Sample records for airbridges

  1. Fabrication and characterization of aluminum airbridges for superconducting microwave circuits

    NASA Astrophysics Data System (ADS)

    Chen, Zijun; Megrant, A.; Kelly, J.; Barends, R.; Bochmann, J.; Chen, Yu; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Mutus, J. Y.; O'Malley, P. J. J.; Neill, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Cleland, A. N.; Martinis, John M.


    Superconducting microwave circuits based on coplanar waveguides (CPW) are susceptible to parasitic slotline modes which can lead to loss and decoherence. We motivate the use of superconducting airbridges as a reliable method for preventing the propagation of these modes. We describe the fabrication of these airbridges on superconducting resonators, which we use to measure the loss due to placing airbridges over CPW lines. We find that the additional loss at single photon levels is small, and decreases at higher drive powers.

  2. Fabrication and Characterization of Aluminum Airbridges for Superconducting Qubit Circuits

    NASA Astrophysics Data System (ADS)

    Chen, Zijun; Megrant, Anthony; Kelly, Julian; Barends, Rami; Bochmann, Joerg; Chen, Yu; Chiaro, Benjamin; Dunsworth, Andrew; Jeffrey, Evan; Mutus, Joshua; O'Malley, Peter; Neill, Charles; Roushan, Pedram; Sank, Daniel; Vainsencher, Amit; Wenner, James; White, Theodore; Cleland, Andrew; Martinis, John


    Superconducting circuits based on coplanar waveguides (CPWs) are susceptible to parasitic slotline modes which can lead to loss and decoherence. We motivate the use of superconducting airbridges as a reliable method for preventing the propagation of these modes. We describe the fabrication of these airbridges on superconducting resonators, which we use to measure the loss due to placing airbridges over CPW lines. We find that the additional loss at single photon levels is small, and decreases at higher drive powers. These results pave the way for building airbridge crossovers on more complex qubit circuits.

  3. Generalization and extensions of capillary thinning driven self-assembly of nanostructured air-bridges

    NASA Astrophysics Data System (ADS)

    Pabba, Santosh

    In Harfenist's brush-on method (Nano Lett., 2004, 4, 1931), polymer dissolved in a volatile solvent is manually brushed over an array of micro-machined pillars, which causes the self assembly of arrays of air-bridges, often of nanometer diameter. This study considers ways to extend the brush-on method by incorporating new materials and new reactions that self-assemble into air-bridges. The study also considers ways to broaden the complexity of device fabrication built up on self assembled air-bridges. These developments include (1) A number of different functional polymeric materials (biocompatible, biodegradable, nanocomposite and amphiphilic copolymers) at different mass fractions and molecular weights are used for demonstrating the applicability of drawing fiber air-bridges by brush-on. Fiber air-bridges with a diameter as small as 20 nm spanning an air gap of 1 mum are fabricated. (2) Considering molecular weight and concentration, it is demonstrated that brush-on can be successful of low concentrations of 1 wt % (10x lower than previously reported) if 5x higher molecular weight polymers are used than previously reported. This is significant both in working with polymers that have low solubility or for solutions of lower viscosities. The viscosity only needs to be large at the later stages of capillary thinning. This is achieved by strain hardening that occurs for highly entangled polymers and polymers of sufficient molecular weight that can entangle at low concentrations. (3) Enzymatic biopolymerization is used for the first time to self assemble highly ordered arrays of air-bridges by brush-on. When fibrinogen solutions are brushed over a thrombin primed surface, or monomeric actin over a KCI primed array, fiber air-bridges are formed, sometimes reaching diameters as small as 16 nm. The uniformity in diameter of one hand-brushed array of 358 parallel fibrin air-bridges was 36.4 nm (6.8 nm standard deviation). (4) Rather than brushing liquid polymers onto an

  4. Air-bridge and Vertical CNT Switches for High Performance Switching Applications

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Wong, Eric W.; Epp, Larry; Bronikowski, Michael J.; Hunt, BBrian D.


    Carbon nanotubes are attractive for switching applications since electrostatically-actuated CNT switches have low actuation voltages and power requirements, while allowing GHz switching speeds that stem from the inherently high elastic modulus and low mass of the CNT.Our first NEM structure, the air-bridge switch, consists of suspended single-walled nanotubes (SWNTs) that lie above a sputtered Nb base electrode, where contact to the CNTs is made using evaporated Au/Ti. Electrical measurements of these air-bridge devices show well-defined ON and OFF states as a dc bias of a few volts is applied between the CNT and the Nb-base electrode. The CNT air-bridge switches were measured to have switching times down to a few nanoseconds. Our second NEM structure, the vertical CNT switch, consists of nanotubes grown perpendicular to the substrate. Vertical multi-walled nanotubes (MWNTs) are grown directly on a heavily doped Si substrate, from 200 - 300 nm wide, approximately 1 micrometer deep nano-pockets, with Nb metal electrodes to result in the formation of a vertical single-pole-double-throw switch architecture.

  5. Improvement of Crystalline Quality in GaN Films by Air-Bridged Lateral Epitaxial Growth

    NASA Astrophysics Data System (ADS)

    Kidoguchi, Isao; Ishibashi, Akihiko; Sugahara, Gaku; Tsujimura, Ayumu; Ban, Yuzaburoh


    Air-bridged lateral epitaxial growth (ABLEG), a new technique of lateral growth of GaN films, has been developed using low-pressure metalorganic vapor phase epitaxy. A previously grown 1-μm-thick GaN film is grooved along the < 1{\\bar 1}00 >\\textrm{GaN} direction, and the bottoms of the trenches and the sidewalls are covered with a silicon nitride mask. A free-standing GaN material is regrown from the exposed (0001) surface of the ridged GaN seed structure. Cross-sectional transmission electron microscopy analysis reveals that the dislocations originating from the underlying seed GaN extend straight in the < 0001 > direction and dislocations do not propagate into the wing region. The wing region also exhibits a smooth surface and the root mean square roughness is found to be 0.088 nm by atomic force microscopy measurement of the (0001) face of the wing region.

  6. High-quality GaN films obtained by air-bridged lateral epitaxial growth

    NASA Astrophysics Data System (ADS)

    Ishibashi, Akihiko; Kidoguchi, Isao; Sugahara, Gaku; Ban, Yuzaburoh


    High-quality GaN films with low dislocation density and low wing tilt of c-axis orientation have been successfully obtained by a promising technique of selected area growth, namely air-bridged lateral epitaxial growth (ABLEG). A GaN film was grown from the exposed (0 0 0 1) top facet of the ridged GaN seed structures, whose side walls and etched bottoms were covered with silicon nitride mask, using low-pressure metalorganic vapor-phase epitaxy. The ridge-stripe structures of the GaN seed were constructed in the 1 1¯00 GaN direction. At the optimum growth temperature of 950°C, only the 1 1 2¯ 0 and {0 0 0 1} facets were obtained. Continuing the growth led to fabricating the air-bridged structure, where the coalescence of the wing region occurred. From the transmission electron microscopy study, it was found that most of the vertical dislocations along the c-axis were confined to the seed region, while the horizontal dislocations were newly generated in the vicinity of coalescence boundary. The densities of the vertical dislocations were about 9×10 8 cm -2 in the seed region, while below 1×10 6 cm -2 in other regions. The densities of the horizontal dislocations were about 1×10 6 cm -2 in the wing region and 4×10 7 cm -2 in the vicinity of the coalescence boundary, respectively. The X-ray diffraction (XRD) measurements revealed that the tilt angle of c-axis relative to underlying seed GaN was about 297 arcsec (0.083°), and the full-width at half-maximum of the XRD curve for the wing region was 138 arcsec, indicating that the wing region has high uniformity of c-axis orientation. Both of the wing and the coalescence boundary region exhibited atomically smooth surfaces with stepped terraces, whose root mean square roughness was found to be 0.089 nm by atomic force microscopy measurements.

  7. Air-bridged lateral epitaxial overgrowth of GaN thin films

    NASA Astrophysics Data System (ADS)

    Kidoguchi, Isao; Ishibashi, Akihiko; Sugahara, Gaku; Ban, Yuzaburoh


    A promising technique of selective lateral epitaxy, namely air-bridged lateral epitaxial overgrowth, is demonstrated in order to reduce the wing tilt as well as the threading dislocation density in GaN thin films. A seed GaN layer was etched to make ridge-stripe along <11¯00>GaN direction and a GaN material was regrown from the exposed (0001) top facet of the ridged GaN seed structures, whose sidewalls and etched bottoms were covered with silicon nitride mask, using low-pressure metalorganic vapor phase epitaxy. The density of dislocations in the wing region was reduced to be <107cm-2, which was at least two orders of magnitude lower than that of underlying GaN. The magnitude of the wing tilt was determined to be 0.08° by x-ray diffraction (XRD) measurements, which was smaller than other lateral epitaxial overgrown GaN thin films. The full width at half maximum of XRD for the wing region was 138 arc sec, indicating high uniformity of c-axis orientation.

  8. The Puerto Rico-New York airbridge for drug users: description and relationship to HIV risk behaviors.


    Deren, Sherry; Kang, Sung-Yeon; Colón, Hector M; Robles, Rafaela R


    This study examined mobility on the airbridge between New York (NY) and Puerto Rico (PR) for Puerto Rican drug users and its relationship to HIV risk. Over 1,200 Puerto Rican injection drug users (IDUs) and crack smokers were recruited by outreach workers in NY and PR; interview data included questions on mobility (lifetime residences and recent trips). Two-thirds of the NY sample had lived in PR; one-quarter of the PR sample had lived in NY; the most commonly sited reasons for moving were family-related. Fewer than 10% had visited the other location in the prior 3 years. Variables related to risk were number of moves, recent travel, and having used drugs in PR (all with p < 0.05). Implications included the need to enhance risk reduction efforts for IDUs in PR and address sexual risk among mobile drug users.

  9. The French airbridge for circulatory support in the Carribean†

    PubMed Central

    Lebreton, Guillaume; Sanchez, Bruno; Hennequin, Jean-Luc; Resière, Dabor; Hommel, Didier; Léonard, Christian; Mehdaoui, Hossein; Roques, François


    OBJECTIVES We report the assessment and the activities for the first year of our airborne circulatory support mobile unit (CSMU) in the French Caribbean. METHODS From January 2010 to June 2011, 12 patients (mean age = 35.7 years; range: 15–62 years; sex ratio = 1:1) were attended outside Martinique by our CSMU and transferred to our unit by air. RESULTS Eight patients had acute respiratory distress syndrome and were assisted by veno-venous extra corporeal membrane oxygenation (ECMO) four had refractory cardiogenic shock, assisted by extra corporeal life support (ECLS). The average air transfer distance for patients was 912 km (range: 198–1585 km). The average flying time was 124 min (range: 45–255 min). The aircraft used were heliciopter, military transport or private jet. The setting-up of assistance devices and transfer of patients was uneventful. One patient subsequently benefited from heart transplantation after long-term circulatory support. One patient died under ECMO support after 51 days of assistance and another died on the 60th day after withdrawal of ECLS. CONCLUSIONS CSMUs can be very efficient in providing support to patients in refractory shock, when remote from a cardiac surgery centre. The airborne transfer of patients on ECMO/ECLS can be achieved safely, even over long distances. PMID:22659268

  10. Prolonged spontaneous emission and dephasing of localized excitons in air-bridged carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sarpkaya, Ibrahim; Zhang, Zhengyi; Walden-Newman, William; Wang, Xuesi; Hone, James; Wong, Chee W.; Strauf, Stefan


    The bright exciton emission of carbon nanotubes is appealing for optoelectronic devices and fundamental studies of light-matter interaction in one-dimensional nanostructures. However, to date, the photophysics of excitons in carbon nanotubes is largely affected by extrinsic effects. Here we perform time-resolved photoluminescence measurements over 14 orders of magnitude for ultra-clean carbon nanotubes bridging an air gap over pillar posts. Our measurements demonstrate a new regime of intrinsic exciton photophysics with prolonged spontaneous emission times up to T1=18 ns, about two orders of magnitude better than prior measurements and in agreement with values hypothesized by theorists about a decade ago. Furthermore, we establish for the first time exciton decoherence times of individual nanotubes in the time domain and find fourfold prolonged values up to T2=2.1 ps compared with ensemble measurements. These first observations motivate new discussions about the magnitude of the intrinsic dephasing mechanism while the prolonged exciton dynamics is promising for applications.

  11. Procedures Used in Narcotics Airbridge Denial Program in Peru, 1995-2001

    DTIC Science & Technology


    conduct a periodic or independentch£ckregardiilgthe ABDP, + I f"ved "’I~A Leg’lidV"’" when the missionary shcotdown ~,",,’din . ApI II ZOOI, According te...outside the [uanjui Base doing drills when it occurred. He said he watched the videotape atl ~nd that nothing stood out in his mind about It. WhIle...the tape whether or not visual signals were done and it was " hard to say" if there should have been further reporting. 264·l_ ’n_nnn ,m" jsaid it was

  12. Conductance of p-n-p graphene structures with "air-bridge" top gates.


    Gorbachev, Roman V; Mayorov, Alexander S; Savchenko, Alexander K; Horsell, David W; Guinea, Francisco


    We have fabricated graphene devices with a top gate separated from the graphene layer by an air gap-a design which does not decrease the mobility of charge carriers under the gate. This gate is used to realize p-n-p structures where the conducting properties of chiral carriers are studied. The band profile of the structures is calculated taking into account the specifics of the graphene density of states and is used to find the resistance of the p-n junctions expected for chiral carriers. We show that ballistic p-n junctions have larger resistance than diffusive ones. This is caused by suppressed transmission of chiral carriers at angles away from the normal to the junction.

  13. Enhancement of luminescence from Er-doped Si by photonic crystal gradient double-heterostructuremicrocavity

    NASA Astrophysics Data System (ADS)

    Wang, Y.; An, J. M.; Wu, Y. D.; Hu, X. W.


    We experimentally demonstrate efficient enhancements of luminescence at wavelength of 1550 nm from two-dimensional (2D)-slab hexagonal photonic crystal (PC) non-airbridge and air bridge gradient double-heterostructure microcavities with Er/O co-implanted silicon (Si) as light emitters on silicon-on-insulator (SOI) wafer. The maximum measured Q-factor of 6284 of airbridge cavity has been achieved at the pumping power of 1.5 mW at room temperature. The airbridge cavity has stronger enhancement, but weaker heat dissipation than the non-airbridge one. The obvious red-shift and degraded Q-factor of resonant peak are present with the pumping power increasing. The resonant peak is observed to shift depending on the structural parameters of PC, which indicates a possible method to control the wavelength of enhanced luminescence for Si-based light emitters based on PC microcavity.

  14. A theoretical and experimental study of coplanar waveguide shunt stubs

    NASA Technical Reports Server (NTRS)

    Dib, Nihad I.; Ponchak, George E.; Katehi, Linda P. B.


    A comprehensive theoretical and experimental study of straight and bent coplanar waveguide (CPW) shunt stubs is presented. In the theoretical analysis, the CPW is assumed to be inside a cavity while, the experiments are performed on open structures. For the analysis of CPW discontinuities with air-bridges, a hybrid technique was developed which was validated through extensive theoretical and experimental comparisons. The effect of the cavity resonances on the behavior of the stubs with and without air-bridges is investigated. In addition, the encountered radiation loss due to the discontinuities is evaluated experimentally.

  15. High extinction ratio bandgap of photonic crystals in LNOI wafer

    NASA Astrophysics Data System (ADS)

    Zhang, Shao-Mei; Cai, Lu-Tong; Jiang, Yun-Peng; Jiao, Yang


    A high-extinction-ratio bandgap of air-bridge photonic crystal slab, in the near infrared, is reported. These structures were patterned in single-crystalline LiNbO3 film bonded to SiO2/LiNbO3 substrate by focused ion beam. To improve the vertical confinement of light, the SiO2 layer was removed by 3.6% HF acid. Compared with photonic crystals sandwiched between SiO2 and air, the structures suspending in air own a robust photonic bandgap and high transmission efficiency at valence band region. The measured results are in good agreement with numerically computed transmission spectra by finite-difference time-domain method. The air-bridge photonic crystal waveguides were formed by removing one line holes. We reveal experimentally the guiding characteristics and calculate the theoretical results for photonic crystal waveguides in LiNbO3 film.

  16. Fabrication, packaging, and performance of VCSELs and photodetectors for space applications

    NASA Astrophysics Data System (ADS)

    Briggs, Ronald D.; Armendariz, Marcelino G.; Geib, Kent M.; Choquette, Kent D.; Serkland, D. K.


    Optocouplers are used for a variety of applications aboard spacecraft including electrical isolation, switching and power transfer. Commercially available light emitting diode- based optocouplers have experienced severe degradation of light output due to extensive displacement during damage occurring in the semiconductor lattice caused by energetic proton bombardment. A new optocoupler has been designed and fabricated which utilizes vertical cavity surface emitting laser (VCSEL) and resonant cavity photodetector (RCPD) technologies for the optocoupler emitter and detector, respectively. Linear arrays of selectively oxidized GaAs/AlGaAs VCSELs and RCPDs, each designed to operate at a wavelength of 850 nm, were fabricated using an airbridge contacting scheme. The airbridged contacts were designed to improve packaging yields and device reliability by eliminating the use of a polyimide planarizing layer which provided poor adhesion to the bond pad metallization. Details of the airbridged optocoupler fabrication process are reported. Discrete VCSEL and RCPD devices were characterized at temperatures between -100 degree(s)C to 100 degree(s)C. Devices were packaged in a face-to-face configuration to form a single channel optocoupler and its performance was evaluated under conditions of high-energy proton bombardment.

  17. Ultraflexible nanostructures and implications for future nanorobots

    NASA Astrophysics Data System (ADS)

    Cohn, Robert W.; Panchapakesan, Balaji


    Several high aspect ratio nanostructures have been made by capillary force directed self-assembly including polymeric nanofiber air-bridges, trampoline-like membranes, microsphere-beaded nanofibers, and intermetallic nanoneedles. Arrays of polymer air-bridges form in seconds by simply hand brushing a bead of polymeric liquid over an array of micropillars. The domination of capillary force that is thinning unstable capillary bridges leads to uniform arrays of nanofiber air-bridges. Similarly, arrays of vertically oriented Ag2Ga nanoneedles have been formed by dipping silvercoated arrays of pyramidal silicon into melted gallium. Force-displacement measurements of these structures are presented. These nanostructures, especially when compressively or torsionally buckled, have extremely low stiffnesses, motion due to thermal fluctuations that is relatively easily detected, and the ability to move great distances for very small changes in applied force. Nanofibers with bead-on-a-string structure, where the beads are micron diameter and loaded with magnetic iron oxide (maghemite), are shown to be simply viewable under optical microscopes, have micronewton/ m stiffness, and have ultralow torsional stiffnesses enabling the bead to be rotated numerous revolutions without breaking. Combination of these high aspect ratio structures with stretched elastomers offer interesting possibilities for robotic actuation and locomotion. Polydimethylsiloxane loaded with nanomaterials, e.g. nanotubes, graphene or MoS2, can be efficiently heated with directed light. Heating produces considerable force through the thermoelastic effect, and this force can be used for continuous translation or to trigger reversible elastic buckling of the nanostructures. The remote stimulation of motion with light provides a possible mechanism for producing cooperative behavior between swarms of semiautonomous nanorobots.

  18. A Study of the Parasitic Properties of the Schottky Barrier Diode

    NASA Astrophysics Data System (ADS)

    Ren, Tianhao; Zhang, Yong; Liu, Shuang; Guo, Fangzhou; Jin, Zhi; Zhou, Jingtao; Yang, Chengyue


    In this paper, we present a newly designed parameter extraction method of the Schottky barrier diode (SBD) with the purpose of measuring and studying its parasitic properties. This method includes three kinds of auxiliary configurations and is named as three-configuration parameter extraction method (TPEM). TPEM has such features as simplicity of operation, self-consistence, and accuracy. With TPEM, the accurate parasitic parameters of the diode can be easily obtained. Taking a GaAs SBD as an example, the pad-to-pad capacitance is 7 fF, the air-bridge finger self-inductance 11 pH, the air-bridge finger self-resistance 0.6 Ω, and the finger-to-pad capacitance 2.1 fF. A more accurate approach to finding the value of the series resistant of the SBD is also proposed, and then a complete SBD model is built. The evaluation of the modeling technology, as well as TPEM, is implemented by comparing the simulated and measured I-V curves and the S-parameters. And good agreements are observed. By using TPEM, the influence of the variation of the geometric parameters is studied, and several ways to reduce the parasitic effect are presented. The results show that the width of the air-bridge finger and the length of the channel are the two largest influencing parameters, with the normalized impact factors 0.56 and 0.29, respectively. By using TPEM and the modeling technology presented in this paper, a design process of the SBD is proposed. As an example, a type of SBD suitable for 500-600 GHz zero-biased detection is designed, and the agreement between the simulated and measured results has been improved. SBDs for other applications could be designed in a similar way.

  19. Array integration of thousands of photonic crystal nanolasers

    NASA Astrophysics Data System (ADS)

    Watanabe, Takumi; Abe, Hiroshi; Nishijima, Yoshiaki; Baba, Toshihiko


    Photonic crystal (PC) nanolasers often consist of air-bridge PC slab, which enhances optical confinement while limiting its size to 30 × 30 μm2 due to the mechanical fragileness. This limit is broken by resin-mediated bonding of the PC slab on a host substrate. In this paper, we demonstrate a GaInAsP PC slab with a size of over 100 × 100 μm2 in which 1089, 2376, and 11 664 nanolasers showing high-yield laser operation are integrated.

  20. Enhanced performance of VOx-based bolometer using patterned gold black absorber

    NASA Astrophysics Data System (ADS)

    Smith, Evan M.; Panjwani, Deep; Ginn, James; Warren, Andrew; Long, Christopher; Figuieredo, Pedro; Smith, Christian; Perlstein, Joshua; Walter, Nick; Hirschmugl, Carol; Peale, Robert E.; Shelton, David J.


    Patterned highly absorbing gold black film has been selectively deposited on the active surfaces of a vanadium-oxide-based infrared bolometer array. Patterning by metal lift-off relies on protection of the fragile gold black with an evaporated oxide, which preserves gold black's near unity absorption. This patterned gold black also survives the dry-etch removal of the sacrificial polyimide used to fabricate the air-bridge bolometers. Infrared responsivity is substantially improved by the gold black coating without significantly increasing noise. The increase in the time constant caused by the additional mass of gold black is a modest 14%.

  1. Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate.


    Tanabe, Katsuaki; Nomura, Masahiro; Guimard, Denis; Iwamoto, Satoshi; Arakawa, Yasuhiko


    Room temperature, continuous-wave lasing in a quantum dot photonic crystal nanocavity on a Si substrate has been demonstrated by optical pumping. The laser was an air-bridge structure of a two-dimensional photonic crystal GaAs slab with InAs quantum dots inside on a Si substrate fabricated through wafer bonding and layer transfer. This surface-emitting laser exhibited emission at 1.3 microm with a threshold absorbed power of 2 microW, the lowest out of any type of lasers on silicon.

  2. Array integration of thousands of photonic crystal nanolasers

    SciTech Connect

    Watanabe, Takumi Abe, Hiroshi; Nishijima, Yoshiaki; Baba, Toshihiko


    Photonic crystal (PC) nanolasers often consist of air-bridge PC slab, which enhances optical confinement while limiting its size to 30 × 30 μm{sup 2} due to the mechanical fragileness. This limit is broken by resin-mediated bonding of the PC slab on a host substrate. In this paper, we demonstrate a GaInAsP PC slab with a size of over 100 × 100 μm{sup 2} in which 1089, 2376, and 11 664 nanolasers showing high-yield laser operation are integrated.

  3. Fabrication and design of vanadium oxide microbolometer

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, M.; Al-Khalli, N.; Zia, M. F.; Alduraibi, M.; Ilahi, B.; Awad, E.; Debbar, N.


    Vanadium oxide (VxOy) multilayer sandwich structures previously studied by our group were found to yield a sensitive thermometer thin film material suitable for microbolometer applications. In this work, we aim to estimate the performance of a proposed air-bridge microbolometer configuration based on VxOy multilayer sandwich structure thermometer thin films. For this purpose, a microbolometer was fabricated on silicon (Si) substrate covered with a silicon nitride (Si3N4) insulating layer using VxOy thermometer thin film material. The fabricated microbolometer was patterned using electron-beam lithography and liftoff techniques and it was characterized in terms of its voltage repsonsivity (Rv), signal to noise ratio (SNR), noise equivalent power (NEP) and detectivity D*. A model was then developed by the aid of numerical optical/thermal simulations and experimentally measured parameters to estimate the performance of the microbolometer when fabricated in an air-bridge configuration. The estimated D* was found to be 1.55×107 cm.√Hz/ W.

  4. Directional whispering gallery mode emission from Limaçon-shaped electrically pumped quantum dot micropillar lasers

    NASA Astrophysics Data System (ADS)

    Albert, F.; Hopfmann, C.; Eberspächer, A.; Arnold, F.; Emmerling, M.; Schneider, C.; Höfling, S.; Forchel, A.; Kamp, M.; Wiersig, J.; Reitzenstein, S.


    We experimentally demonstrate directional far field emission from whispering gallery modes (WGMs) in electrically driven quantum dot micropillar lasers. In-plane directionality of whispering gallery mode emission is obtained by patterning micropillars with Limaçon-shaped cross-section and an upper air-bridge contact for current injection. The micropillar lasers with radii R0 down to 4.5 μm show Q-factors of 40 000 and threshold currents of 40 μA at low temperature. We achieved a far field divergence of about 30° and a directionality of 1.67 ± 0.15 for an optimal Limaçon deformation factor ɛ ≈ 0.5. Parameter dependent studies of the directional emission as a function of ɛ reveal good qualitative agreement with theoretical predictions.

  5. Fano Resonance in GaAs 2D Photonic Crystal Nanocavities

    SciTech Connect

    Valentim, P. T.; Guimaraes, P.S. S.; Luxmoore, I. J.; Szymanski, D.; Whittaker, D. M.; Fox, A. M.; Skolnick, M. S.; Vasco, J. P.; Vinck-Posada, H.


    We report the results of polarization resolved reflectivity experiments in GaAs air-bridge photonic crystals with L3 cavities. We show that the fundamental L3 cavity mode changes, in a controlled way, from a Lorentzian symmetrical lineshape to an asymmetrical form when the linear polarization of the incident light is rotated in the plane of the crystal. The different lineshapes are well fitted by the Fano asymmetric equation, implying that a Fano resonance is present in the reflectivity. We use the scattering matrix method to model the Fano interference between a localized discrete state (the cavity fundamental mode) and a background of continuum states (the light reflected from the crystal slab in the vicinity of the cavity) with very good agreement with the experimental data.

  6. Responsivity improvements for a vanadium oxide microbolometer using subwavelength resonant absorbers

    NASA Astrophysics Data System (ADS)

    Smith, Evan M.; Nath, Janardan; Ginn, James; Peale, Robert E.; Shelton, David


    Subwavelength resonant structures designed for long-wave infrared (LWIR) absorption have been integrated with a standard vanadium-oxide microbolometer. Dispersion of the dielectric refractive index provides for multiple overlapping resonances that span the 8-12 μm LWIR wavelength band, a broader range than can be achieved using the usual quarter-wave resonant cavity engineered into the air-bridge structures. Experimental measurements show a 49% increase in responsivity for LWIR and a 71% increase across a full waveband as compared to a similar device designed for only LWIR absorption, using a 300°C blackbody at 35 Hz chopping rate. Increased thermal time constant due to additional mass is shown to lessen this enhancement at higher chopping rates.

  7. Operation of an InAs quantum-dot embedded GaAs photonic crystal slab waveguide laser by using two-photon pumping for photonics integrated circuits

    NASA Astrophysics Data System (ADS)

    Oda, H.; Yamanaka, A.; Ozaki, N.; Ikeda, N.; Sugimoto, Y.


    The development of small sized laser operating above room temperature is important in the realization of optical integrated circuits. Recently, micro-lasers consisting of photonic crystals (PhCs) and whispering gallery mode cavities have been demonstrated. Optically pumped laser devices could be easily designed using photonic crystal-slab waveguides (PhC-WGs) with an air-bridge type structure. In this study, we observe lasing at 1.3μm from two-photon pumped InAs-quantum-dots embedded GaAs PhC-WGs above room temperature. This type of compact laser shows promise as a new light source in ultra-compact photonics integrated circuits.

  8. Isolated Islands by Selective Local Oxidation (islo): a Silicon-On (soi) Technology for Nanoelectronic and Nanoelectromechanical Applications.

    NASA Astrophysics Data System (ADS)

    Arney, Susanne Christine

    The development of an advanced fully-integrated nanometer-scale isolation technology called the Isolated Islands of Substrate-Silicon by Selective Lateral Oxidation (ISLO) technology is reported. The versatility and applicability of the ISLO technology for diverse nanoelectronic and nanoelectromechanical devices and systems are described relative to the challenging issues of isolation and contacts. The basic ISLO structure is fabricated using electron beam lithography and standard VLSI reactive ion etching and oxidation processes. Single crystal silicon (SCS) islands 100-300-nm-wide, and 500 -2000-nm-tall are electrically and thermally isolated from the underlying substrate by selective lateral thermal oxidation at the base of the islands. Dislocation-free fully-isolated islands are obtained. Full-isolation of the basic ISLO structure depends on island linewidth, oxidation-masking film thicknesses, recess etch profile, and oxidation time and temperature. The extended ISLO technology provides 100-nm-wide, movable, suspended, high stiffness, low mass, SCS or SCS-dielectric-composite beam segments with integrated electrical contacts and metallization for high frequency (5-10 MHz) nanodynamic applications. Fixed or cantilevered beam segments are isolated from the underlying substrate -silicon by thermally grown oxide or an air-bridge. Wedge -pairs or tip-pairs vertically opposed across the isolation oxide or air-bridge have application to electron tunneling or field emission devices. A selectively-sharpened tip -above-a-tip structure is formed at the intersection of cantilevered beam segments. Vertical triple-tip and quadruple -tip structures are demonstrated. A new deep-submicron self-aligned sidewall source/drain, top-surface gate Thin -Film-Silicon-On-Insulator (TFSOI) MOSFET (ISLO FET) based on the inherently three-dimensional, non-planar ISLO structure is presented. Stress-related defect generation and dopant segregation during the oxidation, erosion of the high

  9. A reusable robust radio frequency biosensor using microwave resonator by integrated passive device technology for quantitative detection of glucose level.


    Kim, N Y; Dhakal, R; Adhikari, K K; Kim, E S; Wang, C


    A reusable robust radio frequency (RF) biosensor with a rectangular meandered line (RML) resonator on a gallium arsenide substrate by integrated passive device (IPD) technology was designed, fabricated and tested to enable the real-time identification of the glucose level in human serum. The air-bridge structure fabricated by an IPD technology was applied to the RML resonator to improve its sensitivity by increasing the magnitude of the return loss (S21). The resonance behaviour, based on S21 characteristics of the biosensor, was analysed at 9.20 GHz with human serum containing different glucose concentration ranging from 148-268 mg dl(-1), 105-225 mg dl(-1) and at a deionised (D) water glucose concentration in the range of 25- 500 mg dl(-1) for seven different samples. A calibration analysis was performed for the human serum from two different subjects and for D-glucose at a response time of 60 s; the reproducibility, the minimum shift in resonance frequency and the long-term stability of the signal were investigated. The feature characteristics based on the resonance concept after the use of serum as an analyte are modelled as an inductor, capacitor and resistor. The findings support the development of resonance-based sensing with an excellent sensitivity of 1.08 MHz per 1 mg dl(-1), a detection limit of 8.01 mg dl(-1), and a limit of quantisation of 24.30 mg dl(-1).

  10. High efficient photovoltaic power converter suitable for 920nm to 970nm InGaAs laser diodes

    NASA Astrophysics Data System (ADS)

    Liu, James; Wu, Ta-Chung; Cohen, Mort; Werthen, Jan G.


    In this work, we report a highly efficient Photovoltaic Power Converter (PPC) suitable for 920 nm to 970 nm InGaAs MQW lasers for the first time. The epitaxial layers were grown by low pressure MOCVD on the semi-insulting GaAs substrate. The epi layers consist of a p-n junction of In0.12Ga0.88As and the window layer of p+ AlInGaAs. The device is made of seven or eight pie-segments of equal area series-connected by means of air-bridges. Under 500mW of 940nm laser illumination, the open-circuit voltage of the eight-segment InGaAs chip is 6.7V. The short-circuit current is 29.7mA. Its maximum delivered electrical power is 171.2mW, equal to a 34.2% overall power conversion efficiency. We also demonstrate the high temperature characteristic and stability of the device.

  11. Gate Length Variation Effect on Performance of Gate-First Self-Aligned In0.53Ga0.47As MOSFET

    PubMed Central

    Mohd Razip Wee, Mohd F.; Dehzangi, Arash; Bollaert, Sylvain; Wichmann, Nicolas; Majlis, Burhanuddin Y.


    A multi-gate n-type In0.53Ga0.47As MOSFET is fabricated using gate-first self-aligned method and air-bridge technology. The devices with different gate lengths were fabricated with the Al2O3 oxide layer with the thickness of 8 nm. In this letter, impact of gate length variation on device parameter such as threshold voltage, high and low voltage transconductance, subthreshold swing and off current are investigated at room temperature. Scaling the gate length revealed good enhancement in all investigated parameters but the negative shift in threshold voltage was observed for shorter gate lengths. The high drain current of 1.13 A/mm and maximum extrinsic transconductance of 678 mS/mm with the field effect mobility of 364 cm2/Vs are achieved for the gate length and width of 0.2 µm and 30µm, respectively. The source/drain overlap length for the device is approximately extracted about 51 nm with the leakage current in order of 10−8 A. The results of RF measurement for cut-off and maximum oscillation frequency for devices with different gate lengths are compared. PMID:24367548

  12. Waveguide Transition for Submillimeter-Wave MMICs

    NASA Technical Reports Server (NTRS)

    Leong, Kevin M.; Deal, William R.; Radisic, Vesna; Mei, Xiaobing; Uyeda, Jansen; Lai, Richard; Fung, King Man; Gaier, Todd C.


    An integrated waveguide-to-MMIC (monolithic microwave integrated circuit) chip operating in the 300-GHz range is designed to operate well on high-permittivity semiconductor substrates typical for an MMIC amplifier, and allows a wider MMIC substrate to be used, enabling integration with larger MMICs (power amplifiers). The waveguide-to- CBCPW (conductor-backed coplanar waveguide) transition topology is based on an integrated dipole placed in the E-plane of the waveguide module. It demonstrates low loss and good impedance matching. Measurement and simulation demonstrate that the loss of the transition and waveguide loss is less than 1-dB over a 340-to-380-GHz bandwidth. A transition is inserted along the propagation direction of the waveguide. This transition uses a planar dipole aligned with the maximum E-field of the TE10 waveguide mode as an inter face between the waveguide and the MMIC. Mode conversion between the coplanar striplines (CPS) that feed the dipole and the CBCPW transmission line is accomplished using a simple air-bridge structure. The bottom side ground plane is truncated at the same reference as the top-side ground plane, leaving the end of the MMIC suspended in air.

  13. CMOS compatible high-Q photonic crystal nanocavity fabricated with photolithography on silicon photonic platform.


    Ooka, Yuta; Tetsumoto, Tomohiro; Fushimi, Akihiro; Yoshiki, Wataru; Tanabe, Takasumi


    Progress on the fabrication of ultrahigh-Q photonic-crystal nanocavities (PhC-NCs) has revealed the prospect for new applications including silicon Raman lasers that require a strong confinement of light. Among various PhC-NCs, the highest Q has been recorded with silicon. On the other hand, microcavity is one of the basic building blocks in silicon photonics. However, the fusion between PhC-NCs and silicon photonics has yet to be exploited, since PhC-NCs are usually fabricated with electron-beam lithography and require an air-bridge structure. Here we show that a 2D-PhC-NC fabricated with deep-UV photolithography on a silica-clad silicon-on-insulator (SOI) structure will exhibit a high-Q of 2.2 × 10(5) with a mode-volume of ~ 1.7(λ/n)(3). This is the highest Q demonstrated with photolithography. We also show that this device exhibits an efficient thermal diffusion and enables high-speed switching. The demonstration of the photolithographic fabrication of high-Q silica-clad PhC-NCs will open possibility for mass-manufacturing and boost the fusion between silicon photonics and CMOS devices.

  14. Surface passivation of a photonic crystal band-edge laser by atomic layer deposition of SiO2 and its application for biosensing

    NASA Astrophysics Data System (ADS)

    Cha, Hyungrae; Lee, Jeongkug; Jordan, Luke R.; Lee, Si Hoon; Oh, Sang-Hyun; Kim, Hyo Jin; Park, Juhun; Hong, Seunghun; Jeon, Heonsu


    We report on the conformal surface passivation of photonic crystal (PC) laser devices with an ultrathin dielectric layer. Air-bridge-type Γ-point band-edge lasers (BELs) are fabricated by forming a honeycomb lattice two-dimensional PC structure into an InGaAsP multiple-quantum-well epilayer. Atomic layer deposition (ALD) is employed for conformal deposition of a few-nanometer-thick SiO2 layer over the entire device surface, not only on the top and bottom surfaces of the air-bridge membrane but also on the air-hole sidewalls. Despite its extreme thinness, the ALD passivation layer is found to protect the InGaAsP BEL devices from harsh chemicals. In addition, the ALD-SiO2 is compatible with the silane-based surface chemistry, which allows us to use ALD-passivated BEL devices as label-free biosensors. The standard streptavidin-biotin interaction shifts the BEL lasing wavelength by ~1 nm for the dipole-like Γ-point band-edge mode. A sharp lasing line (<0.2 nm, full width at half-maximum) and a large refractive index sensitivity (~163 nm per RIU) produce a figure of merit as high as ~800 for our BEL biosensor, which is at least an order of magnitude higher than those of more common biosensors that rely on a broad resonance peak, showing that our nanolaser structures are suitable for highly sensitive biosensor applications.

  15. Analog/RF Study of Self-aligned In0.53Ga0.47As MOSFET with Scaled Gate Length

    NASA Astrophysics Data System (ADS)

    Dehzangi, Arash; Larki, Farhad; Mohd Razip Wee, M. F.; Wichmann, Nicolas; Majlis, Burhanuddin Y.; Bollaert, Sylvain


    This study presents the impact of gate length scaling on analog and radio frequency (RF) performance of a self- aligned multi-gate n-type In0.53Ga0.47As metal oxide semiconductor field effect transistor. The device is fabricated using a self-aligned method, air-bridge technology, and 8 nm thickness of the Al2O3 oxide layer with different gate lengths. The transconductance-to-normalized drain current ratio ( g m/ I D) method is implemented to investigate analog parameters. Moreover, g m and drain conductance ( g D) as key parameters in analog performance of the device are evaluated with g m/ I D and gate length variation, where g m and g D are both showing enhancement due to scaling of the gate length. Early voltage ( V EA) and intrinsic voltage gain ( A V) value presents a decreasing trend by shrinking the gate length. In addition, the results of RF measurement for cut-off and maximum oscillation frequency for devices with different gate lengths are compared.

  16. Optimization of kinetic inductance detectors for millimeter and submillimeter wave detection

    NASA Astrophysics Data System (ADS)

    Coiffard, G.; Schuster, K. F.; Monfardini, A.; Adane, A.; Barbier, B.; Boucher, C.; Calvo, M.; Goupy, J.; Leclercq, S.; Pignard, S.


    We present the latest improvements of lumped element kinetic inductance detectors (LEKIDs) for the NIKA camera at the 30-m telescope of IRAM at Pico Veleta (Spain) [1]. LEKIDs are direct absorption detectors for millimeter wavelength and represent a particularly efficient concept of planar array continuum detectors for the millimeter and submillimeter wavelength range. To improve the detector radiation coupling over a wider frequency range, a combination of backplane reflector and a supplementary layer of dielectric between silicon substrate and backplane has been successfully explored. To this end we apply deep silicon etching to the substrate in order to decrease its effective dielectric constant in an intermediate layer. In the first generation of LEKIDs array, the response is disturbed by the presence of slot-modes in the frequency multiplexing coplanar feed/readout line, an effect which was reduced when applying wire bonding across the readout line. Superconducting air-bridges can be integrated into the array fabrication process. The suppression of slot-modes also reduces undesired cross-talk between pixels. Our current KID detectors are made of very thin aluminum films, but with a thickness of less than 20 nm we have reached some limitations concerning the layout and material processing. Following the results from Leduc et al. [2], we developed non-stoichiometric titanium nitride (TiN) at IRAM as an alternative material. We focus on the work done to achieve reproducible and homogenous films with the required transition temperature for mm-wave detection. We present characterization techniques that allow room temperature measurements to be correlated to the transition temperature of TiNx and first measurements on a test sample.

  17. Control of adhesion to the mask of epitaxial laterally overgrown GaAs layers

    NASA Astrophysics Data System (ADS)

    Zytkiewicz, Z. R.; Domagała, J.; Dobosz, D.


    Strain commonly observed in layers grown by epitaxial lateral overgrowth (ELO) and arising from interaction of the layers with the mask underneath is studied. We show that GaAs ELO layers grown by liquid-phase epitaxy on SiO2-coated GaAs substrates are strain free if the laterally overgrown parts ("wings") of the layers hang over and have no direct contact with the mask. In other cases, tilting of the wings can be efficiently tailored by controlling the ratio of vertical to lateral growth rates at the beginning of ELO growth. In particular, this has been achieved by growing GaAs ELO layers on SiO2-coated GaAs substrates with increasing density of dislocations. Then, the ratio of vertical to lateral growth rates at the beginning of the growth is increased which in turn leads to reduction of the adhesion-induced bending of the ELO wings, as we observe by high-resolution x-ray diffraction. In the limiting case of heavily dislocated substrates, namely, on GaAs-coated Si, the vertical growth of GaAs ELO is so fast that air-bridged structures without any wing adhesion to the SiO2 mask are obtained. Next, the same model is used to explain our earlier data on negligible bending of GaAs ELO layers on graphite-masked GaAs substrates. In this case, delayed start of lateral growth is caused by the change of the shape of the melt in the corner between the sidewall of the ELO layer and the mask when SiO2 was replaced by graphite film not wetted by the gallium melt.

  18. Room temperature strong light-matter coupling in 3D THz meta-atoms (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Paulillo, Bruno; Manceau, Jean-Michel; Li, Lianhe; Linfield, Edmund; Colombelli, Raffaele


    We demonstrate strong light-matter coupling at room temperature in the terahertz (THz) spectral region using 3D meta-atoms with extremely sub-wavelength volumes. Using an air-bridge fabrication scheme, we have implemented sub-wavelength 3D THz micro-resonators that rely on suspended loop antennas connected to semiconductor-filled patch cavities. We have experimentally shown that they possess the functionalities of lumped LC resonators: their frequency response can be adjusted by independently tuning the inductance associated the antenna element or the capacitance provided by the metal-semiconductor-metal cavity. Moreover, the radiation coupling and efficiency can be engineered acting on the design of the loop antenna, similarly to conventional RF antennas. Here we take advantage of this rich playground in the context of cavity electrodynamics/intersubband polaritonics. In the strong light-matter coupling regime, a cavity and a two-level system exchange energy coherently at a characteristic rate called the vacuum Rabi frequency ΩR which is dominant with respect to all other loss mechanisms involved. The signature, in the frequency domain, is the appearance of a splitting between the bare cavity and material system resonances: the new states are called upper and a lower polariton branches. So far, most experimental demonstrations of strong light-matter interaction between an intersubband transition and a deeply sub-wavelength mode in the THz or mid-infrared ranges rely on wavelength-scale or larger resonators such as photonic crystals, diffractive gratings, dielectric micro-cavities or patch cavities. Lately, planar metamaterials have been used to enhance the light-matter interaction and strongly reduce the interaction volume by engineering the electric and magnetic resonances of the individual subwavelength constituents. In this contribution we provide evidence of strong coupling between a THz intersubband transition and an extremely sub-wavelength mode (≈λ/10