode of resonance. The primary objective of this experiment was to measure the generated thrust. A mean value of thrust was measured up to 6.0 lb, corresponding to H2 flow based specific impulse of 2970 s. This value is comparable to measurements in H2-fueled pulsed detonation engines (PDEs). The injection and detonation frequency for this new experimental case was much higher than typical PDEs, where frequencies are usually less than 100 Hz. The compact size of the device and high frequency of detonation yields a thrust-per-unit-volume of approximately 2.0 pounds per cubic inch, and compares favorably with other experiments, which typically have thrust-per-unit-volume of order 0.01 pound per cubic inch. This much higher volumetric efficiency results in a potentially much more practical device than the typical PDE, for a wide range of potential applications, including high-speed boundary layer separation control, for example in hypersonic engine inlets, and propulsion for small aircraft and missiles.

  10. Research on filling process of fuel and oxidant during detonation based on absorption spectrum technology

    NASA Astrophysics Data System (ADS)

    Lv, Xiao-Jing; Li, Ning; Weng, Chun-Sheng

    2014-12-01

    Research on detonation process is of great significance for the control optimization of pulse detonation engine. Based on absorption spectrum technology, the filling process of fresh fuel and oxidant during detonation is researched. As one of the most important products, H2O is selected as the target of detonation diagnosis. Fiber distributed detonation test system is designed to enable the detonation diagnosis under adverse conditions in detonation process. The test system is verified to be reliable. Laser signals at different working frequency (5Hz, 10Hz and 20Hz) are detected. Change of relative laser intensity in one detonation circle is analyzed. The duration of filling process is inferred from the change of laser intensity, which is about 100~110ms. The peak of absorption spectrum is used to present the concentration of H2O during the filling process of fresh fuel and oxidant. Absorption spectrum is calculated, and the change of absorption peak is analyzed. Duration of filling process calculated with absorption peak consisted with the result inferred from the change of relative laser intensity. The pulse detonation engine worked normally and obtained the maximum thrust at 10Hz under experiment conditions. The results are verified through H2O gas concentration monitoring during detonation.

  11. Fuel Composition and Performance Analysis of Endothermically Heated Fuels for Pulse Detonation Engines

    DTIC Science & Technology

    2009-03-01

    Waste heat from a pulse detonation engine (PDE) was extracted via concentric, counter flow heat exchangers to produce supercritical pyrolytic...mass spectrometry HLPC = High performance liquid chromatography NPT = National pipe thread PAH = Polycyclic aromatic hydrocarbon PDE = Pulse...Precision Liquid Chromatography (HPLC). The resulting “stressed” fuel showed a 29 shift to lower molecular weight compounds, as well as the production

  12. Pulse Detonation Physiochemical and Exhaust Relaxation Processes

    DTIC Science & Technology

    2006-05-01

    based on total time to detonation and detonation percentage. Nomenclature A = Arrehenius Constant Ea = Activation Energy Ecrit = Critical...the precision uncertainties vary for each data point. Therefore, the total experimental uncertainty will vary by data point. A comprehensive bias

  13. Deflagration-to-detonation transition in gases in tubes with cavities

    NASA Astrophysics Data System (ADS)

    Smirnov, N. N.; Nikitin, V. F.; Phylippov, Yu. G.

    2010-12-01

    The existence of a supersonic second combustion mode — detonation — discovered by Mallard and Le Chatelier and by Berthélot and Vieille in 1881 posed the question of mechanisms for transition from one mode to the other. In the period 1959-1969, experiments by Salamandra, Soloukhin, Oppenheim, and their coworkers provided insights into this complex phenomenon. Since then, among all the phenomena related to combustion processes, deflagration-to-detonation transition is, undoubtedly, the most intriguing one. Deflagration-to-detonation transition (DDT) in gases is connected with gas and vapor explosion safety issues. Knowing mechanisms of detonation onset control is of major importance for creating effective mitigation measures addressing two major goals: to prevent DDT in the case of mixture ignition, or to arrest the detonation wave in the case where it has been initiated. A new impetus to the increase in interest in deflagration-to-detonation transition processes was given by the recent development of pulse detonation devices. The probable application of these principles to creation of a new generation of engines put the problem of effectiveness of pulse detonating devices at the top of current research needs. The effectiveness of the pulse detonation cycle turned out to be the key factor characterizing the Pulse Detonation Engine (PDE), whose operation modes were shown to be closely related to periodical onset and degeneration of a detonation wave. Those unsteady-state regimes should be self-sustained to guarantee a reliable operation of devices using the detonation mode of burning fuels as a constitutive part of their working cycle. Thus deflagration-to-detonation transition processes are of major importance for the issue. Minimizing the predetonation length and ensuring stability of the onset of detonation enable one to increase the effectiveness of a PDE. The DDT turned out to be the key factor characterizing the PDE operating cycle. Thus, the problem of DDT control in gaseous fuel-air mixtures became very acute. This paper contains results of theoretical and experimental investigations of DDT processes in combustible gaseous mixtures. In particular, the paper investigates the effect of cavities incorporated in detonation tubes at the onset of detonation in gases. Extensive numerical modeling and simulations allowed studying the features of deflagration-to-detonation transition in gases in tubes incorporating cavities of a wider cross section. The presence of cavities substantially affects the combustion modes being established in the device and their dependence on the governing parameters of the problem. The influence of geometrical characteristics of the confinement and flow turbulization on the onset of detonation and the influence of temperature and fuel concentration in the unburned mixture are discussed. It was demonstrated both experimentally and theoretically that the presence of cavities of wider cross section in the ignition part of the tube promotes DDT and shortens the predetonation length. At the same time, cavities incorporated along the whole length or in the far-end section inhibit detonation and bring about the onset of low-velocity galloping detonation or galloping combustion modes. The presence of cavities in the ignition section turns an increase in the initial mixture temperature into a DDT-promoting factor instead of a DDT-inhibiting factor.

  14. Build Up and Operation of an Axial Turbine Driven by a Rotary Detonation Engine

    DTIC Science & Technology

    2012-03-01

    RDEs) offer advantages over pulsed detonation engines ( PDEs ) due to a steadier exhaust and fewer total system losses. All previous research on...turbine integration with detonation combustors has focused on utilizing PDEs to drive axial and centrifugal turbines. The objective of this thesis was... detonation engine ............................................. 5 Figure 4. Schematic of the rotating detonation wave structure for an unwrapped view of an

  15. Hybrid Solution-Adaptive Unstructured Cartesian Method for Large-Eddy Simulation of Detonation in Multi-Phase Turbulent Reactive Mixtures

    DTIC Science & Technology

    2012-03-27

    pulse- detonation engines ( PDE ), stage separation, supersonic cav- ity oscillations, hypersonic aerodynamics, detonation induced structural...ADAPTIVE UNSTRUCTURED CARTESIAN METHOD FOR LARGE-EDDY SIMULATION OF DETONATION IN MULTI-PHASE TURBULENT REACTIVE MIXTURES 5b. GRANT NUMBER FA9550...CCL Report TR-2012-03-03 Hybrid Solution-Adaptive Unstructured Cartesian Method for Large-Eddy Simulation of Detonation in Multi-Phase Turbulent

  16. Oxidation- and Creep-Enhanced Fatigue of Haynes 188 Alloy-Oxide Scale System Under Simulated Pulse Detonation Engine Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Miller, Robert A.

    2002-01-01

    The development of the pulse detonation engine (PDE) requires robust design of the engine components that are capable of enduring harsh detonation environments. In this study, a high cycle thermal fatigue test rig was developed for evaluating candidate PDE combustor materials using a CO2 laser. The high cycle thermal fatigue behavior of Haynes 188 alloy was investigated under an enhanced pulsed laser test condition of 30 Hz cycle frequency (33 ms pulse period, and 10 ms pulse width including 0.2 ms pulse spike). The temperature swings generated by the laser pulses near the specimen surface were characterized by using one-dimensional finite difference modeling combined with experimental measurements. The temperature swings resulted in significant thermal cyclic stresses in the oxide scale/alloy system, and induced extensive surface cracking. Striations of various sizes were observed at the cracked surfaces and oxide/alloy interfaces under the cyclic stresses. The test results indicated that oxidation and creep-enhanced fatigue at the oxide scale/alloy interface was an important mechanism for the surface crack initiation and propagation under the simulated PDE condition.

  17. Rotating Detonation Engine Operation (Preprint)

    DTIC Science & Technology

    2012-01-01

    MdotH2 = mass flow of hydrogen MdotAir = mass flow of air PCB = Piezoelectric Pressure Sensor PDE = Pulsed Detonation Engine RDE = Rotating ...and unsteady thrust output of PDEs . One of the new designs was the Rotating Detonation Engine (RDE). An RDE operates by exhausting an initial...AFRL-RZ-WP-TP-2012-0003 ROTATING DETONATION ENGINE OPERATION (PREPRINT) James A. Suchocki and Sheng-Tao John Yu The Ohio State

  18. Investigation on Novel Methods to Increase Specific Thrust in Pulse Detonation Engines via Imploding Detonations

    DTIC Science & Technology

    2009-12-01

    Malliakos. Detonation cell size measurements in high-temperature hydrogen- air-steam mixtures at the bnl high-temperature combustion facility. Technical...Report NUREG/CR-6391, BNL -NUREG-52482, Brookhaven National Laboratory, 1997. [13] W.B. Benedick, R. Knystautas, and J.H.S. Lee. Large-scale

  19. Design and Testing of an H2/O2 Predetonator for a Simulated Rotating Detonation Engine Channel

    DTIC Science & Technology

    2013-03-01

    Diameter PDE Pulse Detonation Engines RDE Rotating Detonation Engine WPAFB Wright Patterson Air Force Base ZND Zeldovich, von Neumann and Doring xv...DESIGN AND TESTING OF AN H2/O2 PREDETONATOR FOR A SIMULATED ROTATING DETONATION ENGINE CHANNEL THESIS Stephen J. Miller, 2Lt, USAF AFIT-ENY-13-M-23...RELEASE; DISTRIBUTION UNLIMITED AFIT-ENY-13-M-23 DESIGN AND TESTING OF AN H2/O2 PREDETONATOR FOR A SIMULATED ROTATING DETONATION ENGINE CHANNEL Stephen

  20. Performance and environmental impact assessment of pulse detonation based engine systems

    NASA Astrophysics Data System (ADS)

    Glaser, Aaron J.

    Experimental research was performed to investigate the feasibility of using pulse detonation based engine systems for practical aerospace applications. In order to carry out this work a new pulse detonation combustion research facility was developed at the University of Cincinnati. This research covered two broad areas of application interest. The first area is pure PDE applications where the detonation tube is used to generate an impulsive thrust directly. The second focus area is on pulse detonation based hybrid propulsion systems. Within each of these areas various studies were performed to quantify engine performance. Comparisons of the performance between detonation and conventional deflagration based engine cycles were made. Fundamental studies investigating detonation physics and flow dynamics were performed in order to gain physical insight into the observed performance trends. Experimental studies were performed on PDE-driven straight and diverging ejectors to determine the system performance. Ejector performance was quantified by thrust measurements made using a damped thrust stand. The effects of PDE operating parameters and ejector geometric parameters on thrust augmentation were investigated. For all cases tested, the maximum thrust augmentation is found to occur at a downstream ejector placement. The optimum ejector geometry was determined to have an overall length of LEJECT/DEJECT =5.61, including an intermediate-straight section length of LSTRT /DEJECT=2, and diverging exhaust section with 4 deg half-angle. A maximum thrust augmentation of 105% was observed while employing the optimized ejector geometry and operating the PDE at a fill-fraction of 0.6 and a frequency of 10 Hz. When operated at a fill-fraction of 1.0 and a frequency of 30 Hz, the thrust augmentation of the optimized PDE-driven ejector system was observed to be 71%. Static pressure was measured along the interior surface of the ejector, including the inlet and exhaust sections. The diverging ejector pressure distribution shows that the diverging section acts as a subsonic diffuser. To provide a better explanation of the observed performance trends, shadowgraph images of the detonation wave and starting vortex interacting with the ejector inlet were obtained. The acoustic signature of a pulse detonation engine was characterized in both the near-field and far-field regimes. Experimental measurements were performed in an anechoic test facility designed for jet noise testing. Both shock strength and speed were mapped as a function of radial distance and direction from the PDE exhaust plane. It was found that the PDE generated pressure field can be reasonably modeled by a theoretical point-source explosion. The effect of several exit nozzle configurations on the PDE acoustic signature was studies. These included various chevron nozzles, a perforated nozzle, and a set of proprietary noise attenuation mufflers. Experimental studies were carried out to investigate the performance of a hybrid propulsion system integrating an axial flow turbine with multiple pulse detonation combustors. The integrated system consisted of a circular array of six pulse detonation combustor (PDC) tubes exhausting through an axial flow turbine. Turbine component performance was quantified by measuring the amount of power generated by the turbine section. Direct comparisons of specific power output and turbine efficiency between a PDC-driven turbine and a turbine driven by steady-flow combustors were made. It was found that the PDC-driven turbine had comparable performance to that of a steady-burner-driven turbine across the operating map of the turbine.

  1. The Ignition of Two Phase Detonation by a Branching Detonation Tube

    NASA Astrophysics Data System (ADS)

    Xiong, Cha; Qiu, Hua; Lu, Qinwei

    2017-11-01

    A branching tube is available to deliver sufficient energy to directly initiate a detonation wave. But sustaining the detonation wave through a branching tube is a challenge. In this study, a preliminary exploration about a branching pulsed detonation engine with a gas-liquid mixture was carried out to evaluate filling conditions on detonation initiation. Two detonation tubes were connected by three different schemes, such as Tail-Tail, Tail-Mid, and Tail-Head. Experimental results showed only end-head connected tubes can be ignited by the branching tube, which is quite different from the results using gas fuels or pre-evaporated liquid fuel. Liquid fuel distribution is crucial for successful detonation traveling through the branching tube.

  2. Detonation control

    DOEpatents

    Mace, Jonathan L.; Seitz, Gerald J.; Bronisz, Lawrence E.

    2016-10-25

    Detonation control modules and detonation control circuits are provided herein. A trigger input signal can cause a detonation control module to trigger a detonator. A detonation control module can include a timing circuit, a light-producing diode such as a laser diode, an optically triggered diode, and a high-voltage capacitor. The trigger input signal can activate the timing circuit. The timing circuit can control activation of the light-producing diode. Activation of the light-producing diode illuminates and activates the optically triggered diode. The optically triggered diode can be coupled between the high-voltage capacitor and the detonator. Activation of the optically triggered diode causes a power pulse to be released from the high-voltage capacitor that triggers the detonator.

  3. The Reduction of NOx Using Pulsed Electron Beams

    DTIC Science & Technology

    2015-12-30

    flue gas (SFG) is described. The SFG is a simulant for exhaust flue gas from a coal combustion power plant. The technology utilizes a pulsed electron...a surrogate flue gas (SFG) is described. The SFG simulates exhaust flue gas from a coal combustion power plant. The technology utilizes a pulsed...temperature combustion in air-breathing engines and coal power plants. The gases are also produced in nature during thunderstorms by lightning

  4. CPU and GPU-based Numerical Simulations of Combustion Processes

    DTIC Science & Technology

    2012-04-27

    Distribution unlimited UCLA MAE Research and Technology Review April 27, 2012 Magnetohydrodynamic Augmentation of the Pulse Detonation Rocket Engines...Pulse Detonation Rocket-Induced MHD Ejector (PDRIME) – Energy extract from exhaust flow by MHD generator – Seeded air stream acceleration by MHD...accelerator for thrust enhancement and control • Alternative concept: Magnetic piston – During PDE blowdown process, MHD extracts energy and

  5. Optically triggered fire set/detonator system

    DOEpatents

    Chase, Jay B.; Pincosy, Philip A.; Chato, Donna M.; Kirbie, Hugh; James, Glen F.

    2007-03-20

    The present invention is directed to a system having a plurality of capacitor discharge units (CDUs) that includes electrical bridge type detonators operatively coupled to respective explosives. A pulse charging circuit is adapted to provide a voltage for each respective capacitor in each CDU. Such capacitors are discharged through the electrical bridge type detonators upon receiving an optical signal to detonate respective operatively coupled explosives at substantially the same time.

  6. Modeling of Multi-Tube Pulse Detonation Engine Operation

    NASA Technical Reports Server (NTRS)

    Ebrahimi, Houshang B.; Mohanraj, Rajendran; Merkle, Charles L.

    2001-01-01

    The present paper explores some preliminary issues concerning the operational characteristics of multiple-tube pulsed detonation engines (PDEs). The study is based on a two-dimensional analysis of the first-pulse operation of two detonation tubes exhausting through a common nozzle. Computations are first performed to assess isolated tube behavior followed by results for multi-tube flow phenomena. The computations are based on an eight-species, finite-rate transient flow-field model. The results serve as an important precursor to understanding appropriate propellant fill procedures and shock wave propagation in multi-tube, multi-dimensional simulations. Differences in behavior between single and multi-tube PDE models are discussed, The influence of multi-tube geometry and the preferred times for injecting the fresh propellant mixture during multi-tube PDE operation are studied.

  7. Pulse Detonation Engine Test Bed Developed

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin J.

    2002-01-01

    A detonation is a supersonic combustion wave. A Pulse Detonation Engine (PDE) repetitively creates a series of detonation waves to take advantage of rapid burning and high peak pressures to efficiently produce thrust. NASA Glenn Research Center's Combustion Branch has developed a PDE test bed that can reproduce the operating conditions that might be encountered in an actual engine. It allows the rapid and cost-efficient evaluation of the technical issues and technologies associated with these engines. The test bed is modular in design. It consists of various length sections of both 2- and 2.6- in. internal-diameter combustor tubes. These tubes can be bolted together to create a variety of combustor configurations. A series of bosses allow instrumentation to be inserted on the tubes. Dynamic pressure sensors and heat flux gauges have been used to characterize the performance of the test bed. The PDE test bed is designed to utilize an existing calorimeter (for heat load measurement) and windowed (for optical access) combustor sections. It uses hydrogen as the fuel, and oxygen and nitrogen are mixed to simulate air. An electronic controller is used to open the hydrogen and air valves (or a continuous flow of air is used) and to fire the spark at the appropriate times. Scheduled tests on the test bed include an evaluation of the pumping ability of the train of detonation waves for use in an ejector and an evaluation of the pollutants formed in a PDE combustor. Glenn's Combustion Branch uses the National Combustor Code (NCC) to perform numerical analyses of PDE's as well as to evaluate alternative detonative combustion devices. Pulse Detonation Engine testbed.

  8. Rapid detonation initiation by sparks in a short duct: a numerical study

    NASA Astrophysics Data System (ADS)

    Hu, Z. M.; Dou, H. S.; Khoo, B. C.

    2010-06-01

    Rapid onset of detonation can efficiently increase the working frequency of a pulse detonation engine (PDE). In the present study, computations of detonation initiation in a duct are conducted to investigate the mechanisms of detonation initiation. The governing equations are the Euler equations and the chemical kinetic model consists of 19 elementary reactions and nine species. Different techniques of initiation have been studied for the purpose of accelerating detonation onset with a relatively weak ignition energy. It is found that detonation ignition induced by means of multiple sparks is applicable to auto-ignition for a PDE. The interaction among shock waves, flame fronts and the strip of pre-compressed fresh (unburned) mixture plays an important role in rapid onset of detonation.

  9. Hypersonic MHD Propulsion System Integration for the Mercury Lightcraft

    NASA Astrophysics Data System (ADS)

    Myrabo, L. N.; Rosa, R. J.

    2004-03-01

    Introduced herein are the design, systems integration, and performance analysis of an exotic magnetohydrodynamic (MHD) slipstream accelerator engine for a single-occupant ``Mercury'' lightcraft. This ultra-energetic, laser-boosted vehicle is designed to ride a `tractor beam' into space, transmitted from a future orbital network of satellite solar power stations. The lightcraft's airbreathing combined-cycle engine employs a rotary pulsed detonation thruster mode for lift-off & landing, and an MHD slipstream accelerator mode at hypersonic speeds. The latter engine transforms the transatmospheric acceleration path into a virtual electromagnetic `mass-driver' channel; the hypersonic momentum exchange process (with the atmosphere) enables engine specific impulses in the range of 6000 to 16,000 seconds, and propellant mass fractions as low as 10%. The single-stage-to-orbit, highly reusable lightcraft can accelerate at 3 Gs into low Earth orbit with its throttle just barely beyond `idle' power, or virtually `disappear' at 30 G's and beyond. The objective of this advanced lightcraft design is to lay the technological foundations for a safe, very low cost (e.g., 1000X below chemical rockets) air and space transportation for human life in the mid-21st Century - a system that will be completely `green' and independent of Earth's limited fossil fuel reserves.

  10. The Attenuation of a Detonation Wave by an Aircraft Engine Axial Turbine Stage

    NASA Technical Reports Server (NTRS)

    VanZante, Dale; Envia, Edmane; Turner, Mark G.

    2007-01-01

    A Constant Volume Combustion Cycle Engine concept consisting of a Pulse Detonation Combustor (PDC) followed by a conventional axial turbine was simulated numerically to determine the attenuation and reflection of a notional PDC pulse by the turbine. The multi-stage, time-accurate, turbomachinery solver TURBO was used to perform the calculation. The solution domain consisted of one notional detonation tube coupled to 5 vane passages and 8 rotor passages representing 1/8th of the annulus. The detonation tube was implemented as an initial value problem with the thermodynamic state of the tube contents, when the detonation wave is about to exit, provided by a 1D code. Pressure time history data from the numerical simulation was compared to experimental data from a similar configuration to verify that the simulation is giving reasonable results. Analysis of the pressure data showed a spectrally averaged attenuation of about 15 dB across the turbine stage. An evaluation of turbine performance is also presented.

  11. The Feasibility of Applying AC Driven Low-Temperature Plasma for Multi-Cycle Detonation Initiation

    NASA Astrophysics Data System (ADS)

    Zheng, Dianfeng

    2016-11-01

    Ignition is a key system in pulse detonation engines (PDE). As advanced ignition methods, nanosecond pulse discharge low-temperature plasma ignition is used in some combustion systems, and continuous alternating current (AC) driven low-temperature plasma using dielectric barrier discharge (DBD) is used for the combustion assistant. However, continuous AC driven plasmas cannot be used for ignition in pulse detonation engines. In this paper, experimental and numerical studies of pneumatic valve PDE using an AC driven low-temperature plasma igniter were described. The pneumatic valve was jointly designed with the low-temperature plasma igniter, and the numerical simulation of the cold-state flow field in the pneumatic valve showed that a complex flow in the discharge area, along with low speed, was beneficial for successful ignition. In the experiments ethylene was used as the fuel and air as oxidizing agent, ignition by an AC driven low-temperature plasma achieved multi-cycle intermittent detonation combustion on a PDE, the working frequency of the PDE reached 15 Hz and the peak pressure of the detonation wave was approximately 2.0 MPa. The experimental verifications of the feasibility in PDE ignition expanded the application field of AC driven low-temperature plasma. supported by National Natural Science Foundation of China (No. 51176001)

  12. Thermal Barrier and Protective Coatings to Improve the Durability of a Combustor Under a Pulse Detonation Engine Environment

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Zhu, Dongming

    2008-01-01

    Pulse detonation engine (PDE) concepts are receiving increasing attention for future aeronautic propulsion applications, due to their potential thermodynamic cycle efficiency and higher thrust to density ratio that lead to the decrease in fuel consumption. But the resulting high gas temperature and pressure fluctuation distributions at high frequency generated with every detonation are viewed to be detrimental to the combustor liner material. Experimental studies on a typical metal combustion material exposed to a laser simulated pulse heating showed extensive surface cracking. Coating of the combustor materials with low thermal conductivity ceramics is shown to protect the metal substrate, reduce the thermal stresses, and hence increase the durability of the PDE combustor liner material. Furthermore, the temperature fluctuation and depth of penetration is observed to decrease with increasing the detonation frequency. A crack propagation rate in the coating is deduced by monitoring the variation of the coating apparent thermal conductivity with time that can be utilized as a health monitoring technique for the coating system under a rapid fluctuating heat flux.

  13. Metallized Gelled Propellants Combustion Experiments in a Pulse Detonation Engine

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan; Jurns, John; Breisacher, Kevin; Kearns, Kim

    2006-01-01

    A series of combustion tests were performed with metallized gelled JP 8/aluminum fuels in a Pulse Detonation Engine (PDE). Nanoparticles of aluminum were used in the 60 to 100 nanometer diameter. Gellants were also of a nanoparticulate type composed of hydrocarbon alkoxide materials. Using simulated air (a nitrogen-oxygen mixture), the ignition potential of metallized gelled fuels with nanoparticle aluminum was investigated. Ignition of the JP 8/aluminum was possible with less than or equal to a 23-wt% oxygen loading in the simulated air. JP 8 fuel alone was unable to ignite with less than 30 percent oxygen loaded simulated air. The tests were single shot tests of the metallized gelled fuel to demonstrate the capability of the fuel to improve fuel detonability. The tests were conducted at ambient temperatures and with maximal detonation pressures of 1340 psia.

  14. Reverse slapper detonator

    DOEpatents

    Weingart, Richard C.

    1990-01-01

    A reverse slapper detonator (70), and methodology related thereto, are provided. The detonator (70) is adapted to be driven by a pulse of electric power from an external source (80). A conductor (20) is disposed along the top (14), side (18), and bottom (16) surfaces of a sheetlike insulator (12). Part of the conductor (20) comprises a bridge (28), and an aperture (30) is positioned within the conductor (20), with the bridge (28) and the aperture (30) located on opposite sides of the insulator (12). A barrel (40) and related explosive charge (50) are positioned adjacent to and in alignment with the aperture (30), and the bridge (28) is buttressed with a backing layer (60). When the electric power pulse vaporizes the bridge (28), a portion of the insulator (12) is propelled through the aperture (30) and barrel (40), and against the explosive charge (50), thereby detonating it.

  15. Mechanisms of detonation formation due to a temperature gradient

    NASA Astrophysics Data System (ADS)

    Kapila, A. K.; Schwendeman, D. W.; Quirk, J. J.; Hawa, T.

    2002-12-01

    Emergence of a detonation in a homogeneous, exothermically reacting medium can be deemed to occur in two phases. The first phase processes the medium so as to create conditions ripe for the onset of detonation. The actual events leading up to preconditioning may vary from one experiment to the next, but typically, at the end of this stage the medium is hot and in a state of nonuniformity. The second phase consists of the actual formation of the detonation wave via chemico-gasdynamic interactions. This paper considers an idealized medium with simple, rate-sensitive kinetics for which the preconditioned state is modelled as one with an initially prescribed linear gradient of temperature. Accurate and well-resolved numerical computations are carrried out to determine the mode of detonation formation as a function of the size of the initial gradient. For shallow gradients, the result is a decelerating supersonic reaction wave, a weak detonation, whose trajectory is dictated by the initial temperature profile, with only weak intervention from hydrodynamics. If the domain is long enough, or the gradient less shallow, the wave slows down to the Chapman-Jouguet speed and undergoes a swift transition to the ZND structure. For sharp gradients, gasdynamic nonlinearity plays a much stronger role. Now the path to detonation is through an accelerating pulse that runs ahead of the reaction wave and rearranges the induction-time distribution there to one that bears little resemblance to that corresponding to the initial temperature gradient. The pulse amplifies and steepens, transforming itself into a complex consisting of a lead shock, an induction zone, and a following fast deflagration. As the pulse advances, its three constituent entities attain progressively higher levels of mutual coherence, to emerge as a ZND detonation. For initial gradients that are intermediate in size, aspects of both the extreme scenarios appear in the path to detonation. The novel aspect of this study resides in the fact that it is guided by, and its results are compared with, existing asymptotic analyses of detonation evolution.

  16. Pulse Detonation Rocket Engine Research at NASA Marshall

    NASA Technical Reports Server (NTRS)

    Morris, Christopher I.

    2003-01-01

    Pulse detonation rocket engines (PDREs) offer potential performance improvements over conventional designs, but represent a challenging modeling task. A quasi 1-D, finite-rate chemistry CFD model for a PDRE is described and implemented. A parametric study of the effect of blowdown pressure ratio on the performance of an optimized, fixed PDRE nozzle configuration is reported. The results are compared to a steady-state rocket system using similar modeling assumptions.

  17. Detonation wave compression in gas turbines

    NASA Technical Reports Server (NTRS)

    Wortman, A.

    1986-01-01

    A study was made of the concept of augmenting the performance of low pressure ratio gas turbines by detonation wave compression of part of the flow. The concept exploits the constant volume heat release of detonation waves to increase the efficiency of the Brayton cycle. In the models studied, a fraction of the compressor output was channeled into detonation ducts where it was processed by transient transverse detonation waves. Gas dynamic studies determined the maximum cycling frequency of detonation ducts, proved that upstream propagation of pressure pulses represented no problems and determined the variations of detonation duct output with time. Mixing and wave compression were used to recombine the combustor and detonation duct flows and a concept for a spiral collector to further smooth the pressure and temperature pulses was presented as an optional component. The best performance was obtained with a single firing of the ducts so that the flow could be re-established before the next detonation was initiated. At the optimum conditions of maximum frequency of the detonation ducts, the gas turbine efficiency was found to be 45 percent while that of a corresponding pressure ratio 5 conventional gas turbine was only 26%. Comparable improvements in specific fuel consumption data were found for gas turbines operating as jet engines, turbofans, and shaft output machines. Direct use of the detonation duct output for jet propulsion proved unsatisfactory. Careful analysis of the models of the fluid flow phenomena led to the conclusion that even more elaborate calculations would not diminish the uncertainties in the analysis of the system. Feasibility of the concept to work as an engine now requires validation in an engineering laboratory experiment.

  18. Geologic fracturing method and resulting fractured geologic structure

    DOEpatents

    Mace, Jonathan L.; Bradley, Christopher R.; Greening, Doran R.; Steedman, David W.

    2016-11-08

    Detonation control modules and detonation control circuits are provided herein. A trigger input signal can cause a detonation control module to trigger a detonator. A detonation control module can include a timing circuit, a light-producing diode such as a laser diode, an optically triggered diode, and a high-voltage capacitor. The trigger input signal can activate the timing circuit. The timing circuit can control activation of the light-producing diode. Activation of the light-producing diode illuminates and activates the optically triggered diode. The optically triggered diode can be coupled between the high-voltage capacitor and the detonator. Activation of the optically triggered diode causes a power pulse to be released from the high-voltage capacitor that triggers the detonator.

  19. Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines

    NASA Astrophysics Data System (ADS)

    Cole, Lord Kahil

    A number of promising alternative rocket propulsion concepts have been developed over the past two decades that take advantage of unsteady combustion waves in order to produce thrust. These concepts include the Pulse Detonation Rocket Engine (PDRE), in which repetitive ignition, propagation, and reflection of detonations and shocks can create a high pressure chamber from which gases may be exhausted in a controlled manner. The Pulse Detonation Rocket Induced Magnetohydrodynamic Ejector (PDRIME) is a modification of the basic PDRE concept, developed by Cambier (1998), which has the potential for performance improvements based on magnetohydrodynamic (MHD) thrust augmentation. The PDRIME has the advantage of both low combustion chamber seeding pressure, per the PDRE concept, and efficient energy distribution in the system, per the rocket-induced MHD ejector (RIME) concept of Cole, et al. (1995). In the initial part of this thesis, we explore flow and performance characteristics of different configurations of the PDRIME, assuming quasi-one-dimensional transient flow and global representations of the effects of MHD phenomena on the gas dynamics. By utilizing high-order accurate solvers, we thus are able to investigate the fundamental physical processes associated with the PDRIME and PDRE concepts and identify potentially promising operating regimes. In the second part of this investigation, the detailed coupling of detonations and electric and magnetic fields are explored. First, a one-dimensional spark-ignited detonation with complex reaction kinetics is fully evaluated and the mechanisms for the different instabilities are analyzed. It is found that complex kinetics in addition to sufficient spatial resolution are required to be able to quantify high frequency as well as low frequency detonation instability modes. Armed with this quantitative understanding, we then examine the interaction of a propagating detonation and the applied MHD, both in one-dimensional and two-dimensional transient simulations. The dynamics of the detonation are found to be affected by the application of magnetic and electric fields. We find that the regularity of one-dimensional cesium-seeded detonations can be significantly altered by reasonable applied magnetic fields (Bz ≤ 8T), but that it takes a stronger applied field (Bz > 16T) to significantly alter the cellular structure and detonation velocity of a two-dimensional detonation in the time in which these phenomena were observed. This observation is likely attributed to the additional coupling of the two-dimensional detonation with the transverse waves, which are not captured in the one-dimensional simulations. Future studies involving full ionization kinetics including collisional-radiative processes, will be used to examine these processes in further detail.

  20. Airbreathing Laser Propulsion Experiments with 1 {mu}m Terawatt Pharos IIILaser: Part 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myrabo, L. N.; Lyons, P. W.; Jones, R. A.

    This basic research study examines the physics of airbreathing laser propulsion at the extreme flux range of 1-2x10{sup 11} W/cm{sup 2}--within the air breakdown threshold for l {mu}m radiation--using the terawatt Pharos III neodymium-glass pulsed laser. Six different experimental setups were employed using a 34 mm line focus with 66 {mu}m focal waist, positioned near the flat impulse surface. The 2nd Campaign investigated impulse generation with the laser beam focused at grazing incidence across near horizontal target surfaces, with pulse energies ranging from 55 to 186 J, and pulse-widths of 2 to 30 ns FWHM. Laser generated impulse was measuredmore » with a horizontal Plexiglas registered ballistic pendulum equipped with either a steel target insert or 0.5 Tesla permanent magnet (NEIT-40), to quantify changes in the momentum coupling coefficient (C{sub M}). Part 2 of this 2-part paper covers Campaign no. 2 results including C{sub M} performance data, and long exposure color photos of LP plasma phenomena.« less

  1. Unsteady Specific Work and Isentropic Efficiency of a Radial Turbine Driven by Pulsed Detonations

    DTIC Science & Technology

    2012-06-14

    iv AFIT/DS/ENY/12-25 Abstract There has been longstanding government and industry interest in pressure-gain combustion for use in Brayton cycle...10 III.A. Unsteady Flow in Conventional Brayton Cycle Turbines ........................10 III.B. Unsteady Flow in Pulsed Detonation Driven...Szpynda and Nalim 2007) 114 Figure 69. Heiser and Pratt comparison of ideal PDE, Humphrey, and Brayton cycles on a temperature-entropy diagram (Heiser

  2. Cavity Ignition in Supersonic Flow by Spark Discharge and Pulse Detonation

    DTIC Science & Technology

    2014-08-18

    the super- sonic flow at takeover flight speeds (Mach num- bers ɝ) prohibit auto - ignition . Therefore energy addition techniques typically need to be...locate/proci of the Combustion InstituteCavity ignition in supersonic flow by spark discharge and pulse detonation Timothy M. Ombrello a,⇑, Campbell D...45430, USA c Innovative Scientific Solutions, Inc., Dayton, OH 45459, USA Available online 18 August 2014Abstract Ignition of an ethylene fueled cavity

  3. Experimental Study of Propulsion Performance by Single-Pulse Rotating Detonation with Gaseous Fuels-Oxygen Mixtures

    NASA Astrophysics Data System (ADS)

    Toshimitsu, Kazuhiko; Hara, Kosei; Mikajiri, Shuuto; Takiguchi, Naoki

    2016-12-01

    A rotating detonation engine (RDE) is one of candidates of aerospace engines for supersonic cruse, which is better for propulsion system than a pulse detonation engine (PDE) from the view of continuous thrust and simple structure. The propulsion performance of a proto-type RDE and a PDE by single pulse explosion with methane-oxygen is investigated. Furthermore, the performance of the RDE with acetylene-oxygen gas mixtures is investigated. Its impulse is estimated through ballistic pendulum method with maximum displacement and damping ratio. The comparison of specific impulses of the mixture gases at atmospheric pressure is shown. The specific impulses of the RDE and the PDE are almost same with methane-oxygen gas. Furthermore, the fuel-base specific impulse of the RDE with acetylene-oxygen gas is about over twice as large as one of methane-oxygen, and its maximum specific impulse is 1100 seconds.

  4. Initiation of insensitive explosives by laser energy

    NASA Technical Reports Server (NTRS)

    Menichelli, V. J.; Yang, L. C.

    1972-01-01

    Instantaneous longitudinal detonations were observed in confined columns of pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX), and tetryl when these materials were pulsed with light energy from a focused Q-switch ruby laser. The laser energy ranged from 0.5 to 4.2 J with a pulse width of 25 ns. Enhancement of the ignition mechanism is hypothesized when a 100-nm (1000-A) thick aluminum film is vacuum-deposited on the explosive side of the window. Upon irradiation from the laser, a shock is generated at the aluminum explosive interface. Steady state detonations can be reached in less than 0.5 microseconds with less than 10% variation in detonation velocity for PETN and RDX.

  5. Effects of Fuel Distribution on Detonation Tube Performance

    NASA Technical Reports Server (NTRS)

    Perkins, H. Douglas; Sung, Chih-Jen

    2003-01-01

    A pulse detonation engine uses a series of high frequency intermittent detonation tubes to generate thrust. The process of filling the detonation tube with fuel and air for each cycle may yield non-uniform mixtures. Uniform mixing is commonly assumed when calculating detonation tube thrust performance. In this study, detonation cycles featuring idealized non-uniform Hz/air mixtures were analyzed using a two-dimensional Navier-Stokes computational fluid dynamics code with detailed chemistry. Mixture non-uniformities examined included axial equivalence ratio gradients, transverse equivalence ratio gradients, and partially fueled tubes. Three different average test section equivalence ratios were studied; one stoichiometric, one fuel lean, and one fuel rich. All mixtures were detonable throughout the detonation tube. Various mixtures representing the same average test section equivalence ratio were shown to have specific impulses within 1% of each other, indicating that good fuel/air mixing is not a prerequisite for optimal detonation tube performance under conditions investigated.

  6. Lithium niobate explosion monitor

    DOEpatents

    Bundy, Charles H.; Graham, Robert A.; Kuehn, Stephen F.; Precit, Richard R.; Rogers, Michael S.

    1990-01-01

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier.

  7. Lithium niobate explosion monitor

    DOEpatents

    Bundy, C.H.; Graham, R.A.; Kuehn, S.F.; Precit, R.R.; Rogers, M.S.

    1990-01-09

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier. 8 figs.

  8. Experimental Study of a Pulse Detonation Engine Driven Ejector

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh; Shehadeh, R.; Saretto, S.; Lee, S.-Y.

    2005-01-01

    Results of an experimental effort on pulse detonation driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE)/ejector setup that was specifically designed for the study. The results of various experiments designed to probe different aspects of the PDE/ejector setup are reported. The baseline PDE was operated using ethylene (C2H4) as the fuel and an oxygen/nitrogen (O2 + N2) mixture at an equivalence ratio of one. The PDE only experiments included propellant mixture characterization using a laser absorption technique, high fidelity thrust measurements using an integrated spring-damper system, and shadowgraph imaging of the detonation/shock wave structure emanating from the tube. The baseline PDE thrust measurement results are in excellent agreement with experimental and modeling results reported in the literature. These PDE setup results were then used as a basis for quantifying thrust augmentation for various PDE/ejector setups with constant diameter ejector tubes and various detonation tube/ejector tube overlap distances. The results show that for the geometries studied here, a maximum thrust augmentation of 24% is achieved. Further increases are possible by tailoring the ejector geometry based on CFD predictions conducted elsewhere. The thrust augmentation results are complemented by shadowgraph imaging of the flowfield in the ejector tube inlet area and high frequency pressure transducer measurements along the length of the ejector tube.

  9. Gaseous detonation initiation via wave implosion

    NASA Astrophysics Data System (ADS)

    Jackson, Scott Irving

    Efficient detonation initiation is a topic of intense interest to designers of pulse detonation engines. This experimental work is the first to detonate propane-air mixtures with an imploding detonation wave and to detonate a gas mixture with a non-reflected, imploding shock. In order to do this, a unique device has been developed that is capable of generating an imploding toroidal detonation wave inside of a tube from a single ignition point without any obstruction to the tube flow path. As part of this study, an initiator that creates a large-aspect-ratio planar detonation wave in gas-phase explosive from a single ignition point has also been developed. The effectiveness of our initiation devices has been evaluated. The minimum energy required by the imploding shock for initiation was determined to scale linearly with the induction zone length, indicating the presence of a planar initiation mode. The imploding toroidal detonation initiator was found to be more effective at detonation initiation than the imploding shock initiator, using a comparable energy input to that of current initiator tubes.

  10. Determination of Effective Crossover Location and Dimensions for Branched Detonation in a Pulsed Detonation Engine

    DTIC Science & Technology

    2012-03-22

    location is varied from the aft end of the detonation tube to the middle of the detonation tube while the crossover width is varied from 2.5 in to 0.5...the other end where the tube is connected to a source of fuel, oxidizer, and ignition .7 The engine cycle is divided into three equal phases: fill...location and width of the crossover duct for hydrogen, ethylene and an n-alkane. The crossover location is varied from the aft end of the

  11. Pulse Detonation Rocket Magnetohydrodynamic Power Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Jones, J. E.; Dobson, C. C.; Cole, J. W.; Thompson, B. R.; Plemmons, D. H.; Turner, M. W.

    2003-01-01

    The production of onboard electrical power by pulse detonation engines is problematic in that they generate no shaft power; however, pulse detonation driven magnetohydrodynamic (MHD) power generation represents one intriguing possibility for attaining self-sustained engine operation and generating large quantities of burst power for onboard electrical systems. To examine this possibility further, a simple heat-sink apparatus was developed for experimentally investigating pulse detonation driven MHD generator concepts. The hydrogen oxygen fired driver was a 90 cm long stainless steel tube having a 4.5 cm square internal cross section and a short Schelkin spiral near the head end to promote rapid formation of a detonation wave. The tube was intermittently filled to atmospheric pressure and seeded with a CsOH/methanol prior to ignition by electrical spark. The driver exhausted through an aluminum nozzle having an area contraction ratio of A*/A(sub zeta) = 1/10 and an area expansion ratio of A(sub zeta)/A* = 3.2 (as limited by available magnet bore size). The nozzle exhausted through a 24-electrode segmented Faraday channel (30.5 cm active length), which was inserted into a 0.6 T permanent magnet assembly. Initial experiments verified proper drive operation with and without the nozzle attachment, and head end pressure and time resolved thrust measurements were acquired. The exhaust jet from the nozzle was interrogated using a polychromatic microwave interferometer yielding an electron number density on the order of 10(exp 12)/cm at the generator entrance. In this case, MHD power generation experiments suffered from severe near-electrode voltage drops and low MHD interaction; i.e., low flow velocity, due to an inherent physical constraint on expansion with the available magnet. Increased scaling, improved seeding techniques, higher magnetic fields, and higher expansion ratios are expected to greatly improve performance.

  12. Swept-Ramp Detonation Initiation Performance in a High-Pressure Pulse Detonation Combustor

    DTIC Science & Technology

    2010-12-01

    conditions at sea level, but at elevated temperatures of 300–500°F in the combustor. The current work was motivated by a need to experimentally...The current work was motivated by a need to experimentally evaluate the detonation initiation performance of a PDC at elevated combustor pressures...High-Speed Propulsion Technologies (After [3]) .....................2 Figure 2. Stationary One-Dimensional Combustion Wave Model (From [7

  13. First Breakthrough for Future Air-Breathing Magneto-Plasma Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Göksel, B.; Mashek, I. Ch

    2017-04-01

    A new breakthrough in jet propulsion technology since the invention of the jet engine is achieved. The first critical tests for future air-breathing magneto-plasma propulsion systems have been successfully completed. In this regard, it is also the first time that a pinching dense plasma focus discharge could be ignited at one atmosphere and driven in pulse mode using very fast, nanosecond electrostatic excitations to induce self-organized plasma channels for ignition of the propulsive main discharge. Depending on the capacitor voltage (200-600 V) the energy input at one atmosphere varies from 52-320 J/pulse corresponding to impulse bits from 1.2-8.0 mNs. Such a new pulsed plasma propulsion system driven with one thousand pulses per second would already have thrust-to-area ratios (50-150 kN/m²) of modern jet engines. An array of thrusters could enable future aircrafts and airships to start from ground and reach altitudes up to 50km and beyond. The needed high power could be provided by future compact plasma fusion reactors already in development by aerospace companies. The magneto-plasma compressor itself was originally developed by Russian scientists as plasma fusion device and was later miniaturized for supersonic flow control applications. So the first breakthrough is based on a spin-off plasma fusion technology.

  14. JANNAF 17th Propulsion Systems Hazards Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Cocchiaro, James E. (Editor); Gannaway, Mary T. (Editor); Rognan, Melanie (Editor)

    1998-01-01

    Volume 1, the first of two volumes is a compilation of 16 unclassified/unlimited technical papers presented at the 17th meeting of the Joint Army-Navy-NASA-Air Force (JANNAF) Propulsion Systems Hazards Subcommittee (PSHS) held jointly with the 35th Combustion Subcommittee (CS) and Airbreathing Propulsion Subcommittee (APS). The meeting was held on 7 - 11 December 1998 at Raytheon Systems Company and the Marriott Hotel, Tucson, AZ. Topics covered include projectile and shaped charge jet impact vulnerability of munitions; thermal decomposition and cookoff behavior of energetic materials; damage and hot spot initiation mechanisms with energetic materials; detonation phenomena of solid energetic materials; and hazard classification, insensitive munitions, and propulsion systems safety.

  15. Real Gas Effects on the Performance of Hydrocarbon-fueled Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Yungster, Shaye

    2003-01-01

    This paper presents results for a single-pulse detonation tube wherein the effects of high temperature dissociation and the subsequent recombination influence the sensible heat release available for providing propulsive thrust. The study involved the use of ethylene and air at equivalence ratios of 0.7 and 1.0. The real gas effects on the sensible heat release were found to be significantly large so as to have an impact on the thrust, impulse and fuel consumption of a PDE.

  16. Effects of Fuel Distribution on Detonation Tube Performance

    NASA Technical Reports Server (NTRS)

    Perkins, Hugh Douglas

    2002-01-01

    A pulse detonation engine (PDE) uses a series of high frequency intermittent detonation tubes to generate thrust. The process of filling the detonation tube with fuel and air for each cycle may yield non-uniform mixtures. Lack of mixture uniformity is commonly ignored when calculating detonation tube thrust performance. In this study, detonation cycles featuring idealized non-uniform H2/air mixtures were analyzed using the SPARK two-dimensional Navier-Stokes CFD code with 7-step H2/air reaction mechanism. Mixture non-uniformities examined included axial equivalence ratio gradients, transverse equivalence ratio gradients, and partially fueled tubes. Three different average test section equivalence ratios (phi), stoichiometric (phi = 1.00), fuel lean (phi = 0.90), and fuel rich (phi = 1.10), were studied. All mixtures were detonable throughout the detonation tube. It was found that various mixtures representing the same test section equivalence ratio had specific impulses within 1 percent of each other, indicating that good fuel/air mixing is not a prerequisite for optimal detonation tube performance.

  17. Thrust Augmentation Measurements Using a Pulse Detonation Engine Ejector

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh

    2005-01-01

    Results of an experimental effort on pulse detonation driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE)/ejector setup that was specifically designed for the study and operated at frequencies up to 50 Hz. The results of various experiments designed to probe different aspects of the PDE/ejector setup are reported. The baseline PDE was operated using ethylene (C2H4) as the fuel and an oxygen/nitrogen O2 + N2) mixture at an equivalence ratio of one. The PDE only experiments included propellant mixture characterization using a laser absorption technique, high fidelity thrust measurements using an integrated spring-damper system, and shadowgraph imaging of the detonation/shock wave structure emanating from the tube. The baseline PDE thrust measurement results at each desired frequency agree with experimental and modeling results reported in the literature. These PDE setup results were then used as a basis for quantifying thrust augmentation for various PDE/ejector setups with constant diameter ejector tubes and various ejector lengths, the radius of curvature for the ejector inlets and various detonation tube/ejector tube overlap distances. For the studied experimental matrix, the results showed a maximum thrust augmentation of 106% at an operational frequency of 30 Hz. The thrust augmentation results are complemented by shadowgraph imaging of the flowfield in the ejector tube inlet area and high frequency pressure transducer measurements along the length of the ejector tube.

  18. Innovative Airbreathing Propulsion Concepts for Access to Space

    NASA Technical Reports Server (NTRS)

    Whitlow, Jr., Woodrow; Blech, Richard A.; Blankson, Isaiah M.

    2001-01-01

    This paper will present technologies and concepts for novel aeropropulsion systems. These technologies will enhance the safety of operations, reduce life cycle costs, and contribute to reduced costs of air travel and access to space. One of the goals of the NASA program is to reduce the carbon-dioxide emissions of aircraft engines. Engine concepts that use highly efficient fuel cell/electric drive technologies in hydrogen-fueled engines will be presented in the proposed paper. Carbon-dioxide emissions will be eliminated by replacing hydrocarbon fuel with hydrogen, and reduce NOx emissions through better combustion process control. A revolutionary exoskeletal engine concept, in which the engine drum is rotated, will be shown. This concept has the potential to allow a propulsion system that can be used for subsonic through hypersonic flight. Dual fan concepts that have ultra-high bypass ratios, low noise, and low drag will be presented. Flow-controlled turbofans and control-configured turbofans also will be discussed. To increase efficiency, a system of microengines distributed along lifting surfaces and on the fuselage is being investigated. This concept will be presented in the paper. Small propulsion systems for affordable, safe personal transportation vehicles will be discussed. These low-oil/oilless systems use technologies that enable significant cost and weight reductions. Pulse detonation engine-based hybrid-cycle and combined-cycle propulsion systems for aviation and space access will be presented.

  19. University Capstone Project: Enhanced Initiation Techniques for Thermochemical Energy Conversion

    DTIC Science & Technology

    2013-03-01

    technologies such as scramjets, gas turbine engines (relight and afterburner ignition), and pulsed detonation engines ( PDEs ) because of the limited...events in a flow tube were recorded, and the PDE engine was fired while monitoring ignition time and wave speed throughout the detonation process...long steel tube fitted with a 36” long, 2” x 2” square polycarbonate test section is used in place of the instrumented detonation tube. The PDE

  20. Numerical Simulation of Pulse Detonation Rocket-Induced MHD Ejector (PDRIME) Concepts for Advanced Propulsion Systems

    DTIC Science & Technology

    2012-02-28

    Coupling in Detonation Waves: 1D Dynamics”, Paper 89, 23rd International Colloquium on the Dynamics of Explosions and Reactive ...and temperature, and can be modeled as a constant volume reaction , which is more efficient than a constant pressure reaction . After the detonation ... kinetics , and flow processes using high order numerical methods. A fifth-order WENO (weighted essentially non -oscillatory12,13) scheme was used

  1. Airbreathing Laser Propulsion Experiments with 1 {mu}m Terawatt Pharos III Laser: Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myrabo, L. N.; Lyons, P. W.; Jones, R. A.

    This basic research study examines the physics of airbreathing laser propulsion at the extreme flux range of 1-2x10{sup 11} W/cm{sup 2}--within the air breakdown threshold for l {mu}m radiation--using the terawatt PHAROS III neodymium-glass pulsed laser. Six different experimental setups were tested using a 34 mm line focus with 66 {mu}m focal waist, positioned near the flat impulse surface. The first campaign investigated impulse generation with the beam oriented almost normal to the target surface, with energies ranging from 23 to 376 J, and pulses of 5 to 30 ns FWHM. Air breakdown/ plasma dynamics were diagnosed with GOI camerasmore » and color photography. Laser generated impulse was quantified with both vertical pendulums and piezoelectric pressure transducers using the standard performance metric, C{sub M}--the momentum coupling coefficient. Part 1 of this 2-part paper covers Campaign no. 1 results including laser plasma diagnostics, pressure gage and vertical pendulum data.« less

  2. On the deflagration-to-detonation transition (DDT) process with added energetic solid particles for pulse detonation engines (PDE)

    NASA Astrophysics Data System (ADS)

    Nguyen, V. B.; Li, J.; Chang, P.-H.; Phan, Q. T.; Teo, C. J.; Khoo, B. C.

    2018-01-01

    In this paper, numerical simulations are performed to study the dynamics of the deflagration-to-detonation transition (DDT) in pulse detonation engines (PDE) using energetic aluminum particles. The DDT process and detonation wave propagation toward the unburnt hydrogen/air mixture containing solid aluminum particles is numerically studied using the Eulerian-Lagrangian approach. A hybrid numerical methodology combined with appropriate sub-models is used to capture the gas dynamic characteristics, particle behavior, combustion characteristics, and two-way solid-particle-gas flow interactions. In our approach, the gas mixture is expressed in the Eulerian frame of reference, while the solid aluminum particles are tracked in the Lagrangian frame of reference. The implemented computer code is validated using published benchmark problems. The obtained results show that the aluminum particles not only shorten the DDT length but also reduce the DDT time. The improvement of DDT is primarily attributed to the heat released from surface chemical reactions on the aluminum particles. The temperatures associated with the DDT process are greater than the case of non-reacting particles added, with an accompanying rise in the pressure. For an appropriate range of particle volume fraction, particularly in this study, the higher volume fraction of the micro-aluminum particles added in the detonation chamber can lead to more heat energy released and more local instabilities in the combustion process (caused by the local high temperature), thereby resulting in a faster DDT process. In essence, the aluminum particles contribute to the DDT process of successfully transitioning to detonation waves for (failure) cases in which the fuel gas mixture can be either too lean or too rich. With a better understanding of the influence of added aluminum particles on the dynamics of the DDT and detonation process, we can apply it to modify the geometry of the detonation chamber (e.g., the length of the detonation tube) accordingly to improve the operational performance of the PDE.

  3. An Overview of Advanced Concepts for Space Access (Preprint)

    DTIC Science & Technology

    2008-06-19

    One such technology is the pulsed detonation engine ( PDE ). PDEs are conceptually simple devices. Fuel and air are mixed in the closed end of a...to form air detonations that propel the vehicle. Two types of lightcraft engines have been examined using either simple laser-thermal or more complex... detonation waves to propel the vehicle has the advantage of not having to store fuel on-board the vehicle. However as the vehicle ascends, the air

  4. Explosively pumped laser light

    DOEpatents

    Piltch, Martin S.; Michelotti, Roy A.

    1991-01-01

    A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

  5. Alternative Pulse Detonation Engine Ignition System Investigation through Detonation Splitting

    DTIC Science & Technology

    2002-03-01

    on the soccer field and later discovered is a brilliant and dedicated scientist and engineer. He’s been an inspiration and role model, who sees...designing configurations before cutting metal for an experiment reduces research time and cost. Dr. Vish Katta had built an in-house program ( UNICORN

  6. JANNAF 18th Propulsion Systems Hazards Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Cocchiaro, James E. (Editor); Gannaway, Mary T. (Editor)

    1999-01-01

    This volume, the first of two volumes is a compilation of 18 unclassified/unlimited-distribution technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 18th Propulsion Systems Hazards Subcommittee (PSHS) meeting held jointly with the 36th Combustion Subcommittee (CS) and 24th Airbreathing Propulsion Subcommittee (APS) meetings. The meeting was held 18-21 October 1999 at NASA Kennedy Space Center and The DoubleTree Oceanfront Hotel, Cocoa Beach, Florida. Topics covered at the PSHS meeting include: shaped charge jet and kinetic energy penetrator impact vulnerability of gun propellants; thermal decomposition and cookoff behavior of energetic materials; violent reaction; detonation phenomena of solid energetic materials subjected to shock and impact stimuli; and hazard classification, insensitive munitions, and propulsion systems safety.

  7. Proceedings of the International Symposium on Detonation (6th) Held at Coronado, California on 24-27 August 1976

    DTIC Science & Technology

    1976-08-01

    SHOCK-TO-DETONATION TRANSITION AND DETONATION STUDIES Chairmen: Joseph Hershkowitz Picatinny Arsenal Paul A. Urtiew Lawrence Livermore Laboratory I. -[-1...explosive-hotspots whose growth is sup- pressed. We are unaware of chemical kinetic evidence 2. B. D. Trott and R. G. Jung, "Effect of Pulse for the...proportional to the particle ve- years ago. However, Gittings (4), Trott and Jung (5), locity change at the shock front, thus the hot-spotand

  8. Characterization and Performance of a Liquid Hydrocarbon-Fueled Pulse Detonation Rocket Engine

    DTIC Science & Technology

    2001-12-01

    head wall pressure (P3) and the two sensors at the end of the tube provided indication of detonation wave passage (Wave1 and Wave2 ). These data...wave speed using the time of passage at Wave1 and Wave2 and the user-defined value of the distance between each sensor (this distance varied slightly...for each tube extension). A detonation velocity of zero was returned for any event in which neither Wave1 or Wave2 sensed a pressure rise of

  9. Impulse generation by detonation tubes

    NASA Astrophysics Data System (ADS)

    Cooper, Marcia Ann

    Impulse generation with gaseous detonation requires conversion of chemical energy into mechanical energy. This conversion process is well understood in rocket engines where the high pressure combustion products expand through a nozzle generating high velocity exhaust gases. The propulsion community is now focusing on advanced concepts that utilize non-traditional forms of combustion like detonation. Such a device is called a pulse detonation engine in which laboratory tests have proven that thrust can be achieved through continuous cyclic operation. Because of poor performance of straight detonation tubes compared to conventional propulsion systems and the success of using nozzles on rocket engines, the effect of nozzles on detonation tubes is being investigated. Although previous studies of detonation tube nozzles have suggested substantial benefits, up to now there has been no systematic investigations over a range of operating conditions and nozzle configurations. As a result, no models predicting the impulse when nozzles are used exist. This lack of data has severely limited the development and evaluation of models and simulations of nozzles on pulse detonation engines. The first experimental investigation measuring impulse by gaseous detonation in plain tubes and tubes with nozzles operating in varying environment pressures is presented. Converging, diverging, and converging-diverging nozzles were tested to determine the effect of divergence angle, nozzle length, and volumetric fill fraction on impulse. The largest increases in specific impulse, 72% at an environment pressure of 100 kPa and 43% at an environment pressure of 1.4 kPa, were measured with the largest diverging nozzle tested that had a 12° half angle and was 0.6 m long. Two regimes of nozzle operation that depend on the environment pressure are responsible for these increases and were first observed from these data. To augment this experimental investigation, all data in the literature regarding partially filled detonation tubes was compiled and analyzed with models investigating concepts of energy conservation and unsteady gas dynamics. A model to predict the specific impulse was developed for partially filled tubes. The role of finite chemical kinetics in detonation products was examined through numerical simulations of the flow in nonsteady expansion waves.

  10. Multiple-cycle Simulation of a Pulse Detonation Engine Ejector

    NASA Technical Reports Server (NTRS)

    Yungster, S.; Perkins, H. D.

    2002-01-01

    This paper presents the results of a study involving single and multiple-cycle numerical simulations of various PDE-ejector configurations utilizing hydrogen-oxygen mixtures. The objective was to investigate the thrust, impulse and mass flow rate characteristics of these devices. The results indicate that ejector systems can utilize the energy stored in the strong shock wave exiting the detonation tube to augment the impulse obtained from the detonation tube alone. Impulse augmentation ratios of up to 1.9 were achieved. The axial location of the converging-diverging ejectors relative to the end of the detonation tube were shown to affect the performance of the system.

  11. Deflagration to Detonation Transition Processes in Pulsed Detonation Engines

    DTIC Science & Technology

    2002-08-03

    which subsequently leads to DDT. The modelling approach taken here is as outlined by Arntzen et al. [9] and features a fractal based eddy-breakup... Arntzen , B.J., Hjertager, B., Lindstedt, R.P., Mercx, W.P.M. and Popat, N. “Investigations to Improve and Assess the Accuracy of Computational Fluid

  12. Thrust Augmentation Measurements Using a Pulse Detonation Engine Ejector

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh

    2003-01-01

    The present NASA GRC-funded three-year research project is focused on studying PDE driven ejectors applicable to a hybrid Pulse Detonation/Turbofan Engine. The objective of the study is to characterize the PDE-ejector thrust augmentation. A PDE-ejector system has been designed to provide critical experimental data for assessing the performance enhancements possible with this technology. Completed tasks include demonstration of a thrust stand for measuring average thrust for detonation tube multi-cycle operation, and design of a 72-in.-long, 2.25-in.-diameter (ID) detonation tube and modular ejector assembly. This assembly will allow testing of both straight and contoured ejector geometries. Initial ejectors that have been fabricated are 72-in.-long-constant-diameter tubes (4-, 5-, and 6-in.-diameter) instrumented with high-frequency pressure transducers. The assembly has been designed such that the detonation tube exit can be positioned at various locations within the ejector tube. PDE-ejector system experiments with gaseous ethylene/ nitrogen/oxygen propellants will commence in the very near future. The program benefits from collaborations with Prof. Merkle of University of Tennessee whose PDE-ejector analysis helps guide the experiments. The present research effort will increase the TRL of PDE-ejectors from its current level of 2 to a level of 3.

  13. Development of a Gas-Fed Pulse Detonation Research Engine

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Hutt, John (Technical Monitor)

    2001-01-01

    In response to the growing need for empirical data on pulse detonation engine performance and operation, NASA Marshall Space Flight Center has developed and placed into operation a low-cost gas-fed pulse detonation research engine. The guiding design strategy was to achieve a simple and flexible research apparatus, which was inexpensive to build and operate. As such, the engine was designed to operate as a heat sink device, and testing was limited to burst-mode operation with run durations of a few seconds. Wherever possible, maximum use was made of standard off-the-shelf industrial or automotive components. The 5-cm diameter primary tube is about 90-cm long and has been outfitted with a multitude of sensor and optical ports. The primary tube is fed by a coaxial injector through an initiator tube, which is inserted directly into the injector head face. Four auxiliary coaxial injectors are also integrated into the injector head assembly. All propellant flow is controlled with industrial solenoid valves. An automotive electronic ignition system was adapted for use, and spark plugs are mounted in both tubes so that a variety of ignition schemes can be examined. A microprocessor-based fiber-optic engine control system was developed to provide precise control over valve and ignition timing. Initial shakedown testing with hydrogen/oxygen mixtures verified the need for Schelkin spirals in both the initiator and primary tubes to ensure rapid development of the detonation wave. Measured pressure wave time-of-flight indicated detonation velocities of 2.4 km/sec and 2.2 km/sec in the initiator and primary tubes, respectively. These values implied a fuel-lean mixture corresponding to an H2 volume fraction near 0.5. The axial distribution for the detonation velocity was found to be essentially constant along the primary tube. Time-resolved thrust profiles were also acquired for both underfilled and overfilled tube conditions. These profiles are consistent with previous time-resolved measurements on single-cycle tubes where the thrust is found to peak as the detonation wave exits the tube, and decay as the tube blows down.

  14. Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.

    2001-01-01

    The prospects for realizing an integrated pulse detonation propulsion and magnetohydrodynamic (MHD) power system are examined. First, energy requirements for direct detonation initiation of various fuel-oxygen and fuel-air mixtures are deduced from available experimental data and theoretical models. Second, the pumping power requirements for effective chamber scavenging are examined through the introduction of a scavenging ratio parameter and a scavenging efficiency parameter. A series of laboratory experiments were carried out to investigate the basic engineering performance characteristics of a pulse detonation-driven MHD electric power generator. In these experiments, stoichiometric oxy-acetylene mixtures seeded with a cesium hydroxide/methanol spray were detonated at atmospheric pressure in a 1-m-long tube having an i.d. of 2.54 cm. Experiments with a plasma diagnostic channel attached to the end of the tube confirmed the attainment of detonation conditions (p2/p1 approximately 34 and D approximately 2,400 m/sec) and enabled the direct measurement of current density and electrical conductivity (approximately = 6 S/m) behind the detonation wave front, In a second set of experiments, a 30-cm-long continuous electrode Faraday channel, having a height of 2.54 cm and a width of 2 cm, was attached to the end of the tube using an area transition duct. The Faraday channel was inserted in applied magnetic fields of 0.6 and 0.95 T, and the electrodes were connected to an active loading circuit to characterize power extraction dependence on load impedance while also simulating higher effective magnetic induction. The experiments indicated peak power extraction at a load impedance between 5 and 10 Omega. The measured power density was in reasonable agreement with a simple electrodynamic model incorporating a correction for near-electrode potential losses. The time-resolved thrust characteristics of the system were also measured, and it was found that the NM interaction exerted a negligible influence on system thrust and that the measured I(sub sp) of the system (200 see) exceeded that computed for an equivalent nozzleless rocket (120 see).

  15. Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Lyles, Garry M. (Technical Monitor)

    2001-01-01

    The prospects for realizing an integrated pulse detonation propulsion and magnetohydrodynamic (MHD) power system are examined. First, energy requirements for direct detonation initiation of various fuel-oxygen and fuel-air mixtures are deduced from available experimental data and theoretical models. Second, the pumping power requirements for effective chamber scavenging are examined through the introduction of a scavenging ratio parameter and a scavenging efficiency parameter. A series of laboratory experiments were carried out to investigate the basic engineering performance characteristics of a pulse detonation-driven MHD electric power generator. In these experiments, stoichiometric oxy-acetylene mixtures seeded with a cesium hydroxide/methanol spray were detonated at atmospheric pressure in a 1-m-long tube having an i.d. of 2.54 cm. Experiments with a plasma diagnostic channel attached to the end of the tube confirmed the attainment of detonation conditions (p(sub 2)/p(sub 1) approx. 34 and D approx. 2,400 m/sec) and enabled the direct measurement of current density and electrical conductivity (=6 S/m) behind the detonation wave front. In a second set of experiments, a 30-cm-long continuous electrode Faraday channel, having a height of 2.54 cm and a width of 2 cm, was attached to the end of the tube using an area transition duct. The Faraday channel was inserted in applied magnetic fields of 0.6 and 0.95 T. and the electrodes were connected to an active loading circuit to characterize power extraction dependence on load impedance while also simulating higher effective magnetic induction. The experiments indicated peak power extraction at a load impedance between 5 and 10 Ohm. The measured power density was in reasonable agreement with a simple electrodynamic model incorporating a correction for near-electrode potential losses. The time-resolved thrust characteristics of the system were also measured, and it was found that the MHD interaction exerted a negligible influence on system thrust and that the measured I(sub sp) of the system (200 sec) exceeded that computed for an equivalent nozzleless rocket (120 sec).

  16. Development and qualification testing of a laser-ignited, all-secondary (DDT) detonator

    NASA Technical Reports Server (NTRS)

    Blachowski, Thomas J.; Krivitsky, Darrin Z.; Tipton, Stephen

    1994-01-01

    The Indian Head Division, Naval Surface Warfare Center (IHDIV, NSWC) is conducting a qualification program for a laser-ignited, all-secondary (DDT) explosive detonator. This detonator was developed jointly by IHDIV, NSWC and the Department of Energy's EG&G Mound Applied Technologies facility in Miamisburg, Ohio to accept a laser initiation signal and produce a fully developed shock wave output. The detonator performance requirements were established by the on-going IHDIV, NSWC Laser Initiated Transfer Energy Subsystem (LITES) advanced development program. Qualification of the detonator as a component utilizing existing military specifications is the selected approach for this program. The detonator is a deflagration-to-detonator transfer (DDT) device using a secondary explosive, HMX, to generate the required shock wave output. The prototype development and initial system integration tests for the LITES and for the detonator were reported at the 1992 International Pyrotechnics Society Symposium and at the 1992 Survival and Flight Equipment National Symposium. Recent results are presented for the all-fire sensitivity and qualification tests conducted at two different laser initiation pulses.

  17. Towards Integrated Pulse Detonation Propulsion and MHD Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Thompson, Bryan R.; Lineberry, John T.

    1999-01-01

    The interest in pulse detonation engines (PDE) arises primarily from the advantages that accrue from the significant combustion pressure rise that is developed in the detonation process. Conventional rocket engines, for example, must obtain all of their compression from the turbopumps, while the PDE provides additional compression in the combustor. Thus PDE's are expected to achieve higher I(sub sp) than conventional rocket engines and to require smaller turbopumps. The increase in I(sub sp) and the decrease in turbopump capacity must be traded off against each other. Additional advantages include the ability to vary thrust level by adjusting the firing rate rather than throttling the flow through injector elements. The common conclusion derived from these aggregated performance attributes is that PDEs should result in engines which are smaller, lower in cost, and lighter in weight than conventional engines. Unfortunately, the analysis of PDEs is highly complex due to their unsteady operation and non-ideal processes. Although the feasibility of the basic PDE concept has been proven in several experimental and theoretical efforts, the implied performance improvements have yet to be convincingly demonstrated. Also, there are certain developmental issues affecting the practical application of pulse detonation propulsion systems which are yet to be fully resolved. Practical detonation combustion engines, for example, require a repetitive cycle of charge induction, mixing, initiation/propagation of the detonation wave, and expulsion/scavenging of the combustion product gases. Clearly, the performance and power density of such a device depends upon the maximum rate at which this cycle can be successfully implemented. In addition, the electrical energy required for direct detonation initiation can be significant, and a means for direct electrical power production is needed to achieve self-sustained engine operation. This work addresses the technological issues associated with PDEs for integrated aerospace propulsion and MHD power. An effort is made to estimate the energy requirements for direct detonation initiation of potential fuel/oxidizer mixtures and to determine the electrical power requirements. This requirement is evaluated in terms of the possibility for MHD power generation using the combustion detonation wave. Small scale laboratory experiments were conducted using stoichiometric mixtures of acetylene and oxygen with an atomized spray of cesium hydroxide dissolved in alcohol as an ionization seed in the active MHD region. Time resolved thrust and MHD power generation measurements were performed. These results show that PDEs yield higher I(sub sp) levels than a comparable rocket engine and that MHD power generation is viable candidate for achieving self-excited engine operation.

  18. Thrust Measurements for a Pulse Detonation Engine Driven Ejector

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pak, Sibtosh; Shehadeh, R.; Saretto, S. R.; Lee, S.-Y.

    2005-01-01

    Results of an experimental effort on pulse detonation driven ejectors aimed at probing different aspects of PDE ejector processes, are presented and discussed. The PDE was operated using ethylene as the fuel and an equimolar oxygen/nitrogen mixture as the oxidizer at an equivalence ratio of one. The thrust measurements for the PDE alone are in excellent agreement with experimental and modeling results reported in the literature and serve as a Baseline for the ejector studies. These thrust measurements were then used as a basis for quantifying thrust augmentation for various PDE/ejector setups using constant diameter ejector tubes and various detonation tube/ejector tube overlap distances. The results show that for the geometries studied here, a maximum thrust augmentation of 24% is achieved. The thrust augmentation results are complemented by shadowgraph imaging of the flowfield in the ejector tube inlet area and high frequency pressure transducer measurements along the length of the ejector tube.

  19. Cable Discharge System for fundamental detonator studies

    NASA Technical Reports Server (NTRS)

    Peevy, Gregg R.; Barnhart, Steven G.; Brigham, William P.

    1994-01-01

    Sandia National Laboratories has recently completed the modification and installation of a cable discharge system (CDS) which will be used to study the physics of exploding bridgewire (EBW) detonators and exploding foil initiators (EFI or slapper). Of primary interest are the burst characteristics of these devices when subjected to the constant current pulse delivered by this system. The burst process involves the heating of the bridge material to a conductive plasma and is essential in describing the electrical properties of the bridgewire foil for use in diagnostics or computer models. The CDS described herein is capable of delivering up to an 8000 A pulse of 3 micron duration. Experiments conducted with the CDS to characterize the EBW and EFI burst behavior are also described. In addition, the CDS simultaneous VISAR capability permits updating the EFI electrical Gurney analysis parameters used in our computer simulation codes. Examples of CDS generated data for a typical EFI and EBW detonator are provided.

  20. Numerical investigation of combustion phenomena in pulse detonation engine with different fuels

    NASA Astrophysics Data System (ADS)

    Alam, Noor; Sharma, K. K.; Pandey, K. M.

    2018-05-01

    The effects of different fuel-air mixture on the cyclic operation of pulse detonation engine (PDE) are numerically investigated. The present simulation is to be consider 1200 mm long straight tube combustor channel and 60 mm internal diameter, and filled with stoichiometric ethane-air and ethylene-air (C2H6-air & C2H4) fuel mixture at atmospheric pressure and temperature of 0.1 MPa and 300 K respectively. The obstacles of blockage ratio (BR) 0.5 and having 60 mm spacing among them are allocated inside the combustor tube. There are realizable k-ɛ turbulence model used to analyze characteristic of combustion flame. The objective of present simulation is to analyze the variation in combustion mechanism for two different fuels with one-step reduced chemical reaction model. The obstacles were creating perturbation inside the PDE tube. Therefore, flame surface area increases and reduces deflagration-to-detonation transition (DDT) run-up length.

  1. Numerical Analysis of a Rotating Detonation Engine in the Relative Reference Frame

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2014-01-01

    A two-dimensional, computational fluid dynamic (CFD) simulation of a semi-idealized rotating detonation engine (RDE) is described. The simulation operates in the detonation frame of reference and utilizes a relatively coarse grid such that only the essential primary flow field structure is captured. This construction yields rapidly converging, steady solutions. Results from the simulation are compared to those from a more complex and refined code, and found to be in reasonable agreement. The performance impacts of several RDE design parameters are then examined. Finally, for a particular RDE configuration, it is found that direct performance comparison can be made with a straight-tube pulse detonation engine (PDE). Results show that they are essentially equivalent.

  2. 20th JANNAF Propulsion Systems Hazards Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Cocchiaro, James E. (Editor); Eggleston, Debra S. (Editor); Gannaway, Mary T. (Editor); Inzar, Jeanette M. (Editor)

    2002-01-01

    This volume, the first of two volumes, is a collection of 24 unclassified/unlimited-distribution papers which were presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 20th Propulsion Systems Hazards Subcommittee (PSHS), 38th Combustion Subcommittee (CS), 26th Airbreathing Propulsion Subcommittee (APS), and 21 Modeling and Simulation Subcommittee meeting. The meeting was held 8-12 April 2002 at the Bayside Inn at The Sandestin Golf & Beach Resort and Eglin Air Force Base, Destin, Florida. Topics covered include: insensitive munitions and hazard classification testing of solid rocket motors and other munitions; vulnerability of gun propellants to impact stimuli; thermal decomposition and cookoff properties of energetic materials; burn-to-violent reaction phenomena in energetic materials; and shock-to-detonation properties of solid propellants and energetic materials.

  3. JANNAF 19th Propulsion Systems Hazards Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Cocchiaro, James E. (Editor); Kuckels, Melanie C. (Editor)

    2000-01-01

    This volume, the first of two volumes is a compilation of 25 unclassified/unlimited-distribution technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 19th Propulsion Systems Hazards Subcommittee (PSHS) meeting held jointly with the 37th Combustion Subcommittee (CS) and 25th Airbreathing Propulsion Subcommittee (APS), and 1st Modeling and Simulation Subcommittee (MSS) meetings. The meeting was held 13-17 November 2000 at the Naval Postgraduate School and Hyatt Regency Hotel, Monterey, California. Topics covered at the PSHS meeting include: impact and thermal vulnerability of gun propellants; thermal decomposition and cookoff behavior of energetic materials; violent reaction and detonation phenomena of solid energetic materials subjected to shock and impact loading; and hazard classification, and insensitive munitions testing of propellants and propulsion systems.

  4. Overview of Pulse Detonation Propulsion Technology

    DTIC Science & Technology

    2001-04-01

    PROPULSION TECHNOLOGY M. L. Coleman CHEMICAL PROPULSION INFORMATION AGENCY THE JOHNS HOPKINS UNIVERSITY. WHITING SCHOOL OF ENGINEERING -COLUMBIA...U. 20 R. Santoro, "Advanced Propulsion Research: A Focus of the Penn State Propulsion Engineering Research Center," Chemical Propulsion Information...Detonation Engine ," AIAA 95-3155 (July 1995), U-A. NASA Marshall Space Flight Center Space Transportation Day 2000 Presentation Material, Advance Chemical

  5. Fuel Composition Analysis of Endothermically Heated JP-8 Fuel for Use in a Pulse Detonation Engine

    DTIC Science & Technology

    2008-06-01

    detonation engine (PDE) was extracted via zeolite catalyst coated concentric tube-counter flow heat exchangers to produce supercritical pyrolytic conditions...gas chromatography flame ionization and thermal conductivity detectors ............................................. 68 Table B.1. Elemental bias... chromatography ...................... 98 Table D.1b. Products found in the liquid sample by gas chromatography (continued) ... 99 Table D.1c

  6. The Experimental Study about the Effect of Operating Conditions on Multi-tube Pulse Detonation Engine Performance

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Min; Han, Hyung-Seok; Choi, Jeong-Yeol

    2018-04-01

    This study examines a multi-tube pulse detonation engine (PDE) which has a type of constant volume combustion. We designed and made the multi-tube PDE and then conducted an experiment in various operating frequencies and equivalence ratios. First, experiments with operating frequencies of 40, 80, 120, 160, and 200 Hz resulted in an average thrust and specific impulse 23.14 N and 42.34 s. The next experiment resulted in the equivalence ratio varying from 0.81 to 1.38, which resulted in an average thrust and specific impulse 22.36 N and 40.11 s. The average detonation velocity was 8% lower than that calculated according to C-J theory. The incidence ratios of the detonation wave were stable with the exception of the operating frequency of 200 Hz. However, at 200 Hz, the incidence ratio was less than 50%. We assumed that a low fill fraction occurred for this problem. The thrust of the PDE increased with the operating frequency. However, the thrust increase was at a lower rate than in previous studies, because of a lost thrust output result from the slow response time of the load cell amplifier.

  7. International Congress on High Speed Photography and Photonics, 17th, Pretoria, Republic of South Africa, Sept. 1-5, 1986, Proceedings. Volumes 1 & 2

    NASA Astrophysics Data System (ADS)

    McDowell, M. W.; Hollingworth, D.

    1986-01-01

    The present conference discusses topics in mining applications of high speed photography, ballistic, shock wave and detonation studies employing high speed photography, laser and X-ray diagnostics, biomechanical photography, millisec-microsec-nanosec-picosec-femtosec photographic methods, holographic, schlieren, and interferometric techniques, and videography. Attention is given to such issues as the pulse-shaping of ultrashort optical pulses, the performance of soft X-ray streak cameras, multiple-frame image tube operation, moire-enlargement motion-raster photography, two-dimensional imaging with tomographic techniques, photochron TV streak cameras, and streak techniques in detonics.

  8. Thrust Augmentation Measurements for a Pulse Detonation Engine Driven Ejector

    NASA Technical Reports Server (NTRS)

    Pal, S.; Santoro, Robert J.; Shehadeh, R.; Saretto, S.; Lee, S.-Y.

    2005-01-01

    Thrust augmentation results of an ongoing study of pulse detonation engine driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE) setup with various ejector configurations. The PDE used in these experiments utilizes ethylene (C2H4) as the fuel, and an equi-molar mixture of oxygen and nitrogen as the oxidizer at an equivalence ratio of one. High fidelity thrust measurements were made using an integrated spring damper system. The baseline thrust of the PDE engine was first measured and agrees with experimental and modeling results found in the literature. Thrust augmentation measurements were then made for constant diameter ejectors. The parameter space for the study included ejector length, PDE tube exit to ejector tube inlet overlap distance, and straight versus rounded ejector inlets. The relationship between the thrust augmentation results and various physical phenomena is described. To further understand the flow dynamics, shadow graph images of the exiting shock wave front from the PDE were also made. For the studied parameter space, the results showed a maximum augmentation of 40%. Further increase in augmentation is possible if the geometry of the ejector is tailored, a topic currently studied by numerous groups in the field.

  9. Modeling the Effects of Turbulence in Rotating Detonation Engines

    NASA Astrophysics Data System (ADS)

    Towery, Colin; Smith, Katherine; Hamlington, Peter; van Schoor, Marthinus; TESLa Team; Midé Team

    2014-03-01

    Propulsion systems based on detonation waves, such as rotating and pulsed detonation engines, have the potential to substantially improve the efficiency and power density of gas turbine engines. Numerous technical challenges remain to be solved in such systems, however, including obtaining more efficient injection and mixing of air and fuels, more reliable detonation initiation, and better understanding of the flow in the ejection nozzle. These challenges can be addressed using numerical simulations. Such simulations are enormously challenging, however, since accurate descriptions of highly unsteady turbulent flow fields are required in the presence of combustion, shock waves, fluid-structure interactions, and other complex physical processes. In this study, we performed high-fidelity three dimensional simulations of a rotating detonation engine and examined turbulent flow effects on the operation, performance, and efficiency of the engine. Along with experimental data, these simulations were used to test the accuracy of commonly-used Reynolds averaged and subgrid-scale turbulence models when applied to detonation engines. The authors gratefully acknowledge the support of the Defense Advanced Research Projects Agency (DARPA).

  10. Experimental study of a valveless pulse detonation rocket engine using nontoxic hypergolic propellants

    NASA Astrophysics Data System (ADS)

    Kan, Brandon K.

    A pulsed detonation rocket engine concept was explored through the use of hypergolic propellants in a fuel-centered pintle injector combustor. The combustor design yielded a simple open ended chamber with a pintle type injection element and pressure instrumentation. High-frequency pressure measurements from the first test series showed the presence of large pressure oscillations in excess of 2000 psia at frequencies between 400-600 hz during operation. High-speed video confirmed the high-frequency pulsed behavior and large amounts of after burning. Damaged hardware and instrumentation failure limited the amount of data gathered in the first test series, but the experiments met original test objectives of producing large over-pressures in an open chamber. A second test series proceeded by replacing hardware and instrumentation, and new data showed that pulsed events produced under expanded exhaust prior to pulsing, peak pressures around 8000 psi, and operating frequencies between 400-800 hz. Later hot-fires produced no pulsed behavior despite undamaged hardware. The research succeeded in producing pulsed combustion behavior using hypergolic fuels in a pintle injector setup and provided insights into design concepts that would assist future injector designs and experimental test setups.

  11. Magnetic Flux Compression Concept for Nuclear Pulse Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ronald J.

    2000-01-01

    The desire for fast, efficient interplanetary transport requires propulsion systems having short acceleration times and very high specific impulse attributes. Unfortunately, most highly efficient propulsion systems which are within the capabilities of present day technologies are either very heavy or yield very low impulse such that the acceleration time to final velocity is too long to be of lasting interest, One exception, the nuclear thermal thruster, could achieve the desired acceleration but it would require inordinately large mass ratios to reach the range of desired final velocities. An alternative approach, among several competing concepts that are beyond our modern technical capabilities, is a pulsed thermonuclear device utilizing microfusion detonations. In this paper, we examine the feasibility of an innovative magnetic flux compression concept for utilizing microfusion detonations, assuming that such low yield nuclear bursts can be realized in practice. In this concept, a magnetic field is compressed between an expanding detonation driven diamagnetic plasma and a stationary structure formed from a high temperature superconductor (HTSC). In general, we are interested in accomplishing two important functions: (1) collimation of a hot diamagnetic plasma for direct thrust production; and (2) pulse power generation for dense plasma ignition. For the purposes of this research, it is assumed that rnicrofusion detonation technology may become available within a few decades, and that this approach could capitalize on recent advances in inertial confinement fusion ICF) technologies including magnetized target concepts and antimatter initiated nuclear detonations. The charged particle expansion velocity in these detonations can be on the order of 10 (exp 6)- 10 (exp 7) meters per second, and, if effectively collimated by a magnetic nozzle, can yield the Isp and the acceleration levels needed for practical interplanetary spaceflight. The ability to ignite pure fusion micro-bursts with reasonable levels of input energy is an equally challenging scientific problem. It remains to be seen, however, whether an effective ignition driver can be developed which meets the requirements for practical spaceflight application (namely high power density, compactness, low weight, and low cost). In this paper, system level performance and design issues are examined including generator performance, magnetic flux compression processes, magnetic diffusion processes, high temperature superconductor (HTSC) material properties, plasmadynamic processes, detonation plasma expansion processes, magnetohydrodynamic instabilities, magnetic nozzle performance, and thrust production performance. Representative generator performance calculations based on a simplified skin layer formulation are presented as well as the results of exploratory small-scale laboratory experiments on magnetic flux diffusion in HTSC materials. In addition, planned follow-on scientific feasibility experiments are described which utilize high explosive detonations and high energy gas discharges to simulate the plasma conditions associated with thermonuclear micro-detonations.

  12. Ultrashort-pulse laser generated nanoparticles of energetic materials

    DOEpatents

    Welle, Eric J [Niceville, NM; Tappan, Alexander S [Albuquerque, NM; Palmer, Jeremy A [Albuquerque, NM

    2010-08-03

    A process for generating nanoscale particles of energetic materials, such as explosive materials, using ultrashort-pulse laser irradiation. The use of ultrashort laser pulses in embodiments of this invention enables one to generate particles by laser ablation that retain the chemical identity of the starting material while avoiding ignition, deflagration, and detonation of the explosive material.

  13. Fluidically Augmented Nozzles for Pulse Detonation Engine Applications

    DTIC Science & Technology

    2011-12-01

    25 captured the flow soon after the leading shock wave passed through the diverging section of the nozzle. As can be seen, the “pillow” has begun to...35 Figure 25. Initial Detonation Wave Enters the Diverging Section of the Nozzle...charging the combustor with an appropriate fuel/air mixture. This mixture is then ignited, producing a flame that is initially a deflagration wave . A

  14. Laser supported detonation wave source of atomic oxygen for aerospace material testing

    NASA Technical Reports Server (NTRS)

    Krech, Robert H.; Caledonia, George E.

    1990-01-01

    A pulsed high-flux source of nearly monoenergetic atomic oxygen was developed to perform accelerated erosion testing of spacecraft materials in a simulated low-earth orbit (LEO) environment. Molecular oxygen is introduced into an evacuated conical expansion nozzle at several atmospheres pressure through a pulsed molecular beam valve. A laser-induced breakdown is generated in the nozzle throat by a pulsed CO2 TEA laser. The resulting plasma is heated by the ensuing laser-supported detonation wave, and then it rapidly expands and cools. An atomic oxygen beam is generated with fluxes above 10 to the 18th atoms per pulse at 8 + or - 1.6 km/s with an ion content below 1 percent for LEO testing. Materials testing yielded the same surface oxygen enrichment in polyethylene samples as observed on the STS mission, and scanning electron micrographs of the irradiated polymer surfaces showed an erosion morphology similar to that obtained on low earth orbit.

  15. On the Exit Boundary Condition for One-Dimensional Calculations of Pulsed Detonation Engine Performance

    NASA Technical Reports Server (NTRS)

    Wilson, Jack; Paxson, Daniel E.

    2002-01-01

    In one-dimensional calculations of pulsed detonation engine (PDE) performance, the exit boundary condition is frequently taken to be a constant static pressure. In reality, for an isolated detonation tube, after the detonation wave arrives at the exit plane, there will be a region of high pressure, which will gradually return to ambient pressure as an almost spherical shock wave expands away from the exit, and weakens. Initially, the flow is supersonic, unaffected by external pressure, but later becomes subsonic. Previous authors have accounted for this situation either by assuming the subsonic pressure decay to be a relaxation phenomenon, or by running a two-dimensional calculation first, including a domain external to the detonation tube, and using the resulting exit pressure temporal distribution as the boundary condition for one-dimensional calculations. These calculations show that the increased pressure does affect the PDE performance. In the present work, a simple model of the exit process is used to estimate the pressure decay time. The planar shock wave emerging from the tube is assumed to transform into a spherical shock wave. The initial strength of the spherical shock wave is determined from comparison with experimental results. Its subsequent propagation, and resulting pressure at the tube exit, is given by a numerical blast wave calculation. The model agrees reasonably well with other, limited, results. Finally, the model was used as the exit boundary condition for a one-dimensional calculation of PDE performance to obtain the thrust wall pressure for a hydrogen-air detonation in tubes of length to diameter ratio (L/D) of 4, and 10, as well as for the original, constant pressure boundary condition. The modified boundary condition had no performance impact for values of L/D > 10, and moderate impact for L/D = 4.

  16. Ferrite core coupled slapper detonator apparatus and method

    DOEpatents

    Boberg, Ralph E.; Lee, Ronald S.; Weingart, Richard C.

    1989-01-01

    Method and apparatus are provided for coupling a temporally short electric power pulse from a thick flat-conductor power cable into a thin flat-conductor slapper detonator circuit. A first planar and generally circular loop is formed from an end portion of the power cable. A second planar and generally circular loop, of similar diameter, is formed from all or part of the slapper detonator circuit. The two loops are placed together, within a ferrite housing that provides a ferrite path that magnetically couples the two loops. Slapper detonator parts may be incorporated within the ferrite housing. The ferrite housing may be made vacuum and water-tight, with the addition of a hermetic ceramic seal, and provided with an enclosure for protecting the power cable and parts related thereto.

  17. Ferrite core coupled slapper detonator apparatus and method

    DOEpatents

    Boberg, R.E.; Lee, R.S.; Weingart, R.C.

    1989-08-01

    Method and apparatus are provided for coupling a temporally short electric power pulse from a thick flat-conductor power cable into a thin flat-conductor slapper detonator circuit. A first planar and generally circular loop is formed from an end portion of the power cable. A second planar and generally circular loop, of similar diameter, is formed from all or part of the slapper detonator circuit. The two loops are placed together, within a ferrite housing that provides a ferrite path that magnetically couples the two loops. Slapper detonator parts may be incorporated within the ferrite housing. The ferrite housing may be made vacuum and water-tight, with the addition of a hermetic ceramic seal, and provided with an enclosure for protecting the power cable and parts related thereto. 10 figs.

  18. Electromagnetic pulse (EMP), Part I: Effects on field medical equipment.

    PubMed

    Vandre, R H; Klebers, J; Tesche, F M; Blanchard, J P

    1993-04-01

    The electromagnetic pulse (EMP) from a high-altitude nuclear detonation has the potential to cover an area as large as the continental United States with damaging levels of EMP radiation. In this study, two of seven items of medical equipment were damaged by an EMP simulator. Computer circuit analysis of 17 different items showed that 11 of the 17 items would be damaged by current surges on the power cords, while two would be damaged by current surges on external leads. This research showed that a field commander can expect approximately 65% of his electronic medical equipment to be damaged by a single nuclear detonation as far as 2,200 km away.

  19. Simplified Analysis of Pulse Detonation Rocket Engine Blowdown Gasdynamics and Performance

    NASA Technical Reports Server (NTRS)

    Morris, C. I.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Pulse detonation rocket engines (PDREs) offer potential performance improvements over conventional designs, but represent a challenging modellng task. A simplified model for an idealized, straight-tube, single-shot PDRE blowdown process and thrust determination is described and implemented. In order to form an assessment of the accuracy of the model, the flowfield time history is compared to experimental data from Stanford University. Parametric Studies of the effect of mixture stoichiometry, initial fill temperature, and blowdown pressure ratio on the performance of a PDRE are performed using the model. PDRE performance is also compared with a conventional steady-state rocket engine over a range of pressure ratios using similar gasdynamic assumptions.

  20. Development and Characterization Testing of an Air Pulsation Valve for a Pulse Detonation Engine Supersonic Parametric Inlet Test Section

    NASA Technical Reports Server (NTRS)

    Tornabene, Robert

    2005-01-01

    In pulse detonation engines, the potential exists for gas pulses from the combustor to travel upstream and adversely affect the inlet performance of the engine. In order to determine the effect of these high frequency pulses on the inlet performance, an air pulsation valve was developed to provide air pulses downstream of a supersonic parametric inlet test section. The purpose of this report is to document the design and characterization tests that were performed on a pulsation valve that was tested at the NASA Glenn Research Center 1x1 Supersonic Wind Tunnel (SWT) test facility. The high air flow pulsation valve design philosophy and analyses performed are discussed and characterization test results are presented. The pulsation valve model was devised based on the concept of using a free spinning ball valve driven from a variable speed electric motor to generate air flow pulses at preset frequencies. In order to deliver the proper flow rate, the flow port was contoured to maximize flow rate and minimize pressure drop. To obtain sharp pressure spikes the valve flow port was designed to be as narrow as possible to minimize port dwell time.

  1. Innovative Airbreathing Propulsion Concepts for High-speed Applications

    NASA Technical Reports Server (NTRS)

    Whitlow, Woodrow, Jr.

    2002-01-01

    The current cost to launch payloads to low earth orbit (LEO) is approximately loo00 U.S. dollars ($) per pound ($22000 per kilogram). This high cost limits our ability to pursue space science and hinders the development of new markets and a productive space enterprise. This enterprise includes NASA's space launch needs and those of industry, universities, the military, and other U.S. government agencies. NASA's Advanced Space Transportation Program (ASTP) proposes a vision of the future where space travel is as routine as in today's commercial air transportation systems. Dramatically lower launch costs will be required to make this vision a reality. In order to provide more affordable access to space, NASA has established new goals in its Aeronautics and Space Transportation plan. These goals target a reduction in the cost of launching payloads to LEO to $lo00 per pound ($2200 per kilogram) by 2007 and to $100' per pound by 2025 while increasing safety by orders of magnitude. Several programs within NASA are addressing innovative propulsion systems that offer potential for reducing launch costs. Various air-breathing propulsion systems currently are being investigated under these programs. The NASA Aerospace Propulsion and Power Base Research and Technology Program supports long-term fundamental research and is managed at GLenn Research Center. Currently funded areas relevant to space transportation include hybrid hyperspeed propulsion (HHP) and pulse detonation engine (PDE) research. The HHP Program currently is addressing rocket-based combined cycle and turbine-based combined cycle systems. The PDE research program has the goal of demonstrating the feasibility of PDE-based hybrid-cycle and combined cycle propulsion systems that meet NASA's aviation and access-to-space goals. The ASTP also is part of the Base Research and Technology Program and is managed at the Marshall Space Flight Center. As technologies developed under the Aerospace Propulsion and Power Base Research and Technology Program mature, they are incorporated into ASTP. One example of this is rocket-based combined cycle systems that are being considered as part of ASTP. The NASA Ultra Efficient Engine Technology (UEET) Program has the goal of developing propulsion system component technology that is relevant to a wide range of vehicle missions. In addition to subsonic and supersonic speed regimes, it includes the hypersonic speed regime. More specifically, component technologies for turbine-based combined cycle engines are being developed as part of UEET.

  2. Performance Impact of Deflagration to Detonation Transition Enhancing Obstacles

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Schauer, Frederick; Hopper, David

    2012-01-01

    A sub-model is developed to account for the drag and heat transfer enhancement resulting from deflagration-to-detonation (DDT) inducing obstacles commonly used in pulse detonation engines (PDE). The sub-model is incorporated as a source term in a time-accurate, quasi-onedimensional, CFD-based PDE simulation. The simulation and sub-model are then validated through comparison with a particular experiment in which limited DDT obstacle parameters were varied. The simulation is then used to examine the relative contributions from drag and heat transfer to the reduced thrust which is observed. It is found that heat transfer is far more significant than aerodynamic drag in this particular experiment.

  3. Laser-shocked energetic materials with metal additives: evaluation of detonation performance

    NASA Astrophysics Data System (ADS)

    Gottfried, Jennifer; Bukowski, Eric

    A focused, nanosecond-pulsed laser with sufficient energy to exceed the breakdown threshold of a material generates a laser-induced plasma with high peak temperatures, pressures, and shock velocities. Depending on the laser parameters and material properties, nanograms to micrograms of material is ablated, atomized, ionized and excited in the laser-induced plasma. The subsequent shock wave expansion into the air above the sample has been monitored using high-speed schlieren imaging in a recently developed technique, laser-induced air shock from energetic materials (LASEM). The estimated detonation velocities using LASEM agree well with published experimental values. A comparison of the measured shock velocities for various energetic materials including RDX, DNTF, and LLM-172 doped with Al or B to the detonation velocities predicted by CHEETAH for inert or active metal participation demonstrates that LASEM has potential for predicting the early time participation of metal additives in detonation events. The LASEM results show that reducing the amount of hydrogen present in B formulations increases the resulting detonation velocities

  4. System for fracturing an underground geologic formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mace, Jonathan L.; Tappan, Bryce C.; Seitz, Gerald J.

    2017-03-14

    An explosive system for fracturing an underground geologic formation adjacent to a wellbore can comprise a plurality of explosive units comprising an explosive material contained within the casing, and detonation control modules electrically coupled to the plurality of explosive units and configured to cause a power pulse to be transmitted to at least one detonator of at least one of the plurality of explosive units for detonation of the explosive material. The explosive units are configured to be positioned within a wellbore in spaced apart positions relative to one another along a string with the detonation control modules positioned adjacentmore » to the plurality of explosive units in the wellbore, such that the axial positions of the explosive units relative to the wellbore are at least partially based on geologic properties of the geologic formation adjacent the wellbore.« less

  5. Protecting the Power Grid From Electromagnetic Pulses

    NASA Astrophysics Data System (ADS)

    Simpson, Sarah

    2004-10-01

    A nuclear explosion high in the Earth's atmosphere does no immediate known harm to living things, but the resulting electromagnetic pulse (EMP) from a single detonation could degrade 70 percent or more of the country's electrical service in an instant, warns the Commission to Assess the Threat to the United States from Electromagnetic Pulse Attack, which presented its findings to the U.S. Congress in July.

  6. Pulse Detonation Propulsion

    DTIC Science & Technology

    2010-01-01

    constant-pressure ( Brayton ) cycle used in gas turbines and ramjets. The advantages of PDE for air- breathing propulsion are simplicity and easy scaling...constant-volume, and detonative combustion cycles will be referred to as Brayton , Humphrey, and PDE cycles. The efficiency of thermodynamic cycles O’ODD...efficiency of Brayton cycle, as 0G HH =′ , i.e., 0==constpχ (3) Constant-volume combustion (point E in Fig. 1) results in temperature K 2647/0E

  7. Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines

    DTIC Science & Technology

    2012-10-01

    use of high-order numerical methods can also be a powerful tool in the analysis of such complex flows, but we need to understand the interaction of...computational physics, 43(2):357372, 1981. [47] B. Einfeldt. On godunov-type methods for gas dynamics . SIAM Journal on Numerical Analysis , pages 294...dimensional effects with complex reaction kinetics, the simple one-dimensional detonation structure provides a rich spectrum of dynamical features which are

  8. DUD Investigation of M69 Electric Detonator

    DTIC Science & Technology

    1978-04-01

    OF CONTENTS I. INTRODUCTION II. BACKGROUND ýII. ANALYSIS OF PROBLEM IV. CORRECTrIE DESIGN REVISION V. DISCUSSION OF RESULTS VI. RECOMMENDATIONS ) VII...analyze and resolve the problem. ii 9 III. ANALYSIS OF PROBLEM A review of the data available at the start of this investigation revealed the...a dud problem. d. Dud analysis of those detonators which failed to fire, showed that the Carbon Bridge had been pulsed electrically and for all

  9. Pulse Detonation Rocket Engine Research at NASA Marshall

    NASA Technical Reports Server (NTRS)

    Morris, Christopher I.

    2003-01-01

    This viewgraph representation provides an overview of research being conducted on Pulse Detonation Rocket Engines (PDRE) by the Propulsion Research Center (PRC) at the Marshall Space Flight Center. PDREs have a theoretical thermodynamic advantage over Steady-State Rocket Engines (SSREs) although unsteady blowdown processes complicate effective use of this advantage in practice; PRE is engaged in a fundamental study of PDRE gas dynamics to improve understanding of performance issues. Topics covered include: simplified PDRE cycle, comparison of PDRE and SSRE performance, numerical modeling of quasi 1-D rocket flows, time-accurate thrust calculations, finite-rate chemistry effects in nozzles, effect of F-R chemistry on specific impulse, effect of F-R chemistry on exit species mole fractions and PDRE performance optimization studies.

  10. Numerical Analysis of a Pulse Detonation Cross Flow Heat Load Experiment

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Naples, Andrew .; Hoke, John L.; Schauer, Fred

    2011-01-01

    A comparison between experimentally measured and numerically simulated, time-averaged, point heat transfer rates in a pulse detonation (PDE) engine is presented. The comparison includes measurements and calculations for heat transfer to a cylinder in crossflow and to the tube wall itself using a novel spool design. Measurements are obtained at several locations and under several operating conditions. The measured and computed results are shown to be in substantial agreement, thereby validating the modeling approach. The model, which is based in computational fluid dynamics (CFD) is then used to interpret the results. A preheating of the incoming fuel charge is predicted, which results in increased volumetric flow and subsequent overfilling. The effect is validated with additional measurements.

  11. Proceeding of the 1999 Particle Accelerator Conference. Volume 1

    DTIC Science & Technology

    1999-04-02

    protons -e.6 within a 35-ns wide pulse . Dynamic shots of high - explosive (HE) during detonation usually had pulses spaced at 1-microsecond intervals... protons per pulse could be obtained by 800 Radiography on a Dynamic Object," 1 1th Biennial Nuclear Explosives MeV H’ injection from the existing 800 MeV...3713 Pondermotive Acceleration of Ions By Relativistically Self-Focused High- Intensity Short Pulse Laser -- A.Maksimchuky, S.Gu, K.Flippo,

  12. Laser-shocked energetic materials with metal additives: evaluation of chemistry and detonation performance.

    PubMed

    Gottfried, Jennifer L; Bukowski, Eric J

    2017-01-20

    A focused, nanosecond-pulsed laser has been used to ablate, atomize, ionize, and excite milligram quantities of metal-doped energetic materials that undergo exothermic reactions in the laser-induced plasma. The subsequent shock wave expansion in the air above the sample has been monitored using high-speed schlieren imaging in a recently developed technique, laser-induced air shock from energetic materials (LASEM). The method enables the estimation of detonation velocities based on the measured laser-induced air-shock velocities and has previously been demonstrated for organic military explosives. Here, the LASEM technique has been extended to explosive formulations with metal additives. A comparison of the measured laser-induced air-shock velocities for TNT, RDX, DNTF, and LLM-172 doped with Al or B to the detonation velocities predicted by the thermochemical code CHEETAH for inert or active metal participation demonstrates that LASEM has potential for predicting the early time (<10  μs) participation of metal additives in detonation events. The LASEM results show that while Al is mostly inert at early times in the detonation event (confirmed from large-scale detonation testing), B is active-and reducing the amount of hydrogen present during the early chemical reactions increases the resulting estimated detonation velocities.

  13. Measurements of multiple gas parameters in a pulsed-detonation combustor using time-division-multiplexed Fourier-domain mode-locked lasers.

    PubMed

    Caswell, Andrew W; Roy, Sukesh; An, Xinliang; Sanders, Scott T; Schauer, Frederick R; Gord, James R

    2013-04-20

    Hyperspectral absorption spectroscopy is being used to monitor gas temperature, velocity, pressure, and H(2)O mole fraction in a research-grade pulsed-detonation combustor (PDC) at the Air Force Research Laboratory. The hyperspectral source employed is termed the TDM 3-FDML because it consists of three time-division-multiplexed (TDM) Fourier-domain mode-locked (FDML) lasers. This optical-fiber-based source monitors sufficient spectral information in the H(2)O absorption spectrum near 1350 nm to permit measurements over the wide range of conditions encountered throughout the PDC cycle. Doppler velocimetry based on absorption features is accomplished using a counterpropagating beam approach that is designed to minimize common-mode flow noise. The PDC in this study is operated in two configurations: one in which the combustion tube exhausts directly to the ambient environment and another in which it feeds an automotive-style turbocharger to assess the performance of a detonation-driven turbine. Because the enthalpy flow [kilojoule/second] is important in assessing the performance of the PDC in various configurations, it is calculated from the measured gas properties.

  14. Wavelength-agile diode-laser sensing strategies for monitoring gas properties in optically harsh flows: application in cesium-seeded pulse detonation

    NASA Astrophysics Data System (ADS)

    Sanders, Scott Thomas; Mattison, Daniel W.; Ma, Lin; Jeffries, Jay B.; Hanson, Ronald K.

    2002-06-01

    The rapid, broad wavelength scanning capabilities of advanced diode lasers allow extension of traditional diode-laser absorption techniques to high pressure, transient, and generally hostile environments. Here, we demonstrate this extension by applying a vertical cavity surface-emitting laser (VCSEL) to monitor gas temperature and pressure in a pulse detonation engine (PDE). Using aggressive injection current modulation, the VCSEL is scanned through a 10 cm-1 spectral window at megahertz rates roughly 10 times the scanning range and 1000 times the scanning rate of a conventional diode laser. The VCSEL probes absorption lineshapes of the ~ 852 nm D2 transition of atomic Cs, seeded at ~ 5 ppm into the feedstock gases of a PDE. Using these lineshapes, detonated-gas temperature and pressure histories, spanning 2000 4000 K and 0.5 30 atm, respectively, are recorded with microsecond time response. The increasing availability of wavelength-agile diode lasers should support the development of similar sensors for other harsh flows, using other absorbers such as native H2O.

  15. Optical ordnance system for use in explosive ordnance disposal activities

    NASA Technical Reports Server (NTRS)

    Merson, J. A.; Salas, F. J.; Helsel, F.M.

    1994-01-01

    A portable hand-held solid state rod laser system and an optically-ignited detonator have been developed for use in explosive ordnance disposal (EOD) activities. Laser prototypes from Whittaker Ordnance and Universal Propulsion have been tested and evaluated. The optical detonator contains 2-(5 cyanotetrazolato) pentaamine cobalt(III) perchlorate (CP) as the DDT column and the explosive Octahydro- 1,3,5,7 - tetrazocine (HMX) as the output charge. The laser is designed to have an output of 150 mJ in a 500 microsecond pulse. This output allows firing through 2000 meters of optical fiber. The detonator can also be ignited with a portable laser diode source through a shorter length of fiber.

  16. Evaluation of Straight and Swept Ramp Obstacles on Enhancing Deflagration-to-Detonation Transition in Pulse Detonation Engines

    DTIC Science & Technology

    2006-12-01

    models attempted to bracket the extremes of the conditions of interest. These conditions were Mach 2 and Mach 3 shocks , with initial medium...later, but all traces have been expanded to the area of interest. Pressure readings were primarily used to measure shock speeds, and initially used...results for the clean tube configuration. The characteristics of the initial shock are similar, and are comparable for all configurations tested

  17. A Resonant Pulse Detonation Actuator for High-Speed Boundary Layer Separation Control

    NASA Technical Reports Server (NTRS)

    Beck, B. T.; Cutler, A. D.; Drummond, J. P.; Jones, S. B.

    2004-01-01

    A variety of different types of actuators have been previously investigated as flow control devices. Potential applications include the control of boundary layer separation in external flows, as well as jet engine inlet and diffuser flow control. The operating principles for such devices are typically based on either mechanical deflection of control surfaces (which include MEMS flap devices), mass injection (which includes combustion driven jet actuators), or through the use of synthetic jets (diaphragm devices which produce a pulsating jet with no net mass flow). This paper introduces some of the initial flow visualization work related to the development of a relatively new type of combustion-driven jet actuator that has been proposed based on a pulse detonation principle. The device is designed to utilize localized detonation of a premixed fuel (Hydrogen)-air mixture to periodically inject a jet of gas transversely into the primary flow. Initial testing with airflow successfully demonstrated resonant conditions within the range of acoustic frequencies expected for the design. Schlieren visualization of the pulsating air jet structure revealed axially symmetric vortex flow, along with the formation of shocks. Flow visualization of the first successful sustained oscillation condition is also demonstrated for one configuration of the current test section. Future testing will explore in more detail the onset of resonant combustion and the approach to conditions of sustained resonant detonation.

  18. Pulsed Ejector Wave Propogation Test Program

    NASA Technical Reports Server (NTRS)

    Fernandez, Rene; Slater, John W.; Paxson, Daniel E.

    2003-01-01

    The development of, and initial test data from, a nondetonating Pulse Detonation Engine (PDE) simulator tested in the NASA Glenn 1 x 1 foot Supersonic Wind Tunnel (SWT) is presented in this paper. The concept is a pulsed ejector driven by the simulated exhaust of a PDE. This pro- gram is applicable to a PDE entombed in a ramjet flowpath, i.e., a PDE combined-cycle propulsion system. The ejector primary flow is a pulsed, uiiderexpanded, supersonic nozzle simulating the supersonic waves ema- nating from a PDE, while the ejector secondary flow is the 1 x 1 foot SWT test section operated at subsonic Mach numbers. The objective is not to study the detonation details, but the wave physics including t,he start- ing vortices, the extent of propagation of the wave front, the reflection of the wave from the secondary flowpath walls, and the timing of these events of a pulsed ejector, and correlate these with Computational Fluid Dynamics (CFD) code predictions. Pulsed ejectors have been shown to result in a 3 to 1 improvement in LID (length-to-diameter) and a near 2 to 1 improvement in thrust augmentation over a steady ejector. This program will also explore the extent of upstream interactions between an inlet and large, periodically applied, backpressures to the inlet as would be present due to combustion tube detonations in a PDE. These interactions could result in inlet unstart or buzz for a supersonic mixed compression inlet. The design of the present experiment entailed the use of an 2-t diagram characteristics code to study the nozzle filling and purging timescales as well as a series of CFD analyses conducted using the WIND code. The WIND code is a general purpose CFD code for solution of the Reynolds averaged Navier-Stokes equations and can be applied to both steady state and time-accurate calculations. The first, proof-of-concept, test entry (spring 2001) pressure distributions shown here indicate the simulation concept was successful and therefore the experimental approach is sound.

  19. Acceleration Modes and Transitions in Pulsed Plasma Accelerators

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Greve, Christine M.

    2018-01-01

    Pulsed plasma accelerators typically operate by storing energy in a capacitor bank and then discharging this energy through a gas, ionizing and accelerating it through the Lorentz body force. Two plasma accelerator types employing this general scheme have typically been studied: the gas-fed pulsed plasma thruster and the quasi-steady magnetoplasmadynamic (MPD) accelerator. The gas-fed pulsed plasma accelerator is generally represented as a completely transient device discharging in approximately 1-10 microseconds. When the capacitor bank is discharged through the gas, a current sheet forms at the breech of the thruster and propagates forward under a j (current density) by B (magnetic field) body force, entraining propellant it encounters. This process is sometimes referred to as detonation-mode acceleration because the current sheet representation approximates that of a strong shock propagating through the gas. Acceleration of the initial current sheet ceases when either the current sheet reaches the end of the device and is ejected or when the current in the circuit reverses, striking a new current sheet at the breech and depriving the initial sheet of additional acceleration. In the quasi-steady MPD accelerator, the pulse is lengthened to approximately 1 millisecond or longer and maintained at an approximately constant level during discharge. The time over which the transient phenomena experienced during startup typically occur is short relative to the overall discharge time, which is now long enough for the plasma to assume a relatively steady-state configuration. The ionized gas flows through a stationary current channel in a manner that is sometimes referred to as the deflagration-mode of operation. The plasma experiences electromagnetic acceleration as it flows through the current channel towards the exit of the device. A device that had a short pulse length but appeared to operate in a plasma acceleration regime different from the gas-fed pulsed plasma accelerators was developed by Cheng, et al. The Coaxial High ENerGy (CHENG) thruster operated on the 10-microseconds timescales of pulsed plasma thrusters, but claimed high thrust density, high efficiency and low electrode erosion rates, which are more consistent with the deflagration mode of acceleration. Separate work on gas-fed pulsed plasma thrusters (PPTs) by Ziemer, et al. identified two separate regimes of performance. The regime at higher mass bits (termed Mode I in that work) possessed relatively constant thrust efficiency (ratio of jet kinetic energy to input electrical energy) as a function of mass bit. In the second regime at very low mass bits (termed Mode II), the efficiency increased with decreasing mass bit. Work by Poehlmann et al. and by Sitaraman and Raja sought to understand the performance of the CHENG thruster and the Mode I / Mode II performance in PPTs by modeling the acceleration using the Hugoniot Relation, with the detonation and deflagration modes representing two distinct sets of solutions to the relevant conservation laws. These works studied the proposal that, depending upon the values of the various controllable parameters, the accelerator would operate in either the detonation or deflagration mode. In the present work, we propose a variation on the explanation for the differences in performance between the various pulsed plasma accelerators. Instead of treating the accelerator as if it were only operating in one mode or the other during a pulse, we model the initial stage of the discharge in all cases as an accelerating current sheet (detonation mode). If the current sheet reaches the exit of the accelerator before the discharge is completed, the acceleration mode transitions to the deflagration mode type found in the quasi-steady MPD thrusters. This modeling method is used to demonstrate that standard gas-fed pulsed plasma accelerators, the CHENG thruster, and the quasi-steady MPD accelerator are variations of the same device, with the overall acceleration of the plasma depending upon the behavior of the plasma discharge during initial transient phase and the relative lengths of the detonation and deflagration modes of operation.

  20. Short pulse duration shock initiation experiments plus ignition and growth modeling on Composition B

    NASA Astrophysics Data System (ADS)

    May, Chadd M.; Tarver, Craig M.

    2014-05-01

    Composition B (63% RDX, 36% TNT, 1% wax) is still a widely used energetic material whose shock initiation characteristics are necessary to understand. It is now possible to shock initiate Composition B and other secondary explosives at diameters well below their characteristic failure diameters for unconfined self-sustaining detonation. This is done using very high velocity, very thin, small diameter flyer plates accelerated by electric or laser power sources. Recently experimental detonation versus failure to detonate threshold flyer velocity curves for Composition B using several KaptonTM flyer thicknesses and diameters were measured. Flyer plates with diameters of 2 mm successfully detonated Composition B, which has a nominal failure diameter of 4.3 mm. The shock pressures required for these initiations are greater than the Chapman-Jouguet (C-J) pressure in self-sustaining Composition B detonation waves. The initiation process is two-dimensional, because both rear and side rarefactions can affect the shocked Composition B reaction rates. The Ignition and Growth reactive flow model for Composition B is extended to yield accurate simulations of this new threshold velocity data for various flyer thicknesses.

  1. Time-resolved Small Angle X-ray Scattering During the Formation of Detonation Nano-Carbon Condensates

    NASA Astrophysics Data System (ADS)

    Bagge-Hansen, Michael; Hammons, Josh; Nielsen, Mike; Lauderbach, Lisa; Hodgin, Ralph; Bastea, Sorin; van Buuren, Tony; Pagoria, Phil; May, Chadd; Jensen, Brian; Gustavsen, Rick; Watkins, Erik; Firestone, Millie; Dattelbaum, Dana; Fried, Larry; Cowan, Matt; Willey, Trevor

    2017-06-01

    Carbon nanomaterials are spontaneously generated under high pressure and temperature conditions present during the detonation of many high explosive (HE) materials. Thermochemical modeling suggests that the phase, size, and morphology of carbon condensates are strongly dependent on the type of HE used and associated evolution of temperature and pressure during the very early stages of detonation. Experimental validation of carbon condensation under these extreme conditions has been technically challenging. Here, we present synchrotron-based, time-resolved small-angle x-ray scattering (TR-SAXS) measurements collected during HE detonations, acquired from discrete sub-100 ps x-ray pulses, every 153.4 ns. We select from various HE materials and geometries to explore a range of achievable pressures and temperatures that span detonation conditions and, correspondingly, generate an array of nano-carbon products, including nano-diamonds and nano-onions. The TR-SAXS patterns evolve rapidly over the first few hundred nanoseconds. Comparing the results with modeling offers significant progress towards a general carbon equation of state. Prepared by LLNL under Contract DE-AC52-07NA27344.

  2. Flowpath Design of a Three-Tube Valve-Less Pulse Detonation Combustor

    DTIC Science & Technology

    2009-09-01

    traditional gas turbine engines since the detonation event produces a lower entropy rise and more available work than a Brayton cycle operating at similar...pressure process ( Brayton cycle), with the result that the combustion process ends at state 3a vice state 3.   6   Figure 3. Pressure – Volume Diagram... Brayton cycle, represented by A1, there is a significantly lower yield when compared to the Humphrey cycle, which envelops area A1+A2. It is

  3. Direct Observations of Reaction Zone Structure in Propagating Detonations

    DTIC Science & Technology

    2003-02-08

    with sufficient spatial resolution and signal-to-noise ratio were achieved by using a tunable KrF laser with a pulse energy of 450 mJ exciting the OH...self-sustaining waves within the test section. The detonation reaction zone has been visualized by exciting OH fluorescence at about 284 nm with a...in some tests. The UV light for excitation of the OH molecules is produced by frequency dou- bling the output of an excimer-pumped dye laser. The

  4. Measurement of carbon condensates using small-angle x-ray scattering during detonation of high explosives

    NASA Astrophysics Data System (ADS)

    Willey, T. M.; Bagge-Hansen, M.; Lauderbach, L.; Hodgin, R.; Hansen, D.; May, C.; van Buuren, T.; Dattelbaum, D. M.; Gustavsen, R. L.; Watkins, E. B.; Firestone, M. A.; Jensen, B. J.; Graber, T.; Bastea, S.; Fried, L.

    2017-01-01

    The lack of experimental validation for processes occurring at sub-micron length scales on time scales ranging from nanoseconds to microseconds hinders detonation model development. Particularly, quantification of late-time energy release requires measurement of carbon condensation kinetics behind detonation fronts. A new small-angle x-ray scattering (SAXS) endstation has been developed for use at The Dynamic Compression Sector to observe carbon condensation during detonation. The endstation and beamline demonstrate unprecedented fidelity; SAXS profiles can be acquired from single x-ray pulses, which in 24-bunch mode are about 80 ps in duration and arrive every 153.4 ns. This paper presents both the current temporal capabilities of this beamline, and the ability to distinguish different carbon condensate morphologies as they form behind detonation fronts. To demonstrate temporal capabilities, three shots acquired during detonation of hexanitrostilbene (HNS) are interleaved to show the evolution of the SAXS in about 50 ns steps. To show fidelity of the SAXS, the scattering from carbon condensates at several hundred nanoseconds varies with explosive: scattering from HNS is consistent with a complex morphology that we assert is associated with sp2 carbon., while Comp B scattering is consistent with soots containing three-dimensional diamond nanoparticles.

  5. The hearing threshold of a harbor porpoise (Phocoena phocoena) for impulsive sounds (L).

    PubMed

    Kastelein, Ronald A; Gransier, Robin; Hoek, Lean; de Jong, Christ A F

    2012-08-01

    The distance at which harbor porpoises can hear underwater detonation sounds is unknown, but depends, among other factors, on the hearing threshold of the species for impulsive sounds. Therefore, the underwater hearing threshold of a young harbor porpoise for an impulsive sound, designed to mimic a detonation pulse, was quantified by using a psychophysical technique. The synthetic exponential pulse with a 5 ms time constant was produced and transmitted by an underwater projector in a pool. The resulting underwater sound, though modified by the response of the projection system and by the pool, exhibited the characteristic features of detonation sounds: A zero to peak sound pressure level of at least 30 dB (re 1 s(-1)) higher than the sound exposure level, and a short duration (34 ms). The animal's 50% detection threshold for this impulsive sound occurred at a received unweighted broadband sound exposure level of 60 dB re 1 μPa(2)s. It is shown that the porpoise's audiogram for short-duration tonal signals [Kastelein et al., J. Acoust. Soc. Am. 128, 3211-3222 (2010)] can be used to estimate its hearing threshold for impulsive sounds.

  6. Flowfield characterization and model development in detonation tubes

    NASA Astrophysics Data System (ADS)

    Owens, Zachary Clark

    A series of experiments and numerical simulations are performed to advance the understanding of flowfield phenomena and impulse generation in detonation tubes. Experiments employing laser-based velocimetry, high-speed schlieren imaging and pressure measurements are used to construct a dataset against which numerical models can be validated. The numerical modeling culminates in the development of a two-dimensional, multi-species, finite-rate-chemistry, parallel, Navier-Stokes solver. The resulting model is specifically designed to assess unsteady, compressible, reacting flowfields, and its utility for studying multidimensional detonation structure is demonstrated. A reduced, quasi-one-dimensional model with source terms accounting for wall losses is also developed for rapid parametric assessment. Using these experimental and numerical tools, two primary objectives are pursued. The first objective is to gain an understanding of how nozzles affect unsteady, detonation flowfields and how they can be designed to maximize impulse in a detonation based propulsion system called a pulse detonation engine. It is shown that unlike conventional, steady-flow propulsion systems where converging-diverging nozzles generate optimal performance, unsteady detonation tube performance during a single-cycle is maximized using purely diverging nozzles. The second objective is to identify the primary underlying mechanisms that cause velocity and pressure measurements to deviate from idealized theory. An investigation of the influence of non-ideal losses including wall heat transfer, friction and condensation leads to the development of improved models that reconcile long-standing discrepancies between predicted and measured detonation tube performance. It is demonstrated for the first time that wall condensation of water vapor in the combustion products can cause significant deviations from ideal theory.

  7. Experimental Investigation of Airbreathing Laser Propulsion Engines: CO2TEA vs. EDL

    NASA Astrophysics Data System (ADS)

    Mori, Koichi; Sasoh, Akihiro; Myrabo, Leik N.

    2005-04-01

    Single pulse laboratory experiments were carried out with a high-power CO2 Transversely-Exited Atmospheric (TEA) laser using parabolic laser propulsion (LP) engines of historic interest: 1) an original Pirri/ AERL bell engine, and 2) a scaled-up 11-cm diameter version with identical geometry. The objective was to quantify the effects of pulse duration upon the impulse coupling coefficient performance — with pulse energy as the parametric variable. Performance data from the TEA laser are contrasted with former results derived from AVCO Everett Research Laboratory and PLVTS CO2 electron discharge lasers (EDL). The `short-pulse' 2-microsecond TEA laser tests generated results that were distinctively different from that of the `long-pulse' EDL sources. The TC-300 TEA laser employed an unstable resonator to deliver up to 380 joules, and the square output beam measured 15-cm on a side, with a hollow 8-cm center. A standard ballistic pendulum was employed to measure the performance.

  8. Pulse Detonation Rocket MHD Power Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Cook, Stephen (Technical Monitor)

    2002-01-01

    A pulse detonation research engine (MSFC (Marshall Space Flight Center) Model PDRE (Pulse Detonation Rocket Engine) G-2) has been developed for the purpose of examining integrated propulsion and magnetohydrodynamic power generation applications. The engine is based on a rectangular cross-section tube coupled to a converging-diverging nozzle, which is in turn attached to a segmented Faraday channel. As part of the shakedown testing activity, the pressure wave was interrogated along the length of the engine while running on hydrogen/oxygen propellants. Rapid transition to detonation wave propagation was insured through the use of a short Schelkin spiral near the head of the engine. The measured detonation wave velocities were in excess of 2500 m/s in agreement with the theoretical C-J velocity. The engine was first tested in a straight tube configuration without a nozzle, and the time resolved thrust was measured simultaneously with the head-end pressure. Similar measurements were made with the converging-diverging nozzle attached. The time correlation of the thrust and head-end pressure data was found to be excellent. The major purpose of the converging-diverging nozzle was to configure the engine for driving an MHD generator for the direct production of electrical power. Additional tests were therefore necessary in which seed (cesium-hydroxide dissolved in methanol) was directly injected into the engine as a spray. The exhaust plume was then interrogated with a microwave interferometer in an attempt to characterize the plasma conditions, and emission spectroscopy measurements were also acquired. Data reduction efforts indicate that the plasma exhaust is very highly ionized, although there is some uncertainty at this time as to the relative abundance of negative OH ions. The emission spectroscopy data provided some indication of the species in the exhaust as well as a measurement of temperature. A 24-electrode-pair segmented Faraday channel and 0.6 Tesla permanent magnet assembly were then installed on Marshall Space Flight Center's (MSFC's) rectangular channel pulse detonation research engine. Magnetohydrodynamic (MHD) electrical power extraction experiments were carried out for a range of load impedances in which cesium hydroxide seed (dissolved in methanol) was sprayed into the gaseous oxygen/hydrogen propellants. Positive power extraction was obtained, but preliminary analysis of the data indicated that the plasma electrical conductivity is lower than anticipated and the near-electrode voltage drop is not negligible. It is believed that the electrical conductivity is reduced due to a large population of negative OH ions. This occurs because OH has a strong affinity for capturing free electrons. The effect of near-electrode voltage drop is associated with the high surface-to-volume ratio of the channel (1-inch by 1-inch cross-section) where surface effects play a dominant role. As usual for MHD devices, higher performance will require larger scale devices. Overall, the gathered data is extremely valuable from the standpoint of understanding plasma behavior and for developing empirical scaling laws.

  9. Seal Technology Development for Advanced Component for Airbreathing Engines

    NASA Technical Reports Server (NTRS)

    Snyder, Philip H.

    2008-01-01

    Key aspects of the design of sealing systems for On Rotor Combustion/Wave Rotor (ORC/WR) systems were addressed. ORC/WR systems generally fit within a broad class of pressure gain Constant Volume Combustors (CVCs) or Pulse Detonation Combustors (PDCs) which are currently being considered for use in many classes of turbine engines for dramatic efficiency improvement. Technology readiness level of this ORC/WR approaches are presently at 2.0. The results of detailed modeling of an ORC/WR system as applied to a regional jet engine application were shown to capture a high degree of pressure gain capabilities. The results of engine cycle analysis indicated the level of specific fuel consumption (SFC) benefits to be 17 percent. The potential losses in pressure gain due to leakage were found to be closely coupled to the wave processes at the rotor endpoints of the ORC/WR system. Extensive investigation into the sealing approaches is reported. Sensitivity studies show that SFC gains of 10 percent remain available even when pressure gain levels are highly penalized. This indicates ORC/WR systems to have a high degree of tolerance to rotor leakage effects but also emphasizes their importance. An engine demonstration of an ORC/WR system is seen as key to progressing the TRL of this technology. An industrial engine was judged to be a highly advantageous platform for demonstration of a first generation ORC/WR system. Prior to such a demonstration, the existing NASA pressure exchanger wave rotor rig was identified as an opportunity to apply both expanded analytical modeling capabilities developed within this program and to identify and fix identified leakage issues existing within this rig. Extensive leakage analysis of the rig was performed and a detailed design of additional sealing strategies for this rig was generated.

  10. Magnetic Flux Compression Concept for Aerospace Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Robertson, Tony; Hawk, Clark W.; Turner, Matt; Koelfgen, Syri

    2000-01-01

    The objective of this research is to investigate system level performance and design issues associated with magnetic flux compression devices for aerospace power generation and propulsion. The proposed concept incorporates the principles of magnetic flux compression for direct conversion of nuclear/chemical detonation energy into electrical power. Specifically a magnetic field is compressed between an expanding detonation driven diamagnetic plasma and a stator structure formed from a high temperature superconductor (HTSC). The expanding plasma cloud is entirely confined by the compressed magnetic field at the expense of internal kinetic energy. Electrical power is inductively extracted, and the detonation products are collimated and expelled through a magnetic nozzle. The long-term development of this highly integrated generator/propulsion system opens up revolutionary NASA Mission scenarios for future interplanetary and interstellar spacecraft. The unique features of this concept with respect to future space travel opportunities are as follows: ability to implement high energy density chemical detonations or ICF microfusion bursts as the impulsive diamagnetic plasma source; high power density system characteristics constrain the size, weight, and cost of the vehicle architecture; provides inductive storage pulse power with a very short pulse rise time; multimegajoule energy bursts/terawatt power bursts; compact pulse power driver for low-impedance dense plasma devices; utilization of low cost HTSC material and casting technology to increase magnetic flux conservation and inductive energy storage; improvement in chemical/nuclear-to-electric energy conversion efficiency and the ability to generate significant levels of thrust with very high specific impulse; potential for developing a small, lightweight, low cost, self-excited integrated propulsion and power system suitable for space stations, planetary bases, and interplanetary and interstellar space travel; potential for attaining specific impulses approaching 10 (exp 6) seconds, which would enable missions to the outer planets within ten years and missions at interstellar distances within fifty years.

  11. Schlieren Imaging and Pulsed Detonation Engine Testing of Ignition by a Nanosecond Repetitively Pulsed Discharge

    DTIC Science & Technology

    2016-05-16

    in ethylene–air and aviation gasoline (avgas)–air mixtures. Testing of NRP discharges in the glow and corona regimes in PDE engines has been...in further detail in Refs. [17,21–23]. NRP discharges in the pin-to-pin configuration have been shown to operate in three regimes: corona , glow, and...assisted combustion Plasma assisted ignition Aircraft propulsionA nanosecond repetitively pulsed (NRP) discharge in the spark regime has been investigated

  12. Low-jitter high-power thyristor array pulse driver and generator

    DOEpatents

    Hanks, Roy L.

    2002-01-01

    A method and apparatus for generating low-jitter, high-voltage and high-current pulses for driving low impedance loads such as detonator fuses uses a MOSFET driver which, when triggered, discharges a high-voltage pre-charged capacitor into the primary of a toroidal current-multiplying transformer with multiple isolated secondary windings. The secondary outputs are suitable for driving an array of thyristors that discharge a precharged high-voltage capacitor and thus generating the required high-voltage and high-current pulse.

  13. Detonation Initiation and Evolution in Spray- Fueled Pulsed Detonation Rocket Engines

    DTIC Science & Technology

    2007-06-28

    shock by an nth fluid particle during the induction time is characterized by Z" = Uro ’, where o;,, is the induction time for that particle and o7, is a...12.5 15 z 15 s=20 25. 28 e 10 5 - 0 2.5 5 75 10 12.5 15 z 20 s=3.0, 31, 32 15- I- + E! lo 02.5 T 01251 2 T s 3.3.3.4, 3.5 20 10 F.... 0 25 5 75 10 12.5

  14. Evaluation of Catalytic and Thermal Cracking in a JP-8 Fueled Pulsed Detonation Engine (Postprint)

    DTIC Science & Technology

    2007-09-01

    this research. Each 0.91-m-long heat exchanger was fabricated with a 50.8-mm-dia, inconel - 625 , Schedule-10 inner tube and a 63.5-mm-dia, inconel -600...detonation tube had an inconel heat exchanger (described later). The PDE cycle consisted of three equally timed phases--fill, fire, and purge, as shown in...prevent phase change. The fuel was pressure fed to the inlet of the fuel heating system (FHS). The FHS consisted of two inconel heat exchangers, a

  15. [The Diagnostics of Detonation Flow External Field Based on Multispectral Absorption Spectroscopy Technology].

    PubMed

    Lü, Xiao-jing; Li, Ning; Weng, Chun-sheng

    2016-03-01

    Compared with traditional sampling-based sensing method, absorption spectroscopy technology is well suitable for detonation flow diagnostics, since it can provide with us fast response, nonintrusive, sensitive solution for situ measurements of multiple flow-field parameters. The temperature and concentration test results are the average values along the laser path with traditional absorption spectroscopy technology, while the boundary of detonation flow external field is unknown and it changes all the time during the detonation engine works, traditional absorption spectroscopy technology is no longer suitable for detonation diagnostics. The trend of line strength with temperature varies with different absorption lines. By increasing the number of absorption lines in the test path, more information of the non-uniform flow field can be obtained. In this paper, based on multispectral absorption technology, the reconstructed model of detonation flow external field distribution was established according to the simulation results of space-time conservation element and solution element method, and a diagnostic method of detonation flow external field was given. The model deviation and calculation error of the least squares method adopted were studied by simulation, and the maximum concentration and temperature calculation error was 20.1% and 3.2%, respectively. Four absorption lines of H2O were chosen and detonation flow was scanned at the same time. The detonation external flow testing system was set up for the valveless gas-liquid continuous pulse detonation engine with the diameter of 80 mm. Through scanning H2O absorption lines with a high frequency of 10 kHz, the on-line detection of detonation external flow was realized by direct absorption method combined with time-division multiplexing technology, and the reconstruction of dynamic temperature distribution was realized as well for the first time, both verifying the feasibility of the test method. The test results show that both of the temperature and H2O concentration rose with the arrival of detonation wave. With the increase of the vertical distance between the detonation tube nozzle and the laser path, the time of temperature and concentration coming to the peak delayed, and the temperature variation trend tended to slow down. At 20 cm from detonation tube nozzle, the maximum temperature hit 1 329 K and the maximum H2O concentration of 0.19 occurred at 4 ms after ignition. The research can provide with us the support for expanding the detonation test field with absorption spectroscopy technology, and can also help to promote the detonation mechanism research and to enhance the level of detonation engine control technology.

  16. Examination of Wave Speed in Rotating Detonation Engines Using Simplified Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2018-01-01

    A simplified, two-dimensional, computational fluid dynamic (CFD) simulation, with a reactive Euler solver is used to examine possible causes for the low detonation wave propagation speeds that are consistently observed in air breathing rotating detonation engine (RDE) experiments. Intense, small-scale turbulence is proposed as the primary mechanism. While the solver cannot model this turbulence, it can be used to examine the most likely, and profound effect of turbulence. That is a substantial enlargement of the reaction zone, or equivalently, an effective reduction in the chemical reaction rate. It is demonstrated that in the unique flowfield of the RDE, a reduction in reaction rate leads to a reduction in the detonation speed. A subsequent test of reduced reaction rate in a purely one-dimensional pulsed detonation engine (PDE) flowfield yields no reduction in wave speed. The reasons for this are explained. The impact of reduced wave speed on RDE performance is then examined, and found to be minimal. Two other potential mechanisms are briefly examined. These are heat transfer, and reactive mixture non-uniformity. In the context of the simulation used for this study, both mechanisms are shown to have negligible effect on either wave speed or performance.

  17. Numerical Modeling of Pulse Detonation Rocket Engine Gasdynamics and Performance

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This paper presents viewgraphs on the numerical modeling of pulse detonation rocket engines (PDRE), with an emphasis on the Gasdynamics and performance analysis of these engines. The topics include: 1) Performance Analysis of PDREs; 2) Simplified PDRE Cycle; 3) Comparison of PDRE and Steady-State Rocket Engines (SSRE) Performance; 4) Numerical Modeling of Quasi 1-D Rocket Flows; 5) Specific PDRE Geometries Studied; 6) Time-Accurate Thrust Calculations; 7) PDRE Performance (Geometries A B C and D); 8) PDRE Blowdown Gasdynamics (Geom. A B C and D); 9) PDRE Geometry Performance Comparison; 10) PDRE Blowdown Time (Geom. A B C and D); 11) Specific SSRE Geometry Studied; 12) Effect of F-R Chemistry on SSRE Performance; 13) PDRE/SSRE Performance Comparison; 14) PDRE Performance Study; 15) Grid Resolution Study; and 16) Effect of F-R Chemistry on SSRE Exit Species Mole Fractions.

  18. Transcriptomic Analysis of Compromise Between Air-Breathing and Nutrient Uptake of Posterior Intestine in Loach (Misgurnus anguillicaudatus), an Air-Breathing Fish.

    PubMed

    Huang, Songqian; Cao, Xiaojuan; Tian, Xianchang

    2016-08-01

    Dojo loach (Misgurnus anguillicaudatus) is an air-breathing fish species by using its posterior intestine to breathe on water surface. So far, the molecular mechanism about accessory air-breathing in fish is seldom addressed. Five cDNA libraries were constructed here for loach posterior intestines form T01 (the initial stage group), T02 (mid-stage of normal group), T03 (end stage of normal group), T04 (mid-stage of air-breathing inhibited group), and T05 (the end stage of air-breathing inhibited group) and subjected to perform RNA-seq to compare their transcriptomic profilings. A total of 92,962 unigenes were assembled, while 37,905 (40.77 %) unigenes were successfully annotated. 2298, 1091, and 3275 differentially expressed genes (fn1, ACE, EGFR, Pxdn, SDF, HIF, VEGF, SLC2A1, SLC5A8 etc.) were observed in T04/T02, T05/T03, and T05/T04, respectively. Expression levels of many genes associated with air-breathing and nutrient uptake varied significantly between normal and intestinal air-breathing inhibited group. Intraepithelial capillaries in posterior intestines of loaches from T05 were broken, while red blood cells were enriched at the surface of intestinal epithelial lining with 241 ± 39 cells per millimeter. There were periodic acid-schiff (PAS)-positive epithelial mucous cells in posterior intestines from both normal and air-breathing inhibited groups. Results obtained here suggested an overlap of air-breathing and nutrient uptake function of posterior intestine in loach. Intestinal air-breathing inhibition in loach would influence the posterior intestine's nutrient uptake ability and endothelial capillary structure stability. This study will contribute to our understanding on the molecular regulatory mechanisms of intestinal air-breathing in loach.

  19. Current and Future Critical Issues in Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Navaz, Homayun K.; Dix, Jeff C.

    1998-01-01

    The objective of this research was to tackle several problems that are currently of great importance to NASA. In a liquid rocket engine several complex processes take place that are not thoroughly understood. Droplet evaporation, turbulence, finite rate chemistry, instability, and injection/atomization phenomena are some of the critical issues being encountered in a liquid rocket engine environment. Pulse Detonation Engines (PDE) performance, combustion chamber instability analysis, 60K motor flowfield pattern from hydrocarbon fuel combustion, and 3D flowfield analysis for the Combined Cycle engine were of special interest to NASA. During the summer of 1997, we made an attempt to generate computational results for all of the above problems and shed some light on understanding some of the complex physical phenomena. For this purpose, the Liquid Thrust Chamber Performance (LTCP) code, mainly designed for liquid rocket engine applications, was utilized. The following test cases were considered: (1) Characterization of a detonation wave in a Pulse Detonation Tube; (2) 60K Motor wall temperature studies; (3) Propagation of a pressure pulse in a combustion chamber (under single and two-phase flow conditions); (4) Transonic region flowfield analysis affected by viscous effects; (5) Exploring the viscous differences between a smooth and a corrugated wall; and (6) 3D thrust chamber flowfield analysis of the Combined Cycle engine. It was shown that the LTCP-2D and LTCP-3D codes are capable of solving complex and stiff conservation equations for gaseous and droplet phases in a very robust and efficient manner. These codes can be run on a workstation and personal computers (PC's).

  20. Photographic laboratory studies of explosions.

    NASA Technical Reports Server (NTRS)

    Kamel, M. M.; Oppenheim, A. K.

    1973-01-01

    Description of a series of cinematographic studies of explosions made with a high-speed rotating-mirror streak camera which uses a high-frequency stroboscopic ruby laser as the light source. The results obtained mainly concern explosions initiated by focused laser irradiation from a pulsed neodymium laser in a detonating gas consisting essentially of an equimolar mixture of acetylene and oxygen at an initial pressure of 100 torr at room temperature. Among the most significant observations were observations of a spherical blast wave preceded by a Chapman-Jouguet detonation which is stabilized immediately after initiation, the merging of a spherical flame with a shock front of the blast wave in which the flame is propagating, the division of a spherical detonation front into a shock wave and flame, and the generation of shock waves by a network of spherical flames.

  1. Magnetohydrodynamic Augmentation of Pulse Detonation Rocket Engines (Preprint)

    DTIC Science & Technology

    2010-09-28

    augmentation of the thrust . Ejectors typically transfer energy between streams through shear stress between separate flow streams, where a portion of the...the opportunity to extract energy and apply it to a separate stream where the net thrust can be increased. With MHD augmentation , such as in the Pulse...with the PDRIME for separate or additional thrust augmentation . Results show potential performance gains under many flight and operating conditions

  2. Turbulent Mixing and Combustion for High-Speed Air-Breathing Propulsion Application

    DTIC Science & Technology

    2007-08-12

    deficit (the velocity of the wake relative to the free-stream velocity), decays rapidly with downstream distance, so that the streamwise velocity is...switched laser with double-pulse option) and a new imaging system (high-resolution: 4008x2672 pix2, low- noise (cooled) Cooke PCO-4000 CCD camera). The...was designed in-house for high-speed low- noise image acquisition. The KFS CCD image sensor was designed by Mark Wadsworth of JPL and has a resolution

  3. Basic Research Investigations into Multimode Laser and EM Launchers for Affordable, Rapid Access to Space (Volumes 1 and 2)

    DTIC Science & Technology

    2010-08-31

    The physics and operating principles for TEA C02 lasers can be found in several useful references (Patel, 1968; Siegman , 1986; Svelto, 1998 and...AND SUBTITLE 5a. CONTRACT NUMBER F A9550-05-1-0392 "Basic Research Investigations into Multimode Laser and 5b. GRANT NUMBER EM Launchers for...pulsed airbreathing/rocket laser propulsion. investigates the physics of laser energy deposition into stationary and hypersonic working fluids

  4. Recent results from the University of Washington's 38 mm ram accelerator

    NASA Technical Reports Server (NTRS)

    De Turenne, J. A.; Chew, G.; Bruckner, A. P.

    1992-01-01

    The ram accelerator is a propulsive device that accelerates projectiles using gasdynamic cycles similar to those which generate thrust in airbreathing ramjets. The projectile, analogous to the centerbody of a ramjet, travels supersonically through a stationary tube containing a gaseous fuel and oxidizer mixture. The projectile itself carries no onboard propellant. A combustion zone follows the projectile and stabilizes the shock structure. The resulting pressure distribution continuously accelerates the projectile. Several modes of ram accelerator operation have been investigated experimentally and theoretically. At velocities below the Chapman-Jouguet (C-J) detonation speed of the propellant mixture, the thermally choked propulsion mode accelerates the projectiles. At projectile velocities between approximately 90 and 110 percent of the C-J speed, a transdetonative propulsion mode occurs. At velocities beyond 110 percent of the C-J speed, projectiles experience superdetonative propulsion. This paper presents recent experimental results from these propulsion modes obtained with the University of Washington's 38-mm bore ram accelerator. Data from investigations with hydrogen diluted-gas mixtures are also introduced.

  5. Mode transition of plasma expansion for laser induced breakdown in Air

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei; Matsui, Kohei; Ofosu, Joseph A.; Yokota, Ippei; Komurasaki, Kimiya

    2017-03-01

    High-speed shadowgraph visualization experiments conducted using a 10 J pulse transversely excited atmospheric (TEA) CO2 laser in ambient air provided a state transition from overdriven to Chapman-Jouguet in the laser-supported detonation regime. At the state transition, the propagation velocity of the laser-supported detonation wave and the threshold laser intensity were 10 km/s and 1011 W/m2, respectively. State transition information, such as the photoionization caused by plasma UV radiation, of the avalanche ionization ahead of the ionization wave front can be elucidated from examination of the source seed electrons.

  6. NOx Emissions from a Rotating Detonation-wave Engine

    NASA Astrophysics Data System (ADS)

    Kailasanath, Kazhikathra; Schwer, Douglas

    2016-11-01

    Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. Progress towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model including NOx chemistry is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. Results to date show that NOx emissions are not a problem for the RDE due to the short residence times and the nature of the flow field. Furthermore, simulations show that the amount of NOx can be further reduced by tailoring the fluid dynamics within the RDE.

  7. Chemical Kinetics in the expansion flow field of a rotating detonation-wave engine

    NASA Astrophysics Data System (ADS)

    Kailasanath, Kazhikathra; Schwer, Douglas

    2014-11-01

    Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. A key step towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. The performance of a baseline hydrogen/air RDE increased from 4940 s to 5000 s with the expansion flow chemistry, due to recombination of radicals and more production of H2O, resulting in additional heat release.

  8. Exhaust Gas Emissions from a Rotating Detonation-wave Engine

    NASA Astrophysics Data System (ADS)

    Kailasanath, Kazhikathra; Schwer, Douglas

    2015-11-01

    Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. Progress towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model including NOx chemistry is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. The performance of a baseline hydrogen/air RDE increased from 4940 s to 5000 s with the expansion flow chemistry, due to recombination of radicals and more production of H2O, resulting in additional heat release. Work sponsored by the Office of Naval Research.

  9. Progress of air-breathing cathode in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Zejie; Mahadevan, Gurumurthy Dummi; Wu, Yicheng; Zhao, Feng

    2017-07-01

    Microbial fuel cell (MFC) is an emerging technology to produce green energy and vanquish the effects of environmental contaminants. Cathodic reactions are vital for high electrical power density generated from MFCs. Recently tremendous attentions were paid towards developing high performance air-breathing cathodes. A typical air-breathing cathode comprises of electrode substrate, catalyst layer, and air-diffusion layer. Prior researches demonstrated that each component influenced the performance of air-breathing cathode MFCs. This review summarized the progress in development of the individual component and elaborated main factors to the performance of air-breathing cathode.

  10. Response of surge protection devices to fast rising pulses

    NASA Technical Reports Server (NTRS)

    Mindel, I. N.

    1980-01-01

    Two types of lightning protection modules incorporating leadless (pill type) Zener like devices were evaluated with regard to their ability to suppress EMP induced transients. Two series of tests were performed to evaluate the ability of these modules to react to fast rate of rise ( 1Kv/ns) transients, and the attenuation introduced and the ability to limit damped sinusoid pulses which may be induced due to an EMP resulting from a nuclear detonation.

  11. Environmentally Benign Stab Detonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gash, A

    2005-12-21

    Many energetic systems can be activated via mechanical means. Percussion primers in small caliber ammunition and stab detonators used in medium caliber ammunition are just two examples. Current medium caliber (20-60mm) munitions are detonated through the use of impact sensitive stab detonators. Stab detonators are very sensitive and must be small, as to meet weight and size limitations. A mix of energetic powders, sensitive to mechanical stimulus, is typically used to ignite such devices. Stab detonators are mechanically activated by forcing a firing pin through the closure disc of the device and into the stab initiating mix. Rapid heating causedmore » by mechanically driven compression and friction of the mixture results in its ignition. The rapid decomposition of these materials generates a pressure/temperature pulse that is sufficient to initiate a transfer charge, which has enough output energy to detonate the main charge. This general type of ignition mix is used in a large variety of primers, igniters, and detonators.[1] Common primer mixes, such as NOL-130, are made up of lead styphnate (basic) 40%, lead azide (dextrinated) 20%, barium nitrate 20%, antimony sulfide 15%, and tetrazene 5%.[1] These materials pose acute and chronic toxicity hazards during mixing of the composition and later in the item life cycle after the item has been field functioned. There is an established need to replace these mixes on toxicity, health, and environmental hazard grounds. This effort attempts to demonstrate that environmentally acceptable energetic solgel coated flash metal multilayer nanocomposites can be used to replace current impact initiated devices (IIDs), which have hazardous and toxic components. Successful completion of this project will result in IIDs that include innocuous compounds, have sufficient output energy for initiation, meet current military specifications, are small, cost competitive, and perform as well as or better than current devices. We expect flash metal multilayer and sol-gel to be generic technologies applicable to a wide range of devices, especially in small caliber ammunition and sub-munitions. We will replace the NOL-130 mixture with a nanocomposite that consists of a mechanically robust energetic multilayer foil that has been coated with a sol-gel energetic material. The exothermic reactions are activated in this nanocomposite are the transformation of the multilayer material to its respective intermetallic alloy and the thermite reaction, which is characterized by very high temperatures, a small pressure pulse, and hot particle ejection. The proposed materials and their reaction products consist of, but are not limited to aluminum, nickel, iron, aluminum oxide, titanium, iron oxide and boron. These materials have much more desirable environmental and health characteristics than the NOL-130 composition.« less

  12. Development of a numerical tool to study the mixing phenomenon occurring during mode one operation of a multi-mode ejector-augmented pulsed detonation rocket engine

    NASA Astrophysics Data System (ADS)

    Dawson, Joshua

    A novel multi-mode implementation of a pulsed detonation engine, put forth by Wilson et al., consists of four modes; each specifically designed to capitalize on flow features unique to the various flow regimes. This design enables the propulsion system to generate thrust through the entire flow regime. The Multi-Mode Ejector-Augmented Pulsed Detonation Rocket Engine operates in mode one during take-off conditions through the acceleration to supersonic speeds. Once the mixing chamber internal flow exceeds supersonic speed, the propulsion system transitions to mode two. While operating in mode two, supersonic air is compressed in the mixing chamber by an upstream propagating detonation wave and then exhausted through the convergent-divergent nozzle. Once the velocity of the air flow within the mixing chamber exceeds the Chapman-Jouguet Mach number, the upstream propagating detonation wave no longer has sufficient energy to propagate upstream and consequently the propulsive system shifts to mode three. As a result of the inability of the detonation wave to propagate upstream, a steady oblique shock system is established just upstream of the convergent-divergent nozzle to initiate combustion. And finally, the propulsion system progresses on to mode four operation, consisting purely of a pulsed detonation rocket for high Mach number flight and use in the upper atmosphere as is needed for orbital insertion. Modes three and four appear to be a fairly significant challenge to implement, while the challenge of implementing modes one and two may prove to be a more practical goal in the near future. A vast number of potential applications exist for a propulsion system that would utilize modes one and two, namely a high Mach number hypersonic cruise vehicle. There is particular interest in the dynamics of mode one operation, which is the subject of this research paper. Several advantages can be obtained by use of this technology. Geometrically the propulsion system is fairly simple and as a result of the rapid combustion process the engine cycle is more efficient compared to its combined cycle counterparts. The flow path geometry consists of an inlet system, followed just downstream by a mixing chamber where an ejector structure is placed within the flow path. Downstream of the ejector structure is a duct leading to a convergent-divergent nozzle. During mode one operation and within the ejector, products from the detonation of a stoichiometric hydrogen/air mixture are exhausted directly into the surrounding secondary air stream. Mixing then occurs between both the primary and secondary flow streams, at which point the air mass containing the high pressure, high temperature reaction products is convected downstream towards the nozzle. The engine cycle is engineered to a specific number of detonations per second, creating the pulsating characteristic of the primary flow. The pulsing nature of the primary flow serves as a momentum augmentation, enhancing the thrust and specific impulse at low speeds. Consequently it is necessary to understand the transient mixing process between the primary and secondary flow streams occurring during mode one operation. Using OPENFOAMRTM, an analytic tool is developed to simulate the dynamics of the turbulent detonation process along with detailed chemistry in order to understand the physics involved with the stream interactions. The computational code has been developed within the framework of OPENFOAMRTM, an open-source alternative to commercial CFD software. A conservative formulation of the Farve averaged Navier-Stokes equations is implemented to facilitate programming and numerical stability. Time discretization is accomplished by using the Crank-Nicolson method, achieving second order convergence in time. Species mass fraction transport equations are implemented and a Seulex ODE solver was used to resolve the system of ordinary differential equations describing the hydrogen-air reaction mechanism detailed in Appendix A. The Seulex ODE solution algorithm is an extrapolation method based on the linearly implicit Euler method with step size control. A second order total variation diminishing method with a modified Sweby flux limiter was used for space discretization. And finally the use of operator splitting (PISO algorithm, and chemical kinetics) is essential due to the significant differences in characteristic time scales evolving simultaneously in turbulent reactive flow. Capturing the turbulent nature of the combustion process was done using the k-o-SST turbulence model, as formulated by Mentor [1]. Mentor's formulation is well suited to resolve the boundary layer while remaining relatively insensitive to freestream conditions, blending the merits of both the k-o and k-epsilon models. Further development of the tool is possible, most notably with the Numerical Propulsion System Simulation application. NPSS allows the user to take advantage of a "zooming" functionality in which high fidelity models of engine components can be integrated into NPSS models, allowing for a more robust propulsion system simulation.

  13. Combining MHD Airbreathing and Fusion Rocket Propulsion for Earth-to-Orbit Flight

    NASA Astrophysics Data System (ADS)

    Froning, H. D.; Miley, G. H.; Luo, Nie; Yang, Yang; Momota, H.; Burton, E.

    2005-02-01

    Previous studies have shown that Single-State-to-Orbit (SSTO) vehicle propellant can be reduced by Magnets-Hydro-Dynamic (MHD) processes that minimize airbreathing propulsion losses and propellant consumption during atmospheric flight. Similarly additional reduction in SSTO propellant is enabled by Inertial Electrostatic Confinement (IEC) fusion, whose more energetic reactions reduce rocket propellant needs. MHD airbreathing propulsion during an SSTO vehicle's initial atmospheric flight phase and IEC fusion propulsion during its final exo-atmospheric flight phase is therefore being explored. Accomplished work is not yet sufficient for claiming such a vehicle's feasibility. But takeoff and propellant mass for an MHD airbreathing and IEC fusion vehicle could be as much as 25 and 40 percent less than one with ordinary airbreathing and IEC fusion; and as much as 50 and 70 percent less than SSTO takeoff and propellant mass with MHD airbreathing and chemical rocket propulsion. Thus this unusual combined cycle engine shows great promise for performance gains beyond contemporary combined-cycle airbreathing engines.

  14. Nanotechnology Investigated for Future Gelled and Metallized Gelled Fuels

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    2003-01-01

    The objective of this research is to create combustion data for gelled and metallized gelled fuels using unique nanometer-sized gellant particles and/or nanometer-sized aluminum particles. Researchers at the NASA Glenn Research Center are formulating the fuels for both gas turbine and pulsed detonation engines. We intend to demonstrate metallized gelled fuel ignition characteristics for pulse detonation engines with JP/aluminum fuel and for gas turbine engines with gelled JP, propane, and methane fuel. The fuels to be created are revolutionary as they will deliver the highest theoretically maximum performance of gelled and metallized gelled fuels. Past combustion work has used micrometer-sized particles, which have limited the combustion performance of gelled and metallized gelled fuels. The new fuel used nanometer-sized aluminum oxide particles, which reduce the losses due to mismatch in the gas and solid phases in the exhaust. Gelled fuels provide higher density, added safety, reduced fuel slosh, reduced leakage, and increased exhaust velocity. Altogether, these benefits reduce the overall size and mass of the vehicle, increasing its flexibility.

  15. Nanodiamond embedded ta-C composite film by pulsed filtered vacuum arc deposition from a single target

    NASA Astrophysics Data System (ADS)

    Iyer, Ajai; Etula, Jarkko; Ge, Yanling; Liu, Xuwen; Koskinen, Jari

    2016-11-01

    Detonation Nanodiamonds (DNDs) are known to have sp3 core, sp2 shell, small size (few nm) and are gaining importance as multi-functional nanoparticles. Diverse methods have been used to form composites, containing detonation nanodiamonds (DNDs) embedded in conductive and dielectric matrices for various applications. Here we show a method, wherein DND-ta-C composite film, consisting of DNDs embedded in ta-C matrix have been co-deposited from the same cathode by pulsed filtered cathodic vacuum arc method. Transmission Electron Microscope analysis of these films revel the presence of DNDs embedded in the matrix of amorphous carbon. Raman spectroscopy indicates that the presence of DNDs does not adversely affect the sp3 content of DND-ta-C composite film compared to ta-C film of same thickness. Nanoindentation and nanowear tests indicate that DND-ta-C composite films possess improved mechanical properties in comparison to ta-C films of similar thickness.

  16. Research in Hypersonic Airbreathing Propulsion at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Kumar, Ajay; Drummond, J. Philip; McClinton, Charles R.; Hunt, James L.

    2001-01-01

    The NASA Langley Research Center has been conducting research for over four decades to develop technology for an airbreathing-propelled vehicle. Several other organizations within the United States have also been involved in this endeavor. Even though significant progress has been made over this period, a hypersonic airbreathing vehicle has not yet been realized due to low technology maturity. One of the major reasons for the slow progress in technology development has been the low level and cyclic nature of funding. The paper provides a brief historical overview of research in hypersonic airbreathing technology and then discusses current efforts at NASA Langley to develop various analytical, computational, and experimental design tools and their application in the development of future hypersonic airbreathing vehicles. The main focus of this paper is on the hypersonic airbreathing propulsion technology.

  17. Laser Powered Launch Vehicle Performance Analyses

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Liu, Jiwen; Wang, Ten-See (Technical Monitor)

    2001-01-01

    The purpose of this study is to establish the technical ground for modeling the physics of laser powered pulse detonation phenomenon. Laser powered propulsion systems involve complex fluid dynamics, thermodynamics and radiative transfer processes. Successful predictions of the performance of laser powered launch vehicle concepts depend on the sophisticate models that reflects the underlying flow physics including the laser ray tracing the focusing, inverse Bremsstrahlung (IB) effects, finite-rate air chemistry, thermal non-equilibrium, plasma radiation and detonation wave propagation, etc. The proposed work will extend the base-line numerical model to an efficient design analysis tool. The proposed model is suitable for 3-D analysis using parallel computing methods.

  18. Space System Survivability

    NASA Astrophysics Data System (ADS)

    Kuller, W. G.; Hanifen, D. W.

    1982-07-01

    Exoatmospheric detonations of nuclear weapons produce a broad spectrum of effects which can prevent operational space missions from being successfully accomplished. The spacecraft may be exposed to the prompt radiation from the detonations which can cause upset or burnout of critical mission components through Transient Radiation Effects on Electronics (TREE) or System Generated Electromagnetic Pulse (SGEMP). Continual exposure to the trapped radiation environment may cause component failure due to total dose or Electron Caused EMP (ECEMP). Satellite links to ground and airborne terminals are subject to serious degradation due to signal absorption and scintillation. The ground data stations and lines of communications are subject to failure from the broad range effects of high-altitude EMP.

  19. Development of a Pulsed Combustion Actuator For High-Speed Flow Control

    NASA Technical Reports Server (NTRS)

    Cutler, Andrew D.; Beck, B. Terry; Wilkes, Jennifer A.; Drummond, J. Philip; Alderfer, David W.; Danehy, Paul M.

    2005-01-01

    This paper describes the flow within a prototype actuator, energized by pulsed combustion or detonations, that provides a pulsed jet suitable for flow control in high-speed applications. A high-speed valve, capable of delivering a pulsed stream of reactants a mixture of H2 and air at rates of up to 1500 pulses per second, has been constructed. The reactants burn in a resonant chamber, and the products exit the device as a pulsed jet. High frequency pressure transducers have been used to monitor the pressure fluctuations in the device at various reactant injection frequencies, including both resonant and off-resonant conditions. The combustion chamber has been constructed with windows, and the flow inside it has been visualized using Planar Laser-Induced Fluorescence (PLIF). The pulsed jet at the exit of the device has been observed using schlieren.

  20. Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments.

    PubMed

    Rodriguez, George; Gilbertson, Steve M

    2017-01-27

    Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolves its spectral response, shows that 100-MHz-1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 µm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. Results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor.

  1. Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments

    PubMed Central

    Rodriguez, George; Gilbertson, Steve M.

    2017-01-01

    Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolves its spectral response, shows that 100-MHz–1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 μm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. Results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor. PMID:28134819

  2. Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments

    DOE PAGES

    Rodriguez, George; Gilbertson, Steve Michael

    2017-01-27

    Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolvesmore » its spectral response, shows that 100-MHz–1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 µm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. In conclusion, results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor.« less

  3. Concept for a high performance MHD airbreathing-IEC fusion rocket

    NASA Astrophysics Data System (ADS)

    Froning, H. D.; Miley, G. H.; Nadler, J.; Shaban, Y.; Momota, H.; Burton, E.

    2001-02-01

    Previous studies have shown that Single-State-to-Orbit (SSTO) vehicle propellant can be reduced by Magnets-Hydro-Dynamic (MHD) processes that minimize airbreathing propulsion losses and propellant consumption during atmospheric flight, and additional reduction in SSTO propellant is enabled by Inertial Electrostatic Confinement (IEC) fusion, whose more energetic reactions reduce rocket propellant needs. MHD airbreathing propulsion during an SSTO vehicle's initial atmospheric flight phase and IEC fusion propulsion during its final exo-atmospheric flight phase is therefore being explored. Accomplished work is not yet sufficient for claiming such a vehicle's feasibility. But takeoff and propellant mass for an MHD airbreathing and IEC fusion vehicle could be as much as 25 and 40 percent less than one with ordinary airbreathing and IEC fusion; and as much as 50 and 70 percent less than SSTO takeoff and propellant mass with MHD airbreathing and chemical rocket propulsion. .

  4. Air-Breathing Ramjet Electric Propulsion for Controlling Low-Orbit Spacecraft Motion to Compensate for Aerodynamic Drag

    NASA Astrophysics Data System (ADS)

    Erofeev, A. I.; Nikiforov, A. P.; Popov, G. A.; Suvorov, M. O.; Syrin, S. A.; Khartov, S. A.

    2017-12-01

    Problems on designing the air-breathing ramjet electric propulsion thruster for controlling loworbit spacecraft motion are examined in the paper. Information for choosing orbits' altitudes for reasonable application of an air-breathing ramjet electric propulsion thruster and propellant exhaust velocity is presented. Estimates of the probable increase of gas concentration in the area of air-breathing ramjet ionization are presented. The test results of the thruster are also given.

  5. Static and Hypersonic Experimental Analysis of Impulse Generation in Air-Breathing Laser-Thermal Propulsion

    NASA Astrophysics Data System (ADS)

    Salvador, Israel Irone

    The present research campaign centered on static and hypersonic experiments performed with a two-dimensional, repetitively-pulsed (RP) laser Lightcraft model. The future application of interest for this basic research endeavor is the laser launch of nano- and micro-satellites (i.e., 1-100 kg payloads) into Low Earth Orbit (LEO), at low-cost and "on-demand". This research began with an international collaboration on Beamed Energy Propulsion between the United States Air Force and Brazilian Air Force to conduct experiments at the Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics (HTN-LAH). The laser propulsion (LP) experiments employed the T3 Hypersonic Shock Tunnel (HST), integrated with twin gigawatt pulsed Lumonics 620-TEA CO2 lasers to produce the required test conditions. Following an introduction of the pulsed laser thermal propulsion concept and a state-of-the-art review of the topic, the principal physical processes are outlined starting from the onset of the laser pulse and subsequent laser-induced air-breakdown, to the expansion and exhaust of the resulting blast wave. After installation of the 254 mm wide, 2D Lightcraft model into the T3 tunnel, static LP tests were performed under quiescent (no-flow) conditions at ambient pressures of 0.06, 0.15, 0.3 and 1 bar, using the T3 test-section/dump-tank as a vacuum chamber. Time-dependent surface pressure distributions were measured over the engine thrust-generating surfaces following laser energy deposition; the delivered impulse and momentum coupling coefficients (Cm) were calculated from that pressure data. A Schlieren visualization system (using a high-speed Cordin digital camera) captured the laser breakdown and blast wave expansion process. The 2D model's Cm performance of 600 to 3000 N/MW was 2.5-5x higher than theoretical projections available in the literature, but indeed in the realm of feasibility for static conditions. Also, these Cm values exceed that for smaller Lightcraft models (98 to 161 mm in diameter), probably due to the more efficient delivery of laser-induced blast wave energy across the 2D model's larger impulse surface area. Next, the hypersonic campaign was carried out, subjecting the 2D model to nominal Mach numbers ranging from 6 to 10. Again, time-dependent surface pressure distributions were recorded together with Schlieren movies of the flow field structure resulting from laser energy deposition. These visualizations of inlet and absorption chamber flowfields, enabled the qualitative analysis of important phenomena impacting laser-propelled hypersonic airbreathing flight. The laser-induced breakdown took an elongated vertically-oriented geometry, occurring off-surface and across the inlet's mid-channel---quite different from the static case in which the energy was deposited very near the shroud under-surface. The shroud under-surface pressure data indicated laser-induced increases of 0.7-0.9 bar with laser pulse energies of ˜170 J, off-shroud induced breakdown condition, and Mach number of 7. The results of this research corroborate the feasibility of laser powered, airbreathing flight with infinite specific impulse (Isp=infinity): i.e., without the need for propellant injection at the laser focus. Additionally, it is shown that further reductions in inlet air working fluid velocity---with attendant increases in static pressure and density---is necessary to generate higher absorption chamber pressure and engine impulse. Finally, building on lessons learned from the present work, the future research plan is laid out for: a) the present 2D model with full inlet forebody, exploring higher laser pulse energies and multi-pulse phenomena; b) a smaller, redesigned 2D model; c) a 254 mm diameter axisymmetric Lightcraft model; and, d) a laser-electromagnetic accelerator model, designed around a 2-Tesla pulsed electromagnet contracted under the present program.

  6. Research Technology

    NASA Image and Video Library

    1999-10-21

    Pictured is an artist's concept of an advanced chemical propulsion system called Pulse Detonation. Long term technology research in this advanced propulsion system has the potential to dramatically change the way we think about space propulsion systems. This research is expected to significantly reduce the cost of space travel within the next 25 years.

  7. Handbook for Nuclear Weapons Effects under Arctic Conditions. Sanitized.

    DTIC Science & Technology

    1980-04-30

    Atmos- phere Symposium at Oslo, July 1956, Sutcliffe, R.C., Ed., Pergamon Press, Almsford, NY, 1958, UNCLASSIFIED. Nakonechny, Basil V., The Arctic...venting prior to emision of the first S bubble pulse. If the detonation occurs close enough to the surface so that ice melt is involved in the initial

  8. Changes in cardiac output during swimming and aquatic hypoxia in the air-breathing Pacific tarpon.

    PubMed

    Clark, T D; Seymour, R S; Christian, K; Wells, R M G; Baldwin, J; Farrell, A P

    2007-11-01

    Pacific tarpon (Megalops cyprinoides) use a modified gas bladder as an air-breathing organ (ABO). We examined changes in cardiac output (V(b)) associated with increases in air-breathing that accompany exercise and aquatic hypoxia. Juvenile (0.49 kg) and adult (1.21 kg) tarpon were allowed to recover in a swim flume at 27 degrees C after being instrumented with a Doppler flow probe around the ventral aorta to monitor V(b) and with a fibre-optic oxygen sensor in the ABO to monitor air-breathing frequency. Under normoxic conditions and in both juveniles and adults, routine air-breathing frequency was 0.03 breaths min(-1) and V(b) was about 15 mL min(-1) kg(-1). Normoxic exercise (swimming at about 1.1 body lengths s(-1)) increased air-breathing frequency by 8-fold in both groups (reaching 0.23 breaths min(-1)) and increased V(b) by 3-fold for juveniles and 2-fold for adults. Hypoxic exposure (2 kPa O2) at rest increased air-breathing frequency 19-fold (to around 0.53 breaths min(-1)) in both groups, and while V(b) again increased 3-fold in resting juvenile fish, V(b) was unchanged in resting adult fish. Exercise in hypoxia increased air-breathing frequency 35-fold (to 0.95 breaths min(-1)) in comparison with resting normoxic fish. While juvenile fish increased V(b) nearly 2-fold with exercise in hypoxia, adult fish maintained the same V(b) irrespective of exercise state and became agitated in comparison. These results imply that air-breathing during exercise and hypoxia can benefit oxygen delivery, but to differing degrees in juvenile and adult tarpon. We discuss this difference in the context of myocardial oxygen supply.

  9. The hard start phenomena in hypergolic engines. Volume 5: RCS engine deformation and destruct tests

    NASA Technical Reports Server (NTRS)

    Miron, Y.; Perlee, H. E.

    1974-01-01

    Tests were conducted to determine the causes of Apollo Reaction Control (RCS) engine failures. Stainless steel engines constructed for use in the destructive tests are described. The tests conducted during the three phase investigation are discussed. It was determined that the explosive reaction that destroys the RCS engines occurs at the time of engine ignition and is apparently due to either the detonation of the heterogeneous constituents of the rocket engine, consisting primarily of unreacted propellant droplets and vapors, and/or the detonation of explosive materials accumulated on the engine walls from previous pulses. Photographs of the effects of explosions on the simulated RCS engines are provided.

  10. TARANTULA 2011 in JWL++

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souers, P C; Haylett, D; Vitello, P

    2011-10-27

    Using square zoning, the 2011 version of the kinetic package Tarantula matches cylinder data, cylinder dead zones, and cylinder failure with the same settings for the first time. The key is the use of maximum pressure rather than instantaneous pressure. Runs are at 40, 200 and 360 z/cm using JWL++ as the host model. The model also does run-to-detonation, thin-pulse initiation with a P-t curve and air gap crossing, all in cylindrical geometry. Two sizes of MSAD/LX-10/LX-17 snowballs work somewhat with these settings, but are too weak, so that divergent detonation is a challenge for the future. Butterfly meshes aremore » considered but do not appear to solve the issue.« less

  11. PDE Nozzle Optimization Using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Billings, Dana; Turner, James E. (Technical Monitor)

    2000-01-01

    Genetic algorithms, which simulate evolution in natural systems, have been used to find solutions to optimization problems that seem intractable to standard approaches. In this study, the feasibility of using a GA to find an optimum, fixed profile nozzle for a pulse detonation engine (PDE) is demonstrated. The objective was to maximize impulse during the detonation wave passage and blow-down phases of operation. Impulse of each profile variant was obtained by using the CFD code Mozart/2.0 to simulate the transient flow. After 7 generations, the method has identified a nozzle profile that certainly is a candidate for optimum solution. The constraints on the generality of this possible solution remain to be clarified.

  12. Air-breathing adaptation in a marine Devonian lungfish.

    PubMed

    Clement, Alice M; Long, John A

    2010-08-23

    Recent discoveries of tetrapod trackways in 395 Myr old tidal zone deposits of Poland (Niedźwiedzki et al. 2010 Nature 463, 43-48 (doi:10.1038/nature.08623)) indicate that vertebrates had already ventured out of the water and might already have developed some air-breathing capacity by the Middle Devonian. Air-breathing in lungfishes is not considered to be a shared specialization with tetrapods, but evolved independently. Air-breathing in lungfishes has been postulated as starting in Middle Devonian times (ca 385 Ma) in freshwater habitats, based on a set of skeletal characters involved in air-breathing in extant lungfishes. New discoveries described herein of the lungfish Rhinodipterus from marine limestones of Australia identifies the node in dipnoan phylogeny where air-breathing begins, and confirms that lungfishes living in marine habitats had also developed specializations to breathe air by the start of the Late Devonian (ca 375 Ma). While invasion of freshwater habitats from the marine realm was previously suggested to be the prime cause of aerial respiration developing in lungfishes, we believe that global decline in oxygen levels during the Middle Devonian combined with higher metabolic costs is a more likely driver of air-breathing ability, which developed in both marine and freshwater lungfishes and tetrapodomorph fishes such as Gogonasus.

  13. Air-breathing adaptation in a marine Devonian lungfish

    PubMed Central

    Clement, Alice M.; Long, John A.

    2010-01-01

    Recent discoveries of tetrapod trackways in 395 Myr old tidal zone deposits of Poland (Niedźwiedzki et al. 2010 Nature 463, 43–48 (doi:10.1038/nature.08623)) indicate that vertebrates had already ventured out of the water and might already have developed some air-breathing capacity by the Middle Devonian. Air-breathing in lungfishes is not considered to be a shared specialization with tetrapods, but evolved independently. Air-breathing in lungfishes has been postulated as starting in Middle Devonian times (ca 385 Ma) in freshwater habitats, based on a set of skeletal characters involved in air-breathing in extant lungfishes. New discoveries described herein of the lungfish Rhinodipterus from marine limestones of Australia identifies the node in dipnoan phylogeny where air-breathing begins, and confirms that lungfishes living in marine habitats had also developed specializations to breathe air by the start of the Late Devonian (ca 375 Ma). While invasion of freshwater habitats from the marine realm was previously suggested to be the prime cause of aerial respiration developing in lungfishes, we believe that global decline in oxygen levels during the Middle Devonian combined with higher metabolic costs is a more likely driver of air-breathing ability, which developed in both marine and freshwater lungfishes and tetrapodomorph fishes such as Gogonasus. PMID:20147310

  14. Laboratory Demonstrations for PDE and Metals Combustion at NASA MSFC's Advanced Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Report provides status reporting on activities under order no. H-30549 for the period December 1 through December 31, 1999. Details the activities of the contract in the coordination of planned conduct of experiments at the MSFC Advanced Propulsion Laboratory in pulse detonation MHD power production and metals combustion.

  15. Off-Design Analysis of a High Bypass Turbofan Using a Pulsed Detonation Combustor

    DTIC Science & Technology

    2010-03-01

    Engine Off-Design Results.............................................................39 Code Verification and Operating Limit ...38 4.4. Maximum Operating Limit Baseline and Hybrid Engine ......................................... 41 4.5. Throttle...that an isentropic expansion process takes place followed by a heat rejection to close the cycle. The derivation for the solutions for the Chapman

  16. Effect of Pulse Detonation-Plasma Technology Treatment on T8 Steel Microstructures

    NASA Astrophysics Data System (ADS)

    Yu, Jiuming; Zhang, Linwei; Liu, Keming; Lu, Lei; Lu, Deping; Zhou, Haitao

    2017-12-01

    T8 steel surfaces were treated by pulse detonation-plasma technology (PDT) at capacitance values of 600, 800, and 1000 μF, and the effects of PDT were analyzed using x-ray diffraction, scanning electron microscopy, transmission electron microscopy, electron back-scattered diffraction, and micro-hardness tester and friction wear tester. The surface of T8 steel is first smoothed out, and then, craters are formed due to the inhomogeneity of the PDT energy and targeting during PDT treatment. The initial martensite in the T8 steel surface layer changes to austenite, and Fe3N is formed due to nitriding. The thickness of the modified layer, which is composed of columnar and fine grain structures, increases with the increasing capacity. Preferential orientation occurred in the {110} 〈 001 〉 direction in the modified layer, and the number of low-angle grain boundaries increased significantly after PDT treatment. The micro-hardness and wear resistance of the T8 steel was improved by PDT treatment, even doubled after the treatment with the capacitance of 1000 μF.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, George; Gilbertson, Steve Michael

    Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolvesmore » its spectral response, shows that 100-MHz–1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 µm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. In conclusion, results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor.« less

  18. Improved heat tolerance in air drives the recurrent evolution of air-breathing.

    PubMed

    Giomi, Folco; Fusi, Marco; Barausse, Alberto; Mostert, Bruce; Pörtner, Hans-Otto; Cannicci, Stefano

    2014-05-07

    The transition to air-breathing by formerly aquatic species has occurred repeatedly and independently in fish, crabs and other animal phyla, but the proximate drivers of this key innovation remain a long-standing puzzle in evolutionary biology. Most studies attribute the onset of air-breathing to the repeated occurrence of aquatic hypoxia; however, this hypothesis leaves the current geographical distribution of the 300 genera of air-breathing crabs unexplained. Here, we show that their occurrence is mainly related to high environmental temperatures in the tropics. We also demonstrate in an amphibious crab that the reduced cost of oxygen supply in air extends aerobic performance to higher temperatures and thus widens the animal's thermal niche. These findings suggest that high water temperature as a driver consistently explains the numerous times air-breathing has evolved. The data also indicate a central role for oxygen- and capacity-limited thermal tolerance not only in shaping sensitivity to current climate change but also in underpinning the climate-dependent evolution of animals, in this case the evolution of air-breathing.

  19. Improved heat tolerance in air drives the recurrent evolution of air-breathing

    PubMed Central

    Giomi, Folco; Fusi, Marco; Barausse, Alberto; Mostert, Bruce; Pörtner, Hans-Otto; Cannicci, Stefano

    2014-01-01

    The transition to air-breathing by formerly aquatic species has occurred repeatedly and independently in fish, crabs and other animal phyla, but the proximate drivers of this key innovation remain a long-standing puzzle in evolutionary biology. Most studies attribute the onset of air-breathing to the repeated occurrence of aquatic hypoxia; however, this hypothesis leaves the current geographical distribution of the 300 genera of air-breathing crabs unexplained. Here, we show that their occurrence is mainly related to high environmental temperatures in the tropics. We also demonstrate in an amphibious crab that the reduced cost of oxygen supply in air extends aerobic performance to higher temperatures and thus widens the animal's thermal niche. These findings suggest that high water temperature as a driver consistently explains the numerous times air-breathing has evolved. The data also indicate a central role for oxygen- and capacity-limited thermal tolerance not only in shaping sensitivity to current climate change but also in underpinning the climate-dependent evolution of animals, in this case the evolution of air-breathing. PMID:24619438

  20. High capacity for extracellular acid-base regulation in the air-breathing fish Pangasianodon hypophthalmus.

    PubMed

    Damsgaard, Christian; Gam, Le Thi Hong; Tuong, Dang Diem; Thinh, Phan Vinh; Huong Thanh, Do Thi; Wang, Tobias; Bayley, Mark

    2015-05-01

    The evolution of accessory air-breathing structures is typically associated with reduction of the gills, although branchial ion transport remains pivotal for acid-base and ion regulation. Therefore, air-breathing fishes are believed to have a low capacity for extracellular pH regulation during a respiratory acidosis. In the present study, we investigated acid-base regulation during hypercapnia in the air-breathing fish Pangasianodon hypophthalmus in normoxic and hypoxic water at 28-30°C. Contrary to previous studies, we show that this air-breathing fish has a pronounced ability to regulate extracellular pH (pHe) during hypercapnia, with complete metabolic compensation of pHe within 72 h of exposure to hypoxic hypercapnia with CO2 levels above 34 mmHg. The high capacity for pHe regulation relies on a pronounced ability to increase levels of HCO3(-) in the plasma. Our study illustrates the diversity in the physiology of air-breathing fishes, such that generalizations across phylogenies may be difficult. © 2015. Published by The Company of Biologists Ltd.

  1. Axisymmetric Numerical Modeling of Pulse Detonation Rocket Engines

    NASA Technical Reports Server (NTRS)

    Morris, Christopher I.

    2005-01-01

    Pulse detonation rocket engines (PDREs) have generated research interest in recent years as a chemical propulsion system potentially offering improved performance and reduced complexity compared to conventional rocket engines. The detonative mode of combustion employed by these devices offers a thermodynamic advantage over the constant-pressure deflagrative combustion mode used in conventional rocket engines and gas turbines. However, while this theoretical advantage has spurred considerable interest in building PDRE devices, the unsteady blowdown process intrinsic to the PDRE has made realistic estimates of the actual propulsive performance problematic. The recent review article by Kailasanath highlights some of the progress that has been made in comparing the available experimental measurements with analytical and numerical models. In recent work by the author, a quasi-one-dimensional, finite rate chemistry CFD model was utilized to study the gasdynamics and performance characteristics of PDREs over a range of blowdown pressure ratios from 1-1000. Models of this type are computationally inexpensive, and enable first-order parametric studies of the effect of several nozzle and extension geometries on PDRE performance over a wide range of conditions. However, the quasi-one-dimensional approach is limited in that it cannot properly capture the multidimensional blast wave and flow expansion downstream of the PDRE, nor can it resolve nozzle flow separation if present. Moreover, the previous work was limited to single-pulse calculations. In this paper, an axisymmetric finite rate chemistry model is described and utilized to study these issues in greater detail. Example Mach number contour plots showing the multidimensional blast wave and nozzle exhaust plume are shown. The performance results are compared with the quasi-one-dimensional results from the previous paper. Both Euler and Navier-Stokes solutions are calculated in order to determine the effect of viscous effects in the nozzle flowfield. Additionally, comparisons of the model results to performance data from CalTech, as well as experimental flowfield measurements from Stanford University, are also reported.

  2. Air-breathing fishes in aquaculture. What can we learn from physiology?

    PubMed

    Lefevre, S; Wang, T; Jensen, A; Cong, N V; Huong, D T T; Phuong, N T; Bayley, M

    2014-03-01

    During the past decade, the culture of air-breathing fish species has increased dramatically and is now a significant global source of protein for human consumption. This development has generated a need for specific information on how to maximize growth and minimize the environmental effect of culture systems. Here, the existing data on metabolism in air-breathing fishes are reviewed, with the aim of shedding new light on the oxygen requirements of air-breathing fishes in aquaculture, reaching the conclusion that aquatic oxygenation is much more important than previously assumed. In addition, the possible effects on growth of the recurrent exposure to deep hypoxia and associated elevated concentrations of carbon dioxide, ammonia and nitrite, that occurs in the culture ponds used for air-breathing fishes, are discussed. Where data on air-breathing fishes are simply lacking, data for a few water-breathing species will be reviewed, to put the physiological effects into a growth perspective. It is argued that an understanding of air-breathing fishes' respiratory physiology, including metabolic rate, partitioning of oxygen uptake from air and water in facultative air breathers, the critical oxygen tension, can provide important input for the optimization of culture practices. Given the growing importance of air breathers in aquaculture production, there is an urgent need for further data on these issues. © 2014 The Fisheries Society of the British Isles.

  3. Cardiorespiratory responses to hypoxia in the African catfish, Clarias gariepinus (Burchell 1822), an air-breathing fish.

    PubMed

    Belão, T C; Leite, C A C; Florindo, L H; Kalinin, A L; Rantin, F T

    2011-10-01

    The African catfish, Clarias gariepinus, possesses a pair of suprabranchial chambers located in the dorsal-posterior part of the branchial cavity having extensions from the upper parts of the second and fourth gill arches, forming the arborescent organs. This structure is an air-breathing organ (ABO) and allows aerial breathing (AB). We evaluated its cardiorespiratory responses to aquatic hypoxia. To determine the mode of air-breathing (obligate or accessory), fish had the respiratory frequency (f (R)) monitored and were subjected to normoxic water (PwO(2) = 140 mmHg) without becoming hyperactive for 30 h. During this period, all fish survived without displaying evidences of hyperactivity and maintained unchanged f (R), confirming that this species is a facultative air-breather. Its aquatic O(2) uptake ([Formula: see text]) was maintained constant down to a critical PO(2) (PcO(2)) of 60 mmHg, below which [Formula: see text] declined linearly with further reductions of inspired O(2) tension (PiO(2)). Just above the PcO(2) the ventilatory tidal volume (V (T)) increased significantly along with gill ventilation ([Formula: see text]), while f (R) changed little. Consequently, the water convection requirement [Formula: see text] increased steeply. This threshold applied to a cardiac response that included reflex bradycardia. AB was initiated at PiO(2) = 140 mmHg (normoxia) and air-breathing episodes increased linearly with more severe hypoxia, being significantly higher at PiO(2) tensions below the PcO(2). Air-breathing episodes were accompanied by bradycardia pre air-breath, to tachycardia post air-breath.

  4. Ontogenetic changes and developmental adjustments in lactate dehydrogenase isozymes of an obligate air-breathing fish Channa punctatus during deprivation of air access.

    PubMed

    Ahmad, Riaz; Hasnain, Absar-Ul

    2005-02-01

    In air-breathing snakehead Channa punctatus, Ldh-B is expressed at all ontogenetic and developmental stages, while Ldh-A is expressed temporally in pre-hatchlings 12-13 days ahead of bimodal respiration marked by air-breathing. Remarkable differences are observed in the LDH isozyme expression among various ontogenetic and developmental stages upon denying air access. When denied air access, water-breathing larvae show two distinct characteristics: (i) they survive longer than transitory air-breathers due to independence from air-breathing and (ii) there is more transient induction of Ldh-B than Ldh-A. Transition to bimodal breathing, which occurred post-hatching in 15-day old larvae, is coincidental with inducibility of Ldh-A and concomitant down-regulation of Ldh-B. Heart tissue from air-breathing adults denied air access shows a preferential expression of LDH-A subunit and slight down-regulation of LDH-B. Heterotetramers of A and B subunits participate in adjusting LDH levels among those stages which either precede air-breathing switchover, or are subsequent to this transition. The contribution of heterotetramers depends on the stage-specific levels of LDH homotetramers A(4) or B(4). Scaling of muscle mass during growth, tolerance to extended deprivation of air access and induction of Ldh-A are correlated. Response to restoring air contact indicated that advanced air-breathing stages of C. punctatus possess an inherent capacity to sense surface air. In kinetic properties, LDH isozymes of C. punctatus are teleost-like but species specificity is displayed in oxidative potential by cardiac muscle and in L-lactate reduction by skeletal muscle.

  5. Unsteady specific work and isentropic efficiency of a radial turbine driven by pulsed detonations

    NASA Astrophysics Data System (ADS)

    Rouser, Kurt P.

    There has been longstanding government and industry interest in pressure-gain combustion for use in Brayton cycle based engines. Theoretically, pressure-gain combustion allows heat addition with reduced entropy loss. The pulsed detonation combustor (PDC) is a device that can provide such pressure-gain combustion and possibly replace typical steady deflagration combustors. The PDC is inherently unsteady, however, and comparisons with conventional steady deflagration combustors must be based upon time-integrated performance variables. In this study, the radial turbine of a Garrett automotive turbocharger was coupled directly to and driven, full admission, by a PDC in experiments fueled by hydrogen or ethylene. Data included pulsed cycle time histories of turbine inlet and exit temperature, pressure, velocity, mass flow, and enthalpy. The unsteady inlet flowfield showed momentary reverse flow, and thus unsteady accumulation and expulsion of mass and enthalpy within the device. The coupled turbine-driven compressor provided a time-resolved measure of turbine power. Peak power increased with PDC fill fraction, and duty cycle increased with PDC frequency. Cycle-averaged unsteady specific work increased with fill fraction and frequency. An unsteady turbine efficiency formulation is proposed, including heat transfer effects, enthalpy flux-weighted total pressure ratio, and ensemble averaging over multiple cycles. Turbine efficiency increased with frequency but was lower than the manufacturer reported conventional steady turbine efficiency.

  6. Fuel Injection Strategy for a Next Generation Pulse Detonation Engine

    DTIC Science & Technology

    2006-06-01

    at 45°C CE Approved EMC EMC Directive 89/336/EEC; EN 61326-1 Emissions and Immunity Safety Low Voltage Directive 73/23/EEC; EN 61010 -1...Operating Humidity 0–90% Nonoperating Humidity 0–100% CDRH Class IIIb IEC Class 3B From www.mellesgriot.com 47 SILICON OPTICAL SENSOR Model

  7. Hypoxia tolerance and air-breathing ability correlate with habitat preference in coral-dwelling fishes

    NASA Astrophysics Data System (ADS)

    Nilsson, G. E.; Hobbs, J.-P. A.; Östlund-Nilsson, S.; Munday, P. L.

    2007-06-01

    Hypoxia tolerance and air-breathing occur in a range of freshwater, estuarine and intertidal fishes. Here it is shown for the first time that coral reef fishes from the genera Gobiodon, Paragobiodon and Caracanthus, which all have an obligate association with living coral, also exhibit hypoxia tolerance and a well-developed air-breathing capacity. All nine species maintained adequate respiration in water at oxygen concentrations down to 15-25% air saturation. This hypoxia tolerance is probably needed when the oxygen levels in the coral habitat drops sharply at night. Air-breathing abilities of the species correlated with habitat association, being greatest (equaling oxygen uptake in water) in species that occupy corals extending into shallow water, where they may become air exposed during extreme low tides. Air-breathing was less well-developed or absent in species inhabiting corals from deeper waters. Loss of scales and a network of subcutaneous capillaries appear to be key adaptations allowing cutaneous respiration in air. While hypoxia tolerance may be an ancestral trait in these fishes, air-breathing is likely to be a more recent adaptation exemplifying convergent evolution in the unrelated genera Gobiodon and Caracanthus in response to coral-dwelling lifestyles.

  8. Thermal Load Considerations for Detonative Combustion-Based Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Perkins, H. Douglas

    2004-01-01

    An analysis was conducted to assess methods for, and performance implications of, cooling the passages (tubes) of a pulse detonation-based combustor conceptually installed in the core of a gas turbine engine typical of regional aircraft. Temperature-limited material stress criteria were developed from common-sense engineering practice, and available material properties. Validated, one-dimensional, numerical simulations were then used to explore a variety of cooling methods and establish whether or not they met the established criteria. Simulation output data from successful schemes were averaged and used in a cycle-deck engine simulation in order to assess the impact of the cooling method on overall performance. Results were compared to both a baseline engine equipped with a constant-pressure combustor and to one equipped with an idealized detonative combustor. Major findings indicate that thermal loads in these devices are large, but potentially manageable. However, the impact on performance can be substantial. Nearly one half of the ideally possible specific fuel consumption (SFC) reduction is lost due to cooling of the tubes. Details of the analysis are described, limitations are presented, and implications are discussed.

  9. Numerical approaches to combustion modeling. Progress in Astronautics and Aeronautics. Vol. 135

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oran, E.S.; Boris, J.P.

    1991-01-01

    Various papers on numerical approaches to combustion modeling are presented. The topics addressed include; ab initio quantum chemistry for combustion; rate coefficient calculations for combustion modeling; numerical modeling of combustion of complex hydrocarbons; combustion kinetics and sensitivity analysis computations; reduction of chemical reaction models; length scales in laminar and turbulent flames; numerical modeling of laminar diffusion flames; laminar flames in premixed gases; spectral simulations of turbulent reacting flows; vortex simulation of reacting shear flow; combustion modeling using PDF methods. Also considered are: supersonic reacting internal flow fields; studies of detonation initiation, propagation, and quenching; numerical modeling of heterogeneous detonations, deflagration-to-detonationmore » transition to reactive granular materials; toward a microscopic theory of detonations in energetic crystals; overview of spray modeling; liquid drop behavior in dense and dilute clusters; spray combustion in idealized configurations: parallel drop streams; comparisons of deterministic and stochastic computations of drop collisions in dense sprays; ignition and flame spread across solid fuels; numerical study of pulse combustor dynamics; mathematical modeling of enclosure fires; nuclear systems.« less

  10. Analysis of various descent trajectories for a hypersonic-cruise, cold-wall research airplane

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.

    1975-01-01

    The probable descent operating conditions for a hypersonic air-breathing research airplane were examined. Descents selected were cruise angle of attack, high dynamic pressure, high lift coefficient, turns, and descents with drag brakes. The descents were parametrically exercised and compared from the standpoint of cold-wall (367 K) aircraft heat load. The descent parameters compared were total heat load, peak heating rate, time to landing, time to end of heat pulse, and range. Trends in total heat load as a function of cruise Mach number, cruise dynamic pressure, angle-of-attack limitation, pull-up g-load, heading angle, and drag-brake size are presented.

  11. Ontogeny and paleophysiology of the gill: new insights from larval and air-breathing fish.

    PubMed

    Brauner, Colin J; Rombough, Peter J

    2012-12-01

    There are large changes in gill function during development associated with ionoregulation and gas exchange in both larval and air-breathing fish. Physiological studies of larvae indicate that, contrary to accepted dogma but consistent with morphology, the initial function of the gill is primarily ionoregulatory and only secondarily respiratory. In air-breathing fish, as the gill becomes progressively less important in terms of O(2) uptake with expansion of the air-breathing organ, it retains its roles in CO(2) excretion, ion exchange and acid-base balance. The observation that gill morphology and function is strongly influenced by ionoregulatory needs in both larval and air-breathing fish may have evolutionary implications. In particular, it suggests that the inability of the skin to maintain ion and acid-base balance as protovertebrates increased in size and became more active may have been more important in driving gill development than O(2) insufficiency. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Effect of Operating Frequency on PDE Driven Ejector Thrust Performance

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh; Landry, K.; Shehadeh, R.; Bouvet, N.; Lee, S.-Y.

    2005-01-01

    Results of an on-going study of pulse detonation engine driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE) designed to operate at frequencies up to 50 Hz. The PDE used in these experiments utilizes an equi-molar mixture of oxygen and nitrogen as the oxidizer, and ethylene (C2H4) as the fuel, with the propellant mixture having an equivalence ratio of one. A line of sight laser absorption technique was used to determine the time needed for proper filling of the tube. Thrust measurements were made using an integrated spring damper system coupled with a linear variable displacement transducer. The baseline thrust of the PDE was first measured at each desired frequency and agrees with experimental and modeling results found in the literature. Thrust augmentation measurements were then made for constant diameter ejectors. The ejectors had varying lengths, and two different inlet geometries were tested for each ejector configuration. The parameter space for the study included PDE operation frequency, ejector length, overlap distance and the radius of curvature for the ejector inlets. For the studied experimental matrix, the results showed a maximum thrust augmentation of 106% at an operational frequency of 30 Hz.

  13. Transition in organ function during the evolution of air-breathing; insights from Arapaima gigas, an obligate air-breathing teleost from the Amazon.

    PubMed

    Brauner, C J; Matey, V; Wilson, J M; Bernier, N J; Val, A L

    2004-04-01

    The transition from aquatic to aerial respiration is associated with dramatic physiological changes in relation to gas exchange, ion regulation, acid-base balance and nitrogenous waste excretion. Arapaima gigas is one of the most obligate extant air-breathing fishes, representing a remarkable model system to investigate (1) how the transition from aquatic to aerial respiration affects gill design and (2) the relocation of physiological processes from the gills to the kidney during the evolution of air-breathing. Arapaima gigas undergoes a transition from water- to air-breathing during development, resulting in striking changes in gill morphology. In small fish (10 g), the gills are qualitatively similar in appearance to another closely related water-breathing fish (Osteoglossum bicirrhosum); however, as fish grow (100-1000 g), the inter-lamellar spaces become filled with cells, including mitochondria-rich (MR) cells, leaving only column-shaped filaments. At this stage, there is a high density of MR cells and strong immunolocalization of Na(+)/K(+)-ATPase along the outer cell layer of the gill filament. Despite the greatly reduced overall gill surface area, which is typical of obligate air-breathing fish, the gills may remain an important site for ionoregulation and acid-base regulation. The kidney is greatly enlarged in A. gigas relative to that in O. bicirrhosum and may comprise a significant pathway for nitrogenous waste excretion. Quantification of the physiological role of the gill and the kidney in A. gigas during development and in adults will yield important insights into developmental physiology and the evolution of air-breathing.

  14. Air-Breathing Launch Vehicle Technology Being Developed

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.

    2003-01-01

    Of the technical factors that would contribute to lowering the cost of space access, reusability has high potential. The primary objective of the GTX program is to determine whether or not air-breathing propulsion can enable reusable single-stage-to-orbit (SSTO) operations. The approach is based on maturation of a reference vehicle design with focus on the integration and flight-weight construction of its air-breathing rocket-based combined-cycle (RBCC) propulsion system.

  15. Balancing the competing requirements of air-breathing and display behaviour during male-male interactions in Siamese fighting fish Betta splendens.

    PubMed

    Alton, Lesley A; Portugal, Steven J; White, Craig R

    2013-02-01

    Air-breathing fish of the Anabantoidei group meet their metabolic requirements for oxygen through both aerial and aquatic gas exchange. Siamese fighting fish Betta splendens are anabantoids that frequently engage in aggressive male-male interactions which cause significant increases in metabolic rate and oxygen requirements. These interactions involve opercular flaring behaviour that is thought to limit aquatic oxygen uptake, and combines with the increase in metabolic rate to cause an increase in air-breathing behaviour. Air-breathing events interrupt display behaviour and increase risk of predation, raising the question of how Siamese fighting fish manage their oxygen requirements during agonistic encounters. Using open-flow respirometry, we measured rate of oxygen consumption in displaying fish to determine if males increase oxygen uptake per breath to minimise visits to the surface, or increase their reliance on aquatic oxygen uptake. We found that the increased oxygen requirements of Siamese fighting fish during display behaviour were met by increased oxygen uptake from the air with no significant changes in aquatic oxygen uptake. The increased aerial oxygen uptake was achieved almost entirely by an increase in air-breathing frequency. We conclude that limitations imposed by the reduced gill surface area of air-breathing fish restrict the ability of Siamese fighting fish to increase aquatic uptake, and limitations of the air-breathing organ of anabantoids largely restrict their capacity to increase oxygen uptake per breath. The resulting need to increase surfacing frequency during metabolically demanding agonistic encounters has presumably contributed to the evolution of the stereotyped surfacing behaviour seen during male-male interactions, during which one of the fish will lead the other to the surface, and each will take a breath of air. Copyright © 2012. Published by Elsevier Inc.

  16. Developmental transcriptome analysis and identification of genes involved in formation of intestinal air-breathing function of Dojo loach, Misgurnus anguillicaudatus

    PubMed Central

    Luo, Weiwei; Cao, Xiaojuan; Xu, Xiuwen; Huang, Songqian; Liu, Chuanshu; Tomljanovic, Tea

    2016-01-01

    Dojo loach, Misgurnus anguillicaudatus is a freshwater fish species of the loach family Cobitidae, using its posterior intestine as an accessory air-breathing organ. Little is known about the molecular regulatory mechanisms in the formation of intestinal air-breathing function of M. anguillicaudatus. Here high-throughput sequencing of mRNAs was performed from six developmental stages of posterior intestine of M. anguillicaudatus: 4-Dph (days post hatch) group, 8-Dph group, 12-Dph group, 20-Dph group, 40-Dph group and Oyd (one-year-old) group. These six libraries were assembled into 81300 unigenes. Totally 40757 unigenes were annotated. Subsequently, 35291 differentially expressed genes (DEGs) were scanned among different developmental stages and clustered into 20 gene expression profiles. Finally, 15 key pathways and 25 key genes were mined, providing potential targets for candidate gene selection involved in formation of intestinal air-breathing function in M. anguillicaudatus. This is the first report of developmental transcriptome of posterior intestine in M. anguillicaudatus, offering a substantial contribution to the sequence resources for this species and providing a deep insight into the formation mechanism of its intestinal air-breathing function. This report demonstrates that M. anguillicaudatus is a good model for studies to identify and characterize the molecular basis of accessory air-breathing organ development in fish. PMID:27545457

  17. The Pulse Detonation Rocket Induced MHD Ejector (PDRIME) Concept (Preprint)

    DTIC Science & Technology

    2008-06-10

    flight applications. Thrust augmentation , such as PDE- ejector configurations, can potentially alleviate this problem. Here, we study the potential...flow, to assist in augmentation of the thrust . Ejectors typically transfer energy between streams through shear stress between separate flow streams...and the ejector operates. This is one of several configurations in which the PDRIME concept could be used for thrust augmentation in advanced

  18. Impact Ignition of Liquid Propellants

    DTIC Science & Technology

    1992-04-30

    attributed the initiation to a hydrodynamic phenomenon: the impact of a high- speed microjet formed by the collapsing cavity. and suggested that the jet was...heated by shock compression. Recent work has demonstrated hot-spots formed at absorbing centres after laser irradiation of secondary explosives (Ng...detonator containing a secondary explosive initiated by a laser pulse. CavitY collapse has been studied for many%, years to explain the cavitation

  19. Compact pulse generators with soft ferromagnetic cores driven by gunpowder and explosive.

    PubMed

    Ben, Chi; He, Yong; Pan, Xuchao; Chen, Hong; He, Yuan

    2015-12-01

    Compact pulse generators which utilized soft ferromagnets as an initial energy carrier inside multi-turn coil and hard ferromagnets to provide the initial magnetic field outside the coil have been studied. Two methods of reducing the magnetic flux in the generators have been studied: (1) by igniting gunpowder to launch the core out of the generator, and (2) by detonating explosives that demagnetize the core. Several types of compact generators were explored to verify the feasibility. The generators with an 80-turn coil that utilize gunpowder were capable of producing pulses with amplitude 78.6 V and the full width at half maximum was 0.41 ms. The generators with a 37-turn coil that utilize explosive were capable of producing pulses with amplitude 1.41 kV and the full width at half maximum was 11.68 μs. These two methods were both successful, but produce voltage waveforms with significantly different characteristics.

  20. Time-of-flight mass spectrometry of laser exploding foil initiated PETN samples

    NASA Astrophysics Data System (ADS)

    Fajardo, Mario E.; Molek, Christopher D.; Fossum, Emily C.

    2017-01-01

    We report the results of time-of-flight mass spectrometry (TOFMS) measurements of the gaseous products of thin-film pentaerythritol tetranitrate [PETN, C(CH2NO3)4] samples reacting in vacuo. The PETN sample spots are produced by masked physical vapor deposition [A.S. Tappan, et al., AIP Conf. Proc. 1426, 677 (2012)] onto a first-surface aluminum mirror. A pulsed laser beam imaged through the soda lime glass mirror substrate converts the aluminum layer into a high-temperature high-pressure plasma which initiates chemical reactions in the overlying PETN sample. We had previously proposed [E.C. Fossum, et al., AIP Conf. Proc. 1426, 235 (2012)] to exploit differences in gaseous product chemical identities and molecular velocities to provide a chemically-based diagnostic for distinguishing between "detonation-like" and deflagration responses. Briefly: we expect in-vacuum detonations to produce hyperthermal (v˜10 km/s) thermodynamically-stable products such as N2, CO2, and H2O, and for deflagrations to produce mostly reaction intermediates, such as NO and NO2, with much slower molecular velocities - consistent with the expansion-quenched thermal decomposition of PETN. We observe primarily slow reaction intermediates (NO2, CH2NO3) at low laser pulse energies, the appearance of NO at intermediate laser pulse energies, and the appearance of hyperthemal CO/N2 at mass 28 amu at the highest laser pulse energies. However, these results are somewhat ambiguous, as the NO, NO2, and CH2NO3 intermediates persist and all species become hyperthermal at the higher laser pulse energies. Also, the purported CO/N2 signal at 28 amu may be contaminated by silicon ablated from the glass mirror substrate. We plan to mitigate these problems in future experiments by adopting the "Buelow" sample configuration which employs an intermediate foil barrier to shield the energetic material from the laser and the laser driven plasma [S.J. Buelow, et al., AIP Conf. Proc. 706, 1377 (2003)].

  1. Magnetic Flux Compression Reactor Concepts for Spacecraft Propulsion and Power (MSFC Center Director's Discretionary Fund; Project No. 99-24). Part 1

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Robertson, G. A.; Hawk, C. W.; Turner, M. W.; Koelfgen, S.; Litchford, Ron J. (Technical Monitor)

    2001-01-01

    This technical publication (TP) examines performance and design issues associated with magnetic flux compression reactor concepts for nuclear/chemical pulse propulsion and power. Assuming that low-yield microfusion detonations or chemical detonations using high-energy density matter can eventually be realized in practice, various magnetic flux compression concepts are conceivable. In particular, reactors in which a magnetic field would be compressed between an expanding detonation-driven plasma cloud and a stationary structure formed from a high-temperature superconductor are envisioned. Primary interest is accomplishing two important functions: (1) Collimation and reflection of a hot diamagnetic plasma for direct thrust production, and (2) electric power generation for fusion standoff drivers and/or dense plasma formation. In this TP, performance potential is examined, major technical uncertainties related to this concept accessed, and a simple performance model for a radial-mode reactor developed. Flux trapping effectiveness is analyzed using a skin layer methodology, which accounts for magnetic diffusion losses into the plasma armature and the stationary stator. The results of laboratory-scale experiments on magnetic diffusion in bulk-processed type II superconductors are also presented.

  2. Modeling Techniques Used to Analyze Safety of Payloads for Generic Missile Type Weapons Systems During an Indirect Lightning Strike

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, M P; Ong, M M; Crull, E W

    2009-07-21

    During lightning strikes buildings and other structures can act as imperfect Faraday Cages, enabling electromagnetic fields to be developed inside the facilities. Some equipment stored inside these facilities may unfortunately act as antenna systems. It is important to have techniques developed to analyze how much voltage, current, or energy dissipation may be developed over valuable components. In this discussion we will demonstrate the modeling techniques used to accurately analyze a generic missile type weapons system as it goes through different stages of assembly. As work is performed on weapons systems detonator cables can become exposed. These cables will form differentmore » monopole and loop type antenna systems that must be analyzed to determine the voltages developed over the detonator regions. Due to the low frequencies of lightning pulses, a lumped element circuit model can be developed to help analyze the different antenna configurations. We will show an example of how numerical modeling can be used to develop the lumped element circuit models used to calculate voltage, current, or energy dissipated over the detonator region of a generic missile type weapons system.« less

  3. Electromagnetic pulse (EMP), Part II: Field-expedient ways to minimize its effects on field medical treatment facilities.

    PubMed

    Vandre, R H; Klebers, J; Tesche, F M; Blanchard, J P

    1993-05-01

    Part I of this paper showed that a field commander can expect approximately 65% of his unprotected electronic medical equipment to be damaged by the electromagnetic pulse (EMP) from a single nuclear detonation as far as 2200 km away. Using computer modeling, field-expedient ways to minimize the effects of EMP were studied. The results were: (1) keep wiring near the ground, (2) keep wiring short, (3) unplug unused equipment, (4) run power cabling and tents in a magnetic north-south direction (avoid running power cabling in the east-west direction), and (5) place sensitive equipment in International Organization for Standardization shelters.

  4. X-ray photoelectron spectroscopy and paramagnetic resonance evidence for shock-induced intramolecular bond breaking in some energetic solids

    NASA Astrophysics Data System (ADS)

    Owens, F. J.; Sharma, J.

    1980-03-01

    Solid samples of 1,3,5, trinitro 1,3,5, triazacyclohexane (RDX), trinitrotoluene (TNT), and ammonium nitrate were subjected to shock pulses of strength and duration less than the threshold to cause detonation. The recovered shocked samples were studied by x-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR). The results of these measurements indicate that the shock pulse either broke or altered the internal bonds of the molecules of the solid. The results of the shock decomposition are compared with measurements of the uv and slow thermal decomposition of these materials using the same experimental techniques.

  5. Airbreathing Hypersonic Technology Vision Vehicles and Development Dreams

    NASA Technical Reports Server (NTRS)

    McClinton, C. R.; Hunt, J. L.; Ricketts, R. H.; Reukauf, P.; Peddie, C. L.

    1999-01-01

    Significant advancements in hypersonic airbreathing vehicle technology have been made in the country's research centers and industry over the past 40 years. Some of that technology is being validated with the X-43 flight tests. This paper presents an overview of hypersonic airbreathing technology status within the US, and a hypersonic technology development plan. This plan builds on the nation's large investment in hypersonics. This affordable, incremental plan focuses technology development on hypersonic systems, which could be operating by the 2020's.

  6. A study of phase explosion of metal using high power Nd:YAG laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoh, Jack J.; Lee, H. H.; Choi, J. H.

    2007-12-12

    The interaction of high-power pulsed-laser beam with metal targets in air from 1.06 {mu}m, 5 ns, 3 J/pulse max, Nd:YAG pulsed laser is investigated together with hydrodynamic theories of laser-supported detonation (LSD) wave and multi-material reactive Euler equations. The high speed blast wave generated by the laser ablation of metal reaches maximum velocity of several thousand meters per second. The apparently similar flow conditions to those of reactive shock wave allow one to apply the equations of motion for energetic materials and to understand the explosive behavior of metal vaporization upon laser ablation. The characteristic time at which planar tomore » spherical wave transition occurs is confirmed at low (20 mJ/pulse) to higher (200 mJ/pulse) beam intensities. The flow structure behind the leading shock wave during the early planar shock state is confirmed by the high-resolution multi-material hydrocode originally developed for shock compression of condensed matter.« less

  7. The benefits of in-flight LOX collection for airbreathing space boosters

    NASA Astrophysics Data System (ADS)

    Maurice, Lourdes Q.; Leingang, John L.; Carreiro, Louis R.

    1992-12-01

    In-flight LOX collection using a propulsion fluid system known as ACES (Air Collection and Enrichment System) yields large reductions in launch weights of airbreathing space boosters. The role of the ACES system is to acquire and store liquid oxygen en route to orbit for rocket use beyond the airbreathing envelope. Earth-to-orbit capability is achieved without carrying liquid oxygen from take-off or relying on scramjets. The superiority of ACES type space boosters over their LOX-carrying counterparts has been thoroughly documented in the past. This paper extends that work by presenting a direct comparison between single-stage and two-stage ACES and scramjet powered vehicles carrying similar payloads. ACES vehicles are shown to be weight competitive with scramjet powered vehicles, and require airbreathing function only up to Mach 5 to 8.

  8. High-Throughput Sequencing Identifies MicroRNAs from Posterior Intestine of Loach (Misgurnus anguillicaudatus) and Their Response to Intestinal Air-Breathing Inhibition.

    PubMed

    Huang, Songqian; Cao, Xiaojuan; Tian, Xianchang; Wang, Weimin

    2016-01-01

    MicroRNAs (miRNAs) exert important roles in animal growth, immunity, and development, and regulate gene expression at the post-transcriptional level. Knowledges about the diversities of miRNAs and their roles in accessory air-breathing organs (ABOs) of fish remain unknown. In this work, we used high-throughput sequencing to identify known and novel miRNAs from the posterior intestine, an important ABO, in loach (Misgurnus anguillicaudatus) under normal and intestinal air-breathing inhibited conditions. A total of 204 known and 84 novel miRNAs were identified, while 47 miRNAs were differentially expressed between the two small RNA libraries (i.e. between the normal and intestinal air-breathing inhibited group). Potential miRNA target genes were predicted by combining our transcriptome data of the posterior intestine of the loach under the same conditions, and then annotated using COG, GO, KEGG, Swissprot and Nr databases. The regulatory networks of miRNAs and their target genes were analyzed. The abundances of nine known miRNAs were validated by qRT-PCR. The relative expression profiles of six known miRNAs and their eight corresponding target genes, and two novel potential miRNAs were also detected. Histological characteristics of the posterior intestines in both normal and air-breathing inhibited group were further analyzed. This study contributes to our understanding on the functions and molecular regulatory mechanisms of miRNAs in accessory air-breathing organs of fish.

  9. Advanced Stimulated Scattering Measurements in Supercritical Fluids

    DTIC Science & Technology

    2006-09-01

    supercritical fluid measurement techniques. Ajay Agrawal, optical diagnostics. Mel Roquemore, turbine engines. Fred Schauer, pulse detonation propulsion...Lett. 87, 233902 (2001). 11. R. W. Gammon, H. L. Swinney, and H. Z. Cummins, "Brillouin scattering in carbon dioxide in the critical region," Phys. Rev...Stimulated Scattering Measurements in Supercritical F49620-03-C-0015 Fluids 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) 5d

  10. Applications of Laser Diagnostics

    DTIC Science & Technology

    2005-03-01

    Heat Transfer and Thermal Management of PDE . . . . 39 5.1.2 Application of Optical and Numerical Diagnostic Methods to PDE...in Reno, NV. The paper is included in the Appendix. 5.1.1.16 Heat Transfer and Thermal Management in PDE The unsteady nature of the PDE cycle...January 2003, Reno, NV. 57 “Heat Transfer and Thermal Management in a Pulsed Detonation Engine,” J. Hoke, R. Bradley, and F. Schauer, AIAA Paper No

  11. FY06 NRL DoD High Performance Computing Modernization Program Annual Reports

    DTIC Science & Technology

    2007-10-31

    our simulations yield important new information on the amount and form of the energy that is released by these explosive events. These results...coupled with the ideal-gas equation of state and a one-step Arrhenuis kinetics of energy release. The equations are solved using the explicit...practical applications, including hydrogen safety and pulse -detonation engines (PDE). For example, the results summarizing the effect of obstacle

  12. Nuclear pulse. I - Awakening to the chaos factor

    NASA Astrophysics Data System (ADS)

    Broad, W. J.

    1981-05-01

    The discovery of the significance of the high-voltage wave termed electromagnetic pulse (EMP), which occurs following the high-altitude detonation of a nuclear device, is discussed. The disruptions to the street lights, burglar alarms and circuit breakers of Hawaii caused by the detonation of a nuclear device 248 mi above Johnson Island in the Pacific in July, 1962 are described and attributed to the Compton electrons produced by the impact of gamma rays from the nuclear explosion on air in the upper atmosphere. It is pointed out, however, that at the time of the explosion, most communications systems were based on vacuum tube and electromechanical technology, which is about 10,000,000 times harder against EMP than integrated solid-state circuitry, and thus the threat posed by EMP to the power grid and communications capabilities was not apparent. Efforts undertaken to harden discrete (missile) and communications systems against EMP are outlined for the example of the Safeguard ABM system, and difficulties are pointed out. Soviet awareness of EMP is considered, and the discovery of vacuum tubes on board the state-of-the-art Foxbat MiG interceptor flown into Japan is noted as a possible indicator of this awareness. It is concluded that the problem of EMP will increase in significance as semiconductor electronics proliferates.

  13. Energetic Combustion Devices for Aerospace Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.

    2000-01-01

    Chemical reactions have long been the mainstay thermal energy source for aerospace propulsion and power. Although it is widely recognized that the intrinsic energy density limitations of chemical bonds place severe constraints on maximum realizable performance, it will likely be several years before systems based on high energy density nuclear fuels can be placed into routine service. In the mean time, efforts to develop high energy density chemicals and advanced combustion devices which can utilize such energetic fuels may yield worthwhile returns in overall system performance and cost. Current efforts in this vein are being carried out at NASA MSFC under the direction of the author in the areas of pulse detonation engine technology development and light metals combustion devices. Pulse detonation engines are touted as a low cost alternative to gas turbine engines and to conventional rocket engines, but actual performance and cost benefits have yet to be convincingly demonstrated. Light metal fueled engines also offer potential benefits in certain niche applications such as aluminum/CO2 fueled engines for endo-atmospheric Martian propulsion. Light metal fueled MHD generators also present promising opportunities with respect to electric power generation for electromagnetic launch assist. This presentation will discuss the applications potential of these concepts with respect to aero ace propulsion and power and will review the current status of the development efforts.

  14. Evaluation of some significant issues affecting trajectory and control management for air-breathing hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Hattis, Philip D.; Malchow, Harvey L.

    1992-01-01

    Horizontal takeoff airbreathing-propulsion launch vehicles require near-optimal guidance and control which takes into account performance sensitivities to atmospheric characteristics while satisfying physically-derived operational constraints. A generic trajectory/control analysis tool that deepens insight into these considerations has been applied to two versions of a winged-cone vehicle model. Information that is critical to the design and trajectory of these vehicles is derived, and several unusual characteristics of the airbreathing propulsion model are shown to have potentially substantial effects on vehicle dynamics.

  15. Excretory nitrogen metabolism and defence against ammonia toxicity in air-breathing fishes.

    PubMed

    Chew, S F; Ip, Y K

    2014-03-01

    With the development of air-breathing capabilities, some fishes can emerge from water, make excursions onto land or even burrow into mud during droughts. Air-breathing fishes have modified gill morphology and morphometry and accessory breathing organs, which would tend to reduce branchial ammonia excretion. As ammonia is toxic, air-breathing fishes, especially amphibious ones, are equipped with various strategies to ameliorate ammonia toxicity during emersion or ammonia exposure. These strategies can be categorized into (1) enhancement of ammonia excretion and reduction of ammonia entry, (2) conversion of ammonia to a less toxic product for accumulation and subsequent excretion, (3) reduction of ammonia production and avoidance of ammonia accumulation and (4) tolerance of ammonia at cellular and tissue levels. Active ammonia excretion, operating in conjunction with lowering of ambient pH and reduction in branchial and cutaneous NH₃ permeability, is theoretically the most effective strategy to maintain low internal ammonia concentrations. NH₃ volatilization involves the alkalization of certain epithelial surfaces and requires mechanisms to prevent NH₃ back flux. Urea synthesis is an energy-intensive process and hence uncommon among air-breathing teleosts. Aestivating African lungfishes detoxify ammonia to urea and the accumulated urea is excreted following arousal. Reduction in ammonia production is achieved in some air-breathing fishes through suppression of amino acid catabolism and proteolysis, or through partial amino acid catabolism leading to alanine formation. Others can slow down ammonia accumulation through increased glutamine synthesis in the liver and muscle. Yet, some others develop high tolerance of ammonia at cellular and tissue levels, including tissues in the brain. In summary, the responses of air-breathing fishes to ameliorate ammonia toxicity are many and varied, determined by the behaviour of the species and the nature of the environment in which it lives. © 2014 The Fisheries Society of the British Isles.

  16. CORRTEX Diagnostic Deployment for the SPE-III experiment, 24 July 2012: Fielding Report and Preliminary Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandoval, Thomas D.; Schultz-Fellenz, Emily S.

    2012-08-29

    The Continuous Reflectometry for Radius vs Time Experiments (CORRTEX) diagnostic system was deployed for the third explosives test in the Source Physics Experiment (SPE) sequence to monitor and verify several conditions of the experiment including the detonation velocity of the explosive package and functioning of explosive initiators. Six distance-marked coaxial cables were installed on the SPE-III explosives canister, and key locations documented through along-cable length measurements and photography. CORRTEX uses electrical-pulse time-domain reflectometry to continuously record the two-way transit time (TWTT) of the cables. As the shock front of the detonation advances, the coaxial cable is shorted or destroyed, andmore » the resulting TWTT also decreases. Interpretation of these changes as a function of TWTT can be converted to positional measurements using known parameters of the cables.« less

  17. Mechanism of plasma-assisted ignition for H2 and C1-C5 hydrocarbons

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Aleksandrov, Nikolay

    2016-09-01

    Nonequilibrium plasma demonstrates ability to control ultra-lean, ultra-fast, low-temperature flames and appears to be an extremely promising technology for a wide range of applications, including aviation GTEs, piston engines, ramjets, scramjets and detonation initiation for pulsed detonation engines. To use nonequilibrium plasma for ignition and combustion in real energetic systems, one must understand the mechanisms of plasma-assisted ignition and combustion and be able to numerically simulate the discharge and combustion processes under various conditions. A new, validated mechanism for high-temperature hydrocarbon plasma assisted combustion was built and allows to qualitatively describe plasma-assisted combustion close and above the self-ignition threshold. The principal mechanisms of plasma-assisted ignition and combustion have been established and validated for a wide range of plasma and gas parameters. These results provide a basis for improving various energy-conversion combustion systems, from automobile to aircraft engines, using nonequilibrium plasma methods.

  18. Electromagnetic Pulse (EMP) survey of the Louisiana State Emergency Operating Center, Baton Rouge, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crutcher, R.I.; Buchanan, M.E.; Jones, R.W.

    1989-08-01

    The purpose of this report is to develop an engineering design package to protect the federal Emergency Management Agency (FEMA) National Radio System (FNARS) facilities from the effects of high-altitude electromagnetic pulses (HEMP). This report refers to the Louisiana State Emergency Operating Center (EOC) in Baton Rouge, Louisiana. This report addresses electromagnetic pulse (EMP) effects only, and disregards any condition in which radiation effects may be a factor. It has been established that, except for the source region of a surface burst, EMP effects of high-altitude bursts are more severe than comparable detonations in either air or surface regions. Anymore » system hardened to withstand the more extreme EMP environment will survive the less severe conditions. The threatening environment will therefore be limited to HEMP situations. 76 figs., 2 tabs.« less

  19. Influence of Shockwave Profile on Ejecta

    NASA Astrophysics Data System (ADS)

    Zellner, Michael B.; Dimonte, Guy; Germann, Timothy C.; Hammerberg, James E.; Rigg, Paulo A.; Stevens, Gerald D.; Turley, William D.; Buttler, William T.

    2009-12-01

    We investigate the relation between shock-pulse shape and the amount of micron-scale fragments ejected upon shock release at the metal/vacuum interface of shocked Sn targets. These micron-scale particles are commonly referred to as ejecta. Two shock-pulse shapes are considered: a supported shock created by impacting a Sn target with a sabot that was accelerated using a powder gun; and an unsupported or Taylor Shockwave, created by detonation of high explosive that was press-fit to the front-side of the Sn target. Ejecta production at the back-side or free-surface of the Sn coupons were characterized through use of piezoelectric pins, Asay foils, optical shadowgraphy, and x-ray attenuation.

  20. Influence of Shockwave Profile on Ejection of Micron-Scale Material From Shocked Tin Surfaces

    NASA Astrophysics Data System (ADS)

    Zellner, Michael; Hammerberg, Jim; Hixson, Robert; Olson, Russel; Rigg, Paulo; Stevens, Gerald; Turley, William; Buttler, William

    2008-03-01

    This effort investigates the relation between shock-pulse shape and the amount of micron-scale fragments ejected (ejecta) upon shock release at the metal/vacuum interface of shocked Sn targets. Two shock-pulse shapes are considered: a supported shock created by impacting a Sn target with a sabot that was accelerated using a powder gun; and an unsupported or triangular-shaped Taylor shockwave, created by detonation of high explosive that was press-fit to the front-side of the Sn target. Ejecta production at the back-side or free-side of the Sn coupons were characterized through use of piezoelectric pins, Asay foil, optical shadowgraphy, and X-ray attenuation.

  1. Rock-Magnetic Method for Post Nuclear Detonation Diagnostics

    NASA Astrophysics Data System (ADS)

    Englert, J.; Petrosky, J.; Bailey, W.; Watts, D. R.; Tauxe, L.; Heger, A. S.

    2011-12-01

    A magnetic signature characteristic of a Nuclear Electromagnetic Pulse (NEMP) may still be detectable near the sites of atmospheric nuclear tests conducted at what is now the Nevada National Security Site. This signature is due to a secondary magnetization component of the natural remanent magnetization of material containing traces of ferromagnetic particles that have been exposed to a strong pulse of magnetic field. We apply a rock-magnetic method introduced by Verrier et al. (2002), and tested on samples exposed to artificial lightning, to samples of rock and building materials (e.g. bricks, concrete) retrieved from several above ground nuclear test sites. The results of magnetization measurements are compared to NEMP simulations and historic test measurements.

  2. Mushrooming vulnerability to EMP

    NASA Astrophysics Data System (ADS)

    Lerner, E. J.

    1984-08-01

    The electromagnetic pulse (EMP) generated by a single thermonuclear bomb detonated above the continental U.S. could set up electrical fields of 50 kV/m over nearly all of North America. Since the progressively microminiaturized integrated circuits of current military and civilian electronics become more vulnerable with decreasing circuit element size, even shield-protected chips can now be destroyed by the substantially shield-dampened EMP pulses. It is noted as a source of special concern that, as nuclear weapons have evolved, the EMP characteristically generated by them has shifted to increasingly shorter wavelengths, requiring significant redesign of EMP shields devised a decade or more ago. The surge arresters currently employed may not react sufficiently rapidly for existing weapons.

  3. The development and testing of pulsed detonation engine ground demonstrators

    NASA Astrophysics Data System (ADS)

    Panicker, Philip Koshy

    2008-10-01

    The successful implementation of a PDE running on fuel and air mixtures will require fast-acting fuel-air injection and mixing techniques, detonation initiation techniques such as DDT enhancing devices or a pre-detonator, an effective ignition system that can sustain repeated firing at high rates and a fast and capable, closed-loop control system. The control system requires high-speed transducers for real-time monitoring of the PDE and the detection of the detonation wave speed. It is widely accepted that the detonation properties predicted by C-J detonation relations are fairly accurate in comparison to experimental values. The post-detonation flow properties can also be expressed as a function of wave speed or Mach number. Therefore, the PDE control system can use C-J relations to predict the post-detonation flow properties based on measured initial conditions and compare the values with those obtained from using the wave speed. The controller can then vary the initial conditions within the combustor for the subsequent cycle, by modulating the frequency and duty cycle of the valves, to obtain optimum air and fuel flow rates, as well as modulate the energy and timing of the ignition to achieve the required detonation properties. Five different PDE ground demonstrators were designed, built and tested to study a number of the required sub-systems. This work presents a review of all the systems that were tested, along with suggestions for their improvement. The PDE setups, ranged from a compact PDE with a 19 mm (3/4 in.) i.d., to two 25 mm (1 in.) i.d. setups, to a 101 mm (4 in.) i.d. dual-stage PDE setup with a pre-detonator. Propane-oxygen mixtures were used in the smaller PDEs. In the dual-stage PDE, propane-oxygen was used in the pre-detonator, while propane-air mixtures were used in the main combustor. Both rotary valves and solenoid valve injectors were studied. The rotary valves setups were tested at 10 Hz, while the solenoid valves were tested at up to 30 Hz on a 25 mm i.d. PDE. The dual-stage PDE was run at both 1 Hz and 10 Hz using solenoid valves. The two types of valves have their drawbacks and advantages which are discussed, along with ways to enhance their functionality. Rotary valves with stepper motor drives are recommended to be used for air flow control, while an array of solenoid injectors may be used for liquid or gaseous fuel injection. Various DDT enhancing devices were tested, including Shchelkin spirals (with varying thicknesses, lengths and pitches), grooved sleeves and converging-diverging nozzles. The Shchelkin spirals are found to be the most effective of all, at blockage ratios in the region of 50 to 55%. To improve the durability of Shchelkin spirals, it is recommended that they be grooved into the inside of tubes or inserted as replaceable sleeves. Orifice plates with high blockage ratios, in the region of 50 to 80%, are also recommended due to their simple and rugged design. All these devices along with the PDE combustor will require a strong cooling system to prevent damage from the extreme detonation temperatures. High energy (HE) and low energy (LE) ignition systems were tested and compared along with various designs of igniters and automotive spark plugs. It is concluded that while HE ignition may help unsensitized fuel-air mixtures to achieve detonations faster than LE systems, the former have severe drawbacks. The HE igniters get damaged quickly, and require large and heavy power supplies. While the HE ignition is able to reduce ignition delay in a propane-oxygen pre-detonator, it did not show a significant improvement in bringing about DDT in the main combustor using propane-air mixtures. The compact pre-detonator design with a gradual area change transitioning to a larger combustor is found to be effective for detonation initiation, but the pre-detonator concept is recommended for high-speed applications only, since higher speeds requires more sensitive, easily detonable fuels that have short ignition delays and DDT run-up distances. Dynamic pressure transducers, ion detectors and photo-detectors were compared for the diagnostics of the detonation wave. The ion detector is found to be a safe, cheap and effective choice for obtaining detonation or flame velocities, and better than the optical detector, which is not practical for long-duration PDE operations. The piezoelectric dynamic pressure transducer has problems with heating and requires an effective cooling system to enable it to function in a PDE. Other diagnostics studied include thrust measurement and mass flow rate measurement techniques. Additionally, fuel sensitizing techniques, such as hydrogen blending, along with the DDT devices can ensure that detonations are produced successfully.

  4. Optical limiting and bleaching effects in a suspension of onion-like carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikheev, Gen M; Bulatov, D L; Mogileva, T N

    We have studied the effect of nanosecond laser pulses ({lambda} = 1064 nm) on the optical properties of onion-like carbon (OLC) prepared by high-temperature vacuum annealing of detonation nanodiamond and dispersed in N,N-dimethylformamide (DMF). The results demonstrate that, under low-intensity irradiation, the OLC suspension displays optical limiting behaviour. Increasing the incident intensity leads to bleaching of the suspension in the visible and near-IR spectral regions. (nanostructures)

  5. Vibrational and Rotational CARS Measurements of Nitrogen in Afterglow of Streamer Discharge in Atmospheric Pressure Fuel/Air Mixtures

    DTIC Science & Technology

    2012-01-01

    in a variety of different ignition regimes, including pulsed detonation engines ( PDEs ) and automobile engines, with experiments demonstrating TPI to...Vibrational and rotational CARS measurements of nitrogen in afterglow of streamer discharge in atmospheric pressure fuel/air mixtures This article...DATE 2012 2. REPORT TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Vibrational and rotational CARS measurements of

  6. Physical Modeling Techniques for Missile and Other Protective Structures

    DTIC Science & Technology

    1983-06-29

    uniaxial load only. In general , axial thrust was applied with an: initial eccentricity of zero on the specimen end. Sixteen different combinations of Pa...conditioning electronics and cabling schemes is included. The techniques described generally represent current approaches at the Civil Engineering Research...at T- zero and stopping when a pulse is generated by the pi-ezoelectric disc on arrival of! the detonation wave front. All elapsed time data is stored

  7. America’s Achilles Heel: Defense Against High-altitude Electromagnetic Pulse-policy vs. Practice

    DTIC Science & Technology

    2014-12-12

    Directives SCADA Supervisory Control and Data Acquisition Systems SHIELD Act Secure High-voltage Infrastructure for Electricity from Lethal Damage Act...take place, it is important to understand the effects of the components of EMP from a high-altitude nuclear detonation. The requirements for shielding ...Mass Ejection (CME). A massive, bubble-shaped burst of plasma expanding outward from the Sun’s corona, in which large amounts of superheated

  8. Shock-wave initiation of heated plastified TATB detonation

    NASA Astrophysics Data System (ADS)

    Kuzmitsky, Igor; Rudenko, Vladimir; Gatilov, Leonid; Koshelev, Alexandr

    1999-06-01

    Explosive, plastified TATB, attracts attention with its weak sensitivity to shock loads and high temperature stability ( Pthreshold ? 6.5 GPa and Tcrit ? 250 0Q). However, at its cooling to T 250 0Q plastified TATB becomes as sensitive to shock load as octogen base HE: the excitation threshold reduces down to Pthreshold 2.0 GPa. The main physical reason for the HE sensitivity change is reduction in density at heating and, hence, higher porosity of the product (approximately from 2Moreover, increasing temperature increases the growth rate of uhotf spots which additionally increases the shock sensitivity [1]. Heated TATB experiments are also conducted at VNIIEF. The detonation excitation was computed within 1D program system MAG using EOS JWL for HE and EP and LLNL kinetics [1,2,3]. Early successful results of using this kinetics to predict detonation excitation in heated plastified TATB in VNIIEF experiments with short and long loading pulses are presented. Parameters of the chemical zone of the stationary detonation wave in plastified TATB (LX-17) were computed with the data from [1]. Parameters Heated In shell Cooled Unheated ?0 , g/cm3 1.70 1.81 1.84 1.905 D , km/s 7.982 7.764 7.686 7.517 PN, GPa 45.4 45.8 35.7 32.9 PJ, GPa 27.0 27.3 27.2 26.4 ?x , mm 0.504 0.843 1.041 2.912 ?t , ns 63.1 108.6 135.5 387.4 [1] Effect of Confinement and Thermal Cycling on the Shock Initiation of LX-17 P.A. Urtiew, C.M. Tarver, J.L. Maienschein, and W.C. Tao. LLNL. Combustion and Flame 105: 43-53 (1996) [2] C.M. Tarver, P.A. Urtiew and W.C. Tao (LLNL) Effects of tandem and colliding shock waves on initiation of triaminotrinitrobenzene. J.Appl. Phys. 78(5), September 1995 [3] Craig M. Tarver, John W. Kury and R. Don Breithaupt Detonation waves in triaminotrinitrobenzene J. Appl. Phys. 82(8) , 15 October 1997.

  9. Flight testing of airbreathing hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Hicks, John W.

    1993-01-01

    Using the scramjet engine as the prime example of a hypersonic airbreathing concept, this paper reviews the history of and addresses the need for hypersonic flight tests. It also describes how such tests can contribute to the development of airbreathing technology. Aspects of captive-carry and free-flight concepts are compared. An incremental flight envelope expansion technique for manned flight vehicles is also described. Such critical issues as required instrumentation technology and proper scaling of experimental devices are addressed. Lastly, examples of international flight test approaches, existing programs, or concepts currently under study, development, or both, are given.

  10. A conceptual design of an unmanned test vehicle using an airbreathing propulsion system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    According to Aviation Week and Space Technology (Nov. 16, 1992), without a redefined approach to the problem of achieving single stage-to-orbit flight, the X-30 program is virtually assured of cancellation. One of the significant design goals of the X-30 program is to achieve single stage to low-earth orbit using airbreathing propulsion systems. In an attempt to avoid cancellation, the NASP Program has decided to design a test vehicle to achieve these goals. This report recommends a conceptual design of an unmanned test vehicle using an airbreathing propulsion system.

  11. Survey of Aerothermodynamics Facilities Useful for the Design of Hypersonic Vehicles Using Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Deiwert, George S.

    1997-01-01

    This paper surveys the use of aerothermodynamic facilities which have been useful in the study of external flows and propulsion aspects of hypersonic, air-breathing vehicles. While the paper is not a survey of all facilities, it covers the utility of shock tunnels and conventional hypersonic blow-down facilities which have been used for hypersonic air-breather studies. The problems confronting researchers in the field of aerothermodynamics are outlined. Results from the T5 GALCIT tunnel for the shock-on lip problem are outlined. Experiments on combustors and short expansion nozzles using the semi-free jet method have been conducted in large shock tunnels. An example which employed the NASA Ames 16-Inch shock tunnel is outlined, and the philosophy of the test technique is described. Conventional blow-down hypersonic wind tunnels are quite useful in hypersonic air-breathing studies. Results from an expansion ramp experiment, simulating the nozzle on a hypersonic air-breather from the NASA Ames 3.5 Foot Hypersonic wind tunnel are summarized. Similar work on expansion nozzles conducted in the NASA Langley hypersonic wind tunnel complex is cited. Free-jet air-frame propulsion integration and configuration stability experiments conducted at Langley in the hypersonic wind tunnel complex on a small generic model are also summarized.

  12. Study of the laser-induced decomposition of energetic materials at static high-pressure by time-resolved absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hebert, Philippe; Saint-Amans, Charles

    2013-06-01

    A detailed description of the reaction rates and mechanisms occurring in shock-induced decomposition of condensed explosives is very important to improve the predictive capabilities of shock-to-detonation transition models. However, direct measurements of such experimental data are difficult to perform during detonation experiments. By coupling pulsed laser ignition of an explosive in a diamond anvil cell (DAC) with time-resolved streak camera recording of transmitted light, it is possible to make direct observations of deflagration phenomena at detonation pressure. We have developed an experimental set-up that allows combustion front propagation rates and time-resolved absorption spectroscopy measurements. The decomposition reactions are initiated using a nanosecond YAG laser and their kinetics is followed by time-resolved absorption spectroscopy. The results obtained for two explosives, nitromethane (NM) and HMX are presented in this paper. For NM, a change in reactivity is clearly seen around 25 GPa. Below this pressure, the reaction products are essentially carbon residues whereas at higher pressure, a transient absorption feature is first observed and is followed by the formation of a white amorphous product. For HMX, the evolution of the absorption as a function of time indicates a multi-step reaction mechanism which is found to depend on both the initial pressure and the laser fluence.

  13. Magnetic Flux Compression Using Detonation Plasma Armatures and Superconductor Stators: Integrated Propulsion and Power Applications

    NASA Technical Reports Server (NTRS)

    Litchford, Ron; Robertson, Tony; Hawk, Clark; Turner, Matt; Koelfgen, Syri

    1999-01-01

    This presentation discusses the use of magnetic flux compression for space flight applications as a propulsion and other power applications. The qualities of this technology that make it suitable for spaceflight propulsion and power, are that it has high power density, it can give multimegawatt energy bursts, and terawatt power bursts, it can produce the pulse power for low impedance dense plasma devices (e.g., pulse fusion drivers), and it can produce direct thrust. The issues of a metal vs plasma armature are discussed, and the requirements for high energy output, and fast pulse rise time requires a high speed armature. The plasma armature enables repetitive firing capabilities. The issues concerning the high temperature superconductor stator are also discussed. The concept of the radial mode pulse power generator is described. The proposed research strategy combines the use of computational modeling (i.e., magnetohydrodynamic computations, and finite element modeling) and laboratory experiments to create a demonstration device.

  14. Pulsed magnetic field excitation sensitivity of match-type electric blasting caps

    NASA Astrophysics Data System (ADS)

    Parson, Jonathan; Dickens, James; Walter, John; Neuber, Andreas A.

    2010-10-01

    This paper presents a study on energy deposition and electromagnetic compatibility of match-type electroexplosive devices (EEDs), which recently have found more usage in pulsed power environments with high electromagnetic interference (EMI) background. The sensitivity of these devices makes them dangerous to intended and unintended radiation produced by devices commonly used in pulsed power environments. Match-type EEDs have been found to be susceptible to such low levels of energy (7-8 mJ) that safe operation of these EEDs is vital when in use near devices that produce high levels of pulsed EMI. The scope of this paper is to provide an investigation that incorporates results of similar studies to provide detonation characteristics of these EEDs. The three topics included in this study are sensitivity testing, modeling of the thermodynamic heat propagation, and electromagnetic compatibility from pulsed electromagnetic radiation. The thermodynamic joule heating of the primary explosive has been modeled by a solution to the 1D heat equation. A simple pulsed generator, Marx generator with an inductive load, was used for the electromagnetic compatibility assessment of the coupled field between the pulse generator and shorted EED. The results of the electromagnetic compatibility assessment relate the resistive, inductive, and capacitive components of the pulse generator to the area of the shorted EED.

  15. Pulsed magnetic field excitation sensitivity of match-type electric blasting caps.

    PubMed

    Parson, Jonathan; Dickens, James; Walter, John; Neuber, Andreas A

    2010-10-01

    This paper presents a study on energy deposition and electromagnetic compatibility of match-type electroexplosive devices (EEDs), which recently have found more usage in pulsed power environments with high electromagnetic interference (EMI) background. The sensitivity of these devices makes them dangerous to intended and unintended radiation produced by devices commonly used in pulsed power environments. Match-type EEDs have been found to be susceptible to such low levels of energy (7-8 mJ) that safe operation of these EEDs is vital when in use near devices that produce high levels of pulsed EMI. The scope of this paper is to provide an investigation that incorporates results of similar studies to provide detonation characteristics of these EEDs. The three topics included in this study are sensitivity testing, modeling of the thermodynamic heat propagation, and electromagnetic compatibility from pulsed electromagnetic radiation. The thermodynamic joule heating of the primary explosive has been modeled by a solution to the 1D heat equation. A simple pulsed generator, Marx generator with an inductive load, was used for the electromagnetic compatibility assessment of the coupled field between the pulse generator and shorted EED. The results of the electromagnetic compatibility assessment relate the resistive, inductive, and capacitive components of the pulse generator to the area of the shorted EED.

  16. Influence of shockwave profile on ejecta: An experimental and computational study

    NASA Astrophysics Data System (ADS)

    Zellner, Michael; Germann, Timothy; Hammerberg, James; Rigg, Paulo; Stevens, Gerald; Turley, William; Buttler, William

    2009-06-01

    This effort investigates the relation between shock-pulse shape and the amount of micron-scale fragments ejected (ejecta) upon shock release at the metal/vacuum interface of shocked Sn targets. Two shock-pulse shapes are considered: a supported shock created by impacting a Sn target with a sabot that was accelerated using a powder gun; and an unsupported or Taylor shockwave, created by detonation of high explosive that was press-fit to the front-side of the Sn target. Ejecta production at the back-side or free-side of the Sn coupons were characterized through use of piezoelectric pins, Asay foils, optical shadowgraph, and x-ray attenuation. In addition to the experimental results, SPaSM, a short-ranged parallel molecular dynamics code developed at Los Alamos National Laboratory, was used to investigate the relation between shock-pulse shape and production of ejecta from a first principles point-of-view.

  17. Microshell-tipped optical fibers as sensors of high-pressure pulses in adverse environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benjamin, R.F.; Mayer, F.J.; Maynard, R.L.

    1984-01-01

    An optical-fiber sensor for detecting the arrival of strong pressure pulses was developed. The sensor consists of an optical fiber, tipped with a gas-filled microballoon. They have been used successfully in adverse environments including explosives, ballistics and electromagnetic pulses (EMP). The sensor produces a bright optical pulse caused by the rapid shock-heating of a gas, typically argon or xenon, which is confined in the spherical glass or plastic microballoon. The light pulse is transmitted via the optical fiber to a photo detector, usually a streak camera or photomultiplier tube. The microballoon optical sensor (called an optical pin by analogy tomore » standard electrical pins), was originally developed for diagnosing an explosive, pulsed-power generator. Optical pins are required due to the EMP. The optical pins are economical arrival-time indicators because many channels can be recorded by one streak camera. The generator tests and related experiments, involving projectile velocities and detonation velocities of several kilometers per sec have demonstrated the usefulness of the sensors in explosives and ballistics applications. The technical and cost advantages of this optical pin make it potentially useful for many electromagnetic, explosive, and ballistics applications.« less

  18. HERMES: A Model to Describe Deformation, Burning, Explosion, and Detonation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reaugh, J E

    2011-11-22

    HERMES (High Explosive Response to MEchanical Stimulus) was developed to fill the need for a model to describe an explosive response of the type described as BVR (Burn to Violent Response) or HEVR (High Explosive Violent Response). Characteristically this response leaves a substantial amount of explosive unconsumed, the time to reaction is long, and the peak pressure developed is low. In contrast, detonations characteristically consume all explosive present, the time to reaction is short, and peak pressures are high. However, most of the previous models to describe explosive response were models for detonation. The earliest models to describe the responsemore » of explosives to mechanical stimulus in computer simulations were applied to intentional detonation (performance) of nearly ideal explosives. In this case, an ideal explosive is one with a vanishingly small reaction zone. A detonation is supersonic with respect to the undetonated explosive (reactant). The reactant cannot respond to the pressure of the detonation before the detonation front arrives, so the precise compressibility of the reactant does not matter. Further, the mesh sizes that were practical for the computer resources then available were large with respect to the reaction zone. As a result, methods then used to model detonations, known as {beta}-burn or program burn, were not intended to resolve the structure of the reaction zone. Instead, these methods spread the detonation front over a few finite-difference zones, in the same spirit that artificial viscosity is used to spread the shock front in inert materials over a few finite-difference zones. These methods are still widely used when the structure of the reaction zone and the build-up to detonation are unimportant. Later detonation models resolved the reaction zone. These models were applied both to performance, particularly as it is affected by the size of the charge, and to situations in which the stimulus was less than that needed for reliable performance, whether as a result of accident, hazard, or a fault in the detonation train. These models describe the build-up of detonation from a shock stimulus. They are generally consistent with the mesoscale picture of ignition at many small defects in the plane of the shock front and the growth of the resulting hot-spots, leading to detonation in heterogeneous explosives such as plastic-bonded explosives (PBX). The models included terms for ignition, and also for the growth of reaction as tracked by the local mass fraction of product gas, {lambda}. The growth of reaction in such models incorporates a form factor that describes the change of surface area per unit volume (specific surface area) as the reaction progresses. For unimolecular crystalline-based explosives, the form factor is consistent with the mesoscale picture of a galaxy of hot spots burning outward and eventually interacting with each other. For composite explosives and propellants, where the fuel and oxidizer are segregated, the diffusion flame at the fuel-oxidizer interface can be interpreted with a different form factor that corresponds to grains burning inward from their surfaces. The form factor influences the energy release rate, and the amount of energy released in the reaction zone. Since the 19th century, gun and cannon propellants have used perforated geometric shapes that produce an increasing surface area as the propellant burns. This helps maintain the pressure as burning continues while the projectile travels down the barrel, which thereby increases the volume of the hot gas. Interior ballistics calculations use a geometric form factor to describe the changing surface area precisely. As a result, with a suitably modified form factor, detonation models can represent burning and explosion in damaged and broken reactant. The disadvantage of such models in application to accidents is that the ignition term does not distinguish between a value of pressure that results from a shock, and the same pressure that results from a more gradual increase. This disagrees with experiments, where explosives were subjected to a gradual rise in pressure and did not exhibit reaction. More recent models do distinguish between slow pressure rises and shocks, and have had some success in the describing the response of explosives to single and multiple shocks, and the increase of shock sensitivity with porosity, at least over a limited range. The original formulation is appropriate for sustained shocks, but further work is ongoing to describe the response to short pulses. The HERMES model combines features from these prior models. It describes burning and explosion in damaged reactant, and also will develop a detonation if the gradual rise in pressure from burning steepens into a strong-enough shock. The shock strength needed for detonation in a fixed run distance decreases with increasing porosity.« less

  19. Hypersonic trajectory control of aerospace plane with integrated SCRAMJET engine

    NASA Astrophysics Data System (ADS)

    Yonemoto, Koichi

    The aerospace plane is an airbreathing 'propulsion configured' vehicle having proper forebody contour for inflow pre-compression to the inlet and afterbody that operates as an external expansion nozzle. Since the whole lower side of the body acts as important compression and expansion elements for the airbreathing engine, the flight attitude influences its performance such as specific impulse and thrust coefficient considerably. The stability of ascent trajectory controlling dynamic pressure or heat-input rate is analyzed considering the performance change due to attitude fluctuation. The performance of scramjet engine, a typical hypersonic airbreathing engine, is estimated by a rapid prediction methodology of the combustor proposed by Ikawa.

  20. Experimental Magnetohydrodynamic Energy Extraction from a Pulsed Detonation

    DTIC Science & Technology

    2015-03-01

    experimental data taken in this thesis will follow voltage profiles similar to Fig. 2. Notice the initial section in Fig. 2 shows exponential decay consistent...equal that time constant. The exponential curves in Fig. 2 show how changing the time constant can change the charge and/or discharge rate of the...see Fig. 1), at a sampling rate of 1 MHz. Shielded wire and a common ground were used throughout the DAQ system to avoid capacitive issues in the

  1. Pulse Detonation Engine Thrust Tube Heat Exchanger for Flash Vaporization and Supercritical Heating of JP-8

    DTIC Science & Technology

    2005-03-01

    47 Figure 21. Construction of the long heat exchanger with helical rod welded in place.... 48 Figure 22. Heat exchanger...not at a temperature at or above the dew point temperature of the mixture, some of the fuel in the mixture will re- condense . The concept of...diao (25) Where kamb = Thermal conductivity of the air [W/(m-K)] Nufc = Nusselt number for free convection The Nussult number

  2. Elaboration of the Charge Constructions of Explosives for the Structure of Facing Stone

    NASA Astrophysics Data System (ADS)

    Khomeriki, Sergo; Mataradze, Edgar; Chikhradze, Nikoloz; Losaberidze, Marine; Khomeriki, Davit; Shatberashvili, Grigol

    2017-12-01

    Increased demand for high-strength facing material caused the enhancement of the volume of explosives use in modern technologies of blocks production. The volume of broken rocks and crushing quality depends on the rock characteristics and on the properties of the explosive, in particular on its brisance and serviceability. Therefore, the correct selection of the explosive for the specific massif is of a considerable practical importance. For efficient mining of facing materials by explosion method the solving of such problems as determination of the method of blasthole drilling as well as of the regime and charge values, selection of the explosive, blastholes distribution in the face and their order is necessary. This paper focuses on technical solutions for conservation of rock natural structure in the blocks of facing material, mined by the use of the explosives. It has been established that the efficient solving of mentioned problem is attained by reducing of shock pulse duration. In such conditions the rigidity of crystalline lattice increases in high pressure area. As a result, the hazard if crack formation in structural unites and the increases of natural cracks are excluded. Short-time action of explosion pulse is possible only by linear charges of the explosives, characterized by high detonation velocity which detonate by the velocity of 7-7.5 km/sec and are characterized by very small critical diameter.

  3. No moving parts safe & arm apparatus and method with monitoring and built-in-test for optical firing of explosive systems

    DOEpatents

    Hendrix, J.L.

    1995-04-11

    A laser initiated ordnance controller apparatus which provides a safe and arm scheme with no moving parts. The safe & arm apparatus provides isolation of firing energy to explosive devices using a combination of polarization isolation and control through acousto-optical deviation of laser energy pulses. The apparatus provides constant monitoring of the systems status and performs 100% built-in-test at any time prior to ordnance ignition without the risk of premature ignition or detonation. The apparatus has a computer controller, a solid state laser, an acousto-optic deflector and RF drive circuitry, built-in-test optics and electronics, and system monitoring capabilities. The optical system is completed from the laser beam power source to the pyrotechnic ordnance through fiber optic cabling, optical splitters and optical connectors. During operation of the apparatus, a command is provided by the computer controller and, simultaneous with laser flashlamp fire, the safe & arm device is opened for approximately 200 microseconds which allows the laser pulse to transmit through the device. The arm signal also energizes the laser power supply and activates the acousto-optical deflector. When the correct fire format command is received, the acousto-optic deflector moves to the selected event channel, and the channel is verified to ensure the system is pointing to the correct position. Laser energy is transmitted through the fiber where an ignitor or detonator designed to be sensitive to optical pulses is fired at the end of the fiber channel. Simultaneous event channels may also be utilized by optically splitting a single event channel. The built-in-test may be performed anytime prior to ordnance ignition. 6 figures.

  4. No moving parts safe & arm apparatus and method with monitoring and built-in-test for optical firing of explosive systems

    DOEpatents

    Hendrix, James L.

    1995-01-01

    A laser initiated ordnance controller apparatus which provides a safe and m scheme with no moving parts. The safe & arm apparatus provides isolation of firing energy to explosive devices using a combination of polarization isolation and control through acousto-optical deviation of laser energy pulses. The apparatus provides constant monitoring of the systems status and performs 100% built-in-test at any time prior to ordnance ignition without the risk of premature ignition or detonation. The apparatus has a computer controller, a solid state laser, an acousto-optic deflector and RF drive circuitry, built-in-test optics and electronics, and system monitoring capabilities. The optical system is completed from the laser beam power source to the pyrotechnic ordnance through fiber optic cabling, optical splitters and optical connectors. During operation of the apparatus, a command is provided by the computer controller and, simultaneous with laser flashlamp fire, the safe & arm device is opened for approximately 200 microseconds which allows the laser pulse to transmit through the device. The arm signal also energizes the laser power supply and activates the acousto-optical deflector. When the correct fire format command is received, the acousto-optic deflector moves to the selected event channel, and the channel is verified to ensure the system is pointing to the correct position. Laser energy is transmitted through the fiber where an ignitor or detonator designed to be sensitive to optical pulses is fired at the end of the fiber channel. Simultaneous event channels may also be utilized by optically splitting a single event channel. The built-in-test may be performed anytime prior to ordnance ignition.

  5. Control of gill ventilation and air-breathing in the bowfin amia calva

    PubMed

    Hedrick; Jones

    1999-01-01

    The purpose of this study was to investigate the roles of branchial and gas bladder reflex pathways in the control of gill ventilation and air-breathing in the bowfin Amia calva. We have previously determined that bowfin use two distinct air-breathing mechanisms to ventilate the gas bladder: type I air breaths are characterized by exhalation followed by inhalation, are stimulated by aquatic or aerial hypoxia and appear to regulate O2 gas exchange; type II air breaths are characterized by inhalation alone and possibly regulate gas bladder volume and buoyancy. In the present study, we test the hypotheses (1) that gill ventilation and type I air breaths are controlled by O2-sensitive chemoreceptors located in the branchial region, and (2) that type II air breaths are controlled by gas bladder mechanosensitive stretch receptors. Hypothesis 1 was tested by examining the effects of partial or complete branchial denervation of cranial nerves IX and X to the gill arches on gill ventilation frequency (fg) and the proportion of type I air breaths during normoxia and hypoxia; hypothesis II was tested by gas bladder inflation and deflation. Following complete bilateral branchial denervation, fg did not differ from that of sham-operated control fish; in addition, fg was not significantly affected by aquatic hypoxia in sham-operated or denervated fish. In sham-operated fish, aquatic hypoxia significantly increased overall air-breathing frequency (fab) and the percentage of type I breaths. In fish with complete IX-X branchial denervation, fab was also significantly increased during aquatic hypoxia, but there were equal percentages of type I and type II air breaths. Branchial denervation did not affect the frequency of type I air breaths during aquatic hypoxia. Gas bladder deflation via an indwelling catheter resulted in type II breaths almost exclusively; furthermore, fab was significantly correlated with the volume removed from the gas bladder, suggesting a volume-regulating function for type II air breaths. These results indicate that chronic (3-4 weeks) branchial denervation does not significantly affect fg or type I air-breathing responses to aquatic hypoxia. Because type I air-breathing responses to aquatic hypoxia persist after IX-X cranial nerve denervation, O2-sensitive chemoreceptors that regulate air-breathing may be carried in other afferent pathways, such as the pseudobranch. Gas bladder deflation reflexly stimulates type II breaths, suggesting that gas bladder volume-sensitive stretch receptors control this particular air-breathing mechanism. It is likely that type II air breaths function to regulate buoyancy when gas bladder volume declines during the inter-breath interval.

  6. Nuclear pulse. II - Ensuring delivery of the doomsday signal

    NASA Astrophysics Data System (ADS)

    Broad, W. J.

    1981-06-01

    The ability of the communications systems on which U.S. strategic forces depend to survive the electromagnetic pulse (EMP) effects of a nuclear blast in the upper atmosphere is examined. It is shown that the Bell system telephone network, Autovon, on which much military communication presently depends, is especially vulnerable to EMP; while satellite and microwave communications networks are expected to be more resistant to attack. Satellites are, though, vulnerable to killer-satellite attack. Much promise is seen in the conversion of ground communications links to fiber-optic form, which is inherently highly resistant to EMP. A nuclear bomb detonated 200 miles above Nebraska would affect communications equipment throughout the contiguous U.S. with peak fields of 500,000 volts/meter.

  7. Development Activities on Airbreathing Combined Cycle Engines

    NASA Technical Reports Server (NTRS)

    McArthur, J. Craig; Lyles, Garry (Technical Monitor)

    2000-01-01

    Contents include the following: Advanced reusable transportation(ART); aerojet and rocketdyne tests, RBCC focused concept flowpaths,fabricate flight weigh, test select components, document ART project, Istar (Integrated system test of an airbreathing rocket); combined cycle propulsion testbed;hydrocarbon demonstrator tracebility; Istar engine system and vehicle system closure study; and Istar project planning.

  8. Numerical Study On Propulsion Performance Of The Parabolic Laser Thruster With Elongate Cylinder Nozzle

    NASA Astrophysics Data System (ADS)

    Cheng, Fuqiang; Hong, Yanji; Li, Qian; Wen, Ming

    2011-11-01

    Laser thrusters with a single nozzle, e.g. parabolic or conical, failed to constrict the flow field of high pressure effectively, resulting in poor propulsive performance. Under the condition of air-breathing mode, parabolic thruster models with an elongate cylinder nozzle were studied numerically by building a physical computation model. Initially, to verify the computation model, the influence of cylinder length on the momentum coupling coefficient was computed and compared with the experiments, which shows a good congruence. A model of diameter 20 mm and cylindrical length 80 mm obtains about 627.7 N/MW at single pulse energy density 1.5 J/cm2. Then, the influence of expanding angle of the parabolic nozzle on propulsion performance was gained for different laser pulse energies, and the evolution process of the flow field was analyzed. The results show: as the expanding angel increases, the momentum coupling coefficient increases remarkably at first and descends relative slowly after reaching a peak value; moreover, the peak positions stay constant around 33° with little variation when laser energy differs.

  9. Instrumentation techniques for monitoring shock and detonation waves

    NASA Astrophysics Data System (ADS)

    Dick, R. D.; Parrish, R. L.

    1985-09-01

    CORRTEX (Continuous Reflectometry for Radius Versus Time Experiments), SLIFER (Shorted Location Indication by Frequency of Electrical Resonance), and pin probes were used to monitor several conditions of blasting such as the detonation velocity of the explosive, the functioning of the stemming column confining the explosive, and rock mass motion. CORRTEX is a passive device that employs time-domain reflectometry to interrogate the two-way transit time of a coaxial cable. SLIFER is an active device that monitors the changing frequency resulting from a change in length of a coaxial cable forming an element of an oscillator circuit. Pin probes in this application consist of RG-174 coaxial cables, each with an open circuit, placed at several known locations within the material. Each cable is connected to a pulse-forming network and a voltage source. When the cables are shorted by the advancing wave, time-distance data are produced from which a velocity can be computed. Each technique, installation of the gauge, examples of the signals, and interpretation of the records are described.

  10. Laser Light Scattering Diagnostic for Measurement of Flow Velocity in Vicinity of Propagating Shock Waves

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Buggele, Alvin E.

    2002-01-01

    A laser light scattering diagnostic for measurement of dynamic flow velocity at a point is described. The instrument is being developed for use in the study of propagating shock waves and detonation waves in pulse detonation engines under development at the NASA Glenn Research Center (GRC). The approach uses a Fabry-Perot interferometer to measure the Doppler shift of laser light scattered from small (submicron) particles in the flow. The high-speed detection system required to resolve the transient response as a shock wave crosses the probe volume uses fast response photodetectors, and a PC based data acquisition system. Preliminary results of measurements made in the GRC Mach 4, 10 by 25 cm supersonic wind tunnel are presented. Spontaneous condensation of water vapor in the flow is used as seed. The tunnel is supplied with continuous air flow at up to 45 psia and the flow is exhausted into the GRC laboratory-wide altitude exhaust system at pressures down to 0.3 psia.

  11. Experimental Investigation of a Multi-Cycle Single-Tube Pulse Detonation Rocket Engine with a Coaxial Rotary Valve

    NASA Astrophysics Data System (ADS)

    Matsuoka, Ken; Esumi, Motoki; Ikeguchi, Ken Bryan; Kasahara, Jiro; Matsuo, Akiko; Funaki, Ikkoh

    We developed a novel coaxial rotary valve for a multi-tube PDE. Since this single valve can supply three different gases (fuel, oxidizer and purge gas) into a combustor, the unification of the valve systems for three different gases is possible by using our newly designed valve. A PDRE system can be simple and lightweight by using this valve, and thus its thrust-weight ratio can be increased. We proposed the design of a multi-tube rotary-valved PDRE system by this rotary valve. Moreover, in preparation for a multi-tube rotary-valved PDRE, we carried out the multi-cycle operation experiment by the single-tube rotary-valved PDRE system. The combustion wave velocity was measured to confirm the operation of the PDRE system. Deflagration-to-detonation transition (DDT) was confirmed and DDT distance decreased under the condition of high operation frequency. In addition, a maximum operation frequency was 159 Hz.

  12. White light velocity interferometer

    DOEpatents

    Erskine, D.J.

    1999-06-08

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

  13. Infection Casualty Estimation (ICE) Model: Predicting Sepsis in Nuclear Detonation Burn Patient Populations using Procalcitonin as a Biomarker

    DTIC Science & Technology

    2017-06-06

    environments may be injured or killed from the primary blast wave, thermal pulse and ionizing radiation . Burn casualties surviving the initial blast wave are...32]/1.8 degree Celsius (oC) degree Fahrenheit (oF) [T(oF) + 459.67]/1.8 kelvin (K) Radiation activity of radionuclides [curie (Ci)] 3.7 × 1010...develop casualty estimation models for improvised nuclear device (IND) scenarios. The HSRDIPT team has developed health effects models of radiation , burn

  14. White light velocity interferometer

    DOEpatents

    Erskine, David J.

    1997-01-01

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.

  15. White light velocity interferometer

    DOEpatents

    Erskine, David J.

    1999-01-01

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.

  16. White light velocity interferometer

    DOEpatents

    Erskine, D.J.

    1997-06-24

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

  17. A DATA ACQUISITION SYSTEM FOR THE STUDY OF TRANSIENT RADIATION EFFECTS ON ELECTRONIC DEVICES. Paper 5 of FOURTH RADIATION EFFECTS SYMPOSIUM, SEPTEMBER 15-16, 1959, CINCINNATI, OHIO. GENERAL SESSION PAPERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochrane, D.O.; Graham, F.E.; Sauer, H.S.

    1961-10-31

    ning both the transient and permanent effects that an environment of the type created by a nuclear detonation or a pulsed reactor exerts on electronic devices, is described. The design of suitable test heads for containing the electronic devices is discussed. The design of a blockhouse for use near Ground Sero when evaluating components in a weapons environment is also discussed. (C.J.G.)

  18. Shock wave physics and detonation physics — a stimulus for the emergence of numerous new branches in science and engineering

    NASA Astrophysics Data System (ADS)

    Krehl, Peter O. K.

    2011-07-01

    In the period of the Cold War (1945-1991), Shock Wave Physics and Detonation Physics (SWP&DP) — until the beginning of WWII mostly confined to gas dynamics, high-speed aerodynamics, and military technology (such as aero- and terminal ballistics, armor construction, chemical explosions, supersonic gun, and other firearms developments) — quickly developed into a large interdisciplinary field by its own. This rapid expansion was driven by an enormous financial support and two efficient feedbacks: the Terminal Ballistic Cycleand the Research& Development Cycle. Basic knowledge in SWP&DP, initially gained in the Classic Period(from 1808) and further extended in the Post-Classic Period(from the 1930s to present), is now increasingly used also in other branches of Science and Engineering (S&E). However, also independent S&E branches developed, based upon the fundamentals of SWP&DP, many of those developments will be addressed (see Tab. 2). Thus, shock wave and detonation phenomena are now studied within an enormous range of dimensions, covering microscopic, macroscopic, and cosmic dimensions as well as enormous time spans ranging from nano-/picosecond shock durations (such as produced by ultra-short laser pulses) to shock durations that continue for centuries (such as blast waves emitted from ancient supernova explosions). This paper reviews these developments from a historical perspective.

  19. The GPS Burst Detector W-Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCrady, D.D.; Phipps, P.

    1994-08-01

    The NAVSTAR satellites have two missions: navigation and nuclear detonation detection. The main objective of this paper is to describe one of the key elements of the Nuclear Detonation Detection System (NDS), the Burst Detector W-Sensor (BDW) that was developed for the Air Force Space and Missle Systems Center, its mission on GPS Block IIR, and how it utilizes GPS timing signals to precisely locate nuclear detonations (NUDET). The paper will also cover the interface to the Burst Detector Processor (BDP) which links the BDW to the ground station where the BDW is controlled and where data from multiple satellitesmore » are processed to determine the location of the NUDET. The Block IIR BDW is the culmination of a development program that has produced a state-of-the-art, space qualified digital receiver/processor that dissipates only 30 Watts, weighs 57 pounds, and has a 12in. {times} l4.2in. {times} 7.16in. footprint. The paper will highlight several of the key multilayer printed circuit cards without which the required power, weight, size, and radiation requirements could not have been met. In addition, key functions of the system software will be covered. The paper will be concluded with a discussion of the high speed digital signal processing and algorithm used to determine the time-of-arrival (TOA) of the electromagnetic pulse (EMP) from the NUDET.« less

  20. Hypersonic propulsion: Status and challenge

    NASA Technical Reports Server (NTRS)

    Guy, R. Wayne

    1990-01-01

    Scientists in the U.S. are again focusing on the challenge of hypersonic flight with the proposed National Aerospace Plane (NASP). This renewed interest has led to an expansion of research related to high speed airbreathing propulsion, in particular, the supersonic combustion ramjet, or scramjet. The history is briefly traced of scramjet research in the U.S., with emphasis on NASA sponsored efforts, from the Hypersonic Research Engine (HRE) to the current status of today's airframe integrated scramjets. The challenges of scramjet technology development from takeover to orbital speeds are outlined. Existing scramjet test facilities such as NASA Langley's Scramjet Test Complex as well as new high Mach number pulse facilities are discussed. The important partnership role of experimental methods and computational fluid dynamics is emphasized for the successful design of single stage to orbit vehicles.

  1. Impact of aeroelasticity on propulsion and longitudinal flight dynamics of an air-breathing hypersonic vehicle

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Mcminn, John D.; Pototzky, Anthony S.; Wooley, Christine L.

    1993-01-01

    Many air-breathing hypersonic aerospacecraft design concepts incorporate an elongated fuselage forebody acting as the aerodynamic compression surface for a hypersonic combustion module, or scram jet. This highly integrated design approach creates the potential for an unprecedented form of aero-propulsive-elastic interaction in which deflections of the vehicle fuselage give rise to propulsion transients, producing force and moment variations that may adversely impact the rigid body flight dynamics and/or further excite the fuselage bending modes. To investigate the potential for such interactions, a math model was developed which included the longitudinal flight dynamics, propulsion system, and first seven elastic modes of a hypersonic air-breathing vehicle. Perturbation time histories from a simulation incorporating this math model are presented that quantify the propulsive force and moment variations resulting from aeroelastic vehicle deflections. Root locus plots are presented to illustrate the effect of feeding the propulsive perturbations back into the aeroelastic model. A concluding section summarizes the implications of the observed effects for highly integrated hypersonic air-breathing vehicle concepts.

  2. Impact of aeroelasticity on propulsion and longitudinal flight dynamics of an air-breathing hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Raney, David L.; McMinn, John D.; Pototzky, Anthony S.; Wooley, Christine L.

    1993-04-01

    Many air-breathing hypersonic aerospacecraft design concepts incorporate an elongated fuselage forebody acting as the aerodynamic compression surface for a hypersonic combustion module, or scram jet. This highly integrated design approach creates the potential for an unprecedented form of aero-propulsive-elastic interaction in which deflections of the vehicle fuselage give rise to propulsion transients, producing force and moment variations that may adversely impact the rigid body flight dynamics and/or further excite the fuselage bending modes. To investigate the potential for such interactions, a math model was developed which included the longitudinal flight dynamics, propulsion system, and first seven elastic modes of a hypersonic air-breathing vehicle. Perturbation time histories from a simulation incorporating this math model are presented that quantify the propulsive force and moment variations resulting from aeroelastic vehicle deflections. Root locus plots are presented to illustrate the effect of feeding the propulsive perturbations back into the aeroelastic model. A concluding section summarizes the implications of the observed effects for highly integrated hypersonic air-breathing vehicle concepts.

  3. The distribution of mitochondria-rich cells in the gills of air-breathing fishes.

    PubMed

    Lin, Hui-Chen; Sung, Wen-Ting

    2003-01-01

    Respiration and ion regulation are the two principal functions of teleostean gills. Mainly found in the gill filaments of fish, mitochondria-rich cells (MRCs) proliferate to increase the ionoregulatory capacity of the gill in response to osmotic challenges. Gill lamellae consist mostly of pavement cells, which are the major site of gas exchange. Although lamellar MRCs have been reported in some fish species, there has been little discussion of which fish species are likely to have lamellar MRCs. In this study, we first compared the number of filament and lamellar MRCs in air-breathing and non-air-breathing fish species acclimated to freshwater and 5 g NaCl L(-1) conditions. An increase in filament MRCs was found in both air-breathing and non-air-breathing fish acclimated to freshwater. Lamellar MRCs were found only in air-breathing species, but the number of lamellar MRCs did not change significantly with water conditions, except in Periophthalmus cantonensis. Next, we surveyed the distribution of MRCs in the gills of 66 fish species (including 29 species from the previous literature) from 12 orders, 28 families, and 56 genera. Our hypothesis that lamellar MRCs are more likely to be found in air-breathing fishes was supported by a significant association between the presence of lamellar MRCs and the mode of breathing at three levels of systematic categories (species, genus, and family). Based on this integrative view of the multiple functions of fish gills, we should reexamine the role of MRCs in freshwater fish.

  4. PERIODIC AIR-BREATHING BEHAVIOUR IN A PRIMITIVE FISH REVEALED BY SPECTRAL ANALYSIS

    PubMed

    Hedrick; Katz; Jones

    1994-12-01

    The ventilatory patterns of air-breathing fish are commonly described as 'arrhythmic' or 'irregular' because the variable periods of breath-holding are punctuated by seemingly unpredictable air-breathing events (see Shelton et al. 1986). This apparent arrhythmicity contrasts with the perceived periodism or regularity in the gill ventilation patterns of some fish and with lung ventilation in birds and mammals. In this sense, periodism refers to behaviour that occurs with a definite, recurring interval (Bendat and Piersol, 1986). The characterisation of aerial ventilation patterns in fish as 'aperiodic' has been generally accepted on the basis of qualitative examination and it remains to be validated with rigorous testing. The bowfin, Amia calva (L.), is a primitive air-breathing fish that makes intermittent excursions to the air­water interface to gulp air, which is transferred to its well-vascularized gas bladder. Its phylogenetic position as the only extant member of the sister lineage of modern teleosts affords a unique opportunity to examine the evolution of aerial ventilation and provides a model for the examination of ventilatory patterns in primitive fishes. To establish whether Amia calva exhibit a particular pattern of air-breathing, we examined time series records of aerial ventilations from undisturbed fish over long periods (8 h). These records were the same as those used to calculate average ventilation intervals under a variety of experimental conditions (Hedrick and Jones, 1993). Their study also reported the occurrence of two distinct breath types. Type I breaths were characterised by an exhalation followed by an inhalation, whereas type II breaths were characterised by inhalation only. It was also hypothesized that the type I breaths were employed to meet oxygen demands, whereas the type II breaths were used to regulate gas bladder volume. However, they did not investigate the potential presence of a periodic ventilatory pattern. We now report the results of just such an analysis of ventilatory pattern that demonstrates a clear periodism to air-breathing in a primitive fish.

  5. Fast-starting after a breath: air-breathing motions are kinematically similar to escape responses in the catfish Hoplosternum littorale

    PubMed Central

    Domenici, Paolo; Norin, Tommy; Bushnell, Peter G.; Johansen, Jacob L.; Skov, Peter Vilhelm; Svendsen, Morten B. S.; Steffensen, John F.; Abe, Augusto S.

    2015-01-01

    ABSTRACT Fast-starts are brief accelerations commonly observed in fish within the context of predator–prey interactions. In typical C-start escape responses, fish react to a threatening stimulus by bending their body into a C-shape during the first muscle contraction (i.e. stage 1) which provides a sudden acceleration away from the stimulus. Recently, similar C-starts have been recorded in fish aiming at a prey. Little is known about C-starts outside the context of predator–prey interactions, though recent work has shown that escape response can also be induced by high temperature. Here, we test the hypothesis that air-breathing fish may use C-starts in the context of gulping air at the surface. Hoplosternum littorale is an air-breathing freshwater catfish found in South America. Field video observations reveal that their air-breathing behaviour consists of air-gulping at the surface, followed by a fast turn which re-directs the fish towards the bottom. Using high-speed video in the laboratory, we compared the kinematics of the turn immediately following air-gulping performed by H. littorale in normoxia with those of mechanically-triggered C-start escape responses and with routine (i.e. spontaneous) turns. Our results show that air-breathing events overlap considerably with escape responses with a large stage 1 angle in terms of turning rates, distance covered and the relationship between these rates. Therefore, these two behaviours can be considered kinematically comparable, suggesting that air-breathing in this species is followed by escape-like C-start motions, presumably to minimise time at the surface and exposure to avian predators. These findings show that C-starts can occur in a variety of contexts in which fish may need to get away from areas of potential danger. PMID:25527644

  6. Pulsed source of energetic atomic oxygen

    NASA Technical Reports Server (NTRS)

    Caledonia, George E.; Krech, Robert H.

    1987-01-01

    A pulsed high flux source of nearly monoenergetic atomic oxygen was designed, built, and successfully demonstrated. Molecular oxygen at several atmospheres pressure is introduced into an evacuated supersonic expansion nozzle through a pulsed molecular beam valve. An 18 J pulsed CO2 TEA laser is focused to intensities greater than 10(9) W/sq cm in the nozzle throat to generate a laser-induced breakdown. The resulting plasma is heated in excess of 20,000 K by a laser supported detonation wave, and then rapidly expands and cools. Nozzle geometry confines the expansion to provide rapid electron-ion recombination into atomic oxygen. Average O atom beam velocities from 5 to 13 km/s were measured at estimated fluxes to 10(18) atoms per pulse. Preliminary materials testing has produced the same surface oxygen enrichment in polyethylene samples as obtained on the STS-8 mission. Scanning electron microscope examinations of irradiated polymer surfaces reveal an erosion morphology similar to that obtained in low Earth orbit, with an estimated mass removal rate of approx. 10(-24) cu cm/atom. The characteristics of the O atom source and the results of some preliminary materials testing studies are reviewed.

  7. Quasi-One-Dimensional Modeling of Pulse Detonation Rocket Engines

    NASA Technical Reports Server (NTRS)

    Morris, Christopher I.

    2002-01-01

    Pulsed detonation rocket engines (PDREs) have generated considerable research interest in recent years as a chemical propulsion system potentially offering improved performance and reduced complexity compared to conventional rocket engines. The detonative mode of combustion employed by these devices offers a thermodynamic advantage over the constant-pressure deflagrative combustion mode used in conventional rocket engines and gas turbines. However, while this theoretical advantage has spurred a great deal of interest in building PDRE devices, the unsteady blowdown process intrinsic to the PDRE has made realistic estimates of the actual propulsive performance problematic. The recent review article by Kailasanath highlights some of the difficulties in comparing the available experimental measurements with numerical models. In a previous paper by the author, parametric studies of the performance of a single, straight-tube PDRE were reported. A 1-D, unsteady method of characteristics code, employing a constant-gamma assumption behind the detonation front, was developed for that study. Models of this type are computationally inexpensive, and are particularly useful for parametric performance comparisons. For example, a plot showing the specific impulse of various PDRE and steady-state rocket engine (SSRE) configurations as a function of blowdown pressure ratio. The performance curves clearly indicate that a straight-tube PDRE is superior in specific impulse to a SSRE with a sonic nozzle over the entire range of pressure ratios. Note, however, that a straight-tube PDRE in general does not compare favorably to a SSRE fitted with an optimized de Laval supersonic nozzle, particularly at the high pressure ratios typical for boost or in-space rocket applications. However, the calculations also show that if a dynamically optimized, supersonic de Laval nozzle could be could be fitted to a PDRE, then the specific impulse of the device would exceed that of a comparable SSRE. While such a nozzle is a considerable idealization, it is clear that nozzle design and optimization will play a critical role in whether the performance potential of PDREs can be effectively realized in practice. In order to study PDRE nozzle issues with greater accuracy, a quasi-one-dimensional, finite-rate chemistry CFD code has been developed by the author. Comparisons of the code with both the previous MOC model and experimental data from Stanford University are reported. The effect of constant-gamma and finite-rate chemistry assumptions on the flowfield and performance is examined. Parametric studies of the effect of nozzle throat size and expansion ratio, at various blowdown pressure ratios, are reported.

  8. Studies of Operating Frequency Effects On Ejector-based Thrust Augmentation in a Pulse Detonation Engine

    NASA Technical Reports Server (NTRS)

    Landry, K.

    2005-01-01

    Studies were performed in order to characterize the thrust augmentation potential of an ejector in a Pulse Detonation Engine application. A 49-mm diameter tube of 0.914-m length was constructed with one open end and one closed end. Ethylene, oxygen, and nitrogen were introduced into the tube at the closed end through the implementation of a fast mixing injector. The tube was completely filled with a stoichiometric mixture containing a one to one molar ratio of nitrogen to oxygen. Ethylene was selected as the fuel due to its detonation sensitivity and the molar ratio of the oxidizer was chosen for heat transfer purposes. Detonations were initiated in the tube through the use of a spark ignition system. The PDE was operated in a multi-cycle mode at frequencies ranging from 20-Hz to 50-Hz. Baseline thrust measurements with no ejector present were performed while operating the engine at various frequencies and compared to theoretical estimates. The baseline values were observed to agree with the theoretical model at low operating frequencies and proved to be increasingly lower than the predicted values as the operating frequency was increased. The baseline thrust measurements were observed to agree within 15 percent of the model for all operating frequencies. A straight 152-mm diameter ejector was installed and thrust augmentation percentages were measured. The length of the ejector was varied while the overlap percentage (percent of the ejector length which overlapped the tube) was maintained at 25 percent for all tests. In addition, the effect of ejector inlet geometry was investigated by comparing results with a straight inlet to those of a 38-mm inlet diameter. The thrust augmentation of the straight inlet ejector proved to be independent of engine operating frequency, augmenting thrust by 40 percent for the 0.914-m length ejector. In contrast, the rounded lip ejector of the same length seemed to be highly dependent on the engine operating frequency. An optimum operating frequency observed with the rounded inlet occurred at an operating frequency of 30-Hz, resulting in thrust augmentation percentages greater than 100 percent. The effect that the engine operating frequency had on thrust augmentation levels attained with an ejector was characterized and optimum performance parameters were established. Insight into the frequency dependent nature of the ejector performance was pursued. Suggestions for future experiments which are needed to fully understand the means in which thrust augmentation is achieved in a PDE-ejector configuration were noted.

  9. CFD for hypersonic airbreathing aircraft

    NASA Technical Reports Server (NTRS)

    Kumar, Ajay

    1989-01-01

    A general discussion is given on the use of advanced computational fluid dynamics (CFD) in analyzing the hypersonic flow field around an airbreathing aircraft. Unique features of the hypersonic flow physics are presented and an assessment is given of the current algorithms in terms of their capability to model hypersonic flows. Several examples of advanced CFD applications are then presented.

  10. Relationship of oxygen dose to angiogenesis induction in irradiated tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marx, R.E.; Ehler, W.J.; Tayapongsak, P.

    1990-11-01

    This study was accomplished in an irradiated rabbit model to assess the angiogenic properties of normobaric oxygen and hyperbaric oxygen as compared with air-breathing controls. Results indicated that normobaric oxygen had no angiogenic properties above normal revascularization of irradiated tissue than did air-breathing controls (p = 0.89). Hyperbaric oxygen demonstrated an eight- to ninefold increased vascular density over both normobaric oxygen and air-breathing controls (p = 0.001). Irradiated tissue develops a hypovascular-hypocellular-hypoxic tissue that does not revascularize spontaneously. Results failed to demonstrate an angiogenic effect of normobaric oxygen. It is suggested that oxygen in this sense is a drug requiringmore » hyperbaric pressures to generate therapeutic effects on chronically hypovascular irradiated tissue.« less

  11. Hypersonic vehicle control law development using H(infinity) and micron-synthesis

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Mcminn, John D.; Shaughnessy, John D.; Chowdhry, Rajiv S.

    1993-01-01

    Hypersonic vehicle control law development using H(infinity) and mu-synthesis is discussed. Airbreathing SSTO vehicles has a mutli-faceted mission that includes orbital operations, as well as re-entry and descent culminating in horizontal landing. However, the most challenging part of the operations is the ascent to orbit. The airbreathing propulsion requires lengthy atmospheric flight that may last as long as 30 minutes and take the vehicle half way around the globe. The vehicles's ascent is characterized by tight payload to orbit margins which translate into minimum fuel orbit as the performance criteria. Issues discussed include: SSTO airbreathing vehicle issues; control system performance requirements; robust control law framework; H(infinity) controller frequency analysis; and mu controller frequency analysis.

  12. Propulsion Airframe Integration Test Techniques for Hypersonic Airbreathing Configurations at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Witte, David W.; Huebner, Lawrence D.; Trexler, Carl A.; Cabell, Karen F.; Andrews, Earl H., Jr.

    2003-01-01

    The scope and significance of propulsion airframe integration (PAI) for hypersonic airbreathing vehicles is presented through a discussion of the PAI test techniques utilized at NASA Langley Research Center. Four primary types of PAI model tests utilized at NASA Langley for hypersonic airbreathing vehicles are discussed. The four types of PAI test models examined are the forebody/inlet test model, the partial-width/truncated propulsion flowpath test model, the powered exhaust simulation test model, and the full-length/width propulsion flowpath test model. The test technique for each of these four types of PAI test models is described, and the relevant PAI issues addressed by each test technique are illustrated through the presentation of recent PAI test data.

  13. Shock-induced synthesis of high temperature superconducting materials

    DOEpatents

    Ginley, D.S.; Graham, R.A.; Morosin, B.; Venturini, E.L.

    1987-06-18

    It has now been determined that the unique features of the high pressure shock method, especially the shock-induced chemical synthesis technique, are fully applicable to high temperature superconducting materials. Extraordinarily high yields are achievable in accordance with this invention, e.g., generally in the range from about 20% to about 99%, often in the range from about 50% to about 90%, lower and higher yields, of course, also being possible. The method of this invention involves the application of a controlled high pressure shock compression pulse which can be produced in any conventional manner, e.g., by detonation of a high explosive material, the impact of a high speed projectile or the effect of intense pulsed radiation sources such as lasers or electron beams. Examples and a discussion are presented.

  14. X-ray imaging and 3D reconstruction of in-flight exploding foil initiator flyers

    DOE PAGES

    Willey, T. M.; Champley, K.; Hodgin, R.; ...

    2016-06-17

    Exploding foil initiators (EFIs), also known as slapper initiators or detonators, offer clear safety and timing advantages over other means of initiating detonation in high explosives. The work described here outlines a new capability for imaging and reconstructing three-dimensional images of operating EFIs. Flyer size and intended velocity were chosen based on parameters of the imaging system. The EFI metal plasma and plastic flyer traveling at 2.5 km/s were imaged with short ~80 ps pulses spaced 153.4 ns apart. A four-camera system acquired 4 images from successive x-ray pulses from each shot. The first frame was prior to bridge burst,more » the 2 nd images the flyer about 0.16 mm above the surface but edges of the foil and/or flyer are still attached to the substrate. The 3 rd frame captures the flyer in flight, while the 4 th shows a completely detached flyer in a position that is typically beyond where slappers strike initiating explosives. Multiple acquisitions at different incident angles and advanced computed tomography reconstruction algorithms were used to produce a 3-dimensional image of the flyer at 0.16 and 0.53 mm above the surface. Both the x-ray images and the 3D reconstruction show a strong anisotropy in the shape of the flyer and underlying foil parallel vs. perpendicular to the initiating current and electrical contacts. These results provide detailed flyer morphology during the operation of the EFI.« less

  15. X-ray imaging and 3D reconstruction of in-flight exploding foil initiator flyers

    NASA Astrophysics Data System (ADS)

    Willey, T. M.; Champley, K.; Hodgin, R.; Lauderbach, L.; Bagge-Hansen, M.; May, C.; Sanchez, N.; Jensen, B. J.; Iverson, A.; van Buuren, T.

    2016-06-01

    Exploding foil initiators (EFIs), also known as slapper initiators or detonators, offer clear safety and timing advantages over other means of initiating detonation in high explosives. This work outlines a new capability for imaging and reconstructing three-dimensional images of operating EFIs. Flyer size and intended velocity were chosen based on parameters of the imaging system. The EFI metal plasma and plastic flyer traveling at 2.5 km/s were imaged with short ˜80 ps pulses spaced 153.4 ns apart. A four-camera system acquired 4 images from successive x-ray pulses from each shot. The first frame was prior to bridge burst, the 2nd images the flyer about 0.16 mm above the surface but edges of the foil and/or flyer are still attached to the substrate. The 3rd frame captures the flyer in flight, while the 4th shows a completely detached flyer in a position that is typically beyond where slappers strike initiating explosives. Multiple acquisitions at different incident angles and advanced computed tomography reconstruction algorithms were used to produce a 3-dimensional image of the flyer at 0.16 and 0.53 mm above the surface. Both the x-ray images and the 3D reconstruction show a strong anisotropy in the shape of the flyer and underlying foil parallel vs. perpendicular to the initiating current and electrical contacts. These results provide detailed flyer morphology during the operation of the EFI.

  16. X-ray imaging and 3D reconstruction of in-flight exploding foil initiator flyers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willey, T. M., E-mail: willey1@llnl.gov; Champley, K., E-mail: champley1@llnl.gov; Hodgin, R.

    Exploding foil initiators (EFIs), also known as slapper initiators or detonators, offer clear safety and timing advantages over other means of initiating detonation in high explosives. This work outlines a new capability for imaging and reconstructing three-dimensional images of operating EFIs. Flyer size and intended velocity were chosen based on parameters of the imaging system. The EFI metal plasma and plastic flyer traveling at 2.5 km/s were imaged with short ∼80 ps pulses spaced 153.4 ns apart. A four-camera system acquired 4 images from successive x-ray pulses from each shot. The first frame was prior to bridge burst, the 2nd images themore » flyer about 0.16 mm above the surface but edges of the foil and/or flyer are still attached to the substrate. The 3rd frame captures the flyer in flight, while the 4th shows a completely detached flyer in a position that is typically beyond where slappers strike initiating explosives. Multiple acquisitions at different incident angles and advanced computed tomography reconstruction algorithms were used to produce a 3-dimensional image of the flyer at 0.16 and 0.53 mm above the surface. Both the x-ray images and the 3D reconstruction show a strong anisotropy in the shape of the flyer and underlying foil parallel vs. perpendicular to the initiating current and electrical contacts. These results provide detailed flyer morphology during the operation of the EFI.« less

  17. X-ray imaging and 3D reconstruction of in-flight exploding foil initiator flyers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willey, T. M.; Champley, K.; Hodgin, R.

    Exploding foil initiators (EFIs), also known as slapper initiators or detonators, offer clear safety and timing advantages over other means of initiating detonation in high explosives. The work described here outlines a new capability for imaging and reconstructing three-dimensional images of operating EFIs. Flyer size and intended velocity were chosen based on parameters of the imaging system. The EFI metal plasma and plastic flyer traveling at 2.5 km/s were imaged with short ~80 ps pulses spaced 153.4 ns apart. A four-camera system acquired 4 images from successive x-ray pulses from each shot. The first frame was prior to bridge burst,more » the 2 nd images the flyer about 0.16 mm above the surface but edges of the foil and/or flyer are still attached to the substrate. The 3 rd frame captures the flyer in flight, while the 4 th shows a completely detached flyer in a position that is typically beyond where slappers strike initiating explosives. Multiple acquisitions at different incident angles and advanced computed tomography reconstruction algorithms were used to produce a 3-dimensional image of the flyer at 0.16 and 0.53 mm above the surface. Both the x-ray images and the 3D reconstruction show a strong anisotropy in the shape of the flyer and underlying foil parallel vs. perpendicular to the initiating current and electrical contacts. These results provide detailed flyer morphology during the operation of the EFI.« less

  18. The History of the Study of Detonation

    ERIC Educational Resources Information Center

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    In this article we reviewed the main concepts of detonative combustion. Concepts of slow and fast combustion, of detonation adiabat are introduced. Landmark works on experimental and semi-empirical detonation study are presented. We reviewed Chapman-Jouguet stationary detonation and spin detonation. Various mathematical model of detonation wave…

  19. Ideal cycle analysis of a regenerative pulse detonation engine for power production

    NASA Astrophysics Data System (ADS)

    Bellini, Rafaela

    Over the last few decades, considerable research has been focused on pulse detonation engines (PDEs) as a promising replacement for existing propulsion systems with potential applications in aircraft ranging from the subsonic to the lower hypersonic regimes. On the other hand, very little attention has been given to applying detonation for electric power production. One method for assessing the performance of a PDE is through thermodynamic cycle analysis. Earlier works have adopted a thermodynamic cycle for the PDE that was based on the assumption that the detonation process could be approximated by a constant volume process, called the Humphrey cycle. The Fickett-Jacob cycle, which uses the one--dimensional Chapman--Jouguet (CJ) theory of detonation, has also been used to model the PDE cycle. However, an ideal PDE cycle must include a detonation based compression and heat release processes with a finite chemical reaction rate that is accounted for in the Zeldovich -- von Neumann -- Doring model of detonation where the shock is considered a discontinuous jump and is followed by a finite exothermic reaction zone. This work presents a thermodynamic cycle analysis for an ideal PDE cycle for power production. A code has been written that takes only one input value, namely the heat of reaction of a fuel-oxidizer mixture, based on which the program computes all the points on the ZND cycle (both p--v and T--s plots), including the von Neumann spike and the CJ point along with all the non-dimensionalized state properties at each point. In addition, the program computes the points on the Humphrey and Brayton cycles for the same input value. Thus, the thermal efficiencies of the various cycles can be calculated and compared. The heat release of combustion is presented in a generic form to make the program usable with a wide variety of fuels and oxidizers and also allows for its use in a system for the real time monitoring and control of a PDE in which the heat of reaction can be obtained as a function of fuel-oxidizer ratio. The Humphrey and ZND cycles are studied in comparison with the Brayton cycle for different fuel-air mixtures such as methane, propane and hydrogen. The validity and limitations of the ZND and Humphrey cycles related to the detonation process are discussed and the criteria for the selection of the best model for the PDE cycle are explained. It is seen that the ZND cycle is a more appropriate representation of the PDE cycle. Next, the thermal and electrical power generation efficiencies for the PDE are compared with those of the deflagration based Brayton cycle. While the Brayton cycle shows an efficiency of 0 at a compressor pressure ratio of 1, the thermal efficiency for the ZND cycle starts out at 42% for hydrogen--air and then climbs to a peak of 66% at a compression ratio of 7 before falling slowly for higher compression ratios. The Brayton cycle efficiency rises above the PDEs for compression ratios above 23. This finding supports the theoretical advantage of PDEs over the gas turbines because PDEs only require a fan or only a few compressor stages, thereby eliminating the need for heavy compressor machinery, making the PDEs less complex and therefore more cost effective than other engines. Lastly, a regeneration study is presented to analyze how the use of exhaust gases can improve the performance of the system. The thermal efficiencies for the regenerative ZND cycle are compared with the efficiencies for the non--regenerative cycle. For a hydrogen--air mixture the thermal efficiency increases from 52%, for a cycle without regeneration, to 78%, for the regenerative cycle. The efficiency is compared with the Carnot efficiency of 84% which is the maximum possible theoretical efficiency of the cycle. When compared to the Brayton cycle thermal efficiencies, the regenerative cycle shows efficiencies that are always higher for the pressure ratio studied of 5 ≤ pic ≤ 25, where pi c the compressor pressure ratio of the cycle. This observation strengthens the idea of using regeneration on PDEs.

  20. Analysis of a Nuclear Enhanced Airbreathing Rocket for Earth to Orbit Applications

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.; Landrum, D. Brian; Brown, Norman (Technical Monitor)

    2001-01-01

    The proposed engine concept is the Nuclear Enhanced Airbreathing Rocket (NEAR). The NEAR concept uses a fission reactor to thermally heat a propellant in a rocket plenum. The rocket is shrouded, thus the exhaust mixes with ingested air to provide additional thermal energy through combustion. The combusted flow is then expanded through a nozzle to provide thrust.

  1. Investigation of effect of propulsion system installation and operation on aerodynamics of an airbreathing hypersonic airplane at Mach 0.3 to 1.2

    NASA Technical Reports Server (NTRS)

    Cubbage, J. M.; Mercer, C. E.

    1977-01-01

    Results from an investigation of the effects of the operation of a combined turbojet/scramjet propulsion system on the longitudinal aerodynamic characteristics of a 1/60-scale hypersonic airbreathing launch vehicle configuration are presented. Decomposition products of hydrogen peroxide were used for simulation of the propulsion system exhaust.

  2. Respiratory responses of the air-breathing fish Hoplosternum littorale to hypoxia and hydrogen sulfide.

    PubMed

    Affonso, E G; Rantin, F T

    2005-07-01

    The present study analyzes the respiratory responses of the neotropical air-breathing fish Hoplosternum littorale to graded hypoxia and increased sulfide concentrations. The oxygen uptake (VO2), critical O2 tension (PcO2), respiratory (fR) and air-breathing (fRA) frequencies in response to graded hypoxia were determined for fish acclimated to 28 degrees C. H. littorale was able to maintain a constant VO2 down to a PcO2 of 50 mm Hg, below which fish became dependent on the environmental O2 even with significant increases in fR. The fRA was kept constant around 1 breath h(-1) above 50 mm Hg and increased significantly below 40 mm Hg, reaching maximum values (about 4.5 breaths h(-1)) at 10 mm Hg. The lethality to sulfide concentrations under normoxic and hypoxic conditions were also determined along with the fRA. For the normoxic fish the sulfide lethal limit was about 70 microM, while in the hypoxic ones this limit increased to 87 muM. The high sulfide tolerance of H. littorale may be attributed to the air-breathing capability, which is stimulated by this compound.

  3. Computational and experimental aftbody flow fields for hypersonic, airbreathing configurations with scramjet exhaust flow simulation

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Tatum, Kenneth E.

    1991-01-01

    Computational results are presented for three issues pertinent to hypersonic, airbreathing vehicles employing scramjet exhaust flow simulation. The first issue consists of a comparison of schlieren photographs obtained on the aftbody of a cruise missile configuration under powered conditions with two-dimensional computational solutions. The second issue presents the powered aftbody effects of modeling the inlet with a fairing to divert the external flow as compared to an operating flow-through inlet on a generic hypersonic vehicle. Finally, a comparison of solutions examining the potential of testing powered configurations in a wind-off, instead of a wind-on, environment, indicate that, depending on the extent of the three-dimensional plume, it may be possible to test aftbody powered hypersonic, airbreathing configurations in a wind-off environment.

  4. Airbreathing space boosters using in-flight oxidizer collection

    NASA Astrophysics Data System (ADS)

    Maurice, Lourdes Q.; Leingang, John L.; Carreiro, Louis R.

    1992-07-01

    A condensed historical review of the development of a propulsion fluid system known as ACES (Air Collection and Enrichment System) is presented. The role of the ACES system is to acquire and store liquid oxygen en route to orbit for rocket use beyond the airbreathing envelope. Earth-to-orbit capability is achieved without carrying liquid oxygen from take-off or relying on scramjets. The performance advantages of using ACES is mathematically formulated. Results from a recent vehicle study aimed at comparing ACES and Sanger type (LOX carrying) propulsion schemes are presented. The payload fractions achievable with ACES are shown to be superior to those of Sanger type vehicles and competitive with scramjet-powered space launch vehicles without relying on airbreathing propulsion beyond the speed of conventional turboramjet engines.

  5. Airbreathing Acceleration Toward Earth Orbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitehead, J C

    As flight speed increases, aerodynamic drag rises more sharply than the availability of atmospheric oxygen. The ratio of oxygen mass flux to dynamic pressure cannot be improved by changing altitude. The maximum possible speed for airbreathing propulsion is limited by the ratio of air capture area to vehicle drag area, approximately Mach 6 at equal areas. Simulation of vehicle acceleration shows that the use of atmospheric oxygen offers a significant potential for minimizing onboard consumables at low speeds. These fundamental calculations indicate that a practical airbreathing launch vehicle would accelerate to near steady-state speed while consuming only onboard fuel, thenmore » transition to rocket propulsion. It is suggested that an aircraft carrying a rocket-propelled vehicle to approximately Mach 5 could be a realistic technical goal toward improving access to orbit.« less

  6. The effects of shockwave profile shape and shock obliquity on spallation in Cu and Ta: kinetic and stress-state effects on damage evolution(u)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, George T

    2010-12-14

    Widespread research over the past five decades has provided a wealth of experimental data and insight concerning shock hardening and the spallation response of materials subjected to square-topped shock-wave loading profiles. Less quantitative data have been gathered on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (or triangular-wave) loading profile shock loading on the shock hardening, damage evolution, or spallation response of materials. Explosive loading induces an impulse dubbed a 'Taylor Wave'. This is a significantly different loading history than that achieved by a square-topped impulse in terms of both the pulse duration at a fixed peak pressure,more » and a different unloading strain rate from the peak Hugoniot state achieved. The goal of this research is to quantify the influence of shockwave obliquity on the spallation response of copper and tantalum by subjecting plates of each material to HE-driven sweeping detonation-wave loading and quantify both the wave propagation and the post-mortem damage evolution. This talk will summarize our current understanding of damage evolution during sweeping detonation-wave spallation loading in Cu and Ta and show comparisons to modeling simulations. The spallation responses of Cu and Ta are both shown to be critically dependent on the shockwave profile and the stress-state of the shock. Based on variations in the specifics of the shock drive (pulse shape, peak stress, shock obliquity) and sample geometry in Cu and Ta, 'spall strength' varies by over a factor of two and the details of the mechanisms of the damage evolution is seen to vary. Simplistic models of spallation, such as P{sub min} based on 1-D square-top shock data lack the physics to capture the influence of kinetics on damage evolution such as that operative during sweeping detonation loading. Such considerations are important for the development of predictive models of damage evolution and spallation in metals and alloys.« less

  7. Experimental Investigation of Nozzle/Plume Aerodynamics at Hypersonic Speeds

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Bogdanoff, David W.; Cambier, Jean-Luc

    1992-01-01

    The work performed by D. W. Bogdanoff and J.-L. Cambier during the period of 1 Feb. - 31 Oct. 1992 is presented. The following topics are discussed: (1) improvement in the operation of the facility; (2) the wedge model; (3) calibration of the new test section; (4) combustor model; (5) hydrogen fuel system for combustor model; (6) three inch calibration/development tunnel; (7) shock tunnel unsteady flow; (8) pulse detonation wave engine; (9) DCAF flow simulation; (10) high temperature shock layer simulation; and (11) the one dimensional Godunov CFD code.

  8. Effect of the three-dimensional structure of laser emission on the dynamics of low-threshold optical breakdown plasmas

    NASA Astrophysics Data System (ADS)

    Anisimov, V. N.; Arutiunian, R. V.; Bol'Shov, L. A.; Derkach, O. N.; Kanevskii, M. F.

    1989-03-01

    The effect of the transverse structure of pulsed CO2 laser emission on the dynamics of laser-induced detonation waves propagating from a metal surface and on plasma transparency recovery is investigated theoretically and experimentally. Particular attention is given to breakdown initiation near the surface. It is suggested that the inclusion of refraction in the plasma into a self-consistent numerical mode is essential for the adequate quantitative description of experimental data on the interaction of laser emission with low-threshold optical breakdown plasmas.

  9. Method and device for stand-off laser drilling and cutting

    DOEpatents

    Copley, John A.; Kwok, Hoi S.; Domankevitz, Yacov

    1989-09-26

    A device for perforating material and a method of stand-off drilling using a laser. In its basic form a free-running laser beam creates a melt on the target and then a Q-switched short duration pulse is used to remove the material through the creation of a laser detonation wave. The advantage is a drilling/cutting method capable of working a target at lengthy stand-off distance. The device may employ 2 lasers or a single one operated in a free-running/Q-switched dual mode.

  10. Test of Detonation Locator System AN/GSS-4. Operation PLUMBBOB, Desert Rock VII and VIII, Project 50.3

    DTIC Science & Technology

    1979-10-01

    GSS-k was assigned in May 1957 to the system of equipments as used in Operation Plumbbob. Quantitative measurements of the em pulse have been made... quantitative data from the recordings of the SWR vavefoims, It vas necessary to record other infoimation on the photographs. Figure 35, a typical...Capilla vuvefonnG. The Heef’s I’dne and other Gleeson triplet observations confirmed the In/if ground wave positiv « half cycle and indicated a sharply

  11. Precursor detonation wave development in ANFO due to aluminum confinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Scott I; Klyanda, Charles B; Short, Mark

    2010-01-01

    Detonations in explosive mixtures of ammonium-nitrate-fuel-oil (ANFO) confined by aluminum allow for transport of detonation energy ahead of the detonation front due to the aluminum sound speed exceeding the detonation velocity. The net effect of this energy transport on the detonation is unclear. It could enhance the detonation by precompressing the explosive near the wall. Alternatively, it could decrease the explosive performance by crushing porosity required for initiation by shock compression or destroying confinement ahead of the detonation. At present, these phenomena are not well understood. But with slowly detonating, non-ideal high explosive (NIHE) systems becoming increasing prevalent, proper understandingmore » and prediction of the performance of these metal-confined NIHE systems is desirable. Experiments are discussed that measured the effect of this ANFO detonation energy transported upstream of the front by a 76-mm-inner-diameter aluminum confining tube. Detonation velocity, detonation-front shape, and aluminum response are recorded as a function of confiner wall thickness and length. Detonation shape profiles display little curvature near the confining surface, which is attributed to energy transported upstream modifying the flow. Average detonation velocities were seen to increase with increasing confiner thickness, while wavefront curvature decreased due to the stiffer, subsonic confinement. Significant radial sidewall tube motion was observed immediately ahead of the detonation. Axial motion was also detected, which interfered with the front shape measurements in some cases. It was concluded that the confiner was able to transport energy ahead of the detonation and that this transport has a definite effect on the detonation by modifying its characteristic shape.« less

  12. Airbreathing hypersonic vehicle design and analysis methods

    NASA Technical Reports Server (NTRS)

    Lockwood, Mary Kae; Petley, Dennis H.; Hunt, James L.; Martin, John G.

    1996-01-01

    The design, analysis, and optimization of airbreathing hypersonic vehicles requires analyses involving many highly coupled disciplines at levels of accuracy exceeding those traditionally considered in a conceptual or preliminary-level design. Discipline analysis methods including propulsion, structures, thermal management, geometry, aerodynamics, performance, synthesis, sizing, closure, and cost are discussed. Also, the on-going integration of these methods into a working environment, known as HOLIST, is described.

  13. Air-breathing behavior, oxygen concentrations, and ROS defense in the swimbladders of two erythrinid fish, the facultative air-breathing jeju, and the non-air-breathing traira during normoxia, hypoxia and hyperoxia.

    PubMed

    Pelster, Bernd; Wood, Chris M; Jung, Ellen; Val, Adalberto L

    2018-05-01

    The jeju Hoplerythrinus unitaeniatus and the traira Hoplias malabaricus are two neighboring genera from the family of erythrinid fish, both possessing a two-chambered physostomous swimbladder. In the jeju the anterior section of the posterior bladder is highly vascularized, and the swimbladder is used for aerial respiration; the traira, in turn, is a water-breather that uses the swimbladder as a buoyancy organ and not for aerial oxygen uptake. Measurement of swimbladder oxygen partial pressure (PO 2 ) of fish kept at 26 °C in normoxic, hyperoxic (28-32 mg O 2 L - 1 ) or hypoxic (1-1.5 mg O 2 L - 1 ) water revealed constant values in traira swimbladder. Under normoxic conditions in the jeju swimbladder PO 2 was higher than in traira, and the PO 2 significantly increased under hyperoxic conditions, even in the absence of air breathing. In jeju, air-breathing activity increased significantly under hypoxic conditions. Hypoxic air-breathing activity was negatively correlated to swimbladder PO 2 , indicating that the swimbladder was intensely used for gas exchange under these conditions. In traira, the capacity of the ROS defense system, as assessed by measurement of activities of enzymes involved in ROS degradation and total glutathione (GSH + GSSG) concentration, was elevated after 4 h of hyperoxic and/or hypoxic exposure, although swimbladder PO 2 was not affected. In jeju, experiencing a higher variability in swimbladder PO 2 due to the air-breathing activity, only a reduced responsiveness of the ROS defense system to changing environmental PO 2 was detected.

  14. The absence of ion-regulatory suppression in the gills of the aquatic air-breathing fish Trichogaster lalius during oxygen stress.

    PubMed

    Huang, Chun-Yen; Lin, Hsueh-Hsi; Lin, Cheng-Huang; Lin, Hui-Chen

    2015-01-01

    The strategy for most teleost to survive in hypoxic or anoxic conditions is to conserve energy expenditure, which can be achieved by suppressing energy-consuming activities such as ion regulation. However, an air-breathing fish can cope with hypoxic stress using a similar adjustment or by enhancing gas exchange ability, both behaviorally and physiologically. This study examined Trichogaster lalius, an air-breathing fish without apparent gill modification, for their gill ion-regulatory abilities and glycogen utilization under a hypoxic treatment. We recorded air-breathing frequency, branchial morphology, and the expression of ion-regulatory proteins (Na(+)/K(+)-ATPase and vacuolar-type H(+)-ATPase) in the 1(st) and 4(th) gills and labyrinth organ (LO), and the expression of glycogen utilization (GP, glycogen phosphorylase protein expression and glycogen content) and other protein responses (catalase, CAT; carbonic anhydrase II, CAII; heat shock protein 70, HSP70; hypoxia-inducible factor-1α, HIF-1α; proliferating cell nuclear antigen, PCNA; superoxidase dismutase, SOD) in the gills of T. lalius after 3 days in hypoxic and restricted conditions. No morphological modification of the 1(st) and 4(th) gills was observed. The air-breathing behavior of the fish and CAII protein expression both increased under hypoxia. Ion-regulatory abilities were not suppressed in the hypoxic or restricted groups, but glycogen utilization was enhanced within the groups. The expression of HIF-1α, HSP70 and PCNA did not vary among the treatments. Regarding the antioxidant system, decreased CAT enzyme activity was observed among the groups. In conclusion, during hypoxic stress, T. lalius did not significantly reduce energy consumption but enhanced gas exchange ability and glycogen expenditure. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. One dimensional shock Initiation of UK Comp B

    NASA Astrophysics Data System (ADS)

    Burns, Malcolm

    2017-06-01

    Ten shock initiation experiments have been carried out on the UK isostatically pressed Composition B (59.5% RDX, 39.5% TNT, 1% wax) comprising of seven sustained pulse experiments with input pressures ranging from 2.89 to 9.86 GPa and three short shock experiments using the embedded gauge technique at the Los Alamos National Laboratory gas gun facility. The evolution of the reactive growth at and behind the shock front has been measured along with the run to detonation distance. These data have been used to create the Pop plot and hugoniot states for the UK Comp B. The shock initiation behavior of the UK Comp B has been compared to that of the equivalent US Composition. The reactive growth shows a feature that was observed in the US composition in which the wave profiles dispay a high level of pre-detonation noise. This was hypothesized to be due to a piezoelectric effect in the RDX crystals. The results of these experiments have shown that this effect may be localized in the gamma phase at shock pressures in the region of 5 GP and above.

  16. Calculation of laser induced impulse based on the laser supported detonation wave model with dissociation, ionization and radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, Li, E-mail: ligan0001@gmail.com; Mousen, Cheng; Xiaokang, Li

    In the laser intensity range that the laser supported detonation (LSD) wave can be maintained, dissociation, ionization and radiation take a substantial part of the incidence laser energy. There is little treatment on the phenomenon in the existing models, which brings obvious discrepancies between their predictions and the experiment results. Taking into account the impact of dissociation, ionization and radiation in the conservations of mass, momentum and energy, a modified LSD wave model is developed which fits the experimental data more effectively rather than the existing models. Taking into consideration the pressure decay of the normal and the radial rarefaction,more » the laser induced impulse that is delivered to the target surface is calculated in the air; and the dependencies of impulse performance on laser intensity, pulse width, ambient pressure and spot size are indicated. The results confirm that the dissociation is the pivotal factor of the appearance of the momentum coupling coefficient extremum. This study focuses on a more thorough understanding of LSD and the interaction between laser and matter.« less

  17. An air-breathing enzymatic cathode with extended lifetime by continuous laccase supply.

    PubMed

    Kipf, Elena; Sané, Sabine; Morse, Daniel; Messinger, Thorsten; Zengerle, Roland; Kerzenmacher, Sven

    2018-04-22

    We present a novel concept of an air-breathing enzymatic biofuel cell cathode combined with continuous supply of unpurified laccase-containing supernatant of the white-rot fungus Trametes versicolor for extended lifetime. The air-breathing cathode design obviates the need for energy-intensive active aeration. In a corresponding long-term experiment at a constant current density of 50 µA cm -2 , we demonstrated an increased lifetime of 33 days (cathode potential above 0.430 V vs. SCE), independent of enzyme degradation. The obtained data suggest that theoretically a longer lifetime is feasible. However, further engineering efforts are required to prevent clogging and fouling of the supply tubes. These results represent an important step towards the realization of enzymatic biofuel cell cathodes with extended lifetime and enhanced performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Experimental investigation on secondary combustion characteristics of airbreathing rockets

    NASA Astrophysics Data System (ADS)

    Mano, Takeshi; Eguchi, Akihiro; Shinohara, Suetsugu; Etou, Takao; Kaneko, Yutaka; Yamamoto, Youichi; Nakagawa, Ichirou

    Empirical correlations of the secondary combustion efficiency of the airbreathing rocket were derived. From the results of a series of experiments employing a connected pipe facility, the combustion efficiency was related to dominant parameters. The feasibility of the performance prediction by one-dimensional analysis was also discussed. The analysis was found to be applicable to the flow processes in the secondary combustor, which include two-stream mixing and combustion.

  19. Propulsion options for the HI SPOT long endurance drone airship. Final report, November 1978-August 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcy, W.L.; Hookway, R.O.

    1979-09-15

    Airbreathing, monofueled, stored-energy, and solar-rechargeable propulsion systems have been studied for the HI SPOT Long Endurance Drone Airship, providing constant-level electrical power as well as variable aerodynamic thrust to maintain position in winds varying from 15 to 100 knots at high altitude. A hydrogen fueled airbreathing engine is optimum for mission lengths up to 30 days or more.

  20. Active water management at the cathode of a planar air-breathing polymer electrolyte membrane fuel cell using an electroosmotic pump

    NASA Astrophysics Data System (ADS)

    Fabian, T.; O'Hayre, R.; Litster, S.; Prinz, F. B.; Santiago, J. G.

    In a typical air-breathing fuel cell design, ambient air is supplied to the cathode by natural convection and dry hydrogen is supplied to a dead-ended anode. While this design is simple and attractive for portable low-power applications, the difficulty in implementing effective and robust water management presents disadvantages. In particular, excessive flooding of the open-cathode during long-term operation can lead to a dramatic reduction of fuel cell power. To overcome this limitation, we report here on a novel air-breathing fuel cell water management design based on a hydrophilic and electrically conductive wick in conjunction with an electroosmotic (EO) pump that actively pumps water out of the wick. Transient experiments demonstrate the ability of the EO-pump to "resuscitate" the fuel cell from catastrophic flooding events, while longer term galvanostatic measurements suggest that the design can completely eliminate cathode flooding using less than 2% of fuel cell power, and lead to stable operation with higher net power performance than a control design without EO-pump. This demonstrates that active EO-pump water management, which has previously only been demonstrated in forced-convection fuel cell systems, can also be applied effectively to miniaturized (<5 W) air-breathing fuel cell systems.

  1. Swimming in air-breathing fishes.

    PubMed

    Lefevre, S; Domenici, P; McKenzie, D J

    2014-03-01

    Fishes with bimodal respiration differ in the extent of their reliance on air breathing to support aerobic metabolism, which is reflected in their lifestyles and ecologies. Many freshwater species undertake seasonal and reproductive migrations that presumably involve sustained aerobic exercise. In the six species studied to date, aerobic exercise in swim flumes stimulated air-breathing behaviour, and there is evidence that surfacing frequency and oxygen uptake from air show an exponential increase with increasing swimming speed. In some species, this was associated with an increase in the proportion of aerobic metabolism met by aerial respiration, while in others the proportion remained relatively constant. The ecological significance of anaerobic swimming activities, such as sprinting and fast-start manoeuvres during predator-prey interactions, has been little studied in air-breathing fishes. Some species practise air breathing during recovery itself, while others prefer to increase aquatic respiration, possibly to promote branchial ion exchange to restore acid-base balance, and to remain quiescent and avoid being visible to predators. Overall, the diversity of air-breathing fishes is reflected in their swimming physiology as well, and further research is needed to increase the understanding of the differences and the mechanisms through which air breathing is controlled and used during exercise. © 2014 The Fisheries Society of the British Isles.

  2. Air-breathing behavior and physiological responses to hypoxia and air exposure in the air-breathing loricariid fish, Pterygoplichthys anisitsi.

    PubMed

    da Cruz, André Luis; da Silva, Hugo Ribeiro; Lundstedt, Lícia Maria; Schwantes, Arno Rudi; Moraes, Gilberto; Klein, Wilfried; Fernandes, Marisa Narciso

    2013-04-01

    Hypoxic water and episodic air exposure are potentially life-threatening conditions that fish in tropical regions can face during the dry season. This study investigated the air-breathing behavior, oxygen consumption, and respiratory responses of the air-breathing (AB) armored catfish Pterygoplichthys anisitsi. The hematological parameters and oxygen-binding characteristics of whole blood and stripped hemoglobin and the intermediate metabolism of selected tissue in normoxia, different hypoxic conditions, and after air exposure were also examined. In normoxia, this species exhibited high activity at night and AB behavior (2-5 AB h(-1)). The exposure to acute severe hypoxia elicited the AB behavior (4 AB h(-1)) during the day. Under progressive hypoxia without access to the water surface, the fish were oxyregulators with a critical O2 tension, calculated as the inspired water O2 pressure, as 47 ± 2 mmHg. At water O2 tensions lower than 40 mmHg, the fish exhibited continuous apnea behavior. The blood exhibited high capacity for transporting O2, having a cathodic hemoglobin component with a high Hb-O2 affinity. Under severe hypoxia, the fish used anaerobic metabolism to maintain metabolic rate. Air exposure revealed physiological and biochemical traits similar to those observed under normoxic conditions.

  3. Measurements of observables during detonator function

    NASA Astrophysics Data System (ADS)

    Smilowitz, Laura; Henson, Bryan; Remelius, Dennis

    Thermal explosion and detonation are two phenomena which can both occur as the response of explosives to thermal or mechanical insults. Thermal explosion is typically considered in the safety envelope and detonation is considered in the performance regime of explosive behavior. However, the two regimes are tied together by a phenomenon called deflagration to detonation transition (DDT). In this talk, I will discuss experiments on commercial detonators aimed at understanding the mechanism for energy release during detonator function. Diagnostic development towards measuring temperature, pressure, and density during the extreme conditions and time scales of detonation will be discussed. Our current ability to perform table-top dynamic radiography on functioning detonators will be described. Dynamic measurements of temperature, pressure, and density will be shown and discussion of the function of a detonator will be given in terms of our current understanding of deflagration, detonation, and the transition between the two.

  4. Microshell-tipped optical fibers as sensors of high-pressure pulses in adverse environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benjamin, R.F.; Mayer, F.J.; Maynard, R.L.

    1984-01-01

    We have developed and used an optical-fiber sensor for detecting the arrival of strong pressure pulses. The sensor consists of an optical fiber, tipped with a gas-filled microballoon. They have been used successfully in adverse environments including explosives, ballistics and electromagnetic pulses (EMP). The sensor produces a bright optical pulse caused by the rapid shock-heating of a gas, typically argon or xenon, which is confined in the spherical glass or plastic microballoon. The light pulse is transmitted via the optical fiber to a photo detector, usually a streak camera or photomultiplier tube. The microballoon optical sensor (called an optical pinmore » by analogy to standard electrical pins), was originally developed for diagnosing an explosive, pulsed-power generator. Optical pins are required due to the EMP. The optical pins are economical arrival-time indicators because many channels can be recorded by one streak camera. The generator tests and related experiments, involving projectile velocities and detonation velocities of several kilometers per/sec have demonstrated the usefulness of the sensors in explosives and ballistics applications. We have also measured the sensitivity of the optical pins to slowly-moving projectiles and found that a 200 m/sec projectile impacting the microballoon sensor produces a flash having a risetime less than 100 ns and a pulse duration (FWHM) of less than 300 ns. The technical and cost advantages of this optical pin make it potentially useful for many electromagnetic, explosive, and ballistics applications.« less

  5. Tidal double detonation: a new mechanism for the thermonuclear explosion of a white dwarf induced by a tidal disruption event

    NASA Astrophysics Data System (ADS)

    Tanikawa, Ataru

    2018-03-01

    We suggest tidal double detonation as a new mechanism for the thermonuclear explosion of a white dwarf (WD) induced by a tidal disruption event (TDE). Tidal detonation is also a WD explosion induced by a TDE. In this case, helium (He) and carbon-oxygen (CO) detonation waves incinerate He WDs and CO WDs, respectively. On the other hand, for tidal double detonation, He detonation is first excited in the He shell of a CO WD, which then drives CO detonation in the CO core. We name this mechanism after the double detonation scenario in the context of type Ia supernovae. In this paper, by performing numerical simulations for CO WDs of mass 0.60 M⊙ with and without a He shell, we show that tidal double detonation occurs in the shallower encounter of a CO WD with an intermediate-mass black hole (IMBH) compared to simple tidal detonation. We expect tidal double detonation will increase the possibility of the occurrence of WD TDEs, which can help us to understand IMBHs.

  6. Airbreathing Hypersonic Systems Focus at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Hunt, James L.; Rausch, Vincent L.

    1998-01-01

    This paper presents the status of the airbreathing hypersonic airplane and space-access vehicle design matrix, reflects on the synergies and issues, and indicates the thrust of the effort to resolve the design matrix and to focus/advance systems technology maturation. Priority is given to the design of the vision operational vehicles followed by flow-down requirements to flight demonstrator vehicles and their design for eventual consideration in the Future-X Program.

  7. Detonation Propulsion - A Navy Perspective

    DTIC Science & Technology

    2013-07-01

    for Detonation of Stoichiometric C2H4/ 02 Pui•DIIIIIdll Elllllbell Pllllllll•a IIIII • Project/Program Components - Single tube multi-cycle PDE ... Detonation (mid stages) • Acoustic Wave Interaction - Rotating Detonation (mid stages) - Spinning Detonation (early stages) 62 1. 2. 3. 4. 5. 6...Session 2 Detonation Propulsion -A Navy Perspective Gabriel Roy Office of Naval Research Global 46 Report Documentation Page Form ApprovedOMB No

  8. Air-breathing during activity in the fishes amia calva and lepisosteus oculatus

    PubMed

    Farmer; d

    1998-04-01

    Many osteichthyan fishes obtain oxygen from both air, using a lung, and water, using gills. Although it is commonly thought that fishes air-breathe to survive hypoxic aquatic habitats, other reasons may be more important in many species. This study was undertaken to determine the significance of air-breathing in two fish species while exercising in oxygen-rich water. Oxygen consumption from air and water was measured during mild activity in bowfin (Amia calva) and spotted gar (Lepisosteus oculatus) by sealing a fish in an acrylic flume that contained an air-hole. At 19-23 degreesC, the rate of oxygen consumption from air in both species was modest at rest. During low-level exercise, more than 50 % of the oxygen consumed by both species was from the air (53.0+/-22.9 % L. oculatus; 66.4+/-8.3 % A. calva).

  9. JANNAF 25th Airbreathing Propulsion Subcommittee, 37th Combustion Subcommittee and 1st Modeling and Simulation Subcommittee Joint Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S.; Becker, Dorothy L.

    2000-01-01

    Volume I, the first of three volumes, is a compilation of 24 unclassified/unlimited-distribution technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 25th Airbreathing Propulsion Subcommittee, 37th Combustion Subcommittee and 1st Modeling and Simulation Subcommittee (MSS) meeting held jointly with the 19th Propulsion Systems Hazards Subcommittee. The meeting was held 13-17 November 2000 at the Naval Postgraduate School and Hyatt Regency Hotel, Monterey, California. Topics covered include: a Keynote Address on Future Combat Systems, a review of the new JANNAF Modeling and Simulation Subcommittee, and technical papers on Hyper-X propulsion development and verification; GTX airbreathing launch vehicles; Hypersonic technology development, including program overviews, fuels for advanced propulsion, ramjet and scramjet research, hypersonic test medium effects; and RBCC engine design and performance, and PDE and UCAV advanced and combined cycle engine technologies.

  10. Detonation properties of 1,1-diamino-2,2-dinitroethene (DADNE).

    PubMed

    Trzciński, Waldemar A; Cudziło, Stanisław; Chyłek, Zbigniew; Szymańczyk, Leszek

    2008-09-15

    1,1-Diamino-2,2-dinitroethene (DADNE, FOX-7) is an explosive of current interest. In our work, an advanced study of detonation characteristics of this explosive was performed. DADNE was prepared and recrystallized on a laboratory scale. Some sensitivity and detonation properties of DADNE were determined. The detonation performance was established by measurements of the detonation wave velocity, detonation pressure and calorimetric heat of explosion as well as the accelerating ability. The JWL (Jones-Wilkins-Lee) isentrope and the constant-gamma isentrope for the detonation products of DADNE were also found.

  11. High-Speed Photography of Detonation Propagation in Dynamically Precompressed Liquid Explosives

    NASA Astrophysics Data System (ADS)

    Petel, O. E.; Higgins, A. J.; Yoshinaka, A. C.; Zhang, F.

    2007-12-01

    The propagation of detonation in shock-compressed nitromethane was observed with a high-speed framing camera. The test explosive, nitromethane, was compressed by a reverberating shock wave to pressures as high as 10 GPa prior to being detonated by a secondary detonation event. The pressure and density in the test explosive prior to detonation were determined using two methods: manganin stress gauge measurements and LS-DYNA simulations. The velocity of the detonation front was determined from consecutive frames and correlated to the density of the reverberating shock-compressed explosive prior to detonation. Observing detonation propagation under these non-ambient conditions provides data which can be useful in the validation of equation of state models.

  12. Experimental study on transmission of an overdriven detonation wave from propane/oxygen to propane/air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.; Lai, W.H.; Chung, K.

    2008-08-15

    Two sets of experiments were performed to achieve a strong overdriven state in a weaker mixture by propagating an overdriven detonation wave via a deflagration-to-detonation transition (DDT) process. First, preliminary experiments with a propane/oxygen mixture were used to evaluate the attenuation of the overdriven detonation wave in the DDT process. Next, experiments were performed wherein a propane/oxygen mixture was separated from a propane/air mixture by a thin diaphragm to observe the transmission of an overdriven detonation wave. Based on the characteristic relations, a simple wave intersection model was used to calculate the state of the transmitted detonation wave. The resultsmore » showed that a rarefaction effect must be included to ensure that there is no overestimate of the post-transmission wave properties when the incident detonation wave is overdriven. The strength of the incident overdriven detonation wave plays an important role in the wave transmission process. The experimental results showed that a transmitted overdriven detonation wave occurs instantaneously with a strong incident overdriven detonation wave. The near-CJ state of the incident wave leads to a transmitted shock wave, and then the transition to the overdriven detonation wave occurs downstream. The attenuation process for the overdriven detonation wave decaying to a near-CJ state occurs in all tests. After the attenuation process, an unstable detonation wave was observed in most tests. This may be attributed to the increase in the cell width in the attenuation process that exceeds the detonability cell width limit. (author)« less

  13. Control of cardiorespiratory function in response to hypoxia in an air-breathing fish, the African sharptooth catfish, Clarias gariepinus.

    PubMed

    Belão, T C; Zeraik, V M; Florindo, L H; Kalinin, A L; Leite, C A C; Rantin, F T

    2015-09-01

    We evaluated the role of the first pair of gill arches in the control of cardiorespiratory responses to normoxia and hypoxia in the air-breathing catfish, Clarias gariepinus. An intact group (IG) and an experimental group (EG, bilateral excision of first gill arch) were submitted to graded hypoxia, with and without access to air. The first pair of gill arches ablations reduced respiratory surface area and removed innervation by cranial nerve IX. In graded hypoxia without access to air, both groups displayed bradycardia and increased ventilatory stroke volume (VT), and the IG showed a significant increase in breathing frequency (fR). The EG exhibited very high fR in normoxia that did not increase further in hypoxia, this was linked to reduced O2 extraction from the ventilatory current (EO2) and a significantly higher critical O2 tension (PcO2) than the IG. In hypoxia with access to air, only the IG showed increased air-breathing, indicating that the first pair of gill arches excision severely attenuated air-breathing responses. Both groups exhibited bradycardia before and tachycardia after air-breaths. The fH and gill ventilation amplitude (VAMP) in the EG were overall higher than the IG. External and internal NaCN injections revealed that O2 chemoreceptors mediating ventilatory hypoxic responses (fR and VT) are internally oriented. The NaCN injections indicated that fR responses were mediated by receptors predominantly in the first pair of gill arches but VT responses by receptors on all gill arches. Receptors eliciting cardiac responses were both internally and externally oriented and distributed on all gill arches or extra-branchially. Air-breathing responses were predominantly mediated by receptors in the first pair of gill arches. In conclusion, the role of the first pair of gill arches is related to: (a) an elevated EO2 providing an adequate O2 uptake to maintain the aerobic metabolism during normoxia; (b) a significant bradycardia and increased fAB elicited by externally oriented O2 chemoreceptors; (c) increase in the ventilatory variables (fR and VAMP) stimulated by internally oriented O2 chemoreceptors. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Performance Enhancement of Unsteady Ejectors Investigated Using a Pulsejet Driver

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2003-01-01

    Unsteady ejectors are currently under investigation for use in some pulse detonation engine (PDE) propulsion systems. This is due primarily to their potential high performance in comparison to steady ejectors of similar dimensions relative to the source or driver jet. Although some experimental work has been done in the past to study thrust augmentation with unsteady ejectors, there is no proven theory by which optimal design parameters can be selected and an effective ejector constructed for a given pulsed flow. Therefore, an experimental facility was developed at the NASA Glenn Research Center to study the correlation between ejector design and performance, and to get a better understanding of the flow phenomena that result in thrust augmentation. A commercially available pulsejet was used for the unsteady driving jet. This was paired with a basic, yet flexible, ejector design that allowed parametric evaluation of the effects that length, diameter, and inlet radius have on performance.

  15. Propagation of a radio-frequency pulsed signal over the Earth. The JOLLY programs

    NASA Astrophysics Data System (ADS)

    Carroll, D.; Detch, J. L.; Malik, J.

    1983-07-01

    The interpretation of observed radioflash/electromagnetic pulse (emp) observed signals from nuclear detonations in terms of theoretical models or extrapolation to signals expected at military systems involves correction for ground-wave propagation effects. For most applications, previously developed programs have been adequate. There have been problems when these techniques have been tried for situations in the near tangent regime where a considerable concern exists. It has been found that the problem of predicting propagation response functions in the near tangent regime has been the inconsistent derivation of the equations. Resolution of this problem has evolved into a program to better predict ground-wave propagation. The description of the method and detailed description of the programs are described for both propagation over realistic earth and sea-water paths. Results can be given in terms of amplitude and phase as a function of the frequency or as amplitude versus time, the usual Green's or resolution function.

  16. An overview of EMP effects and their control

    NASA Astrophysics Data System (ADS)

    Culligan, A. J.

    1985-09-01

    The environments associated with a nuclear detonation are probably the most extreme of all the environments to which an electronic equipment system may be exposed. One of these environments is related to the electromagnetic pulse (EMP) which represents an intense pulse of radiated electromagnetic energy. The endo-atmospheric EMP is generally not considered a major threat in comparison with other nuclear weapon effects related to blast, thermal phenomena, neutrons, and gamma rays. The situation is different with respect to the exo-atmospheric EMP which has the potential to simultaneously damage communication and allied networks over many thousands of square miles. The present paper is concerned with these EMP effects and the possibilities for protecting equipment from EMP. For such a protection, an understanding of the system's electronic topology is essential, and component/circuit susceptibility levels must be specified. Attention is given to the wire grid model of a strike aircraft, and the simulation of the EMP environment.

  17. Novel circuits for energizing manganin stress gauges

    NASA Astrophysics Data System (ADS)

    Tasker, Douglas G.

    2017-01-01

    This paper describes the design of a novel MOSFET pulsed constant current supplies for low impedance Manganin stress gauges. The design emphasis has been on high accuracy, low noise, simple, low cost, disposable supplies that can be used to energize multiple gauges in explosive or shock experiments. The Manganin gauges used to measure stresses in detonating explosive experiments have typical resistances of 50 mΩ and are energized with pulsed currents of 50 A. Conventional pulsed, constant current supplies for these gauges are high voltage devices with outputs as high as 500 V. Common problems with the use of high voltage supplies at explosive firing sites are: erroneous signals caused by ground loops; overdrive of oscilloscopes on gauge failure; gauge signal crosstalk; cost; and errors due to changing load impedances. The new circuit corrects these issues. It is an 18-V circuit, powered by 9-V alkaline batteries, and features an optically isolated trigger, and single-point grounding. These circuits have been successfully tested at the Los Alamos National Laboratory in explosive experiments. [LA-UR-15-24819

  18. Detonability of H/sub 2/-air-diluent mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tieszen, S.R.; Sherman, M.P.; Benedick, W.B.

    1987-06-01

    This report describes the Heated Detonation Tube (HDT). Detonation cell width and velocity results are presented for H/sub 2/-air mixtures, undiluted and diluted with CO/sub 2/ and H/sub 2/O for a range of H/sub 2/ concentration, initial temperature and pressure. The results show that the addition of either CO/sub 2/ or H/sub 2/O significantly increases the detonation cell width and hence reduces the detonability of the mixture. The results also show that the detonation cell width is reduced (detonability is increased) for increased initial temperature and/or pressure.

  19. Characterization of Detonator Performance as a Function of Porosity via the Hayes Effect via Rogowski Coil

    NASA Astrophysics Data System (ADS)

    Nakamoto, Teagan; Parrack, Kristina; Smith, Dalton; Trujillo, Chris; Wilde, Zak; Gibson, John; Lodes, Rylie; Malcolm, Hayden

    2017-06-01

    Researchers experimented with a novel diagnostic to study the effects of porosity on detonator performance. The new diagnostic takes advantage of the detonation electric effect observed by Hayes (1966). Detonation-produced electrical charges induce a current in the detonator wire that may be detected by use of a Rogowski coil developed and tailored for the purpose. Data collected by the Rogowski coil were then used to characterize detonations. Researchers tested PETN charges of various porosity levels (as characterized by measured particle size and surface area) to study the effect of porosity on detonation characteristics. This novel method was compared with and verified by the well-established technique of using PVDF gauges for detonator response characterization.

  20. High-Speed Photography of Detonation Propagation in Dynamically Precompressed Liquid Explosives

    NASA Astrophysics Data System (ADS)

    Petel, Oren; Higgins, Andrew; Yoshinaka, Akio; Zhang, Fan

    2007-06-01

    The propagation of detonation in shock compressed nitromethane was observed with a high speed framing camera. The test explosive, nitromethane, was compressed by a reverberating shock wave to pressures on the order of 10 GPa prior to being detonated by a secondary detonation event. The pressure and density in the test explosive prior to detonation was determined using two methods: manganin strain gauge measurements and LS-DYNA simulations. The velocity of the detonation front was determined from consecutive frames and correlated to the density of the explosive post-reverberating shock wave and prior to being detonated. Observing detonation propagation under these non-ambient conditions provides data which can be useful in the validation of equation of state models.

  1. The ignition of carbon detonations via converging shock waves in white dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Ken J.; Bildsten, Lars, E-mail: kenshen@astro.berkeley.edu, E-mail: bildsten@kitp.ucsb.edu

    2014-04-10

    The progenitor channel responsible for the majority of Type Ia supernovae is still uncertain. One emergent scenario involves the detonation of a He-rich layer surrounding a C/O white dwarf, which sends a shock wave into the core. The quasi-spherical shock wave converges and strengthens at an off-center location, forming a second, C-burning, detonation that disrupts the whole star. In this paper, we examine this second detonation of the double detonation scenario using a combination of analytic and numeric techniques. We perform a spatially resolved study of the imploding shock wave and outgoing detonation and calculate the critical imploding shock strengthsmore » needed to achieve a core C detonation. We find that He detonations in recent two-dimensional simulations yield converging shock waves that are strong enough to ignite C detonations in high-mass C/O cores, with the caveat that a truly robust answer requires multi-dimensional detonation initiation calculations. We also find that convergence-driven detonations in low-mass C/O cores and in O/Ne cores are harder to achieve and are perhaps unrealized in standard binary evolution.« less

  2. ASTP RBCC Activities

    NASA Technical Reports Server (NTRS)

    Nelson, Karl W.; McArthur, Craig; Leopard, Larry (Technical Monitor)

    2000-01-01

    This presentation reviews the activities of the Advanced Space Transportation Program (ASTP) in the development of Rocket-Based Combined Cycle (RBCC)technology. The document consist of the presentation slides for a talk scheduled to be given to the World Aviation Congress and Exhibit of SAE. Included in the review is discussion of recent accomplishments in the area of Advanced Reusable technologies (ART), which includes work in flowpath testing, and system studies of the various vehicle/engine combinations including RBCC, Turbine Based Combined Cycle (TBCC) and Pulsed Detonation Engine (PDE). Pictures of the proposed RBCC Flowpaths are included. The next steps in the development process are reviewed.

  3. Hypersonic airbreathing vehicle visions and enhancing technologies

    NASA Astrophysics Data System (ADS)

    Hunt, James L.; Lockwood, Mary Kae; Petley, Dennis H.; Pegg, Robert J.

    1997-01-01

    This paper addresses the visions for hypersonic airbreathing vehicles and the advanced technologies that forge and enhance the designs. The matrix includes space access vehicles (single-stage-to-orbit (SSTO), two-stage-to-orbit (2STO) and three-stage-to-orbit (3STO)) and endoatmospheric vehicles (airplanes—missiles are omitted). The characteristics, the performance potential, the technologies and the synergies will be discussed. A common design constraint is that all vehicles (space access and endoatmospheric) have enclosed payload bays.

  4. Toxicity and bioconcentration of hexachlorocyclohexane (HCH) in an air-breathing catfish, Saccobranchus fossilis (Bloch)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khangarot, B.S.; Takroo, R.; Singh, R.R.

    1991-12-01

    The current study was undertaken to determine the sublethal toxicity of commercial grade hexachlorocyclohexane (HCH) to a freshwater air-breathing catfish, Saccobranchus fossilis (Bloch) for 14 days. The bioconcentration of HCH and its distribution in gill, brain and liver was determined. This species was selected for the present study because it is widely distributed in ponds, lakes and rivers of India and consumed as human diet in many parts of the world.

  5. A Computational Examination of Detonation Physics and Blast Chemistry

    DTIC Science & Technology

    2011-08-01

    State 5 3 Detonation and Shock Hugoniots for TNT using the JWL Equation of State 6 4 Detonation and Shock Hugoniots for HMX using the JWL ...Equation of State 6 5 Detonation and Shock Hugoniots for Composition C-4 using the JWL Equation of State 7 6 Detonation and Shock...Hugoniots for PBX-9502 using the JWL Equation of State 7 7 Detonation and Shock Hugoniots for PETN using the JWL Equation of State 8 8

  6. A Computational Examination of Detonation Physics and Blast Chemistry

    DTIC Science & Technology

    2011-08-01

    Equation of State 5 3 Detonation and Shock Hugoniots for TNT using the JWL Equation of State 6 4 Detonation and Shock Hugoniots for HMX using the... JWL Equation of State 6 5 Detonation and Shock Hugoniots for Composition C-4 using the JWL Equation of State 7 6 Detonation and...Shock Hugoniots for PBX-9502 using the JWL Equation of State 7 7 Detonation and Shock Hugoniots for PETN using the JWL Equation of State 8

  7. The dependence of Ammonium-Nitrate Fuel-Oil (ANFO) detonation on confinement

    DOE PAGES

    Jackson, Scott I.

    2016-11-17

    As detonation is a coupled fluid-chemical process, flow divergence inside the detonation reaction zone can strongly influence detonation velocity and energy release. Such divergence is responsible for the diameter-effect and failure-diameter phenomena in condensed-phase explosives and particularly dominant in detonation of nonideal explosives such as Ammonium Nitrate and Fuel Oil (ANFO). In this study, the effect of reaction zone flow divergence on ANFO detonation was explored through variation of the inert confinement and explosive diameter in the rate-stick geometry with cylinder expansion experiments. New tests are discussed and compared to prior experiments. Presented results include the detonation velocity as amore » function of diameter and confinement, reaction zone times, detonation product isentropes and energies, as well as sonic surface pressures and velocities. Product energy densities and isentropes were found to increase with detonation velocity, indicating more complete chemical reaction with increased detonation velocity. In addition, detonation reaction zone times were found to scale with the acoustic transit time of the confiner wall and used to show that the ANFO diameter effect scaled with the reaction zone time for a particle along the flow centerline, regardless of the confinement. Such a result indicates that the ANFO reaction mechanisms are sufficiently slow that the centerline fluid expansion timescale is a limiting factor controlling detonation velocity and energy release.« less

  8. Ignition and growth reactive flow modeling of recent HMX/TATB detonation experiments

    NASA Astrophysics Data System (ADS)

    Tarver, Craig M.

    2017-01-01

    Two experimental studies in which faster HMX detonation waves produced oblique detonation waves in adjoining slower detonating TATB charges were modeled using the Ignition and Growth (I&G) reactive flow detonation model parameters for PBX 9501 (95% HMX / 2.5% Estane / 2.5% BDNPA/F) and PBX 9502 (95% TATB / 5% Kel-F binder). Matignon et al. used X1 explosive (96% HMX / 4% binder) to drive an oblique detonation wave into an attached charge of T2 explosive (97% TATB / 3% binder). The flow angles were measured in the T2 shock initiation region and in steady T2 detonation. Anderson et al. used detonating PBX 9501 slabs of various thicknesses ranging from 0.56 mm to 2.5 mm to create oblique detonation waves in 8 mm thick slabs of PBX 9502. Several diagnostics were employed to: photograph the waves; measure detonation velocities and flow angles; and determine the output of the PBX 9501 slabs, the PBX 9502 slabs, and the "initiation regions" using LiF windows and PDV probes.

  9. Predicting propagation limits of laser-supported detonation by Hugoniot analysis

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei; Ofosu, Joseph A.; Komurasaki, Kimiya; Koizumi, Hiroyuki

    2015-01-01

    Termination conditions of a laser-supported detonation (LSD) wave were investigated using control volume analysis with a Shimada-Hugoniot curve and a Rayleigh line. Because the geometric configurations strongly affect the termination condition, a rectangular tube was used to create the quasi-one-dimensional configuration. The LSD wave propagation velocity and the pressure behind LSD were measured. Results reveal that the detonation states during detonation and at the propagation limit are overdriven detonation and Chapman-Jouguet detonation, respectively. The termination condition is the minimum velocity criterion for the possible detonation solution. Results were verified using pressure measurements of the stagnation pressure behind the LSD wave.

  10. Diminishing detonator effectiveness through electromagnetic effects

    DOEpatents

    Schill, Jr, Robert A.

    2016-09-20

    An inductively coupled transmission line with distributed electromotive force source and an alternative coupling model based on empirical data and theory were developed to initiate bridge wire melt for a detonator with an open and a short circuit detonator load. In the latter technique, the model was developed to exploit incomplete knowledge of the open circuited detonator using tendencies common to all of the open circuit loads examined. Military, commercial, and improvised detonators were examined and modeled. Nichrome, copper, platinum, and tungsten are the detonator specific bridge wire materials studied. The improvised detonators were made typically made with tungsten wire and copper (.about.40 AWG wire strands) wire.

  11. Effects of nitrite exposure on functional haemoglobin levels, bimodal respiration, and swimming performance in the facultative air-breathing fish Pangasianodon hypophthalmus.

    PubMed

    Lefevre, Sjannie; Jensen, Frank B; Huong, Do T T; Wang, Tobias; Phuong, Nguyen T; Bayley, Mark

    2011-07-01

    In this study we investigated nitrite (NO₂⁻) effects in striped catfish, a facultative air-breather. Fish were exposed to 0, 0.4, and 0.9 mM nitrite for 0, 1, 2, 4, and 7 days, and levels of functional haemoglobin, methaemoglobin (metHb) and nitrosyl haemoglobin (HbNO) were assessed using spectral deconvolution. Plasma concentrations of nitrite, nitrate, chloride, potassium, and sodium were also measured. Partitioning of oxygen consumption was determined to reveal whether elevated metHb (causing functional hypoxia) induced air-breathing. The effects of nitrite on maximum oxygen uptake (MO(2max)) and critical swimming speed (U(crit)) were also assessed. Striped catfish was highly tolerant to nitrite exposure, as reflected by a 96 h LC₅₀ of 1.65 mM and a moderate nitrite uptake into the blood. Plasma levels of nitrite reached a maximum after 1 day of exposure, and then decreased, never exceeding ambient levels. MetHb, HbNO and nitrate (a nitrite detoxification product) also peaked after 1 day and then decreased. Only high levels of nitrite and metHb caused reductions in MO(2max) and U(crit). The response of striped catfish contrasts with that seen in most other fish species and discloses efficient mechanisms of combating nitrite threats. Furthermore, even though striped catfish is an efficient air-breather, this species has the ability to sustain aerobic scope and swimming performance without air-breathing, even when faced with nitrite-induced reductions in blood oxygen carrying capacity. Our study is the first to confirm that high levels of nitrite and metHb reduce MO(2max) and thereby aerobic scope, while more moderate elevations fail to do so. Further studies are needed to elucidate the mechanisms underlying the low nitrite accumulation in striped catfish. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Mechanism of Gaseous Detonation Propagation Through Reactant Layers Bounded by Inert Gas

    NASA Astrophysics Data System (ADS)

    Houim, Ryan

    2017-11-01

    Vapor cloud explosions and rotating detonation engines involve the propagation of gaseous detonations through a layer of reactants that is bounded by inert gas. Mechanistic understanding of how detonations propagate stably or fail in these scenarios is incomplete. Numerical simulations were used to investigate mechanisms of gaseous detonation propagation through reactant layers bounded by inert gas. The reactant layer was a stoichiometric mixture of C2H4/O2 at 1 atm and 300K and is 4 detonation cells in height. Cases where the inert gas temperature was 300, 1500, and 3500 K will be discussed. The detonation failed for the 300 K case and propagated marginally for the 1500 K case. Surprisingly, the detonation propagated stably for the 3500 K case. A shock structure forms that involves a detached shock in the inert gas and a series of oblique shocks in the reactants. A small local explosion is triggered when the Mach stem of a detonation cell interacts with the compressed reactants behind one of these oblique shocks. The resulting pressure wave produces a new Mach stem and a new triple point that leads to a stable detonation. Preliminary results on the influence of a deflagration at the inert/reactant interface on the stability of a layered detonation will be discussed.

  13. High Explosive Detonation-Confiner Interactions

    NASA Astrophysics Data System (ADS)

    Short, Mark; Quirk, James J.

    2018-01-01

    The primary purpose of a detonation in a high explosive (HE) is to provide the energy to drive a surrounding confiner, typically for mining or munitions applications. The details of the interaction between an HE detonation and its confinement are essential to achieving the objectives of the explosive device. For the high pressures induced by detonation loading, both the solid HE and confiner materials will flow. The structure and speed of a propagating detonation, and ultimately the pressures generated in the reaction zone to drive the confiner, depend on the induced flow both within the confiner and along the HE-confiner material interface. The detonation-confiner interactions are heavily influenced by the material properties and, in some cases, the thickness of the confiner. This review discusses the use of oblique shock polar analysis as a means of characterizing the possible range of detonation-confiner interactions. Computations that reveal the fluid mechanics of HE detonation-confiner interactions for finite reaction-zone length detonations are discussed and compared with the polar analysis. This includes cases of supersonic confiner flow; subsonic, shock-driven confiner flow; subsonic, but shockless confiner flow; and sonic flow at the intersection of the detonation shock and confiner material interface. We also summarize recent developments, including the effects of geometry and porous material confinement, on detonation-confiner interactions.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Scott I.

    As detonation is a coupled fluid-chemical process, flow divergence inside the detonation reaction zone can strongly influence detonation velocity and energy release. Such divergence is responsible for the diameter-effect and failure-diameter phenomena in condensed-phase explosives and particularly dominant in detonation of nonideal explosives such as Ammonium Nitrate and Fuel Oil (ANFO). In this study, the effect of reaction zone flow divergence on ANFO detonation was explored through variation of the inert confinement and explosive diameter in the rate-stick geometry with cylinder expansion experiments. New tests are discussed and compared to prior experiments. Presented results include the detonation velocity as amore » function of diameter and confinement, reaction zone times, detonation product isentropes and energies, as well as sonic surface pressures and velocities. Product energy densities and isentropes were found to increase with detonation velocity, indicating more complete chemical reaction with increased detonation velocity. In addition, detonation reaction zone times were found to scale with the acoustic transit time of the confiner wall and used to show that the ANFO diameter effect scaled with the reaction zone time for a particle along the flow centerline, regardless of the confinement. Such a result indicates that the ANFO reaction mechanisms are sufficiently slow that the centerline fluid expansion timescale is a limiting factor controlling detonation velocity and energy release.« less

  15. Numerical modeling of divergent detonation wave

    NASA Astrophysics Data System (ADS)

    Li, Zhiwei; Liu, Bangdi

    1987-11-01

    The indefinite nature of divergent detonations under the assumption of instantaneous stable detonation is described. In the numerical modeling method for divergent detonation, the artificial cohesiveness was improved and the Cochran reaction rate and the JWL equations of state were used to describe the ignition process of the explosion. Several typical divergent detonation problems were computed obtaining rather satisfying results.

  16. Detonator Performance Characterization Using Multi-Frame Laser Schlieren Imaging

    NASA Astrophysics Data System (ADS)

    Clarke, S. A.; Landon, C. D.; Murphy, M. J.; Martinez, M. E.; Mason, T. A.; Thomas, K. A.

    2009-12-01

    Several experiments that are part of a phased plan to understand the evolution of detonation in a detonator from initiation shock through run to detonation to full detonation to transition to booster and booster detonation will be presented. High speed laser schlieren movies have been used to study several explosive initiation events, such as exploding bridgewires (EBW), exploding foil initiators (EFI) (or slappers), direct optical initiation (DOI), and electrostatic discharge (ESD). Additionally, a series of tests have been performed on "cut-back" detonators with varying initial pressing (IP) heights. We have also used this diagnostic to visualize a range of EBW, EFI, and DOI full-up detonators. Future applications to other explosive events such as boosters and IHE booster evaluation will be discussed. The EPIC hydrodynamic code has been used to analyze the shock fronts from the schlieren images to reverse calculate likely boundary or initial conditions to determine the temporal-spatial pressure profile across the output face of the detonator. LA-UR-05099

  17. Using Schlieren Visualization to Track Detonator Performance

    NASA Astrophysics Data System (ADS)

    Clarke, S. A.; Bolme, C. A.; Murphy, M. J.; Landon, C. D.; Mason, T. A.; Adrian, R. J.; Akinci, A. A.; Martinez, M. E.; Thomas, K. A.

    2007-12-01

    Several experiments will be presented that are part of a phased plan to understand the evolution of detonation in a detonator from initiation shock through run to detonation, to full detonation, to transition, to booster and booster detonation. High-speed multiframe schlieren imagery has been used to study several explosive initiation events, such as exploding bridgewires (EBWs), exploding foil initiators (EFIs or "slappers"), direct optical initiation (DOI), and electrostatic discharge. Additionally, a series of tests has been performed on "cut-back" detonators with varying initial pressing heights. We have also used this diagnostic to visualize a range of EBW, EFI, and DOI full-up detonators. Future applications to other explosive events, such as boosters and insensitive high explosives booster evaluation, will be discussed. The EPIC finite element code has been used to analyze the shock fronts from the schlieren images to solve iteratively for consistent boundary or initial conditions to determine the temporal-spatial pressure profile across the output face of the detonator.

  18. Using Schlieren Visualization to Track Detonator Performance

    NASA Astrophysics Data System (ADS)

    Clarke, Steven; Thomas, Keith; Martinez, Michael; Akinci, Adrian; Murphy, Michael; Adrian, Ronald

    2007-06-01

    Several experiments that are part of a phased plan to understand the evolution of detonation in a detonator from initiation shock through run to detonation to full detonation to transition to booster and booster detonation will be presented. High Speed Laser Schlieren Movies have been used to study several explosive initiation events, such as exploding bridgewires (EBW), Exploding Foil Initiators (EFI) (or slappers), Direct Optical Initiation (DOI), and ElectroStatic Discharge (ESD). Additionally, a series of tests have been performed on ``cut-back'' detonators with varying initial pressing (IP) heights. We have also used this diagnostic to visualize a range of EBW, EFI, and DOI full-up detonators. Future applications to other explosive events such as boosters and IHE booster evaluation will be discussed. EPIC Hydrodynamic code has been used to analyze the shock fronts from the Schlieren images to reverse calculate likely boundary or initial conditions to determine the temporal-spatial pressure profile across the output face of the detonator. LA-UR-07-1229

  19. Potential of extended airbreathing operation of a two-stage launch vehicle by scramjet propulsion

    NASA Astrophysics Data System (ADS)

    Schoettle, U. M.; Hillesheimer, M.; Rahn, M.

    This paper examines the application of scramjet propulsion to extend the ramjet operation of an airbreathing two-stage launch designed for horizontal takeoff and landing. Performance comparisons are made for two alternative propulsion concepts. The mission performance predictions presented are obtained from a multistep optimization procedure employing both trajectory optimization and vehicle design steps to achieve maximum payload capabilities. The simulation results are shown to offer an attractive payload advantage of the scramjet variant over the ramjet powered vehicle.

  20. Numerical models analysis of energy conversion process in air-breathing laser propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong Yanji; Song Junling; Cui Cunyan

    Energy source was considered as a key essential in this paper to describe energy conversion process in air-breathing laser propulsion. Some secondary factors were ignored when three independent modules, ray transmission module, energy source term module and fluid dynamic module, were established by simultaneous laser radiation transportation equation and fluid mechanics equation. The incidence laser beam was simulated based on ray tracing method. The calculated results were in good agreement with those of theoretical analysis and experiments.

  1. Enzymatic Fuel Cells: Integrating Flow-Through Anode and Air-Breathing Cathode into a Membrane-Less Biofuel Cell Design (Postprint)

    DTIC Science & Technology

    2011-06-01

    AFRL-RX-TY-TP-2011-0081 ENZYMATIC FUEL CELLS: INTEGRATING FLOW- THROUGH ANODE AND AIR-BREATHING CATHODE INTO A MEMBRANE-LESS BIOFUEL CELL...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 01-JUN-2011 Journal Article (POSTPRINT) 01-JAN-2010 -- 31-JAN-2011 Enzymatic Fuel Cells...unlimited. Ref Public Affairs Case # 88ABW-2011-2228, 14 Apr 11. Document contains color images. One of the key goals of enzymatic biofuel cells

  2. Hypersonic airbreathing vehicle visions and enhancing technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, J.L.; Lockwood, M.K.; Petley, D.H.

    1997-01-01

    This paper addresses the visions for hypersonic airbreathing vehicles and the advanced technologies that forge and enhance the designs. The matrix includes space access vehicles (single-stage-to-orbit (SSTO), two-stage-to-orbit (2STO) and three-stage-to-orbit (3STO)) and endoatmospheric vehicles (airplanes{emdash}missiles are omitted). The characteristics, the performance potential, the technologies and the synergies will be discussed. A common design constraint is that all vehicles (space access and endoatmospheric) have enclosed payload bays. {copyright} {ital 1997 American Institute of Physics.}

  3. Fluid dynamic problems associated with air-breathing propulsive systems

    NASA Technical Reports Server (NTRS)

    Chow, W. L.

    1979-01-01

    A brief account of research activities on problems related to air-breathing propulsion is made in this final report for the step funded research grant NASA NGL 14-005-140. Problems include the aircraft ejector-nozzle propulsive system, nonconstant pressure jet mixing process, recompression and reattachment of turbulent free shear layer, supersonic turbulent base pressure, low speed separated flows, transonic boattail flow with and without small angle of attack, transonic base pressures, Mach reflection of shocks, and numerical solution of potential equation through hodograph transformation.

  4. Effect of Aluminium Confinement on ANFO Detonation

    NASA Astrophysics Data System (ADS)

    Short, Mark; Jackson, Scott; Kiyanda, Charles; Shinas, Mike; Hare, Steve; Briggs, Matt

    2013-06-01

    Detonations in confined non-ideal high explosives often have velocities below the confiner sound speed. The effect on detonation propagation of the resulting subsonic flow in the confiner (such as confiner stress waves traveling ahead of the main detonation front or upstream wall deflection into the HE) has yet to be fully understood. Previous work by Sharpe and Bdzil (J. Eng. Math, 2006) has shown that for subsonic confiner flow, there is no limiting thickness for which the detonation dynamics are uninfluenced by further increases in wall thickness. The critical parameters influencing detonation behavior are the wall thickness relative to the HE reaction zone size, and the difference in the detonation velocity and confiner sound speed. Additional possible outcomes of subsonic flow are that for increasing thickness, the confiner is increasingly deflected into the HE upstream of the detonation, and that for sufficiently thick confiners, the detonation speed could be driven up to the sound speed in the confiner. We report here on a further series of experiments in which a mixture of ammonium nitrate and fuel oil (ANFO) is detonated in aluminum confiners with varying HE charge diameter and confiner thickness, and compare the results with the outcomes suggested by Sharpe and Bdzil.

  5. On the propagation mechanism of a detonation wave in a round tube with orifice plates

    NASA Astrophysics Data System (ADS)

    Ciccarelli, G.; Cross, M.

    2016-09-01

    This study deals with the investigation of the detonation propagation mechanism in a circular tube with orifice plates. Experiments were performed with hydrogen air in a 10-cm-inner-diameter tube with the second half of the tube filled with equally spaced orifice plates. A self-sustained Chapman-Jouguet (CJ) detonation wave was initiated in the smooth first half of the tube and transmitted into the orifice-plate-laden second half of the tube. The details of the propagation were obtained using the soot-foil technique. Two types of foils were used between obstacles, a wall-foil placed on the tube wall, and a flat-foil (sooted on both sides) placed horizontally across the diameter of the tube. When placed after the first orifice plate, the flat foil shows symmetric detonation wave diffraction and failure, while the wall foil shows re-initiation via multiple local hot spots created when the decoupled shock wave interacts with the tube wall. At the end of the tube, where the detonation propagated at an average velocity much lower than the theoretical CJ value, the detonation propagation is much more asymmetric with only a few hot spots on the tube wall leading to local detonation initiation. Consecutive foils also show that the detonation structure changes after each obstacle interaction. For a mixture near the detonation propagation limit, detonation re-initiation occurs at a single wall hot spot producing a patch of small detonation cells. The local overdriven detonation wave is short lived, but is sufficient to keep the global explosion front propagating. Results associated with the effect of orifice plate blockage and spacing on the detonation propagation mechanism are also presented.

  6. Design of integrated laser initiator

    NASA Astrophysics Data System (ADS)

    Cao, Chunqiang; He, Aifeng; Jing, Bo; Ma, Yue

    2018-03-01

    This paper analyzes the design principle of integrated laser detonator, introduces the design method of integrated laser Detonators. Based on the integrated laser detonator, structure, laser energy -exchange device, circuit design and the energetic material properties and the charge parameters, developed a high level of integration Antistatic ability Small size of the integrated laser prototype Detonator. The laser detonator prototype antistatic ability of 25 kV. The research of this paper can solve the key design of laser detonator miniaturization and integration of weapons and equipment, satisfy the electromagnetic safety and micro weapons development of explosive demand.

  7. Continuous spin detonation of poorly detonable fuel-air mixtures in annular combustors

    NASA Astrophysics Data System (ADS)

    Bykovskii, F. A.; Zhdan, S. A.

    2017-09-01

    This paper reports on the results of experimental investigations of continuous spin detonation of three fuel-air mixtures (syngas-air, CH4/H2-air, and kerosene/H2-air in a flow-type annular cylindrical combustor 503 mm in diameter. The limits of existence of continuous detonation in terms of the specific flow rates of the mixtures (minimum values) are determined. It is found that all gas mixtures, including the least detonable methane-air mixture, with addition of hydrogen can be burned in the continuous spin detonation regime.

  8. Acoustic source signal and directivity for explosive sources in complex environments

    NASA Astrophysics Data System (ADS)

    Waxler, R.; Bonner, J. L.; Reinke, R.; Talmadge, C. L.; Kleinert, D. E.; Alberts, W.; Lennox, E.

    2012-12-01

    Much work has gone into characterizing the blast wave, and ultimate acoustic pulse, produced by an explosion in flat, open land. Recently, an experiment was performed to study signals produced by explosions in more complex environments, both above and below ground. Explosive charges, ranging in weight from 200 to 2000 lbs., were detonated in a variety of configurations in and around tubes and culverts as well as buried in alluvium and limestone. A large number of acoustic sensors were deployed to capture the signals from the explosions. The deployment included two concentric rings of eighteen sensors each, spaced roughly every twenty degrees at radii of 300 and 1000 meters and surrounding the explosions. These captured the acoustic source function and directivity. In addition, a network of sensors, including sensors mounted on an aerostat and elevated to 300 meters altitude, were deployed throughout the area to capture the signals as they propagated. The meteorological state was monitored with a variety of instruments including a tethersonde, radiosonde and sodar. Significant directivity was observed in the signals from many of the shots, including those from charges that were detonated underground, but not near any structure. Results from the experiment will be presented.

  9. Internal structure of laser supported detonation waves by two-wavelength Mach-Zehnder interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimamura, Kohei; Kawamura, Koichi; Fukuda, Akio

    Characteristics of the internal structure of the laser supported detonation (LSD) waves, such as the electron density n{sub e} and the electron temperature T{sub e} profiles behind the shock wave were measured using a two-wavelength Mach-Zehnder interferometer along with emission spectroscopy. A TEA CO{sub 2} laser with energy of 10 J/pulse produced explosive laser heating in atmospheric air. Results show that the peak values of n{sub e} and T{sub e} were, respectively, about 2 x 10{sup 24} m{sup -3} and 30 000 K, during the LSD regime. The temporal variation of the laser absorption coefficient profile estimated from the measuredmore » properties reveals that the laser energy was absorbed perfectly in a thin layer behind the shock wave during the LSD regime, as predicted by Raizer's LSD model. However, the absorption layer was much thinner than a plasma layer, the situation of which was not considered in Raizer's model. The measured n{sub e} at the shock front was not zero while the LSD was supported, which implies that the precursor electrons exist ahead of the shock wave.« less

  10. A morphological investigation of soot produced by the detonation of munitions.

    PubMed

    Pantea, Dana; Brochu, Sylvie; Thiboutot, Sonia; Ampleman, Guy; Scholz, Günter

    2006-10-01

    The morphology of three different detonation soot samples along with other common soot materials such as carbon black, diesel soot and chimney soot was studied by elemental and proximate analysis, X-ray diffraction and electron microscopy. The goal of this study was to better define the morphology of the detonation soot in order to better assess the interactions of this type of soot with explosive residues. The detonation soot samples were obtained by the detonation of artillery 155mm projectiles filled with either pure TNT (2,4,6-trinitrotoluene) or composition B, a military explosive based on a mixture of TNT and RDX (trimethylentrinitramine). The carbon content of the soot samples varied considerably depending on the feedstock composition. Detonation soot contains less carbon and more nitrogen than the other carbonaceous samples studied, due to the molecular structure of the energetic materials detonated such as TNT and RDX. The ash concentration was higher for detonation soot samples due to the high metal content coming from the projectiles shell and to the soil contamination which occurred during the detonation. By X-ray diffraction, diamond and graphite were found to be the major crystalline carbon forms in the detonation soot. Two electron microscopy techniques were used in this study to visualise the primary particles and to try to explain the formation mechanism of detonation soot samples.

  11. Electrochemical performance of an air-breathing direct methanol fuel cell using poly(vinyl alcohol)/hydroxyapatite composite polymer membrane

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Chiu, Shwu-Jer; Lin, Che-Tseng

    A novel composite polymer membrane based on poly(vinyl alcohol)/hydroxyapatite (PVA/HAP) was successfully prepared by a solution casting method. The characteristic properties of the PVA/HAP composite polymer membranes were examined by thermal gravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), micro-Raman spectroscopy and AC impedance method. An air-breathing DMFC, comprised of an air cathode electrode with MnO 2/BP2000 carbon inks on Ni-foam, an anode electrode with PtRu black on Ti-mesh, and the PVA/HAP composite polymer membrane, was assembled and studied. It was found that this alkaline DMFC showed an improved electrochemical performance at ambient temperature and pressure; the maximum peak power density of an air-breathing DMFC in 8 M KOH + 2 M CH 3OH solution is about 11.48 mW cm -2. From the application point of view, these composite polymer membranes show a high potential for the DMFC applications.

  12. Heat Exchanger Design in Combined Cycle Engines

    NASA Astrophysics Data System (ADS)

    Webber, H.; Feast, S.; Bond, A.

    Combined cycle engines employing both pre-cooled air-breathing and rocket modes of operation are the most promising propulsion system for achieving single stage to orbit vehicles. The air-breathing phase is purely for augmentation of the mission velocity required in the rocket phase and as such must be mass effective, re-using the components of the rocket cycle, whilst achieving adequate specific impulse. This paper explains how the unique demands placed on the air-breathing cycle results in the need for sophisticated thermodynamics and the use of a series of different heat exchangers to enable precooling and high pressure ratio compression of the air for delivery to the rocket combustion chambers. These major heat exchanger roles are; extracting heat from incoming air in the precooler, topping up cycle flow temperatures to maintain constant turbine operating conditions and extracting rejected heat from the power cycle via regenerator loops for thermal capacity matching. The design solutions of these heat exchangers are discussed.

  13. Variation in bioaccumulation of persistent organic pollutants based on octanol-air partitioning: Influence of respiratory elimination in marine species.

    PubMed

    Moses, Sara K; Harley, John R; Lieske, Camilla L; Muir, Derek C G; Whiting, Alex V; O'Hara, Todd M

    2015-11-15

    Risk assessments of persistent organic pollutants (POPs) are often based on octanol-water (KOW) partitioning dynamics and may not adequately reflect bioaccumulation in air-breathing organisms. It has been suggested that compounds with low KOW and high octanol-air partitioning (KOA) coefficients have the potential to bioaccumulate in air-breathing organisms, including marine mammals. Here we evaluate differences in concentrations of POPs for two trophically matched Arctic species, spotted seal (Phoca largha) and sheefish (Stenodus leucichthys). We compared concentrations of 108 POPs in matched tissues (liver and muscle) across three ranges of KOW. We found a significant positive correlation between POP concentration and log KOA in spotted seal tissues for low log KOW compounds (log KOW <5.5, p<0.05). This provides further evidence for empirical models and observed bioaccumulation patterns in air-breathing organisms, and highlights the potential for bioaccumulation of these compounds in Arctic marine mammals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Variation in bioaccumulation of persistent organic pollutants based on octanol-air partitioning: Influence of respiratory elimination in marine species

    PubMed Central

    Moses, Sara K.; Harley, John R.; Lieske, Camilla L.; Muir, Derek C.G.; Whiting, Alex V.; O'Hara, Todd M.

    2015-01-01

    Risk assessments of persistent organic pollutants (POPs) are often based on octanol-water (KOW) partitioning dynamics and may not adequately reflect bioaccumulation in air-breathing organisms. It has been suggested that compounds with low KOW and high octanol-air partitioning (KOA) coefficients have the potential to bioaccumulate in air-breathing organisms, including marine mammals. Here we evaluate differences in concentrations of POPs for two trophically matched Arctic species, spotted seal (Phoca largha) and sheefish (Stenodus leucichthys). We compared concentrations of 108 POPs in matched tissues (liver and muscle) across three ranges of KOW. We found a significant positive correlation between POP concentration and log KOA in spotted seal tissues for low log KOW compounds (log KOW <5.5, p<0.05). This provides further evidence for empirical models and observed bioaccumulation patterns in air-breathing organisms, and highlights the potential for bioaccumulation of these compounds in Arctic marine mammals. PMID:26440545

  15. Detonation velocity in poorly mixed gas mixtures

    NASA Astrophysics Data System (ADS)

    Prokhorov, E. S.

    2017-10-01

    The technique for computation of the average velocity of plane detonation wave front in poorly mixed mixture of gaseous hydrocarbon fuel and oxygen is proposed. Here it is assumed that along the direction of detonation propagation the chemical composition of the mixture has periodic fluctuations caused, for example, by layered stratification of gas charge. The technique is based on the analysis of functional dependence of ideal (Chapman-Jouget) detonation velocity on mole fraction (with respect to molar concentration) of the fuel. It is shown that the average velocity of detonation can be significantly (by more than 10%) less than the velocity of ideal detonation. The dependence that permits to estimate the degree of mixing of gas mixture basing on the measurements of average detonation velocity is established.

  16. Determination of the effects of water adsorption on the sensitivity and detonation performance of the explosive JOB-9003 by molecular dynamics simulation.

    PubMed

    Hang, GuiYun; Yu, WenLi; Wang, Tao; Li, Zhen

    2016-11-01

    In order to determine the adsorption mechanism of water on the crystal surfaces of the explosive JOB-9003 and the effect of this adsorption on the sensitivity and detonation performance of this explosive, a model of the crystal of JOB-9003 was created in the software package Materials Studio (MS). The adsorption process was simulated, and molecular dynamics simulation was performed with the COMPASS force field in the NPT ensemble to calculate the sensitivity and detonation performance of the explosive. The results show that the maximum trigger bond length decreases whereas the interaction energy of the trigger bond and the cohesive energy density increase after adsorption, indicating that the sensitivity of JOB-9003 decreases. The results for the detonation performance show that the detonation pressure, detonation velocity, and detonation heat decrease upon the adsorption of water, thus illustrating that the detonation performance of JOB-9003 is degraded. In summary, the adsorption of water has a positive effect on the sensitivity and safety of the explosive JOB-9003 but a negative effect on its detonation performance.

  17. Characterization of Detonation Soot Produced During Steady and Overdriven Conditions for Three High Explosive Formulations

    NASA Astrophysics Data System (ADS)

    Podlesak, David; Amato, Ronald; Dattelbaum, Dana; Firestone, Millicent; Gustavsen, Richard; Huber, Rachel; Ringstrand, Bryan

    2015-06-01

    The detonation of high explosives (HE) produces a dense fluid of molecular gases and solid carbon. The solid detonation carbon contains various carbon allotropes such as detonation nanodiamonds, ``onion-like'' carbon, graphite and amorphous carbon, with the formation of the different forms dependent upon pressure, temperature and the environmental conditions of the detonation. We have collected solid carbon residues from controlled detonations of three HE formulations (Composition B-3, PBX 9501, and PBX 9502). Soot was collected from experiments designed to produce both steady and overdriven conditions, and from detonations in both an ambient (air) atmosphere and in an inert Ar atmosphere. Structural studies to glean the features of the solid carbon products have been performed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), Raman spectroscopy, small-angle X-ray scattering (SAXS), and X-Ray Pair Distribution Function measurements (PDF). Bulk soot was also analyzed for elemental and isotopic compositions. We will discuss differences in the structure and composition of the detonation carbon as a function of formulation, detonation conditions, and the surrounding atmosphere.

  18. Air-Breathing Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This photograph depicts an air-breathing rocket engine that completed an hour or 3,600 seconds of testing at the General Applied Sciences Laboratory in Ronkonkoma, New York. Referred to as ARGO by its design team, the engine is named after the mythological Greek ship that bore Jason and the Argonauts on their epic voyage of discovery. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced SpaceTransportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  19. Control of respiration in fish, amphibians and reptiles.

    PubMed

    Taylor, E W; Leite, C A C; McKenzie, D J; Wang, T

    2010-05-01

    Fish and amphibians utilise a suction/force pump to ventilate gills or lungs, with the respiratory muscles innervated by cranial nerves, while reptiles have a thoracic, aspiratory pump innervated by spinal nerves. However, fish can recruit a hypobranchial pump for active jaw occlusion during hypoxia, using feeding muscles innervated by anterior spinal nerves. This same pump is used to ventilate the air-breathing organ in air-breathing fishes. Some reptiles retain a buccal force pump for use during hypoxia or exercise. All vertebrates have respiratory rhythm generators (RRG) located in the brainstem. In cyclostomes and possibly jawed fishes, this may comprise elements of the trigeminal nucleus, though in the latter group RRG neurons have been located in the reticular formation. In air-breathing fishes and amphibians, there may be separate RRG for gill and lung ventilation. There is some evidence for multiple RRG in reptiles. Both amphibians and reptiles show episodic breathing patterns that may be centrally generated, though they do respond to changes in oxygen supply. Fish and larval amphibians have chemoreceptors sensitive to oxygen partial pressure located on the gills. Hypoxia induces increased ventilation and a reflex bradycardia and may trigger aquatic surface respiration or air-breathing, though these latter activities also respond to behavioural cues. Adult amphibians and reptiles have peripheral chemoreceptors located on the carotid arteries and central chemoreceptors sensitive to blood carbon dioxide levels. Lung perfusion may be regulated by cardiac shunting and lung ventilation stimulates lung stretch receptors.

  20. Defences against ammonia toxicity in tropical air-breathing fishes exposed to high concentrations of environmental ammonia: a review.

    PubMed

    Ip, Y K; Chew, S F; Wilson, J M; Randall, D J

    2004-10-01

    In the tropics, air-breathing fishes can be exposed to environmental ammonia when stranded in puddles of water during the dry season, during a stay inside a burrow, or after agricultural fertilization. At low concentrations of environmental ammonia, NH(3) excretion is impeded, as in aerial exposure, leading to the accumulation of endogenous ammonia. At high concentrations of environmental ammonia, which results in a reversed NH(3) partial pressure gradient (DeltaP(NH3)), there is retention of endogenous ammonia and uptake of exogenous ammonia. In this review, several tropical air-breathing fishes (giant mudskipper, African catfish, oriental weatherloach, swamp eel, four-eyed sleeper, abehaze and slender African lungfish), which can tolerate high environmental ammonia exposure, are used as examples to demonstrate how eight different adaptations can be involved in defence against ammonia toxicity. Four of these adaptations deal with ammonia toxicity at branchial and/or epithelial surfaces: (1) active excretion of NH(4)(+); (2) lowering of environmental pH; (3) low NH(3) permeability of epithelial surfaces; and (4) volatilization of NH(3), while another four adaptations ameliorate ammonia toxicity at the cellular and subcellular levels: (5) high tolerance of ammonia at the cellular and subcellular levels; (6) reduction in ammonia production; (7) glutamine synthesis; and (8) urea synthesis. The responses of tropical air-breathing fishes to high environmental ammonia are determined apparently by behavioural adaptations and the nature of their natural environments.

  1. High temperature detonator

    DOEpatents

    Johnson, James O.; Dinegar, Robert H.

    1988-01-01

    A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.

  2. Detonation charge size versus coda magnitude relations in California and Nevada

    USGS Publications Warehouse

    Brocher, T.M.

    2003-01-01

    Magnitude-charge size relations have important uses in forensic seismology and are used in Comprehensive Nuclear-Test-Ban Treaty monitoring. I derive empirical magnitude versus detonation-charge-size relationships for 322 detonations located by permanent seismic networks in California and Nevada. These detonations, used in 41 different seismic refraction or network calibration experiments, ranged in yield (charge size) between 25 and 106 kg; coda magnitudes reported for them ranged from 0.5 to 3.9. Almost all represent simultaneous (single-fired) detonations of one or more boreholes. Repeated detonations at the same shotpoint suggest that the reported coda magnitudes are repeatable, on average, to within 0.1 magnitude unit. An empirical linear regression for these 322 detonations yields M = 0.31 + 0.50 log10(weight [kg]). The detonations compiled here demonstrate that the Khalturin et al. (1998) relationship, developed mainly for data from large chemical explosions but which fits data from nuclear blasts, can be used to estimate the minimum charge size for coda magnitudes between 0.5 and 3.9. Drilling, loading, and shooting logs indicate that the explosive specification, loading method, and effectiveness of tamp are the primary factors determining the efficiency of a detonation. These records indicate that locating a detonation within the water table is neither a necessary nor sufficient condition for an efficient shot.

  3. A review of direct numerical simulations of astrophysical detonations and their implications

    DOE PAGES

    Parete-Koon, Suzanne T.; Smith, Christopher R.; Papatheodore, Thomas L.; ...

    2013-04-11

    Multi-dimensional direct numerical simulations (DNS) of astrophysical detonations in degenerate matter have revealed that the nuclear burning is typically characterized by cellular structure caused by transverse instabilities in the detonation front. Type Ia supernova modelers often use one- dimensional DNS of detonations as inputs or constraints for their whole star simulations. While these one-dimensional studies are useful tools, the true nature of the detonation is multi-dimensional. The multi-dimensional structure of the burning influences the speed, stability, and the composition of the detonation and its burning products, and therefore, could have an impact on the spectra of Type Ia supernovae. Considerablemore » effort has been expended modeling Type Ia supernovae at densities above 1x10 7 g∙cm -3 where the complexities of turbulent burning dominate the flame propagation. However, most full star models turn the nuclear burning schemes off when the density falls below 1x10 7 g∙cm -3 and distributed burning begins. The deflagration to detonation transition (DDT) is believed to occur at just these densities and consequently they are the densities important for studying the properties of the subsequent detonation. In conclusion, this work reviews the status of DNS studies of detonations and their possible implications for Type Ia supernova models. It will cover the development of Detonation theory from the first simple Chapman-Jouguet (CJ) detonation models to the current models based on the time-dependent, compressible, reactive flow Euler equations of fluid dynamics.« less

  4. Accelerating confined premixed flames using a transverse slot jet

    NASA Astrophysics Data System (ADS)

    Richter, Joseph P.

    2011-12-01

    An experimental study of the transient interaction of a premixed laminar methane-air flame propagating into a transverse fluidic obstacle is considered. The de agration-to-detonation transition (DDT) mechanism for use in pulse detonation engines (PDE) is the main but not only motivation for this study. When DDT is initiated through the use of solid obstacles, the system incurs a drag penalty and subsequent total pressure losses due to the physical obstacle impeding on the flow. This study utilizes a fluidic obstacle to generate flame acceleration without the subsequent penalties associated with form drag of a solid obstacle. The experimental setup was designed specifically for non-intrusive optical measurement techniques such as schlieren, CH* chemiluminescence and digital particle image velocimetry (DPIV). The channel utilizes a length to width aspect ratio of L/W = 6, and was chosen along with the fuel (CH4) to guarantee the impossibility of excessive overpressures associated with unanticipated detonations. The mixture is ignited in the center of the closed end of the channel, and the flame propagates towards the obstacle located at 3.1H. The medium emitted from the slot-jet orifice is the same methane-air mixture used to fill the channel and is released post ignition to allow an interaction with the laminar propagating flame. A comparison of this transverse fluidic slot jet obstacle is made to four different solid obstacle geometries at various blockage ratios (BR) and at stoichiometric and lean (φ = 0:88) equivalence ratios. The results of this study show that a transverse slot jet is capable of increasing heat release, flame surface area and subsequently flame speed compared to that of any tested solid obstacle with similar maximum flame deflection over an obstacle.

  5. The hydrodynamic theory of detonation

    NASA Technical Reports Server (NTRS)

    Langweiler, Heinz

    1939-01-01

    This report derives equations containing only directly measurable constants for the quantities involved in the hydrodynamic theory of detonation. The stable detonation speed, D, is revealed as having the lowest possible value in the case of positive material velocity, by finding the minimum of the Du curve (u denotes the speed of the gases of combustion). A study of the conditions of energy and impulse in freely suspended detonating systems leads to the disclosure of a rarefaction front traveling at a lower speed behind the detonation front; its velocity is computed. The latent energy of the explosive passes into the steadily growing detonation zone - the region between the detonation front and the rarefaction front. The conclusions lead to a new definition of the concept of shattering power. The calculations are based on the behavior of trinitrotoluene.

  6. Insensitive detonator apparatus for initiating large failure diameter explosives

    DOEpatents

    Perry, III, William Leroy

    2015-07-28

    A munition according to a preferred embodiment can include a detonator system having a detonator that is selectively coupled to a microwave source that functions to selectively prime, activate, initiate, and/or sensitize an insensitive explosive material for detonation. The preferred detonator can include an explosive cavity having a barrier within which an insensitive explosive material is disposed and a waveguide coupled to the explosive cavity. The preferred system can further include a microwave source coupled to the waveguide such that microwaves enter the explosive cavity and impinge on the insensitive explosive material to sensitize the explosive material for detonation. In use the preferred embodiments permit the deployment and use of munitions that are maintained in an insensitive state until the actual time of use, thereby substantially preventing unauthorized or unintended detonation thereof.

  7. Research and Development of High-performance Explosives

    PubMed Central

    Cornell, Rodger; Wrobel, Erik; Anderson, Paul E.

    2016-01-01

    Developmental testing of high explosives for military applications involves small-scale formulation, safety testing, and finally detonation performance tests to verify theoretical calculations. small-scale For newly developed formulations, the process begins with small-scale mixes, thermal testing, and impact and friction sensitivity. Only then do subsequent larger scale formulations proceed to detonation testing, which will be covered in this paper. Recent advances in characterization techniques have led to unparalleled precision in the characterization of early-time evolution of detonations. The new technique of photo-Doppler velocimetry (PDV) for the measurement of detonation pressure and velocity will be shared and compared with traditional fiber-optic detonation velocity and plate-dent calculation of detonation pressure. In particular, the role of aluminum in explosive formulations will be discussed. Recent developments led to the development of explosive formulations that result in reaction of aluminum very early in the detonation product expansion. This enhanced reaction leads to changes in the detonation velocity and pressure due to reaction of the aluminum with oxygen in the expanding gas products. PMID:26966969

  8. Momentum and Heat Transfer Models for Detonation in Nitromethane with Metal Particles

    NASA Astrophysics Data System (ADS)

    Ripley, Robert; Zhang, Fan; Lien, Fue-Sang

    2009-06-01

    Models for momentum and heat exchange have been derived from the results of previous 3D mesoscale simulations of detonation in packed aluminum particles saturated with nitromethane, where the shock interaction timescale was resolved. In these models, particle acceleration and heating within the shock and detonation zone have been expressed in terms of velocity and temperature transmission factors, which are a function of metal to explosive density ratio, metal volume fraction and ratio of particle size to detonation zone thickness. These models are incorporated as source terms in the governing equations for continuum dense two-phase flow and macroscopic simulation is then applied to detonation of nitromethane/aluminum in lightly-cased cylinders. Heterogeneous detonation features such as velocity deficit, enhanced pressure, and critical diameter effects are reproduced. Various spherical particle diameters from 3 -- 30 μm are utilized where most of the particles react in the expanding detonation products. Results for detonation velocity, pressure history, failure and U-shaped critical diameter behavior are compared to the existing experiments.

  9. Momentum and Heat Transfer Models for Detonation in Nitromethane with Metal Particles

    NASA Astrophysics Data System (ADS)

    Ripley, R. C.; Zhang, F.; Lien, F.-S.

    2009-12-01

    Models for momentum and heat exchange have been derived from the results of previous 3D mesoscale simulations of detonation in packed aluminum particles saturated with nitromethane, where the shock interaction timescale was resolved. In these models, particle acceleration and heating within the shock and detonation zone are expressed in terms of velocity and temperature transmission factors, which are a function of the metal to explosive density ratio, solid volume fraction and ratio of particle size to detonation zone thickness. These models are incorporated as source terms in the governing equations for continuum dense two-phase flow, and then applied to macroscopic simulation of detonation of nitromethane/aluminum in lightly-cased cylinders. Heterogeneous detonation features such as velocity deficit, enhanced pressure, and critical diameter effects are demonstrated. Various spherical particle diameters from 3-350 μm are utilized where most of the particles react in the expanding detonation products. Results for detonation velocity, pressure history, failure and U-shaped critical diameter behavior are compared to existing experiments.

  10. Unsteady self-sustained detonation in flake aluminum dust/air mixtures

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Li, S.; Huang, J.; Zhang, Y.

    2017-07-01

    Self-sustained detonation waves in flake aluminum dust/air mixtures have been studied in a tube of diameter 199 mm and length 32.4 m. A pressure sensor array of 32 sensors mounted around certain circumferences of the tube was used to measure the shape of the detonation front in the circumferential direction and pressure histories of the detonation wave. A two-head spin detonation wave front was observed for the aluminum dust/air mixtures, and the cellular structure resulting from the spinning movement of the triple point was analyzed. The variations in velocity and overpressure of the detonation wave with propagation distance in a cell were studied. The interactions of waves in triple-point configurations were analyzed and the flow-field parameters were calculated. Three types of triple-point configuration have been found in the wave front of the detonation wave of an aluminum dust/air mixture. Both strong and weak transverse waves exist in the unstable self-sustained detonation wave.

  11. Nuclear Geoplosics Sourcebook. Volume IV. Part I. Empirical Analysis of Ground Motion from Above and Underground Explosions

    DTIC Science & Technology

    1979-03-01

    for some detonations, for example, PLATYPUS , SHREW, and ERMINE, this secondary acceleration pulse is not evident in the data. *Maximum vertical...RADIAL C..) _j n ’U~n" -- m RINGTAIL \\ ,• • n MINK P "W o PLATYPUS \\ \\ •" p SHREW \\- .Cq HOGNOSERAD s ERMINEb; w CHINCHILLA \\ 0.10 1.0 10 102 DEPTH OF...h2xHOGNOSE RADIAL 0 _ 1 . - \\ \\\\ \\ m RINGTAIL n MINK a PLATYPUS p SHREW q HOGNOSE s ERMINE w CHINCHILLA 0.101I I I I I 1 LJI t. 10 30 DEPTH OF BURST, 102 ft

  12. Near-limit propagation of gaseous detonations in narrow annular channels

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Ng, H. D.; Lee, J. H. S.

    2017-03-01

    New results on the near-limit behaviors of gaseous detonations in narrow annular channels are reported in this paper. Annular channels of widths 3.2 and 5.9 mm were made using circular inserts in a 50.8 mm-diameter external tube. The length of each annular channel was 1.8 m. Detonations were initiated in a steel driver tube where a small volume of a sensitive C2H2+ 2.5O2 mixture was injected to facilitate detonation initiation. A 2 m length of circular tube with a 50.8 mm diameter preceded the annular channel so that a steady Chapman-Jouguet (CJ) detonation was established prior to entering the annular channel. Four detonable mixtures of C2H2 {+} 2.5O2 {+} 85 % Ar, C2H2 {+} 2.5O2 {+} 70 % Ar, C3H8 {+} 5O2, and CH4 {+} 2O2 were used in the present study. Photodiodes spaced 10 cm throughout the length of both the annular channel and circular tube were used to measure the detonation velocity. In addition, smoked foils were inserted into the annular channel to monitor the cellular structure of the detonation wave. The results show that, well within the detonability limits, the detonation wave propagates along the channel with a small local velocity fluctuation and an average global velocity can be deduced. The average detonation velocity has a small deficit of 5-15 % far from the limits and the velocity rapidly decreases to 0.7V_{CJ}-0.8V_{CJ} when the detonation propagates near the limit. Subsequently, the fluctuation of local velocity also increases as the decreasing initial pressure approaches the limit. In the two annular channels used in this work, no galloping detonations were observed for both the stable and unstable mixtures tested. The present study also confirms that single-headed spinning detonation occurs at the limit, as in a circular tube, rather than the up and down "zig zag" mode in a two-dimensional, rectangular channel.

  13. Tris(hydroxymethyl)aminomethane photooxidation on titania based photoanodes and its implication for photoelectrochemical biofuel cells

    NASA Astrophysics Data System (ADS)

    Filipiak, Marcin S.; Zloczewska, Adrianna; Grzeskowiak, Piotr; Lynch, Robert; Jönsson-Niedziolka, Martin

    2015-09-01

    In many photoelectrochemical biofuel cells tris(hydroxymethyl)aminomethane (TRIS) is used a buffer. We show that TRIS can be readily photooxidised on titania electrodes. Combining a titania nanotube photoanode in a TRIS buffer with an air-breathing enzymatic biocathode we construct a relatively efficient photoelectrochemical biofuel cell using the TRIS buffer as fuel. This shows both the prospect of using air-breathing bio-cathodes in this kind of cells, but more importantly, shows the need for caution when using TRIS as buffer in photoelectrochemical applications.

  14. The Design of Future Airbreathing Engine Systems within an Intelligent Synthesis Environment

    NASA Technical Reports Server (NTRS)

    Malone, J. B.; Housner, J. M.; Lytle, J. K.

    1999-01-01

    This paper describes a new Initiative proposed by the National Aeronautics and Space Administration (NASA). The purpose of this initiative is to develop a future design environment for engineering and science mission synthesis for use by NASA scientists and engineers. This new initiative is called the Intelligent Synthesis Environment (ISE). The paper describes the mission of NASA, future aerospace system characteristics, the current engineering design process, the ISE concept, and concludes with a description of possible ISE applications for the decision of air-breathing propulsion systems.

  15. The QED engine spectrum - Fusion-electric propulsion for air-breathing to interstellar flight

    NASA Technical Reports Server (NTRS)

    Bussard, Robert W.; Jameson, Lorin W.

    1993-01-01

    A new inertial-electrostatic-fusion direct electric power source can be used to drive a relativistic e-beam to heat propellant. The resulting system is shown to yield specific impulse and thrust/mass ratio 2-3 orders of magnitude larger than from other advanced propulsion concepts. This QED system can be applied to aerospace vehicles from air-breathing to near-interstellar flight. Examples are given for Earth/Mars flight missions, that show transit times of 40 d with 20 percent payload in single-stage vehicles.

  16. Numerical simulations of detonation propagation in gaseous fuel-air mixtures

    NASA Astrophysics Data System (ADS)

    Honhar, Praveen; Kaplan, Carolyn; Houim, Ryan; Oran, Elaine

    2017-11-01

    Unsteady multidimensional numerical simulations of detonation propagation and survival in mixtures of fuel (hydrogen or methane) diluted with air were carried out with a fully compressible Navier-Stokes solver using a simplified chemical-diffusive model (CDM). The CDM was derived using a genetic algorithm combined with the Nelder-Mead optimization algorithm and reproduces physically correct laminar flame and detonation properties. Cases studied are overdriven detonations propagating through confined mediums, with or without gradients in composition. Results from simulations confirm that the survival of the detonation depends on the channel heights. In addition, the simulations show that the propagation of the detonation waves depends on the steepness in composition gradients.

  17. Non-Ideal Detonation Properties of Ammonium Nitrate and Activated Carbon Mixtures

    NASA Astrophysics Data System (ADS)

    Miyake, Atsumi; Echigoya, Hiroshi; Kobayashi, Hidefumi; Ogawa, Terushige; Katoh, Katsumi; Kubota, Shiro; Wada, Yuji; Ogata, Yuji

    To obtain a better understanding of detonation properties of ammonium nitrate (AN) and activated carbon (AC) mixtures, steel tube tests with several diameters were carried out for various compositions of powdered AN and AC mixtures and the influence of the charge diameter on the detonation velocity was investigated. The results showed that the detonation velocity increased with the increase of the charge diameter. The experimentally observed values were far below the theoretically predicted values made by the thermodynamic CHEETAH code and they showed so-called non-ideal detonation. The extrapolated detonation velocity of stoichiometric composition to the infinite diameter showed a good agreement with the theoretical value.

  18. Detonation properties of the nitromethane/ diethylenetriamine solution

    NASA Astrophysics Data System (ADS)

    Mochalova, Valentina; Utkin, Alexander; Lapin, Sergey

    2015-06-01

    The results of the experimental determination of detonation parameters for the mixture of nitromethane (NM) with diethylenetriamine (DETA) are presented in this work. By the using of a laser interferometer VISAR the stability of detonation waves, detonation velocity and the reaction time with the change of the DETA concentration from 0 to 60 weight percentages were investigated. It is shown that detonation waves are stable up to 25% DETA, and the character reaction time is reduced from 50 ns up to 30 ns with the addition of a few percentages of the sensitizer and then remains almost the constant. With further increase of the DETA concentration the detonation front becomes unstable, and it results in an arising of pulsations with amplitude of 10 microns. The limit concentration of DETA, above which the detonation of the mixture was impossible, was determined. This concentration was equal to 60%. It is shown that the dependence of the detonation velocity on the DETA concentration is non-monotonic. In particular, the increase of detonation velocity in the vicinity of small concentrations of the sensitizer, about 0.1%, was recorded. The work was supported by Russian Foundation for Basic Research (Project 15-03-07830).

  19. 30 CFR 57.6402 - Deenergized circuits near detonators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Electric Blasting-Surface and Underground § 57.6402 Deenergized circuits near detonators. Electrical distribution circuits within 50 feet of electric detonators at the blast site shall be deenergized. Such circuits need not be deenergized between 25 to 50 feet of the electric detonators if stray current tests...

  20. 30 CFR 56.6402 - Deenergized circuits near detonators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Electric Blasting § 56.6402 Deenergized circuits near detonators. Electrical distribution circuits within 50 feet of electric detonators at the blast site shall be deenergized. Such circuits need not be... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Deenergized circuits near detonators. 56.6402...

  1. Detonation Jet Engine. Part 1--Thermodynamic Cycle

    ERIC Educational Resources Information Center

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. The efficiency advantages of thermodynamic detonative combustion cycle over Humphrey combustion cycle at constant volume and Brayton combustion cycle at constant pressure were demonstrated. An ideal Ficket-Jacobs detonation cycle, and…

  2. High Resolution WENO Simulation of 3D Detonation Waves

    DTIC Science & Technology

    2012-02-27

    pocket behind the detonation front was not observed in their results because the rotating transverse detonation completely consumed the unburned gas. Dou...three-dimensional detonations We add source terms (functions of x, y, z and t) to the PDE system so that the following functions are exact solutions to... detonation rotates counter-clockwise, opposite to that in [48]. It can be seen that, the triple lines and transverse waves collide with the walls, and strong

  3. Effect of Mixture Pressure and Equivalence Ratio on Detonation Cell Size for Hydrogen-Air Mixtures

    DTIC Science & Technology

    2015-06-01

    National Labs ( BNL ) built and tested several detonation tubes with hydrogen and air detonations. BNL’s main detonation tubes were called the High...K and the ability to change to mixture pressure from one atmosphere to just less than three atmospheres. Before BNL designed their detonation tubes...gas driver initiation system was that the diaphragm had to be replaced after each test. In order to save time from replacing the diaphragms, BNL

  4. Characterization of detonation soot produced during steady and overdriven conditions for three high explosive formulations

    NASA Astrophysics Data System (ADS)

    Podlesak, David W.; Huber, Rachel C.; Amato, Ronald S.; Dattelbaum, Dana M.; Firestone, Millicent A.; Gustavsen, Richard L.; Johnson, Carl E.; Mang, Joseph T.; Ringstrand, Bryan S.

    2017-01-01

    The detonation of high explosives (HE) produces a dense fluid of molecular gases and solid carbon. The solid detonation carbon contains various carbon allotropes such as detonation nanodiamonds, onion-like carbon, graphite and amorphous carbon, with the formation of the different forms dependent upon pressure, temperature and the environmental conditions of the detonation. We have collected solid carbon residues from controlled detonations of three HE formulations (Composition B-3, PBX 9501, and PBX 9502). Soot was collected from experiments designed to produce both steady and overdriven conditions, and from detonations in both an ambient (air) atmosphere and in an inert Ar atmosphere. Differences in solid carbon residues were quantified using X-ray photoelectron spectroscopy and carbon isotope measurements. Environmental conditions, HE formulation, and peak pressures influenced the amount of and isotopic composition of the carbon in the soot. Detonations in an Ar atmosphere produced greater amounts of carbon soot with lower δ13C values than those in ambient air. Therefore, solid carbon residues continued to evolve after detonation due to excess oxygen in the ambient air detonations. As well, higher peak pressures in overdriven conditions produced less carbon soot with, in general, higher δ13C values. Consequently, while overdriven conditions only produced peak pressures for a limited duration, it was enough to influence the composition of the solid carbon residues.

  5. Analysis of Porous Media as Inlet Concept for Rotating Detonation Engines

    NASA Astrophysics Data System (ADS)

    Grogan, Kevin; Ihme, Matthias; Department of Mechanical Engineering Team

    2016-11-01

    Rotating detonation engines combust reactive gas mixtures with a high-speed, annularly-propagating detonation wave, which provides many advantages including a stagnation pressure gain and a compact, lightweight design. However, the optimal design of the inlet to the combustion chamber inlet is a moot topic since improper design can significantly reduce detonability and increase pressure losses. The highly diffusive properties of porous media could make it an ideal material to prevent the flashback of the detonation wave and therefore, allow the inlet gas to be premixed. Motivated by this potential, this work employs simulation to evaluate the application of porous media to the inlet of a rotating detonation engine as a novel means to stabilize a detonation wave while reducing the pressure losses incurred by non-ideal mixing strategies. Department of the Air Force.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic.more » A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.« less

  7. Munitions having an insensitive detonator system for initiating large failure diameter explosives

    DOEpatents

    Perry, III, William Leroy

    2015-08-04

    A munition according to a preferred embodiment can include a detonator system having a detonator that is selectively coupled to a microwave source that functions to selectively prime, activate, initiate, and/or sensitize an insensitive explosive material for detonation. The preferred detonator can include an explosive cavity having a barrier within which an insensitive explosive material is disposed and a waveguide coupled to the explosive cavity. The preferred system can further include a microwave source coupled to the waveguide such that microwaves enter the explosive cavity and impinge on the insensitive explosive material to sensitize the explosive material for detonation. In use the preferred embodiments permit the deployment and use of munitions that are maintained in an insensitive state until the actual time of use, thereby substantially preventing unauthorized or unintended detonation thereof.

  8. Observations on the normal reflection of gaseous detonations

    NASA Astrophysics Data System (ADS)

    Damazo, J.; Shepherd, J. E.

    2017-09-01

    Experimental results are presented examining the behavior of the shock wave created when a gaseous detonation wave normally impinges upon a planar wall. Gaseous detonations are created in a 7.67-m-long, 280-mm-internal-diameter detonation tube instrumented with a test section of rectangular cross section enabling visualization of the region at the tube-end farthest from the point of detonation initiation. Dynamic pressure measurements and high-speed schlieren photography in the region of detonation reflection are used to examine the characteristics of the inbound detonation wave and outbound reflected shock wave. Data from a range of detonable fuel/oxidizer/diluent/initial pressure combinations are presented to examine the effect of cell-size and detonation regularity on detonation reflection. The reflected shock does not bifurcate in any case examined and instead remains nominally planar when interacting with the boundary layer that is created behind the incident wave. The trajectory of the reflected shock wave is examined in detail, and the wave speed is found to rapidly change close to the end-wall, an effect we attribute to the interaction of the reflected shock with the reaction zone behind the incident detonation wave. Far from the end-wall, the reflected shock wave speed is in reasonable agreement with the ideal model of reflection which neglects the presence of a finite-length reaction zone. The net far-field effect of the reaction zone is to displace the reflected shock trajectory from the predictions of the ideal model, explaining the apparent disagreement of the ideal reflection model with experimental reflected shock observations of previous studies.

  9. 30 CFR 56.6400 - Compatibility of electric detonators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compatibility of electric detonators. 56.6400... Electric Blasting § 56.6400 Compatibility of electric detonators. All electric detonators to be fired in a round shall be from the same manufacturer and shall have similar electrical firing characteristics. ...

  10. 30 CFR 57.6400 - Compatibility of electric detonators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Compatibility of electric detonators. 57.6400... Electric Blasting-Surface and Underground § 57.6400 Compatibility of electric detonators. All electric detonators to be fired in a round shall be from the same manufacturer and shall have similar electrical...

  11. 30 CFR 56.6400 - Compatibility of electric detonators.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compatibility of electric detonators. 56.6400... Electric Blasting § 56.6400 Compatibility of electric detonators. All electric detonators to be fired in a round shall be from the same manufacturer and shall have similar electrical firing characteristics. ...

  12. 30 CFR 56.6400 - Compatibility of electric detonators.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Compatibility of electric detonators. 56.6400... Electric Blasting § 56.6400 Compatibility of electric detonators. All electric detonators to be fired in a round shall be from the same manufacturer and shall have similar electrical firing characteristics. ...

  13. 30 CFR 56.6400 - Compatibility of electric detonators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Compatibility of electric detonators. 56.6400... Electric Blasting § 56.6400 Compatibility of electric detonators. All electric detonators to be fired in a round shall be from the same manufacturer and shall have similar electrical firing characteristics. ...

  14. 30 CFR 57.6400 - Compatibility of electric detonators.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compatibility of electric detonators. 57.6400... Electric Blasting-Surface and Underground § 57.6400 Compatibility of electric detonators. All electric detonators to be fired in a round shall be from the same manufacturer and shall have similar electrical...

  15. 30 CFR 57.6400 - Compatibility of electric detonators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compatibility of electric detonators. 57.6400... Electric Blasting-Surface and Underground § 57.6400 Compatibility of electric detonators. All electric detonators to be fired in a round shall be from the same manufacturer and shall have similar electrical...

  16. 30 CFR 56.6400 - Compatibility of electric detonators.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Compatibility of electric detonators. 56.6400... Electric Blasting § 56.6400 Compatibility of electric detonators. All electric detonators to be fired in a round shall be from the same manufacturer and shall have similar electrical firing characteristics. ...

  17. 30 CFR 57.6400 - Compatibility of electric detonators.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Compatibility of electric detonators. 57.6400... Electric Blasting-Surface and Underground § 57.6400 Compatibility of electric detonators. All electric detonators to be fired in a round shall be from the same manufacturer and shall have similar electrical...

  18. 30 CFR 57.6400 - Compatibility of electric detonators.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Compatibility of electric detonators. 57.6400... Electric Blasting-Surface and Underground § 57.6400 Compatibility of electric detonators. All electric detonators to be fired in a round shall be from the same manufacturer and shall have similar electrical...

  19. 30 CFR 75.1311 - Transporting explosives and detonators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Transporting explosives and detonators. 75.1311... Transporting explosives and detonators. (a) When explosives and detonators are to be transported underground... transported by any cars or vehicles— (1) The cars or vehicles shall be marked with warnings to identify the...

  20. 30 CFR 75.1311 - Transporting explosives and detonators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Transporting explosives and detonators. 75.1311... Transporting explosives and detonators. (a) When explosives and detonators are to be transported underground... transported by any cars or vehicles— (1) The cars or vehicles shall be marked with warnings to identify the...

  1. One Year Term Review as a Participating Guest in the Detonator and Detonation Physics Group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefrancois, A; Roeske, F; Tran, T

    2006-02-06

    The one year stay was possible after a long administrative process, because of the fact that this was the first participating guest of B division as a foreign national in HEAF (High Explosives Application Facility) with the Detonator/Detonation Physics Group.

  2. Detonation energies of explosives by optimized JCZ3 procedures

    NASA Astrophysics Data System (ADS)

    Stiel, Leonard I.; Baker, Ernest L.

    1998-07-01

    Procedures for the detonation properties of explosives have been extended for the calculation of detonation energies at adiabatic expansion conditions. The use of the JCZ3 equation of state with optimized Exp-6 potential parameters leads to lower errors in comparison to JWL detonation energies than for other methods tested.

  3. 30 CFR 15.30 - Technical requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... detonator completely embedded in the well; (3) Is provided with a means of securing the detonator in the well; and (4) Is clearly marked. (d) Drop test. The outer covering of the sheathed explosive unit shall.... (c) Detonator well. The sheathed explosive unit shall have a detonator well that— (1) Is protected by...

  4. Novel Circuits for Energizing Manganin Stress Gauges

    NASA Astrophysics Data System (ADS)

    Tasker, Douglas

    2015-06-01

    This paper describes the design, manufacture and testing of novel MOSFET pulsed constant current supplies for low impedance Manganin stress gauges. The design emphasis has been on high accuracy, low noise, simple, low cost, disposable supplies that can be used to energize multiple gauges in explosive or shock experiments. Manganin gauges used to measure stresses in detonating explosive experiments have typical resistances of 50 m Ω and are energized with pulsed currents of 50 A. Conventional pulsed current supplies for these gauges are high voltage devices with outputs as high as 500 V. Common problems with the use of high voltage supplies at explosive firing sites are: erroneous signals caused by ground loops; overdrive of oscilloscopes on gauge failure; gauge signal crosstalk; cost; and errors due to finite and changing source impedances. To correct these issues a novel MOSFET circuit was designed and will be described. It is an 18-V circuit, powered by 9-V alkaline batteries, and features an optically isolated trigger, and single-point grounding. These circuits have been successfully tested at the Los Alamos National Laboratory and selected explosive tests will be described together with their results. LA-UR-15-20613.

  5. Miniature Precision Detonator

    DTIC Science & Technology

    1974-06-01

    Detonator Output Characterize the detonator output by the following 2-3.1 Dent Output Test. Test detonators Into steel witness plate to compare dent...Kovar with gold plating . The Insulating seal Is glass. The jead pin Is 0.012 ± 0.001 Inch In diameter by 0.25 Inch long. 3.2.2 Bridge. Detonators... plated for solderablllty. The bottom thickness Is 0.004 ± 0.001 Inch. It would be desirable to have 0.002 to 0.003-lnch-thlck bottom so that the mass

  6. Detonation Shock Dynamics Calibration for Non-Ideal HE: ANFO

    NASA Astrophysics Data System (ADS)

    Short, Mark; Salyer, Terry

    2009-06-01

    The detonation of ammonium nitrate (AN) and fuel-oil (FO) mixtures (ANFO) is significantly influenced by the properties of the AN (porosity, particle size, coating) and fuel-oil stoichiometry. We report on a new series of rate-stick experiments in cardboard confinement that highlight detonation front speed and curvature dependence on AN/FO stoichiometry and AN particle properties. Standard detonation velocity-curvature calibrations to the experimental data will be presented, as well as higher-order time-dependent detonation shock dynamics calibrations.

  7. Miniature plasma accelerating detonator and method of detonating insensitive materials

    DOEpatents

    Bickes, R.W. Jr.; Kopczewski, M.R.; Schwarz, A.C.

    1985-01-04

    The invention is a detonator for use with high explosives. The detonator comprises a pair of parallel rail electrodes connected to a power supply. By shorting the electrodes at one end, a plasma is generated and accelerated toward the other end to impact against explosives. A projectile can be arranged between the rails to be accelerated by the plasma. An alternative arrangement is to a coaxial electrode construction. The invention also relates to a method of detonating explosives. 3 figs.

  8. Miniature plasma accelerating detonator and method of detonating insensitive materials

    DOEpatents

    Bickes, Jr., Robert W.; Kopczewski, Michael R.; Schwarz, Alfred C.

    1986-01-01

    The invention is a detonator for use with high explosives. The detonator comprises a pair of parallel rail electrodes connected to a power supply. By shorting the electrodes at one end, a plasma is generated and accelerated toward the other end to impact against explosives. A projectile can be arranged between the rails to be accelerated by the plasma. An alternative arrangement is to a coaxial electrode construction. The invention also relates to a method of detonating explosives.

  9. Hydrazine vapor detonations

    NASA Technical Reports Server (NTRS)

    Pedley, M. D.; Bishop, C. V.; Benz, F. J.; Bennett, C. A.; Mcclenagan, R. D.

    1988-01-01

    The detonation velocity and cell widths for hydrazine decomposition were measured over a wide range of temperatures and pressures. The detonation velocity in pure hydrazine was within 5 percent of the calculated C-J velocity. The detonation cell width measurements were interpreted using the Zeldovich-Doering-von Neumann model with a detailed reaction mechanism for hydrazine decomposition. Excellent agreement with experimental data for pure hydrazine was obtained using the empirical relation that detonation cell width was equal to 29 times the kinetically calculated reaction zone length.

  10. Measuring In-Situ Mdf Velocity Of Detonation

    DOEpatents

    Horine, Frank M.; James, Jr., Forrest B.

    2005-10-25

    A system for determining the velocity of detonation of a mild detonation fuse mounted on the surface of a device includes placing the device in a predetermined position with respect to an apparatus that carries a couple of sensors that sense the passage of a detonation wave at first and second spaced locations along the fuse. The sensors operate a timer and the time and distance between the locations is used to determine the velocity of detonation. The sensors are preferably electrical contacts that are held spaced from but close to the fuse such that expansion of the fuse caused by detonation causes the fuse to touch the contact, causing an electrical signal to actuate the timer.

  11. Detonation properties of nitromethane/diethylenetriamine solution

    NASA Astrophysics Data System (ADS)

    Mochalova, V.; Utkin, A.; Lapin, S.

    2017-01-01

    The results of the experimental determination of the detonation parameters of nitromethane (NM) with diethylenetriamine (DETA) solution are presented in this work. With the using of a laser interferometer VISAR the stability of detonation waves, the detonation velocity and the reaction time at the concentration of DETA from 0 to 60 weight percentage were investigated. It is shown that the stability of detonation waves is retained up to 25% DETA, at that the characteristic reaction time is reduced by about half at the addition of several percentage of the sensitizer to NM and then remains almost constant. The increase of the detonation velocity in the vicinity of the small, about 0.1%, concentrations of sensitizer is recorded.

  12. The Energy Diameter Effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitello, P; Garza, R; Hernandez, A

    2007-07-10

    We explore various relations for the detonation energy and velocity as they relate to the inverse radius of the cylinder. The detonation rate-inverse slope relation seen in reactive flow models can be used to derive the familiar Eyring equation. Generalized inverse radii can be shown to fit large quantities of cylinder results. A rough relation between detonation energy and detonation velocity is found from collected JWL values. Cylinder test data for ammonium nitrate mixes down to 6.35 mm radii are presented, and a size energy effect is shown to exist in the Cylinder test data. The relation that detonation energymore » is roughly proportional to the square of the detonation velocity is shown by data and calculation.« less

  13. The Energy Diameter Effect

    NASA Astrophysics Data System (ADS)

    Vitello, Peter; Garza, Raul; Hernandez, Andy; Souers, P. Clark

    2007-12-01

    We explore various relations for the detonation energy and velocity as they relate to the inverse radius of the cylinder. The effective detonation rate-inverse slope relation seen in reactive flow models can be used to derive the familiar Eyring equation. Generalized inverse radii can be shown to fit large quantities of cylinder results. A rough relation between detonation energy and detonation velocity is found from collected JWL values. Cylinder test data for ammonium nitrate mixes down to 6.35 mm radii are presented, and a size energy effect is shown to exist in the Cylinder test data. The relation that detonation energy is roughly proportional to the square of the detonation velocity is shown by data and calculation.

  14. High speed spectral measurements of IED detonation fireballs

    NASA Astrophysics Data System (ADS)

    Gordon, J. Motos; Spidell, Matthew T.; Pitz, Jeremey; Gross, Kevin C.; Perram, Glen P.

    2010-04-01

    Several homemade explosives (HMEs) were manufactured and detonated at a desert test facility. Visible and infrared signatures were collected using two Fourier transformspectrometers, two thermal imaging cameras, a radiometer, and a commercial digital video camera. Spectral emissions from the post-detonation combustion fireball were dominated by continuum radiation. The events were short-lived, decaying in total intensity by an order of magnitude within approximately 300ms after detonation. The HME detonation produced a dust cloud in the immediate area that surrounded and attenuated the emitted radiation from the fireball. Visible imagery revealed a dark particulate (soot) cloud within the larger surrounding dust cloud. The ejected dust clouds attenuated much of the radiation from the post-detonation combustion fireballs, thereby reducing the signal-to-noise ratio. The poor SNR at later times made it difficult to detect selective radiation from by-product gases on the time scale (~500ms) in which they have been observed in other HME detonations.

  15. Effects of high sound speed confiners on ANFO detonations

    NASA Astrophysics Data System (ADS)

    Kiyanda, Charles; Jackson, Scott; Short, Mark

    2011-06-01

    The interaction between high explosive (HE) detonations and high sound speed confiners, where the confiner sound speed exceeds the HE's detonation speed, has not been thoroughly studied. The subsonic nature of the flow in the confiner allows stress waves to travel ahead of the main detonation front and influence the upstream HE state. The interaction between the detonation wave and the confiner is also no longer a local interaction, so that the confiner thickness now plays a significant role in the detonation dynamics. We report here on larger scale experiments in which a mixture of ammonium nitrate and fuel oil (ANFO) is detonated in aluminium confiners with varying charge diameter and confiner thickness. The results of these large-scale experiments are compared with previous large-scale ANFO experiments in cardboard, as well as smaller-scale aluminium confined ANFO experiments, to characterize the effects of confiner thickness.

  16. Effects of Injection Scheme on Rotating Detonation Engine Operation

    NASA Astrophysics Data System (ADS)

    Chacon, Fabian; Duvall, James; Gamba, Mirko

    2017-11-01

    In this work, we experimentally investigate the operation and performance characteristics of a rotating detonation engine (RDE) operated with different fuel injection schemes and operating conditions. In particular, we investigate the detonation and operation characteristics produced with an axial flow injector configuration and semi-impinging injector configurations. These are compared to the characteristics produced with a canonical radial injection system (AFRL injector). Each type produces a different flowfield and mixture distribution, leading to a different detonation initiation, injector dynamic response, and combustor pressure rise. By using a combination of diagnostics, we quantify the pressure loses and gains in the system, the ability to maintain detonation over a range of operating points, and the coupling between the detonation and the air/fuel feed lines. We particularly focus on how this coupling affects both the stability and the performance of the detonation wave. This work is supported by the DOE/UTSR program under project DE-FE0025315.

  17. Time resolved small angle X-ray scattering experiments performed on detonating explosives at the advanced photon source: Calculation of the time and distance between the detonation front and the x-ray beam

    DOE PAGES

    Gustavsen, Richard L.; Dattelbaum, Dana Mcgraw; Watkins, Erik Benjamin; ...

    2017-03-10

    Time resolved Small Angle X-ray Scattering (SAXS) experiments on detonating explosives have been conducted at Argonne National Laboratory's Advanced Photon Source Dynamic Compression Sector. The purpose of the experiments is to measure the SAXS patterns at tens of ns to a few μs behind the detonation front. Corresponding positions behind the detonation front are of order 0.1–10 mm. From the scattering patterns, properties of the explosive products relative to the time behind the detonation front can be inferred. Lastly, this report describes how the time and distance from the x-ray probe location to the detonation front is calculated, as wellmore » as the uncertainties and sources of uncertainty associated with the calculated times and distances.« less

  18. Theory and Modeling of Liquid Explosive Detonation

    NASA Astrophysics Data System (ADS)

    Tarver, Craig M.; Urtiew, Paul A.

    2010-10-01

    The current understanding of the detonation reaction zones of liquid explosives is discussed in this article. The physical and chemical processes that precede and follow exothermic chemical reaction within the detonation reaction zone are discussed within the framework of the nonequilibrium Zeldovich-von Neumann-Doring (NEZND) theory of self-sustaining detonation. Nonequilibrium chemical and physical processes cause finite time duration induction zones before exothermic chemical energy release occurs. This separation between the leading shock wave front and the chemical energy release needed to sustain it results in shock wave amplification and the subsequent formation of complex three-dimensional cellular structures in all liquid detonation waves. To develop a practical Zeldovich-von Neumann-Doring (ZND) reactive flow model for liquid detonation, experimental data on reaction zone structure, confined failure diameter, unconfined failure diameter, and failure wave velocity in the Dremin-Trofimov test for detonating nitromethane are calculated using the ignition and growth reactive flow model.

  19. Time resolved small angle X-ray scattering experiments performed on detonating explosives at the advanced photon source: Calculation of the time and distance between the detonation front and the x-ray beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavsen, Richard L.; Dattelbaum, Dana Mcgraw; Watkins, Erik Benjamin

    Time resolved Small Angle X-ray Scattering (SAXS) experiments on detonating explosives have been conducted at Argonne National Laboratory's Advanced Photon Source Dynamic Compression Sector. The purpose of the experiments is to measure the SAXS patterns at tens of ns to a few μs behind the detonation front. Corresponding positions behind the detonation front are of order 0.1–10 mm. From the scattering patterns, properties of the explosive products relative to the time behind the detonation front can be inferred. Lastly, this report describes how the time and distance from the x-ray probe location to the detonation front is calculated, as wellmore » as the uncertainties and sources of uncertainty associated with the calculated times and distances.« less

  20. Effect of fuel stratification on detonation wave propagation

    NASA Astrophysics Data System (ADS)

    Masselot, Damien; Fievet, Romain; Raman, Venkat

    2016-11-01

    Rotating detonation engines (RDEs) form a class of pressure-gain combustion systems of higher efficiency compared to conventional gas turbine engines. One of the key features of the design is the injection system, as reactants need to be continuously provided to the detonation wave to sustain its propagation speed. As inhomogeneities in the reactant mixture can perturb the detonation wave front, premixed fuel jet injectors might seem like the most stable solution. However, this introduces the risk of the detonation wave propagating through the injector, causing catastrophic failure. On the other hand, non-premixed fuel injection will tend to quench the detonation wave near the injectors, reducing the likelihood of such failure. Still, the effects of such non-premixing and flow inhomogeneities ahead of a detonation wave have yet to be fully understood and are the object of this study. A 3D channel filled with O2 diluted in an inert gas with circular H2 injectors is simulated as a detonation wave propagates through the system. The impact of key parameters such as injector spacing, injector size, mixture composition and time variations will be discussed. PhD Candidate.

  1. On the Initiation Mechanism in Exploding Bridgewire and Laser Detonators

    NASA Astrophysics Data System (ADS)

    Stewart, D. Scott; Thomas, K.; Saenz, J.

    2005-07-01

    Since its invention by Los Alamos during the Manhattan Project era the exploding bridgewire detonator (EBW) has seen tremendous use and study. Recent development of a laser-powered device with detonation properties similar to an EBW is reviving interest in the basic physics of the Deflagration-to-Detonation (DDT) process in both of these devices,[1]. Cutback experiments using both laser interferometry and streak camera observations are providing new insight into the initiation mechanism in EBWs. These measurements are being correlated to a DDT model of compaction to detonation and shock to detonation developed previously by Xu and Stewart, [2]. The DDT model is incorporated into a high-resolution, multi-material model code for simulating the complete process. Model formulation and predictions against the test data will be discussed. REFS. [1] A. Munger, J. Kennedy, A. Akinci, and K. Thomas, "Dev. of a Laser Detonator" 30th Int. Pyrotechnics Seminar, Fort Collins, CO, (2004). [2] Xu, S. and Stewart, D. S. Deflagration to detonation transition in porous energetic materials: A model study. J. Eng. Math., 31, 143-172 (1997)

  2. Equation of state of detonation products based on statistical mechanical theory

    NASA Astrophysics Data System (ADS)

    Zhao, Yanhong; Liu, Haifeng; Zhang, Gongmu; Song, Haifeng

    2015-06-01

    The equation of state (EOS) of gaseous detonation products is calculated using Ross's modification of hard-sphere variation theory and the improved one-fluid van der Waals mixture model. The condensed phase of carbon is a mixture of graphite, diamond, graphite-like liquid and diamond-like liquid. For a mixed system of detonation products, the free energy minimization principle is used to calculate the equilibrium compositions of detonation products by solving chemical equilibrium equations. Meanwhile, a chemical equilibrium code is developed base on the theory proposed in this article, and then it is used in the three typical calculations as follow: (i) Calculation for detonation parameters of explosive, the calculated values of detonation velocity, the detonation pressure and the detonation temperature are in good agreement with experimental ones. (ii) Calculation for isentropic unloading line of RDX explosive, whose starting points is the CJ point. Comparison with the results of JWL EOS it is found that the calculated value of gamma is monotonically decreasing using the presented theory in this paper, while double peaks phenomenon appears using JWL EOS.

  3. Equation of state of detonation products based on statistical mechanical theory

    NASA Astrophysics Data System (ADS)

    Zhao, Yanhong; Liu, Haifeng; Zhang, Gongmu; Song, Haifeng; Iapcm Team

    2013-06-01

    The equation of state (EOS) of gaseous detonation products is calculated using Ross's modification of hard-sphere variation theory and the improved one-fluid van der Waals mixture model. The condensed phase of carbon is a mixture of graphite, diamond, graphite-like liquid and diamond-like liquid. For a mixed system of detonation products, the free energy minimization principle is used to calculate the equilibrium compositions of detonation products by solving chemical equilibrium equations. Meanwhile, a chemical equilibrium code is developed base on the theory proposed in this article, and then it is used in the three typical calculations as follow: (i) Calculation for detonation parameters of explosive, the calculated values of detonation velocity, the detonation pressure and the detonation temperature are in good agreement with experimental ones. (ii) Calculation for isentropic unloading line of RDX explosive, whose starting points is the CJ point. Comparison with the results of JWL EOS it is found that the calculated value of gamma is monotonically decreasing using the presented theory in this paper, while double peaks phenomenon appears using JWL EOS.

  4. Explosive detonation causes an increase in soil porosity leading to increased TNT transformation.

    PubMed

    Yu, Holly A; Nic Daeid, Niamh; Dawson, Lorna A; DeTata, David A; Lewis, Simon W

    2017-01-01

    Explosives are a common soil contaminant at a range of sites, including explosives manufacturing plants and areas associated with landmine detonations. As many explosives are toxic and may cause adverse environmental effects, a large body of research has targeted the remediation of explosives residues in soil. Studies in this area have largely involved spiking 'pristine' soils using explosives solutions. Here we investigate the fate of explosives present in soils following an actual detonation process and compare this to the fate of explosives spiked into 'pristine' undetonated soils. We also assess the effects of the detonations on the physical properties of the soils. Our scanning electron microscopy analyses reveal that detonations result in newly-fractured planes within the soil aggregates, and novel micro Computed Tomography analyses of the soils reveal, for the first time, the effect of the detonations on the internal architecture of the soils. We demonstrate that detonations cause an increase in soil porosity, and this correlates to an increased rate of TNT transformation and loss within the detonated soils, compared to spiked pristine soils. We propose that this increased TNT transformation is due to an increased bioavailability of the TNT within the now more porous post-detonation soils, making the TNT more easily accessible by soil-borne bacteria for potential biodegradation. This new discovery potentially exposes novel remediation methods for explosive contaminated soils where actual detonation of the soil significantly promotes subsequent TNT degradation. This work also suggests previously unexplored ramifications associated with high energy soil disruption.

  5. Planar Reflection of Gaseous Detonations

    NASA Astrophysics Data System (ADS)

    Damazo, Jason Scott

    Pipes containing flammable gaseous mixtures may be subjected to internal detonation. When the detonation normally impinges on a closed end, a reflected shock wave is created to bring the flow back to rest. This study built on the work of Karnesky (2010) and examined deformation of thin-walled stainless steel tubes subjected to internal reflected gaseous detonations. A ripple pattern was observed in the tube wall for certain fill pressures, and a criterion was developed that predicted when the ripple pattern would form. A two-dimensional finite element analysis was performed using Johnson-Cook material properties; the pressure loading created by reflected gaseous detonations was accounted for with a previously developed pressure model. The residual plastic strain between experiments and computations was in good agreement. During the examination of detonation-driven deformation, discrepancies were discovered in our understanding of reflected gaseous detonation behavior. Previous models did not accurately describe the nature of the reflected shock wave, which motivated further experiments in a detonation tube with optical access. Pressure sensors and schlieren images were used to examine reflected shock behavior, and it was determined that the discrepancies were related to the reaction zone thickness extant behind the detonation front. During these experiments reflected shock bifurcation did not appear to occur, but the unfocused visualization system made certainty impossible. This prompted construction of a focused schlieren system that investigated possible shock wave-boundary layer interaction, and heat-flux gauges analyzed the boundary layer behind the detonation front. Using these data with an analytical boundary layer solution, it was determined that the strong thermal boundary layer present behind the detonation front inhibits the development of reflected shock wave bifurcation.

  6. Design and optimization of a deflagration to detonation transition (ddt) section

    NASA Astrophysics Data System (ADS)

    Romo, Francisco X.

    Throughout the previous century, hydrocarbon-fueled engines have used and optimized the `traditional' combustion process called deflagration (subsonic combustion). An alternative form of combustion, detonation (supersonic combustion), can increase the thermal efficiency of the process by anywhere from 20 - 50%. Even though several authors have studied detonation waves since the 1890's and a plethora of papers and books have been published, it was not until 2008 that the first detonation-powered flight took place. It lasted for 10 seconds at 100 ft. altitude. Achieving detonation presents its own challenges: some fuels are not prone to detonate, severe vibrations caused by the cyclic nature of the engine and its intense noise are some of the key areas that need further research. Also, to directly achieve detonation either a high-energy, bulky, ignition system is required, or the combustion chamber must be fairly long (5 ft. or more in some cases). In the latter method, a subsonic flame front accelerates within the combustion chamber until it reaches supersonic speeds, thus detonation is attained. This is called deflagration-todetonation transition (DDT). Previous papers and experiments have shown that obstacles, such as discs with an orifice, located inside the combustion chamber can shorten the distance required to achieve detonation. This paper describes a hands-on implementation of a DDT device. Different disc geometries inside the chamber alter the wave characteristics at the exit of the tube. Although detonation was reached only when using pure oxygen, testing identified an obstacle configuration for LPG and air mixtures that increased pressure and wave speed significantly when compared to baseline or other obstacle configurations. Mixtures of LPG and air were accelerated to Mach 0.96 in the downstream frame of reference, which would indicate a transition to detonation was close. Reasons for not achieving detonation may include poor fuel and oxidizer mixing, and/or the need for a longer DDT section.

  7. The effect of detonation wave incidence angle on the acceleration of flyers by explosives heavily laden with inert additives

    NASA Astrophysics Data System (ADS)

    Loiseau, Jason; Georges, William; Frost, David L.; Higgins, Andrew J.

    2017-01-01

    The incidence angle of a detonation wave in a conventional high explosive influences the acceleration and terminal velocity of a metal flyer by increasing the magnitude of the material velocity imparted by the transmitted shock wave as the detonation is tilted towards normal loading. For non-ideal explosives heavily loaded with inert additives, the detonation velocity is typically subsonic relative to the flyer sound speed, leading to shockless accelerations when the detonation is grazing. Further, in a grazing detonation the particles are initially accelerated in the direction of the detonation and only gain velocity normal to the initial orientation of the flyer at later times due to aerodynamic drag as the detonation products expand. If the detonation wave in a non-ideal explosive instead strikes the flyer at normal incidence, a shock is transmitted into the flyer and the first interaction between the particle additives and the flyer occurs due to the imparted material velocity from the passage of the detonation wave. Consequently, the effect of incidence angle and additive properties may play a more prominent role in the flyer acceleration. In the present study we experimentally compared normal detonation loadings to grazing loadings using a 3-mm-thick aluminum slapper to impact-initiate a planar detonation wave in non-ideal explosive-particle admixtures, which subsequently accelerated a second 6.4-mm-thick flyer. Flyer acceleration was measured with heterodyne laser velocimetry (PDV). The explosive mixtures considered were packed beds of glass or steel particles of varying sizes saturated with sensitized nitromethane, and gelled nitromethane mixed with glass microballoons. Results showed that the primary parameter controlling changes in flyer velocity was the presence of a transmitted shock, with additive density and particle size playing only secondary roles. These results are similar to the grazing detonation experiments, however under normal loading the largest, higher density particles yielded the highest terminal flyer velocity, whereas in the grazing experiments the larger, low density particles yielded the highest terminal velocity.

  8. Supporting Structure of the LSD Wave in an Energy Absorption Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukui, Akihiro; Hatai, Keigo; Cho, Shinatora

    In Repetitively Pulsed (RP) Laser Propulsion, laser energy irradiated to a vehicle is converted to blast wave enthalpy during the Laser Supported Detonation (LSD) regime. Based on the measured post-LSD electron number density profiles by two-wavelength Mach Zehnder interferometer in a line-focusing optics, electron temperature and absorption coefficient were estimated assuming Local Thermal Equilibrium. A 10J/pulse CO{sub 2} laser was used. As a result, laser absorption was found completed in the layer between the shock wave and the electron density peak. Although the LSD-termination timing was not clear from the shock-front/ionization-front separation in the shadowgraph images, there observed drastic changesmore » in the absorption layer thickness from 0.2 mm to 0.5 mm and in the peak heating rate from 12-17x10{sup 13} kW/m{sup 3} to 5x10{sup 13} kW/m{sup 3} at the termination.« less

  9. Screening studies of advanced control concepts for airbreathing engines

    NASA Technical Reports Server (NTRS)

    Ouzts, Peter J.; Lorenzo, Carl F.; Merrill, Walter C.

    1993-01-01

    The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Accordingly, the NASA Lewis Research Center has conducted screening studies of advanced control concepts for airbreathing engines to determine their potential impact on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed concepts was formulated by NASA and industry. These concepts were evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation, three target aircraft/engine combinations were considered: a military high performance fighter mission, a high speed civil transport mission, and a civil tiltrotor mission. Each of the advanced control concepts considered in the study were defined and described. The concept's potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts were also determined. Finally, the concepts were ranked with respect to the target aircraft/engine missions.

  10. Perspective use of direct human blood as an energy source in air-breathing hybrid microfluidic fuel cells

    NASA Astrophysics Data System (ADS)

    Dector, A.; Escalona-Villalpando, R. A.; Dector, D.; Vallejo-Becerra, V.; Chávez-Ramírez, A. U.; Arriaga, L. G.; Ledesma-García, J.

    2015-08-01

    This work presents a flexible and light air-breathing hybrid microfluidic fuel cell (HμFC) operated under biological conditions. A mixture of glucose oxidase, glutaraldehyde, multi-walled carbon nanotubes and vulcan carbon (GOx/VC-MWCNT-GA) was used as the bioanode. Meanwhile, integrating an air-exposed electrode (Pt/C) as the cathode enabled direct oxygen delivery from air. The microfluidic fuel cell performance was evaluated using glucose obtained from three different sources as the fuel: 5 mM glucose in phosphate buffer, human serum and human blood. For the last fuel, an open circuit voltage and maximum power density of 0.52 V and 0.20 mW cm-2 (at 0.38 V) were obtained respectively; meanwhile the maximum current density was 1.1 mA cm-2. Furthermore, the stability of the device was measured in terms of recovery after several polarization curves, showing excellent results. Although this air-breathing HμFC requires technological improvements before being tested in a biomedical device, it represents the best performance to date for a microfluidic fuel cell using human blood as glucose source.

  11. Ammonia as a respiratory gas in water and air-breathing fishes.

    PubMed

    Randall, David J; Ip, Yuen K

    2006-11-01

    Ammonia is produced in the liver and excreted as NH(3) by diffusion across the gills. Elevated ammonia results in an increase in gill ventilation, perhaps via stimulation of gill oxygen chemo-receptors. Acidification of the water around the fish by carbon dioxide and acid excretion enhances ammonia excretion and constitutes "environmental ammonia detoxification". Fish have difficulties in excreting ammonia in alkaline water or high concentrations of environmental ammonia, or when out of water. The mudskipper, Periphthalmodon schlosseri, is capable of active NH(4)(+) transport, maintaining low internal levels of ammonia. To prevent a back flux of NH(3), these air-breathing fish can increase gill acid excretion and reduce the membrane NH(3) permeability by modifying the phospholipid and cholesterol compositions of their skin. Several air-breathing fish species can excrete ammonia into air through NH(3) volatilization. Some fish detoxify ammonia to glutamine or urea. The brains of some fish can tolerate much higher levels of ammonia than other animals. Studies of these fish may offer insights into the nature of ammonia toxicity in general.

  12. Detonation command and control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mace, Jonathan Lee; Seitz, Gerald J.; Echave, John A.

    The detonation of one or more explosive charges and propellant charges by a detonator in response to a fire control signal from a command and control system comprised of a command center and instrumentation center with a communications link therebetween. The fire control signal is selectively provided to the detonator from the instrumentation center if plural detonation control switches at the command center are in a fire authorization status, and instruments, and one or more interlocks, if included, are in a ready for firing status. The instrumentation and command centers are desirably mobile, such as being respective vehicles.

  13. Safety and performance enhancement circuit for primary explosive detonators

    DOEpatents

    Davis, Ronald W [Tracy, CA

    2006-04-04

    A safety and performance enhancement arrangement for primary explosive detonators. This arrangement involves a circuit containing an energy storage capacitor and preset self-trigger to protect the primary explosive detonator from electrostatic discharge (ESD). The circuit does not discharge into the detonator until a sufficient level of charge is acquired on the capacitor. The circuit parameters are designed so that normal ESD environments cannot charge the protection circuit to a level to achieve discharge. When functioned, the performance of the detonator is also improved because of the close coupling of the stored energy.

  14. Hazard classification assessment for the MC3423 detonator shipping package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, R.B.

    1981-11-05

    An investigation was made to determine whether the MC3423 detonator should be assigned a DOT hazard classification of Detonating Fuze, Class C Explosive, per Federal Register 49 CFR 173.113, when packaged as specified. This study covers two propagation tests which evaluated the effects of two orientations of the MC3423 in its shipping tray. The method of testing was approved by DOE, Albuquerque Operations Office. Test data led to the recommended hazard classification of Detonating Fuze, Class C Explosive for both orientations of the detonator.

  15. Detonation command and control

    DOEpatents

    Mace, Jonathan L.; Seitz, Gerald J.; Echave, John A.; Le Bas, Pierre-Yves

    2015-11-10

    The detonation of one or more explosive charges and propellant charges by a detonator in response to a fire control signal from a command and control system comprised of a command center and instrumentation center with a communications link therebetween. The fire control signal is selectively provided to the detonator from the instrumentation center if plural detonation control switches at the command center are in a fire authorization status, and instruments, and one or more interlocks, if included, are in a ready for firing status. The instrumentation and command centers are desirably mobile, such as being respective vehicles.

  16. Detonation command and control

    DOEpatents

    Mace, Jonathan L.; Seitz, Gerald J.; Echave, John A.; Le Bas, Pierre-Yves

    2016-05-31

    The detonation of one or more explosive charges and propellant charges by a detonator in response to a fire control signal from a command and control system comprised of a command center and instrumentation center with a communications link there between. The fire control signal is selectively provided to the detonator from the instrumentation center if plural detonation control switches at the command center are in a fire authorization status, and instruments, and one or more interlocks, if included, are in a ready for firing status. The instrumentation and command centers are desirably mobile, such as being respective vehicles.

  17. Low voltage nonprimary explosive detonator

    DOEpatents

    Dinegar, Robert H.; Kirkham, John

    1982-01-01

    A low voltage, electrically actuated, nonprimary explosive detonator is disclosed wherein said detonation is achieved by means of an explosive train in which a deflagration-to-detonation transition is made to occur. The explosive train is confined within a cylindrical body and positioned adjacent to low voltage ignition means have electrical leads extending outwardly from the cylindrical confining body. Application of a low voltage current to the electrical leads ignites a self-sustained deflagration in a donor portion of the explosive train which then is made to undergo a transition to detonation further down the train.

  18. Detonator Performance Characterization using Multi-Frame Laser Schlieren Imaging

    NASA Astrophysics Data System (ADS)

    Clarke, Steven; Landon, Colin; Murphy, Michael; Martinez, Michael; Mason, Thomas; Thomas, Keith

    2009-06-01

    Multi-frame Laser Schlieren Imaging of shock waves produced by detonators in transparent witness materials can be used to evaluate detonator performance. We use inverse calculations of the 2D propagation of shock waves in the EPIC finite element model computer code to calculate a temporal-spatial-pressure profile on the surface of the detonator that is consistent with the experimental shock waves from the schlieren imaging. Examples of calculated 2D temporal-spatial-pressure profiles from a range of detonator types (EFI --exploding foil initiators, DOI -- direct optical initiation, EBW -- exploding bridge wire, hotwire), detonator HE materials (PETN, HMX, etc), and HE densities. Also pressure interaction profiles from the interaction of multiple shock waves will be shown. LA-UR-09-00909.

  19. The Energy Diameter Effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souers, P; Vitello, P; Garza, R

    2007-04-20

    Various relations for the detonation energy and velocity as they relate to the inverse radius of the cylinder are explored. The detonation rate-inverse slope relation seen in reactive flow models can be used to derive the familiar Eyring equation. Generalized inverse radii can be shown to fit large quantities of cylinder and sphere results. A rough relation between detonation energy and detonation velocity is found from collected JWL values. Cylinder test data for ammonium nitrate mixes down to 6.35 mm radii are presented, and a size energy effect is shown to exist in the Cylinder test data. The relation thatmore » detonation energy is roughly proportional to the square of the detonation velocity is shown by data and calculation.« less

  20. Hyperenergetic manned aerospacecraft propelled by intense pulsed microwave power beam

    NASA Astrophysics Data System (ADS)

    Myrabo, Leik N.

    1995-09-01

    The objective of this research was to exploit wireless power transmission (microwave/millimeter)--to lower manned space transportation costs by two or three orders of magnitude. Concepts have been developed for lightweight, mass-producible, beam-propelled aerospacecraft called Lightcraft. The vehicles are designed for a 'mass-poor, energy-rich' (i.e. hyper-energentic flight infrastructure which utilizes remote microwave power stations to build an energy-beam highway to space. Although growth in laser power levels has lagged behind expectations, microwave and millimeter-wave source technology now exists for rapid scaling to the megawatt and gigawatt time-average power levels. The design exercise focused on the engine, structure, and receptive optics requirements for a 15 meter diameter, 5 person Earth- to-moon aerospacecraft. Key elements in the airbreathing accelerator propulsion system are: a) a 'flight-weight' 35GHz rectenna electric powerplant, b) microwave-induced 'Air Spike' and perimeter air-plasma generators, and c) MagnetoHydroDynamic-Fanjet engine with its superconducting magnets and external electrodes.

Top