Science.gov

Sample records for aircraft braking performance

  1. Braking performance of aircraft tires

    NASA Astrophysics Data System (ADS)

    Agrawal, Satish K.

    This paper brings under one cover the subject of aircraft braking performance and a variety of related phenomena that lead to aircraft hydroplaning, overruns, and loss of directional control. Complex processes involving tire deformation, tire slipping, and fluid pressures in the tire-runway contact area develop the friction forces for retarding the aircraft; this paper describes the physics of these processes. The paper reviews the past and present research efforts and concludes that the most effective way to combat the hazards associated with aircraft landings and takeoffs on contaminated runways is by measuring and displaying in realtime the braking performance parameters in the aircraft cockpit.

  2. Recent studies of tire braking performance. [for aircraft

    NASA Technical Reports Server (NTRS)

    Mccarty, J. L.; Leland, T. J. W.

    1973-01-01

    The results from recent studies of some factors affecting tire braking and cornering performance are presented together with a discussion of the possible application of these results to the design of aircraft braking systems. The first part of the paper is concerned with steady-state braking, that is, results from tests conducted at a constant slip ratio or steering angle or both. The second part deals with cyclic braking tests, both single cycle, where brakes are applied at a constant rate until wheel lockup is achieved, and rapid cycling of the brakes under control of a currently operational antiskid system.

  3. Performance of an aircraft tire under cyclic braking and of a currently operational antiskid braking system

    NASA Technical Reports Server (NTRS)

    Tanner, J. A.

    1972-01-01

    An experimental investigation was conducted to study the performance of an aircraft tire under cyclic braking conditions and to study the performance of a currently operational aircraft antiskid braking system. Dry, damp, and flooded runway surface conditions were used in the investigation. The results indicated that under cyclic braking conditions the braking and cornering-force friction coefficients may be influenced by fluctuations in the vertical load, flexibility in the wheel support, and the spring coupling between the wheel and the tire-pavement interface. The cornering capability was shown to be negligible at wheel slip ratios well below a locked-wheel skid under all test surface conditions. The maximum available brake-force friction coefficient was shown to be dependent upon the runway surface condition, upon velocity, and, for wet runways, upon tire differences. Moderate reductions in vertical load and brake system pressure did not significantly affect the overall wet-runway performance of the tire.

  4. Evaluation of materials and design modifications for aircraft brakes

    NASA Technical Reports Server (NTRS)

    Ho, T. L.; Kennedy, F. E.; Peterson, M. B.

    1975-01-01

    A test program is described which was carried out to evaluate several proposed design modifications and several high-temperature friction materials for use in aircraft disk brakes. The evaluation program was carried out on a specially built test apparatus utilizing a disk brake and wheel half from a small het aircraft. The apparatus enabled control of brake pressure, velocity, and braking time. Tests were run under both constant and variable velocity conditions and covered a kinetic energy range similar to that encountered in aircraft brake service. The results of the design evaluation program showed that some improvement in brake performance can be realized by making design changes in the components of the brake containing friction material. The materials evaluation showed that two friction materials show potential for use in aircraft disk brakes. One of the materials is a nickel-based sintered composite, while the other is a molybdenum-based material. Both materials show much lower wear rates than conventional copper-based materials and are better able to withstand the high temperatures encountered during braking. Additional materials improvement is necessary since both materials show a significant negative slope of the friction-velocity curve at low velocities.

  5. Some wear studies on aircraft brake systems

    NASA Technical Reports Server (NTRS)

    Ho, T. L.

    1975-01-01

    An initial investigation of worn surfaces in friction pads and steel rotors used in current aircraft brakes was carried out using electron microprobe and X-ray diffraction analysis. It consists of the topographical study and the analysis of chemical element distribution. Based upon this initial examination, two approaches, microscopic and macroscopic have been conducted to interpret and formulate the wear mechanism of the aircraft brake materials. Microscopically, the wear particles were examined. The initiation and growth of surface cracks and the oxidation were emphasized in this investigation. Macroscopically, it has been found that, for the current copper based brake material sliding against 17-22 AS steel in a caliper brake, the surface temperature raised due to frictional heat is nonlinearly proportional to the load applied and slide time with speed at 1750 rpm. The wear of brake materials is then proportional to this temperature and is also a function of the melting temperature for copper.

  6. Consideration of Materials for Aircraft Brakes

    NASA Technical Reports Server (NTRS)

    Peterson, M. B.; Ho, T.

    1972-01-01

    An exploratory investigation was conducted concerning materials and their properties for use in aircraft brakes. Primary consideration was given to the heat dissipation and the frictional behavior of materials. Used brake pads and rotors were analyzed as part of the investigation. A simple analysis was conducted in order to determine the most significant factors which affect surface temperatures. It was found that where size and weight restrictions are necessary, the specific heat of the material, and maintaining uniform contact area are the most important factors. A criterion was suggested for optimum sizing of the brake disks. Bench friction tests were run with brake materials. It was found that there is considerable friction variation due to the formation and removal of surface oxide films. Other causes of friction variations are surface softening and melting. The friction behavior at high temperature was found to be more characteristic of the steel surface rather than the copper brake material. It is concluded that improved brake materials are feasible.

  7. Dynamics of aircraft antiskid braking systems. [conducted at the Langley aircraft landing loads and traction facility

    NASA Technical Reports Server (NTRS)

    Tanner, J. A.; Stubbs, S. M.; Dreher, R. C.; Smith, E. G.

    1982-01-01

    A computer study was performed to assess the accuracy of three brake pressure-torque mathematical models. The investigation utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC-9 series 10 airplane. The investigation indicates that the performance of aircraft antiskid braking systems is strongly influenced by tire characteristics, dynamic response of the antiskid control valve, and pressure-torque response of the brake. The computer study employed an average torque error criterion to assess the accuracy of the models. The results indicate that a variable nonlinear spring with hysteresis memory function models the pressure-torque response of the brake more accurately than currently used models.

  8. 49 CFR 393.52 - Brake performance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Brake performance. 393.52 Section 393.52... NECESSARY FOR SAFE OPERATION Brakes § 393.52 Brake performance. (a) Upon application of its service brakes... of the service brake pedal or control begins, that is not greater than the distance specified in...

  9. 49 CFR 393.52 - Brake performance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Brake performance. 393.52 Section 393.52... NECESSARY FOR SAFE OPERATION Brakes § 393.52 Brake performance. (a) Upon application of its service brakes... of the service brake pedal or control begins, that is not greater than the distance specified in...

  10. Wheel brakes and their application to aircraft

    NASA Technical Reports Server (NTRS)

    Dowty, G H

    1928-01-01

    The advantages to be gained from braking have not been ignored, and in the search for a suitable method many schemes have been suggested and tried. Some of the methods discussed in this paper include: 1) increasing the height of the landing gear; 2) air brakes of various forms; 3) sprags on tail skid and axle; and 4) wheel brakes. This report focuses on the design of wheel brakes and wheel brake controls.

  11. Wear, friction, and temperature characteristics of an aircraft tire undergoing braking and cornering

    NASA Technical Reports Server (NTRS)

    Mccarty, J. L.; Yager, T. J.; Riccitiello, S. R.

    1979-01-01

    An investigation to evaluate the wear, friction, and temperature characteristics of aircraft tire treads fabricated from different elastomers is presented. The braking and cornering tests performed on aircraft tires retreaded with currently employed and experimental elastomers are described. The tread wear rate is discussed in relation to the slip ratio during braking and yaw angle during cornering. The extent of wear in either operational mode is examined in relation to the runway surface.

  12. Factors influencing aircraft ground handling performance

    NASA Technical Reports Server (NTRS)

    Yager, T. J.

    1983-01-01

    Problems associated with aircraft ground handling operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from tests with instrumented ground vehicles and aircraft, and aircraft wet runway accident investigation are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways.

  13. Some effects of grooved runway configurations on aircraft tire braking traction under flooded runway conditions

    NASA Technical Reports Server (NTRS)

    Byrdsong, T. A.

    1973-01-01

    An experimental investigation was conducted to study the effect of grooved runway configurations on aircraft tire braking traction on flooded runway surfaces. The investigation was performed, utilizing size 49 x 17, type VII, aircraft tires with an inflation pressure of 170 lb per square inch at ground speeds up to approximately 120 knots. The results of this investigation indicate that when the runway is flooded, grooved surfaces provide better braking traction than an ungrooved surface and, in general, the level of braking traction was found to improve as the tire bearing pressure was increased because of an increase in the groove area of either the surface or the tire tread. Rounding the groove edges tended to degrade the tire braking capability from that developed on the same groove configuration with sharp edges. Results also indicate that braking friction coefficients for the test tires and runway surfaces decreased as ground speed was increased because of the hydroplaning effects.

  14. Development of aircraft brake materials. [evaluation of metal and ceramic materials in sliding tests simulation of aircraft braking

    NASA Technical Reports Server (NTRS)

    Ho, T. L.; Peterson, M. B.

    1974-01-01

    The requirements of brake materials were outlined and a survey made to select materials to meet the needs of high temperature brakes. A number of metals and ceramic materials were selected and evaluated in sliding tests which simulated aircraft braking. Nickel, molybdenum tungsten, Zr02, high temperature cements and carbons were tested. Additives were then incorporated into these materials to optimize their wear or strength behavior with particular emphasis on nickel and molybdenum base materials and a high temperature potassium silicate cement. Optimum materials were developed which improved wear behavior over conventional brake materials in the simulated test. The best materials are a nickel, aluminum oxide, lead tungstate composition containing graphite or molybdenum disulphite; a molybdenum base material containing LPA100 (an intermetallic compound of cobalt, molybdenum, and silicon); and a carbon material (P5).

  15. Aluminum runway surface as possible aid to aircraft braking

    NASA Technical Reports Server (NTRS)

    Miller, C. D.; Pinkel, I. I.

    1973-01-01

    Several concepts are described for use singly or in combination to improve aircraft braking. All involve a thin layer of aluminum covering all or part of the runway. Advantage would derive from faster heat conduction from the tire-runway interface. Heating of tread surface with consequent softening and loss of friction coefficient should be reduced. Equations are developed indicating that at least 99 percent of friction heat should flow into the aluminum. Preliminary test results indicate a coefficient of sliding friction of 1.4, with predictably slight heating of tread. Elimination of conventional brakes is at least a remote possibility.

  16. Wear and related characteristics of an aircraft tire during braking

    NASA Technical Reports Server (NTRS)

    Mccarty, J. L.

    1972-01-01

    Wear and related characteristics of friction and temperature developed during braking of size 22 x 5.5, type aircraft tires are studied. The testing technique involved gearing the tire to a driving wheel of a ground vehicle to provide operations at constant slip ratios on asphalt, concrete, and slurry-seal surfaces. Data were obtained over the range of slip ratios generally attributed to an aircraft braking system during dry runway operations. The results show that the cumulative tire wear varies linearly with distance traveled and the wear rate increases with increasing slip ratio and is influenced by the runway-surface character. Differences in the wear rates associated with the various surfaces suggest that runways can be rated on the basis of tire wear. The results also show that the friction coefficients developed during fixed-slip-ratio operations are in good agreement with those obtained by other investigators during cyclic braking, in that the dry friction is insensitive to the tire tread temperature is shown to increase with increasing slip ratio and, at the higher ratios, to be greater during braking on asphalt and slurry seal than on concrete.

  17. Review of factors affecting aircraft wet runway performance

    NASA Technical Reports Server (NTRS)

    Yager, T. J.

    1983-01-01

    Problems associated with aircraft operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from investigations conducted at the Langley Aircraft Landing Loads and Traction Facility and from tests with instrumented ground vehicles and aircraft are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways.

  18. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces: Hydromechanically controlled system

    NASA Technical Reports Server (NTRS)

    Tanner, J. A.; Stubbs, S. M.; Smith, E. G.

    1981-01-01

    The investigation utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC-9 series 10 airplane. The landing-gear strut was replaced by a dynamometer. During maximum braking, average braking behavior indexes based upon brake pressure, brake torque, and drag-force friction coefficient developed by the antiskid system were generally higher on dry surfaces than on wet surfaces. The three braking behavior indexes gave similar results but should not be used interchangeably as a measure of the braking of this antiskid sytem. During the transition from a dry to a flooded surface under heavy braking, the wheel entered into a deep skid but the antiskid system reacted quickly by reducing brake pressure and performed normally during the remainder of the run on the flooded surface. The brake-pressure recovery following transition from a flooded to a dry surface was shown to be a function of the antiskid modulating orifice.

  19. Thermal conductance of and heat generation in tire-pavement interface and effect on aircraft braking

    NASA Technical Reports Server (NTRS)

    Miller, C. D.

    1976-01-01

    A finite-difference analysis was performed on temperature records obtained from a free rolling automotive tire and from pavement surface. A high thermal contact conductance between tire and asphalt was found on a statistical basis. Average slip due to squirming between tire and asphalt was about 1.5 mm. Consequent friction heat was estimated as 64 percent of total power absorbed by bias-ply, belted tire. Extrapolation of results to aircraft tire indicates potential braking improvement by even moderate increase of heat absorbing capacity of runway surface.

  20. Effect of surface texture and working gap on the braking performance of the magnetorheological fluid brake

    NASA Astrophysics Data System (ADS)

    Wang, Na; Li, Dong Heng; Li Song, Wan; Chao Xiu, Shi; Zhi Meng, Xiang

    2016-10-01

    In this paper, the effect of the surface textures of braking disc on the braking performance is experimentally investigated under the conditions of different working gaps and applied currents. For this purpose, a new configuration of magnetorheological fluid brake (MRB) with adjustable working gap is developed to improve the manufacturing accuracy and cost, and to reduce the problem of replacing the braking disc. In addition, the braking discs with three types of surface texture are designed and machined. Based on the test bed developed for the proposed MRB, a series of experiments are carried out on the manufactured prototype and the results are presented to obtain the relationship among the surface texture of the braking disc, applied current, working gap and the braking performance. The results show that the braking torque is significantly influenced by the working gap and surface texture of the braking disc, and the maximum braking torque is obtained on the conditions of 0.25 mm working gap and the braking disc with square surface texture.

  1. Recent progress towards predicting aircraft ground handling performance

    NASA Technical Reports Server (NTRS)

    Yager, T. J.; White, E. J.

    1981-01-01

    Capability implemented in simulating aircraft ground handling performance is reviewed and areas for further expansion and improvement are identified. Problems associated with providing necessary simulator input data for adequate modeling of aircraft tire/runway friction behavior are discussed and efforts to improve tire/runway friction definition, and simulator fidelity are described. Aircraft braking performance data obtained on several wet runway surfaces are compared to ground vehicle friction measurements. Research to improve methods of predicting tire friction performance are discussed.

  2. The design of aircraft brake systems, employing cooling to increase brake life

    NASA Technical Reports Server (NTRS)

    Scaringe, R. P.; Ho, T. L.; Peterson, M. B.

    1975-01-01

    A research program was initiated to determine the feasibility of using cooling to increase brake life. An air cooling scheme was proposed, constructed and tested with various designs. Straight and curved slotting of the friction material was tested. A water cooling technique, similar to the air cooling procedure, was evaluated on a curved slotted rotor. Also investigated was the possibility of using a phase-change material within the rotor to absorb heat during braking. Various phase-changing materials were tabulated and a 50%, (by weight) LiF - BeF2 mixing was chosen. It was shown that corrosion was not a problem with this mixture. A preliminary design was evaluated on an actual brake. Results showed that significant improvements in lowering the surface temperature of the brake occurred when air or water cooling was used in conjunction with curved slotted rotors.

  3. The friction and wear of carbon-carbon composites for aircraft brakes

    NASA Astrophysics Data System (ADS)

    Hutton, Toby

    Many carbon-carbon composite aircraft brakes encounter high wear rates during low energy braking operations. The work presented in this thesis addresses this issue, but it also elucidates the microstructural changes and wear mechanisms that take place in these materials during all braking conditions encountered by aircraft brakes. A variety of investigations were conducted using friction and wear testing, as well as examination of wear surfaces and wear debris using OM, SEM, X-RD, TGA and Density Gradient Separation (DOS). Friction and wear tests were conducted on a PAN fibre/CVI matrix carbon-carbon composite (Dunlop) and a pitch fibre/Resin-CVI matrix carbon-carbon composite (Bendix). Extensive testing was undertaken on the Dunlop composites to asses the effects of composite architecture, fibre orientation and heat treatment temperatures on friction and wear. Other friction and wear tests, conducted on the base Dunlop composite, were used to investigate the relative influences of temperature and sliding speed. It was found that the effect of temperature was dominant over composite architecture, fibre orientation and sliding speed in governing the friction and wear performance of the Dunlop composites. The development of bulk temperatures in excess of 110 C by frictional heating resulted in smooth friction and a low wear rate. Reducing heat treatment temperature also reduced the thermal conductivity producing high interface temperatures, low smooth friction coefficients and low wear rates under low energy braking conditions. However, this was at the expense of high oxidative wear rates under higher energy braking conditions. The Bendix composites had lower thermal conductivities than the fully heat treated Dunlop composite and exhibited similar friction and wear behaviour to Dunlop composites heat treated to lower temperatures. Examination of the wear surfaces using OM and SEM revealed particulate or Type I surface debris on wear surfaces tested under low energy

  4. 49 CFR 393.52 - Brake performance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... percentage of its gross weight specified in the table in paragraph (d) of this section; (2) Decelerating to a... vehicle or combination weight. (b) Upon application of its emergency brake system and with no other brake... combination weight Deceleration in feet per second per second Application and braking distance in feet...

  5. 49 CFR 393.52 - Brake performance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... percentage of its gross weight specified in the table in paragraph (d) of this section; (2) Decelerating to a... vehicle or combination weight. (b) Upon application of its emergency brake system and with no other brake... combination weight Deceleration in feet per second per second Application and braking distance in feet...

  6. 49 CFR 393.52 - Brake performance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... percentage of its gross weight specified in the table in paragraph (d) of this section; (2) Decelerating to a... vehicle or combination weight. (b) Upon application of its emergency brake system and with no other brake... combination weight Deceleration in feet per second per second Application and braking distance in feet...

  7. Effects of Anti-Oxidant Migration on Friction and Wear of C/C Aircraft Brakes

    NASA Astrophysics Data System (ADS)

    Don, Jarlen; Wang, Zhe

    2009-04-01

    The surfaces of carbon-carbon (C/C) aircraft brakes are usually coated with anti-oxidant to protect them from oxidation. These surfaces do not include the friction surfaces since it is known that when anti-oxidant get onto the friction surface, the friction coefficient decreases. The anti-oxidant migration (AOM), however, happens during processing, heat treatment and application. In this study, phosphorus based anti-oxidants inhibited 3-D C/C aircraft brake system was investigated. The effects of their migration on friction and wear in the 3-D C/C brakes were revealed by sub-scale dynamometer tests and microscopic analysis. Dynamometer results showed that when AOM occurred, both landing and taxi coefficients decreased in humid environment and the wear was slightly lowered. Microscopic study showed that under high humidity conditions there was no formation of the friction film.

  8. A high performance pneumatic braking system for heavy vehicles

    NASA Astrophysics Data System (ADS)

    Miller, Jonathan I.; Cebon, David

    2010-12-01

    Current research into reducing actuator delays in pneumatic brake systems is opening the door for advanced anti-lock braking algorithms to be used on heavy goods vehicles. However, these algorithms require the knowledge of variables that are impractical to measure directly. This paper introduces a sliding mode braking force observer to support a sliding mode controller for air-braked heavy vehicles. The performance of the observer is examined through simulations and field testing of an articulated heavy vehicle. The observer operated robustly during single-wheel vehicle simulations, and provided reasonable estimates of surface friction from test data. The effect of brake gain errors on the controller and observer are illustrated, and a recursive least squares estimator is derived for the brake gain. The estimator converged within 0.3 s in simulations and vehicle trials.

  9. Experimental investigation of the braking and cornering characteristics of 30 x 11.5-14.5, type 8, aircraft tires with different tread patterns

    NASA Technical Reports Server (NTRS)

    Dreher, R. C.; Tanner, J. A.

    1974-01-01

    An investigation was conducted at the aircraft landing loads and traction facility to study the braking and cornering characteristics, including the drag-force and cornering-force friction coefficients, of 30 by 11.5-14.5, type VIII aircraft tires with five different tread patterns. Test data were obtained on dry, damp, and flooded runway surfaces over a range of yaw angles from 0 deg to 12 deg at ground speeds from 5 knots to 100 knots. The results of this investigation indicate that a tread pattern consisting of transverse cuts across the entire width of the tread slightly improved the tire traction performance on wet surfaces. The braking and cornering capability of the tires was degraded by thin-film lubrication and tire hydroplaning effects on the wet runway surfaces. The braking capability of the tires decreased when the yaw angle was increased.

  10. Some effects of adverse weather conditions on performance of airplane antiskid braking systems

    NASA Technical Reports Server (NTRS)

    Horne, W. B.; Mccarty, J. L.; Tanner, J. A.

    1976-01-01

    The performance of current antiskid braking systems operating under adverse weather conditions was analyzed in an effort to both identify the causes of locked-wheel skids which sometimes occur when the runway is slippery and to find possible solutions to this operational problem. This analysis was made possible by the quantitative test data provided by recently completed landing research programs using fully instrumented flight test airplanes and was further supported by tests performed at the Langley aircraft landing loads and traction facility. The antiskid system logic for brake control and for both touchdown and locked-wheel protection is described and its response behavior in adverse weather is discussed in detail with the aid of available data. The analysis indicates that the operational performance of the antiskid logic circuits is highly dependent upon wheel spin-up acceleration and can be adversely affected by certain pilot braking inputs when accelerations are low. Normal antiskid performance is assured if the tire-to-runway traction is sufficient to provide high wheel spin-up accelerations or if the system is provided a continuous, accurate ground speed reference. The design of antiskid systems is complicated by the necessity for tradeoffs between tire braking and cornering capabilities, both of which are necessary to provide safe operations in the presence of cross winds, particularly under slippery runway conditions.

  11. Tribomaterial factors in space mechanism brake performance

    NASA Technical Reports Server (NTRS)

    Hawthorne, H. M.

    1990-01-01

    The asbestos/phenolic pads of Shuttle Remote Manipulator System (SRMS) brakes are unsuitable for use in long life space mechanisms because their friction decreases on extended sliding in high vacuum. Dehydration of the material and accumulation of wear debris in the conforming interface of this tribosystem induces the permanent friction changes. Other polymer and some ceramic based materials exhibit similar frictional torque behavior due to the development of minimal contact patches by the interfacial debris. In contrast, high friction occurs when other ceramics form many small contacts throughout fine debris beds. Generating this latter interfacial structure during run-in ensures that the in-vacuo friction remains stable thereafter. Such materials with low wear rates are potential candidates for friction elements in SSRMS and similar mechanisms.

  12. Mechanical testing and modelling of carbon-carbon composites for aircraft disc brakes

    NASA Astrophysics Data System (ADS)

    Bradley, Luke R.

    The objective of this study is to improve the understanding of the stress distributions and failure mechanisms experienced by carbon-carbon composite aircraft brake discs using finite element (FE) analyses. The project has been carried out in association with Dunlop Aerospace as an EPSRC CASE studentship. It therefore focuses on the carbon-carbon composite brake disc material produced by Dunlop Aerospace, although it is envisaged that the approach will have broader applications for modelling and mechanical testing of carbon-carbon composites in general. The disc brake material is a laminated carbon-carbon composite comprised of poly(acrylonitrile) (PAN) derived carbon fibres in a chemical vapour infiltration (CVI) deposited matrix, in which the reinforcement is present in both continuous fibre and chopped fibre forms. To pave the way for the finite element analysis, a comprehensive study of the mechanical properties of the carbon-carbon composite material was carried out. This focused largely, but not entirely, on model composite materials formulated using structural elements of the disc brake material. The strengths and moduli of these materials were measured in tension, compression and shear in several orientations. It was found that the stress-strain behaviour of the materials were linear in directions where there was some continuous fibre reinforcement, but non-linear when this was not the case. In all orientations, some degree of non-linearity was observed in the shear stress-strain response of the materials. However, this non-linearity was generally not large enough to pose a problem for the estimation of elastic moduli. Evidence was found for negative Poisson's ratio behaviour in some orientations of the material in tension. Additionally, the through-thickness properties of the composite, including interlaminar shear strength, were shown to be positively related to bulk density. The in-plane properties were mostly unrelated to bulk density over the range of

  13. Control performance of an electrorheological valve based vehicle anti-lock brake system, considering the braking force distribution

    NASA Astrophysics Data System (ADS)

    Choi, S. B.; Lee, T. H.; Lee, Y. S.; Han, M. S.

    2005-12-01

    This paper presents the braking control performance of a vehicle anti-lock brake system featuring an electrorheological (ER) fluid. As a first step, a cylindrical type of ER valve is devised and its pressure controllability is experimentally confirmed. Then, a hydraulic booster for amplifying the field-dependent pressure drop obtained from the ER valve is constructed and its pressure amplification is demonstrated by presenting the pressure tracking control performance. Subsequently, the governing equation of the rear wheel model is derived by considering the braking force distribution, and a sliding mode controller for achieving the desired slip rate is designed. The controller is then realized through the hardware-in-the-loop simulation method and controlled responses are presented in the time domain. In addition, computer animations for the braking performance under unladen and laden conditions are presented, and a comparison of the proportioning valve and the proposed ER valve pressure modulator is made.

  14. The braking performance of a vehicle anti-lock brake system featuring an electro-rheological valve pressure modulator

    NASA Astrophysics Data System (ADS)

    Choi, Seung-Bok; Sung, Kum-Gil; Cho, Myung-Soo; Lee, Yang-Sub

    2007-08-01

    This paper presents the braking performances of a vehicle anti-lock brake system (ABS) featuring an electro-rheological (ER) valve pressure modulator. As a first step, the principal design parameters of the ER valve and hydraulic booster are appropriately determined by considering the Bingham property of the ER fluid and the braking pressure variation during the ABS operation. An ER fluid composed of chemically treated starch particles and silicone oil is used. An electrically controllable pressure modulator is then constructed and its pressure controllability is empirically evaluated. Subsequently, a quarter-car wheel slip model is established and integrated with the governing equation of the pressure modulator. A sliding mode controller for slip rate control is designed and implemented via the hardware-in-the-loop simulation (HILS). In order to demonstrate the superior braking performance of the proposed ABS, a full car model is derived and a sliding mode controller is formulated to achieve the desired yaw rate. The braking performances in terms of braking distance and step input steering are evaluated and presented in time domain through full car simulations.

  15. Investigation of Product Performance of Al-Metal Matrix Composites Brake Disc using Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Fatchurrohman, N.; Marini, C. D.; Suraya, S.; Iqbal, AKM Asif

    2016-02-01

    The increasing demand of fuel efficiency and light weight components in automobile sectors have led to the development of advanced material parts with improved performance. A specific class of MMCs which has gained a lot of attention due to its potential is aluminium metal matrix composites (Al-MMCs). Product performance investigation of Al- MMCs is presented in this article, where an Al-MMCs brake disc is analyzed using finite element analysis. The objective is to identify the potentiality of replacing the conventional iron brake disc with Al-MMCs brake disc. The simulation results suggested that the MMCs brake disc provided better thermal and mechanical performance as compared to the conventional cast iron brake disc. Although, the Al-MMCs brake disc dissipated higher maximum temperature compared to cast iron brake disc's maximum temperature. The Al-MMCs brake disc showed a well distributed temperature than the cast iron brake disc. The high temperature developed at the ring of the disc and heat was dissipated in circumferential direction. Moreover, better thermal dissipation and conduction at brake disc rotor surface played a major influence on the stress. As a comparison, the maximum stress and strain of Al-MMCs brake disc was lower than that induced on the cast iron brake disc.

  16. NASA evaluation of Type 2 chemical depositions. [effects of deicer deposition on aircraft tire friction performance

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Stubbs, Sandy M.; Howell, W. Edward; Webb, Granville L.

    1993-01-01

    Recent findings from NASA Langley tests to define effects of aircraft Type 2 chemical deicer depositions on aircraft tire friction performance are summarized. The Aircraft Landing Dynamics Facility (ALDF) is described together with the scope of the tire cornering and braking friction tests conducted up to 160 knots ground speed. Some lower speed 32 - 96 km/hr (20 - 60 mph) test run data obtained using an Instrumented Tire Test Vehicle (ITTV) to determine effects of tire bearing pressure and transverse grooving on cornering friction performance are also discussed. Recommendations are made concerning which parameters should be evaluated in future testing.

  17. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces. A slip-velocity-controlled, pressure-bias-modulated system

    NASA Technical Reports Server (NTRS)

    Stubbs, S. M.; Tanner, J. A.; Smith, E. G.

    1979-01-01

    The braking and cornering response of a slip velocity controlled, pressure bias modulated aircraft antiskid braking system is investigated. The investigation, conducted on dry and wet runway surfaces, utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC 9 series 10 airplane. The landing gear strut was replaced by a dynamometer. The parameters, which were varied, included the carriage speed, tire loading, yaw angle, tire tread condition, brake system operating pressure, and runway wetness conditions. The effects of each of these parameters on the behavior of the skid control system is presented. Comparisons between data obtained with the skid control system and data obtained from single cycle braking tests without antiskid protection are examined.

  18. TAKEOFF AND LANDING PERFORMANCE CAPABILITIES OF TRANSPORT CATEGORY AIRCRAFT

    NASA Technical Reports Server (NTRS)

    Foss, W. E.

    1994-01-01

    One of the most important considerations in the design of a commercial transport aircraft is the aircraft's performance during takeoff and landing operations. The aircraft must be designed to meet field length constraints in accordance with airworthiness standards specified in the Federal Aviation Regulations. In addition, the noise levels generated during these operations must be within acceptable limits. This computer program provides for the detailed analysis of the takeoff and landing performance capabilities of transport category aircraft. The program calculates aircraft performance in accordance with the airworthiness standards of the Federal Aviation Regulations. The aircraft and flight constraints are represented in sufficient detail to permit realistic sensitivity studies in terms of either configuration modifications or changes in operational procedures. This program provides for the detailed performance analysis of the takeoff and landing capabilities of specific aircraft designs and allows for sensitivity studies. The program is not designed to synthesize configurations or to generate aerodynamic, propulsion, or structural characteristics. This type of information must be generated externally to the program and then input as data. The program's representation of the aircraft data is extensive and includes realistic limits on engine and aircraft operational boundaries and maximum attainable lift coefficients. The takeoff and climbout flight-path is generated by a stepwise integration of the equation of motion. Special features include options for nonstandard-day operation, for balanced field length, for derated throttle to meet a given field length for off-loaded aircraft, and for throttle cutback during climbout for community noise alleviation. Advanced takeoff procedures for noise alleviation such as programmed throttle and control flaps may be investigated with the program. Approach profiles may incorporate advanced procedures such as two segment

  19. Brake control system modification, augmentor Wing Jet STOL Research Airplane (AWJSRA)

    NASA Technical Reports Server (NTRS)

    Amberg, R. L.; Arline, J. A.; Jenny, R. W.

    1974-01-01

    The braking system for a short takeoff aircraft is discussed and the deficiencies are described. The installation of a Boeing 727 aircraft brake system was made to correct the deficiencies. Tests of the modified system were conducted using an analog computer/hardware simulator. Actual performance tests were conducted and the characteristics of the system were satisfactory.

  20. Performance Evaluation Method for Dissimilar Aircraft Designs

    NASA Technical Reports Server (NTRS)

    Walker, H. J.

    1979-01-01

    A rationale is presented for using the square of the wingspan rather than the wing reference area as a basis for nondimensional comparisons of the aerodynamic and performance characteristics of aircraft that differ substantially in planform and loading. Working relationships are developed and illustrated through application to several categories of aircraft covering a range of Mach numbers from 0.60 to 2.00. For each application, direct comparisons of drag polars, lift-to-drag ratios, and maneuverability are shown for both nondimensional systems. The inaccuracies that may arise in the determination of aerodynamic efficiency based on reference area are noted. Span loading is introduced independently in comparing the combined effects of loading and aerodynamic efficiency on overall performance. Performance comparisons are made for the NACA research aircraft, lifting bodies, century-series fighter aircraft, F-111A aircraft with conventional and supercritical wings, and a group of supersonic aircraft including the B-58 and XB-70 bomber aircraft. An idealized configuration is included in each category to serve as a standard for comparing overall efficiency.

  1. Overview of high performance aircraft propulsion research

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J.

    1992-01-01

    The overall scope of the NASA Lewis High Performance Aircraft Propulsion Research Program is presented. High performance fighter aircraft of interest include supersonic flights with such capabilities as short take off and vertical landing (STOVL) and/or high maneuverability. The NASA Lewis effort involving STOVL propulsion systems is focused primarily on component-level experimental and analytical research. The high-maneuverability portion of this effort, called the High Alpha Technology Program (HATP), is part of a cooperative program among NASA's Lewis, Langley, Ames, and Dryden facilities. The overall objective of the NASA Inlet Experiments portion of the HATP, which NASA Lewis leads, is to develop and enhance inlet technology that will ensure high performance and stability of the propulsion system during aircraft maneuvers at high angles of attack. To accomplish this objective, both wind-tunnel and flight experiments are used to obtain steady-state and dynamic data, and computational fluid dynamics (CFD) codes are used for analyses. This overview of the High Performance Aircraft Propulsion Research Program includes a sampling of the results obtained thus far and plans for the future.

  2. Performance, emissions, and physical characteristics of a rotating combustion aircraft engine

    NASA Technical Reports Server (NTRS)

    Berkowitz, M.; Hermes, W. L.; Mount, R. E.; Myers, D.

    1976-01-01

    The RC2-75, a liquid cooled two chamber rotary combustion engine (Wankel type), designed for aircraft use, was tested and representative baseline (212 KW, 285 BHP) performance and emissions characteristics established. The testing included running fuel/air mixture control curves and varied ignition timing to permit selection of desirable and practical settings for running wide open throttle curves, propeller load curves, variable manifold pressure curves covering cruise conditions, and EPA cycle operating points. Performance and emissions data were recorded for all of the points run. In addition to the test data, information required to characterize the engine and evaluate its performance in aircraft use is provided over a range from one half to twice its present power. The exhaust emissions results are compared to the 1980 EPA requirements. Standard day take-off brake specific fuel consumption is 356 g/KW-HR (.585 lb/BHP-HR) for the configuration tested.

  3. The X-31 aircraft: Advances in aircraft agility and performance

    NASA Astrophysics Data System (ADS)

    Alcorn, C. W.; Croom, M. A.; Francis, M. S.; Ross, H.

    1996-08-01

    The X-31 enhanced fighter maneuverability (EFM) demonstrator has pioneered agile flight in the post-stall flight regime and explored integrated multi-axis thrust vectoring across a broad flight envelope. Its maneuvering achievements include sustained flight up to 70 degrees angle of attack, velocity vector rolls in deep post-stall conditions, and post-stall turns from high entry to exit speeds with ultra low turning/transitional conditions. The concept of post-stall maneuverability was extensively studied in simulations preceding initiation of the X-31 program. These simulations provided a baseline for tactical utility demonstrations and vehicle design requirements. Post-stall maneuverability was not achieved without encountering and mitigating the effects of highly unsteady, asymmetric, vortex-dominated flow-fields associated with post-stall flight. Anomalies in vehicle response to control inputs were observed at high angles of attack, as were differences between simulator and actual flight parameters due to a misrepresentation of the effects of these complex flowfields. Some preliminary force and moment data for the X-31 configuration during dynamic maneuvers are provided to highlight the complex nature of the flowfield. The X-31 aircraft's enabling capabilities, including multi-axis thrust vectoring and integrated flight/propulsion control also provided performance enhancements across the entire flight envelope. In what were known as ‘quasi-tailless’ experiments, conventional aerodynamic control surfaces were used to reduce or eliminate the stabilizing influence of the vertical stabilizer, while the vehicle's multi-axis thrust vectoring capability was used for restabilization. Properly exploited, these technologies can lead to the reduction or elimination of traditional aerodynamic control surfaces, which provides profound improvements in vehicle range, weight, payload, and low observability. This review focuses on some of the principal aerodynamic issues

  4. Thermal Performance of Aircraft Polyurethane Seat Cushions

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.

    1982-01-01

    Aircraft seat materials were evaluated in terms of their thermal performance. The materials were evaluated using (a) thermogravimetric analysis, (b) differential scanning calorimetry, (c) a modified NBS smoke chamber to determine the rate of mass loss and (d) the NASA T-3 apparatus to determine the thermal efficiency. In this paper, the modified NBS smoke chamber will be described in detail since it provided the most conclusive results. The NBS smoke chamber was modified to measure the weight loss of material when exposed to a radiant heat source over the range of 2.5 to 7.5 W/sq cm. This chamber has been utilized to evaluate the thermal performance of various heat blocking layers utilized to protect the polyurethane cushioning foam used in aircraft seats. Various kinds of heat blocking layers were evaluated by monitoring the weight loss of miniature seat cushions when exposed to the radiant heat. The effectiveness of aluminized heat blocking systems was demonstrated when compared to conventional heat blocking layers such as neoprene. All heat blocking systems showed good fire protection capabilities when compared to the state-of-the-art, i.e., wool-nylon over polyurethane foam.

  5. Thermal performance of aircraft polyurethane seat cushions

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.

    1982-01-01

    Measurements were conducted on 7.6 x 7.6 cm samples of polyurethane seat cushion material in a modified National Bureau of Standards smoke density chamber to simulate real life conditions for an onboard aircraft fire or post-crash fire. In this study, a non-flaming heat radiation condition was simulated. Two aluminized polymeric fabrics (Norfab 11HT-26-A and Preox 1100-4) and one neoprene type material in two thicknesses (Vonar 2 and 3) were tested as heat blocking layers to protect the urethane foam from rapid heat degradation. Thermogravimetric analysis and differential scanning calorimetry were performed to characterize thermally the materials tested. It was found that Vonar 2 or 3 provided approximately equal thermal protection to F.R. urethane as the aluminized fabrics, but at a significant weight penalty. The efficiency of the foams to absorb heat per unit mass loss when protected with the heat blocking layer decreases in the heating range of 2.5-5.0 W/sq cm, but remains unchanged or slightly increases in the range of 5.0-7.5 W/sq cm. The results show that at all heat flux ranges tested the usage of a heat blocking layer in aircraft seats significantly improves their thermal performance.

  6. A simplified flight-test method for determining aircraft takeoff performance that includes effects of pilot technique

    NASA Technical Reports Server (NTRS)

    Larson, T. J.; Schweikhard, W. G.

    1974-01-01

    A method for evaluating aircraft takeoff performance from brake release to air-phase height that requires fewer tests than conventionally required is evaluated with data for the XB-70 airplane. The method defines the effects of pilot technique on takeoff performance quantitatively, including the decrease in acceleration from drag due to lift. For a given takeoff weight and throttle setting, a single takeoff provides enough data to establish a standardizing relationship for the distance from brake release to any point where velocity is appropriate to rotation. The lower rotation rates penalized takeoff performance in terms of ground roll distance; the lowest observed rotation rate required a ground roll distance that was 19 percent longer than the highest. Rotations at the minimum rate also resulted in lift-off velocities that were approximately 5 knots lower than the highest rotation rate at any given lift-off distance.

  7. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2016-01-01

    The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  8. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2015-01-01

    The purpose of this presentation is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  9. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2015-01-01

    The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  10. Effect of Nanoclay Reinforcement on the Friction Braking Performance of Hybrid Phenolic Friction Composites

    NASA Astrophysics Data System (ADS)

    Singh, Tej; Patnaik, Amar; Satapathy, Bhabani K.; Kumar, Mukesh; Tomar, Bharat S.

    2013-03-01

    Friction composite formulation consisting of decreasing nanoclay/lapinus fibres content, increasing graphite/aramid fibres content, and master batch of phenolic/barite is designed, fabricated, and characterized for their mechanical, thermo-mechanical, and tribological studies in braking situations. A standard test protocol is adopted for evaluating braking performance. The nanoclay content (≤2.25 wt.%) enhances hardness, impact strength, storage, and loss modulus characteristics of the friction composites. Such composites exhibit higher friction stability as well as variability coefficient. However, composites with higher content of nanoclay (~2.75 wt.%) exhibit moderate level of stability coefficient and minimum variability coefficient. Fade performance improves with nanoclay content whereas friction fluctuations increase continuously with increasing nanoclay content. The disc temperature continuously rises with nanoclay contents, it becomes maximum for nanoclay content 2.75 wt.%. The same composition found to be effective in arresting temperature rise, arrests fading, improves recovery, moderate stability with minimum variability coefficient, and higher level of μ-performance hence recommended. The wear performance deteriorates with lapinus/nanoclay content and improves with the amount of aramid/graphite in the friction composites. Worn surface morphology study (using SEM) reveals the associated wear mechanisms responsible for wear of investigated composites. XRD study confirms the presence and dispersion of nanoclay with other composite ingredients.

  11. Aircraft Anomaly Detection Using Performance Models Trained on Fleet Data

    NASA Technical Reports Server (NTRS)

    Gorinevsky, Dimitry; Matthews, Bryan L.; Martin, Rodney

    2012-01-01

    This paper describes an application of data mining technology called Distributed Fleet Monitoring (DFM) to Flight Operational Quality Assurance (FOQA) data collected from a fleet of commercial aircraft. DFM transforms the data into aircraft performance models, flight-to-flight trends, and individual flight anomalies by fitting a multi-level regression model to the data. The model represents aircraft flight performance and takes into account fixed effects: flight-to-flight and vehicle-to-vehicle variability. The regression parameters include aerodynamic coefficients and other aircraft performance parameters that are usually identified by aircraft manufacturers in flight tests. Using DFM, the multi-terabyte FOQA data set with half-million flights was processed in a few hours. The anomalies found include wrong values of competed variables, (e.g., aircraft weight), sensor failures and baises, failures, biases, and trends in flight actuators. These anomalies were missed by the existing airline monitoring of FOQA data exceedances.

  12. A New Approach to Aircraft Robust Performance Analysis

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Tierno, Jorge E.

    2004-01-01

    A recently developed algorithm for nonlinear system performance analysis has been applied to an F16 aircraft to begin evaluating the suitability of the method for aerospace problems. The algorithm has a potential to be much more efficient than the current methods in performance analysis for aircraft. This paper is the initial step in evaluating this potential.

  13. 49 CFR 570.59 - Service brake system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... surface. Drum brake linings shall be securely attached to brake shoes. Disc brake pads shall be securely... 49 Transportation 6 2013-10-01 2013-10-01 false Service brake system. 570.59 Section 570.59... 10,000 Pounds § 570.59 Service brake system. (a) Service brake performance. Compliance with any...

  14. Aircraft performance and control in downburst wind shear

    NASA Technical Reports Server (NTRS)

    Bray, Richard S.

    1986-01-01

    The methods developed for analyses of the winds and of aircraft performance during an investigation of a downburst wind-shear-induced accident have been utilized in a more general study of aircraft performance in such encounters. The computed responses of a generic, large transport aircraft to take-off and approach encounters with a downburst wind field were used in examining the effects of performance factors and control procedures on the ability of the aircraft to survive. Obvious benefits are seen for higher initial encounter speeds, maximum thrust-weight values typical of two-engined aircraft, and immediacy of pilot response. The results of controlling to a constant, predetermined, pitch attitude are demonstrated. Control algorithms that sacrifice altitude for speed appear to provide a higher level of survivability, but guidance displays more explicitly defining flightpath than those commonly in use might be required.

  15. The effects of control-display gain on performance of race car drivers in an isometric braking task.

    PubMed

    de Winter, J C F; de Groot, S

    2012-12-01

    To minimise lap times during car racing, it is important to build up brake forces rapidly and maintain precise control. We examined the effect of the amplification factor (gain) between brake pedal force and a visually represented output value on a driver's ability to track a target value. The test setup was a formula racing car cockpit fitted with an isometric brake pedal. Thirteen racing drivers performed tracking tasks with four control-display gains and two target functions: a step function (35 trials per gain) and a multisine function (15 trials per gain). The control-display gain had only minor effects on root mean-squared error between output value and target value, but it had large effects on build-up speed, overshoot, within-participants variability, and self-reported physical load. The results confirm the hypothesis that choosing an optimum gain involves balancing stability against physical effort.

  16. The impact of bobbin material and design on magnetorheological brake performance

    NASA Astrophysics Data System (ADS)

    Song, B. K.; Nguyen, Q. H.; Choi, S. B.; Woo, J. K.

    2013-10-01

    In this work, a new configuration of magnetorheological brakes (MRBs) is developed in order to improve the compactness, manufacturing accuracy and cost of conventional ones. In the conventional configuration of MRBs, the coil is normally wound on a nonmagnetic bobbin which is placed on the stationary housing. This causes difficulties in manufacturing and the bottle-neck problem of the magnetic circuit of the MRBs. In the proposed configuration, the nonmagnetic bobbin is eliminated and the coil is wound directly on a magnetic bobbin which is a part of the housing. In this case, the magnetic bobbin part should be designed with a contractive cross-section in order to prevent magnetic flux going through and thus forcing the magnetic flux across the MR fluid (MRF) duct. After proposing the new configurations of MRBs, the modelling of the MRBs is performed based on the Bingham rheological model of the MRF. An optimal design of the proposed MRBs and conventional MRBs is then performed based on finite element analysis of the magnetic circuit of the MRBs. A comparative work between the optimal parameters of the proposed MRBs and the conventional MRBs is conducted and the advanced performance characteristics of the proposed MRBs are then investigated. In addition, experiments on both the conventional and the proposed MRBs are performed to validate the advanced performance characteristics of the proposed MRBs.

  17. Subsonic aircraft: Evolution and the matching of size to performance

    NASA Technical Reports Server (NTRS)

    Loftin, L. K., Jr.

    1980-01-01

    Methods for estimating the approximate size, weight, and power of aircraft intended to meet specified performance requirements are presented for both jet-powered and propeller-driven aircraft. The methods are simple and require only the use of a pocket computer for rapid application to specific sizing problems. Application of the methods is illustrated by means of sizing studies of a series of jet-powered and propeller-driven aircraft with varying design constraints. Some aspects of the technical evolution of the airplane from 1918 to the present are also briefly discussed.

  18. The effect of interior aircraft noise on pilot performance.

    PubMed

    Lindvall, Johan; Västfjall, Daniel

    2013-04-01

    This study examined the effect of the interior sounds of an aircraft cockpit on ratings of affect and expected performance decrement. While exposed to 12 interior aircraft sounds, of which half were modified to correspond to what is experienced with an active noise reduction (ANR) headset, 23 participants rated their affective reactions and how they believed their performance on various tasks would be affected. The results suggest that implementation of ANR-technique has a positive effect on ratings of expected performance. In addition, affective reactions to the noise are related to ratings of expected performance. The implications of these findings for both research and pilot performance are discussed. PMID:24032324

  19. Study of materials performance model for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Leary, K.; Skratt, J.

    1980-01-01

    A demonstration version of an aircraft interior materials computer data library was developed and contains information on selected materials applicable to aircraft seats and wall panels, including materials for the following: panel face sheets, bond plies, honeycomb, foam, decorative film systems, seat cushions, adhesives, cushion reinforcements, fire blocking layers, slipcovers, decorative fabrics and thermoplastic parts. The information obtained for each material pertains to the material's performance in a fire scenario, selected material properties and several measures of processability.

  20. Stability and control of maneuvering high-performance aircraft

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.; Berry, P. W.

    1977-01-01

    The stability and control of a high-performance aircraft was analyzed, and a design methodology for a departure prevention stability augmentation system (DPSAS) was developed. A general linear aircraft model was derived which includes maneuvering flight effects and trim calculation procedures for investigating highly dynamic trajectories. The stability and control analysis systematically explored the effects of flight condition and angular motion, as well as the stability of typical air combat trajectories. The effects of configuration variation also were examined.

  1. Gravity brake

    DOEpatents

    Lujan, Richard E.

    2001-01-01

    A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.

  2. Vehicle brake testing system

    DOEpatents

    Stevens, Samuel S [Harriman, TN; Hodgson, Jeffrey W [Lenoir City, TN

    2002-11-19

    This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

  3. Deployable Engine Air Brake

    NASA Technical Reports Server (NTRS)

    2014-01-01

    On approach, next-generation aircraft are likely to have airframe noise levels that are comparable to or in excess of engine noise. ATA Engineering, Inc. (ATA) is developing a novel quiet engine air brake (EAB), a device that generates "equivalent drag" within the engine through stream thrust reduction by creating a swirling outflow in the turbofan exhaust nozzle. Two Phase II projects were conducted to mature this technology: (1) a concept development program (CDP) and (2) a system development program (SDP).

  4. Transient switching control strategy from regenerative braking to anti-lock braking with a semi-brake-by-wire system

    NASA Astrophysics Data System (ADS)

    Li, Liang; Li, Xujian; Wang, Xiangyu; Liu, Yahui; Song, Jian; Ran, Xu

    2016-02-01

    Regenerative braking is an important technology in improving fuel economy of an electric vehicle (EV). However, additional motor braking will change the dynamic characteristics of the vehicle, leading to braking instability, especially when the anti-lock braking system (ABS) is triggered. In this paper, a novel semi-brake-by-wire system, without the use of a pedal simulator and fail-safe device, is proposed. In order to compensate for the hysteretic characteristics of the designed brake system while ensure braking reliability and fuel economy when the ABS is triggered, a novel switching compensation control strategy using sliding mode control is brought forward. The proposed strategy converts the complex coupling braking process into independent control of hydraulic braking and regenerative braking, through which a balance between braking performance, braking reliability, braking safety and fuel economy is achieved. Simulation results show that the proposed strategy is effective and adaptable in different road conditions while the large wheel slip rate is triggered during a regenerative braking course. The research provides a new possibility of low-cost equipment and better control performance for the regenerative braking in the EV and the hybrid EV.

  5. Improving Student Naval Aviator Aircraft Carrier Landing Performance

    ERIC Educational Resources Information Center

    Sheppard, Thomas H.; Foster, T. Chris

    2008-01-01

    This article discusses the use of human performance technology (HPT) to improve qualification rates for learning to land onboard aircraft carriers. This project started as a request for a business case analysis and evolved into a full-fledged performance improvement project, from mission analysis through evaluation. The result was a significant…

  6. Braking system

    DOEpatents

    Norgren, D.U.

    1982-09-23

    A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling means causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location.

  7. Introduction to the problem of rocket-powered aircraft performance

    NASA Technical Reports Server (NTRS)

    Ivey, H Reese; Bowen, Edward N JR; Oborny, Lester F

    1947-01-01

    An introduction to the problem of determining the fundamental limitations on the performance possibilities of rocket-powered aircraft is presented. Previous material on the subject is reviewed and given in condensed form along with supplementary analyses. Some of the problems discussed are: 1) limiting velocity of a rocket projectile; 2) limiting velocity of a rocket jet; 3) jet efficiency; 4) nozzle characteristics; 5) maximum attainable altitudes; 6) ranges. Formulas are presented relating the performance of a rocket-powered aircraft to basic weight and nozzle dimensional parameters. The use of these formulas is illustrated by their application to the special case of a nonlifting rocket projectile.

  8. Advances in Experiment Design for High Performance Aircraft

    NASA Technical Reports Server (NTRS)

    Morelli, Engene A.

    1998-01-01

    A general overview and summary of recent advances in experiment design for high performance aircraft is presented, along with results from flight tests. General theoretical background is included, with some discussion of various approaches to maneuver design. Flight test examples from the F-18 High Alpha Research Vehicle (HARV) are used to illustrate applications of the theory. Input forms are compared using Cramer-Rao bounds for the standard errors of estimated model parameters. Directions for future research in experiment design for high performance aircraft are identified.

  9. Night time aircraft noise exposure and children's cognitive performance.

    PubMed

    Stansfeld, Stephen; Hygge, Staffan; Clark, Charlotte; Alfred, Tamuno

    2010-01-01

    Chronic aircraft noise exposure in children is associated with impairment of reading and long-term memory. Most studies have not differentiated between day or nighttime noise exposure. It has been hypothesized that sleep disturbance might mediate the association of aircraft noise exposure and cognitive impairment in children. This study involves secondary analysis of data from the Munich Study and the UK Road Traffic and Aircraft Noise Exposure and Children's Cognition and Health (RANCH) Study sample to test this. In the Munich study, 330 children were assessed on cognitive measures in three measurement waves a year apart, before and after the switchover of airports. Self-reports of sleep quality were analyzed across airports, aircraft noise exposure and measurement wave to test whether changes in nighttime noise exposure had any effect on reported sleep quality, and whether this showed the same pattern as for changes in cognitive performance. For the UK sample of the RANCH study, night noise contour information was linked to the children's home and related to sleep disturbance and cognitive performance. In the Munich study, analysis of sleep quality questions showed no consistent interactions between airport, noise, and measurement wave, suggesting that poor sleep quality does not mediate the association between noise exposure and cognition. Daytime and nighttime aircraft noise exposure was highly correlated in the RANCH study. Although night noise exposure was significantly associated with impaired reading and recognition memory, once home night noise exposure was centered on daytime school noise exposure, night noise had no additional effect to daytime noise exposure. These analyses took advantage of secondary data available from two studies of aircraft noise and cognition. They were not initially designed to examine sleep disturbance and cognition, and thus, there are methodological limitations which make it less than ideal in giving definitive answers to these

  10. 14 CFR 29.735 - Brakes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Brakes. 29.735 Section 29.735 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Landing Gear § 29.735 Brakes....

  11. 14 CFR 29.921 - Rotor brake.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rotor brake. 29.921 Section 29.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 29.921 Rotor brake. If there is...

  12. 14 CFR 29.735 - Brakes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Brakes. 29.735 Section 29.735 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Landing Gear § 29.735 Brakes....

  13. 14 CFR 27.735 - Brakes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Brakes. 27.735 Section 27.735 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Landing Gear § 27.735 Brakes. For...

  14. 14 CFR 27.735 - Brakes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Brakes. 27.735 Section 27.735 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Landing Gear § 27.735 Brakes. For...

  15. 14 CFR 27.921 - Rotor brake.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rotor brake. 27.921 Section 27.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.921 Rotor brake. If there is...

  16. 14 CFR 29.921 - Rotor brake.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor brake. 29.921 Section 29.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 29.921 Rotor brake. If there is...

  17. 14 CFR 27.735 - Brakes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Brakes. 27.735 Section 27.735 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Landing Gear § 27.735 Brakes. For...

  18. 14 CFR 27.735 - Brakes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Brakes. 27.735 Section 27.735 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Landing Gear § 27.735 Brakes. For...

  19. 14 CFR 27.921 - Rotor brake.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Rotor brake. 27.921 Section 27.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.921 Rotor brake. If there is...

  20. 14 CFR 29.735 - Brakes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Brakes. 29.735 Section 29.735 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Landing Gear § 29.735 Brakes....

  1. 14 CFR 27.921 - Rotor brake.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Rotor brake. 27.921 Section 27.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.921 Rotor brake. If there is...

  2. 14 CFR 29.735 - Brakes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Brakes. 29.735 Section 29.735 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Landing Gear § 29.735 Brakes....

  3. 14 CFR 27.735 - Brakes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Brakes. 27.735 Section 27.735 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Landing Gear § 27.735 Brakes. For...

  4. 14 CFR 27.921 - Rotor brake.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor brake. 27.921 Section 27.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.921 Rotor brake. If there is...

  5. 14 CFR 29.921 - Rotor brake.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Rotor brake. 29.921 Section 29.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 29.921 Rotor brake. If there is...

  6. 14 CFR 29.735 - Brakes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Brakes. 29.735 Section 29.735 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Landing Gear § 29.735 Brakes....

  7. 14 CFR 29.921 - Rotor brake.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Rotor brake. 29.921 Section 29.921 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 29.921 Rotor brake. If there is...

  8. Adaptive Optimization of Aircraft Engine Performance Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Long, Theresa W.

    1995-01-01

    Preliminary results are presented on the development of an adaptive neural network based control algorithm to enhance aircraft engine performance. This work builds upon a previous National Aeronautics and Space Administration (NASA) effort known as Performance Seeking Control (PSC). PSC is an adaptive control algorithm which contains a model of the aircraft's propulsion system which is updated on-line to match the operation of the aircraft's actual propulsion system. Information from the on-line model is used to adapt the control system during flight to allow optimal operation of the aircraft's propulsion system (inlet, engine, and nozzle) to improve aircraft engine performance without compromising reliability or operability. Performance Seeking Control has been shown to yield reductions in fuel flow, increases in thrust, and reductions in engine fan turbine inlet temperature. The neural network based adaptive control, like PSC, will contain a model of the propulsion system which will be used to calculate optimal control commands on-line. Hopes are that it will be able to provide some additional benefits above and beyond those of PSC. The PSC algorithm is computationally intensive, it is valid only at near steady-state flight conditions, and it has no way to adapt or learn on-line. These issues are being addressed in the development of the optimal neural controller. Specialized neural network processing hardware is being developed to run the software, the algorithm will be valid at steady-state and transient conditions, and will take advantage of the on-line learning capability of neural networks. Future plans include testing the neural network software and hardware prototype against an aircraft engine simulation. In this paper, the proposed neural network software and hardware is described and preliminary neural network training results are presented.

  9. General aviation components. [performance and capabilities of general aviation aircraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An overview is presented of selected aviation vehicles. The capabilities and performance of these vehicles are first presented, followed by a discussion of the aerodynamics, structures and materials, propulsion systems, noise, and configurations of fixed-wing aircraft. Finally the discussion focuses on the history, status, and future of attempts to provide vehicles capable of short-field operations.

  10. Wireless Local Area Network Performance Inside Aircraft Passenger Cabins

    NASA Technical Reports Server (NTRS)

    Whetten, Frank L.; Soroker, Andrew; Whetten, Dennis A.; Whetten, Frank L.; Beggs, John H.

    2005-01-01

    An examination of IEEE 802.11 wireless network performance within an aircraft fuselage is performed. This examination measured the propagated RF power along the length of the fuselage, and the associated network performance: the link speed, total throughput, and packet losses and errors. A total of four airplanes: one single-aisle and three twin-aisle airplanes were tested with 802.11a, 802.11b, and 802.11g networks.

  11. Coordinated crew performance in commercial aircraft operations

    NASA Technical Reports Server (NTRS)

    Murphy, M. R.

    1977-01-01

    A specific methodology is proposed for an improved system of coding and analyzing crew member interaction. The complexity and lack of precision of many crew and task variables suggest the usefulness of fuzzy linguistic techniques for modeling and computer simulation of the crew performance process. Other research methodologies and concepts that have promise for increasing the effectiveness of research on crew performance are identified.

  12. Wind Information Uplink to Aircraft Performing Interval Management Operations

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat; Barmore, Bryan; Swieringa, Kurt

    2015-01-01

    The accuracy of the wind information used to generate trajectories for aircraft performing Interval Management (IM) operations is critical to the success of an IM operation. There are two main forms of uncertainty in the wind information used by the Flight Deck Interval Management (FIM) equipment. The first is the accuracy of the forecast modeling done by the weather provider. The second is that only a small subset of the forecast data can be uplinked to the aircraft for use by the FIM equipment, resulting in loss of additional information. This study focuses on what subset of forecast data, such as the number and location of the points where the wind is sampled should be made available to uplink to the aircraft.

  13. Wind Information Uplink to Aircraft Performing Interval Management Operations

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Barmore, Bryan E.; Swieringa, Kurt A.

    2016-01-01

    provider. This is generally a global environmental prediction obtained from a weather model such as the Rapid Refresh (RAP) from the National Centers for Environmental Prediction (NCEP). The weather forecast data will have errors relative to the actual, or truth, winds that the aircraft will encounter. The second source of uncertainty is that only a small subset of the forecast data can be uplinked to the aircraft for use by the FIM equipment. This results in loss of additional information. The Federal Aviation Administration (FAA) and RTCA are currently developing standards for the communication of wind and atmospheric data to the aircraft for use in NextGen operations. This study examines the impact of various wind forecast sampling methods on IM performance metrics to inform the standards development.

  14. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  15. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  16. Performance and aerodynamic braking of a horizontal-axis wind turbine from small-scale wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Cao, H. V.; Wentz, W. H., Jr.

    1987-01-01

    Wind tunnel tests of three 20" diameter, zero twist, zero pitch wind turbine rotor models were conducted in a 7' x 10' wind tunnel to determine the performance of such rotors with NACA 23024 and NACA 64 sub 3-621 airfoil sections. Aerodynamic braking characteristics of a 38% span, 30% chord, vented aileron configuration were measured on the NACA 23024 rotor. Surface flow patterns were observed using fluorescent mini-tufts attached to the suction side of the rotor blades. Experimental results with and without ailerons are compared to predictions using airfoil section data and a momentum performance code. Results of the performance studies show that the 64 sub 3-621 rotor produces higher peak power than the 23024 rotor for a given rotor speed. Analytical studies, however, indicate that the 23024 should produce higher power. Transition strip experiments show that the 23024 rotor is much more sensitive to roughness than the 64 sub 3-621 rotor. These trends agree with analytical predictions. Results of the aileron test show that this aileron, when deflected, produces a braking torque at all tip speed ratios. In free wheeling coastdowns the rotor blade stopped, then rotated backward at a tip speed ratio of -0.6.

  17. Effects of self-healing microcapsules on bending performance in composite brake pads

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Dong, Xiu-ping; Wang, Hui

    2009-07-01

    For the purpose of reducing self-weight, friction noise and cost, improving shock absorption, enhancing corrosion and wear resistance, brake pads made of composite materials with self-healing function are prepared to substitute metal ones by designing ingredients and applying optimized production technology. As self-healing capsules are chosen, new method with technology of self-healing microcapsules, dicyclpentadiene (DCPD) microcapsules coated with poly (urea-formaldehyde), is put forward in this paper. In the crack's extending process, the stress is concentrated at the crack end, where the microcapsule is designed to be located. When the stress goes through the microcapsules and causes them to break, the self-healing liquid runs out to fill the crack by the capillary and it will poly-react with catalyst in the composite. As a result, the crack is healed. In this paper, polymer matrix composite brake pads with 6 prescriptions are prepared and studied. Three-point bending tests are carried out according to standards in GB/T 3356-1999 and the elastic constants of these polymer matrix composites are obtained by experiments. In accordance with the law of the continuous fiber composite, elastic constants of the short-fiber composite can be calculated by proportions of each ingredient. Results show that the theoretical expected results and the experimental values are consistent. 0.3-1.2 % mass proportion of microcapsules has little effects on the composite's bending intensity and modulus of elasticity. These studies also show that self-healing microcapsules used in composite brake pads is feasible.

  18. NASA Boeing 737 Aircraft Test Results from 1996 Joint Winter Runway Friction Measurement Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1996-01-01

    A description of the joint test program objectives and scope is given together with the performance capability of the NASA Langley B-737 instrumented aircraft. The B-737 test run matrix conducted during the first 8 months of this 5-year program is discussed with a description of the different runway conditions evaluated. Some preliminary test results are discussed concerning the Electronic Recording Decelerometer (ERD) readings and a comparison of B-737 aircraft braking performance for different winter runway conditions. Detailed aircraft parameter time history records, analysis of ground vehicle friction measurements and harmonization with aircraft braking performance, assessment of induced aircraft contaminant drag, and evaluation of the effects of other factors on aircraft/ground vehicle friction performance will be documented in a NASA Technical Report which is being prepared for publication next year.

  19. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces - A velocity-rate-controlled, pressure-bias-modulated system

    NASA Technical Reports Server (NTRS)

    Stubbs, S. M.; Tanner, J. A.

    1976-01-01

    During maximum braking the average ratio of drag-force friction coefficient developed by the antiskid system to maximum drag-force friction coefficient available at the tire/runway interface was higher on dry surfaces than on wet surfaces. The gross stopping power generated by the brake system on the dry surface was more than twice that obtained on the wet surfaces. With maximum braking applied, the average ratio of side-force friction coefficient developed by the tire under antiskid control to maximum side-force friction available at the tire/runway interface of a free-rolling yawed tire was shown to decrease with increasing yaw angle. Braking reduced the side-force friction coefficient on a dry surface by 75 percent as the wheel slip ratio was increased to 0.3; on a flooded surface the coefficient dropped to near zero for the same slip ratio. Locked wheel skids were observed when the tire encountered a runway surface transition from dry to flooded, due in part to the response time required for the system to sense abrupt changes in the runway friction; however, the antiskid system quickly responded by reducing brake pressure and cycling normally during the remainder of the run on the flooded surface.

  20. Flexible body dynamic stability for high performance aircraft

    NASA Technical Reports Server (NTRS)

    Goforth, E. A.; Youssef, H. M.; Apelian, C. V.; Schroeder, S. C.

    1991-01-01

    Dynamic equations which include the effects of unsteady aerodynamic forces and a flexible body structure were developed for a free flying high performance fighter aircraft. The linear and angular deformations are assumed to be small in the body reference frame, allowing the equations to be linearized in the deformation variables. Equations for total body dynamics and flexible body dynamics are formulated using the hybrid coordinate method and integrated in a state space format. A detailed finite element model of a generic high performance fighter aircraft is used to generate the mass and stiffness matrices. Unsteady aerodynamics are represented by a rational function approximation of the doublet lattice matrices. The equations simplify for the case of constant angular rate of the body reference frame, allowing the effect of roll rate to be studied by computing the eigenvalues of the system. It is found that the rigid body modes of the aircraft are greatly affected by introducing a constant roll rate, while the effect on the flexible modes is minimal for this configuration.

  1. Switching LPV Control for High Performance Tactical Aircraft

    NASA Technical Reports Server (NTRS)

    Lu, Bei; Wu, Fen; Kim, SungWan

    2004-01-01

    This paper examines a switching Linear Parameter-Varying (LPV) control approach to determine if it is practical to use for flight control designs within a wide angle of attack region. The approach is based on multiple parameter-dependent Lyapunov functions. The full parameter space is partitioned into overlapping subspaces and a family of LPV controllers are designed, each suitable for a specific parameter subspace. The hysteresis switching logic is used to accomplish the transition among different parameter subspaces. The proposed switching LPV control scheme is applied to an F-16 aircraft model with different actuator dynamics in low and high angle of attack regions. The nonlinear simulation results show that the aircraft performs well when switching among different angle of attack regions.

  2. Rail Brake System Using a Linear Induction Motor for Dynamic Braking

    NASA Astrophysics Data System (ADS)

    Sakamoto, Yasuaki; Kashiwagi, Takayuki; Tanaka, Minoru; Hasegawa, Hitoshi; Sasakawa, Takashi; Fujii, Nobuo

    One type of braking system for railway vehicles is the eddy current brake. Because this type of brake has the problem of rail heating, it has not been used for practical applications in Japan. Therefore, we proposed the use of a linear induction motor (LIM) for dynamic braking in eddy current brake systems. The LIM reduces rail heating and uses an inverter for self excitation. In this paper, we estimated the performance of an LIM from experimental results of a fundamental test machine and confirmed that the LIM generates an approximately constant braking force under constant current excitation. At relatively low frequencies, this braking force remains unaffected by frequency changes. The reduction ratio of rail heating is also approximately proportional to the frequency. We also confirmed that dynamic braking resulting in no electrical output can be used for drive control of the LIM. These characteristics are convenient for the realization of the LIM rail brake system.

  3. Analysis of Aircraft Control Performance using a Fuzzy Rule Base Representation of the Cooper-Harper Aircraft Handling Quality Rating

    NASA Technical Reports Server (NTRS)

    Tseng, Chris; Gupta, Pramod; Schumann, Johann

    2006-01-01

    The Cooper-Harper rating of Aircraft Handling Qualities has been adopted as a standard for measuring the performance of aircraft since it was introduced in 1966. Aircraft performance, ability to control the aircraft, and the degree of pilot compensation needed are three major key factors used in deciding the aircraft handling qualities in the Cooper- Harper rating. We formulate the Cooper-Harper rating scheme as a fuzzy rule-based system and use it to analyze the effectiveness of the aircraft controller. The automatic estimate of the system-level handling quality provides valuable up-to-date information for diagnostics and vehicle health management. Analyzing the performance of a controller requires a set of concise design requirements and performance criteria. Ir, the case of control systems fm a piloted aircraft, generally applicable quantitative design criteria are difficult to obtain. The reason for this is that the ultimate evaluation of a human-operated control system is necessarily subjective and, with aircraft, the pilot evaluates the aircraft in different ways depending on the type of the aircraft and the phase of flight. In most aerospace applications (e.g., for flight control systems), performance assessment is carried out in terms of handling qualities. Handling qualities may be defined as those dynamic and static properties of a vehicle that permit the pilot to fully exploit its performance in a variety of missions and roles. Traditionally, handling quality is measured using the Cooper-Harper rating and done subjectively by the human pilot. In this work, we have formulated the rules of the Cooper-Harper rating scheme as fuzzy rules with performance, control, and compensation as the antecedents, and pilot rating as the consequent. Appropriate direct measurements on the controller are related to the fuzzy Cooper-Harper rating system: a stability measurement like the rate of change of the cost function can be used as an indicator if the aircraft is under

  4. BRAKE DEVICE

    DOEpatents

    O'Donnell, T.J.

    1959-03-10

    A brake device is described for utilization in connection with a control rod. The device comprises a pair of parallelogram link mechanisms, a control rod moveable rectilinearly therebetween in opposite directions, and shoes resiliently supported by the mechanism for frictional engagement with the control rod.

  5. 49 CFR 232.215 - Transfer train brake tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Transfer train brake tests. 232.215 Section 232... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION BRAKE SYSTEM SAFETY STANDARDS FOR FREIGHT AND OTHER NON-PASSENGER... brake tests. (a) A transfer train, as defined in § 232.5, shall receive a brake test performed by...

  6. 49 CFR 232.215 - Transfer train brake tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Transfer train brake tests. 232.215 Section 232... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION BRAKE SYSTEM SAFETY STANDARDS FOR FREIGHT AND OTHER NON-PASSENGER... brake tests. (a) A transfer train, as defined in § 232.5, shall receive a brake test performed by...

  7. 49 CFR 232.215 - Transfer train brake tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Transfer train brake tests. 232.215 Section 232... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION BRAKE SYSTEM SAFETY STANDARDS FOR FREIGHT AND OTHER NON-PASSENGER... brake tests. (a) A transfer train, as defined in § 232.5, shall receive a brake test performed by...

  8. 49 CFR 238.317 - Class II brake test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Class II brake test. 238.317 Section 238.317... Requirements for Tier I Passenger Equipment § 238.317 Class II brake test. (a) A Class II brake test shall be.... In these circumstances, a Class II brake test shall be performed prior to the train's departure...

  9. 49 CFR 232.215 - Transfer train brake tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Transfer train brake tests. 232.215 Section 232... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION BRAKE SYSTEM SAFETY STANDARDS FOR FREIGHT AND OTHER NON-PASSENGER... brake tests. (a) A transfer train, as defined in § 232.5, shall receive a brake test performed by...

  10. 49 CFR 238.317 - Class II brake test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Class II brake test. 238.317 Section 238.317... Requirements for Tier I Passenger Equipment § 238.317 Class II brake test. (a) A Class II brake test shall be.... In these circumstances, a Class II brake test shall be performed prior to the train's departure...

  11. 49 CFR 238.317 - Class II brake test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Class II brake test. 238.317 Section 238.317... Requirements for Tier I Passenger Equipment § 238.317 Class II brake test. (a) A Class II brake test shall be.... In these circumstances, a Class II brake test shall be performed prior to the train's departure...

  12. 49 CFR 232.215 - Transfer train brake tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Transfer train brake tests. 232.215 Section 232... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION BRAKE SYSTEM SAFETY STANDARDS FOR FREIGHT AND OTHER NON-PASSENGER... brake tests. (a) A transfer train, as defined in § 232.5, shall receive a brake test performed by...

  13. Automotive Brake Systems.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This correspondence course, orginally developed for the Marine Corps, is designed to provide mechanics with an understanding of the basic operations of automotive brake systems on military vehicles. The course contains four study units covering hydraulic brakes, air brakes, power brakes, and auxiliary brake systems. A troubleshooting guide for…

  14. Thermal analysis and temperature characteristics of a braking resistor for high-speed trains for changes in the braking current

    NASA Astrophysics Data System (ADS)

    Lee, Dae-Dong; Kang, Hyun-Il; Shim, Jae-Myung

    2015-09-01

    Electric brake systems are used in high-speed trains to brake trains by converting the kinetic energy of a railway vehicle to electric energy. The electric brake system consists of a regenerative braking system and a dynamic braking system. When the electric energy generated during the dynamic braking process is changed to heat through the braking resistor, the braking resistor can overheat; thus, failures can occur to the motor block. In this paper, a braking resistor for a high-speed train was used to perform thermal analyses and tests, and the results were analyzed. The analyzed data were used to estimate the dependence of the brake currents and the temperature rises on speed changes up to 300 km/h, at which a test could not be performed.

  15. Modelling and validation of magnetorheological brake responses using parametric approach

    NASA Astrophysics Data System (ADS)

    Z, Zainordin A.; A, Abdullah M.; K, Hudha

    2013-12-01

    Magnetorheological brake (MR Brake) is one x-by-wire systems which performs better than conventional brake systems. MR brake consists of a rotating disc that is immersed with Magnetorheological Fluid (MR Fluid) in an enclosure of an electromagnetic coil. The applied magnetic field will increase the yield strength of the MR fluid where this fluid was used to decrease the speed of the rotating shaft. The purpose of this paper is to develop a mathematical model to represent MR brake with a test rig. The MR brake model is developed based on actual torque characteristic which is coupled with motion of a test rig. Next, the experimental are performed using MR brake test rig and obtained three output responses known as angular velocity response, torque response and load displacement response. Furthermore, the MR brake was subjected to various current. Finally, the simulation results of MR brake model are then verified with experimental results.

  16. Performance of Several Combustion Chambers Designed for Aircraft Oil Engines

    NASA Technical Reports Server (NTRS)

    Joachim, William F; Kemper, Carlton

    1928-01-01

    Several investigations have been made on single-cylinder test engines to determine the performance characteristics of four types of combustion chambers designed for aircraft oil engines. Two of the combustion chambers studied were bulb-type precombustion chambers, the connecting orifice of one having been designed to produce high turbulence by tangential air flow in both the precombustion chamber and the cylinder. The other two were integral combustion chambers, one being dome-shaped and the other pent-roof shaped. The injection systems used included cam and eccentric driven fuel pumps, and diaphragm and spring-loaded fuel-injection valves. A diaphragm type maximum cylinder pressure indicator was used in part of these investigations with which the cylinder pressures were controlled to definite valves. The performance of the engines when equipped with each of the combustion chambers is discussed. The best performance for the tests reported was obtained with a bulb-type combustion chamber designed to give a high degree of turbulence within the bulb and cylinder. (author)

  17. Quest for Performance: the Evolution of Modern Aircraft

    NASA Technical Reports Server (NTRS)

    Loftin, Lawrence K., Jr.

    1985-01-01

    The technical evolution of the subsonic airplane is traced from a curiosity at the beginning of World War I to the highly useful machine of today. Included are descriptions of significant aircraft which incorporated important technical innovations and served to shape the future course of aeronautical development, as well as aircraft which represented the state-of-art in a particular time frame or were much used or liked. The discussion is related primarily to aircraft configuration evolution and associated aerodynamic characteristics and, to a lesser extent, to developments in aircraft construction and propulsion. The material is presented in a manner designed to appeal to the nontechnical reader who is interested in the evolution of the airplane, as well as to students of aeronautical engineering and others with an aeronautical background.

  18. Human Performance Considerations for Remotely Piloted Aircraft Systems (RPAS)

    NASA Technical Reports Server (NTRS)

    Shively, R. Jay; Hobbs, Alan; Lyall, Beth; Rorie, Conrad

    2015-01-01

    Successful integration of Remotely Piloted Aircraft Systems (RPAS) into civil airspace will not only require solutions to technical challenges, but will also require that the design and operation of RPAS take into account human limitations and capabilities. Human factors can affect overall system performance whenever the system relies on people to interact with another element of the system. Four types of broad interactions can be described. These are (1) interactions between people and hardware, such as controls and displays; (2) human use of procedures and documentation; (3) impact of the task environment, including lighting, noise and monotony; and lastly, (4) interactions between operational personnel, including communication and coordination. In addition to the human factors that have been identified for conventional aviation, RPAS operations introduce a set of unique human challenges. The purpose of document is to raise human factors issues for consideration by workgroups of the ICAO RPAS panel as they work to develop guidance material and additions to ICAO annexes. It is anticipated that the content of this document will be revised and updated as the work of the panel progresses.

  19. Tailless aircraft performance improvements with relaxed static stability

    NASA Technical Reports Server (NTRS)

    Ashkenas, Irving L.; Klyde, David H.

    1989-01-01

    The purpose is to determine the tailless aircraft performance improvements gained from relaxed static stability, to quantify this potential in terms of range-payload improvements, and to identify other possible operational and handling benefits or problems. Two configurations were chosen for the study: a modern high aspect ratio, short-chord wing proposed as a high-altitude long endurance (HALE) remotely piloted vehicle; a wider, lower aspect ratio, high volume wing suitable for internal stowage of all fuel and payload required for a manned long-range reconnaissance mission. Flying at best cruise altitude, both unstable configurations were found to have a 14 percent improvement in range and a 7 to 9 percent improvement in maximum endurance compared to the stable configurations. The unstable manned configuration also shows a 15 percent improvement in the 50 ft takeoff obstacle distance and an improved height response to elevator control. However, it is generally more deficient in control power due to its larger adverse aileron yaw and its higher takeoff and landing lift coefficient C(sub L), both due to the downward trimmed (vs. upward trimmed for stable configurations) trailing edge surfaces.

  20. Maneuver Performance Enhancement for an Advanced Fighter/Attack Aircraft

    NASA Technical Reports Server (NTRS)

    Samuels, Jeff; Langan, Kevin J.; Schmitz, Frederic H. (Technical Monitor)

    1994-01-01

    A small scale wind tunnel test of a realistic fighter configuration has been completed in NASA Ames' 7'x10' wind tunnel. This test was part of the Fighter Lift and Control (FLAC) program, a joint NASA - USAF research program, involving small and large-scale wind-tunnel tests and computational analysis of unique lift augmentation and control devices. The goal of this program is to enhance the maneuver and control capability of next-generation Air Force multi-role fighter aircraft with low-observables geometries. The principal objective of this test was to determine the effectiveness of passive boundary layer control devices at increasing L/D at sustained maneuver lift coefficients. Vortex generators (VGs) were used to energize the boundary layer to prevent or delay separation. Corotating vanes, counter-rotating vanes, and Wheeler Wishbone VGs were used in the vicinity of the leading and trailing edge flap hinge lines. Principle test parameters were leading and trailing edge flap deflections, and location, size, spacing, and orientation for each VG type. Gurney flaps were also tested. Data gathered include balance force and moment data, surface pressures, and flow visualization for characterizing flow behavior and locating separation lines. Results were quite different for the two best flap configurations tested. All VG types tested showed improvement (up to 5%) in maneuver L/D with flaps at LE=20 degrees, TE=0 degrees. The same VGs degraded performance, in all but a few cases, with flaps at LE=15 degrees, TE=10 degrees.

  1. Current Research in Aircraft Tire Design and Performance

    NASA Technical Reports Server (NTRS)

    Tanner, J. A.; Mccarthy, J. L.; Clark, S. K.

    1981-01-01

    A review of the tire research programs which address the various needs identified by landing gear designers and airplane users is presented. The experimental programs are designed to increase tire tread lifetimes, relate static and dynamic tire properties, establish the tire hydroplaning spin up speed, study gear response to tire failures, and define tire temperature profiles during taxi, braking, and cornering operations. The analytical programs are aimed at providing insights into the mechanisms of heat generation in rolling tires and developing the tools necessary to streamline the tire design process and to aid in the analysis of landing gear problems.

  2. A survey of handling qualities criteria and their applications to high performance aircraft

    NASA Technical Reports Server (NTRS)

    Peahl, D. L.; Kolkailah, F.; Sandlin, D. R.

    1986-01-01

    Various handling qualities criteria and their application to high performance aircraft including state-of-the-art and highly augmented aircraft were surveyed. Neal-Smith, Bandwidth, Equivalent Systems, and Military Specification 8785 criteria are applied to flight test data from aircraft such as the F-8 Digital Fly-By-Wire, the YF-12, and an Advanced Fighter Aircraft. Backgrounds and example applications of each criteria are given. The results show that the handling qualities criteria investigated can be applied to highly augmented aircraft with fairly good results in most cases; however, since no one method excelled, more than one criteria should be used whenever possible. Equivalent time delays appear to be the most frequent critical factor in determining pilot rating levels of highly augmented aircraft.

  3. 14 CFR 25.507 - Reversed braking.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Reversed braking. 25.507 Section 25.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... must be equal to 0.55 times the vertical load at each wheel or to the load developed by 1.2 times...

  4. Aircraft Recognition Performance of Crew Chiefs with or without Forward Observers.

    ERIC Educational Resources Information Center

    Baldwin, Robert D.; And Others

    A test of aircraft recognition accuracy and decision speed compared the performance of single observers and four-man crews. The test used miniaturized simulations of aircraft which were moved at scaled speeds, altitudes, and distances. The validity of the simulation was evaluated and judged by comparing the results of the test with results…

  5. Practice and Incentive Effects on Learner Performance: Aircraft Instrument Comprehension Task.

    ERIC Educational Resources Information Center

    Tenpas, Barbara G.; Higgins, Norman C.

    To study the effects of practice and incentive on learner performance on the aircraft instrument comprehension task, 48 third-year Air Force cadets were chosen as subjects. The subjects were expected to be able to identify which one of four pictures of aircraft in flight most nearly corresponded to the position indicated on a panel of attitude and…

  6. Obstacle Detection Algorithms for Aircraft Navigation: Performance Characterization of Obstacle Detection Algorithms for Aircraft Navigation

    NASA Technical Reports Server (NTRS)

    Kasturi, Rangachar; Camps, Octavia; Coraor, Lee

    2000-01-01

    The research reported here is a part of NASA's Synthetic Vision System (SVS) project for the development of a High Speed Civil Transport Aircraft (HSCT). One of the components of the SVS is a module for detection of potential obstacles in the aircraft's flight path by analyzing the images captured by an on-board camera in real-time. Design of such a module includes the selection and characterization of robust, reliable, and fast techniques and their implementation for execution in real-time. This report describes the results of our research in realizing such a design. It is organized into three parts. Part I. Data modeling and camera characterization; Part II. Algorithms for detecting airborne obstacles; and Part III. Real time implementation of obstacle detection algorithms on the Datacube MaxPCI architecture. A list of publications resulting from this grant as well as a list of relevant publications resulting from prior NASA grants on this topic are presented.

  7. Noise of high-performance aircraft at afterburner

    NASA Astrophysics Data System (ADS)

    Tam, Christopher K. W.; Parrish, Sarah A.

    2015-09-01

    The noise from a high-performance aircraft at afterburner is investigated. The main objective is to determine whether the dominant noise components are the same or similar to those of a hot supersonic laboratory jet. For this purpose, measured noise data from F-22A Raptors are analyzed. It is found, based on both spectral and directivity data, that there is a new dominant noise component in addition to the usual turbulent mixing noise. The characteristic features of the new noise component are identified. Measured data indicates that the new noise component is observed only when the rate of fuel burn of the engine is increased significantly above that of the intermediate power setting. This suggests that the new noise component is combustion related. The possibility that it is indirect combustion noise generated by the passage of hot spots from the afterburner through the nozzle of the jet is investigated. Because flow and temperature data were not measured in the F-22A engine tests, to provide support to the proposition, numerical simulations of indirect combustion noise generation due to the passing of an entropy wave pulse (a hot spot) through a military-style nozzle are carried out. Sound generation is observed at the front and at the back of the pulse. This creates a fast and a slow acoustic wave as the sound radiates out from the nozzle exit. Quantitative estimates of the principal directions of acoustic radiation due to the emitted fast and slow acoustic waves are made. It is found that there are reasonably good agreements with measured data. To estimate the intensity level (IL) of the radiated indirect combustion noise, a time-periodic entropy wave train of 15 percent temperature fluctuation is used as a model of the hot spots coming out of the afterburner. This yields an IL of 175.5 dB. This is a fairly intense noise source, well capable of causing the radiation of the new jet noise component.

  8. 49 CFR 232.305 - Single car air brake tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... with 5 U.S.C. 552(a) and 1 CFR part 51. You may obtain a copy of the incorporated document from the... 49 Transportation 4 2010-10-01 2010-10-01 false Single car air brake tests. 232.305 Section 232... car air brake tests. (a) Single car air brake tests shall be performed by a qualified person...

  9. 49 CFR 238.319 - Running brake test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Running brake test. 238.319 Section 238.319... Requirements for Tier I Passenger Equipment § 238.319 Running brake test. (a) As soon as conditions safely permit, a running brake test shall be performed on each passenger train after the train has received,...

  10. 49 CFR 238.319 - Running brake test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Running brake test. 238.319 Section 238.319... Requirements for Tier I Passenger Equipment § 238.319 Running brake test. (a) As soon as conditions safely permit, a running brake test shall be performed on each passenger train after the train has received,...

  11. 49 CFR 238.319 - Running brake test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Running brake test. 238.319 Section 238.319... Requirements for Tier I Passenger Equipment § 238.319 Running brake test. (a) As soon as conditions safely permit, a running brake test shall be performed on each passenger train after the train has received,...

  12. 49 CFR 238.319 - Running brake test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Running brake test. 238.319 Section 238.319... Requirements for Tier I Passenger Equipment § 238.319 Running brake test. (a) As soon as conditions safely permit, a running brake test shall be performed on each passenger train after the train has received,...

  13. 49 CFR 238.319 - Running brake test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Running brake test. 238.319 Section 238.319... Requirements for Tier I Passenger Equipment § 238.319 Running brake test. (a) As soon as conditions safely permit, a running brake test shall be performed on each passenger train after the train has received,...

  14. 49 CFR 232.305 - Single car air brake tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... with 5 U.S.C. 552(a) and 1 CFR part 51. You may obtain a copy of the incorporated document from the... 49 Transportation 4 2011-10-01 2011-10-01 false Single car air brake tests. 232.305 Section 232... car air brake tests. (a) Single car air brake tests shall be performed by a qualified person...

  15. 49 CFR 238.313 - Class I brake test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... shall be performed at the air pressure at which the train's air brakes will be operated, but not less... compressed air for more than four hours prior to being added to the train. The notice required by this... the case of tread or disc brakes by determining that the brake shoe or pad provides pressure to...

  16. 49 CFR 238.313 - Class I brake test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... shall be performed at the air pressure at which the train's air brakes will be operated, but not less... compressed air for more than four hours prior to being added to the train. The notice required by this... the case of tread or disc brakes by determining that the brake shoe or pad provides pressure to...

  17. 49 CFR 238.313 - Class I brake test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... shall be performed at the air pressure at which the train's air brakes will be operated, but not less... compressed air for more than four hours prior to being added to the train. The notice required by this... the case of tread or disc brakes by determining that the brake shoe or pad provides pressure to...

  18. Aircraft landing gear systems

    NASA Technical Reports Server (NTRS)

    Tanner, John A. (Editor)

    1990-01-01

    Topics presented include the laboratory simulation of landing gear pitch-plane dynamics, a summary of recent aircraft/ground vehicle friction measurement tests, some recent aircraft tire thermal studies, and an evaluation of critical speeds in high-speed aircraft. Also presented are a review of NASA antiskid braking research, titanium matrix composite landing gear development, the current methods and perspective of aircraft flotation analysis, the flow rate and trajectory of water spray produced by an aircraft tire, and spin-up studies of the Space Shuttle Orbiter main gear tire.

  19. Assessment of aerodynamic performance of V/STOL and STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Nelms, W. P.

    1984-01-01

    The aerodynamic performance of V/STOL and STOVL fighter/attack aircraft was assessed. Aerodynamic and propulsion/airframe integration activities are described and small-and large-scale research programs are considered. Uncertainties affecting aerodynamic performance that are associated with special configuration features resulting from the V/STOL requirement are addressed. Example uncertainties related to minimum drag, wave drag, high angle of attack characteristics, and power-induced effects. Engine design configurations from several aircraft manufacturers are reviewed.

  20. EGADS: A microcomputer program for estimating the aerodynamic performance of general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Melton, John E.

    1994-01-01

    EGADS is a comprehensive preliminary design tool for estimating the performance of light, single-engine general aviation aircraft. The software runs on the Apple Macintosh series of personal computers and assists amateur designers and aeronautical engineering students in performing the many repetitive calculations required in the aircraft design process. The program makes full use of the mouse and standard Macintosh interface techniques to simplify the input of various design parameters. Extensive graphics, plotting, and text output capabilities are also included.

  1. First Assessments of Predicted ICESat-2 Performance Using Aircraft Data

    NASA Technical Reports Server (NTRS)

    Neumann, Thomas; Markus, Thorsten; Cook, William; Hancock, David; Brenner, Anita; Kelly, Brunt; DeMarco, Eugenia; Reed, Daniel; Walsh, Kaitlin

    2012-01-01

    The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) is a next-generation laser altimeter designed to continue key observations of ice sheet elevation change, sea ice freeboard, vegetation canopy height, earth surface elevation, and sea surface height. Scheduled for launch in mid-2016, ICESat-2 will use a high repetition rate (10 kHz), small footprint (10 m nominal ground diameter) laser, and a single-photon-sensitive detection strategy (photon counting) to measure precise range to the earth's surface. Using green light (532 nm), the six beams of ICESat-2 will provide improved spatial coverage compared with the single beam of ICESat, while the differences in transmit energy among the beams provide a large dynamic range. The six beams are arranged into three pairs of beams which allow slopes to measured on an orbit-by-orbit basis. In order to evaluate models of predicted ICESat-2 performance and provide ICESat-2-like data for algorithm development, an airborne ICESat-2 simulator was developed and first flown in 2010. This simulator, the Multiple Altimeter Beam Experimental Lidar (MABEL) was most recently deployed to Iceland in April 2012 and collected approx 85 hours of science data over land ice, sea ice, and calibration targets. MABEL uses a similar photon-counting measurement strategy to what will be used on ICESat-2. MABEL collects data in 16 green channels and an additional 8 channels in the infrared aligned across the direction of flight. By using NASA's ER-2 aircraft flying at 20km altitude, MABEL flies as close to space as is practical, and collects data through approx 95% of the atmosphere. We present background on the MABEL instrument, and data from the April 2012 deployment to Iceland. Among the 13 MABEL flights, we collected data over the Greenland ice sheet interior and outlet glaciers in the southwest and western Greenland, sea ice data over the Nares Strait and Greenland Sea, and a number of small glaciers and ice caps in Iceland and Svalbard

  2. Aircraft design for mission performance using nonlinear multiobjective optimization methods

    NASA Technical Reports Server (NTRS)

    Dovi, Augustine R.; Wrenn, Gregory A.

    1990-01-01

    A new technique which converts a constrained optimization problem to an unconstrained one where conflicting figures of merit may be simultaneously considered was combined with a complex mission analysis system. The method is compared with existing single and multiobjective optimization methods. A primary benefit from this new method for multiobjective optimization is the elimination of separate optimizations for each objective, which is required by some optimization methods. A typical wide body transport aircraft is used for the comparative studies.

  3. Robust Damage-Mitigating Control of Aircraft for High Performance and Structural Durability

    NASA Technical Reports Server (NTRS)

    Caplin, Jeffrey; Ray, Asok; Joshi, Suresh M.

    1999-01-01

    This paper presents the concept and a design methodology for robust damage-mitigating control (DMC) of aircraft. The goal of DMC is to simultaneously achieve high performance and structural durability. The controller design procedure involves consideration of damage at critical points of the structure, as well as the performance requirements of the aircraft. An aeroelastic model of the wings has been formulated and is incorporated into a nonlinear rigid-body model of aircraft flight-dynamics. Robust damage-mitigating controllers are then designed using the H(infinity)-based structured singular value (mu) synthesis method based on a linearized model of the aircraft. In addition to penalizing the error between the ideal performance and the actual performance of the aircraft, frequency-dependent weights are placed on the strain amplitude at the root of each wing. Using each controller in turn, the control system is put through an identical sequence of maneuvers, and the resulting (varying amplitude cyclic) stress profiles are analyzed using a fatigue crack growth model that incorporates the effects of stress overload. Comparisons are made to determine the impact of different weights on the resulting fatigue crack damage in the wings. The results of simulation experiments show significant savings in fatigue life of the wings while retaining the dynamic performance of the aircraft.

  4. Damage-mitigating control of aircraft for high performance and life extension

    NASA Astrophysics Data System (ADS)

    Caplin, Jeffrey

    1998-12-01

    A methodology is proposed for the synthesis of a Damage-Mitigating Control System for a high-performance fighter aircraft. The design of such a controller involves consideration of damage to critical points of the structure, as well as the performance requirements of the aircraft. This research is interdisciplinary, and brings existing knowledge in the fields of unsteady aerodynamics, structural dynamics, fracture mechanics, and control theory together to formulate a new approach towards aircraft flight controller design. A flexible wing model is formulated using the Finite Element Method, and the important mode shapes and natural frequencies are identified. The Doublet Lattice Method is employed to develop an unsteady flow model for computation of the unsteady aerodynamic loads acting on the wing due to rigid-body maneuvers and structural deformation. These two models are subsequently incorporated into a pre-existing nonlinear rigid-body aircraft flight-dynamic model. A family of robust Damage-Mitigating Controllers is designed using the Hinfinity-optimization and mu-synthesis method. In addition to weighting the error between the ideal performance and the actual performance of the aircraft, weights are also placed on the strain amplitude at the root of each wing. The results show significant savings in fatigue life of the wings while retaining the dynamic performance of the aircraft.

  5. The nonaxisymmetric nozzle - It is for real. [fighter aircraft performance viewpoint

    NASA Technical Reports Server (NTRS)

    Capone, F. J.

    1979-01-01

    A review is made of the current status of the nonaxisymmetric nozzle from a technology standpoint. Some of the potential payoffs attributed to this class of nozzles installed on twin-engine high performance fighter aircraft are addressed. These payoffs include a reduction in cruise drag through improved integration and an increase in aircraft maneuverability and agility through the application of thrust vectoring and reversing. Improved takeoff and landing characteristics also are expected through the use of thrust vectoring and reversing. Stealth and survivability aspects of the aircraft can be increased through a reduction of nozzle infrared signature and radar cross section.

  6. Optimal design of a disc-type MR brake for middle-sized motorcycle

    NASA Astrophysics Data System (ADS)

    Nguyen, Quoc-Hung; Jeon, Juncheol; Choi, Seung-Bok

    2011-03-01

    This research work focuses on optimal design of a disc-type magneto-rheological (MR) brake that can replace a conventional hydraulic brake (CHB) of middle-sized motorcycles. Firstly, a MR brake configuration is proposed considering the available space and the simplicity to replace a CHB by the proposed MR brake. An optimal design of the proposed MR brake is then performed considering the required braking torque, operating temperature, mass and size of the brake. In order to perform the optimization of the brake, the braking torque of the brake is analyzed based on Herschel-Bulkley rheological model of MR fluid. The constrain on operating temperature of the MR brake is determined by considering the steady temperature of the brake when the motorcycle is cruising and the temperature increase during a braking process. An optimization procedure based on finite element analysis integrated with an optimization tool is employed to obtain optimal geometric dimensions of the MR brake. Optimal solution of the MR brake is then presented and simulated performance of the optimized brake is shown with remarkable discussions.

  7. Performance and benefits of an advanced technology supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Fitzsimmons, R. D.

    1976-01-01

    The results of four years research on technology are synthesized in an advanced supersonic cruise aircraft design. Comparisons are presented with the former United States SST and the British-French Concorde, including aerodynamic efficiency, propulsion efficiency, weight efficiency, and community noise. Selected trade study results are presented on the subjects of design cruise Mach number, engine cycle selection, and noise suppression. The critical issue of program timing is addressed and some observations made regarding the impact that timing has on engine selection and minimization of program risk.

  8. Effects of nonlinear aerodynamics and static aeroelasticity on mission performance calculations for a fighter aircraft

    NASA Technical Reports Server (NTRS)

    Giles, Gary L.; Tatum, Kenneth E.; Foss, Willard E., Jr.

    1989-01-01

    During conceptual design studies of advanced aircraft, the usual practice is to use linear theory to calculate the aerodynamic characteristics of candidate rigid (nonflexible) geometric external shapes. Recent developments and improvements in computational methods, especially computational fluid dynamics (CFD), provide significantly improved capability to generate detailed analysis data for the use of all disciplines involved in the evaluation of a proposed aircraft design. A multidisciplinary application of such analysis methods to calculate the effects of nonlinear aerodynamics and static aeroelasticity on the mission performance of a fighter aircraft concept is described. The aircraft configuration selected for study was defined in a previous study using linear aerodynamics and rigid geometry. The results from the previous study are used as a basis of comparison for the data generated herein. Aerodynamic characteristics are calculated using two different nonlinear theories, potential flow and rotational (Euler) flow. The aerodynamic calculations are performed in an iterative procedure with an equivalent plate structural analysis method to obtain lift and drag data for a flexible (nonrigid) aircraft. These static aeroelastic data are then used in calculating the combat and mission performance characteristics of the aircraft.

  9. Brake Fundamentals. Automotive Articulation Project.

    ERIC Educational Resources Information Center

    Cunningham, Larry; And Others

    Designed for secondary and postsecondary auto mechanics programs, this curriculum guide contains learning exercises in seven areas: (1) brake fundamentals; (2) brake lines, fluid, and hoses; (3) drum brakes; (4) disc brake system and service; (5) master cylinder, power boost, and control valves; (6) parking brakes; and (7) trouble shooting. Each…

  10. Numeric Design and Performance Analysis of Solid Oxide Fuel Cell -- Gas Turbine Hybrids on Aircraft

    NASA Astrophysics Data System (ADS)

    Hovakimyan, Gevorg

    The aircraft industry benefits greatly from small improvements in aircraft component design. One possible area of improvement is in the Auxiliary Power Unit (APU). Modern aircraft APUs are gas turbines located in the tail section of the aircraft that generate additional power when needed. Unfortunately the efficiency of modern aircraft APUs is low. Solid Oxide Fuel Cell/Gas Turbine (SOFC/GT) hybrids are one possible alternative for replacing modern gas turbine APUs. This thesis investigates the feasibility of replacing conventional gas turbine APUs with SOFC/GT APUs on aircraft. An SOFC/GT design algorithm was created in order to determine the specifications of an SOFC/GT APU. The design algorithm is comprised of several integrated modules which together model the characteristics of each component of the SOFC/GT system. Given certain overall inputs, through numerical analysis, the algorithm produces an SOFC/GT APU, optimized for specific power and efficiency, capable of performing to the required specifications. The SOFC/GT design is then input into a previously developed quasi-dynamic SOFC/GT model to determine its load following capabilities over an aircraft flight cycle. Finally an aircraft range study is conducted to determine the feasibility of the SOFC/GT APU as a replacement for the conventional gas turbine APU. The design results show that SOFC/GT APUs have lower specific power than GT systems, but have much higher efficiencies. Moreover, the dynamic simulation results show that SOFC/GT APUs are capable of following modern flight loads. Finally, the range study determined that SOFC/GT APUs are more attractive over conventional APUs for longer range aircraft.

  11. Computer code for estimating installed performance of aircraft gas turbine engines. Volume 2: Users manual

    NASA Technical Reports Server (NTRS)

    Kowalski, E. J.

    1979-01-01

    A computerized method which utilizes the engine performance data and estimates the installed performance of aircraft gas turbine engines is presented. This installation includes: engine weight and dimensions, inlet and nozzle internal performance and drag, inlet and nacelle weight, and nacelle drag. A user oriented description of the program input requirements, program output, deck setup, and operating instructions is presented.

  12. Noise reduction of a tilt-rotor aircraft including effects on weight and performance

    NASA Technical Reports Server (NTRS)

    Gibs, J.; Stepniewski, W. Z.; Spencer, R.; Kohler, G.

    1973-01-01

    Various methods for far-field noise reduction of a tilt-rotor acoustic signature and the performance and weight tradeoffs which result from modification of the noise sources are considered in this report. In order to provide a realistic approach for the investigation, the Boeing tilt-rotor flight research aircraft (Model 222), was selected as the baseline. This aircraft has undergone considerable engineering development. Its rotor has been manufactured and tested in the Ames full-scale wind tunnel. The study reflects the current state-of-the-art of aircraft design for far-field acoustic signature reduction and is not based solely on an engineering feasibility aircraft. This report supplements a previous study investigating reduction of noise signature through the management of the terminal flight trajectory.

  13. Performance analysis of bonded composite doublers on aircraft structures

    SciTech Connect

    Roach, D.

    1995-08-01

    Researchers contend that composite repairs (or structural reinforcement doublers) offer numerous advantages over metallic patches including corrosion resistance, light weight, high strength, elimination of rivets, and time savings in installation. Their use in commercial aviation has been stifled by uncertainties surrounding their application, subsequent inspection and long-term endurance. The process of repairing or reinforcing airplane structures is time consuming and the design is dependent upon an accompanying stress and fatigue analysis. A repair that is too stiff may result in a loss of fatigue life, continued growth of the crack being repaired, and the initiation of a new flaw in the undesirable high stress field around the patch. Uncertainties in load spectrums used to design repairs exacerbates these problems as does the use of rivets to apply conventional doublers. Many of these repair or structural reinforcement difficulties can be addressed through the use of composite doublers. Primary among unknown entities are the effects of non-optimum installations and the certification of adequate inspection procedures. This paper presents on overview of a program intended to introduce composite doubler technology to the US commercial aircraft fleet. In this project, a specific composite application has been chosen on an L-1011 aircraft in order to focus the tasks on application and operation issues. Through the use of laboratory test structures and flight demonstrations on an in-service L-1011 airplane, this study is investigating composite doubler design, fabrication, installation, structural integrity, and non-destructive evaluation. In addition to providing an overview of the L-1011 project, this paper focuses on a series of fatigue and strength tests which have been conducted in order to study the damage tolerance of composite doublers. Test results to-date are presented.

  14. What ASRS incident data tell about flight crew performance during aircraft malfunctions

    NASA Technical Reports Server (NTRS)

    Sumwalt, Robert L.; Watson, Alan W.

    1995-01-01

    This research examined 230 reports in NASA's Aviation Safety Reporting System's (ASRS) database to develop a better understanding of factors that can affect flight crew performance when crew are faced with inflight aircraft malfunctions. Each report was placed into one of two categories, based on severity of the malfunction. Report analysis was then conducted to extract information regarding crew procedural issues, crew communications and situational awareness. A comparison of these crew factors across malfunction type was then performed. This comparison revealed a significant difference in ways that crews dealt with serious malfunctions compared to less serious malfunctions. The authors offer recommendations toward improving crew performance when faced with inflight aircraft malfunctions.

  15. Robust identification method for nonlinear model structures and its application to high-performance aircraft

    NASA Astrophysics Data System (ADS)

    Shi, Zhong-Ke; Wu, Fang-Xiang

    2013-06-01

    A common assumption is that the model structure is known for modelling high performance aircraft. In practice, this is not the case. Actually, structure identification plays the most important role in the processing of nonlinear system modelling. The integration of mode structure identification and parameter estimation is an efficient method to construct the model for high performance aircraft, which is nonlinear and also contains uncertainties. This article presents an efficient method for identifying nonlinear model structure and estimating parameters for high-performance aircraft model, which contains uncertainties. The parameters associated with nonlinear terms are considered one after the other if they should be included in the nonlinear model until a stopping criterion is met, which is based on Akaike's information criterion. A numerically efficient U-D factorisation is presented to avoid complex computation of high-order matrices. The proposed method is applied to flight test data of a high-performance aircraft. The results demonstrate that the proposed method could obtain the good aircraft model with a reasonably good fidelity based on the comparison with flight test data.

  16. An antilock molecular braking system.

    PubMed

    Sun, Wei-Ting; Huang, Shou-Ling; Yao, Hsuan-Hsiao; Chen, I-Chia; Lin, Ying-Chih; Yang, Jye-Shane

    2012-08-17

    A light-driven molecular brake displaying an antilock function is constructed by introducing a nonradiative photoinduced electron transfer (PET) decay channel to compete with the trans (brake-off) → cis (brake-on) photoisomerization. A fast release of the brake can be achieved by deactivating the PET process through addition of protons. The cycle of irradiation-protonation-irradiation-deprotonation conducts the brake function and mimics the antilock braking system (ABS) of vehicles. PMID:22853709

  17. Aircraft Wake Vortex Spacing System (AVOSS) Performance Update and Validation Study

    NASA Technical Reports Server (NTRS)

    Rutishauser, David K.; OConnor, Cornelius J.

    2001-01-01

    An analysis has been performed on data generated from the two most recent field deployments of the Aircraft Wake VOrtex Spacing System (AVOSS). The AVOSS provides reduced aircraft spacing criteria for wake vortex avoidance as compared to the FAA spacing applied under Instrument Flight Rules (IFR). Several field deployments culminating in a system demonstration at Dallas Fort Worth (DFW) International Airport in the summer of 2000 were successful in showing a sound operational concept and the system's potential to provide a significant benefit to airport operations. For DFW, a predicted average throughput increase of 6% was observed. This increase implies 6 or 7 more aircraft on the ground in a one-hour period for DFW operations. Several studies of performance correlations to system configuration options, design options, and system inputs are also reported. The studies focus on the validation performance of the system.

  18. Performance degradation of a typical twin engine commuter type aircraft in measured natural icing conditions

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.; Mikkelsen, K. L.; Mcknight, R. C.; Perkins, P. J., Jr.

    1984-01-01

    The performance of an aircraft in various measured icing conditions was investigated. Icing parameters such as liquid water content, temperature, cloud droplet sizes and distributions were measured continuously while in icing. Flight data were reduced to provide plots of the aircraft drag polars and lift curves (CL vs. alpha) for the measured ""iced'' condition as referenced to the uniced aircraft. These data were also reduced to provide plots of thrust horsepower required vs. single engine power available to show how icing affects engine out capability. It is found that performance degradation is primarily influenced by the amount and shape of the accumulated ice. Glaze icing caused the greatest aerodynamic performance penalties in terms of increased drag and reduction in lift while aerodynamic penalties due to rime icing were significantly lower.

  19. Modeling regenerative braking and storage for vehicles

    SciTech Connect

    Wicks, F.; Donnelly, K.

    1997-12-31

    The fuel savings benefits of regenerative braking and storage for vehicles are often described but not quantified. For example, the federal government and automobile manufacturers are sponsoring a Program for a New Generation of Vehicles (PGNV) with a goal of obtaining a performance of 80 mpg in a family size car. It is typically suggested that such a vehicle will be a hybrid engine and electric drive with regenerative braking. The authors note that while regenerative braking has the potential of saving fuel, it may also do more harm than good as a result of additional weight, less than ideal charge/discharge efficiency on the batteries or storage flywheels and the limited portion of the entire driving cycle when regenerative braking can be utilized. The authors also noted that if regenerative braking can have a net benefit, it would be on a heavy vehicle such as a municipal bus because of the frequent stop and go requirements for both traffic light and passengers. Thus the authors initiated a study of regenerative braking on such a vehicle. The resulting analysis presented in this paper includes data following municipal buses to define the driving cycle, modeling the bus power requirements from weight, aerodynamics and rolling resistance, and then calculating the fuel saving that could result from an ideal regenerative braking system.

  20. Multilevel modelling of aircraft noise on performance tests in schools around Heathrow Airport London

    PubMed Central

    Haines, M; Stansfeld, S; Head, J; Job, R

    2002-01-01

    Design: This is a cross sectional study using the National Standardised Scores (SATs) in mathematics, science, and English (11 000 scores from children aged 11 years). The analyses used multilevel modelling to determine the effects of chronic aircraft noise exposure on childrens' school performance adjusting for demographic, socioeconomic and school factors in 123 primary schools around Heathrow Airport. Schools were assigned aircraft noise exposure level from the 1994 Civil Aviation Authority aircraft noise contour maps. Setting: Primary schools. Participants: The sample were approximately 11 000 children in year 6 (approximately 11 years old) from 123 schools in the three boroughs surrounding Heathrow Airport. Main results: Chronic exposure to aircraft noise was significantly related to poorer reading and mathematics performance. After adjustment for the average socioeconomic status of the school intake (measured by percentage of pupils eligible for free school meals) these associations were no longer statistically significant. Conclusions: Chronic exposure to aircraft noise is associated with school performance in reading and mathematics in a dose-response function but this association is confounded by socioeconomic factors. PMID:11812814

  1. A concept for adaptive performance optimization on commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, Michael R.; Enns, Dale F.

    1995-01-01

    An adaptive control method is presented for the minimization of drag during flight for transport aircraft. The minimization of drag is achieved by taking advantage of the redundant control capability available in the pitch axis, with the horizontal tail used as the primary surface and symmetric deflection of the ailerons and cruise flaps used as additional controls. The additional control surfaces are excited with sinusoidal signals, while the altitude and velocity loops are closed with guidance and control laws. A model of the throttle response as a function of the additional control surfaces is formulated and the parameters in the model are estimated from the sensor measurements using a least squares estimation method. The estimated model is used to determine the minimum drag positions of the control surfaces. The method is presented for the optimization of one and two additional control surfaces. The adaptive control method is extended to optimize rate of climb with the throttle fixed. Simulations that include realistic disturbances are presented, as well as the results of a Monte Carlo simulation analysis that shows the effects of changing the disturbance environment and the excitation signal parameters.

  2. An assessment of the capability to calculate tilting prop-rotor aircraft performance, loads and stability

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1984-01-01

    Calculated performance, loads, and stability of the XV-15 tilt rotor research aircraft are compared with wind tunnel and flight measurements, to define the level of the current analytical capability for tilting prop rotor aircraft, and to define the requirements for additional experimental data and further analysis development. The correlation between calculated and measured behavior is generally good, although there are some significant discrepancies. Based on this correlation, the analysis is assessed overall as being adequate for the design, evaluation, and testing of tilting prop rotor aircraft. A general assessment of the state of the art of tilt rotor predictive capability is given. Specific areas are identified where improvements in the capability to calculate performance, loads, and stability are desirable. Requirements for more accurate and detailed data which support the development of improved analytical models are identified as well.

  3. A New Dynamometer Brake

    NASA Technical Reports Server (NTRS)

    Segre, Marco

    1921-01-01

    The mechanism here described belongs to the class of dynamometer brake in which the motive power is transformed into heat in the brake itself. This mechanism was invented by the writer for the purpose of measuring forces in which the two factors, torque and speed, vary within broad limits, the mechanism itself being of simple construction and of still simpler operation.

  4. Computer program to perform cost and weight analysis of transport aircraft. Volume 2: Technical volume

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An improved method for estimating aircraft weight and cost using a unique and fundamental approach was developed. The results of this study were integrated into a comprehensive digital computer program, which is intended for use at the preliminary design stage of aircraft development. The program provides a means of computing absolute values for weight and cost, and enables the user to perform trade studies with a sensitivity to detail design and overall structural arrangement. Both batch and interactive graphics modes of program operation are available.

  5. An Integrated Low-Speed Performance and Noise Prediction Methodology for Subsonic Aircraft

    NASA Technical Reports Server (NTRS)

    Olson, E. D.; Mavris, D. N.

    2000-01-01

    An integrated methodology has been assembled to compute the engine performance, takeoff and landing trajectories, and community noise levels for a subsonic commercial aircraft. Where feasible, physics-based noise analysis methods have been used to make the results more applicable to newer, revolutionary designs and to allow for a more direct evaluation of new technologies. The methodology is intended to be used with approximation methods and risk analysis techniques to allow for the analysis of a greater number of variable combinations while retaining the advantages of physics-based analysis. Details of the methodology are described and limited results are presented for a representative subsonic commercial aircraft.

  6. Current Methods for Modeling and Simulating Icing Effects on Aircraft Performance, Stability and Control

    NASA Technical Reports Server (NTRS)

    Ralvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam

    2008-01-01

    Icing alters the shape and surface characteristics of aircraft components, which results in altered aerodynamic forces and moments caused by air flow over those iced components. The typical effects of icing are increased drag, reduced stall angle of attack, and reduced maximum lift. In addition to the performance changes, icing can also affect control surface effectiveness, hinge moments, and damping. These effects result in altered aircraft stability and control and flying qualities. Over the past 80 years, methods have been developed to understand how icing affects performance, stability and control. Emphasis has been on wind tunnel testing of two-dimensional subscale airfoils with various ice shapes to understand their effect on the flow field and ultimately the aerodynamics. This research has led to wind tunnel testing of subscale complete aircraft models to identify the integrated effects of icing on the aircraft system in terms of performance, stability, and control. Data sets of this nature enable pilot in the loop simulations to be performed for pilot training, or engineering evaluation of system failure impacts or control system design.

  7. Application of a cost/performance measurement system on a research aircraft project

    NASA Technical Reports Server (NTRS)

    Diehl, J. J.

    1978-01-01

    The fundamentals of the cost/performance management system used in the procurement of two tilt rotor aircraft for a joint NASA/Army research project are discussed. The contractor's reporting system and the GPO's analyses are examined. The use of this type of reporting system is assessed. Recommendations concerning the use of like systems on future projects are included.

  8. Current Methods Modeling and Simulating Icing Effects on Aircraft Performance, Stability, Control

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam

    2010-01-01

    Icing alters the shape and surface characteristics of aircraft components, which results in altered aerodynamic forces and moments caused by air flow over those iced components. The typical effects of icing are increased drag, reduced stall angle of attack, and reduced maximum lift. In addition to the performance changes, icing can also affect control surface effectiveness, hinge moments, and damping. These effects result in altered aircraft stability and control and flying qualities. Over the past 80 years, methods have been developed to understand how icing affects performance, stability, and control. Emphasis has been on wind-tunnel testing of two-dimensional subscale airfoils with various ice shapes to understand their effect on the flowfield and ultimately the aerodynamics. This research has led to wind-tunnel testing of subscale complete aircraft models to identify the integrated effects of icing on the aircraft system in terms of performance, stability, and control. Data sets of this nature enable pilot-in-the-loop simulations to be performed for pilot training or engineering evaluation of system failure impacts or control system design.

  9. Fabrication of Fabry-Perot Interferometer Sensors and Characterization of their Performances for Aircraft Inspection

    NASA Technical Reports Server (NTRS)

    Pendergrass, LeRuth Q.

    1995-01-01

    This work provides the information for fabricating Fabry-Perot Interferometer sensors and their performances. The Fabry-Perot Interferometer sensors developed here will be used for the detection of flaws in aircraft structures. The sequel also contains discussion of the experimental setups for the Ultrasonic technique and the Fabry-Perot Interferometer.

  10. Performance and Environmental Assessment of an Advanced Aircraft with Open Rotor Propulsion

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Berton, Jeffrey J.; Haller, William J.; Hendricks, Eric S.; Tong, Michael T.

    2012-01-01

    Application of high speed, advanced turboprops, or "propfans," to transonic transport aircraft received significant attention during the 1970s and 1980s when fuel efficiency was the driving focus of aeronautical research. Unfortunately, after fuel prices declined sharply there was no longer sufficient motivation to continue maturing this technology. Recent volatility in fuel prices and increasing concern for aviation s environmental impact, however, have renewed interest in unducted, open rotor propulsion. Because of the renewed interest in open rotor propulsion, the lack of publicly available up-to-date studies assessing its benefits, and NASA s focus on reducing fuel consumption, a preliminary aircraft system level study on open rotor propulsion was initiated to inform decisions concerning research in this area. New analysis processes were established to assess the characteristics of open rotor aircraft. These processes were then used to assess the performance, noise, and emissions characteristics of an advanced, single-aisle aircraft using open rotor propulsion. The results of this initial study indicate open rotor engines have the potential to provide significant reductions in fuel consumption and landing-takeoff cycle NOX emissions. Noise analysis of the study configuration indicates that an open rotor aircraft in the single-aisle class would be able to meet current noise regulations with margin.

  11. Sensitivity of transport aircraft performance and economics to advanced technology and cruise Mach number

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.

    1974-01-01

    Sensitivity data for advanced technology transports has been systematically collected. This data has been generated in two separate studies. In the first of these, three nominal, or base point, vehicles designed to cruise at Mach numbers .85, .93, and .98, respectively, were defined. The effects on performance and economics of perturbations to basic parameters in the areas of structures, aerodynamics, and propulsion were then determined. In all cases, aircraft were sized to meet the same payload and range as the nominals. This sensitivity data may be used to assess the relative effects of technology changes. The second study was an assessment of the effect of cruise Mach number. Three families of aircraft were investigated in the Mach number range 0.70 to 0.98: straight wing aircraft from 0.70 to 0.80; sweptwing, non-area ruled aircraft from 0.80 to 0.95; and area ruled aircraft from 0.90 to 0.98. At each Mach number, the values of wing loading, aspect ratio, and bypass ratio which resulted in minimum gross takeoff weight were used. As part of the Mach number study, an assessment of the effect of increased fuel costs was made.

  12. Improved Electromagnetic Brake

    NASA Technical Reports Server (NTRS)

    Martin, Toby B.

    2004-01-01

    A proposed design for an electromagnetic brake would increase the reliability while reducing the number of parts and the weight, relative to a prior commercially available electromagnetic brake. The reductions of weight and the number of parts could also lead to a reduction of cost. A description of the commercial brake is prerequisite to a description of the proposed electromagnetic brake. The commercial brake (see upper part of figure) includes (1) a permanent magnet and an electromagnet coil on a stator and (2) a rotor that includes a steel contact plate mounted, with tension spring loading, on an aluminum hub. The stator is mounted securely on a stationary object, which would ordinarily be the housing of a gear drive or a motor. The rotor is mounted on the shaft of the gear drive or motor. The commercial brake nominally operates in a fail-safe (in the sense of normally braking) mode: In the absence of current in the electromagnet coil, the permanent magnet pulls the contact plate, against the spring tension, into contact with the stator. To release the brake, one excites the electromagnet with a current of the magnitude and polarity chosen to cancel the magnetic flux of the permanent magnet, thereby enabling the spring tension to pull the contact plate out of contact with the stator. The fail-safe operation of the commercial brake depends on careful mounting of the rotor in relation to the stator. The rotor/stator gap must be set with a tolerance between 10 and 15 mils (between about 0.25 and about 0.38 mm). If the gap or the contact pad is thicker than the maximum allowable value, then the permanent magnetic field will not be strong enough to pull the steel plate across the gap. (For this reason, any contact pad between the contact plate and the stator must also be correspondingly thin.) If the gap exceeds the maximum allowable value because of shaft end play, it becomes impossible to set the brake by turning off the electromagnet current. Although it may

  13. Influence of landing gear flexibility on aircraft performance during ground roll

    NASA Technical Reports Server (NTRS)

    Sivaramakrishnan, M. M.

    1981-01-01

    An analysis is made of the influence of landing gear deflection characteristics on aircraft performance on the ground up to rotation. A quasi-steady dynamic equilibrium state is assumed, including other simplifying assumptions such as calm air conditions and normal aircraft lift and drag. Ground incidence is defined as the angle made by the mean aerodynamic chord of the wing with respect to the ground plane, and equations are given for force and balance which determine the quasi-equilibrium conditions for the aircraft during ground roll. Results indicate that the landing gear deflections lead to a substantial increase in the angle of attack, and the variation in the ground incidence due to landing gear flexibility could be as much as + or - 50%, and the reduction in tail load requirements almost 25%.

  14. Braking System for Wind Turbines

    NASA Technical Reports Server (NTRS)

    Krysiak, J. E.; Webb, F. E.

    1987-01-01

    Operating turbine stopped smoothly by fail-safe mechanism. Windturbine braking systems improved by system consisting of two large steel-alloy disks mounted on high-speed shaft of gear box, and brakepad assembly mounted on bracket fastened to top of gear box. Lever arms (with brake pads) actuated by spring-powered, pneumatic cylinders connected to these arms. Springs give specific spring-loading constant and exert predetermined load onto brake pads through lever arms. Pneumatic cylinders actuated positively to compress springs and disengage brake pads from disks. During power failure, brakes automatically lock onto disks, producing highly reliable, fail-safe stops. System doubles as stopping brake and "parking" brake.

  15. A performance improvement case study in aircraft maintenance and its implications for hazard identification.

    PubMed

    Ward, Marie; McDonald, Nick; Morrison, Rabea; Gaynor, Des; Nugent, Tony

    2010-02-01

    Aircraft maintenance is a highly regulated, safety critical, complex and competitive industry. There is a need to develop innovative solutions to address process efficiency without compromising safety and quality. This paper presents the case that in order to improve a highly complex system such as aircraft maintenance, it is necessary to develop a comprehensive and ecologically valid model of the operational system, which represents not just what is meant to happen, but what normally happens. This model then provides the backdrop against which to change or improve the system. A performance report, the Blocker Report, specific to aircraft maintenance and related to the model was developed gathering data on anything that 'blocks' task or check performance. A Blocker Resolution Process was designed to resolve blockers and improve the current check system. Significant results were obtained for the company in the first trial and implications for safety management systems and hazard identification are discussed. Statement of Relevance: Aircraft maintenance is a safety critical, complex, competitive industry with a need to develop innovative solutions to address process and safety efficiency. This research addresses this through the development of a comprehensive and ecologically valid model of the system linked with a performance reporting and resolution system. PMID:20099178

  16. Calculated performance, stability and maneuverability of high-speed tilting-prop-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Lau, Benton H.; Bowles, Jeffrey V.

    1986-01-01

    The feasibility of operating tilting-prop-rotor aircraft at high speeds is examined by calculating the performance, stability, and maneuverability of representative configurations. The rotor performance is examined in high-speed cruise and in hover. The whirl-flutter stability of the coupled-wing and rotor motion is calculated in the cruise mode. Maneuverability is examined in terms of the rotor-thrust limit during turns in helicopter configuration. Rotor airfoils, rotor-hub configuration, wing airfoil, and airframe structural weights representing demonstrated advance technology are discussed. Key rotor and airframe parameters are optimized for high-speed performance and stability. The basic aircraft-design parameters are optimized for minimum gross weight. To provide a focus for the calculations, two high-speed tilt-rotor aircraft are considered: a 46-passenger, civil transport and an air-combat/escort fighter, both with design speeds of about 400 knots. It is concluded that such high-speed tilt-rotor aircraft are quite practical.

  17. Using Intelligent Simulation to Enhance Human Performance in Aircraft Maintenance

    NASA Technical Reports Server (NTRS)

    Johnson, William B.; Norton, Jeffrey E.

    1992-01-01

    Human factors research and development investigates the capabilities and limitations of the human within a system. Of the many variables affecting human performance in the aviation maintenance system, training is among the most important. The advent of advanced technology hardware and software has created intelligent training simulations. This paper describes one advanced technology training system under development for the Federal Aviation Administration.

  18. Assessment of aerodynamic performance of V/STOL and STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Nelms, W. P.

    1984-01-01

    The aerodynamic performance of V/STOL and STOVL fighter/attack aircraft was assessed. Aerodynamic and propulsion/airframe integration activities are described and small and large scale research programs are considered. Uncertainties affecting aerodynamic performance that are associated with special configuration features resulting from the V/STOL requirement are addressed. Example uncertainties relate to minimum drag, wave drag, high angle of attack characteristics, and power induced effects.

  19. Attention in aviation. [to aircraft design and pilot performance

    NASA Technical Reports Server (NTRS)

    Wickens, Christopher D.

    1987-01-01

    The relevance of four principles or mechanisms of human attention to the design of aviation systems and the performance of pilots in multitask environments, including workload prediction and measurement, control-display integration, and the use of voice and head-up displays is discussed. The principles are: the mental energy that supplies task performance (resources), the resulting cross-talk between tasks as they are made more similar (confusion), the combination of different task elements (integration), and the way in which one task is processed and another is ignored (selection or tunneling). The introduction of greater levels of complexity into the validation of attentional theories in order to approach the demands of the cockpit or ATC console is proposed.

  20. Automated visual inspection of brake shoe wear

    NASA Astrophysics Data System (ADS)

    Lu, Shengfang; Liu, Zhen; Nan, Guo; Zhang, Guangjun

    2015-10-01

    With the rapid development of high-speed railway, the automated fault inspection is necessary to ensure train's operation safety. Visual technology is paid more attention in trouble detection and maintenance. For a linear CCD camera, Image alignment is the first step in fault detection. To increase the speed of image processing, an improved scale invariant feature transform (SIFT) method is presented. The image is divided into multiple levels of different resolution. Then, we do not stop to extract the feature from the lowest resolution to the highest level until we get sufficient SIFT key points. At that level, the image is registered and aligned quickly. In the stage of inspection, we devote our efforts to finding the trouble of brake shoe, which is one of the key components in brake system on electrical multiple units train (EMU). Its pre-warning on wear limitation is very important in fault detection. In this paper, we propose an automatic inspection approach to detect the fault of brake shoe. Firstly, we use multi-resolution pyramid template matching technology to fast locate the brake shoe. Then, we employ Hough transform to detect the circles of bolts in brake region. Due to the rigid characteristic of structure, we can identify whether the brake shoe has a fault. The experiments demonstrate that the way we propose has a good performance, and can meet the need of practical applications.

  1. Computer code for estimating installed performance of aircraft gas turbine engines. Volume 3: Library of maps

    NASA Technical Reports Server (NTRS)

    Kowalski, E. J.

    1979-01-01

    A computerized method which utilizes the engine performance data and estimates the installed performance of aircraft gas turbine engines is presented. This installation includes: engine weight and dimensions, inlet and nozzle internal performance and drag, inlet and nacelle weight, and nacelle drag. The use of two data base files to represent the engine and the inlet/nozzle/aftbody performance characteristics is discussed. The existing library of performance characteristics for inlets and nozzle/aftbodies and an example of the 1000 series of engine data tables is presented.

  2. Point and path performance of light aircraft: A review and analysis

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Summey, D. C.; Johnson, W. D.

    1973-01-01

    The literature on methods for predicting the performance of light aircraft is reviewed. The methods discussed in the review extend from the classical instantaneous maximum or minimum technique to techniques for generating mathematically optimum flight paths. Classical point performance techniques are shown to be adequate in many cases but their accuracies are compromised by the need to use simple lift, drag, and thrust relations in order to get closed form solutions. Also the investigation of the effect of changes in weight, altitude, configuration, etc. involves many essentially repetitive calculations. Accordingly, computer programs are provided which can fit arbitrary drag polars and power curves with very high precision and which can then use the resulting fits to compute the performance under the assumption that the aircraft is not accelerating.

  3. Wear Modalities and Mechanisms of the Mining Non-asbestos Composite Brake Material

    NASA Astrophysics Data System (ADS)

    Bao, Jiusheng; Yin, Yan; Zhu, Zhencai; Tong, Minming; Lu, Yuhao; Peng, Yuxing

    2013-08-01

    The mining brake material is generally made of composite materials and its wear has important influences on the braking performance of disc brakes. In order to improve the braking reliability of mine hoisters, this paper did some tribological investigations on the mining brake material to reveal its wear modalities and mechanisms. The mining non-asbestos brake shoe and 16Mn steel were selected as braking pairs and tested on a pad-on-disc friction tester. And a SEM was used to observe the worn surface of the brake shoe. It is shown that the non-asbestos brake material has mainly five wear modalities: adhesive wear, abrasive wear, cutting wear, fatigue wear and high heat wear. At the front period of a single braking the wear modality is mainly composed of some light mechanical wear such as abrasive, cutting and point adhesive. With the temperature rising at the back period it transforms to some heavy mechanical wear such as piece adhesive and fatigue. While in several repeated brakings once the surface temperature rises beyond the thermal-decomposition point of the bonding material, the strong destructive high heat wear takes leading roles on the surface. And a phenomenon called friction catastrophe (FC) occurs easily, which as a result causes a braking failure. It is considered that the friction heat has important influences on the wear modalities of the brake material. And the reduction of friction heat must be an effective technical method for decreasing wear and avoiding braking failures.

  4. High performance cutting of aircraft and turbine components

    NASA Astrophysics Data System (ADS)

    Krämer, A.; Lung, D.; Klocke, F.

    2012-04-01

    Titanium and nickel-based alloys belong to the group of difficult-to-cut materials. The machining of these high-temperature alloys is characterized by low productivity and low process stability as a result of their physical and mechanical properties. Major problems during the machining of these materials are low applicable cutting speeds due to excessive tool wear, long machining times, and thus high manufacturing costs, as well as the formation of ribbon and snarled chips. Under these conditions automation of the production process is limited. This paper deals with strategies to improve machinability of titanium and nickel-based alloys. Using the example of the nickel-based alloy Inconel 718 high performance cutting with advanced cutting materials, such as PCBN and cutting ceramics, is presented. Afterwards the influence of different cooling strategies, like high-pressure lubricoolant supply and cryogenic cooling, during machining of TiAl6V4 is shown.

  5. First Assessments of ICESat-2 Performance Using Aircraft Data

    NASA Technical Reports Server (NTRS)

    Neumann, Tom; Markus, Thorsten; Brunt, Kelly M.; Hancock, David; Brenner, Anita C.

    2011-01-01

    The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) Is a next-generation laser altimeter designed to continue key observations of ice sheet elevation change, sea ice freeboard, vegetation canopy height, earth surface elevation, and sea surface height. Scheduled for launch in early 2016, ICESat-2 will use a high repetition rate (approximately 10 kHz), small footprint (10m diameter) laser, and a single-photon-sensitive detection strategy (photon counting) to measure precise ranges to the earth's surface. Operating in the green (approximately 532nm), the six beams of ICESat-2 will provide improved spatial coverage compared with ICESat while the differences in transmit energy among the beams provide a large dynamic range. In order to evaluate models of predicted ICESat-2 performance, and provide ICESat-2-like data for algorithm development an airborne ICESat-2 simulator was developed and first flown in 2010, this simulator, the Multiple Altimeter Beam Experimental Lidar (MABEL) has now had three deployments in the western US, and will be deployed to the polar regions in spring of 2012. MABEL uses a similar measurement strategy to what will be used on ICESat-2. MABEL collects more spatially-dense data than ICESat-2 (approximately 2-cm along track) with a smaller 2m diameter footprint in 16 green channels and an additional 8 channels in the infrared. The comparison between frequencies allows for analysis of possible penetration of green energy into water or snow. We present MABEL data collected over deserts, forests, ocean water, lakes. snow covered mountains, and saft flats, provide examples of how these data are being used to develop algorithms that derive geophysical products from ICESat 2 and assess expected performances.

  6. The Effect of Modified Control Limits on the Performance of a Generic Commercial Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; May, Ryan D.; Gou, Ten-Huei; Litt, Jonathan S.

    2012-01-01

    This paper studies the effect of modifying the control limits of an aircraft engine to obtain additional performance. In an emergency situation, the ability to operate an engine above its normal operating limits and thereby gain additional performance may aid in the recovery of a distressed aircraft. However, the modification of an engine s limits is complex due to the risk of an engine failure. This paper focuses on the tradeoff between enhanced performance and risk of either incurring a mechanical engine failure or compromising engine operability. The ultimate goal is to increase the engine performance, without a large increase in risk of an engine failure, in order to increase the probability of recovering the distressed aircraft. The control limit modifications proposed are to extend the rotor speeds, temperatures, and pressures to allow more thrust to be produced by the engine, or to increase the rotor accelerations and allow the engine to follow a fast transient. These modifications do result in increased performance; however this study indicates that these modifications also lead to an increased risk of engine failure.

  7. Unidirectional high gain brake stop

    NASA Technical Reports Server (NTRS)

    Lang, David J. (Inventor)

    1987-01-01

    This invention relates to a unidirectional high gain brake arrangement that includes in combination a shaft mounted for rotation within a housing. The shaft is rotatable in either direction. A brake is selectively releasably coupled to the housing and to the shaft. The brake has a first member. An intermittent motion device is respectively coupled through the first member to the housing and through a one-way clutch to the shaft. The brake also has a second member that is mechanically coupled to the first brake member and to the housing. The intermittent motion device causes the brake to be activated by movement imparted to the first brake member after a preset number of revolutions of the shaft in one direction. The brake is released by rotation of the shaft in an opposite direction whereby torque transmitted through the one-way clutch to the first brake member is removed.

  8. Real-Time Adaptive Control Allocation Applied to a High Performance Aircraft

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Lallman, Frederick J.; Bundick, W. Thomas

    2001-01-01

    Abstract This paper presents the development and application of one approach to the control of aircraft with large numbers of control effectors. This approach, referred to as real-time adaptive control allocation, combines a nonlinear method for control allocation with actuator failure detection and isolation. The control allocator maps moment (or angular acceleration) commands into physical control effector commands as functions of individual control effectiveness and availability. The actuator failure detection and isolation algorithm is a model-based approach that uses models of the actuators to predict actuator behavior and an adaptive decision threshold to achieve acceptable false alarm/missed detection rates. This integrated approach provides control reconfiguration when an aircraft is subjected to actuator failure, thereby improving maneuverability and survivability of the degraded aircraft. This method is demonstrated on a next generation military aircraft Lockheed-Martin Innovative Control Effector) simulation that has been modified to include a novel nonlinear fluid flow control control effector based on passive porosity. Desktop and real-time piloted simulation results demonstrate the performance of this integrated adaptive control allocation approach.

  9. Graphical User Interface for the NASA FLOPS Aircraft Performance and Sizing Code

    NASA Technical Reports Server (NTRS)

    Lavelle, Thomas M.; Curlett, Brian P.

    1994-01-01

    XFLOPS is an X-Windows/Motif graphical user interface for the aircraft performance and sizing code FLOPS. This new interface simplifies entering data and analyzing results, thereby reducing analysis time and errors. Data entry is simpler because input windows are used for each of the FLOPS namelists. These windows contain fields to input the variable's values along with help information describing the variable's function. Analyzing results is simpler because output data are displayed rapidly. This is accomplished in two ways. First, because the output file has been indexed, users can view particular sections with the click of a mouse button. Second, because menu picks have been created, users can plot engine and aircraft performance data. In addition, XFLOPS has a built-in help system and complete on-line documentation for FLOPS.

  10. Disorienting effects of aircraft catapult launchings: III. Cockpit displays and piloting performance.

    PubMed

    Cohen, M M

    1977-09-01

    Accelerations closely approximating those encountered in catapult launchings of carrier-based aircraft were generated on the Naval Air Development Center's human centrifuge Dynamic Flight Simulator. Flight instruments, controls, and flight dynamics of an A-7 aircraft were provided to four experienced Naval Aviators, who exercised closed-loop control of a simulated climbout immediately after they were exposed to the accelerations. Four experimental conditions were employed for each aviator: 1) no operational flight instruments, 2) conventional flight instruments, 3) a single carrier takeoff director display operating concurrently. Measures of flight parameters, including indicated airspeed, angle of attack, rate of climb, altitude, pitch attitude, and pitch trim adjustment were monitored throughout the simulation. Subjective reactions and piloting performance were examined under each of the four conditions. Results indicate that the carrier takeoff director display significantly reduced pilot workload and enhanced performance during the climbout.

  11. 49 CFR 238.431 - Brake system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... dynamic brake does not result in exceeding the allowable stopping distance; (2) The friction brake alone... speed for safe operation of the train using only the friction brake portion of the blended brake with...

  12. 49 CFR 238.431 - Brake system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... dynamic brake does not result in exceeding the allowable stopping distance; (2) The friction brake alone... speed for safe operation of the train using only the friction brake portion of the blended brake with...

  13. Predicted Performance of a Thrust-Enhanced SR-71 Aircraft with an External Payload

    NASA Technical Reports Server (NTRS)

    Conners, Timothy R.

    1997-01-01

    NASA Dryden Flight Research Center has completed a preliminary performance analysis of the SR-71 aircraft for use as a launch platform for high-speed research vehicles and for carrying captive experimental packages to high altitude and Mach number conditions. Externally mounted research platforms can significantly increase drag, limiting test time and, in extreme cases, prohibiting penetration through the high-drag, transonic flight regime. To provide supplemental SR-71 acceleration, methods have been developed that could increase the thrust of the J58 turbojet engines. These methods include temperature and speed increases and augmentor nitrous oxide injection. The thrust-enhanced engines would allow the SR-71 aircraft to carry higher drag research platforms than it could without enhancement. This paper presents predicted SR-71 performance with and without enhanced engines. A modified climb-dive technique is shown to reduce fuel consumption when flying through the transonic flight regime with a large external payload. Estimates are included of the maximum platform drag profiles with which the aircraft could still complete a high-speed research mission. In this case, enhancement was found to increase the SR-71 payload drag capability by 25 percent. The thrust enhancement techniques and performance prediction methodology are described.

  14. Optimal Tuner Selection for Kalman-Filter-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2011-01-01

    An emerging approach in the field of aircraft engine controls and system health management is the inclusion of real-time, onboard models for the inflight estimation of engine performance variations. This technology, typically based on Kalman-filter concepts, enables the estimation of unmeasured engine performance parameters that can be directly utilized by controls, prognostics, and health-management applications. A challenge that complicates this practice is the fact that an aircraft engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. Through Kalman-filter-based estimation techniques, the level of engine performance degradation can be estimated, given that there are at least as many sensors as health parameters to be estimated. However, in an aircraft engine, the number of sensors available is typically less than the number of health parameters, presenting an under-determined estimation problem. A common approach to address this shortcoming is to estimate a subset of the health parameters, referred to as model tuning parameters. The problem/objective is to optimally select the model tuning parameters to minimize Kalman-filterbased estimation error. A tuner selection technique has been developed that specifically addresses the under-determined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine that seeks to minimize the theoretical mean-squared estimation error of the Kalman filter. This approach can significantly reduce the error in onboard aircraft engine parameter estimation

  15. 49 CFR 396.25 - Qualifications of brake inspectors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...; and (3) Is capable of performing the assigned brake service or inspection by reason of experience... experience or a combination thereof totaling at least one year. Such training or experience may consist of... commercial training program designed to train students in brake maintenance or inspection similar to...

  16. 49 CFR 396.25 - Qualifications of brake inspectors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...; and (3) Is capable of performing the assigned brake service or inspection by reason of experience... experience or a combination thereof totaling at least one year. Such training or experience may consist of... commercial training program designed to train students in brake maintenance or inspection similar to...

  17. 49 CFR 396.25 - Qualifications of brake inspectors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...; and (3) Is capable of performing the assigned brake service or inspection by reason of experience... experience or a combination thereof totaling at least one year. Such training or experience may consist of... commercial training program designed to train students in brake maintenance or inspection similar to...

  18. 49 CFR 238.315 - Class IA brake test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... (f) A Class IA brake test shall be performed at the air pressure at which the train's air brakes will... test; and (iii) The train has not been disconnected from a source of compressed air for more than four... has been off a source of compressed air for more than four hours. (b) A commuter or...

  19. 49 CFR 238.315 - Class IA brake test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... (f) A Class IA brake test shall be performed at the air pressure at which the train's air brakes will... test; and (iii) The train has not been disconnected from a source of compressed air for more than four... has been off a source of compressed air for more than four hours. (b) A commuter or...

  20. 49 CFR 238.315 - Class IA brake test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... (f) A Class IA brake test shall be performed at the air pressure at which the train's air brakes will... test; and (iii) The train has not been disconnected from a source of compressed air for more than four... has been off a source of compressed air for more than four hours. (b) A commuter or...

  1. Design of haptic master featuring small-sized MR brakes

    NASA Astrophysics Data System (ADS)

    Gang, Han Gyeol; Choi, Seung-Bok; Sohn, Jung Woo

    2016-04-01

    In this work, a new type of haptic master featuring small-sized MR brake is proposed and its performances are evaluated. The proposed haptic master consists of base frame, stick grip and small-sized four MR brakes for 3-DOF rotational motion and 1-DOF gripper motion. To obtain large braking torque under limited small size of MR brake, dual tapered shape inner magnetic core is proposed and its performance is evaluated via both numerical estimation and experimental test. After design and implementation of control algorithm, it has been demonstrated through experiment that the proposed actuator has good performances on tracking control of desired torques. Then, a new haptic master device is designed and constructed by adopting the proposed MR brakes and light weight frame structures. It is verified that the proposed haptic master device is effective for the real application in the field.

  2. Combined dynamic inversion and QFT flight control of an unstable high performance aircraft

    NASA Astrophysics Data System (ADS)

    Stout, Perry Walter

    Quantitative Feedback Theory (QFT) is a control system synthesis, technique that directly considers system uncertainties and disturbance magnitudes when formulating closed-loop control algorithms. Dynamic Inversion is a nonlinear control system design technique that relies on accurate mathematical models to compute control inputs producing arbitrary system responses. Both techniques have been applied to unstable high performance aircraft flight control, and produced effective aircraft controllers. Both techniques have certain drawbacks: Nonlinear QFT controllers tend to be unnecessarily conservative (the computed controllers have excessive bandwidth) because known system properties are treated as "unknown" disturbances during loop synthesis. Meanwhile Dynamic Inversion control is sensitive to differences between assumed mathematical models and actual system dynamic properties. Combining the two control techniques provides the benefit of both while suffering the drawbacks of neither, as demonstrated by Single Input, Single Output (SISO) control of a constant airspeed, no roll, no yaw nonlinear model of the F-16 aircraft, and by Multi-Input, Multi-Output (MIMO) control of a full six-degree-of-freedom version. Design performance of the combined controllers is verified by reduced actuator efforts and by reduced sensor noise to actuator input (U( s)/n(s)) transfer function magnitudes compared to standard QFT versions.

  3. Effects of simplifying assumptions on optimal trajectory estimation for a high-performance aircraft

    NASA Technical Reports Server (NTRS)

    Kern, Lura E.; Belle, Steve D.; Duke, Eugene L.

    1990-01-01

    When analyzing the performance of an aircraft, certain simplifying assumptions, which decrease the complexity of the problem, can often be made. The degree of accuracy required in the solution may determine the extent to which these simplifying assumptions are incorporated. A complex model may yield more accurate results if it describes the real situation more thoroughly. However, a complex model usually involves more computation time, makes the analysis more difficult, and often requires more information to do the analysis. Therefore, to choose the simplifying assumptions intelligently, it is important to know what effects the assumptions may have on the calculated performance of a vehicle. Several simplifying assumptions are examined, the effects of simplified models to those of the more complex ones are compared, and conclusions are drawn about the impact of these assumptions on flight envelope generation and optimal trajectory calculation. Models which affect an aircraft are analyzed, but the implications of simplifying the model of the aircraft itself are not studied. The examples are atmospheric models, gravitational models, different models for equations of motion, and constraint conditions.

  4. Experimental performance of an ablative material as an external insulator for a hypersonic research aircraft

    NASA Technical Reports Server (NTRS)

    Puster, R. L.; Chapman, A. J.

    1977-01-01

    An ablative material composed of silica-filled elastomeric silicone was tested to evaluate its thermal and structural performance as an external insulator, or heat shield, for a hypersonic research aircraft. The material was also tested to determine whether it would form a durable char layer when initially heated and thereafter function primarily as an insulator with little further pyrolysis or char removal. Aerothermal tests were representative of nominal Mach 6 cruise conditions of the aircraft, and additional tests were representative of Mach 8 cruise and interference heating conditions. Radiant heating tests were used to simulate the complete nominal Mach 6 surface-temperature history. The silica char that formed during aerothermal tests was not durable. The char experienced a general and preferential surface recession, with the primary mechanism for char removal being erosion. Tests revealed that radiant heating is not a valid technique for simulating aerodynamic heating of the material.

  5. Application of smart materials for improved flight performance of military aircraft

    SciTech Connect

    Kudva, J.; Appa, K.; Martin, C.; Jardine, P.

    1995-12-31

    This paper discusses on-going work under an ARPA/WL contract to Northrop Grumman entitled {open_quotes}Smart Structures and Materials Development - Smart Wing.{close_quotes} The contract addresses the application of smart materials and smart Structures concepts to enhance the aerodynamic and maneuver performance of military aircraft. Various concepts for adaptive wing and control surfaces are being studied. Specifically, (a) wing span-wise twist control using built-in shape- memory alloy torquing mechanism and (b) cambered leading edge and trailing edge control surfaces using hybrid piezoelectric and SMA actuation, are being evaluated for a 20% model of a modem day fighter aircraft. The potential benefits of the designs include increased lift for short take-offs, improved high-speed maneuverability, and enhanced control surface effectiveness. These benefits will be quantified by testing the sub-scale model in a transonic wind tunnel next year.

  6. Aerodynamic Parameters of High Performance Aircraft Estimated from Wind Tunnel and Flight Test Data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Murphy, Patrick C.

    1998-01-01

    A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares an mixed estimation methods, At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.

  7. Aerodynamic Parameters of High Performance Aircraft Estimated from Wind Tunnel and Flight Test Data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Murphy, Patrick C.

    1999-01-01

    A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares and mixed estimation methods. At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.

  8. A.I.-based real-time support for high performance aircraft operations

    NASA Technical Reports Server (NTRS)

    Vidal, J. J.

    1985-01-01

    Artificial intelligence (AI) based software and hardware concepts are applied to the handling system malfunctions during flight tests. A representation of malfunction procedure logic using Boolean normal forms are presented. The representation facilitates the automation of malfunction procedures and provides easy testing for the embedded rules. It also forms a potential basis for a parallel implementation in logic hardware. The extraction of logic control rules, from dynamic simulation and their adaptive revision after partial failure are examined. It uses a simplified 2-dimensional aircraft model with a controller that adaptively extracts control rules for directional thrust that satisfies a navigational goal without exceeding pre-established position and velocity limits. Failure recovery (rule adjusting) is examined after partial actuator failure. While this experiment was performed with primitive aircraft and mission models, it illustrates an important paradigm and provided complexity extrapolations for the proposed extraction of expertise from simulation, as discussed. The use of relaxation and inexact reasoning in expert systems was also investigated.

  9. An Integrated Architecture for Aircraft Engine Performance Monitoring and Fault Diagnostics: Engine Test Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Aidan W.; Simon, Donald L.

    2015-01-01

    This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.

  10. An Integrated Architecture for Aircraft Engine Performance Monitoring and Fault Diagnostics: Engine Test Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Aidan W.; Simon, Donald L.

    2014-01-01

    This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.

  11. A Theory for the Roll-Ratchet Phenomenon in High Performance Aircraft

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1997-01-01

    Roll-ratchet refers to a high frequency oscillation which can occur in pilot-in-the-loop control of roll attitude in high performance aircraft. The frequencies of oscillation are typically well beyond those associated with the more familiar pilot-induced oscillation. A structural model of the human pilot which has been employed to provide a unified theory for aircraft handling qualities and pilot-induced oscillations is employed here to provide a theory for the existence of roll-ratchet. It is hypothesized and demonstrated using the structural model that the pilot's inappropriate use of vestibular acceleration feedback can cause this phenomenon, a possibility which has been discussed previously by other researchers. The possible influence of biodynamic feedback on roll ratchet is also discussed.

  12. Study to determine operational and performance criteria for STOL aircraft operating in low visibility conditions

    NASA Technical Reports Server (NTRS)

    Gorham, J. A.

    1978-01-01

    The operational and performance criteria for civil CTOL passenger-carrying airplanes landing in low visibilities depend upon the characteristics of the airplane, the nature and use of the ground and airborne guidance and control systems, and the geometry and lighting of the landing field. Based upon these criteria, FAA advisory circulars, airplane and equipment design characteristics, and airline operational and maintenance procedures were formulated. The documents are selected, described, and discussed in relationship to the potential low weather minima operation of STOL aircraft. An attempt is made to identify fundamental differences between CTOL and STOL aircraft characteristics which could impact upon existing CTOL documentation. Further study and/or flight experiments are recommended.

  13. Vehicle Design Evaluation Program (VDEP). A computer program for weight sizing, economic, performance and mission analysis of fuel-conservative aircraft, multibodied aircraft and large cargo aircraft using both JP and alternative fuels

    NASA Technical Reports Server (NTRS)

    Oman, B. H.

    1977-01-01

    The NASA Langley Research Center vehicle design evaluation program (VDEP-2) was expanded by (1) incorporating into the program a capability to conduct preliminary design studies on subsonic commercial transport type aircraft using both JP and such alternate fuels as hydrogen and methane;(2) incorporating an aircraft detailed mission and performance analysis capability; and (3) developing and incorporating an external loads analysis capability. The resulting computer program (VDEP-3) provides a preliminary design tool that enables the user to perform integrated sizing, structural analysis, and cost studies on subsonic commercial transport aircraft. Both versions of the VDEP-3 Program which are designated preliminary Analysis VDEP-3 and detailed Analysis VDEP utilize the same vehicle sizing subprogram which includes a detailed mission analysis capability, as well as a geometry and weight analysis for multibodied configurations.

  14. Exploration of the Trade Space Between Unmanned Aircraft Systems Descent Maneuver Performance and Sense-and-Avoid System Performance Requirements

    NASA Technical Reports Server (NTRS)

    Jack, Devin P.; Hoffler, Keith D.; Johnson, Sally C.

    2014-01-01

    A need exists to safely integrate Unmanned Aircraft Systems (UAS) into the United States' National Airspace System. Replacing manned aircraft's see-and-avoid capability in the absence of an onboard pilot is one of the key challenges associated with safe integration. Sense-and-avoid (SAA) systems will have to achieve yet-to-be-determined required separation distances for a wide range of encounters. They will also need to account for the maneuver performance of the UAS they are paired with. The work described in this paper is aimed at developing an understanding of the trade space between UAS maneuver performance and SAA system performance requirements, focusing on a descent avoidance maneuver. An assessment of current manned and unmanned aircraft performance was used to establish potential UAS performance test matrix bounds. Then, near-term UAS integration work was used to narrow down the scope. A simulator was developed with sufficient fidelity to assess SAA system performance requirements. The simulator generates closest-point-of-approach (CPA) data from the wide range of UAS performance models maneuvering against a single intruder with various encounter geometries. Initial attempts to model the results made it clear that developing maneuver performance groups is required. Discussion of the performance groups developed and how to know in which group an aircraft belongs for a given flight condition and encounter is included. The groups are airplane, flight condition, and encounter specific, rather than airplane-only specific. Results and methodology for developing UAS maneuver performance requirements are presented for a descent avoidance maneuver. Results for the descent maneuver indicate that a minimum specific excess power magnitude can assure a minimum CPA for a given time-to-go prediction. However, smaller amounts of specific excess power may achieve or exceed the same CPA if the UAS has sufficient speed to trade for altitude. The results of this study will

  15. A Comparative Study on Automotive Brake Testing Standards

    NASA Astrophysics Data System (ADS)

    Kumbhar, Bhau Kashinath; Patil, Satyajit Ramchandra; Sawant, Suresh Maruti

    2016-06-01

    Performance testing of automotive brakes involves determination of stopping time, distance and deceleration level. Braking performance of an automobile is required to be ensured for various surfaces like dry, wet, concrete, bitumen etc. as well as for prolonged applications. Various brake testing standards are used worldwide to assure vehicle and pedestrian safety. This article presents methodologies used for automotive service brake testing for two wheelers. The main contribution of this work lies in comparative study of three main brake testing standards; viz. Indian Standards, Federal Motor Vehicle Safety Standards and European Economic Commission Standards. This study shall help the policy makers to choose the best criteria out of these three while formulating newer edition of testing standards.

  16. Common display performance requirements for military and commercial aircraft product lines

    NASA Astrophysics Data System (ADS)

    Hoener, Steven J.; Behrens, Arthur J.; Flint, John R.; Jacobsen, Alan R.

    2001-09-01

    Obtaining high quality Active Matrix Liquid Crystal (AMLCD) glass to meet the needs of the commercial and military aerospace business is a major challenge, at best. With the demise of all domestic sources of AMLCD substrate glass, the industry is now focused on overseas sources, which are primarily producing glass for consumer electronics. Previous experience with ruggedizing commercial glass leads to the expectation that the aerospace industry can leverage off the commercial market. The problem remains, while the commercial industry is continually changing and improving its products, the commercial and military aerospace industries require stable and affordable supplies of AMLCD glass for upwards of 20 years to support production and maintenance operations. The Boeing Engineering and Supplier Management Process Councils have chartered a group of displays experts from multiple aircraft product divisions within the Boeing Company, the Displays Process Action Team (DPAT), to address this situation from an overall corporate perspective. The DPAT has formulated a set of Common Displays Performance Requirements for use across the corporate line of commercial and military aircraft products. Though focused on the AMLCD problem, the proposed common requirements are largely independent of display technology. This paper describes the strategy being pursued within the Boeing Company to address the AMLCD supply problem and details the proposed implementation process, centered on common requirements for both commercial and military aircraft displays. Highlighted in this paper are proposed common, or standard, display sizes and the other major requirements established by the DPAT, along with the rationale for these requirements.

  17. Performance of an Electro-Hydrostatic Actuator on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    1997-01-01

    An electro-hydrostatic actuator was evaluated at NASA Dryden Flight Research Center, Edwards, California. The primary goal of testing this actuator system was the flight demonstration of power-by-wire technology on a primary flight control surface. The electro-hydrostatic actuator uses an electric motor to drive a hydraulic pump and relies on local hydraulics for force transmission. This actuator replaced the F-18 standard left aileron actuator on the F-18 Systems Research Aircraft and was evaluated throughout the Systems Research Aircraft flight envelope. As of July 24, 1997 the electro-hydrostatic actuator had accumulated 23.5 hours of flight time. This paper presents the electro-hydrostatic actuator system configuration and component description, ground and flight test plans, ground and flight test results, and lessons learned. This actuator performs as well as the standard actuator and has more load capability than required by aileron actuator specifications of McDonnell- Douglas Aircraft, St. Louis, Missouri. The electro-hydrostatic actuator system passed all of its ground tests with the exception of one power-off test during unloaded dynamic cycling.

  18. AGFATL- ACTIVE GEAR FLEXIBLE AIRCRAFT TAKEOFF AND LANDING ANALYSIS

    NASA Technical Reports Server (NTRS)

    Mcgehee, J. R.

    1994-01-01

    The Active Gear, Flexible Aircraft Takeoff and Landing Analysis program, AGFATL, was developed to provide a complete simulation of the aircraft takeoff and landing dynamics problem. AGFATL can represent an airplane either as a rigid body with six degrees of freedom or as a flexible body with multiple degrees of freedom. The airframe flexibility is represented by the superposition of up to twenty free vibration modes on the rigid-body motions. The analysis includes maneuver logic and autopilots programmed to control the aircraft during glide slope, flare, landing, and takeoff. The program is modular so that performance of the aircraft in flight and during landing and ground maneuvers can be studied separately or in combination. A program restart capability is included in AGFATL. Effects simulated in the AGFATL program include: (1) flexible aircraft control and performance during glide slope, flare, landing roll, and takeoff roll under conditions of changing winds, engine failures, brake failures, control system failures, strut failures, restrictions due to runway length, and control variable limits and time lags; (2) landing gear loads and dynamics for up to five gears; (3) single and multiple engines (maximum of four) including selective engine reversing and failure; (4) drag chute and spoiler effects; (5) wheel braking (including skid-control) and selective brake failure; (6) aerodynamic ground effects; (7) aircraft carrier operations; (8) inclined runways and runway perturbations; (9) flexible or rigid airframes; 10) rudder and nose gear steering; and 11) actively controlled landing gear shock struts. Input to the AGFATL program includes data which describe runway roughness; vehicle geometry, flexibility and aerodynamic characteristics; landing gear(s); propulsion; and initial conditions such as attitude, attitude change rates, and velocities. AGFATL performs a time integration of the equations of motion and outputs comprehensive information on the airframe

  19. The measurement of aircraft performance and stability and control after flight through natural icing conditions

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.; Mikkelsen, K. L.; Mcknight, R. C.; Ide, R. F.; Reehorst, A. L.; Jordan, J. L.; Schinstock, W. C.; Platz, S. J.

    1986-01-01

    The effects of airframe icing on the performance and stability and control of a twin-engine commuter-class aircraft were measured by the NASA Lewis Research Center. This work consisted of clear air tests with artificial ice shapes attached to the horizontal tail, and natural icing flight tests in measured icing clouds. The clear air tests employed static longitudinal flight test methods to determine degradation in stability margins for four simulated ice shapes. The natural icing flight tests employed a data acquisition system, which was provided under contract to NASA by Kohlman Systems Research Incorporated. This system used a performance modeling method and modified maximum likelihood estimation (MMLE) technique to determine aircraft performance degradation and stability and control. Flight test results with artificial ice shapes showed that longitudinal, stick-fixed, static margins are reduced on the order of 5 percent with flaps up. Natural icing tests with the KSR system corroborated these results and showed degradation in the elevator control derivatives on the order of 8 to 16 percent depending on wing flap configuration. Performance analyses showed the individual contributions of major airframe components to the overall degration in lift and drag.

  20. The measurement of aircraft performance and stability and control after flight through natural icing conditions

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.; Mikkelsen, K. L.; Mcknight, R. C.; Ide, R. F.; Reehorst, A. L.

    1986-01-01

    The effects of airframe icing on the performance and stability and control of a twin-engine commuter-class aircraft were measured by the NASA Lewis Research Center. This work consisted of clear air tests with artificial ice shapes attached to the horizontal tail, and natural icing flight tests in measured icing clouds. The clear air tests employed static longitudinal flight test methods to determine degradation in stability margins for four simulated ice shapes. The natural icing flight tests employed a data acquisition system, which was provided under contract to NASA by Kohlman Systems Research Incorporated. This system used a performance modeling method and modified maximum likelihood estimation (MMLE) technique to determine aircraft performance degradation and stability and control. Flight test results with artificial ice shapes showed that longitudinal, stick-fixed, static margins are reduced on the order of 5 percent with flaps up. Natural icing tests with the KSR system corroborated these results and showed degradation in the elevator control derivatives on the order of 8 to 16 percent depending on wing flap configuration. Performance analyses showed the individual contributions of major airframe components to the overall degradation in lift and drag.

  1. An Integrated Approach for Aircraft Engine Performance Estimation and Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    imon, Donald L.; Armstrong, Jeffrey B.

    2012-01-01

    A Kalman filter-based approach for integrated on-line aircraft engine performance estimation and gas path fault diagnostics is presented. This technique is specifically designed for underdetermined estimation problems where there are more unknown system parameters representing deterioration and faults than available sensor measurements. A previously developed methodology is applied to optimally design a Kalman filter to estimate a vector of tuning parameters, appropriately sized to enable estimation. The estimated tuning parameters can then be transformed into a larger vector of health parameters representing system performance deterioration and fault effects. The results of this study show that basing fault isolation decisions solely on the estimated health parameter vector does not provide ideal results. Furthermore, expanding the number of the health parameters to address additional gas path faults causes a decrease in the estimation accuracy of those health parameters representative of turbomachinery performance deterioration. However, improved fault isolation performance is demonstrated through direct analysis of the estimated tuning parameters produced by the Kalman filter. This was found to provide equivalent or superior accuracy compared to the conventional fault isolation approach based on the analysis of sensed engine outputs, while simplifying online implementation requirements. Results from the application of these techniques to an aircraft engine simulation are presented and discussed.

  2. Aircraft hydraulic systems. Third edition

    SciTech Connect

    Neese, W.A.

    1991-12-31

    The first nine chapters concern hydraulic components including: tubing, hoses, fittings, seals, pumps, valves, cylinders, and motors. General hydraulic system considerations are included in chapters five and nine, while pneumatic systems are covered in chapter ten. Chapters eleven through fifteen are devoted to aircraft-specific systems such as: landing gear, flight controls, brakes, etc. The material is rounded out with excerpts from the Canadair Challenger 601 training guide to illustrate the use of hydraulic systems in a specific aircraft application.

  3. Heat distribution in disc brake

    NASA Astrophysics Data System (ADS)

    Klimenda, Frantisek; Soukup, Josef; Kampo, Jan

    2016-06-01

    This article is deals by the thermal analysis of the disc brake with floating caliper. The issue is solved by numerically. The half 2D model is used for solution in program ADINA 8.8. Two brake discs without the ventilation are solved. One disc is made from cast iron and the second is made from stainless steel. Both materials are an isotropic. By acting the pressure force on the brake pads will be pressing the pads to the brake disc. Speed will be reduced (slowing down). On the contact surface generates the heat, which the disc and pads heats. In the next part of article is comparison the maximum temperature at the time of braking. The temperatures of both materials for brake disc (gray cast iron, stainless steel) are compares. The heat flux during braking for the both materials is shown.

  4. Design optimization of a magnetorheological brake in powered knee orthosis

    NASA Astrophysics Data System (ADS)

    Ma, Hao; Liao, Wei-Hsin

    2015-04-01

    Magneto-rheological (MR) fluids have been utilized in devices like orthoses and prostheses to generate controllable braking torque. In this paper, a flat shape rotary MR brake is designed for powered knee orthosis to provide adjustable resistance. Multiple disk structure with interior inner coil is adopted in the MR brake configuration. In order to increase the maximal magnetic flux, a novel internal structure design with smooth transition surface is proposed. Based on this design, a parameterized model of the MR brake is built for geometrical optimization. Multiple factors are considered in the optimization objective: braking torque, weight, and, particularly, average power consumption. The optimization is then performed with Finite Element Analysis (FEA), and the optimal design is obtained among the Pareto-optimal set considering the trade-offs in design objectives.

  5. Effect of at-the-source noise reduction on performance and weights of a tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Gibs, J.; Stepniewski, W. Z.; Spencer, R.

    1975-01-01

    Reduction of far-field acoustic signature through modification of basic design parameters (tip speed, number of blades, disc loading and rotor blade area) was examined, using a tilt-rotor flight research aircraft as a baseline configuration. Of those design parameters, tip speed appeared as the most important. Next, preliminary design of two aircraft was performed, postulating the following reduction of noise level from that of the baseline machine, at 500 feet from the spot of OGE hover. In one aircraft, the PNL was lowered by 10 PNdB and in the other, OASPL decreased by 10 dB. The resulting weight and performance penalties were examined. Then, PNL and EPNL aspects of terminal operation were compared for the baseline and quieter aircraft.

  6. Comparative analysis into the tractor-trailer braking dynamics: tractor with single axle brakes, tractor with all wheel brakes

    NASA Astrophysics Data System (ADS)

    Nastasoiu, Mircea; Ispas, Nicolae

    2014-06-01

    The paper elaborates a mathematical model in order to conduct a study into the dynamics of tractor-trailer systems during braking. The braking dynamics is analyzed by considering two versions for the braking system: 1) braking applied on the rear axle and 2) braking applied on all four wheels. In both versions the trailer is braked on all wheels. The mathematical model enables us to determine and graphically illustrate the evolution of the following parameters: braking deceleration, braking speed and the distance traveled by the tractor during braking. The mathematical model elaborated is applied on a tractor-trailer system completing transportation works.

  7. Turbulence modeling of free shear layers for high-performance aircraft

    NASA Technical Reports Server (NTRS)

    Sondak, Douglas L.

    1993-01-01

    The High Performance Aircraft (HPA) Grand Challenge of the High Performance Computing and Communications (HPCC) program involves the computation of the flow over a high performance aircraft. A variety of free shear layers, including mixing layers over cavities, impinging jets, blown flaps, and exhaust plumes, may be encountered in such flowfields. Since these free shear layers are usually turbulent, appropriate turbulence models must be utilized in computations in order to accurately simulate these flow features. The HPCC program is relying heavily on parallel computers. A Navier-Stokes solver (POVERFLOW) utilizing the Baldwin-Lomax algebraic turbulence model was developed and tested on a 128-node Intel iPSC/860. Algebraic turbulence models run very fast, and give good results for many flowfields. For complex flowfields such as those mentioned above, however, they are often inadequate. It was therefore deemed that a two-equation turbulence model will be required for the HPA computations. The k-epsilon two-equation turbulence model was implemented on the Intel iPSC/860. Both the Chien low-Reynolds-number model and a generalized wall-function formulation were included.

  8. Optimal Tuner Selection for Kalman Filter-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2010-01-01

    A linear point design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. This paper derives theoretical Kalman filter estimation error bias and variance values at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the conventional approach of tuner selection. Experimental simulation results are found to be in agreement with theoretical predictions. The new methodology is shown to yield a significant improvement in on-line engine performance estimation accuracy

  9. Braking index of isolated pulsars

    NASA Astrophysics Data System (ADS)

    Hamil, O.; Stone, J. R.; Urbanec, M.; Urbancová, G.

    2015-03-01

    moment of inertia and other macroscopic properties of rotating neutron stars. The calculations are performed for fixed values of MB (as masses of isolated pulsars are not known) ranging from 1.0 - 2.2 M⊙ , and fixed magnetic dipole moment and inclination angle between the rotational and magnetic field axes. The results are used to solve for the value of the braking index as a function of frequency, and find the effect of the choice of the EoS, MB. The density profile of a star with a given MB is calculated to determine the transition between the crust and the core and used in estimation of the effect of core superfluidity on the braking index. Our results show conclusively that, within the model used in this work, any significant deviation of the braking index away from the value n =3 occurs at frequencies higher than about ten times the frequency of the slow rotating isolated pulsars most accurately measured to date. The rate of change of n with frequency is related to the softness of the EoS and the MB of the star as this controls the degree of departure from sphericity. Change in the moment of inertia in the MDR model alone, even with the more realistic features considered here, cannot explain the observational data on the braking index and other mechanisms have to be sought.

  10. A Systematic Approach for Model-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2010-01-01

    A requirement for effective aircraft engine performance estimation is the ability to account for engine degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. This paper presents a linear point design methodology for minimizing the degradation-induced error in model-based aircraft engine performance estimation applications. The technique specifically focuses on the underdetermined estimation problem, where there are more unknown health parameters than available sensor measurements. A condition for Kalman filter-based estimation is that the number of health parameters estimated cannot exceed the number of sensed measurements. In this paper, the estimated health parameter vector will be replaced by a reduced order tuner vector whose dimension is equivalent to the sensed measurement vector. The reduced order tuner vector is systematically selected to minimize the theoretical mean squared estimation error of a maximum a posteriori estimator formulation. This paper derives theoretical estimation errors at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the estimation accuracy achieved through conventional maximum a posteriori and Kalman filter estimation approaches. Maximum a posteriori estimation results demonstrate that reduced order tuning parameter vectors can be found that approximate the accuracy of estimating all health parameters directly. Kalman filter estimation results based on the same reduced order tuning parameter vectors demonstrate that significantly improved estimation accuracy can be achieved over the conventional approach of selecting a subset of health parameters to serve as the tuner vector. However, additional development is necessary to fully extend the methodology to Kalman filter

  11. Hybrid Neural-Network: Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics Developed and Demonstrated

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2002-01-01

    As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.

  12. Performance characteristics of a one-third-scale, vectorable ventral nozzle for SSTOVL aircraft

    NASA Technical Reports Server (NTRS)

    Esker, Barbara S.; Mcardle, Jack G.

    1990-01-01

    Several proposed configurations for supersonic short takeoff, vertical landing aircraft will require one or more ventral nozzles for lift and pitch control. The swivel nozzle is one possible ventral nozzle configuration. A swivel nozzle (approximately one-third scale) was built and tested on a generic model tailpipe. This nozzle was capable of vectoring the flow up to + or - 23 deg from the vertical position. Steady-state performance data were obtained at pressure ratios to 4.5, and pitot-pressure surveys of the nozzle exit plane were made. Two configurations were tested: the swivel nozzle with a square contour of the leading edge of the ventral duct inlet, and the same nozzle with a round leading edge contour. The swivel nozzle showed good performance overall, and the round-leading edge configuration showed an improvement in performance over the square-leading edge configuration.

  13. Computerized systems analysis and optimization of aircraft engine performance, weight, and life cycle costs

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.

    1979-01-01

    The computational techniques utilized to determine the optimum propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements are described. The characteristics and use of the following computer codes are discussed: (1) NNEP - a very general cycle analysis code that can assemble an arbitrary matrix fans, turbines, ducts, shafts, etc., into a complete gas turbine engine and compute on- and off-design thermodynamic performance; (2) WATE - a preliminary design procedure for calculating engine weight using the component characteristics determined by NNEP; (3) POD DRG - a table look-up program to calculate wave and friction drag of nacelles; (4) LIFCYC - a computer code developed to calculate life cycle costs of engines based on the output from WATE; and (5) INSTAL - a computer code developed to calculate installation effects, inlet performance and inlet weight. Examples are given to illustrate how these computer techniques can be applied to analyze and optimize propulsion system fuel consumption, weight, and cost for representative types of aircraft and missions.

  14. 14 CFR 23.735 - Brakes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... § 23.735 Brakes. (a) Brakes must be provided. The landing brake kinetic energy capacity rating of each main wheel brake assembly must not be less than the kinetic energy absorption requirements determined under either of the following methods: (1) The brake kinetic energy absorption requirements must...

  15. 14 CFR 23.735 - Brakes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... § 23.735 Brakes. (a) Brakes must be provided. The landing brake kinetic energy capacity rating of each main wheel brake assembly must not be less than the kinetic energy absorption requirements determined under either of the following methods: (1) The brake kinetic energy absorption requirements must...

  16. 14 CFR 23.735 - Brakes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... § 23.735 Brakes. (a) Brakes must be provided. The landing brake kinetic energy capacity rating of each main wheel brake assembly must not be less than the kinetic energy absorption requirements determined under either of the following methods: (1) The brake kinetic energy absorption requirements must...

  17. 14 CFR 23.735 - Brakes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... § 23.735 Brakes. (a) Brakes must be provided. The landing brake kinetic energy capacity rating of each main wheel brake assembly must not be less than the kinetic energy absorption requirements determined under either of the following methods: (1) The brake kinetic energy absorption requirements must...

  18. EEG potentials predict upcoming emergency brakings during simulated driving

    NASA Astrophysics Data System (ADS)

    Haufe, Stefan; Treder, Matthias S.; Gugler, Manfred F.; Sagebaum, Max; Curio, Gabriel; Blankertz, Benjamin

    2011-10-01

    Emergency braking assistance has the potential to prevent a large number of car crashes. State-of-the-art systems operate in two stages. Basic safety measures are adopted once external sensors indicate a potential upcoming crash. If further activity at the brake pedal is detected, the system automatically performs emergency braking. Here, we present the results of a driving simulator study indicating that the driver's intention to perform emergency braking can be detected based on muscle activation and cerebral activity prior to the behavioural response. Identical levels of predictive accuracy were attained using electroencephalography (EEG), which worked more quickly than electromyography (EMG), and using EMG, which worked more quickly than pedal dynamics. A simulated assistance system using EEG and EMG was found to detect emergency brakings 130 ms earlier than a system relying only on pedal responses. At 100 km h-1 driving speed, this amounts to reducing the braking distance by 3.66 m. This result motivates a neuroergonomic approach to driving assistance. Our EEG analysis yielded a characteristic event-related potential signature that comprised components related to the sensory registration of a critical traffic situation, mental evaluation of the sensory percept and motor preparation. While all these components should occur often during normal driving, we conjecture that it is their characteristic spatio-temporal superposition in emergency braking situations that leads to the considerable prediction performance we observed.

  19. Engine Performance and Knock Rating of Fuels for High-output Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Rothbrock, A M; Biermann, Arnold E

    1938-01-01

    Data are presented to show the effects of inlet-air pressure, inlet-air temperature, and compression ratio on the maximum permissible performance obtained on a single-cylinder test engine with aircraft-engine fuels varying from a fuel of 87 octane number to one 100 octane number plus 1 ml of tetraethyl lead per gallon. The data were obtained on a 5-inch by 5.75-inch liquid-cooled engine operating at 2,500 r.p.m. The compression ratio was varied from 6.50 to 8.75. The inlet-air temperature was varied from 120 to 280 F. and the inlet-air pressure from 30 inches of mercury absolute to the highest permissible. The limiting factors for the increase in compression ratio and in inlet-air pressure was the occurrence of either audible or incipient knock. The data are correlated to show that, for any one fuel,there is a definite relationship between the limiting conditions of inlet-air temperature and density at any compression ratio. This relationship is dependent on the combustion-gas temperature and density relationship that causes knock. The report presents a suggested method of rating aircraft-engine fuels based on this relationship. It is concluded that aircraft-engine fuels cannot be satisfactorily rated by any single factor, such as octane number, highest useful compression ratio, or allowable boost pressure. The fuels should be rated by a curve that expresses the limitations of the fuel over a variety of engine conditions.

  20. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  1. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  2. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 6 2012-10-01 2012-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  3. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  4. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  5. Airborne measurements performed by a light aircraft during Pegasos spring 2013 campaign

    NASA Astrophysics Data System (ADS)

    Väänänen, Riikka; Krejci, Radovan; Manninen, Hanna E.; Nieminen, Tuomo; Yli-Juuti, Taina; Kangasluoma, Juha; Pohja, Toivo; Aalto, Pasi P.; Petäjä, Tuukka; Kulmala, Markku

    2014-05-01

    To fully understand the chemical and physical processes in atmosphere, measuring only on-ground is not sufficient. To extend the measurements into the lower troposphere, the University of Helsinki has performed airborne campaigns since 2009. During spring 2013, a light aircraft was used to measure the aerosol size distribution over boreal forests as a part of the Pegasos 'Norhern Mission'. The aims of the measurements were to quantify the vertical profiles of aerosols up to the altitude of 3.5 km, to study the new particle formation in the lower troposphere, to measure the planetary boundary layer evolution, and to support the measurements performed by Zeppelin NT. We used a Cessna 172 light aircraft as a platform. An aerosol and gas inlet was mounted under the right wing and the sample air was conducted inside the cabin where most of the instruments were placed. The aerosol measurement instruments included a TSI 3776 condensation particle counter (CPC) with a cut-off size of 3 nm, a Scanning Mobility Particle Sizer (SMPS), with a size range of 10-350 nm, and a Particle Size Magnifier (PSM) connected with a TSI 3772 condensation particle counter. As the properties of the PSM measuring in airborne conditions were still under testing during the campaign, the setups of the PSM varied between the measurements. Other instruments on board included a Li-Cor Li-840 H2O/Co2-analyzer, a temperature sensor, a relative humidity sensor, and a GPS receiver. Total amount of 45 flights with 118 flight hours were performed between 24th April and 15th June 2013. The majority of the flights were flown around SMEAR II station located in Hyytiälä, and when possible, the flights were synchronized with the Zeppelin flights. Simultaneously, an extensive field campaign to measure aerosol and gas properties was performed on-ground at SMEAR II station. A time series of airborne aerosol data of around 1.5 months allows us to construct statistical vertical profiles of aerosol size

  6. The STOL performance of a two-engine, USB powered-lift aircraft with cross-shafted fans

    NASA Technical Reports Server (NTRS)

    Stevens, V. C.; Wilson, S. B., III; Zola, C. A.

    1985-01-01

    The short takeoff and landing capabilities that characterize the performance of powered-lift aircraft are dependent on engine thrust and are, therefore, severely affected by loss of an engine. This paper shows that the effects of engine loss on the short takeoff and landing performance of powered-lift aircraft can be effectively mitigated by cross-shafting the engine fans in a twin-engine configuration. Engine-out takeoff and landing performances are compared for three powered-lift aircraft configurations: one with four engines, one with two engines, and one with two engines in which the fans are cross-shafted. The results show that the engine-out takeoff and landing performance of the cross-shafted two-engine configuration is significantly better than that of the two-engine configuration without cross-shafting.

  7. A simulation study of crew performance in operating an advanced transport aircraft in an automated terminal area environment

    NASA Technical Reports Server (NTRS)

    Houck, J. A.

    1983-01-01

    A simulation study assessing crew performance operating an advanced transport aircraft in an automated terminal area environment is described. The linking together of the Langley Advanced Transport Operating Systems Aft Flight Deck Simulator with the Terminal Area Air Traffic Model Simulation was required. The realism of an air traffic control (ATC) environment with audio controller instructions for the flight crews and the capability of inserting a live aircraft into the terminal area model to interact with computer generated aircraft was provided. Crew performance using the advanced displays and two separate control systems (automatic and manual) in flying area navigation routes in the automated ATC environment was assessed. Although the crews did not perform as well using the manual control system, their performances were within acceptable operational limits with little increase in workload. The crews favored using the manual control system and felt they were more alert and aware of their environment when using it.

  8. Tether Deployer And Brake

    NASA Technical Reports Server (NTRS)

    Carroll, Joseph A.; Alexander, Charles M.

    1993-01-01

    Design concept promises speed, control, and reliability. Scheme for deploying tether provides for fast, free, and snagless payout and fast, dependable braking. Developed for small, expendable tethers in outer space, scheme also useful in laying transoceanic cables, deploying guidance wires to torpedoes and missiles, paying out rescue lines from ship to ship via rockets, deploying antenna wires, releasing communication and power cables to sonobuoys and expendable bathythermographs, and in reeling out lines from fishing rods.

  9. Sensor Selection for Aircraft Engine Performance Estimation and Gas Path Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Rinehart, Aidan W.

    2016-01-01

    This paper presents analytical techniques for aiding system designers in making aircraft engine health management sensor selection decisions. The presented techniques, which are based on linear estimation and probability theory, are tailored for gas turbine engine performance estimation and gas path fault diagnostics applications. They enable quantification of the performance estimation and diagnostic accuracy offered by different candidate sensor suites. For performance estimation, sensor selection metrics are presented for two types of estimators including a Kalman filter and a maximum a posteriori estimator. For each type of performance estimator, sensor selection is based on minimizing the theoretical sum of squared estimation errors in health parameters representing performance deterioration in the major rotating modules of the engine. For gas path fault diagnostics, the sensor selection metric is set up to maximize correct classification rate for a diagnostic strategy that performs fault classification by identifying the fault type that most closely matches the observed measurement signature in a weighted least squares sense. Results from the application of the sensor selection metrics to a linear engine model are presented and discussed. Given a baseline sensor suite and a candidate list of optional sensors, an exhaustive search is performed to determine the optimal sensor suites for performance estimation and fault diagnostics. For any given sensor suite, Monte Carlo simulation results are found to exhibit good agreement with theoretical predictions of estimation and diagnostic accuracies.

  10. Sensor Selection for Aircraft Engine Performance Estimation and Gas Path Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.

    2015-01-01

    This paper presents analytical techniques for aiding system designers in making aircraft engine health management sensor selection decisions. The presented techniques, which are based on linear estimation and probability theory, are tailored for gas turbine engine performance estimation and gas path fault diagnostics applications. They enable quantification of the performance estimation and diagnostic accuracy offered by different candidate sensor suites. For performance estimation, sensor selection metrics are presented for two types of estimators including a Kalman filter and a maximum a posteriori estimator. For each type of performance estimator, sensor selection is based on minimizing the theoretical sum of squared estimation errors in health parameters representing performance deterioration in the major rotating modules of the engine. For gas path fault diagnostics, the sensor selection metric is set up to maximize correct classification rate for a diagnostic strategy that performs fault classification by identifying the fault type that most closely matches the observed measurement signature in a weighted least squares sense. Results from the application of the sensor selection metrics to a linear engine model are presented and discussed. Given a baseline sensor suite and a candidate list of optional sensors, an exhaustive search is performed to determine the optimal sensor suites for performance estimation and fault diagnostics. For any given sensor suite, Monte Carlo simulation results are found to exhibit good agreement with theoretical predictions of estimation and diagnostic accuracies.

  11. Calculated Condenser Performance for a Mercury-Turbine Power Plant for Aircraft

    NASA Technical Reports Server (NTRS)

    Doyle, Ronald B.

    1948-01-01

    As part of an investigation af the application of nuclear energy to various types of power plants for aircraft, calculations have been made to determine the effect of several operating conditions on the performance of condensers for mercury-turbine power plants. The analysis covered 8 range of turbine-outlet pressures from 1 to 200 pounds per square inch absolute, turbine-inlet pressures from 300 to 700 pounds per square inch absolute,and a range of condenser cooling-air pressure drops, airplane flight speeds, and altitudes. The maximum load-carrying capacity (available for the nuclear reactor, working fluid, and cargo) of a mercury-turbine powered aircraft would be about half the gross weight of the airplane at a flight speed of 509 miles per hour and an altitude of 30,000 feet. This maximum is obtained with specific condenser frontal areas of 0.0063 square foot per net thrust horsepower with the condenser in a nacelle and 0.0060 square foot per net thrust horsepower with the condenser submerged in the wings (no external condenser drag) for a turbine-inlet pressure of 500 pounds per square inch absolute, a turbine-outlet pressure of 10 pounds per square inch absolute, and 8 turbine-inlet temperature of 1600 F.

  12. Aerodynamic performance of a full-scale lifting ejector system in a STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Smith, Brian E.; Garland, Doug; Poppen, William A.

    1992-01-01

    The aerodynamic characteristics of an advanced lifting ejector system incorporated into a full-scale, powered, fighter aircraft model were measured at statically and at transition airspeeds in the 40- by 80- and 80- by 120-Foot Wind Tunnels at NASA-Ames. The ejector system was installed in an ejector-lift/vectored thrust STOVL (Short Take-Off Vertical Landing) fighter aircraft configuration. Ejector thrust augmentation ratios approaching 1.6 were demonstrated during static testing. Changes in the internal aerodynamics and exit flow conditions of the ejector ducts are presented for a variety of wind-off and forward-flight test conditions. Wind-on test results indicate a small decrease in ejector performance and increase in exit flow nonuniformity with forward speed. Simulated ejector start-up at high speed, nose-up attitudes caused only small effects on overall vehicle forces and moments despite the fact that the ejector inlet flow was found to induce large regions of negative pressure on the upper surface of the wing apex adjacent to the inlets.

  13. Combined hydraulic and regenerative braking system

    DOEpatents

    Venkataperumal, Rama R.; Mericle, Gerald E.

    1981-06-02

    A combined hydraulic and regenerative braking system and method for an electric vehicle, with the braking system being responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  14. Combined hydraulic and regenerative braking system

    DOEpatents

    Venkataperumal, R.R.; Mericle, G.E.

    1979-08-09

    A combined hydraulic and regenerative braking system and method for an electric vehicle is disclosed. The braking system is responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  15. Application of tire dynamics to aircraft landing gear design analysis

    NASA Technical Reports Server (NTRS)

    Black, R. J.

    1983-01-01

    The tire plays a key part in many analyses used for design of aircraft landing gear. Examples include structural design of wheels, landing gear shimmy, brake whirl, chatter and squeal, complex combination of chatter and shimmy on main landing gear (MLG) systems, anti-skid performance, gear walk, and rough terrain loads and performance. Tire parameters needed in the various analyses are discussed. Two tire models are discussed for shimmy analysis, the modified Moreland approach and the von Schlippe-Dietrich approach. It is shown that the Moreland model can be derived from the Von Schlippe-Dietrich model by certain approximations. The remaining analysis areas are discussed in general terms and the tire parameters needed for each are identified. Accurate tire data allows more accurate design analysis and the correct prediction of dynamic performance of aircraft landing gear.

  16. Correcting Students' Misconceptions about Automobile Braking Distances and Video Analysis Using Interactive Program Tracker

    NASA Astrophysics Data System (ADS)

    Hockicko, Peter; Trpišová, Beáta; Ondruš, Ján

    2014-12-01

    The present paper informs about an analysis of students' conceptions about car braking distances and also presents one of the novel methods of learning: an interactive computer program Tracker that we used to analyse the process of braking of a car. The analysis of the students' conceptions about car braking distances consisted in obtaining their estimates of these quantities before and after watching a video recording of a car braking from various initial speeds to a complete stop and subsequent application of mathematical statistics to the obtained sets of students' answers. The results revealed that the difference between the value of the car braking distance estimated before watching the video and the real value of this distance was not caused by a random error but by a systematic error which was due to the incorrect students' conceptions about the car braking process. Watching the video significantly improved the students' estimates of the car braking distance, and we show that in this case, the difference between the estimated value and the real value of the car braking distance was due only to a random error, i.e. the students' conceptions about the car braking process were corrected. Some of the students subsequently performed video analysis of the braking processes of cars of various brands and under various conditions by means of Tracker that gave them exact knowledge of the physical quantities, which characterize a motor vehicle braking. Interviewing some of these students brought very positive reactions to this novel method of learning.

  17. Vehicle Hybrid Braking Control Using Sliding Mode Control

    NASA Astrophysics Data System (ADS)

    Kasahara, Misawa; Kanai, Yuki; Shiraki, Ryoko; Mori, Yasuchika

    Anti-lock brake system and brake-by-wire are proposed in the vehicle control using a brake, and the braking power is expected to be improved more than ever. The researches such as an application to the ABS of Siliding mode control which considered a actuator dynamics and a hybrid control of the brake using model reference adaptive control are done so far. However, in the former case, speed following that becomes a target exists physically impossible situation by saturation of tire frictional force because only speed following is done. In the latter, the model error is caused because the simulation model and the controller design model are different. Therefore, there is a problem that an accurate follow cannot be done. In this paper, the braking control is performed using the sliding mode control which has high robustness for disturbance that fulfils matching conditions. In so doing, it aims at the achievement of optimal braking control to switch wheel speed following to slip ratio following.

  18. 14 CFR 25.735 - Brakes and braking systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... system, if installed. (f) Kinetic energy capacity—(1) Design landing stop. The design landing stop is an operational landing stop at maximum landing weight. The design landing stop brake kinetic energy absorption... of kinetic energy throughout the defined wear range of the brake. The energy absorption rate...

  19. 14 CFR 25.735 - Brakes and braking systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... system, if installed. (f) Kinetic energy capacity—(1) Design landing stop. The design landing stop is an operational landing stop at maximum landing weight. The design landing stop brake kinetic energy absorption... of kinetic energy throughout the defined wear range of the brake. The energy absorption rate...

  20. 14 CFR 25.735 - Brakes and braking systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... system, if installed. (f) Kinetic energy capacity—(1) Design landing stop. The design landing stop is an operational landing stop at maximum landing weight. The design landing stop brake kinetic energy absorption... of kinetic energy throughout the defined wear range of the brake. The energy absorption rate...

  1. 14 CFR 25.735 - Brakes and braking systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... system, if installed. (f) Kinetic energy capacity—(1) Design landing stop. The design landing stop is an operational landing stop at maximum landing weight. The design landing stop brake kinetic energy absorption... of kinetic energy throughout the defined wear range of the brake. The energy absorption rate...

  2. 14 CFR 25.735 - Brakes and braking systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... system, if installed. (f) Kinetic energy capacity—(1) Design landing stop. The design landing stop is an operational landing stop at maximum landing weight. The design landing stop brake kinetic energy absorption... of kinetic energy throughout the defined wear range of the brake. The energy absorption rate...

  3. Extended-Kalman-filter-based regenerative and friction blended braking control for electric vehicle equipped with axle motor considering damping and elastic properties of electric powertrain

    NASA Astrophysics Data System (ADS)

    Lv, Chen; Zhang, Junzhi; Li, Yutong

    2014-11-01

    Because of the damping and elastic properties of an electrified powertrain, the regenerative brake of an electric vehicle (EV) is very different from a conventional friction brake with respect to the system dynamics. The flexibility of an electric drivetrain would have a negative effect on the blended brake control performance. In this study, models of the powertrain system of an electric car equipped with an axle motor are developed. Based on these models, the transfer characteristics of the motor torque in the driveline and its effect on blended braking control performance are analysed. To further enhance a vehicle's brake performance and energy efficiency, blended braking control algorithms with compensation for the powertrain flexibility are proposed using an extended Kalman filter. These algorithms are simulated under normal deceleration braking. The results show that the brake performance and blended braking control accuracy of the vehicle are significantly enhanced by the newly proposed algorithms.

  4. High-performance parallel analysis of coupled problems for aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Lanteri, S.; Gumaste, U.; Ronaghi, M.

    1994-01-01

    Applications are described of high-performance parallel, computation for the analysis of complete jet engines, considering its multi-discipline coupled problem. The coupled problem involves interaction of structures with gas dynamics, heat conduction and heat transfer in aircraft engines. The methodology issues addressed include: consistent discrete formulation of coupled problems with emphasis on coupling phenomena; effect of partitioning strategies, augmentation and temporal solution procedures; sensitivity of response to problem parameters; and methods for interfacing multiscale discretizations in different single fields. The computer implementation issues addressed include: parallel treatment of coupled systems; domain decomposition and mesh partitioning strategies; data representation in object-oriented form and mapping to hardware driven representation, and tradeoff studies between partitioning schemes and fully coupled treatment.

  5. The relationship of an integral wind shear hazard to aircraft performance limitations

    NASA Technical Reports Server (NTRS)

    Lewis, M. S.; Robinson, P. A.; Hinton, D. A.; Bowles, R. L.

    1994-01-01

    The development and certification of airborne forward-looking wind shear detection systems has required a hazard definition stated in terms of sensor observable wind field characteristics. This paper outlines the definition of the F-factor wind shear hazard index and an average F-factor quantity, calculated over a specified averaging interval, which may be used to judge an aircraft's potential performance loss due to a given wind shear field. A technique for estimating airplane energy changes during a wind shear encounter is presented and used to determine the wind shear intensity, as a function of the averaging interval, that presents significant hazard to transport category airplanes. The wind shear hazard levels are compared to averaged F-factor values at various averaging intervals for four actual wind shear encounters. Results indicate that averaging intervals of about one kilometer could be used in a simple method to discern hazardous shears.

  6. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2001-01-01

    In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.

  7. A model for nocturnal frost formation on a wing section: Aircraft takeoff performance penalties

    NASA Technical Reports Server (NTRS)

    Dietenberger, M. A.

    1983-01-01

    The nocturnal frost formation on a wing section, to explain the hazard associated with frost during takeoff was investigated. A model of nocturnal frost formation on a wing section which predicts when the nocturnal frost will form and also its thickness and density as a function of time was developed. The aerodynamic penalities as related to the nocturnal frost formation properties were analyzed to determine how much the takeoff performance would be degraded by a specific frost layer. With an aircraft takeoff assuming equations representing a steady climbing flight, it is determined that a reduction in the maximum gross weight or a partial frost clearance and a reduction in the takeoff angle of attack is needed to neutralize drag and life penalities which are due to frost. Atmospheric conditions which produce the most hazardous frost buildup are determined.

  8. Computer programs for estimating aircraft takeoff performance in three dimensional space

    NASA Technical Reports Server (NTRS)

    Bowles, J. V.

    1974-01-01

    A set of computer programs has been developed to estimate the takeoff and initial climb-out maneuver of a given aircraft in three-dimensional space. The program is applicable to conventional, vectored lift and power-lift concept aircraft. The aircraft is treated as a point mass flying over a flat earth with no side slip, and the rotational dynamics have been neglected. The required input is described and a sample case presented.

  9. Chaos in brake squeal noise

    NASA Astrophysics Data System (ADS)

    Oberst, S.; Lai, J. C. S.

    2011-02-01

    Brake squeal has become an increasing concern to the automotive industry because of warranty costs and the requirement for continued interior vehicle noise reduction. Most research has been directed to either analytical and experimental studies of brake squeal mechanisms or the prediction of brake squeal propensity using finite element methods. By comparison, there is a lack of systematic analysis of brake squeal data obtained from a noise dynamometer. It is well known that brake squeal is a nonlinear transient phenomenon and a number of studies using analytical and experimental models of brake systems (e.g., pin-on-disc) indicate that it could be treated as a chaotic phenomenon. Data obtained from a full brake system on a noise dynamometer were examined with nonlinear analysis techniques. The application of recurrence plots reveals chaotic structures even in noisy data from the squealing events. By separating the time series into different regimes, lower dimensional attractors are isolated and quantified by dynamic invariants such as correlation dimension estimates or Lyapunov exponents. Further analysis of the recurrence plot of squealing events by means of recurrence quantification analysis measures reveals different regimes of laminar and random behaviour, periodicity and chaos-forming recurrent transitions. These results help to classify brake squeal mechanisms and to enhance understanding of friction-related noise phenomena.

  10. Design of high performance multivariable control systems for supermaneuverable aircraft at high angle of attack

    NASA Technical Reports Server (NTRS)

    Valavani, Lena

    1995-01-01

    The main motivation for the work under the present grant was to use nonlinear feedback linearization methods to further enhance performance capabilities of the aircraft, and robustify its response throughout its operating envelope. The idea was to use these methods in lieu of standard Taylor series linearization, in order to obtain a well behaved linearized plant, in its entire operational regime. Thus, feedback linearization was going to constitute an 'inner loop', which would then define a 'design plant model' to be compensated for robustness and guaranteed performance in an 'outer loop' application of modern linear control methods. The motivation for this was twofold; first, earlier work had shown that by appropriately conditioning the plant through conventional, simple feedback in an 'inner loop', the resulting overall compensated plant design enjoyed considerable enhancement of performance robustness in the presence of parametric uncertainty. Second, the nonlinear techniques did not have any proven robustness properties in the presence of unstructured uncertainty; a definition of robustness (and performance) is very difficult to achieve outside the frequency domain; to date, none is available for the purposes of control system design. Thus, by proper design of the outer loop, such properties could still be 'injected' in the overall system.

  11. Performance Evaluation of Particle Sampling Probes for Emission Measurements of Aircraft Jet Engines

    NASA Technical Reports Server (NTRS)

    Lee, Poshin; Chen, Da-Ren; Sanders, Terry (Technical Monitor)

    2001-01-01

    Considerable attention has been recently received on the impact of aircraft-produced aerosols upon the global climate. Sampling particles directly from jet engines has been performed by different research groups in the U.S. and Europe. However, a large variation has been observed among published data on the conversion efficiency and emission indexes of jet engines. The variation results surely from the differences in test engine types, engine operation conditions, and environmental conditions. The other factor that could result in the observed variation is the performance of sampling probes used. Unfortunately, it is often neglected in the jet engine community. Particle losses during the sampling, transport, and dilution processes are often not discussed/considered in literatures. To address this issue, we evaluated the performance of one sampling probe by challenging it with monodisperse particles. A significant performance difference was observed on the sampling probe evaluated under different temperature conditions. Thermophoretic effect, nonisokinetic sampling and turbulence loss contribute to the loss of particles in sampling probes. The results of this study show that particle loss can be dramatic if the sampling probe is not well designed. Further, the result allows ones to recover the actual size distributions emitted from jet engines.

  12. Heavy and Overweight Vehicle Brake Testing: Five-Axle Combination Tractor-Flatbed Final Report

    SciTech Connect

    Lascurain, Mary Beth; Capps, Gary J; Franzese, Oscar

    2013-10-01

    The Federal Motor Carrier Safety Administration, in coordination with the Federal Highway Administration, sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gross vehicle weight (GVW) on braking performance. Because the Federal Motor Carrier Safety Regulations limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways, the examination of the effect of brake defects on brake performance for increased loads is also relevant. The HOVBT program seeks to provide relevant information to policy makers responsible for establishing load limits, beginning with providing test data for a combination tractor/trailer. This testing was conducted on a five-axle combination vehicle with tractor brakes meeting the Reduced Stopping Distance requirement rulemaking. This report provides a summary of the testing activities, the results of various analyses of the data, and recommendations for future research. Following a complete brake rebuild, instrumentation, and brake burnish, stopping tests were performed from 20 and 40 mph with various brake application pressures (15 psi, 25 psi, 35 psi, 45 psi, 55 psi, and full system pressure). These tests were conducted for various brake conditions at the following GVWs: 60,000, 80,000, 91,000, 97,000, 106,000, and 116,000 lb. The 80,000-lb GVWs included both balanced and unbalanced loads. The condition of the braking system was also varied. To introduce these defects, brakes (none, forward drive axle, or rear trailer axle) were made inoperative. In addition to the stopping tests, performance-based brake tests were conducted for the various loading and brake conditions. Analysis of the stopping test data showed the stopping distance to increase with load (as expected) and also showed that more braking force was generated by the drive axle brakes than the trailer axle brakes. The constant-pressure stopping test data

  13. Investigation of aerodynamic braking devices for wind turbine applications

    SciTech Connect

    Griffin, D.A.

    1997-04-01

    This report documents the selection and preliminary design of a new aerodynamic braking system for use on the stall-regulated AWT-26/27 wind turbines. The goal was to identify and design a configuration that offered improvements over the existing tip brake used by Advanced Wind Turbines, Inc. (AWT). Although the design objectives and approach of this report are specific to aerodynamic braking of AWT-26/27 turbines, many of the issues addressed in this work are applicable to a wider class of turbines. The performance trends and design choices presented in this report should be of general use to wind turbine designers who are considering alternative aerodynamic braking methods. A literature search was combined with preliminary work on device sizing, loads and mechanical design. Candidate configurations were assessed on their potential for benefits in the areas of cost, weight, aerodynamic noise, reliability and performance under icing conditions. As a result, two configurations were identified for further study: the {open_quotes}spoiler-flap{close_quotes} and the {open_quotes}flip-tip.{close_quotes} Wind tunnel experiments were conducted at Wichita State University to evaluate the performance of the candidate aerodynamic brakes on an airfoil section representative of the AWT-26/27 blades. The wind tunnel data were used to predict the braking effectiveness and deployment characteristics of the candidate devices for a wide range of design parameters. The evaluation was iterative, with mechanical design and structural analysis being conducted in parallel with the braking performance studies. The preliminary estimate of the spoiler-flap system cost was $150 less than the production AWT-26/27 tip vanes. This represents a reduction of approximately 5 % in the cost of the aerodynamic braking system. In view of the preliminary nature of the design, it would be prudent to plan for contingencies in both cost and weight.

  14. Intelligent adaptive nonlinear flight control for a high performance aircraft with neural networks.

    PubMed

    Savran, Aydogan; Tasaltin, Ramazan; Becerikli, Yasar

    2006-04-01

    This paper describes the development of a neural network (NN) based adaptive flight control system for a high performance aircraft. The main contribution of this work is that the proposed control system is able to compensate the system uncertainties, adapt to the changes in flight conditions, and accommodate the system failures. The underlying study can be considered in two phases. The objective of the first phase is to model the dynamic behavior of a nonlinear F-16 model using NNs. Therefore a NN-based adaptive identification model is developed for three angular rates of the aircraft. An on-line training procedure is developed to adapt the changes in the system dynamics and improve the identification accuracy. In this procedure, a first-in first-out stack is used to store a certain history of the input-output data. The training is performed over the whole data in the stack at every stage. To speed up the convergence rate and enhance the accuracy for achieving the on-line learning, the Levenberg-Marquardt optimization method with a trust region approach is adapted to train the NNs. The objective of the second phase is to develop intelligent flight controllers. A NN-based adaptive PID control scheme that is composed of an emulator NN, an estimator NN, and a discrete time PID controller is developed. The emulator NN is used to calculate the system Jacobian required to train the estimator NN. The estimator NN, which is trained on-line by propagating the output error through the emulator, is used to adjust the PID gains. The NN-based adaptive PID control system is applied to control three angular rates of the nonlinear F-16 model. The body-axis pitch, roll, and yaw rates are fed back via the PID controllers to the elevator, aileron, and rudder actuators, respectively. The resulting control system has learning, adaptation, and fault-tolerant abilities. It avoids the storage and interpolation requirements for the too many controller parameters of a typical flight control

  15. Intelligent adaptive nonlinear flight control for a high performance aircraft with neural networks.

    PubMed

    Savran, Aydogan; Tasaltin, Ramazan; Becerikli, Yasar

    2006-04-01

    This paper describes the development of a neural network (NN) based adaptive flight control system for a high performance aircraft. The main contribution of this work is that the proposed control system is able to compensate the system uncertainties, adapt to the changes in flight conditions, and accommodate the system failures. The underlying study can be considered in two phases. The objective of the first phase is to model the dynamic behavior of a nonlinear F-16 model using NNs. Therefore a NN-based adaptive identification model is developed for three angular rates of the aircraft. An on-line training procedure is developed to adapt the changes in the system dynamics and improve the identification accuracy. In this procedure, a first-in first-out stack is used to store a certain history of the input-output data. The training is performed over the whole data in the stack at every stage. To speed up the convergence rate and enhance the accuracy for achieving the on-line learning, the Levenberg-Marquardt optimization method with a trust region approach is adapted to train the NNs. The objective of the second phase is to develop intelligent flight controllers. A NN-based adaptive PID control scheme that is composed of an emulator NN, an estimator NN, and a discrete time PID controller is developed. The emulator NN is used to calculate the system Jacobian required to train the estimator NN. The estimator NN, which is trained on-line by propagating the output error through the emulator, is used to adjust the PID gains. The NN-based adaptive PID control system is applied to control three angular rates of the nonlinear F-16 model. The body-axis pitch, roll, and yaw rates are fed back via the PID controllers to the elevator, aileron, and rudder actuators, respectively. The resulting control system has learning, adaptation, and fault-tolerant abilities. It avoids the storage and interpolation requirements for the too many controller parameters of a typical flight control

  16. The knocking characteristics of fuels in relation to maximum permissible performance of aircraft engines

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Biermann, Arnold E

    1939-01-01

    An analysis is presented of the relationship of various engine factors to knock in preignition in an aircraft engine. From this analysis and from the available experimental data, a method of evaluating the knocking characteristics of the fuel in an aircraft-engine cylinder is suggested.

  17. Nonlinear stability and control study of highly maneuverable high performance aircraft

    NASA Technical Reports Server (NTRS)

    Mohler, R. R.

    1993-01-01

    This project is intended to research and develop new nonlinear methodologies for the control and stability analysis of high-performance, high angle-of-attack aircraft such as HARV (F18). Past research (reported in our Phase 1, 2, and 3 progress reports) is summarized and more details of final Phase 3 research is provided. While research emphasis is on nonlinear control, other tasks such as associated model development, system identification, stability analysis, and simulation are performed in some detail as well. An overview of various models that were investigated for different purposes such as an approximate model reference for control adaptation, as well as another model for accurate rigid-body longitudinal motion is provided. Only a very cursory analysis was made relative to type 8 (flexible body dynamics). Standard nonlinear longitudinal airframe dynamics (type 7) with the available modified F18 stability derivatives, thrust vectoring, actuator dynamics, and control constraints are utilized for simulated flight evaluation of derived controller performance in all cases studied.

  18. Performance of WVSS-II hygrometers on the FAAM research aircraft

    NASA Astrophysics Data System (ADS)

    Vance, A. K.; Abel, S. J.; Cotton, R. J.; Woolley, A. M.

    2015-03-01

    We compare the performance of five hygrometers fitted to the Facility for Airborne Atmospheric Measurement's (FAAM) BAe 146-301 research aircraft using data from approximately 100 flights executed over the course of 2 years under a wide range of conditions. Bulk comparison of cloud free data show good agreement between chilled mirror hygrometers and a WVSS-II fed from a modified Rosemount inlet, but that a WVSS-II fed from the standard flush inlet appears to over-read compared to the other instruments, except at higher humidities. Statistical assessment of hygrometer performance in cloudy conditions is problematic due to the variable nature of clouds, so a number of case studies are used instead to investigate the performance of the hygrometers in sub-optimal conditions. It is found that the flush inlet is not susceptible to either liquid or solid water but that the Rosemount inlet has a significant susceptibility to liquid water and may also be susceptible to ice. In all conditions the WVSS-II responds much more rapidly than the chilled mirror devices, with the flush inlet-fed WVSS-II being more rapid than that connected to the Rosemount.

  19. Performance of collision damage mitigation braking systems and their effects on human injury in the event of car-to-pedestrian accidents.

    PubMed

    Matsui, Yasuhiro; Han, Yong; Mizuno, Koji

    2011-11-01

    The number of traffic deaths in Japan was 4,863 in 2010. Pedestrians account for the highest number (1,714, 35%), and vehicle occupants the second highest (1,602, 33%). Pedestrian protection is a key countermeasure to reduce casualties in traffic accidents. A striking vehicle's impact velocity could be considered a parameter influencing the severity of injury and possibility of death in pedestrian crashes. A collision damage mitigation braking system (CDMBS) using a sensor to detect pedestrians could be effective for reducing the vehicle/pedestrian impact velocity. Currently in Japan, cars equipped with the CDMBS also have vision sensors such as a stereo camera for pedestrian detection. However, the ability of vision sensors in production cars to properly detect pedestrians has not yet been established. The effect of reducing impact velocity on the pedestrian injury risk has also not been determined. The first objective of this study is to evaluate the performance of the CDMBS in detecting pedestrians when it is installed in production cars. The second objective of this study is to evaluate the effect of reducing impact velocity on mitigating pedestrian injury. Firstly, impact experiments were performed using a car with the CDMBS in which the car collided with a pedestrian surrogate. In these tests, the velocity was chosen for the various test runs to be 20, 40 and 60 km/h, respectively, which were based on the velocity distribution in real-world pedestrian crashes. The results indicated that the impact velocity reduction ranged approximately from 10 to 15 km/h at the standing location of a pedestrian surrogate at both daytime and nighttime lighting conditions. These results show that the system has the potential to reduce pedestrian casualties from car-to-pedestrian contacts. Secondly, finite-element analyses were performed simulating vehicle-to- pedestrian impacts with the THUMS pedestrian models. The vehicle models selected for the study included a medium sedan

  20. Performance of collision damage mitigation braking systems and their effects on human injury in the event of car-to-pedestrian accidents.

    PubMed

    Matsui, Yasuhiro; Han, Yong; Mizuno, Koji

    2011-11-01

    The number of traffic deaths in Japan was 4,863 in 2010. Pedestrians account for the highest number (1,714, 35%), and vehicle occupants the second highest (1,602, 33%). Pedestrian protection is a key countermeasure to reduce casualties in traffic accidents. A striking vehicle's impact velocity could be considered a parameter influencing the severity of injury and possibility of death in pedestrian crashes. A collision damage mitigation braking system (CDMBS) using a sensor to detect pedestrians could be effective for reducing the vehicle/pedestrian impact velocity. Currently in Japan, cars equipped with the CDMBS also have vision sensors such as a stereo camera for pedestrian detection. However, the ability of vision sensors in production cars to properly detect pedestrians has not yet been established. The effect of reducing impact velocity on the pedestrian injury risk has also not been determined. The first objective of this study is to evaluate the performance of the CDMBS in detecting pedestrians when it is installed in production cars. The second objective of this study is to evaluate the effect of reducing impact velocity on mitigating pedestrian injury. Firstly, impact experiments were performed using a car with the CDMBS in which the car collided with a pedestrian surrogate. In these tests, the velocity was chosen for the various test runs to be 20, 40 and 60 km/h, respectively, which were based on the velocity distribution in real-world pedestrian crashes. The results indicated that the impact velocity reduction ranged approximately from 10 to 15 km/h at the standing location of a pedestrian surrogate at both daytime and nighttime lighting conditions. These results show that the system has the potential to reduce pedestrian casualties from car-to-pedestrian contacts. Secondly, finite-element analyses were performed simulating vehicle-to- pedestrian impacts with the THUMS pedestrian models. The vehicle models selected for the study included a medium sedan

  1. A review and preliminary evaluation of methodological factors in performance assessments of time-varying aircraft noise effects

    NASA Technical Reports Server (NTRS)

    Coates, G. D.; Alluisi, E. A.

    1975-01-01

    The effects of aircraft noise on human performance is considered. Progress is reported in the following areas: (1) review of the literature to identify the methodological and stimulus parameters involved in the study of noise effects on human performance; (2) development of a theoretical framework to provide working hypotheses as to the effects of noise on complex human performance; and (3) data collection on the first of several experimental investigations designed to provide tests of the hypotheses.

  2. Brake power servo booster

    SciTech Connect

    Kobayashi, M.; Shimamura, M.

    1988-04-19

    A brake power servo booster is described comprising: a power piston; a power piston return spring; at least two shells enclosing at least a portion of the power piston and defining a constant pressure chamber and a variable pressure chamber; a master cylinder for controlling the application of hydraulic pressure to a brake mechanism; an input shaft; a hollow cylindrical member integrally connected to the input shaft, a stopper member for limiting movement of the hollow cylindrical member in the second direction, a hollow output shaft integrally connected at one end thereof to the power piston; a connecting member integrally connected to the other end of the output shaft and slidably disposed inside the hollow cylindrical member, a valve member, a valve return spring for urging and valve member towards the first and second valve seats; and a key member provided between the connecting member and the hollow cylindrical member for allowing relative displacement between the connecting member and the hollow cylindrical member in the first and second directions within a predetermined range.

  3. Smart skin technology development for measuring ice accretion, stall, and high AOA aircraft performance. Part 1: Capacitive ice detector development

    NASA Technical Reports Server (NTRS)

    Pruzan, Daniel A.; Khatkhate, Ateen A.; Gerardi, Joseph J.; Hickman, Gail A.

    1993-01-01

    A reliable way to detect and measure ice accretion during flight is required to reduce the hazards of icing currently threatening present day aircraft. Many of the sensors used for this purpose are invasive (probe) sensors which must be placed in areas of the airframe where ice does not naturally form. Due to the difference in capture efficiency of the exposed surface, difficulties result in correlating the ice accretion on the probe to what is happening on a number of vastly different airfoil sections. Most flush mounted sensors in use must be integrated into the aircraft surface by cutting or drilling the aircraft surface. An alternate type of ice detector which is based on a NASA patent is currently being investigated at Innovative Dynamics, Inc. (IDI). Results of the investigation into the performance of different capacitive type sensor designs, both rigid as well as elastic, are presented.

  4. Comparison of the Performance of Noise Metrics as Predictions of the Annoyance of Stage 2 and Stage 3 Aircraft Overflights

    NASA Technical Reports Server (NTRS)

    Pearsons, Karl S.; Howe, Richard R.; Sneddon, Matthew D.; Fidell, Sanford

    1996-01-01

    Thirty audiometrically screened test participants judged the relative annoyance of two comparison (variable level) and thirty-four standard (fixed level) signals in an adaptive paired comparison psychoacoustic study. The signal ensemble included both FAR Part 36 Stage 2 and 3 aircraft overflights, as well as synthesized aircraft noise signatures and other non-aircraft signals. All test signals were presented for judgment as heard indoors, in the presence of continuous background noise, under free-field listening conditions in an anechoic chamber. Analyses of the performance of 30 noise metrics as predictors of these annoyance judgments confirmed that the more complex metrics were generally more accurate and precise predictors than the simpler methods. EPNL was somewhat less accurate and precise as a predictor of the annoyance judgments than a duration-adjusted variant of Zwicker's Loudness Level.

  5. Experimental investigations for uncertainty quantification in brake squeal analysis

    NASA Astrophysics Data System (ADS)

    Renault, A.; Massa, F.; Lallemand, B.; Tison, T.

    2016-04-01

    The aim of this paper is to improve the correlation between the experimental and the numerical prediction of unstable frequencies for automotive brake systems considering uncertainty. First, an experimental quantification of uncertainty and a discussion analysing the contributions of uncertainty to a numerical squeal simulation are proposed. Frequency and transient simulations are performed considering nominal values of model parameters, determined experimentally. The obtained results are compared with those derived from experimental tests to highlight the limitation of deterministic simulations. The effects of the different kinds of uncertainty detected in working conditions of brake system, the pad boundary condition, the brake system material properties and the pad surface topography are discussed by defining different unstable mode classes. Finally, a correlation between experimental and numerical results considering uncertainty is successfully proposed for an industrial brake system. Results from the different comparisons reveal also a major influence of the pad topography and consequently the contact distribution.

  6. Aircraft Design Considerations to Meet One Engine Inoperative (OEI) Safety Requirements

    NASA Technical Reports Server (NTRS)

    Scott, Mark W.

    2012-01-01

    Commercial airlines are obligated to operate such that an aircraft can suffer an engine failure at any point in its mission and terminate the flight without an accident. Only minimal aircraft damage is allowable, such as brake replacement due to very heavy application, or an engine inspection and/or possible removal due to use of an emergency rating. Such performance criteria are often referred to as zero exposure, referring to zero accident exposure to an engine failure. The critical mission segment for meeting one engine inoperative (OEI) criteria is takeoff. For a given weight, wind, and ambient condition, fixed wing aircraft require a balanced field length. This is the longer of the distance to take off if an engine fails at a predetermined critical point in the takeoff profile, or the distance to reject the takeoff and brake to a stop. Rotorcraft have requirements for horizontal takeoff procedures that are equivalent to a balanced field length requirements for fixed wing aircraft. Rotorcraft also perform vertical procedures where no runway or heliport distance is available. These were developed primarily for elevated heliports as found on oil rigs or rooftops. They are also used for ground level operations as might be found at heliports at the end of piers or other confined areas.

  7. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic brake subsystem. The following requirements apply to vehicles with air brake and...

  8. Brakes Specialist. Teacher Edition. Automotive Service Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains teacher's materials for a course on becoming an automotive brakes specialist, based on the National Institute of Automotive Service Excellence task lists. The course consists of three instructional units: service brake hydraulic system and wheel bearings, service drum brakes, and service disc brakes. Depending on the…

  9. 30 CFR 56.19004 - Brakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Brakes. 56.19004 Section 56.19004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Brakes. Any hoist used to hoist persons shall be equipped with a brake or brakes which shall be...

  10. 49 CFR 229.46 - Brakes: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Brakes: General. 229.46 Section 229.46..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.46 Brakes: General. The carrier shall know before each trip that the locomotive brakes and devices...

  11. 30 CFR 56.19004 - Brakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Brakes. 56.19004 Section 56.19004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Brakes. Any hoist used to hoist persons shall be equipped with a brake or brakes which shall be...

  12. 30 CFR 57.10004 - Brakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Brakes. 57.10004 Section 57.10004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Aerial Tramways § 57.10004 Brakes. Positive-action-type brakes and devices which apply the brakes automatically in the event of a...

  13. 30 CFR 56.10004 - Brakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Brakes. 56.10004 Section 56.10004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Aerial Tramways § 56.10004 Brakes. Positive-action-type brakes and devices which apply the brakes automatically in the event of a...

  14. 49 CFR 238.431 - Brake system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Brake system. 238.431 Section 238.431... Equipment § 238.431 Brake system. (a) A passenger train's brake system shall be capable of stopping the... train is operating under worst-case adhesion conditions. (b) The brake system shall be designed to...

  15. 30 CFR 56.19004 - Brakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Brakes. 56.19004 Section 56.19004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Brakes. Any hoist used to hoist persons shall be equipped with a brake or brakes which shall be...

  16. 30 CFR 57.19004 - Brakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Brakes. 57.19004 Section 57.19004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND....19004 Brakes. Any hoist used to hoist persons shall be equipped with a brake or brakes which shall...

  17. 30 CFR 57.19004 - Brakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Brakes. 57.19004 Section 57.19004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND....19004 Brakes. Any hoist used to hoist persons shall be equipped with a brake or brakes which shall...

  18. 49 CFR 238.431 - Brake system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Brake system. 238.431 Section 238.431... Equipment § 238.431 Brake system. (a) A passenger train's brake system shall be capable of stopping the... train is operating under worst-case adhesion conditions. (b) The brake system shall be designed to...

  19. 30 CFR 57.19004 - Brakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Brakes. 57.19004 Section 57.19004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND....19004 Brakes. Any hoist used to hoist persons shall be equipped with a brake or brakes which shall...

  20. 30 CFR 57.10004 - Brakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Brakes. 57.10004 Section 57.10004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Aerial Tramways § 57.10004 Brakes. Positive-action-type brakes and devices which apply the brakes automatically in the event of a...

  1. 30 CFR 57.19004 - Brakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Brakes. 57.19004 Section 57.19004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND....19004 Brakes. Any hoist used to hoist persons shall be equipped with a brake or brakes which shall...

  2. 49 CFR 229.46 - Brakes: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Brakes: General. 229.46 Section 229.46..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.46 Brakes: General. The carrier shall know before each trip that the locomotive brakes and devices...

  3. 30 CFR 56.19004 - Brakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Brakes. 56.19004 Section 56.19004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Brakes. Any hoist used to hoist persons shall be equipped with a brake or brakes which shall be...

  4. 30 CFR 56.10004 - Brakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Brakes. 56.10004 Section 56.10004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Aerial Tramways § 56.10004 Brakes. Positive-action-type brakes and devices which apply the brakes automatically in the event of a...

  5. 30 CFR 57.10004 - Brakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Brakes. 57.10004 Section 57.10004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Aerial Tramways § 57.10004 Brakes. Positive-action-type brakes and devices which apply the brakes automatically in the event of a...

  6. 30 CFR 56.19004 - Brakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Brakes. 56.19004 Section 56.19004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Brakes. Any hoist used to hoist persons shall be equipped with a brake or brakes which shall be...

  7. 30 CFR 56.10004 - Brakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Brakes. 56.10004 Section 56.10004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Aerial Tramways § 56.10004 Brakes. Positive-action-type brakes and devices which apply the brakes automatically in the event of a...

  8. 30 CFR 57.19004 - Brakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Brakes. 57.19004 Section 57.19004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND....19004 Brakes. Any hoist used to hoist persons shall be equipped with a brake or brakes which shall...

  9. 30 CFR 56.10004 - Brakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Brakes. 56.10004 Section 56.10004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Aerial Tramways § 56.10004 Brakes. Positive-action-type brakes and devices which apply the brakes automatically in the event of a...

  10. 30 CFR 57.10004 - Brakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Brakes. 57.10004 Section 57.10004 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Aerial Tramways § 57.10004 Brakes. Positive-action-type brakes and devices which apply the brakes automatically in the event of a...

  11. 49 CFR 238.431 - Brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... (e) The following requirements apply to blended braking systems: (1) Loss of power or failure of the... control alone. (g) An independent failure-detection system shall compare brake commands with brake system output to determine if a failure has occurred. The failure detection system shall report brake...

  12. How Drivers Respond to Alarms Adapted to Their Braking Behaviour?

    NASA Astrophysics Data System (ADS)

    Abe, Genya; Itoh, Makoto

    Determining appropriate alarm timing for Forward Collision Warning Systems (FCWS) may play an important role in enhancing system acceptance by drivers. It is not always true that a common alarm trigger logic is suitable for all drivers, because presented alarms may be differently viewed for each driver, i.e., paying attention or requiring appropriate actions. The current study focused on adaptive alarm timing which was adjusted in response to braking behaviour for collision avoidance for the individual. In Experiment I, the braking performance of individual driver was measured repeatedly to assess the variation of each performance. We utilised the following two indices: elapsed time from the deceleration of the lead car to release of the accelerator (accelerator release time) and elapsed time to application of the brakes (braking response time). Two alarm timings were then determined based on these two indices: (i) the median of the accelerator release time of the driver and (ii) the median of the braking response time of the driver. Experiment II compared the two alarm timings for each driver in order to investigate which timing is more appropriate for enhancing driver trust in the driver-adaptive FCWS and the system effectiveness. The results showed that the timing of the accelerator release time increased the trust ratings more than the timing of braking response. The timing of the braking response time induced a longer response time to application of the brakes. Moreover, the degree to which the response time was longer depended on alarm timing preference of the driver. The possible benefit and drawback of driver-adaptive alarm timing are discussed.

  13. A preliminary study of the performance and characteristics of a supersonic executive aircraft

    NASA Technical Reports Server (NTRS)

    Mascitti, V. R.

    1977-01-01

    The impact of advanced supersonic technologies on the performance and characteristics of a supersonic executive aircraft was studied in four configurations with different engine locations and wing/body blending and an advanced nonafterburning turbojet or variable cycle engine. An M 2.2 design Douglas scaled arrow-wing was used with Learjet 35 accommodations. All four configurations with turbojet engines meet the performance goals of 5926 km (3200 n.mi.) range, 1981 meters (6500 feet) takeoff field length, and 77 meters per second (150 knots) approach speed. The noise levels of of turbojet configurations studied are excessive. However, a turbojet with mechanical suppressor was not studied. The variable cycle engine configuration is deficient in range by 555 km (300 n.mi) but nearly meets subsonic noise rules (FAR 36 1977 edition), if coannular noise relief is assumed. All configurations are in the 33566 to 36287 kg (74,000 to 80,000 lbm) takeoff gross weight class when incorporating current titanium manufacturing technology.

  14. In-flight adaptive performance optimization (APO) control using redundant control effectors of an aircraft

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B. (Inventor)

    1999-01-01

    Practical application of real-time (or near real-time) Adaptive Performance Optimization (APO) is provided for a transport aircraft in steady climb, cruise, turn descent or other flight conditions based on measurements and calculations of incremental drag from a forced response maneuver of one or more redundant control effectors defined as those in excess of the minimum set of control effectors required to maintain the steady flight condition in progress. The method comprises the steps of applying excitation in a raised-cosine form over an interval of from 100 to 500 sec. at the rate of 1 to 10 sets/sec of excitation, and data for analysis is gathered in sets of measurements made during the excitation to calculate lift and drag coefficients C.sub.L and C.sub.D from two equations, one for each coefficient. A third equation is an expansion of C.sub.D as a function of parasitic drag, induced drag, Mach and altitude drag effects, and control effector drag, and assumes a quadratic variation of drag with positions .delta..sub.i of redundant control effectors i=1 to n. The third equation is then solved for .delta..sub.iopt the optimal position of redundant control effector i, which is then used to set the control effector i for optimum performance during the remainder of said steady flight or until monitored flight conditions change by some predetermined amount as determined automatically or a predetermined minimum flight time has elapsed.

  15. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response Performance Constraints

    NASA Technical Reports Server (NTRS)

    Welstead, Jason

    2014-01-01

    This research focused on incorporating stability and control into a multidisciplinary de- sign optimization on a Boeing 737-class advanced concept called the D8.2b. A new method of evaluating the aircraft handling performance using quantitative evaluation of the sys- tem to disturbances, including perturbations, continuous turbulence, and discrete gusts, is presented. A multidisciplinary design optimization was performed using the D8.2b transport air- craft concept. The con guration was optimized for minimum fuel burn using a design range of 3,000 nautical miles. Optimization cases were run using xed tail volume coecients, static trim constraints, and static trim and dynamic response constraints. A Cessna 182T model was used to test the various dynamic analysis components, ensuring the analysis was behaving as expected. Results of the optimizations show that including stability and con- trol in the design process drastically alters the optimal design, indicating that stability and control should be included in conceptual design to avoid system level penalties later in the design process.

  16. Lateral-Directional Eigenvector Flying Qualities Guidelines for High Performance Aircraft

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Andrisani, Dominick, II

    1996-01-01

    This report presents the development of lateral-directional flying qualities guidelines with application to eigenspace (eigenstructure) assignment methods. These guidelines will assist designers in choosing eigenvectors to achieve desired closed-loop flying qualities or performing trade-offs between flying qualities and other important design requirements, such as achieving realizable gain magnitudes or desired system robustness. This has been accomplished by developing relationships between the system's eigenvectors and the roll rate and sideslip transfer functions. Using these relationships, along with constraints imposed by system dynamics, key eigenvector elements are identified and guidelines for choosing values of these elements to yield desirable flying qualities have been developed. Two guidelines are developed - one for low roll-to-sideslip ratio and one for moderate-to-high roll-to-sideslip ratio. These flying qualities guidelines are based upon the Military Standard lateral-directional coupling criteria for high performance aircraft - the roll rate oscillation criteria and the sideslip excursion criteria. Example guidelines are generated for a moderate-to-large, an intermediate, and low value of roll-to-sideslip ratio.

  17. 49 CFR 570.58 - Electric brake system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Electric brake system. 570.58 Section 570.58... 10,000 Pounds § 570.58 Electric brake system. (a) Electric brake system integrity. The average brake... reading by the number of brakes and determine the brake amperage value. (b) Electric brake...

  18. 49 CFR 570.58 - Electric brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Electric brake system. 570.58 Section 570.58... 10,000 Pounds § 570.58 Electric brake system. (a) Electric brake system integrity. The average brake... reading by the number of brakes and determine the brake amperage value. (b) Electric brake...

  19. Study on the dynamic characteristics of a high frequency brake based on giant magnetostrictive material

    NASA Astrophysics Data System (ADS)

    Xu, Ai Qun

    2016-06-01

    In order to meet the requirements of rapid and smooth braking, high-frequency braking using a giant magnetostrictive actuator is proposed, which can solve the problems in hydraulic braking, such as, it leaks easily, catches fire easily, is difficult to find failures, high cost on maintenance and repairing, etc. The main factors affecting the force of a high-frequency braking actuator are emphatically analyzed, the brakes dynamic model is established and a performance testing device for high frequency braking is constructed based on LabVIEW. The output force of the actuator increases with the excitation current of the driving coil increasing, and the increased multiple of the output force is greater than that of the excitation current; the range of the actuator force amplitude is 121.63 N ∼ 158.14 N, which changes little, while excitation frequency changes between 200 Hz ∼ 1000 Hz. In a minor range of pre-stress, the output force decreases with an increase in the axial pre-stress of the giant magnetostrictive rod, but is not obvious. It is known by finite element simulation analysis that high-frequency braking shortens the braking displacement and time effectively, which proves the feasibility and effectiveness of high frequency braking. Theoretical analysis and experimental results indicate that the output force of the actuator changes at the same frequency with excitation current; it is controllable and its mechanical properties meet the requirements of high frequency braking.

  20. Single acting translational/rotational brake

    NASA Technical Reports Server (NTRS)

    Allred, Johnny W. (Inventor); Fleck, Jr., Vincent J. (Inventor)

    1996-01-01

    A brake system is provided that applies braking forces on surfaces in both the translational and rotational directions using a single acting self-contained actuator that travels with the translational mechanism. The brake engages a mechanical lock and creates a frictional force on the translational structure preventing translation while simultaneously creating a frictional torque that prevents rotation of the vertical support. The system may include serrations on the braking surfaces to provide increased braking forces.

  1. Brake Stops Both Rotation And Translation

    NASA Technical Reports Server (NTRS)

    Allred, Johnny W.; Fleck, Vincent J., Jr.

    1995-01-01

    Combination of braking and positioning mechanisms allows both rotation and translation before brake engaged. Designed for use in positioning model airplane in wind tunnel. Modified version used to position camera on tripod. Brake fast and convenient to use; contains single actuator energizing braking actions against both rotation and translation. Braking actuator electric, but pneumatic actuator could be used instead. Compact and lightweight, applies locking forces close to load, and presents minimal cross section to airflow.

  2. Regenerative braking device

    DOEpatents

    Hoppie, Lyle O.

    1982-01-12

    Disclosed are several embodiments of a regenerative braking device for an automotive vehicle. The device includes a plurality of rubber rollers (24, 26) mounted for rotation between an input shaft (14) connectable to the vehicle drivetrain and an output shaft (16) which is drivingly connected to the input shaft by a variable ratio transmission (20). When the transmission ratio is such that the input shaft rotates faster than the output shaft, the rubber rollers are torsionally stressed to accumulate energy, thereby slowing the vehicle. When the transmission ratio is such that the output shaft rotates faster than the input shaft, the rubber rollers are torsionally relaxed to deliver accumulated energy, thereby accelerating or driving the vehicle.

  3. Processing of on-board recorded data for quick analysis of aircraft performance. [rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    Michaud, N. H.

    1979-01-01

    A system of independent computer programs for the processing of digitized pulse code modulated (PCM) and frequency modulated (FM) data is described. Information is stored in a set of random files and accessed to produce both statistical and graphical output. The software system is designed primarily to present these reports within a twenty-four hour period for quick analysis of the helicopter's performance.

  4. Application of a Constant Gain Extended Kalman Filter for In-Flight Estimation of Aircraft Engine Performance Parameters

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.; Litt, Jonathan S.

    2005-01-01

    An approach based on the Constant Gain Extended Kalman Filter (CGEKF) technique is investigated for the in-flight estimation of non-measurable performance parameters of aircraft engines. Performance parameters, such as thrust and stall margins, provide crucial information for operating an aircraft engine in a safe and efficient manner, but they cannot be directly measured during flight. A technique to accurately estimate these parameters is, therefore, essential for further enhancement of engine operation. In this paper, a CGEKF is developed by combining an on-board engine model and a single Kalman gain matrix. In order to make the on-board engine model adaptive to the real engine s performance variations due to degradation or anomalies, the CGEKF is designed with the ability to adjust its performance through the adjustment of artificial parameters called tuning parameters. With this design approach, the CGEKF can maintain accurate estimation performance when it is applied to aircraft engines at offnominal conditions. The performance of the CGEKF is evaluated in a simulation environment using numerous component degradation and fault scenarios at multiple operating conditions.

  5. Infrared characterization of thermal gradients on disc brakes

    NASA Astrophysics Data System (ADS)

    Panier, Stephane; Dufrenoy, Philippe; Bremond, Pierre

    2003-04-01

    The heat generated in frictional organs like brakes and clutches induces thermal distortions which may lead to localized contact areas and hot spots developments. Hot spots are high thermal gradients on the rubbing surface. They count among the most dangerous phenomena in frictional organs leading to damage, early failure and unacceptable braking performances such as brake fade or undesirable low frequency vibrations called hot judder. In this paper, an experimental study of hot spots occurrence in railway disc brakes is reported on. The aim of this study was to better classify and to explain the thermal gradients appearance on the surface of the disc. Thermograph measurements with an infrared camera have been carried out on the rubbing surface of brake discs on a full-scale test bench. The infrared system was set to take temperature readings in snap shot mode precisely synchronized with the rotation of the disc. Very short integration time allows reducing drastically haziness of thermal images. Based on thermographs, a classification of hot-spots observed in disc brakes is proposed. A detailed investigation of the most damaging thermal gradients, called macroscopic hot spots (MHS) is given. From these experimental researches, a scenario of hot spots occurrence is suggested step by step. Thanks to infrared measurements at high frequency with high resolution, observations give new highlights on the conditions of hot spots appearance. Comparison of the experimental observations with the theoretical approaches is finally discussed.

  6. Hard Braking Events Among Novice Teenage Drivers By Passenger Characteristics

    PubMed Central

    Simons-Morton, Bruce G.; Ouimet, Marie Claude; Wang, Jing; Klauer, Sheila G.; Lee, Suzanne E.; Dingus, Thomas A.

    2010-01-01

    Summary In a naturalistic study of teenage drivers (N = 42) hard braking events of ≤−0.45 g were assessed over the first 6 months of licensure. A total of 1,721 hard braking events were recorded. The video footage of a sample (816) of these events was examined to evaluate validity and reasons for hard braking. Of these, 788 (96.6%) were estimated valid, of which 79.1% were due to driver misjudgment, 10.8% to risky driving behavior, 5.3% to legitimate evasive maneuvers, and 4.8% to distraction. Hard braking events per 10 trips and per 100 miles were compared across passenger characteristics. Hard braking rates per 10 trips among newly licensed teenagers during the first 6 months of licensure were significantly higher when driving with teen passengers and lower with adult passengers than driving alone; rates per 100 miles were lower with adult passengers than with no passengers. Further examination of the results indicates that rates of hard braking with teenage passengers were significantly higher compared with no passengers: 1) for male drivers; 2) during the first month of licensure. The data suggest that that novice teenage driving performance may not be as good or safe when driving alone or with teenage passengers than with adult passengers and provide support for the hypothesis that teenage passengers increase driving risks, particularly during the first month of licensure. PMID:21243109

  7. An experimental study of concurrent methods for adaptively controlling vertical tail buffet in high performance aircraft

    NASA Astrophysics Data System (ADS)

    Roberts, Patrick J.

    High performance twin-tail aircraft, like the F-15 and F/A-18, encounter a condition known as tail buffet. At high angles of attack, vortices are generated at the wing fuselage interface (shoulder) or other leading edge extensions. These vortices are directed toward the twin vertical tails. When the flow interacts with the vertical tail it creates pressure variations that can oscillate the vertical tail assembly. This results in fatigue cracks in the vertical tail assembly that can decrease the fatigue life and increase maintenance costs. Recently, an offset piezoceramic stack actuator was used on an F-15 wind tunnel model to control buffet induced vibrations at high angles of attack. The controller was based on the acceleration feedback control methods, In this thesis a procedure for designing the offset piezoceramic stack actuators is developed. This design procedure includes determining the quantity and type of piezoceramic stacks used in these actuators. The changes of stresses, in the vertical tail caused by these actuators during an active control, are investigated. In many cases, linear controllers are very effective in reducing vibrations. However, during flight, the natural frequencies of the vertical tail structural system changes as the airspeed increases. This in turn, reduces the effectiveness of a linear controller. Other causes such as the unmodeled dynamics and nonlinear effects due to debonds also reduce the effectiveness of linear controllers. In this thesis, an adaptive neural network is used to augment the linear controller to correct these effects.

  8. A review of methodological factors in performance assessments of time-varying aircraft noise effects. [with annotated bibliography

    NASA Technical Reports Server (NTRS)

    Coates, G. D.; Alluisi, E. A.; Adkins, C. J., Jr.

    1977-01-01

    Literature on the effects of general noise on human performance is reviewed in an attempt to identify (1) those characteristics of noise that have been found to affect human performance; (2) those characteristics of performance most likely to be affected by the presence of noise, and (3) those characteristics of the performance situation typically associated with noise effects. Based on the characteristics identified, a theoretical framework is proposed that will permit predictions of possible effects of time-varying aircraft-type noise on complex human performance. An annotated bibliography of 50 articles is included.

  9. The market for airline aircraft: A study of process and performance

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The key variables accounting for the nature, timing and magnitude of the equipment and re-equipment cycle are identified and discussed. Forecasts of aircraft purchases by U.S. trunk airlines over the next 10 years are included to examine the anatomy of equipment forecasts in a way that serves to illustrate how certain of these variables or determinants of aircraft demand can be considered in specific terms.

  10. General Aviation Aircraft Reliability Study

    NASA Technical Reports Server (NTRS)

    Pettit, Duane; Turnbull, Andrew; Roelant, Henk A. (Technical Monitor)

    2001-01-01

    This reliability study was performed in order to provide the aviation community with an estimate of Complex General Aviation (GA) Aircraft System reliability. To successfully improve the safety and reliability for the next generation of GA aircraft, a study of current GA aircraft attributes was prudent. This was accomplished by benchmarking the reliability of operational Complex GA Aircraft Systems. Specifically, Complex GA Aircraft System reliability was estimated using data obtained from the logbooks of a random sample of the Complex GA Aircraft population.

  11. The effect of runway surface and braking on Shuttle Orbiter main gear tire wear

    NASA Technical Reports Server (NTRS)

    Daugherty, Robert H.; Stubbs, Sandy M.

    1992-01-01

    In 1988, a 1067 m long touchdown zone on each end of the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF) was modified from its original heavy-broom finish with transverse grooves configuration to a longitudinal corduroy surface texture with no transverse grooves. The intent of this modification was to reduce the spin-up wear on the Orbiter main gear tires and provide for somewhat higher crosswind capabilities at that site. The modification worked well, so it was proposed that the remainder of the runway be modified as well to permit even higher crosswind landing capability. Tests were conducted at the NASA Langley Aircraft Landing Dynamics Facility (ALDF) to evaluate the merit of such a modification. This paper discusses the results of these tests, and explains why the proposed modification did not provide the expected improvement and thus was not implemented. Also, in an ongoing program to evaluate the origin of various tire wear phenomenon, a series of tests was conducted to evaluate the effect of braking on tire wear. Finally, a modified tire is discussed in terms of its wear performance under rollout and braking operations.

  12. The effect of runway surface and braking on Shuttle Orbiter main gear tire wear

    NASA Astrophysics Data System (ADS)

    Daugherty, Robert H.; Stubbs, Sandy M.

    1992-10-01

    In 1988, a 1067 m long touchdown zone on each end of the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF) was modified from its original heavy-broom finish with transverse grooves configuration to a longitudinal corduroy surface texture with no transverse grooves. The intent of this modification was to reduce the spin-up wear on the Orbiter main gear tires and provide for somewhat higher crosswind capabilities at that site. The modification worked well, so it was proposed that the remainder of the runway be modified as well to permit even higher crosswind landing capability. Tests were conducted at the NASA Langley Aircraft Landing Dynamics Facility (ALDF) to evaluate the merit of such a modification. This paper discusses the results of these tests, and explains why the proposed modification did not provide the expected improvement and thus was not implemented. Also, in an ongoing program to evaluate the origin of various tire wear phenomenon, a series of tests was conducted to evaluate the effect of braking on tire wear. Finally, a modified tire is discussed in terms of its wear performance under rollout and braking operations.

  13. 77 FR 2659 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ... inspection of the torque lug and surrounding components (wheel base, side rim, lock ring) for damage (such as... Cessna Aircraft Co., P.O. Box 7706, Wichita, Kansas 67277-7706; telephone (316) 517-6215; fax (316) 517..., Aircraft Wheels & Brakes, P.O. Box 340, Troy, Ohio 45373-3872; telephone (937) 440-2130; fax (937)...

  14. Variable ratio regenerative braking device

    DOEpatents

    Hoppie, Lyle O.

    1981-12-15

    Disclosed is a regenerative braking device (10) for an automotive vehicle. The device includes an energy storage assembly (12) having a plurality of rubber rollers (26, 28) mounted for rotation between an input shaft (36) and an output shaft (42), clutches (38, 46) and brakes (40, 48) associated with each shaft, and a continuously variable transmission (22) connectable to a vehicle drivetrain and to the input and output shafts by the respective clutches. The rubber rollers are torsionally stressed to accumulate energy from the vehicle when the input shaft is clutched to the transmission while the brake on the output shaft is applied, and are torsionally relaxed to deliver energy to the vehicle when the output shaft is clutched to the transmission while the brake on the input shaft is applied. The transmission ratio is varied to control the rate of energy accumulation and delivery for a given rotational speed of the vehicle drivetrain.

  15. Engineering report. Part 2: NASA wheel and brake material tradeoff study for space shuttle type environmental requirements

    NASA Technical Reports Server (NTRS)

    Bok, L. D.

    1973-01-01

    The study included material selection and trade-off for the structural components of the wheel and brake optimizing weight vs cost and feasibility for the space shuttle type application. Analytical methods were used to determine section thickness for various materials, and a table was constructed showing weight vs. cost trade-off. The wheel and brake were further optimized by considering design philosophies that deviate from standard aircraft specifications, and designs that best utilize the materials being considered.

  16. Longitudinal wheel slip during ABS braking

    NASA Astrophysics Data System (ADS)

    Hartikainen, Lassi; Petry, Frank; Westermann, Stephan

    2015-02-01

    Anti-lock braking system (ABS) braking tests with two subcompact passenger cars were performed on dry and wet asphalt, as well as on snow and ice surfaces. The operating conditions of the tyres in terms of wheel slip were evaluated using histograms of the wheel slip data. The results showed different average slip levels for different road surfaces. It was also found that changes in the tyre tread stiffness affected the slip operating range through a modification of the slip value at which the maximum longitudinal force is achieved. Variation of the tyre footprint length through modifications in the inflation pressure affected the slip operating range as well. Differences in the slip distribution between vehicles with different brake controllers were also observed. The changes in slip operating range in turn modified the relative local sliding speeds between the tyre and the road. The results highlight the importance of the ABS controller's ability to adapt to changing slip-force characteristics of tyres and provide estimates of the magnitude of the effects of different tyre and road operating conditions.

  17. Real-Time Dynamic Brake Assessment Proof of Concept Final Report

    SciTech Connect

    Lascurain, Mary Beth; Franzese, Oscar; Capps, Gary J

    2011-11-01

    This proof-of-concept research was performed to explore the feasibility of using real-world braking data from commercial motor vehicles to make a diagnosis of brake condition similar to that of the performance-based brake tester (PBBT). This was done by determining the relationship between pressure and brake force (P-BF), compensating for the gross vehicle weight (GVW). The nature of this P-BF relationship (e.g., low braking force for a given brake application pressure) may indicate brake system problems. In order to determine the relationship between brake force and brake application pressure, a few key parameters of duty cycle information were collected. Because braking events are often brief, spanning only a few seconds, a sample rate of 10 Hz was needed. The algorithm under development required brake application pressure and speed (from which deceleration was calculated). Accurate weight estimation was also needed to properly derive the braking force from the deceleration. In order to ensure that braking force was the predominant factor in deceleration for the segments of data used in analysis, the data was screened for grade as well. Also, the analysis needed to be based on pressures above the crack pressure. The crack pressure is the pressure below which the individual brakes are not applied due the nature of the mechanical system. This value, which may vary somewhat from one wheel end to another, is approximately 10 psi. Therefore, only pressures 15 psi and above were used in the analysis. The Department of Energy s Medium Truck Duty Cycle research has indicated that under the real-world circumstances of the test vehicle brake pressures of up to approximately 30 psi can be expected. Several different types of data were collected during the testing task of this project. Constant-pressure stopping tests were conducted at several combinations of brake application pressure (15, 20, 25, and 30 psi), load conditions (moderately and fully laden), and speeds (20 and

  18. Analysis and flight evaluation of a small, fixed-wing aircraft equipped with hinged plate spoilers

    NASA Technical Reports Server (NTRS)

    Olcott, J. W.; Sackel, E.; Ellis, D. R.

    1981-01-01

    The results of a four phase effort to evaluate the application of hinged plate spoilers/dive brakes to a small general aviation aircraft are presented. The test vehicle was a single engine light aircraft modified with an experimental set of upper surface spoilers and lower surface dive brakes similar to the type used on sailplanes. The lift, drag, stick free stability, trim, and dynamic response characteristics of four different spoiler/dive brake configurations were determined. Tests also were conducted, under a wide range of flight conditions and with pilots of various experience levels, to determine the most favorable methods of spoiler control and to evaluate how spoilers might best be used during the approach and landing task. The effects of approach path angle, approach airspeed, and pilot technique using throttle/spoiler integrated control were investigated for day, night, VFR, and IFR approaches and landings. The test results indicated that spoilers offered significant improvements in the vehicle's performance and flying qualities for all elements of the approach and landing task, provided a suitable method of control was available.

  19. Optimal design of disc-type magneto-rheological brake for mid-sized motorcycle: experimental evaluation

    NASA Astrophysics Data System (ADS)

    Sohn, Jung Woo; Jeon, Juncheol; Nguyen, Quoc Hung; Choi, Seung-Bok

    2015-08-01

    In this paper, a disc-type magneto-rheological (MR) brake is designed for a mid-sized motorcycle and its performance is experimentally evaluated. The proposed MR brake consists of an outer housing, a rotating disc immersed in MR fluid, and a copper wire coiled around a bobbin to generate a magnetic field. The structural configuration of the MR brake is first presented with consideration of the installation space for the conventional hydraulic brake of a mid-sized motorcycle. The design parameters of the proposed MR brake are optimized to satisfy design requirements such as the braking torque, total mass of the MR brake, and cruising temperature caused by the magnetic-field friction of the MR fluid. In the optimization procedure, the braking torque is calculated based on the Herschel-Bulkley rheological model, which predicts MR fluid behavior well at high shear rate. An optimization tool based on finite element analysis is used to obtain the optimized dimensions of the MR brake. After manufacturing the MR brake, mechanical performances regarding the response time, braking torque and cruising temperature are experimentally evaluated.

  20. Small V/STOL aircraft analysis. Volume 2: Appendices. [to determine current and future general aviation missions and performance requirements

    NASA Technical Reports Server (NTRS)

    Smith, K. R., Jr.; Belina, F. W.

    1973-01-01

    A survey of general aviation activities in the United States was principally conducted through interviews with users, manufacturers, trade associations, and government organizations. A list of the organizations interviews is presented. The data became the basis for defining the current and future general aviation missions and performance. The economic characteristics of general aviation are examined. The desires of each organization regarding future aircraft characteristics are summarized.

  1. Use of optimization to predict the effect of selected parameters on commuter aircraft performance

    NASA Technical Reports Server (NTRS)

    Wells, V. L.; Shevell, R. S.

    1982-01-01

    The relationships between field length and cruise speed and aircraft direct operating cost were determined. A gradient optimizing computer program was developed to minimize direct operating cost (DOC) as a function of airplane geometry. In this way, the best airplane operating under one set of constraints can be compared with the best operating under another. A constant 30-passenger fuselage and rubberized engines based on the General Electric CT-7 were used as a baseline. All aircraft had to have a 600 nautical mile maximum range and were designed to FAR part 25 structural integrity and climb gradient regulations. Direct operating cost was minimized for a typical design mission of 150 nautical miles. For purposes of C sub L sub max calculation, all aircraft had double-slotted flaps but with no Fowler action.

  2. Compression relief engine brake

    SciTech Connect

    Meneely, V.A.

    1987-10-06

    A compression relief brake is described for four cycle internal-combustion engines, comprising: a pressurized oil supply; means for selectively pressurizing a hydraulic circuit with oil from the oil supply; a master piston and cylinder communicating with a slave piston and cylinder via the hydraulic circuit; an engine exhaust valve mechanically coupled to the engine and timed to open during the exhaust cycle of the engine the exhaust valve coupled to the slave piston. The exhaust valve is spring-based in a closed state to contact a valve seat; a sleeve frictionally and slidably disposed within a cavity defined by the slave piston which cavity communicates with the hydraulic circuit. When the hydraulic circuit is selectively pressurized and the engine is operating the sleeve entraps an incompressible volume of oil within the cavity to generate a displacement of the slave piston within the slave cylinder, whereby a first gap is maintained between the exhaust valve and its associated seat; and means for reciprocally activating the master piston for increasing the pressure within the previously pressurized hydraulic circuit during at least a portion of the expansion cycle of the engine whereby a second gap is reciprocally maintained between the exhaust valve and its associated seat.

  3. Analysis of Complexity Evolution Management and Human Performance Issues in Commercial Aircraft Automation Systems

    NASA Technical Reports Server (NTRS)

    Vakil, Sanjay S.; Hansman, R. John

    2000-01-01

    Autoflight systems in the current generation of aircraft have been implicated in several recent incidents and accidents. A contributory aspect to these incidents may be the manner in which aircraft transition between differing behaviours or 'modes.' The current state of aircraft automation was investigated and the incremental development of the autoflight system was tracked through a set of aircraft to gain insight into how these systems developed. This process appears to have resulted in a system without a consistent global representation. In order to evaluate and examine autoflight systems, a 'Hybrid Automation Representation' (HAR) was developed. This representation was used to examine several specific problems known to exist in aircraft systems. Cyclomatic complexity is an analysis tool from computer science which counts the number of linearly independent paths through a program graph. This approach was extended to examine autoflight mode transitions modelled with the HAR. A survey was conducted of pilots to identify those autoflight mode transitions which airline pilots find difficult. The transitions identified in this survey were analyzed using cyclomatic complexity to gain insight into the apparent complexity of the autoflight system from the perspective of the pilot. Mode transitions which had been identified as complex by pilots were found to have a high cyclomatic complexity. Further examination was made into a set of specific problems identified in aircraft: the lack of a consistent representation of automation, concern regarding appropriate feedback from the automation, and the implications of physical limitations on the autoflight systems. Mode transitions involved in changing to and leveling at a new altitude were identified across multiple aircraft by numerous pilots. Where possible, evaluation and verification of the behaviour of these autoflight mode transitions was investigated via aircraft-specific high fidelity simulators. Three solution

  4. Optimal design of a novel hybrid MR brake for motorcycles considering axial and radial magnetic flux

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. H.; Choi, S. B.

    2012-05-01

    This work presents an optimal solution of a new type of motorcycle brake featuring different smart magnetorheological (MR) fluids. In this study, typical types of commercial MR fluid are considered there for the design of a motorcycle MR brake; MRF-122-2ED (low yield stress), MRF-132-DG (medium yield stress) and MRF-140-CG (high yield stress). As a first step, a new configuration featuring a T-shaped drum MR brake is introduced and a hybrid concept of magnetic circuit (using both axial and radial magnetic flux) to generate braking force is analyzed based on the finite element method. An optimal design of the MR brake considering the required braking torque, the temperature due to friction of the MR fluid, the mass of the brake system and all significant geometric dimensions is then performed. For the optimization, the finite element analysis (FEA) is used to achieve principal geometric dimensions of the MR brake. In addition, the size, mass and power consumption of three different MR motorcycle brakes are quantitatively analyzed and compared.

  5. Marquardt's Mach 4.5 Supercharged Ejector Ramjet (SERJ) High-Performance Aircraft Engine Project: Unfulfilled Aspirations Ca.1970

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.; Roddy, Jordan E.; Hyde, Eric H.

    2000-01-01

    The Supercharged Ejector Ramjet (SERJ) engine developments of the 1960s, as pursued by The Marquardt Corporation and its associated industry team members, are described. In just three years, engineering work on this combined-cycle powerplant type evolved, from its initial NASA-sponsored reusable space transportation system study status, into a U.S. Air Force/Navy-supported exploratory development program as a candidate 4.5 high-performance military aircraft engine. Bridging a productive transition from the spaceflight to the aviation arena, this case history supports the expectation that fully-integrated airbreathing/rocket propulsion systems hold high promise toward meeting the demanding propulsion requirements of tomorrow's aircraft-like Spaceliner class transportation systems. Lessons to be learned from this "SERJ Story" are offered for consideration by today's advanced space transportation and combined-cycle propulsion researchers and forward-planning communities.

  6. Flight test evaluation of a method to determine the level flight performance of a propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Bridges, P. G.; Cross, E. J., Jr.; Boatwright, D. W.

    1977-01-01

    The overall drag of the aircraft is expressed in terms of the measured increment of power required to overcome a corresponding known increment of drag, which is generated by a towed drogue. The simplest form of the governing equations, D = delta D SHP/delta SHP, is such that all of the parameters on the right side of the equation can be measured in flight. An evaluation of the governing equations has been performed using data generated by flight test of a Beechcraft T-34B. The simplicity of this technique and its proven applicability to sailplanes and small aircraft is well known. However, the method fails to account for airframe-propulsion system.

  7. 49 CFR 393.44 - Front brake lines, protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Front brake lines, protection. 393.44 Section 393... ACCESSORIES NECESSARY FOR SAFE OPERATION Brakes § 393.44 Front brake lines, protection. On every bus, if equipped with air brakes, the braking system shall be so constructed that in the event any brake line...

  8. 49 CFR 393.44 - Front brake lines, protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Front brake lines, protection. 393.44 Section 393... ACCESSORIES NECESSARY FOR SAFE OPERATION Brakes § 393.44 Front brake lines, protection. On every bus, if equipped with air brakes, the braking system shall be so constructed that in the event any brake line...

  9. 49 CFR 393.44 - Front brake lines, protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Front brake lines, protection. 393.44 Section 393... ACCESSORIES NECESSARY FOR SAFE OPERATION Brakes § 393.44 Front brake lines, protection. On every bus, if equipped with air brakes, the braking system shall be so constructed that in the event any brake line...

  10. 14 CFR 135.183 - Performance requirements: Land aircraft operated over water.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... operated over water. 135.183 Section 135.183 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS... operated over water. No person may operate a land aircraft carrying passengers over water unless— (a) It...

  11. 14 CFR 135.183 - Performance requirements: Land aircraft operated over water.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... operated over water. 135.183 Section 135.183 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS... operated over water. No person may operate a land aircraft carrying passengers over water unless— (a) It...

  12. 49 CFR 236.508 - Interference with application of brakes by means of brake valve.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Interference with application of brakes by means of brake valve. 236.508 Section 236.508 Transportation Other Regulations Relating to Transportation... Interference with application of brakes by means of brake valve. The automatic train stop, train control,...

  13. 49 CFR 236.508 - Interference with application of brakes by means of brake valve.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Interference with application of brakes by means of brake valve. 236.508 Section 236.508 Transportation Other Regulations Relating to Transportation... Interference with application of brakes by means of brake valve. The automatic train stop, train control,...

  14. 49 CFR 236.508 - Interference with application of brakes by means of brake valve.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Interference with application of brakes by means of brake valve. 236.508 Section 236.508 Transportation Other Regulations Relating to Transportation... Interference with application of brakes by means of brake valve. The automatic train stop, train control,...

  15. 49 CFR 236.508 - Interference with application of brakes by means of brake valve.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Interference with application of brakes by means of brake valve. 236.508 Section 236.508 Transportation Other Regulations Relating to Transportation... Interference with application of brakes by means of brake valve. The automatic train stop, train control,...

  16. 49 CFR 236.508 - Interference with application of brakes by means of brake valve.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Interference with application of brakes by means of brake valve. 236.508 Section 236.508 Transportation Other Regulations Relating to Transportation... Interference with application of brakes by means of brake valve. The automatic train stop, train control,...

  17. Four-wheel dual braking for automobiles

    NASA Technical Reports Server (NTRS)

    Edwards, H. B.

    1981-01-01

    Each master cylinder applies braking power to all four wheels unlike conventional systems where cylinder operates only two wheels. If one master system fails because of fluid loss, other stops car by braking all four wheels although at half force.

  18. Analysis of heat conduction in a drum brake system of the wheeled armored personnel carriers

    NASA Astrophysics Data System (ADS)

    Puncioiu, A. M.; Truta, M.; Vedinas, I.; Marinescu, M.; Vinturis, V.

    2015-11-01

    This paper is an integrated study performed over the Braking System of the Wheeled Armored Personnel Carriers. It mainly aims to analyze the heat transfer process which is present in almost any industrial and natural process. The vehicle drum brake systems can generate extremely high temperatures under high but short duration braking loads or under relatively light but continuous braking. For the proper conduct of the special vehicles mission in rough terrain, we are talking about, on one hand, the importance of the possibility of immobilization and retaining position and, on the other hand, during the braking process, the importance movement stability and reversibility or reversibility, to an encounter with an obstacle. Heat transfer processes influence the performance of the braking system. In the braking phase, kinetic energy transforms into thermal energy resulting in intense heating and high temperature states of analyzed vehicle wheels. In the present work a finite element model for the temperature distribution in a brake drum is developed, by employing commercial finite element software, ANSYS. These structural and thermal FEA models will simulate entire braking event. The heat generated during braking causes distortion which modifies thermoelastic contact pressure distribution drum-shoe interface. In order to capture the effect of heat, a transient thermal analysis is performed in order to predict the temperature distribution transitional brake components. Drum brakes are checked both mechanical and thermal. These tests aim to establish their sustainability in terms of wear and the variation coefficient of friction between the friction surfaces with increasing temperature. Modeling using simulation programs led eventually to the establishment of actual thermal load of the mechanism of brake components. It was drawn the efficiency characteristic by plotting the coefficient of effectiveness relative to the coefficient of friction shoe-drum. Thus induced

  19. The validity of power output recorded during exercise performance tests using a Kingcycle air-braked cycle ergometer when compared with an SRM powermeter.

    PubMed

    Balmer, J; Davison, R C; Coleman, D A; Bird, S R

    2000-04-01

    This study assessed the validity of power output recorded using an air-braked cycle ergometer (Kingcycle) when compared with a power measuring crankset (SRM). For part one of the study thirteen physically active subjects completed a continuous incremental exercise test (OBLA), for part two of the study twelve trained cyclists completed two tests; a maximal aerobic power test (MAP) and a 16.1 km time-trial (16.1 km TT). The following were compared; the peak power output (PPO) recorded for 1 min during MAP, the average power output for the duration of the time-trial and power output recorded during each stage of OBLA. For all tests, power output recorded using Kingcycle was significantly higher than SRM (P < 0.001). Ratio limits of agreement between SRM and Kingcycle for OBLA showed a bias (P < 0.00) of 0.90 (95%CI = 0.90-0.91) with a random error of X or / 1.07, and for PPO and 16.1 km TT ratio limits of agreement were 0.90 (95%CI = 0.88-0.92) X or / 1.07 and 0.92 (95% CI = 0.90-0.94) X or / 1.07, respectively. These data revealed that the Kingcycle ergometry system did not provide a valid measure of power output when compared with SRM.

  20. Propfan test assessment testbed aircraft stability and control/performance 1/9-scale wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Little, B. H., Jr.; Tomlin, K. H.; Aljabri, A. S.; Mason, C. A.

    1988-01-01

    One-ninth scale wind tunnel model tests of the Propfan Test Assessment (PTA) aircraft were performed in three different NASA facilities. Wing and propfan nacelle static pressures, model forces and moments, and flow field at the propfan plane were measured in these tests. Tests started in June 1985 and were completed in January 1987. These data were needed to assure PTA safety of flight, predict PTA performance, and validate analytical codes that will be used to predict flow fields in which the propfan will operate.

  1. Terminal area considerations for an advanced CTOL transport aircraft

    NASA Technical Reports Server (NTRS)

    Sussman, M. B.

    1975-01-01

    Projected future conditions at large urban airports were used to identify design objectives for a long-haul, advanced transport airplane introduced for operation in the mid-1980s. Operating constraints associated with airport congestion and aircraft noise and emissions were of central interest. In addition, some of the interaction of these constraints with aircraft fuel usage were identified. The study allowed for advanced aircraft design features consistent with the future operating period. A baseline 200 passenger airplane design was modified to comply with design requirements imposed by terminal area constraints. Specific design changes included: (1) modification of engine arrangement; wing planform; (2) drag and spoiler surfaces; (3) secondary power systems; (4) brake and landing gear characteristics; and (5) the aircraft avionics. These changes, based on exploratory design estimates and allowing for technology advance, were judged to enable the airplane to: reduce wake turbulence; handle steeper descent paths with fewer limitation due to engine characteristics; reduce runway occupancy times; improve community noise contours; and reduce the total engine emittants deposited in the terminal area. The penalties to airplane performance and operating cost associated with improving the terminal area characteristics of the airplane were assessed. Finally, key research problems requiring solution in order to validate the assumed advanced airplane technology were identified.

  2. 14 CFR 23.735 - Brakes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... provided. The landing brake kinetic energy capacity rating of each main wheel brake assembly must not be less than the kinetic energy absorption requirements determined under either of the following methods: (1) The brake kinetic energy absorption requirements must be based on a conservative...

  3. 30 CFR 57.14101 - Brakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equipped on self-propelled mobile equipment, parking brakes shall be capable of holding the equipment with.... Parking or emergency (secondary) brakes are not to be actuated during the test. (iv) The tests shall be... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Brakes. 57.14101 Section 57.14101...

  4. 30 CFR 56.14101 - Brakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equipped on self-propelled mobile equipment, parking brakes shall be capable of holding the equipment with... stop under normal operating conditions. Parking or emergency (secondary) brakes are not to be actuated... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Brakes. 56.14101 Section 56.14101...

  5. 30 CFR 57.14101 - Brakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equipped on self-propelled mobile equipment, parking brakes shall be capable of holding the equipment with.... Parking or emergency (secondary) brakes are not to be actuated during the test. (iv) The tests shall be... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Brakes. 57.14101 Section 57.14101...

  6. 30 CFR 56.14101 - Brakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equipped on self-propelled mobile equipment, parking brakes shall be capable of holding the equipment with... stop under normal operating conditions. Parking or emergency (secondary) brakes are not to be actuated... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Brakes. 56.14101 Section 56.14101...

  7. 49 CFR 238.231 - Brake system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... be designed so that: (1) The blending of friction and dynamic brake to obtain the correct retarding... allowable stopping distance; (3) The friction brake alone is adequate to safely stop the train under all operating conditions; and (4) Operation of the friction brake alone does not result in thermal damage...

  8. 49 CFR 238.231 - Brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... be designed so that: (1) The blending of friction and dynamic brake to obtain the correct retarding... allowable stopping distance; (3) The friction brake alone is adequate to safely stop the train under all operating conditions; and (4) Operation of the friction brake alone does not result in thermal damage...

  9. 30 CFR 57.10004 - Brakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Brakes. 57.10004 Section 57.10004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND.... Positive-action-type brakes and devices which apply the brakes automatically in the event of a...

  10. 30 CFR 56.10004 - Brakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Brakes. 56.10004 Section 56.10004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND.... Positive-action-type brakes and devices which apply the brakes automatically in the event of a...

  11. 49 CFR 238.231 - Brake system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... be designed so that: (1) The blending of friction and dynamic brake to obtain the correct retarding... allowable stopping distance; (3) The friction brake alone is adequate to safely stop the train under all operating conditions; and (4) Operation of the friction brake alone does not result in thermal damage...

  12. Compact, Lightweight Servo-Controllable Brakes

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher S.; Townsend, William; Guertin, Jeffrey; Matsuoka, Yoky

    2010-01-01

    Compact, lightweight servo-controllable brakes capable of high torques are being developed for incorporation into robot joints. A brake of this type is based partly on the capstan effect of tension elements. In a brake of the type under development, a controllable intermediate state of torque is reached through on/off switching at a high frequency.

  13. 30 CFR 36.29 - Brakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Brakes. 36.29 Section 36.29 Mineral Resources... and Design Requirements § 36.29 Brakes. All mobile diesel-powered transportation equipment shall be equipped with adequate brakes acceptable to MSHA....

  14. 49 CFR 229.53 - Brake gauges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Brake gauges. 229.53 Section 229.53 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.53 Brake gauges....

  15. 49 CFR 236.712 - Brake pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Brake pipe. 236.712 Section 236.712 Transportation... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.712 Brake pipe. A pipe running from the engineman's brake valve through the train, used for the transmission of air...

  16. 49 CFR 238.231 - Brake system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Brake system. 238.231 Section 238.231... Equipment § 238.231 Brake system. Except as otherwise provided in this section, on or after September 9... train's primary brake system shall be capable of stopping the train with a service application from...

  17. 49 CFR 236.712 - Brake pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Brake pipe. 236.712 Section 236.712 Transportation... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.712 Brake pipe. A pipe running from the engineman's brake valve through the train, used for the transmission of air...

  18. 30 CFR 36.29 - Brakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Brakes. 36.29 Section 36.29 Mineral Resources... and Design Requirements § 36.29 Brakes. All mobile diesel-powered transportation equipment shall be equipped with adequate brakes acceptable to MSHA....

  19. 49 CFR 229.53 - Brake gauges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Brake gauges. 229.53 Section 229.53 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.53 Brake gauges....

  20. 30 CFR 56.14101 - Brakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Brakes. 56.14101 Section 56.14101 Mineral... Devices and Maintenance Requirements § 56.14101 Brakes. (a) Minimum requirements. (1) Self-propelled mobile equipment shall be equipped with a service brake system capable of stopping and holding...

  1. 49 CFR 229.46 - Brakes: general.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Brakes: general. 229.46 Section 229.46..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.46 Brakes: general. (a) Before each trip, the railroad shall know the following: (1) The locomotive...

  2. 49 CFR 229.46 - Brakes: general.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Brakes: general. 229.46 Section 229.46..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.46 Brakes: general. (a) Before each trip, the railroad shall know the following: (1) The locomotive...

  3. 30 CFR 57.14101 - Brakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Brakes. 57.14101 Section 57.14101 Mineral... Devices and Maintenance Requirements § 57.14101 Brakes. (a) Minimum requirements. (1) Self-propelled mobile equipment shall be equipped with a service brake system capable of stopping and holding...

  4. 49 CFR 236.712 - Brake pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Brake pipe. 236.712 Section 236.712 Transportation... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.712 Brake pipe. A pipe running from the engineman's brake valve through the train, used for the transmission of air...

  5. 49 CFR 236.712 - Brake pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Brake pipe. 236.712 Section 236.712 Transportation... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.712 Brake pipe. A pipe running from the engineman's brake valve through the train, used for the transmission of air...

  6. 49 CFR 229.53 - Brake gauges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Brake gauges. 229.53 Section 229.53 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.53 Brake gauges....

  7. 30 CFR 56.14101 - Brakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Brakes. 56.14101 Section 56.14101 Mineral... Devices and Maintenance Requirements § 56.14101 Brakes. (a) Minimum requirements. (1) Self-propelled mobile equipment shall be equipped with a service brake system capable of stopping and holding...

  8. 30 CFR 36.29 - Brakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Brakes. 36.29 Section 36.29 Mineral Resources... and Design Requirements § 36.29 Brakes. All mobile diesel-powered transportation equipment shall be equipped with adequate brakes acceptable to MSHA....

  9. 49 CFR 229.53 - Brake gauges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Brake gauges. 229.53 Section 229.53 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.53 Brake gauges....

  10. 49 CFR 229.46 - Brakes: general.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Brakes: general. 229.46 Section 229.46..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.46 Brakes: general. (a) Before each trip, the railroad shall know the following: (1) The locomotive...

  11. 49 CFR 229.53 - Brake gauges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Brake gauges. 229.53 Section 229.53 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.53 Brake gauges....

  12. 49 CFR 236.712 - Brake pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Brake pipe. 236.712 Section 236.712 Transportation... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.712 Brake pipe. A pipe running from the engineman's brake valve through the train, used for the transmission of air...

  13. 30 CFR 36.29 - Brakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Brakes. 36.29 Section 36.29 Mineral Resources... and Design Requirements § 36.29 Brakes. All mobile diesel-powered transportation equipment shall be equipped with adequate brakes acceptable to MSHA....

  14. 30 CFR 57.14101 - Brakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Brakes. 57.14101 Section 57.14101 Mineral... Devices and Maintenance Requirements § 57.14101 Brakes. (a) Minimum requirements. (1) Self-propelled mobile equipment shall be equipped with a service brake system capable of stopping and holding...

  15. 30 CFR 36.29 - Brakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Brakes. 36.29 Section 36.29 Mineral Resources... and Design Requirements § 36.29 Brakes. All mobile diesel-powered transportation equipment shall be equipped with adequate brakes acceptable to MSHA....

  16. A strategy for in-flight measurements of physiology of pilots of high-performance fighter aircraft.

    PubMed

    West, John B

    2013-07-01

    Some pilots flying modern high-performance fighter aircraft develop "hypoxia-like" incidents characterized by short periods of confusion and cognitive impairment. The problem is serious and recently led to the grounding of a fleet of aircraft. Extensive discussions of the incidents have taken place but some people believe that there is inadequate data to determine the cause. There is a tremendous disconnect between what is known about the function of the aircraft and the function of the pilot. This paper describes a plan for measuring the inspired and expired Po2 and Pco2 in the pilot's mask, the inspiratory flow rate, and pressure in the mask. A critically important requirement is that the interference with the function of the pilot is minimal. Although extensive physiological measurements were previously made on pilots in ground-based experiments such as rapid decompression in an altitude chamber and increased acceleration on a centrifuge, in-flight measurements of gas exchange have not been possible until now primarily because of the lack of suitable equipment. The present paper shows how the recent availability of small, rapidly responding oxygen and carbon dioxide analyzers make sophisticated in-flight measurements feasible. The added information has the potential of greatly improving our knowledge of pilot physiology, which could lead to an explanation for the incidents.

  17. An evaluation of short-term exposures of brake mechanics to asbestos during automotive and truck brake cleaning and machining activities.

    PubMed

    Richter, Richard O; Finley, Brent L; Paustenbach, Dennis J; Williams, Pamela R D; Sheehan, Patrick J

    2009-07-01

    Historically, the greatest contributions to airborne asbestos concentrations during brake repair work were likely due to specific, short-duration, dust-generating activities. In this paper, the available short-term asbestos air sampling data for mechanics collected during the cleaning and machining of vehicle brakes are evaluated to determine their impact on both short-term and daily exposures. The high degree of variability and lack of transparency for most of the short-term samples limit their use in reconstructing past asbestos exposures for brake mechanics. However, the data are useful in evaluating how reducing short-term, dust-generating activities reduced long-term exposures, especially for auto brake mechanics. Using the short-term dose data for grinding brake linings from these same studies, in combination with existing time-weighted average (TWA) data collected in decades after grinding was commonplace in rebuilding brake shoes, an average 8-h TWA of approximately 0.10 f/cc was estimated for auto brake mechanics that performed arc grinding of linings during automobile brake repair (in the 1960s or earlier). In the 1970s and early 1980s, a decline in machining activities led to a decrease in the 8-h TWA to approximately 0.063 f/cc. Improved cleaning methods in the late 1980s further reduced the 8-h TWA for most brake mechanics to about 0.0021 f/cc. It is noteworthy that when compared with the original OSHA excursion level, only 15 of the more than 300 short-term concentrations for brake mechanics measured during the 1970s and 1980s possibly exceeded the standard. Considering exposure duration, none of the short-term exposures were above the current OSHA excursion level.

  18. Closed-Loop System Identification Experience for Flight Control Law and Flying Qualities Evaluation of a High Performance Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.

    1999-01-01

    This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high-order characteristics of the system. In this paper only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles of attack: 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of the identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the estimated closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.

  19. Closed-Loop System Identification Experience for Flight Control Law and Flying Qualities Evaluation of a High Performance Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.

    1996-01-01

    This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA-High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high order characteristics of the system. In this paper, only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles at attack : 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.

  20. Thermophysical Properties of Automotive Metallic Brake Disk Materials

    NASA Astrophysics Data System (ADS)

    Kim, S. W.; Park, K.; Lee, S. H.; Kang, K. H.; Lim, K. T.

    2008-12-01

    The temperature distribution, the thermal deformation, and the thermal stress of automotive brake disks have quite close relations with car safety; therefore, much research in this field has been performed. However, successful and satisfactory results have not been obtained because the temperature-dependent thermophysical properties of brake disk materials are not sufficiently known. In this study, the thermophysical properties (thermal diffusivity, the specific heat, and the coefficient of thermal expansion) of three kinds of iron alloy series brake disk materials, FC250, FC170, and FCD50, and two kinds of aluminum alloy series brake disk materials, Al MMC and A356, were measured in the temperature range from room temperature to 500 °C, and the thermal conductivity was calculated using the measured thermal diffusivity, specific heat capacity, and density. As expected, the results show that the two series have significant differences in respect of the thermophysical properties, and to reduce the thermal deformation of the brake disk, the aluminum alloys with a high thermal conductivity and the iron alloys with low thermal expansion are recommended.

  1. Nonlinear stability and control study of highly maneuverable high performance aircraft

    NASA Technical Reports Server (NTRS)

    Mohler, R. R.

    1991-01-01

    The purpose was to develop and apply new nonlinear system methodologies to the stability analysis and adaptive control of high angle of attack (alpha) aircraft such as the F-18. Considerable progress is documented on nonlinear adaptive control and associated model development, identification, and simulation. The analysis considered linear and nonlinear, longitudinal, high alpha aircraft dynamics with varying degrees of approximation dependent on the purpose. In all cases, angle of attack or pitch rate was controlled primarily by a horizontal stabilizer. In most cases studied, a linear adaptive controller provided sufficient stability. However, it has been demonstrated by simulation of a simplified nonlinear model that certain large rapid maneuvers were not readily stabilized by the investigated linear adaptive control, but were controlled instead by means of a nonlinear time-series based adaptive control.

  2. Flight test evaluation of predicted light aircraft drag, performance, and stability

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Fox, S. R.

    1979-01-01

    A technique was developed which permits simultaneous extraction of complete lift, drag, and thrust power curves from time histories of a single aircraft maneuver such as a pull up (from V max to V stall) and pushover (to V max for level flight). The technique, which is an extension of nonlinear equations of motion of the parameter identification methods of Iliff and Taylor and includes provisions for internal data compatibility improvement as well, was shown to be capable of correcting random errors in the most sensitive data channel and yielding highly accurate results. Flow charts, listings, sample inputs and outputs for the relevant routines are provided as appendices. This technique was applied to flight data taken on the ATLIT aircraft. Lack of adequate knowledge of the correct full throttle thrust horsepower true airspeed variation and considerable internal data inconsistency made it impossible to apply the trajectory matching features of the technique.

  3. Description and flight performance of two systems for two-segment approach. [for aircraft noise abatement

    NASA Technical Reports Server (NTRS)

    Wehrend, W. R.; Shigemoto, F. H.; Bourquin, K. R.

    1974-01-01

    This paper describes two different avionic systems which were designed and developed to provide guidance and control for two-segment noise abatement approaches. The concept of a low-cost retrofit avionic system evolved into a special-purpose two-segment computer which required a DME collocated with the ILS glide-slope transmitter. This system was evaluated in a Boeing 727-200 aircraft. The second system is an area navigation (RNAV) system modified to include the two-segment approach. This system is more sophisticated than the first system and does not restrict usage to any specific navigation ground aid. The modified RNAV system is a Collins ANS-70A and is currently being evaluated in a DC-8-61 aircraft.

  4. Performance Characteristics of an Aircraft Engine with Exhaust Turbine Supercharger, Special Report

    NASA Technical Reports Server (NTRS)

    Lester, E. M.; Paulson, V. A.

    1941-01-01

    The Pratt and Whitney Aircraft company and the Naval Aircraft Factory of the United States Navy cooperated in a laboratory and flight program of tests on an exhaust turbine supercharger. Two series of dynamometer tests of the engine super-charger combination were completed under simulated altitude conditions. One series of hot gas-chamber tests was conducted by the manufacturer of the supercharger. Flight demonstrations of the supercharger installed in a twin-engine flying boat were terminated by failure of the turbine wheels. The analysis of the results indicated that a two-stage supercharger with the first-stage exhaust turbine driven will deliver rated power for a given indicated power to a higher altitude, will operate more efficiently, and will require simpler controls than a similar engine with the first stage of the supercharger driven from the crankshaft through multispeed gears.

  5. Elastic Contact Analysis of Functionally Graded Brake Disks Subjected to Thermal and Mechanical Loads

    NASA Astrophysics Data System (ADS)

    Shahzamanian, M. M.; Sahari, B. B.; Bayat, M.; Mustapha, F.; Ismarrubie, Z. N.

    2013-01-01

    In this paper, finite element contact analysis of a functionally graded (FG) brake disk in contact with a pad, subjected to rotation, contact pressure, and frictional heat, is presented. The material properties vary through the thickness according to a power-law characterized by a grading index, n. The contact surfaces are full-ceramic with full-metal free surface. The effects of n on the displacement, contact status, strain and stress are investigated. From the analysis, thermo-elastic and contact results are extremely dependent on n. Hence, n is an important criteria for the design of FG brake disks for automotive and aircraft applications.

  6. Small transport aircraft technology

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1983-01-01

    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  7. Preliminary Axial Flow Turbine Design and Off-Design Performance Analysis Methods for Rotary Wing Aircraft Engines. Part 1; Validation

    NASA Technical Reports Server (NTRS)

    Chen, Shu-cheng, S.

    2009-01-01

    For the preliminary design and the off-design performance analysis of axial flow turbines, a pair of intermediate level-of-fidelity computer codes, TD2-2 (design; reference 1) and AXOD (off-design; reference 2), are being evaluated for use in turbine design and performance prediction of the modern high performance aircraft engines. TD2-2 employs a streamline curvature method for design, while AXOD approaches the flow analysis with an equal radius-height domain decomposition strategy. Both methods resolve only the flows in the annulus region while modeling the impact introduced by the blade rows. The mathematical formulations and derivations involved in both methods are documented in references 3, 4 for TD2-2) and in reference 5 (for AXOD). The focus of this paper is to discuss the fundamental issues of applicability and compatibility of the two codes as a pair of companion pieces, to perform preliminary design and off-design analysis for modern aircraft engine turbines. Two validation cases for the design and the off-design prediction using TD2-2 and AXOD conducted on two existing high efficiency turbines, developed and tested in the NASA/GE Energy Efficient Engine (GE-E3) Program, the High Pressure Turbine (HPT; two stages, air cooled) and the Low Pressure Turbine (LPT; five stages, un-cooled), are provided in support of the analysis and discussion presented in this paper.

  8. Bidirectional drive and brake mechanism

    NASA Technical Reports Server (NTRS)

    Swan, Scott A. (Inventor)

    1991-01-01

    A space transport vehicle is disclosed as including a body which is arranged to be movably mounted on an elongated guide member disposed in outer space and driven therealong. A drive wheel is mounted on a drive shaft and arranged to be positioned in rolling engagement with the elongated guide carrying the vehicle. A brake member is arranged on the drive shaft for movement into and out of engagement with an adjacent surface of the drive wheel. An actuator is mounted on the body to be manually moved back and forth between spaced positions in an arc of movement. A ratchet-and-pawl mechanism is arranged to operate upon movements of the actuator in one direction between first and second positions for coupling the actuator to the drive wheel to incrementally rotate the wheel in one rotational direction and to operate upon movements of the actuator in the opposite direction for uncoupling the actuator from the wheel. The brake member is threadedly coupled to the drive shaft in order that the brake member will be operated only when the actuator is moved on beyond its first and second positions for shifting the brake member along the drive shaft and into frictional engagement with the adjacent surface on the drive wheel.

  9. Test-engine and inlet performance of an aircraft used for investigating flight effects on fan noise

    NASA Astrophysics Data System (ADS)

    Golub, R. A.; Preisser, J. S.

    1984-04-01

    As part of the NASA Flight Effects on Fan Noise Program, a Grumman OV-1B Mohawk aircraft was modified to carry a modified and instrumented Pratt & Whitney JT15D-1 turbofan engine. Onboard flight data, together with simultaneously measured farfield acoustic data, comprise a flight data base to which JT15D-1 static and wind-tunnel data are compared. The overall objective is to improve the ability to use ground-based facilities for the prediction of flight inlet radiated noise. This report describes the hardware and presents performance results for the research engine.

  10. Test-engine and inlet performance of an aircraft used for investigating flight effects on fan noise

    NASA Technical Reports Server (NTRS)

    Golub, R. A.; Preisser, J. S.

    1984-01-01

    As part of the NASA Flight Effects on Fan Noise Program, a Grumman OV-1B Mohawk aircraft was modified to carry a modified and instrumented Pratt & Whitney JT15D-1 turbofan engine. Onboard flight data, together with simultaneously measured farfield acoustic data, comprise a flight data base to which JT15D-1 static and wind-tunnel data are compared. The overall objective is to improve the ability to use ground-based facilities for the prediction of flight inlet radiated noise. This report describes the hardware and presents performance results for the research engine.

  11. NACA research on combustors for aircraft gas turbines I : effects of operating variables on steady-state performance

    NASA Technical Reports Server (NTRS)

    Olson, Walter T; Childs, J Howard

    1950-01-01

    Some of the systematic research conducted by the NACA on aircraft gas-turbine combustors is reviewed. Trends depicting the effect of inlet-air pressure, temperature, and velocity and fuel-air ratio on performance characteristics, such as combustion efficiency, maximum temperature rise attainable, pressure loss, and combustor-outlet temperature distribution are described for a variety of turbojet combustors of the liquid-fuel type. These trends are further discussed as effects significant to the turbojet engine, such as altitude operational limits, specific fuel consumption, thrust, acceleration, and turbine life.

  12. Finite element parametric study of the influence of friction pad material and morphological characteristics on disc brake vibration phenomena

    NASA Astrophysics Data System (ADS)

    Forte, P.; Frendo, F.; Rodrigues, R. N.

    2016-09-01

    Since nowadays the NVH performance of vehicles has become an important priority, the noise radiating from brakes is considered a source of considerable passenger discomfort and dissatisfaction. Creep groan and squeal that show up with annoying vibrations and noise in specific frequency ranges are typical examples of self-excited brake vibrations caused by the stick-slip effect, the former, by the mode coupling of brake disc and friction pads or calliper, the latter. In both cases, the friction coefficient, which depends, among other factors, on the morphology of the mating surfaces and on the operating conditions, is a fundamental parameter but not the only one for the occurrence of the vibratory phenomena. Finite element complex eigenvalue parametric analyses were performed on a disc brake assembly to evaluate propensity to dynamic instability of brakes with multiple pads, as in railway brakes, as a function of the number of pads, pad shape and size, and material parameters.

  13. Evaluation of Corrosion Failure in Tractor-Trailer Brake System

    SciTech Connect

    Wilson, DF

    2002-10-22

    As reported to ORNL, concomitant with the introduction of different deicing and anti-icing compounds, there was an increase in the brake failure rate of tractor-trailer trucks. A forensic evaluation of a failed brake system was performed. Optical and scanning electron microscopic evaluation showed corrosion to be mostly confined to the brake table/lining interface. The corrosion is non-uniform as is to be expected for plain carbon steel in chloride environments. This initial analysis found no evidence for the chlorides of calcium and magnesium, which are the newly introduced deicing and antiicing compounds and are less soluble in water than the identified chlorides of sodium and potassium, in the scale. The result could be as a result of non-exposure of the examined brake table to calcium and magnesium chloride. The mechanisms for the increased failure rate are postulated as being an increased rate of corrosion due to positive shifts in the corrosion potential, and an increased amount of corrosion due to an increased ''time of wetness'' that results from the presence of hygroscopic salts. Laboratory scale evaluation of the corrosion of plain carbon steel in simulated deicing and anti-icing solutions need to be performed to determine corrosion rates and morphological development of corrosion product, to compare laboratory data to in-service data, and to rank economically feasible replacement materials for low carbon steel. In addition, the mechanical behavior of the lining attached to the brake shoe table needs to be assessed. It is opined that an appropriate adjustment of materials could easily allow for a doubling of a brake table/lining lifetime. Suggestions for additional work, to clarify the mechanisms of rust jacking and to develop possible solutions, are described.

  14. Brake blending strategy for a hybrid vehicle

    DOEpatents

    Boberg, Evan S.

    2000-12-05

    A hybrid electric powertrain system is provided including a transmission for driving a pair of wheels of a vehicle and a heat engine and an electric motor/generator coupled to the transmission. A friction brake system is provided for applying a braking torque to said vehicle. A controller unit generates control signals to the electric motor/generator and the friction brake system for controllably braking the vehicle in response to a drivers brake command. The controller unit determines and amount of regenerative torque available and compares this value to a determined amount of brake torque requested for determining the control signals to the electric motor/generator and the friction brake system.

  15. Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles

    NASA Astrophysics Data System (ADS)

    Hagino, Hiroyuki; Oyama, Motoaki; Sasaki, Sousuke

    2016-04-01

    To measure driving-distance-based mass emission factors for airborne brake wear particulate matter (PM; i.e., brake wear particles) related to the non-asbestos organic friction of brake assembly materials (pads and lining), and to characterize the components of brake wear particles, a brake wear dynamometer with a constant-volume sampling system was developed. Only a limited number of studies have investigated brake emissions under urban city driving cycles that correspond to the tailpipe emission test (i.e., JC08 or JE05 mode of Japanese tailpipe emission test cycles). The tests were performed using two passenger cars and one middle-class truck. The observed airborne brake wear particle emissions ranged from 0.04 to 1.4 mg/km/vehicle for PM10 (particles up to 10 μm (in size), and from 0.04 to 1.2 mg/km/vehicle for PM2.5. The proportion of brake wear debris emitted as airborne brake wear particles was 2-21% of the mass of wear. Oxygenated carbonaceous components were included in the airborne PM but not in the original friction material, which indicates that changes in carbon composition occurred during the abrasion process. Furthermore, this study identified the key tracers of brake wear particles (e.g., Fe, Cu, Ba, and Sb) at emission levels comparable to traffic-related atmospheric environments.

  16. Material combinations and parametric study of thermal and mechanical performance of pyramidal core sandwich panels used for hypersonic aircrafts

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiping; Zhang, Xiaoqing; Lorenzini, Giulio; Xie, Gongnan

    2016-11-01

    A novel kind of lightweight integrated thermal protection system, named pyramidal core sandwich panel, is proposed to be a good safeguard for hypersonic aircrafts in the current study. Such system is considered as not only an insulation structure but also a load-bearing structure. In the context of design for hypersonic aircrafts, an efficient optimization should be paid enough attention. This paper concerns with the homogenization of the proposed pyramidal sandwich core panel using two-dimensional model in subsequent research for material selection. According to the required insulation performance and thermal-mechanical properties, several suitable material combinations are chosen as candidates for the pyramidal core sandwich panel by adopting finite element analysis and approximate response surface. To obtain lightweight structure with an excellent capability of heat insulation and load-bearing, an investigation on some specific design variables, which are significant for thermal-mechanical properties of the structure, is performed. Finally, a good balance between the insulation performance, the capability of load-bearing and the lightweight has attained.

  17. Material combinations and parametric study of thermal and mechanical performance of pyramidal core sandwich panels used for hypersonic aircrafts

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiping; Zhang, Xiaoqing; Lorenzini, Giulio; Xie, Gongnan

    2016-07-01

    A novel kind of lightweight integrated thermal protection system, named pyramidal core sandwich panel, is proposed to be a good safeguard for hypersonic aircrafts in the current study. Such system is considered as not only an insulation structure but also a load-bearing structure. In the context of design for hypersonic aircrafts, an efficient optimization should be paid enough attention. This paper concerns with the homogenization of the proposed pyramidal sandwich core panel using two-dimensional model in subsequent research for material selection. According to the required insulation performance and thermal-mechanical properties, several suitable material combinations are chosen as candidates for the pyramidal core sandwich panel by adopting finite element analysis and approximate response surface. To obtain lightweight structure with an excellent capability of heat insulation and load-bearing, an investigation on some specific design variables, which are significant for thermal-mechanical properties of the structure, is performed. Finally, a good balance between the insulation performance, the capability of load-bearing and the lightweight has attained.

  18. Use of optimization to predict the effect of selected parameters on commuter aircraft performance

    NASA Technical Reports Server (NTRS)

    Wells, V. L.; Shevell, R. S.

    1982-01-01

    An optimizing computer program determined the turboprop aircraft with lowest direct operating cost for various sets of cruise speed and field length constraints. External variables included wing area, wing aspect ratio and engine sea level static horsepower; tail sizes, climb speed and cruise altitude were varied within the function evaluation program. Direct operating cost was minimized for a 150 n.mi typical mission. Generally, DOC increased with increasing speed and decreasing field length but not by a large amount. Ride roughness, however, increased considerably as speed became higher and field length became shorter.

  19. The Effect of a Variable Disc Pad Friction Coefficient for the Mechanical Brake System of a Railway Vehicle

    PubMed Central

    Lee, Nam-Jin; Kang, Chul-Goo

    2015-01-01

    A brake hardware-in-the-loop simulation (HILS) system for a railway vehicle is widely applied to estimate and validate braking performance in research studies and field tests. When we develop a simulation model for a full vehicle system, the characteristics of all components are generally properly simplified based on the understanding of each component’s purpose and interaction with other components. The friction coefficient between the brake disc and the pad used in simulations has been conventionally considered constant, and the effect of a variable friction coefficient is ignored with the assumption that the variability affects the performance of the vehicle braking very little. However, the friction coefficient of a disc pad changes significantly within a range due to environmental conditions, and thus, the friction coefficient can affect the performance of the brakes considerably, especially on the wheel slide. In this paper, we apply a variable friction coefficient and analyzed the effects of the variable friction coefficient on a mechanical brake system of a railway vehicle. We introduce a mathematical formula for the variable friction coefficient in which the variable friction is represented by two variables and five parameters. The proposed formula is applied to real-time simulations using a brake HILS system, and the effectiveness of the formula is verified experimentally by testing the mechanical braking performance of the brake HILS system. PMID:26267883

  20. The Effect of a Variable Disc Pad Friction Coefficient for the Mechanical Brake System of a Railway Vehicle.

    PubMed

    Lee, Nam-Jin; Kang, Chul-Goo

    2015-01-01

    A brake hardware-in-the-loop simulation (HILS) system for a railway vehicle is widely applied to estimate and validate braking performance in research studies and field tests. When we develop a simulation model for a full vehicle system, the characteristics of all components are generally properly simplified based on the understanding of each component's purpose and interaction with other components. The friction coefficient between the brake disc and the pad used in simulations has been conventionally considered constant, and the effect of a variable friction coefficient is ignored with the assumption that the variability affects the performance of the vehicle braking very little. However, the friction coefficient of a disc pad changes significantly within a range due to environmental conditions, and thus, the friction coefficient can affect the performance of the brakes considerably, especially on the wheel slide. In this paper, we apply a variable friction coefficient and analyzed the effects of the variable friction coefficient on a mechanical brake system of a railway vehicle. We introduce a mathematical formula for the variable friction coefficient in which the variable friction is represented by two variables and five parameters. The proposed formula is applied to real-time simulations using a brake HILS system, and the effectiveness of the formula is verified experimentally by testing the mechanical braking performance of the brake HILS system.

  1. The Effect of a Variable Disc Pad Friction Coefficient for the Mechanical Brake System of a Railway Vehicle.

    PubMed

    Lee, Nam-Jin; Kang, Chul-Goo

    2015-01-01

    A brake hardware-in-the-loop simulation (HILS) system for a railway vehicle is widely applied to estimate and validate braking performance in research studies and field tests. When we develop a simulation model for a full vehicle system, the characteristics of all components are generally properly simplified based on the understanding of each component's purpose and interaction with other components. The friction coefficient between the brake disc and the pad used in simulations has been conventionally considered constant, and the effect of a variable friction coefficient is ignored with the assumption that the variability affects the performance of the vehicle braking very little. However, the friction coefficient of a disc pad changes significantly within a range due to environmental conditions, and thus, the friction coefficient can affect the performance of the brakes considerably, especially on the wheel slide. In this paper, we apply a variable friction coefficient and analyzed the effects of the variable friction coefficient on a mechanical brake system of a railway vehicle. We introduce a mathematical formula for the variable friction coefficient in which the variable friction is represented by two variables and five parameters. The proposed formula is applied to real-time simulations using a brake HILS system, and the effectiveness of the formula is verified experimentally by testing the mechanical braking performance of the brake HILS system. PMID:26267883

  2. A Laboratory Activity on the Eddy Current Brake

    ERIC Educational Resources Information Center

    Molina-Bolivar, J. A.; Abella-Palacios, A. J.

    2012-01-01

    The aim of this paper is to introduce a simple and low-cost experimental setup that can be used to study the eddy current brake, which considers the motion of a sliding magnet on an inclined conducting plane in terms of basic physical principles. We present a set of quantitative experiments performed to study the influence of the geometrical and…

  3. 49 CFR 238.313 - Class I brake test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... occurs first, that the train remains in continuous passenger service. (c) Each passenger car and each... performed on the car within the previous calendar day and the car has not been disconnected from a source of... applied on each car in the train until a release of the brakes has been initiated on each car in...

  4. 49 CFR 238.313 - Class I brake test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... occurs first, that the train remains in continuous passenger service. (c) Each passenger car and each... performed on the car within the previous calendar day and the car has not been disconnected from a source of... applied on each car in the train until a release of the brakes has been initiated on each car in...

  5. Some metal-graphite and metal-ceramic composites for use as high energy brake lining materials

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1974-01-01

    Materials were studied as candidates for development as potential new aircraft brake lining materials. These families were (1) copper-graphite composites; (2) nickel-graphite composites; (3) copper - rare-earth-oxide (gadolinium oxide (Gd2O3) or lanthanum oxide (La2O3)) composites and copper - rare-earth-oxide (La2O3) - rare-earth-fluoride (lanthanum fluoride (LaF3)) composites; (4) nickel - rare-earth-oxide composites and nickel - rare-earth-oxide - rare-earth-fluoride composites. For comparison purposes, a currently used metal-ceramic composite was also studied. Results showed that the nickel-Gd2O3 and nickel-La2O3-LaF3 composites were comparable or superior in friction and wear performance to the currently used composite and therefore deserve to be considered for further development.

  6. Human and behavioral factors contributing to spine-based neurological cockpit injuries in pilots of high-performance aircraft: recommendations for management and prevention.

    PubMed

    Jones, J A; Hart, S F; Baskin, D S; Effenhauser, R; Johnson, S L; Novas, M A; Jennings, R; Davis, J

    2000-01-01

    In high-performance aircraft, the need for total environmental awareness coupled with high-g loading (often with abrupt onset) creates a predilection for cervical spine injury while the pilot is performing routine movements within the cockpit. In this study, the prevalence and severity of cervical spine injury are assessed via a modified cross-sectional survey of pilots of multiple aircraft types (T-38 and F-14, F-16, and F/A-18 fighters). Ninety-five surveys were administered, with 58 full responses. Fifty percent of all pilots reported in-flight or immediate post-flight spine-based pain, and 90% of fighter pilots reported at least one event, most commonly (> 90%) occurring during high-g (> 5 g) turns of the aircraft with the head deviated from the anatomical neutral position. Pre-flight stretching was not associated with a statistically significant reduction in neck pain episodes in this evaluation, whereas a regular weight training program in the F/A-18 group approached a significant reduction (mean = 2.492; p < 0.064). Different cockpit ergonomics may vary the predisposition to cervical injury from airframe to airframe. Several strategies for prevention are possible from both an aircraft design and a preventive medicine standpoint. Countermeasure strategies against spine injury in pilots of high-performance aircraft require additional research, so that future aircraft will not be limited by the human in control.

  7. Human and behavioral factors contributing to spine-based neurological cockpit injuries in pilots of high-performance aircraft: recommendations for management and prevention

    NASA Technical Reports Server (NTRS)

    Jones, J. A.; Hart, S. F.; Baskin, D. S.; Effenhauser, R.; Johnson, S. L.; Novas, M. A.; Jennings, R.; Davis, J.

    2000-01-01

    In high-performance aircraft, the need for total environmental awareness coupled with high-g loading (often with abrupt onset) creates a predilection for cervical spine injury while the pilot is performing routine movements within the cockpit. In this study, the prevalence and severity of cervical spine injury are assessed via a modified cross-sectional survey of pilots of multiple aircraft types (T-38 and F-14, F-16, and F/A-18 fighters). Ninety-five surveys were administered, with 58 full responses. Fifty percent of all pilots reported in-flight or immediate post-flight spine-based pain, and 90% of fighter pilots reported at least one event, most commonly (> 90%) occurring during high-g (> 5 g) turns of the aircraft with the head deviated from the anatomical neutral position. Pre-flight stretching was not associated with a statistically significant reduction in neck pain episodes in this evaluation, whereas a regular weight training program in the F/A-18 group approached a significant reduction (mean = 2.492; p < 0.064). Different cockpit ergonomics may vary the predisposition to cervical injury from airframe to airframe. Several strategies for prevention are possible from both an aircraft design and a preventive medicine standpoint. Countermeasure strategies against spine injury in pilots of high-performance aircraft require additional research, so that future aircraft will not be limited by the human in control.

  8. Analysis of the stability of PTW riders in autonomous braking scenarios.

    PubMed

    Symeonidis, Ioannis; Kavadarli, Gueven; Erich, Schuller; Graw, Matthias; Peldschus, Steffen

    2012-11-01

    While fatalities of car occupants in the EU decreased remarkably over the last decade, Powered Two Wheelers (PTWs) fatalities still increase following the increase of PTW ownership. Autonomous braking systems have been implemented in several types of vehicles and are presently addressed by research in the field of PTWs. A major concern in this context is the rider stability. Experiments with volunteers were performed in order to find out whether autonomous braking for PTWs will produce a greater instability of the rider in comparison to manual braking. The PTW's braking conditions were simulated in a laboratory with a motorcycle mock-up mounted on a sled, which was accelerated with an average of 0.35 g. The motion of the rider was captured in autonomous braking scenarios with and without pre-warning as well as in manual braking scenarios. No significant differences between the scenarios were found with respect to maximum forward displacement of the volunteer's torso and head (p<0.05). By performing clustering analysis on two kinematic parameters, two different strategies of the volunteers were identified. They were not related to the braking scenarios. A relation of the clusters with the initial posture represented by the elbow angle was revealed (p<0.05). It is concluded that autonomous braking at low deceleration will not cause significant instabilities of the rider in comparison to manual braking in idealized laboratory conditions. Based on this, further research into the development and implementation of autonomous braking systems for PTWs, e.g. by extensive riding tests, seems valuable.

  9. An Integrated Architecture for On-Board Aircraft Engine Performance Trend Monitoring and Gas Path Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.

    2010-01-01

    Aircraft engine performance trend monitoring and gas path fault diagnostics are closely related technologies that assist operators in managing the health of their gas turbine engine assets. Trend monitoring is the process of monitoring the gradual performance change that an aircraft engine will naturally incur over time due to turbomachinery deterioration, while gas path diagnostics is the process of detecting and isolating the occurrence of any faults impacting engine flow-path performance. Today, performance trend monitoring and gas path fault diagnostic functions are performed by a combination of on-board and off-board strategies. On-board engine control computers contain logic that monitors for anomalous engine operation in real-time. Off-board ground stations are used to conduct fleet-wide engine trend monitoring and fault diagnostics based on data collected from each engine each flight. Continuing advances in avionics are enabling the migration of portions of the ground-based functionality on-board, giving rise to more sophisticated on-board engine health management capabilities. This paper reviews the conventional engine performance trend monitoring and gas path fault diagnostic architecture commonly applied today, and presents a proposed enhanced on-board architecture for future applications. The enhanced architecture gains real-time access to an expanded quantity of engine parameters, and provides advanced on-board model-based estimation capabilities. The benefits of the enhanced architecture include the real-time continuous monitoring of engine health, the early diagnosis of fault conditions, and the estimation of unmeasured engine performance parameters. A future vision to advance the enhanced architecture is also presented and discussed

  10. Flight test evaluation of predicted light aircraft drag, performance, and stability

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Fox, S. R.

    1979-01-01

    A technique was developed which permits simultaneous extraction of complete lift, drag, and thrust power curves from time histories of a single aircraft maneuver such as a pullup (from V sub max to V sub stall) and pushover (to sub V max for level flight.) The technique is an extension to non-linear equations of motion of the parameter identification methods of lliff and Taylor and includes provisions for internal data compatibility improvement as well. The technique was show to be capable of correcting random errors in the most sensitive data channel and yielding highly accurate results. This technique was applied to flight data taken on the ATLIT aircraft. The drag and power values obtained from the initial least squares estimate are about 15% less than the 'true' values. If one takes into account the rather dirty wing and fuselage existing at the time of the tests, however, the predictions are reasonably accurate. The steady state lift measurements agree well with the extracted values only for small values of alpha. The predicted value of the lift at alpha = 0 is about 33% below that found in steady state tests while the predicted lift slope is 13% below the steady state value.

  11. Subsonic Maneuvering Effectiveness of High Performance Aircraft Which Employ Quasi-Static Shape Change Devices

    NASA Technical Reports Server (NTRS)

    Montgomery, Raymond C.; Scott, Michael A.; Weston, Robert P.

    1998-01-01

    This paper represents an initial study on the use of quasi-static shape change devices in aircraft maneuvering. The macroscopic effects and requirements for these devices in flight control are the focus of this study. Groups of devices are postulated to replace the conventional leading-edge flap (LEF) and the all-moving wing tip (AMT) on the tailless LMTAS-ICE (Lockheed Martin Tactical Aircraft Systems - Innovative Control Effectors) configuration. The maximum quasi-static shape changes are 13.8% and 7.7% of the wing section thickness for the LEF and AMT replacement devices, respectively. A Computational Fluid Dynamics (CFD) panel code is used to determine the control effectiveness of groups of these devices. A preliminary design of a wings-leveler autopilot is presented. Initial evaluation at 0.6 Mach at 15,000 ft. altitude is made through batch simulation. Results show small disturbance stability is achieved, however, an increase in maximum distortion is needed to statically offset five degrees of sideslip. This only applies to the specific device groups studied, encouraging future research on optimal device placement.

  12. Tunable diode laser in-situ CH4 measurements aboard the CARIBIC passenger aircraft: instrument performance assessment

    NASA Astrophysics Data System (ADS)

    Dyroff, C.; Zahn, A.; Sanati, S.; Christner, E.; Rauthe-Schöch, A.; Schuck, T. J.

    2013-10-01

    A laser spectrometer for automated monthly measurements of methane (CH4) mixing ratios aboard the CARIBIC passenger aircraft is presented. The instrument is based on a commercial Fast Greenhouse Gas Analyzer (FGGA, Los Gatos Res.), which was adapted to meet the requirements imposed by unattended airborne employment. The modified instrument is described. A laboratory characterization was performed to determine the instrument stability, precision, cross sensitivity to H2O, and accuracy. For airborne operation a calibration strategy is described, that utilizes CH4 measurements obtained from flask samples taken during the same flights. The precision of airborne measurements is 2 ppbv for 10 s averages. The accuracy at aircraft cruising altitude is 3.85 ppbv. During aircraft ascent and descent, where no flask samples were obtained, instrumental drifts can be less accurately considered and the uncertainty is estimated to be 12.4 ppbv. A linear humidity bias correction was applied to the CH4 measurements, which was most important in the lower troposphere. On average, the correction bias was around 6.5 ppbv at an altitude of 2 km, and negligible at cruising flight level. Observations from 103 long-distance flights are presented that span a large part of the northern hemispheric upper troposphere and lowermost stratosphere (UT/LMS), with occasional crossing of the tropics on flights to southern Africa. These accurate data mark the largest UT/LMS in-situ CH4 dataset worldwide. An example of a tracer-tracer correlation study with ozone is given, highlighting the possibility for accurate cross-tropopause transport analyses.

  13. 49 CFR 393.49 - Control valves for brakes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Control valves for brakes. 393.49 Section 393.49... NECESSARY FOR SAFE OPERATION Brakes § 393.49 Control valves for brakes. (a) General rule. Except as provided..., which is equipped with power brakes, must have the braking system so arranged that one application...

  14. 49 CFR 393.49 - Control valves for brakes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Control valves for brakes. 393.49 Section 393.49... NECESSARY FOR SAFE OPERATION Brakes § 393.49 Control valves for brakes. (a) General rule. Except as provided..., which is equipped with power brakes, must have the braking system so arranged that one application...

  15. 49 CFR 393.44 - Front brake lines, protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ACCESSORIES NECESSARY FOR SAFE OPERATION Brakes § 393.44 Front brake lines, protection. On every bus, if equipped with air brakes, the braking system shall be so constructed that in the event any brake line to... provided for use. Every bus shall meet this requirement or comply with the regulations in effect at...

  16. 49 CFR 393.44 - Front brake lines, protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ACCESSORIES NECESSARY FOR SAFE OPERATION Brakes § 393.44 Front brake lines, protection. On every bus, if equipped with air brakes, the braking system shall be so constructed that in the event any brake line to... provided for use. Every bus shall meet this requirement or comply with the regulations in effect at...

  17. 49 CFR 570.55 - Hydraulic brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Hydraulic brake system. 570.55 Section 570.55... 10,000 Pounds § 570.55 Hydraulic brake system. The following requirements apply to vehicles with hydraulic brake systems. (a) Brake system failure indicator. The hydraulic brake system failure...

  18. 49 CFR 393.40 - Required brake systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... subpart. (2) Air brake systems. Buses, trucks and truck-tractors equipped with air brake systems and..., and 393.52 of this subpart. (4) Electric brake systems. Motor vehicles equipped with electric brake... failure requirements of FMVSS No. 105 in effect on the date of manufacture. (2) Air brake systems....

  19. 49 CFR 570.5 - Service brake system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... attachment. Drum brake linings shall be securely attached to brake shoes. Disc brake pads shall be securely... 49 Transportation 6 2013-10-01 2013-10-01 false Service brake system. 570.5 Section 570.5... Pounds or Less § 570.5 Service brake system. Unless otherwise noted, the force to be applied...

  20. 49 CFR 236.701 - Application, brake; full service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Application, brake; full service. 236.701 Section... § 236.701 Application, brake; full service. An application of the brakes resulting from a continuous or a split reduction in brake pipe pressure at a service rate until maximum brake cylinder pressure...

  1. 49 CFR 230.77 - Foundation brake gear.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Foundation brake gear. 230.77 Section 230.77... Tenders Brake and Signal Equipment § 230.77 Foundation brake gear. (a) Maintenance. Foundation brake gear shall be maintained in a safe and suitable condition for service. Levers, rods, brake beams,...

  2. 49 CFR 230.77 - Foundation brake gear.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Foundation brake gear. 230.77 Section 230.77... Tenders Brake and Signal Equipment § 230.77 Foundation brake gear. (a) Maintenance. Foundation brake gear shall be maintained in a safe and suitable condition for service. Levers, rods, brake beams,...

  3. 49 CFR 236.701 - Application, brake; full service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Application, brake; full service. 236.701 Section... § 236.701 Application, brake; full service. An application of the brakes resulting from a continuous or a split reduction in brake pipe pressure at a service rate until maximum brake cylinder pressure...

  4. 49 CFR 230.77 - Foundation brake gear.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Foundation brake gear. 230.77 Section 230.77... Tenders Brake and Signal Equipment § 230.77 Foundation brake gear. (a) Maintenance. Foundation brake gear shall be maintained in a safe and suitable condition for service. Levers, rods, brake beams,...

  5. 49 CFR 236.701 - Application, brake; full service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Application, brake; full service. 236.701 Section... § 236.701 Application, brake; full service. An application of the brakes resulting from a continuous or a split reduction in brake pipe pressure at a service rate until maximum brake cylinder pressure...

  6. 49 CFR 230.77 - Foundation brake gear.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Foundation brake gear. 230.77 Section 230.77... Tenders Brake and Signal Equipment § 230.77 Foundation brake gear. (a) Maintenance. Foundation brake gear shall be maintained in a safe and suitable condition for service. Levers, rods, brake beams,...

  7. 49 CFR 393.49 - Control valves for brakes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Control valves for brakes. 393.49 Section 393.49... NECESSARY FOR SAFE OPERATION Brakes § 393.49 Control valves for brakes. (a) General rule. Except as provided..., which is equipped with power brakes, must have the braking system so arranged that one application...

  8. 49 CFR 393.49 - Control valves for brakes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Control valves for brakes. 393.49 Section 393.49... NECESSARY FOR SAFE OPERATION Brakes § 393.49 Control valves for brakes. (a) General rule. Except as provided..., which is equipped with power brakes, must have the braking system so arranged that one application...

  9. 49 CFR 236.701 - Application, brake; full service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Application, brake; full service. 236.701 Section... § 236.701 Application, brake; full service. An application of the brakes resulting from a continuous or a split reduction in brake pipe pressure at a service rate until maximum brake cylinder pressure...

  10. 49 CFR 236.701 - Application, brake; full service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Application, brake; full service. 236.701 Section... § 236.701 Application, brake; full service. An application of the brakes resulting from a continuous or a split reduction in brake pipe pressure at a service rate until maximum brake cylinder pressure...

  11. 49 CFR 570.55 - Hydraulic brake system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Hydraulic brake system. 570.55 Section 570.55... 10,000 Pounds § 570.55 Hydraulic brake system. The following requirements apply to vehicles with hydraulic brake systems. (a) Brake system failure indicator. The hydraulic brake system failure...

  12. 49 CFR 230.77 - Foundation brake gear.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Foundation brake gear. 230.77 Section 230.77... Tenders Brake and Signal Equipment § 230.77 Foundation brake gear. (a) Maintenance. Foundation brake gear shall be maintained in a safe and suitable condition for service. Levers, rods, brake beams,...

  13. 49 CFR 393.49 - Control valves for brakes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Control valves for brakes. 393.49 Section 393.49... NECESSARY FOR SAFE OPERATION Brakes § 393.49 Control valves for brakes. (a) General rule. Except as provided..., which is equipped with power brakes, must have the braking system so arranged that one application...

  14. 49 CFR 570.55 - Hydraulic brake system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Hydraulic brake system. 570.55 Section 570.55... 10,000 Pounds § 570.55 Hydraulic brake system. The following requirements apply to vehicles with hydraulic brake systems. (a) Brake system failure indicator. The hydraulic brake system failure...

  15. Design and evaluation of a novel magnetorheological brake with coils placed on the side housings

    NASA Astrophysics Data System (ADS)

    Nguyen, Quoc Hung; Diep Nguyen, Ngoc; Bok Choi, Seung

    2015-04-01

    In the design of a traditional magnetorheological brake (MRB), coils are often placed on the cylindrical housing of the brake. This results in many disadvantages such as a ‘bottle-neck’ problem of magnetic flux. Moreover, in this design a nonmagnetic bobbin is required, and difficulties in manufacturing and maintenance exist. In order to resolve this problem, in this study a new configuration of MRB with coils placed on the side housings of the brake is proposed, optimally designed and experimentally evaluated. After describing an introduction of the proposed configuration, braking torque of the MRB is analyzed based on the Bingham-plastic rheological model of magnetorheological fluid (MRF). The optimization of the proposed and conventional MRBs is then performed considering maximum braking torque and mass of the brakes. In the optimization, both rectangular and polygonal shapes of the brake housing are considered. Based on the optimal results, a comparison of the performance characteristics of the proposed MRB and the conventional one is undertaken. In addition, an experimental test of the MRBs is conducted, and the results are presented in order to validate the performance characteristics of the proposed MRB.

  16. Wet runways. [aircraft landing and directional control

    NASA Technical Reports Server (NTRS)

    Horne, W. B.

    1975-01-01

    Aircraft stopping and directional control performance on wet runways is discussed. The major elements affecting tire/ground traction developed by jet transport aircraft are identified and described in terms of atmospheric, pavement, tire, aircraft system and pilot performance factors or parameters. Research results are summarized, and means for improving or restoring tire traction/aircraft performance on wet runways are discussed.

  17. Numerical Stability and Control Analysis Towards Falling-Leaf Prediction Capabilities of Splitflow for Two Generic High-Performance Aircraft Models

    NASA Technical Reports Server (NTRS)

    Charlton, Eric F.

    1998-01-01

    Aerodynamic analysis are performed using the Lockheed-Martin Tactical Aircraft Systems (LMTAS) Splitflow computational fluid dynamics code to investigate the computational prediction capabilities for vortex-dominated flow fields of two different tailless aircraft models at large angles of attack and sideslip. These computations are performed with the goal of providing useful stability and control data to designers of high performance aircraft. Appropriate metrics for accuracy, time, and ease of use are determined in consultations with both the LMTAS Advanced Design and Stability and Control groups. Results are obtained and compared to wind-tunnel data for all six components of forces and moments. Moment data is combined to form a "falling leaf" stability analysis. Finally, a handful of viscous simulations were also performed to further investigate nonlinearities and possible viscous effects in the differences between the accumulated inviscid computational and experimental data.

  18. Preliminary test results of the joint FAA-USAF-NASA runway research program. Part 1: Traction measurements of several runways under wet and dry conditions with a Boeing 727, a diagonal-braked vehicle, and a mu-meter

    NASA Technical Reports Server (NTRS)

    Horne, W. B.; Yager, T. J.; Sleeper, R. K.; Merritt, L. R.

    1977-01-01

    The stopping distance, brake application velocity, and time of brake application were measured for two modern jet transports, along with the NASA diagonal-braked vehicle and the British Mu-Meter on several runways, which when wetted, cover the range of slipperiness likely to be encountered in the United States. Tests were designed to determine if correlation between the aircraft and friction measuring vehicles exists. The test procedure, data reduction techniques, and preliminary test results obtained with the Boeing 727, the Douglas DC-9, and the ground vehicles are given. Time histories of the aircraft test run parameters are included.

  19. Mapping automotive like controls to a general aviation aircraft

    NASA Astrophysics Data System (ADS)

    Carvalho, Christopher G.

    The purpose of this thesis was to develop fly-by-wire control laws enabling a general aviation aircraft to be flown with automotive controls, i.e. a steering wheel and gas/brake pedals. There was a six speed shifter used to change the flight mode of the aircraft. This essentially allows the pilot to have control over different aspects of the flight profile such as climb/descend or cruise. A highway in the sky was used to aid in the navigation since it is not intuitive to people without flight experience how to navigate from the sky or when to climb and descend. Many believe that general aviation could become as widespread as the automobile. Every person could have a personal aircraft at their disposal and it would be as easy to operate as driving an automobile. The goal of this thesis is to fuse the ease of drivability of a car with flight of a small general aviation aircraft. A standard automotive control hardware setup coupled with variably autonomous control laws will allow new pilots to fly a plane as easily as driving a car. The idea is that new pilots will require very little training to become proficient with these controls. Pilots with little time to stay current can maintain their skills simply by driving a car which is typically a daily activity. A human factors study was conducted to determine the feasibility of the applied control techniques. Pilot performance metrics were developed to compare candidates with no aviation background and experienced pilots. After analyzing the relative performance between pilots and non-pilots, it has been determined that the control system is robust and easy to learn. Candidates with no aviation experience whatsoever can learn to fly an aircraft as safely and efficiently as someone with hundreds of hours of flight experience using these controls.

  20. Toward a second generation fuel efficient supersonic cruise aircraft performance characteristics and benefits

    NASA Technical Reports Server (NTRS)

    Vachal, J. D.

    1976-01-01

    The need for greatly improved fuel efficiency and off-design subsonic characteristics is discussed. Engine-airframe matching studies are presented which show the benefits of a configuration designed for much lower supersonic drag levels (blended wing-fuselage) and how well this airframe matches with the new advanced variable-cycle engines. The benefits of advanced takeoff procedures and systems together with the co-annular noise effect in achieving low noise levels with a small cruise-sized engine are discussed. It is concluded that the technology advances when carefully integrated through detailed engine-airframe matching studies on a validated baseline airplane lead to a much improved supersonic cruise aircraft, i.e., more range, less fuel consumption, noise flexibility and satisfactory off-design characteristics.

  1. Simulation comparison of aircraft landing performance in foggy conditions aided by different UV sensors.

    PubMed

    Lavigne, Claire; Durand, Gérard; Roblin, Antoine

    2009-04-20

    In the atmosphere pointlike sources are surrounded by an aureole due to molecular and aerosol scattering. UV phase functions of haze droplets have a very important forward peak that limits signal angular spreading in relation to the clear atmosphere case where Rayleigh scattering predominates. This specific property can be exploited using solar blind UV source detection as an aircraft landing aid under foggy conditions. Two methods have been used to compute UV light propagation, based on the Monte Carlo technique and a semi-empirical approach. Results obtained after addition of three types of sensor and UV runway light models show that an important improvement in landing conditions during foggy weather could be achieved by use of a solar blind UV intensified CCD camera with two stages of microchannel plates.

  2. Performance Evaluation of Individual Aircraft Based Advisory Concept for Surface Management

    NASA Technical Reports Server (NTRS)

    Gupta, Gautam; Malik, Waqar; Tobias, Leonard; Jung, Yoon; Hong, Ty; Hayashi, Miwa

    2013-01-01

    Surface operations at airports in the US are based on tactical operations, where departure aircraft primarily queue up and wait at the departure runways. NASA's Spot And Runway Departure Advisor (SARDA) tool was developed to address these inefficiencies through Air Traffic Control Tower advisories. The SARDA system is being updated to include collaborative gate hold, either tactically or strategically. This paper presents the results of the human-in-the-loop evaluation of the tactical gate hold version of SARDA in a 360 degree simulated tower setting. The simulations were conducted for the east side of the Dallas/Fort Worth airport. The new system provides gate hold, ground controller and local controller advisories based on a single scheduler. Simulations were conducted with SARDA on and off, the off case reflecting current day operations with no gate hold. Scenarios based on medium (1.2x current levels) and heavy (1.5x current levels) traffic were explored. Data collected from the simulation was analyzed for runway usage, delay for departures and arrivals, and fuel consumption. Further, Traffic Management Initiatives were introduced for a subset of the aircraft. Results indicated that runway usage did not change with the use of SARDA, i.e., there was no loss in runway throughput as compared to baseline. Taxiing delay was significantly reduced with the use of advisory by 45% in medium scenarios and 60% in heavy. Arrival delay was unaffected by the use of advisory. Total fuel consumption was also reduced by 23% in medium traffic and 33% in heavy. TMI compliance appeared unaffected by the advisory

  3. Performance Evaluation of SARDA: An Individual Aircraft-Based Advisory Concept for Surface Management

    NASA Technical Reports Server (NTRS)

    Jung, Yoon; Malik, Waqar; Tobias, Leonard; Gupta, Gautam; Hoang, Ty; Hayashi, Miwa

    2015-01-01

    Surface operations at airports in the US are based on tactical operations, where departure aircraft primarily queue up and wait at the departure runways. NASAs Spot And Runway Departure Advisor (SARDA) tool was developed to address these inefficiencies through Air Traffic Control Tower advisories. The SARDA system is being updated to include collaborative gate hold, either tactically or strategically. This paper presents the results of the human-in-the-loop evaluation of the tactical gate hold version of SARDA in a 360 degree simulated tower setting. The simulations were conducted for the east side of the Dallas-Fort Worth airport. The new system provides gate hold, ground controller and local controller advisories based on a single scheduler. Simulations were conducted with SARDA on and off, the off case reflecting current day operations with no gate hold. Scenarios based on medium (1.2x current levels) and heavy (1.5x current levels) traffic were explored. Data collected from the simulation was analyzed for runway usage, delay for departures and arrivals, and fuel consumption. Further, Traffic Management Initiatives were introduced for a subset of the aircraft. Results indicated that runway usage did not change with the use of SARDA, i.e., there was no loss in runway throughput as compared to baseline. Taxiing delay was significantly reduced with the use of advisory by 45 in medium scenarios and 60 in heavy. Arrival delay was unaffected by the use of advisory. Total fuel consumption was also reduced by 23 in medium traffic and 33 in heavy. TMI compliance appeared unaffected by the advisory.

  4. An Evaluation of Performance Metrics for High Efficiency Tube-and-Wing Aircraft Entering Service in 2030 to 2035

    NASA Technical Reports Server (NTRS)

    Perkins, H. Douglas; Wilson, Jack; Raymer, Daniel P.

    2011-01-01

    An analysis of basic vehicle characteristics required to meet the Fundamental Aeronautics Program s 70 percent energy consumption reduction goal for commercial airliners in the 2030 to 2035 timeframe was conducted. A total of 29 combinations of vehicle parasitic drag coefficient, vehicle induced drag coefficient, vehicle empty weight and engine Specific Fuel Consumption were used to create sized tube-and-wing vehicle models. The mission fuel burn for each of these sized vehicles was then compared to a baseline current technology vehicle. A response surface equation was generated of fuel burn reduction as a function of the four basic vehicle performance metrics, so that any values of the performance metrics up to a 50 percent reduction could be used to estimate fuel burn reduction of tube-and-wing aircraft for future studies.

  5. Hover performance tests of baseline metal and Advanced Technology Blade (ATB) rotor systems for the XV-15 tilt rotor aircraft

    NASA Technical Reports Server (NTRS)

    Bartie, K.; Alexander, H.; Mcveigh, M.; Lamon, S.; Bishop, H.

    1986-01-01

    Rotor hover performance data were obtained for two full-scale rotor systems designed for the XV-15 Tilt Rotor Research Aircraft. One rotor employed the rectangular planform metal blades (rotor solidity = 0.089) which were used on the initial flight configuration of the XV-15. The second rotor configuration examined the nonlinear taper, composite-construction, Advanced Technology Blade (ATB), (rotor solidity = 0.10) designed to replace the metal blades on the XV-15. Variations of the baseline ATB tip and cuff shapes were also tested. A new six-component rotor force and moment balance designed to obtain highly accurate data over a broad range of thrust and torque conditions is described. The test data are presented in nondimensional coefficient form for the performance results, and in dimensional form for the steady and alternating loads. Some wake and acoustic data are also shown.

  6. Space shuttle wheels and brakes

    NASA Technical Reports Server (NTRS)

    Carsley, R. B.

    1985-01-01

    The Space Shuttle Orbiter wheels were subjected to a combination of tests which are different than any previously conducted in the aerospace industry. The major testing difference is the computer generated dynamic landing profiles used during the certification process which subjected the wheels and tires to simulated landing loading conditions. The orbiter brakes use a unique combination of carbon composite linings and beryllium heat sink to minimize weight. The development of a new lining retention method was necessary in order to withstand the high temperature generated during the braking roll. As with many programs, the volume into which this hardware had to fit was established early in the program, with no provisions made for growth to offset the continuously increasing predicted orbiter landing weight.

  7. What brakes the Crab pulsar?

    NASA Astrophysics Data System (ADS)

    Čadež, A.; Zampieri, L.; Barbieri, C.; Calvani, M.; Naletto, G.; Barbieri, M.; Ponikvar, D.

    2016-03-01

    Context. Optical observations provide convincing evidence that the optical phase of the Crab pulsar follows the radio one closely. Since optical data do not depend on dispersion measure variations, they provide a robust and independent confirmation of the radio timing solution. Aims: The aim of this paper is to find a global mathematical description of Crab pulsar's phase as a function of time for the complete set of published Jodrell Bank radio ephemerides (JBE) in the period 1988-2014. Methods: We apply the mathematical techniques developed for analyzing optical observations to the analysis of JBE. We break the whole period into a series of episodes and express the phase of the pulsar in each episode as the sum of two analytical functions. The first function is the best-fitting local braking index law, and the second function represents small residuals from this law with an amplitude of only a few turns, which rapidly relaxes to the local braking index law. Results: From our analysis, we demonstrate that the power law index undergoes "instantaneous" changes at the time of observed jumps in rotational frequency (glitches). We find that the phase evolution of the Crab pulsar is dominated by a series of constant braking law episodes, with the braking index changing abruptly after each episode in the range of values between 2.1 and 2.6. Deviations from such a regular phase description behave as oscillations triggered by glitches and amount to fewer than 40 turns during the above period, in which the pulsar has made more than 2 × 1010 turns. Conclusions: Our analysis does not favor the explanation that glitches are connected to phenomena occurring in the interior of the pulsar. On the contrary, timing irregularities and changes in slow down rate seem to point to electromagnetic interaction of the pulsar with the surrounding environment.

  8. Autogenic-feedback training as a treatment for airsickness in high-performance military aircraft: Two case studies

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Toscano, William B.; Miller, Neal E.; Reynoso, Samuel

    1994-01-01

    The purpose of this paper is to present a detailed description of the physiological and performance responses of two military pilots undergoing a treatment for motion sickness. The treatment used, Autogenic-Feedback Training (AFT), is an operant conditioning procedure where subjects are taught to control several of their autonomic responses and thereby suppress their motion sickness symptoms. Two male, active duty military pilots (U.S. Navy and U. S. Marine Corps), ages 30 and 35, were each given twelve 30-minute training sessions. The primary criterion for success of training was the subject's ability to tolerate rotating chair motion sickness tests for progressively longer periods of time and at higher rotational velocities. A standardized diagnostic scale was used during motion sickness to assess changes in the subject's perceived malaise. Physiological data were obtained from one pilot during tactical maneuvers in an F-18 aircraft after completion of his training. A significant increase in tolerance to laboratory-induced motion sickness tests and a reduction in autonomic nervous system (ANS) response variability was observed for both subjects after training. Both pilots were successful in applying AFT for controlling their airsickness during subsequent qualification tests on F-18 and T-38 aircraft and were returned to active duty flight status.

  9. Comparing the performance of expert user heuristics and an integer linear program in aircraft carrier deck operations.

    PubMed

    Ryan, Jason C; Banerjee, Ashis Gopal; Cummings, Mary L; Roy, Nicholas

    2014-06-01

    Planning operations across a number of domains can be considered as resource allocation problems with timing constraints. An unexplored instance of such a problem domain is the aircraft carrier flight deck, where, in current operations, replanning is done without the aid of any computerized decision support. Rather, veteran operators employ a set of experience-based heuristics to quickly generate new operating schedules. These expert user heuristics are neither codified nor evaluated by the United States Navy; they have grown solely from the convergent experiences of supervisory staff. As unmanned aerial vehicles (UAVs) are introduced in the aircraft carrier domain, these heuristics may require alterations due to differing capabilities. The inclusion of UAVs also allows for new opportunities for on-line planning and control, providing an alternative to the current heuristic-based replanning methodology. To investigate these issues formally, we have developed a decision support system for flight deck operations that utilizes a conventional integer linear program-based planning algorithm. In this system, a human operator sets both the goals and constraints for the algorithm, which then returns a proposed schedule for operator approval. As a part of validating this system, the performance of this collaborative human-automation planner was compared with that of the expert user heuristics over a set of test scenarios. The resulting analysis shows that human heuristics often outperform the plans produced by an optimization algorithm, but are also often more conservative.

  10. Piezoelectric-hydraulic pump based band brake actuation system for automotive transmission control

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Woo; Wang, K. W.

    2007-04-01

    The actuation system of friction elements (such as band brakes) is essential for high quality operations in modern automotive automatic transmissions (in short, ATs). The current band brake actuation system consists of several hydraulic components, including the oil pump, the regulating valve and the control valves. In general, it has been recognized that the current AT band brake actuation system has many limitations. For example, the oil pump and valve body are relatively heavy and complex. Also, the oil pumps induce inherently large drag torque, which affects fuel economy. This research is to overcome these problems of the current system by exploring the utilization of a hybrid type piezo-hydraulic pump device for AT band brake control. This new actuating system integrates a piezo-hydraulic pump to the input of the band brake. Compared with the current systems, this new actuator features much simpler structure, smaller size, and lower weight. This paper describes the development, design and fabrication of the new stand-alone prototype actuator for AT band brake control. An analytical model is developed and validated using experimental data. Performance tests on the hardware and system simulations utilizing the validated model are performed to characterize the new prototype actuator. It is predicted that with increasing of accumulator pressure and driving frequency, the proposed prototype actuating system will satisfy the band brake requirement for AT shift control.

  11. Frictional behavior of automotive brake materials under wet and dry conditions

    SciTech Connect

    Blau, P.J.; Martin, R.L.; Weintraub, M.H.; Jang, Ho; Donlon, W.

    1996-12-15

    The purpose of this effort was to develop an improved understanding of the relationship between the structure and frictional behavior of materials in the disc brake/rotor interface with a view toward improving the performance of automotive disc brakes. The three tasks involved in this Cooperative Research and Development Agreement (CRADA) were as follows: Task 1. Investigation of Brake Pads and Rotors. Characterize surface features of worn brake pads and rotors, with special attention to the transfer film which forms on them during operation. Ford to supply specimens for examination and other supporting information. Task 2. Effects of Atmosphere and Repeated Applications on Brake Material Friction. Conduct pin-on-disk friction tests at ORNL under controlled moisture levels to determine effects of relative humidity on frictional behavior of brake pad and rotor materials. Conduct limited tests on the characteristics of friction under application of repeated contacts. Task 3. Comparison of Dynamometer Tests with Laboratory Friction Tests. Compare ORNL friction data with Ford dynamometer test data to establish the degree to which the simple bench tests can be useful in helping to understand frictional behavior in full-scale brake component tests. This final report summarizes work performed under this CRADA.

  12. A miniature powerplant for very small, very long range autonomous aircraft. Final report

    SciTech Connect

    Tad McGeer

    1999-09-29

    The authors have developed a new piston engine offering unprecedented efficiency for a new generation of miniature robotic aircraft. Following Phase 1 preliminary design in 1996--97, they have gone forward in Phase 2 to complete detail design, and are nearing completion of a first batch of ten engines. A small-engine dynamometer facility has been built in preparation for the test program. Provisions have been included for supercharging, which will allow operation at ceilings in the 10,000 m range. Component tests and detailed analysis indicate that the engine will achieve brake-specific fuel consumption well below 300 gm/kWh at power levels of several hundred watts. This level of performance opens the door to development of tabletop-sized aircraft having transpacific range and multi-day endurance, which will offer extraordinary new capabilities for meteorology, geomagnetic, and a variety of applications in environmental monitoring and military operations.

  13. CV-990 Landing Systems Research Aircraft (LSRA) during final Space Shuttle tire test

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A Convair 990 (CV-990) was used as a Landing Systems Research Aircraft (LSRA) at NASA's Dryden Flight Research Center, Edwards, California, to test space shuttle landing gear and braking systems as part of NASA's effort to upgrade and improve space shuttle capabilities. The first flight at Dryden of the CV-990 with shuttle test components occurred in April 1993, and tests continued into August 1995, when this photo shows a test of the shuttle tires. The purpose of this series of tests was to determine the performance parameters and failure limits of the tires. This particular landing was on the dry lakebed at Edwards, but other tests occurred on the main runway there. The CV-990, built in 1962 by the Convair Division of General Dynamics Corp., Ft. Worth, Texas, served as a research aircraft at Ames Research Center, Moffett Field, California, before it came to Dryden.

  14. 26 CFR 31.3121(b)(4)-1 - Services performed on or in connection with a non-American vessel or aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... with the vessel or aircraft when outside the United States. (e) Services performed outside the United... 26 Internal Revenue 15 2013-04-01 2013-04-01 false Services performed on or in connection with a... REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) EMPLOYMENT TAXES AND COLLECTION OF INCOME TAX...

  15. 26 CFR 31.3121(b)(4)-1 - Services performed on or in connection with a non-American vessel or aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... with the vessel or aircraft when outside the United States. (e) Services performed outside the United... 26 Internal Revenue 15 2014-04-01 2014-04-01 false Services performed on or in connection with a... REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) EMPLOYMENT TAXES AND COLLECTION OF INCOME TAX...

  16. 26 CFR 31.3121(b)(4)-1 - Services performed on or in connection with a non-American vessel or aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... with the vessel or aircraft when outside the United States. (e) Services performed outside the United... 26 Internal Revenue 15 2011-04-01 2011-04-01 false Services performed on or in connection with a... REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) EMPLOYMENT TAXES AND COLLECTION OF INCOME TAX...

  17. 26 CFR 31.3121(b)(4)-1 - Services performed on or in connection with a non-American vessel or aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... with the vessel or aircraft when outside the United States. (e) Services performed outside the United... 26 Internal Revenue 15 2010-04-01 2010-04-01 false Services performed on or in connection with a... REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) EMPLOYMENT TAXES AND COLLECTION OF INCOME TAX...

  18. 26 CFR 31.3121(b)(4)-1 - Services performed on or in connection with a non-American vessel or aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... with the vessel or aircraft when outside the United States. (e) Services performed outside the United... 26 Internal Revenue 15 2012-04-01 2012-04-01 false Services performed on or in connection with a... REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) EMPLOYMENT TAXES AND COLLECTION OF INCOME TAX...

  19. Dynamics of Braking Vehicles: From Coulomb Friction to Anti-Lock Braking Systems

    ERIC Educational Resources Information Center

    Tavares, J. M.

    2009-01-01

    The dynamics of braking of wheeled vehicles is studied using the Coulomb approximation for the friction between road and wheels. The dependence of the stopping distance on the mass of the vehicle, on the number of its wheels and on the intensity of the braking torque is established. It is shown that there are two regimes of braking, with and…

  20. Preliminary Axial Flow Turbine Design and Off-Design Performance Analysis Methods for Rotary Wing Aircraft Engines. Part 2; Applications

    NASA Technical Reports Server (NTRS)

    Chen, Shu-cheng, S.

    2009-01-01

    In this paper, preliminary studies on two turbine engine applications relevant to the tilt-rotor rotary wing aircraft are performed. The first case-study is the application of variable pitch turbine for the turbine performance improvement when operating at a substantially lower shaft speed. The calculations are made on the 75 percent speed and the 50 percent speed of operations. Our results indicate that with the use of the variable pitch turbines, a nominal (3 percent (probable) to 5 percent (hypothetical)) efficiency improvement at the 75 percent speed, and a notable (6 percent (probable) to 12 percent (hypothetical)) efficiency improvement at the 50 percent speed, without sacrificing the turbine power productions, are achievable if the technical difficulty of turning the turbine vanes and blades can be circumvented. The second casestudy is the contingency turbine power generation for the tilt-rotor aircraft in the One Engine Inoperative (OEI) scenario. For this study, calculations are performed on two promising methods: throttle push and steam injection. By isolating the power turbine and limiting its air mass flow rate to be no more than the air flow intake of the take-off operation, while increasing the turbine inlet total temperature (simulating the throttle push) or increasing the air-steam mixture flow rate (simulating the steam injection condition), our results show that an amount of 30 to 45 percent extra power, to the nominal take-off power, can be generated by either of the two methods. The methods of approach, the results, and discussions of these studies are presented in this paper.

  1. Computation of radar cross section with the coupling of aerodynamic performance in a multidisciplinary design optimization of aircraft

    NASA Astrophysics Data System (ADS)

    Hong, Seng Muy

    The computation or prediction of plane wave scattering widths is one of the major design considerations of future aircraft and weapon systems. The control of scattering and penetration of electromagnetic waves is the primary objective of emerging low observable technology. The task in computing the electromagnetic backscattered field of an airframe structure is by no means a new endeavor. Whereas predicting a minimal backscattered field return under the manipulation of airframe geometry in the context of multidisciplinary design is considered the most prudent approach to obtain the optimal solution. The objective of this paper is to develop a mathematical method to couple the backscattered field with the defined aerodynamic performance constraints in the design process of future airframes. This paper will address the basic concept of integrating the radio frequency (RF) backscattered field or electromagnetic (EM) discipline with the Multidisciplinary Design Optimization (MDO) methodology. The development of the MDO system is complex and the result appears to be intractable and time consuming despite the availability of high-speed super computers. Due to the fact that many disciplines and analyses were implemented with various optimization methods and techniques, such as the Finite Element Method (FEM), Method of Moment (MoM), the Finite Difference Time Domain (FDTD) method, the integration of multiple individual disciplines with various software coding formats would be the most difficult task. In spite of this expected challenge, this paper will address: (a) The effects and benefits of employing the EM discipline in MDO systems in preliminary configuration design of aircraft structure. (b) The criteria to minimize backscattered field return while maximizing aerodynamic performance and the methods of optimization, trade-off, and implementation. (c) The integration issue of electromagnetic discipline into the grand scheme of MDO. Furthermore, this paper explores the

  2. 49 CFR 393.43 - Breakaway and emergency braking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., separate. (c) Emergency brake requirements, vacuum brakes. Every truck tractor and truck when used for towing other vehicles equipped with vacuum brakes, shall have, in addition to the single control...

  3. 49 CFR 393.43 - Breakaway and emergency braking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., separate. (c) Emergency brake requirements, vacuum brakes. Every truck tractor and truck when used for towing other vehicles equipped with vacuum brakes, shall have, in addition to the single control...

  4. Friction characteristics of three 30 by 11.5-14.5, type 8, aircraft tires with various tread groove patterns and rubber compounds

    NASA Technical Reports Server (NTRS)

    Yager, T. J.; Mccarty, J. L.

    1977-01-01

    A test program was conducted to evaluate friction performance and wear characteristics on wet runways of three 30 x 11.5-14.5, type, aircraft tires having two different tread patterns and natural rubber contents. All test tires had the standard three circumferential groove tread, but two had molded transverse grooves which extended from shoulder to shoulder. The tread rubber content of the two tires with transverse grooves differed in that one had a 100 percent natural rubber tread and the other had a rubber tread composition that was 30 percent synthetic and 70 percent natural. The third test tire had the conventional 100 percent natural rubber tread. Results indicate that the differences in tire tread design and rubber composition do not significantly affect braking and cornering friction capability on wet or dry surfaces. Braking performance of the tires decreases with increased speed, with increased yaw angle and, at higher speeds, with increased wetness of the surface.

  5. Bidirectional Drive-And-Brake Mechanism

    NASA Technical Reports Server (NTRS)

    Swan, Scott A.

    1991-01-01

    Vehicle that crawls along monorail combines features of both bicycle and railroad handcar. Bidirectional drive-and-brake mechanism includes selectable-pawl-and-ratchet overrunning clutch (drive mechanism) and mating stationary and rotating conical surfaces pressing against each other (brake mechanism). Operates similarly to bicycle drive-and-brake mechanism except limits rotation of sprocket in both directions and brakes at both limits. Conceived for use by astronaut traveling along structure in outer space, concept also applied on Earth to make very small railraod handcars or crawling vehicles for use on large structures, in pipelines under construction, or underwater.

  6. Evaluation the course of the vehicle braking process in case of hydraulic circuit malfunction

    NASA Astrophysics Data System (ADS)

    Szczypiński-Sala, W.; Lubas, J.

    2016-09-01

    In the paper, the results of the research were discussed, the aim of which was the evaluation of the vehicle braking performance efficiency and the course of this process with regard to the dysfunction which may occur in braking hydraulic circuit. As part of the research, on-road tests were conducted. During the research, the delay of the vehicle when braking was measured with the use of the set of sensors placed in the parallel and the perpendicular axis of the vehicle. All the tests were conducted on the same flat section of asphalt road with wet surface. Conditions of diminished tire-to-road adhesion were chosen in order to force the activity of anti-lock braking system. The research was conducted comparatively for the vehicle with acting anti-lock braking system and subsequently for the vehicle without the system. In both cases, there was a subsequent evaluation of the course of braking with efficient braking system and with the dysfunction of hydraulic circuit.

  7. Preliminary performance of a vertical-attitude takeoff and landing, supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Beissner, F. L., Jr.; Domack, C. S.; Swanson, E. E.

    1985-01-01

    A performance study was made of a vertical attitude takeoff and landing (VATOL), supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system. Those characteristics considered were aerodynamics, weight, balance, and performance. Preliminary results indicate that high levels of supersonic aerodynamic performance can be achieved. Further, with the assumption of an advanced (1985 technology readiness) low bypass ratio turbofan engine and advanced structures, excellent mission performance capability is indicated.

  8. Research on Heat-Mechanical Coupling of Ventilated Disc Brakes under the Condition of Emergency Braking

    NASA Astrophysics Data System (ADS)

    Tan, Xuelong; Zhang, Jian; Tang, Wenxian; Zhang, Yang

    Taking the ventilated disc brake in some company as research object, and using UG to build 3D models of brake disc and pad, and making use of ABAQUS/Standard to set up two parts' finite element model, via the decelerated motion of actual simulation brake disc, which gets ventilated disc brake in the case of emergency breaking in time and space distribution of conditions of temperature and stress field, summarizes the distribution of temperature field and stress field, proves complex coupling between temperature, stress, and supplies the direct basis for brake's fatigue life analysis.

  9. Aircraft Contrails

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Captured in this scene is a series of aircraft contrails in a high traffic region over the northern Gulf of Mexico (27.0N, 85.5W). Contrails are caused by the hot engine exhaust of high flying aircraft interacting with moisture in the cold upper atmosphere and are common occurrances of high flying aircraft.

  10. The comparative performance of Roots type aircraft engine superchargers as affected by change in impeller speed and displacement

    NASA Technical Reports Server (NTRS)

    Ware, Marsden; Wilson, Ernest E

    1929-01-01

    This report presents the results of tests made on three sizes of roots type aircraft engine superchargers. The impeller contours and diameters of these machines were the same, but the length were 11, 8 1/4, and 4 inches, giving displacements of 0.509, 0.382, and 0.185 cubic foot per impeller revolution. The information obtained serves as a basis for the examination of the individual effects of impeller speed and displacement on performance and of the comparative performance when speed and displacement are altered simultaneously to meet definite service requirements. According to simple theory, when assuming no losses, the air weight handled and the power required for a given pressure difference are directly proportional to the speed and the displacement. These simple relations are altered considerably by the losses. When comparing the performance of different sizes of machines whose impeller speeds are so related that the same service requirements are met, it is found that the individual effects of speed and displacement are canceled to a large extent, and the only considerable difference is the difference in the power losses which decrease with increase in the displacement and the accompanying decrease in speed. This difference is small in relation to the net power of the engine supercharger unit, so that a supercharger with short impellers may be used in those applications where the space available is very limited with any considerable sacrifice in performance.

  11. Performance of a Supersonic Over-Wing Inlet with Application to a Low-Sonic-Boom Aircraft

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.; Hirt, Stefanie M.; Anderson, Bernhard H.; Fink, Lawrence E.; Magee, Todd E.

    2014-01-01

    Development of commercial supersonic aircraft has been hindered by many related factors including fuel-efficiency, economics, and sonic-boom signatures that have prevented over-land flight. Materials, propulsion, and flight control technologies have developed to the point where, if over-land flight were made possible, a commercial supersonic transport could be economically viable. Computational fluid dynamics, and modern optimization techniques enable designers to reduce the boom signature of candidate aircraft configurations to acceptable levels. However, propulsion systems must be carefully integrated with these low-boom configurations in order that the signatures remain acceptable. One technique to minimize the downward propagation of waves is to mount the propulsion systems above the wing, such that the wing provides shielding from shock waves generated by the inlet and nacelle. This topmounted approach introduces a number of issues with inlet design and performance especially with the highly-swept wing configurations common to low-boom designs. A 1.79%-scale aircraft model was built and tested at the NASA Glenn Research Center's 8-by 6-Foot Supersonic Wind Tunnel (8x6 SWT) to validate the configuration's sonic boom signature. In order to evaluate performance of the top-mounted inlets, the starboard flow-through nacelle on the aerodynamic model was replaced by a 2.3%-scale operational inlet model. This integrated configuration was tested at the 8x6 SWT from Mach 0.25 to 1.8 over a wide range of angles-of-attack and yaw. The inlet was also tested in an isolated configuration over a smaller range of angles-of-attack and yaw. A number of boundary-layer bleed configurations were investigated and found to provide a substantial positive impact on pressure recovery and distortion. Installed inlet performance in terms of mass capture, pressure recovery, and distortion over the Mach number range at the design angle-of-attack of 4-degrees is presented herein and compared

  12. Detection of visually unrecognizable braking tracks using Laser-Induced Breakdown Spectroscopy, a feasibility study

    NASA Astrophysics Data System (ADS)

    Prochazka, David; Bilík, Martin; Prochazková, Petra; Brada, Michal; Klus, Jakub; Pořízka, Pavel; Novotný, Jan; Novotný, Karel; Ticová, Barbora; Bradáč, Albert; Semela, Marek; Kaiser, Jozef

    2016-04-01

    Identification of the position, length and mainly beginning of a braking track has proven to be essential for determination of causes of a road traffic accident. With the introduction of modern safety braking systems and assistance systems such as the Anti-lock Braking System (ABS) or Electronic Stability Control (ESC), the visual identification of braking tracks that has been used up until the present is proving to be rather complicated or even impossible. This paper focuses on identification of braking tracks using a spectrochemical analysis of the road surface. Laser-Induced Breakdown Spectroscopy (LIBS) was selected as a method suitable for fast in-situ element detection. In the course of detailed observations of braking tracks it was determined that they consist of small particles of tire treads that are caught in intrusions in the road surface. As regards detection of the "dust" resulting from wear and tear of tire treads in the environment, organic zinc was selected as the identification element in the past. The content of zinc in tire treads has been seen to differ with regard to various sources and tire types; however, the arithmetic mean and modus of these values are approximately 1% by weight. For in-situ measurements of actual braking tracks a mobile LIBS device equipped with a special module was used. Several measurements were performed for 3 different cars and tire types respectively which slowed down with full braking power. Moreover, the influence of different initial speed, vehicle mass and braking track length on detected signal is discussed here.

  13. Driving and braking control of PM synchronous motor based on low-resolution hall sensor for battery electric vehicle

    NASA Astrophysics Data System (ADS)

    Gu, Jing; Ouyang, Minggao; Li, Jianqiu; Lu, Dongbin; Fang, Chuan; Ma, Yan

    2013-01-01

    Resolvers are normally employed for rotor positioning in motors for electric vehicles, but resolvers are expensive and vulnerable to vibrations. Hall sensors have the advantages of low cost and high reliability, but the positioning accuracy is low. Motors with Hall sensors are typically controlled by six-step commutation algorithm, which brings high torque ripple. This paper studies the high-performance driving and braking control of the in-wheel permanent magnetic synchronous motor (PMSM) based on low-resolution Hall sensors. Field oriented control (FOC) based on Hall-effect sensors is developed to reduce the torque ripple. The positioning accuracy of the Hall sensors is improved by interpolation between two consecutive Hall signals using the estimated motor speed. The position error from the misalignment of the Hall sensors is compensated by the precise calibration of Hall transition timing. The braking control algorithms based on six-step commutation and FOC are studied. Two variants of the six-step commutation braking control, namely, half-bridge commutation and full-bridge commutation, are discussed and compared, which shows that the full-bridge commutation could better explore the potential of the back electro-motive forces (EMF), thus can deliver higher efficiency and smaller current ripple. The FOC braking is analyzed with the phasor diagrams. At a given motor speed, the motor turns from the regenerative braking mode into the plug braking mode if the braking torque exceeds a certain limit, which is proportional to the motor speed. Tests in the dynamometer show that a smooth control could be realized by FOC driving control and the highest efficiency and the smallest current ripple could be achieved by FOC braking control, compared to six-step commutation braking control. Therefore, FOC braking is selected as the braking control algorithm for electric vehicles. The proposed research ensures a good motor control performance while maintaining low cost and high

  14. Immobilisation of the knee and ankle and its impact on drivers' braking times: a driving simulator study.

    PubMed

    Waton, A; Kakwani, R; Cooke, N J; Litchfield, D; Kok, D; Middleton, H; Irwin, L

    2011-07-01

    The purpose of this study was to investigate the effects of right leg restriction at the knee, ankle or both, on a driver's braking times. Previous studies have not investigated the effects of knee restriction on braking performance. A total of 23 healthy drivers performed a series of emergency braking tests in a driving simulator in either an above-knee plaster cast, a below-knee cast, or in a knee brace with an increasing range of restriction. The study showed that total braking reaction time was significantly longer when wearing an above-knee plaster cast, a below-knee plaster cast or a knee brace fixed at 0°, compared with braking normally (p < 0.001). Increases in the time taken to move the foot from the accelerator to the brake accounted for some of the increase in the total braking reaction time. Unexpectedly, thinking time also increased with the level of restriction (p < 0.001). The increase in braking time with an above-knee plaster cast in this study would increase the stopping distance at 30 miles per hour by almost 3 m. These results suggest that all patients wearing any lower-limb plaster cast or knee brace are significantly impaired in their ability to perform an emergency stop. We suggest changes to the legislation to prevent patients from driving with lower-limb plaster casts or knee braces.

  15. Method and apparatus for electromagnetically braking a motor

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Radford, Nicolaus A (Inventor); Permenter, Frank Noble (Inventor); Parsons, Adam H (Inventor); Mehling, Joshua S (Inventor)

    2011-01-01

    An electromagnetic braking system and method is provided for selectively braking a motor using an electromagnetic brake having an electromagnet, a permanent magnet, a rotor assembly, and a brake pad. The brake assembly applies when the electromagnet is de-energized and releases when the electromagnet is energized. When applied the permanent magnet moves the brake pad into frictional engagement with a housing, and when released the electromagnet cancels the flux of the permanent magnet to allow a leaf spring to move the brake pad away from the housing. A controller has a DC/DC converter for converting a main bus voltage to a lower braking voltage based on certain parameters. The converter utilizes pulse-width modulation (PWM) to regulate the braking voltage. A calibrated gap is defined between the brake pad and permanent magnet when the brake assembly is released, and may be dynamically modified via the controller.

  16. Performance seeking control (PSC) for the F-15 highly integrated digital electronic control (HIDEC) aircraft

    NASA Technical Reports Server (NTRS)

    Orme, John S.

    1995-01-01

    The performance seeking control algorithm optimizes total propulsion system performance. This adaptive, model-based optimization algorithm has been successfully flight demonstrated on two engines with differing levels of degradation. Models of the engine, nozzle, and inlet produce reliable, accurate estimates of engine performance. But, because of an observability problem, component levels of degradation cannot be accurately determined. Depending on engine-specific operating characteristics PSC achieves various levels performance improvement. For example, engines with more deterioration typically operate at higher turbine temperatures than less deteriorated engines. Thus when the PSC maximum thrust mode is applied, for example, there will be less temperature margin available to be traded for increasing thrust.

  17. Program for establishing long-time flight service performance of composite materials in the center wing structure of C-130 aircraft. Phase 5: Flight service and inspection

    NASA Technical Reports Server (NTRS)

    Kizer, J. A.

    1981-01-01

    Inspections of the C-130 composite-reinforced center wings were conducted over the flight service monitoring period of more than six years. Twelve inspections were conducted on each of the two C-130H airplanes having composite reinforced center wing boxes. Each inspection consisted of visual and ultrasonic inspection of the selective boron-epoxy reinforced center wings which included the inspection of the boron-epoxy laminates and the boron-epoxy reinforcement/aluminum structure adhesive bondlines. During the flight service monitoring period, the two C-130H aircraft accumulated more than 10,000 flight hours and no defects were detected in the inspections over this period. The successful performance of the C-130H aircraft with composite-reinforced center wings allowed the transfer of the responsibilities of inspecting and maintaining these two aircraft to the U. S. Air Force.

  18. Method of Matching Performance of Compressor Systems with that of Aircraft Power Sections

    NASA Technical Reports Server (NTRS)

    Bullock, Robert O.; Keetch, Robert C.; Moses, Jason J.

    1945-01-01

    A method is developed of easily determining the performance of a compressor system relative to that of the power section for a given altitude. Because compressors, reciprocating engines, and turbines are essentially flow devices, the performance of each of these power-plant components is presented in terms of similar dimensionless ratios. The pressure and temperature changes resulting from restrictions of the charge-air flow and from heat transfer in the ducts connecting the components of the power plant are also expressed by the same dimensionless ratios and the losses are included in the performance of the compressor. The performance of a mechanically driven, single-stage compressor in relation to the performance of a conventional air-cooled engine operating at sea-level conditions is presented as an example of the application of the method.

  19. Effect of fuel properties on performance of a single aircraft turbojet combustor

    NASA Technical Reports Server (NTRS)

    Butze, H. F.; Ehlers, R. C.

    1975-01-01

    The performance of a single-can JT8D combustor was investigated with a number of fuels exhibiting wide variations in chemical composition and volatility. Performance parameters investigated were combustion efficiency, emissions of CO, unburned hydrocarbons and NOx, as well as liner temperatures and smoke. At the simulated idle condition no significant differences in performance were observed. At cruise, liner temperatures and smoke increased sharply with decreasing hydrogen content of the fuel. No significant differences were observed in the performance of an oil-shale derived JP-5 and a petroleum-based Jet A fuel except for emissions of NOx which were higher with the oil-shale JP-5. The difference is attributed to the higher concentration of fuel-bound nitrogen in the oil-shale JP-5.

  20. Impact of broad-specification fuels on future jet aircraft. [engine components and performance

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.

    1978-01-01

    The effects that broad specification fuels have on airframe and engine components were discussed along with the improvements in component technology required to use broad specification fuels without sacrificing performance, reliability, maintainability, or safety.