Science.gov

Sample records for aircraft braking performance

  1. Recent studies of tire braking performance. [for aircraft

    NASA Technical Reports Server (NTRS)

    Mccarty, J. L.; Leland, T. J. W.

    1973-01-01

    The results from recent studies of some factors affecting tire braking and cornering performance are presented together with a discussion of the possible application of these results to the design of aircraft braking systems. The first part of the paper is concerned with steady-state braking, that is, results from tests conducted at a constant slip ratio or steering angle or both. The second part deals with cyclic braking tests, both single cycle, where brakes are applied at a constant rate until wheel lockup is achieved, and rapid cycling of the brakes under control of a currently operational antiskid system.

  2. Performance of an aircraft tire under cyclic braking and of a currently operational antiskid braking system

    NASA Technical Reports Server (NTRS)

    Tanner, J. A.

    1972-01-01

    An experimental investigation was conducted to study the performance of an aircraft tire under cyclic braking conditions and to study the performance of a currently operational aircraft antiskid braking system. Dry, damp, and flooded runway surface conditions were used in the investigation. The results indicated that under cyclic braking conditions the braking and cornering-force friction coefficients may be influenced by fluctuations in the vertical load, flexibility in the wheel support, and the spring coupling between the wheel and the tire-pavement interface. The cornering capability was shown to be negligible at wheel slip ratios well below a locked-wheel skid under all test surface conditions. The maximum available brake-force friction coefficient was shown to be dependent upon the runway surface condition, upon velocity, and, for wet runways, upon tire differences. Moderate reductions in vertical load and brake system pressure did not significantly affect the overall wet-runway performance of the tire.

  3. Braking, steering, and wear performance of radial-belted and bias-ply aircraft tires

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Davis, Pamela A.; Stubbs, Sandy M.; Martinson, Veloria J.

    1992-01-01

    Preliminary steering, braking, and tread wear performance results from testing of radial-belted and bias-ply aircraft tires at NASA Langley are described. An overview of the joint NASA/FAA/industry START program is presented. Attention is given to the Langley Test Facility, equipment and future activities.

  4. Evaluation of materials and design modifications for aircraft brakes

    NASA Technical Reports Server (NTRS)

    Ho, T. L.; Kennedy, F. E.; Peterson, M. B.

    1975-01-01

    A test program is described which was carried out to evaluate several proposed design modifications and several high-temperature friction materials for use in aircraft disk brakes. The evaluation program was carried out on a specially built test apparatus utilizing a disk brake and wheel half from a small het aircraft. The apparatus enabled control of brake pressure, velocity, and braking time. Tests were run under both constant and variable velocity conditions and covered a kinetic energy range similar to that encountered in aircraft brake service. The results of the design evaluation program showed that some improvement in brake performance can be realized by making design changes in the components of the brake containing friction material. The materials evaluation showed that two friction materials show potential for use in aircraft disk brakes. One of the materials is a nickel-based sintered composite, while the other is a molybdenum-based material. Both materials show much lower wear rates than conventional copper-based materials and are better able to withstand the high temperatures encountered during braking. Additional materials improvement is necessary since both materials show a significant negative slope of the friction-velocity curve at low velocities.

  5. Airborne asbestos exposure during light aircraft brake replacement.

    PubMed

    Blake, Charles L; Johnson, Giffe T; Harbison, Raymond D

    2009-08-01

    Asbestos containing materials are a component of many vehicle brake systems, including those found in some light aircraft. To characterize the asbestos exposure that results from the installation and maintenance of these components, an aircraft fitted with asbestos containing brake pads had brake changes performed while both area and personal air samples were taken. The brake changing process took place in a closed, unventilated aircraft hanger and all operations were performed according to the manufacturer's recommended procedure. Personal air samples did not detect any measurable amount of asbestos fibers during the brake changing or subsequent cleanup procedures. Analysis of personal samples (n=9) using phase contrast microscopy indicated airborne fiber concentrations at or below 0.003f/ml as 8-h time weighted averages (TWAs) and less than 0.069f/ml averaged over 28-30min sampling periods. Airborne chrysotile fibers were detected by two area air samples with fiber concentrations remaining at or below 0.0013f/ml over an 8-h TWA. These results indicate that normal brake changing work practices on aircraft with asbestos containing brake pads does not produce a harmful level of asbestos exposure for aircraft mechanics.

  6. Some wear studies on aircraft brake systems

    NASA Technical Reports Server (NTRS)

    Ho, T. L.

    1975-01-01

    An initial investigation of worn surfaces in friction pads and steel rotors used in current aircraft brakes was carried out using electron microprobe and X-ray diffraction analysis. It consists of the topographical study and the analysis of chemical element distribution. Based upon this initial examination, two approaches, microscopic and macroscopic have been conducted to interpret and formulate the wear mechanism of the aircraft brake materials. Microscopically, the wear particles were examined. The initiation and growth of surface cracks and the oxidation were emphasized in this investigation. Macroscopically, it has been found that, for the current copper based brake material sliding against 17-22 AS steel in a caliper brake, the surface temperature raised due to frictional heat is nonlinearly proportional to the load applied and slide time with speed at 1750 rpm. The wear of brake materials is then proportional to this temperature and is also a function of the melting temperature for copper.

  7. Consideration of Materials for Aircraft Brakes

    NASA Technical Reports Server (NTRS)

    Peterson, M. B.; Ho, T.

    1972-01-01

    An exploratory investigation was conducted concerning materials and their properties for use in aircraft brakes. Primary consideration was given to the heat dissipation and the frictional behavior of materials. Used brake pads and rotors were analyzed as part of the investigation. A simple analysis was conducted in order to determine the most significant factors which affect surface temperatures. It was found that where size and weight restrictions are necessary, the specific heat of the material, and maintaining uniform contact area are the most important factors. A criterion was suggested for optimum sizing of the brake disks. Bench friction tests were run with brake materials. It was found that there is considerable friction variation due to the formation and removal of surface oxide films. Other causes of friction variations are surface softening and melting. The friction behavior at high temperature was found to be more characteristic of the steel surface rather than the copper brake material. It is concluded that improved brake materials are feasible.

  8. Dynamics of aircraft antiskid braking systems. [conducted at the Langley aircraft landing loads and traction facility

    NASA Technical Reports Server (NTRS)

    Tanner, J. A.; Stubbs, S. M.; Dreher, R. C.; Smith, E. G.

    1982-01-01

    A computer study was performed to assess the accuracy of three brake pressure-torque mathematical models. The investigation utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC-9 series 10 airplane. The investigation indicates that the performance of aircraft antiskid braking systems is strongly influenced by tire characteristics, dynamic response of the antiskid control valve, and pressure-torque response of the brake. The computer study employed an average torque error criterion to assess the accuracy of the models. The results indicate that a variable nonlinear spring with hysteresis memory function models the pressure-torque response of the brake more accurately than currently used models.

  9. Wear, friction, and temperature characteristics of an aircraft tire undergoing braking and cornering

    NASA Technical Reports Server (NTRS)

    Mccarty, J. L.; Yager, T. J.; Riccitiello, S. R.

    1979-01-01

    An investigation to evaluate the wear, friction, and temperature characteristics of aircraft tire treads fabricated from different elastomers is presented. The braking and cornering tests performed on aircraft tires retreaded with currently employed and experimental elastomers are described. The tread wear rate is discussed in relation to the slip ratio during braking and yaw angle during cornering. The extent of wear in either operational mode is examined in relation to the runway surface.

  10. Wheel brakes and their application to aircraft

    NASA Technical Reports Server (NTRS)

    Dowty, G H

    1928-01-01

    The advantages to be gained from braking have not been ignored, and in the search for a suitable method many schemes have been suggested and tried. Some of the methods discussed in this paper include: 1) increasing the height of the landing gear; 2) air brakes of various forms; 3) sprags on tail skid and axle; and 4) wheel brakes. This report focuses on the design of wheel brakes and wheel brake controls.

  11. Factors influencing aircraft ground handling performance

    NASA Technical Reports Server (NTRS)

    Yager, T. J.

    1983-01-01

    Problems associated with aircraft ground handling operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from tests with instrumented ground vehicles and aircraft, and aircraft wet runway accident investigation are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways.

  12. Some effects of grooved runway configurations on aircraft tire braking traction under flooded runway conditions

    NASA Technical Reports Server (NTRS)

    Byrdsong, T. A.

    1973-01-01

    An experimental investigation was conducted to study the effect of grooved runway configurations on aircraft tire braking traction on flooded runway surfaces. The investigation was performed, utilizing size 49 x 17, type VII, aircraft tires with an inflation pressure of 170 lb per square inch at ground speeds up to approximately 120 knots. The results of this investigation indicate that when the runway is flooded, grooved surfaces provide better braking traction than an ungrooved surface and, in general, the level of braking traction was found to improve as the tire bearing pressure was increased because of an increase in the groove area of either the surface or the tire tread. Rounding the groove edges tended to degrade the tire braking capability from that developed on the same groove configuration with sharp edges. Results also indicate that braking friction coefficients for the test tires and runway surfaces decreased as ground speed was increased because of the hydroplaning effects.

  13. Status of recent aircraft braking and cornering research

    NASA Technical Reports Server (NTRS)

    Stubbs, S. M.; Tanner, J. A.

    1976-01-01

    The sources of degraded performance which sometimes occurs under adverse runway conditions, are investigated to obtain data necessary to the development of more advanced systems, in an effort to insure safe ground handling operations under all-weather conditions. Tire-to-ground friction characteristics are determined under braking conditions which closely resemble those of airplanes under heavy braking. Braking data from single-wheel landing loads track tests are related with those available from full-scale flight tests.

  14. Development of aircraft brake materials. [evaluation of metal and ceramic materials in sliding tests simulation of aircraft braking

    NASA Technical Reports Server (NTRS)

    Ho, T. L.; Peterson, M. B.

    1974-01-01

    The requirements of brake materials were outlined and a survey made to select materials to meet the needs of high temperature brakes. A number of metals and ceramic materials were selected and evaluated in sliding tests which simulated aircraft braking. Nickel, molybdenum tungsten, Zr02, high temperature cements and carbons were tested. Additives were then incorporated into these materials to optimize their wear or strength behavior with particular emphasis on nickel and molybdenum base materials and a high temperature potassium silicate cement. Optimum materials were developed which improved wear behavior over conventional brake materials in the simulated test. The best materials are a nickel, aluminum oxide, lead tungstate composition containing graphite or molybdenum disulphite; a molybdenum base material containing LPA100 (an intermetallic compound of cobalt, molybdenum, and silicon); and a carbon material (P5).

  15. Aluminum runway surface as possible aid to aircraft braking

    NASA Technical Reports Server (NTRS)

    Miller, C. D.; Pinkel, I. I.

    1973-01-01

    Several concepts are described for use singly or in combination to improve aircraft braking. All involve a thin layer of aluminum covering all or part of the runway. Advantage would derive from faster heat conduction from the tire-runway interface. Heating of tread surface with consequent softening and loss of friction coefficient should be reduced. Equations are developed indicating that at least 99 percent of friction heat should flow into the aluminum. Preliminary test results indicate a coefficient of sliding friction of 1.4, with predictably slight heating of tread. Elimination of conventional brakes is at least a remote possibility.

  16. Wear and related characteristics of an aircraft tire during braking

    NASA Technical Reports Server (NTRS)

    Mccarty, J. L.

    1972-01-01

    Wear and related characteristics of friction and temperature developed during braking of size 22 x 5.5, type aircraft tires are studied. The testing technique involved gearing the tire to a driving wheel of a ground vehicle to provide operations at constant slip ratios on asphalt, concrete, and slurry-seal surfaces. Data were obtained over the range of slip ratios generally attributed to an aircraft braking system during dry runway operations. The results show that the cumulative tire wear varies linearly with distance traveled and the wear rate increases with increasing slip ratio and is influenced by the runway-surface character. Differences in the wear rates associated with the various surfaces suggest that runways can be rated on the basis of tire wear. The results also show that the friction coefficients developed during fixed-slip-ratio operations are in good agreement with those obtained by other investigators during cyclic braking, in that the dry friction is insensitive to the tire tread temperature is shown to increase with increasing slip ratio and, at the higher ratios, to be greater during braking on asphalt and slurry seal than on concrete.

  17. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces: Hydromechanically controlled system

    NASA Technical Reports Server (NTRS)

    Tanner, J. A.; Stubbs, S. M.; Smith, E. G.

    1981-01-01

    The investigation utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC-9 series 10 airplane. The landing-gear strut was replaced by a dynamometer. During maximum braking, average braking behavior indexes based upon brake pressure, brake torque, and drag-force friction coefficient developed by the antiskid system were generally higher on dry surfaces than on wet surfaces. The three braking behavior indexes gave similar results but should not be used interchangeably as a measure of the braking of this antiskid sytem. During the transition from a dry to a flooded surface under heavy braking, the wheel entered into a deep skid but the antiskid system reacted quickly by reducing brake pressure and performed normally during the remainder of the run on the flooded surface. The brake-pressure recovery following transition from a flooded to a dry surface was shown to be a function of the antiskid modulating orifice.

  18. 49 CFR 393.52 - Brake performance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: Type of motor vehicle Service brake systems Braking force as a percentage of gross vehicle or... initial speed at 20 mph Emergency brake systems Application and braking distance in feet from initial...-system application and braking distance in feet” (column 4) is a definite measure of the...

  19. 49 CFR 393.52 - Brake performance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: Type of motor vehicle Service brake systems Braking force as a percentage of gross vehicle or... initial speed at 20 mph Emergency brake systems Application and braking distance in feet from initial...-system application and braking distance in feet” (column 4) is a definite measure of the...

  20. 49 CFR 393.52 - Brake performance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: Type of motor vehicle Service brake systems Braking force as a percentage of gross vehicle or... initial speed at 20 mph Emergency brake systems Application and braking distance in feet from initial...-system application and braking distance in feet” (column 4) is a definite measure of the...

  1. 49 CFR 393.52 - Brake performance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: Type of motor vehicle Service brake systems Braking force as a percentage of gross vehicle or... initial speed at 20 mph Emergency brake systems Application and braking distance in feet from initial...-system application and braking distance in feet” (column 4) is a definite measure of the...

  2. 49 CFR 393.52 - Brake performance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: Type of motor vehicle Service brake systems Braking force as a percentage of gross vehicle or... initial speed at 20 mph Emergency brake systems Application and braking distance in feet from initial...-system application and braking distance in feet” (column 4) is a definite measure of the...

  3. Effect of surface texture and working gap on the braking performance of the magnetorheological fluid brake

    NASA Astrophysics Data System (ADS)

    Wang, Na; Li, Dong Heng; Li Song, Wan; Chao Xiu, Shi; Zhi Meng, Xiang

    2016-10-01

    In this paper, the effect of the surface textures of braking disc on the braking performance is experimentally investigated under the conditions of different working gaps and applied currents. For this purpose, a new configuration of magnetorheological fluid brake (MRB) with adjustable working gap is developed to improve the manufacturing accuracy and cost, and to reduce the problem of replacing the braking disc. In addition, the braking discs with three types of surface texture are designed and machined. Based on the test bed developed for the proposed MRB, a series of experiments are carried out on the manufactured prototype and the results are presented to obtain the relationship among the surface texture of the braking disc, applied current, working gap and the braking performance. The results show that the braking torque is significantly influenced by the working gap and surface texture of the braking disc, and the maximum braking torque is obtained on the conditions of 0.25 mm working gap and the braking disc with square surface texture.

  4. Thermal conductance of and heat generation in tire-pavement interface and effect on aircraft braking

    NASA Technical Reports Server (NTRS)

    Miller, C. D.

    1976-01-01

    A finite-difference analysis was performed on temperature records obtained from a free rolling automotive tire and from pavement surface. A high thermal contact conductance between tire and asphalt was found on a statistical basis. Average slip due to squirming between tire and asphalt was about 1.5 mm. Consequent friction heat was estimated as 64 percent of total power absorbed by bias-ply, belted tire. Extrapolation of results to aircraft tire indicates potential braking improvement by even moderate increase of heat absorbing capacity of runway surface.

  5. The design of aircraft brake systems, employing cooling to increase brake life

    NASA Technical Reports Server (NTRS)

    Scaringe, R. P.; Ho, T. L.; Peterson, M. B.

    1975-01-01

    A research program was initiated to determine the feasibility of using cooling to increase brake life. An air cooling scheme was proposed, constructed and tested with various designs. Straight and curved slotting of the friction material was tested. A water cooling technique, similar to the air cooling procedure, was evaluated on a curved slotted rotor. Also investigated was the possibility of using a phase-change material within the rotor to absorb heat during braking. Various phase-changing materials were tabulated and a 50%, (by weight) LiF - BeF2 mixing was chosen. It was shown that corrosion was not a problem with this mixture. A preliminary design was evaluated on an actual brake. Results showed that significant improvements in lowering the surface temperature of the brake occurred when air or water cooling was used in conjunction with curved slotted rotors.

  6. The friction and wear of carbon-carbon composites for aircraft brakes

    NASA Astrophysics Data System (ADS)

    Hutton, Toby

    Many carbon-carbon composite aircraft brakes encounter high wear rates during low energy braking operations. The work presented in this thesis addresses this issue, but it also elucidates the microstructural changes and wear mechanisms that take place in these materials during all braking conditions encountered by aircraft brakes. A variety of investigations were conducted using friction and wear testing, as well as examination of wear surfaces and wear debris using OM, SEM, X-RD, TGA and Density Gradient Separation (DOS). Friction and wear tests were conducted on a PAN fibre/CVI matrix carbon-carbon composite (Dunlop) and a pitch fibre/Resin-CVI matrix carbon-carbon composite (Bendix). Extensive testing was undertaken on the Dunlop composites to asses the effects of composite architecture, fibre orientation and heat treatment temperatures on friction and wear. Other friction and wear tests, conducted on the base Dunlop composite, were used to investigate the relative influences of temperature and sliding speed. It was found that the effect of temperature was dominant over composite architecture, fibre orientation and sliding speed in governing the friction and wear performance of the Dunlop composites. The development of bulk temperatures in excess of 110 C by frictional heating resulted in smooth friction and a low wear rate. Reducing heat treatment temperature also reduced the thermal conductivity producing high interface temperatures, low smooth friction coefficients and low wear rates under low energy braking conditions. However, this was at the expense of high oxidative wear rates under higher energy braking conditions. The Bendix composites had lower thermal conductivities than the fully heat treated Dunlop composite and exhibited similar friction and wear behaviour to Dunlop composites heat treated to lower temperatures. Examination of the wear surfaces using OM and SEM revealed particulate or Type I surface debris on wear surfaces tested under low energy

  7. A high performance pneumatic braking system for heavy vehicles

    NASA Astrophysics Data System (ADS)

    Miller, Jonathan I.; Cebon, David

    2010-12-01

    Current research into reducing actuator delays in pneumatic brake systems is opening the door for advanced anti-lock braking algorithms to be used on heavy goods vehicles. However, these algorithms require the knowledge of variables that are impractical to measure directly. This paper introduces a sliding mode braking force observer to support a sliding mode controller for air-braked heavy vehicles. The performance of the observer is examined through simulations and field testing of an articulated heavy vehicle. The observer operated robustly during single-wheel vehicle simulations, and provided reasonable estimates of surface friction from test data. The effect of brake gain errors on the controller and observer are illustrated, and a recursive least squares estimator is derived for the brake gain. The estimator converged within 0.3 s in simulations and vehicle trials.

  8. Experimental investigation of the braking and cornering characteristics of 30 x 11.5-14.5, type 8, aircraft tires with different tread patterns

    NASA Technical Reports Server (NTRS)

    Dreher, R. C.; Tanner, J. A.

    1974-01-01

    An investigation was conducted at the aircraft landing loads and traction facility to study the braking and cornering characteristics, including the drag-force and cornering-force friction coefficients, of 30 by 11.5-14.5, type VIII aircraft tires with five different tread patterns. Test data were obtained on dry, damp, and flooded runway surfaces over a range of yaw angles from 0 deg to 12 deg at ground speeds from 5 knots to 100 knots. The results of this investigation indicate that a tread pattern consisting of transverse cuts across the entire width of the tread slightly improved the tire traction performance on wet surfaces. The braking and cornering capability of the tires was degraded by thin-film lubrication and tire hydroplaning effects on the wet runway surfaces. The braking capability of the tires decreased when the yaw angle was increased.

  9. Defense Logistics Agency Did Not Obtain Fair and Reasonable Prices From Meggitt Aircraft Braking Systems for Sole-Source Commercial Spare Parts (REDACTED)

    DTIC Science & Technology

    2015-05-08

    Defense Logistics Agency Did Not Obtain Fair and Reasonable Prices From Meggitt Aircraft Braking Systems for Sole-Source Commercial Spare Parts...Defense Logistics Agency Did Not Obtain Fair and Reasonable Prices From Meggitt Aircraft Braking Systems for Sole-Source Commercial Spare Parts...D000AH-0180.000) │ i Results in Brief Defense Logistics Agency Did Not Obtain Fair and Reasonable Prices From Meggitt Aircraft Braking Systems for

  10. Some effects of adverse weather conditions on performance of airplane antiskid braking systems

    NASA Technical Reports Server (NTRS)

    Horne, W. B.; Mccarty, J. L.; Tanner, J. A.

    1976-01-01

    The performance of current antiskid braking systems operating under adverse weather conditions was analyzed in an effort to both identify the causes of locked-wheel skids which sometimes occur when the runway is slippery and to find possible solutions to this operational problem. This analysis was made possible by the quantitative test data provided by recently completed landing research programs using fully instrumented flight test airplanes and was further supported by tests performed at the Langley aircraft landing loads and traction facility. The antiskid system logic for brake control and for both touchdown and locked-wheel protection is described and its response behavior in adverse weather is discussed in detail with the aid of available data. The analysis indicates that the operational performance of the antiskid logic circuits is highly dependent upon wheel spin-up acceleration and can be adversely affected by certain pilot braking inputs when accelerations are low. Normal antiskid performance is assured if the tire-to-runway traction is sufficient to provide high wheel spin-up accelerations or if the system is provided a continuous, accurate ground speed reference. The design of antiskid systems is complicated by the necessity for tradeoffs between tire braking and cornering capabilities, both of which are necessary to provide safe operations in the presence of cross winds, particularly under slippery runway conditions.

  11. Tribomaterial factors in space mechanism brake performance

    NASA Technical Reports Server (NTRS)

    Hawthorne, H. M.

    1990-01-01

    The asbestos/phenolic pads of Shuttle Remote Manipulator System (SRMS) brakes are unsuitable for use in long life space mechanisms because their friction decreases on extended sliding in high vacuum. Dehydration of the material and accumulation of wear debris in the conforming interface of this tribosystem induces the permanent friction changes. Other polymer and some ceramic based materials exhibit similar frictional torque behavior due to the development of minimal contact patches by the interfacial debris. In contrast, high friction occurs when other ceramics form many small contacts throughout fine debris beds. Generating this latter interfacial structure during run-in ensures that the in-vacuo friction remains stable thereafter. Such materials with low wear rates are potential candidates for friction elements in SSRMS and similar mechanisms.

  12. Mechanical testing and modelling of carbon-carbon composites for aircraft disc brakes

    NASA Astrophysics Data System (ADS)

    Bradley, Luke R.

    The objective of this study is to improve the understanding of the stress distributions and failure mechanisms experienced by carbon-carbon composite aircraft brake discs using finite element (FE) analyses. The project has been carried out in association with Dunlop Aerospace as an EPSRC CASE studentship. It therefore focuses on the carbon-carbon composite brake disc material produced by Dunlop Aerospace, although it is envisaged that the approach will have broader applications for modelling and mechanical testing of carbon-carbon composites in general. The disc brake material is a laminated carbon-carbon composite comprised of poly(acrylonitrile) (PAN) derived carbon fibres in a chemical vapour infiltration (CVI) deposited matrix, in which the reinforcement is present in both continuous fibre and chopped fibre forms. To pave the way for the finite element analysis, a comprehensive study of the mechanical properties of the carbon-carbon composite material was carried out. This focused largely, but not entirely, on model composite materials formulated using structural elements of the disc brake material. The strengths and moduli of these materials were measured in tension, compression and shear in several orientations. It was found that the stress-strain behaviour of the materials were linear in directions where there was some continuous fibre reinforcement, but non-linear when this was not the case. In all orientations, some degree of non-linearity was observed in the shear stress-strain response of the materials. However, this non-linearity was generally not large enough to pose a problem for the estimation of elastic moduli. Evidence was found for negative Poisson's ratio behaviour in some orientations of the material in tension. Additionally, the through-thickness properties of the composite, including interlaminar shear strength, were shown to be positively related to bulk density. The in-plane properties were mostly unrelated to bulk density over the range of

  13. Investigation of Product Performance of Al-Metal Matrix Composites Brake Disc using Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Fatchurrohman, N.; Marini, C. D.; Suraya, S.; Iqbal, AKM Asif

    2016-02-01

    The increasing demand of fuel efficiency and light weight components in automobile sectors have led to the development of advanced material parts with improved performance. A specific class of MMCs which has gained a lot of attention due to its potential is aluminium metal matrix composites (Al-MMCs). Product performance investigation of Al- MMCs is presented in this article, where an Al-MMCs brake disc is analyzed using finite element analysis. The objective is to identify the potentiality of replacing the conventional iron brake disc with Al-MMCs brake disc. The simulation results suggested that the MMCs brake disc provided better thermal and mechanical performance as compared to the conventional cast iron brake disc. Although, the Al-MMCs brake disc dissipated higher maximum temperature compared to cast iron brake disc's maximum temperature. The Al-MMCs brake disc showed a well distributed temperature than the cast iron brake disc. The high temperature developed at the ring of the disc and heat was dissipated in circumferential direction. Moreover, better thermal dissipation and conduction at brake disc rotor surface played a major influence on the stress. As a comparison, the maximum stress and strain of Al-MMCs brake disc was lower than that induced on the cast iron brake disc.

  14. Antiskid braking system

    NASA Technical Reports Server (NTRS)

    Pazdera, J. S.

    1974-01-01

    Published report describes analytical development and simulation of braking system. System prevents wheels from skidding when brakes are applied, significantly reducing stopping distance. Report also presents computer simulation study on system as applied to aircraft.

  15. NASA evaluation of Type 2 chemical depositions. [effects of deicer deposition on aircraft tire friction performance

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Stubbs, Sandy M.; Howell, W. Edward; Webb, Granville L.

    1993-01-01

    Recent findings from NASA Langley tests to define effects of aircraft Type 2 chemical deicer depositions on aircraft tire friction performance are summarized. The Aircraft Landing Dynamics Facility (ALDF) is described together with the scope of the tire cornering and braking friction tests conducted up to 160 knots ground speed. Some lower speed 32 - 96 km/hr (20 - 60 mph) test run data obtained using an Instrumented Tire Test Vehicle (ITTV) to determine effects of tire bearing pressure and transverse grooving on cornering friction performance are also discussed. Recommendations are made concerning which parameters should be evaluated in future testing.

  16. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces. A slip-velocity-controlled, pressure-bias-modulated system

    NASA Technical Reports Server (NTRS)

    Stubbs, S. M.; Tanner, J. A.; Smith, E. G.

    1979-01-01

    The braking and cornering response of a slip velocity controlled, pressure bias modulated aircraft antiskid braking system is investigated. The investigation, conducted on dry and wet runway surfaces, utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC 9 series 10 airplane. The landing gear strut was replaced by a dynamometer. The parameters, which were varied, included the carriage speed, tire loading, yaw angle, tire tread condition, brake system operating pressure, and runway wetness conditions. The effects of each of these parameters on the behavior of the skid control system is presented. Comparisons between data obtained with the skid control system and data obtained from single cycle braking tests without antiskid protection are examined.

  17. TAKEOFF AND LANDING PERFORMANCE CAPABILITIES OF TRANSPORT CATEGORY AIRCRAFT

    NASA Technical Reports Server (NTRS)

    Foss, W. E.

    1994-01-01

    One of the most important considerations in the design of a commercial transport aircraft is the aircraft's performance during takeoff and landing operations. The aircraft must be designed to meet field length constraints in accordance with airworthiness standards specified in the Federal Aviation Regulations. In addition, the noise levels generated during these operations must be within acceptable limits. This computer program provides for the detailed analysis of the takeoff and landing performance capabilities of transport category aircraft. The program calculates aircraft performance in accordance with the airworthiness standards of the Federal Aviation Regulations. The aircraft and flight constraints are represented in sufficient detail to permit realistic sensitivity studies in terms of either configuration modifications or changes in operational procedures. This program provides for the detailed performance analysis of the takeoff and landing capabilities of specific aircraft designs and allows for sensitivity studies. The program is not designed to synthesize configurations or to generate aerodynamic, propulsion, or structural characteristics. This type of information must be generated externally to the program and then input as data. The program's representation of the aircraft data is extensive and includes realistic limits on engine and aircraft operational boundaries and maximum attainable lift coefficients. The takeoff and climbout flight-path is generated by a stepwise integration of the equation of motion. Special features include options for nonstandard-day operation, for balanced field length, for derated throttle to meet a given field length for off-loaded aircraft, and for throttle cutback during climbout for community noise alleviation. Advanced takeoff procedures for noise alleviation such as programmed throttle and control flaps may be investigated with the program. Approach profiles may incorporate advanced procedures such as two segment

  18. Effect of Carbon Nanotubes on Tribo-Performance of Brake Friction Materials

    NASA Astrophysics Data System (ADS)

    Singh, Tej; Patnaik, Amar; Satapathy, Bhabani K.

    2011-12-01

    Brake friction composites filled with multiwalled carbon nanotubes have been fabricated and evaluated for their tribo-performance. The tribological behavior of the frictional composites has been evaluated on a krauss testing machine as per the ECE regulations. The friction performance (μP), frictions fade (μF) and friction recovery (μR) gets enhanced with the addition of carbon nanotubes. The wear performance and brake pad thickness loss of the composites decreased with the increase in carbon nanotubes.

  19. Brake control system modification, augmentor Wing Jet STOL Research Airplane (AWJSRA)

    NASA Technical Reports Server (NTRS)

    Amberg, R. L.; Arline, J. A.; Jenny, R. W.

    1974-01-01

    The braking system for a short takeoff aircraft is discussed and the deficiencies are described. The installation of a Boeing 727 aircraft brake system was made to correct the deficiencies. Tests of the modified system were conducted using an analog computer/hardware simulator. Actual performance tests were conducted and the characteristics of the system were satisfactory.

  20. Performance Evaluation Method for Dissimilar Aircraft Designs

    NASA Technical Reports Server (NTRS)

    Walker, H. J.

    1979-01-01

    A rationale is presented for using the square of the wingspan rather than the wing reference area as a basis for nondimensional comparisons of the aerodynamic and performance characteristics of aircraft that differ substantially in planform and loading. Working relationships are developed and illustrated through application to several categories of aircraft covering a range of Mach numbers from 0.60 to 2.00. For each application, direct comparisons of drag polars, lift-to-drag ratios, and maneuverability are shown for both nondimensional systems. The inaccuracies that may arise in the determination of aerodynamic efficiency based on reference area are noted. Span loading is introduced independently in comparing the combined effects of loading and aerodynamic efficiency on overall performance. Performance comparisons are made for the NACA research aircraft, lifting bodies, century-series fighter aircraft, F-111A aircraft with conventional and supercritical wings, and a group of supersonic aircraft including the B-58 and XB-70 bomber aircraft. An idealized configuration is included in each category to serve as a standard for comparing overall efficiency.

  1. Performance of a fully mechanical parking brake system for passenger cars

    NASA Astrophysics Data System (ADS)

    Rozaini, A. H.; Ishak, M. R.; Abu Bakar, A. R.; Mohd Zain, M. Z.

    2013-12-01

    In order to ensure that a vehicle remains stationary when it is parked at a certain road slope, the driver has to apply sufficient pulling force on the handbrake lever. Otherwise, the vehicle will start to rollaway where the torque generated by the parking brake system is lower that the torque required by the vehicle to remain stationary. This poses a danger situation not only to the vehicle's occupants but also to the people surrounding it. Thus, this paper aims to investigate performance of a typical parking brake system used in passenger cars. A theoretical model of drum-type parking brake system is derived and later being validated by test data that measured from the parking brake test bench. A good agreement is achieved between calculated and test results. Results from the model show that the parking brake system used in this work can hold the vehicle stationary at 11 degree slope less than 200 N of the applied force and thus it meets the regulation requirement, and also the vehicle will not rollaway even though there are four adult passengers inside it.

  2. Brake performance of core-shell structured carbonyl iron/silica based magnetorheological suspension

    NASA Astrophysics Data System (ADS)

    Nguyen, Phuong-Bac; Do, Xuan-Phu; Jeon, Juncheol; Choi, Seung-Bok; Liu, Ying Dan; Choi, Hyoung Jin

    2014-10-01

    Chemically stable core-shell structured magnetic particles were synthesized by coating soft-magnetic carbonyl iron (CI) microspheres with silica through a sol-gel reaction, and applied as magnetorheological (MR) materials for a specially designed small-sized MR brake. The dynamic yield stress of the MR suspension containing the synthesized particles was also measured using a rotational rheometer under an applied magnetic field. The performance characteristics of the MR brake, including field dependent torque, hysteresis, time and torque tracking control responses were examined. The results showed that with the exception of the settling time, the other response times were faster than those of the pristine CI based MR fluid.

  3. Aircraft design optimization with multidisciplinary performance criteria

    NASA Technical Reports Server (NTRS)

    Morris, Stephen; Kroo, Ilan

    1989-01-01

    The method described here for aircraft design optimization with dynamic response considerations provides an inexpensive means of integrating dynamics into aircraft preliminary design. By defining a dynamic performance index that can be added to a conventional objective function, a designer can investigate the trade-off between performance and handling (as measured by the vehicle's unforced response). The procedure is formulated to permit the use of control system gains as design variables, but does not require full-state feedback. The examples discussed here show how such an approach can lead to significant improvements in the design as compared with the more common sequential design of system and control law.

  4. Effects of high-speed power training on muscle performance and braking speed in older adults.

    PubMed

    Sayers, Stephen P; Gibson, Kyle

    2012-01-01

    We examined whether high-speed power training (HSPT) improved muscle performance and braking speed using a driving simulator. 72 older adults (22 m, 50 f; age = 70.6 ± 7.3 yrs) were randomized to HSPT at 40% one-repetition maximum (1RM) (HSPT: n = 25; 3 sets of 12-14 repetitions), slow-speed strength training at 80%1RM (SSST: n = 25; 3 sets of 8-10 repetitions), or control (CON: n = 22; stretching) 3 times/week for 12 weeks. Leg press and knee extension peak power, peak power velocity, peak power force/torque, and braking speed were obtained at baseline and 12 weeks. HSPT increased peak power and peak power velocity across a range of external resistances (40-90% 1RM; P < 0.05) and improved braking speed (P < 0.05). Work was similar between groups, but perceived exertion was lower in HSPT (P < 0.05). Thus, the less strenuous HSPT exerted a broader training effect and improved braking speed compared to SSST.

  5. Overview of high performance aircraft propulsion research

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J.

    1992-01-01

    The overall scope of the NASA Lewis High Performance Aircraft Propulsion Research Program is presented. High performance fighter aircraft of interest include supersonic flights with such capabilities as short take off and vertical landing (STOVL) and/or high maneuverability. The NASA Lewis effort involving STOVL propulsion systems is focused primarily on component-level experimental and analytical research. The high-maneuverability portion of this effort, called the High Alpha Technology Program (HATP), is part of a cooperative program among NASA's Lewis, Langley, Ames, and Dryden facilities. The overall objective of the NASA Inlet Experiments portion of the HATP, which NASA Lewis leads, is to develop and enhance inlet technology that will ensure high performance and stability of the propulsion system during aircraft maneuvers at high angles of attack. To accomplish this objective, both wind-tunnel and flight experiments are used to obtain steady-state and dynamic data, and computational fluid dynamics (CFD) codes are used for analyses. This overview of the High Performance Aircraft Propulsion Research Program includes a sampling of the results obtained thus far and plans for the future.

  6. High performance forward swept wing aircraft

    NASA Technical Reports Server (NTRS)

    Koenig, David G. (Inventor); Aoyagi, Kiyoshi (Inventor); Dudley, Michael R. (Inventor); Schmidt, Susan B. (Inventor)

    1988-01-01

    A high performance aircraft capable of subsonic, transonic and supersonic speeds employs a forward swept wing planform and at least one first and second solution ejector located on the inboard section of the wing. A high degree of flow control on the inboard sections of the wing is achieved along with improved maneuverability and control of pitch, roll and yaw. Lift loss is delayed to higher angles of attack than in conventional aircraft. In one embodiment the ejectors may be advantageously positioned spanwise on the wing while the ductwork is kept to a minimum.

  7. Performance, emissions, and physical characteristics of a rotating combustion aircraft engine

    NASA Technical Reports Server (NTRS)

    Berkowitz, M.; Hermes, W. L.; Mount, R. E.; Myers, D.

    1976-01-01

    The RC2-75, a liquid cooled two chamber rotary combustion engine (Wankel type), designed for aircraft use, was tested and representative baseline (212 KW, 285 BHP) performance and emissions characteristics established. The testing included running fuel/air mixture control curves and varied ignition timing to permit selection of desirable and practical settings for running wide open throttle curves, propeller load curves, variable manifold pressure curves covering cruise conditions, and EPA cycle operating points. Performance and emissions data were recorded for all of the points run. In addition to the test data, information required to characterize the engine and evaluate its performance in aircraft use is provided over a range from one half to twice its present power. The exhaust emissions results are compared to the 1980 EPA requirements. Standard day take-off brake specific fuel consumption is 356 g/KW-HR (.585 lb/BHP-HR) for the configuration tested.

  8. Mechanical Mixer for Rudder/Braking Wedge

    NASA Technical Reports Server (NTRS)

    Grimm, D.

    1985-01-01

    Right and left rudder panels moved separately. Mechanical mixer enables panels of two-panel rudder to rotate in same direction for steering or in opposite directions for dynamic braking. Steering and braking inputs separate so any combination of steering and braking motions executed simultaneously. Developed for aerodynamic braking of Space Shuttle orbiter, steering/braking drive train and rudder arrangement used for similar purposes on aircraft, thereby reducing sizes of thrust reversers.

  9. The X-31 aircraft: Advances in aircraft agility and performance

    NASA Astrophysics Data System (ADS)

    Alcorn, C. W.; Croom, M. A.; Francis, M. S.; Ross, H.

    1996-08-01

    The X-31 enhanced fighter maneuverability (EFM) demonstrator has pioneered agile flight in the post-stall flight regime and explored integrated multi-axis thrust vectoring across a broad flight envelope. Its maneuvering achievements include sustained flight up to 70 degrees angle of attack, velocity vector rolls in deep post-stall conditions, and post-stall turns from high entry to exit speeds with ultra low turning/transitional conditions. The concept of post-stall maneuverability was extensively studied in simulations preceding initiation of the X-31 program. These simulations provided a baseline for tactical utility demonstrations and vehicle design requirements. Post-stall maneuverability was not achieved without encountering and mitigating the effects of highly unsteady, asymmetric, vortex-dominated flow-fields associated with post-stall flight. Anomalies in vehicle response to control inputs were observed at high angles of attack, as were differences between simulator and actual flight parameters due to a misrepresentation of the effects of these complex flowfields. Some preliminary force and moment data for the X-31 configuration during dynamic maneuvers are provided to highlight the complex nature of the flowfield. The X-31 aircraft's enabling capabilities, including multi-axis thrust vectoring and integrated flight/propulsion control also provided performance enhancements across the entire flight envelope. In what were known as ‘quasi-tailless’ experiments, conventional aerodynamic control surfaces were used to reduce or eliminate the stabilizing influence of the vertical stabilizer, while the vehicle's multi-axis thrust vectoring capability was used for restabilization. Properly exploited, these technologies can lead to the reduction or elimination of traditional aerodynamic control surfaces, which provides profound improvements in vehicle range, weight, payload, and low observability. This review focuses on some of the principal aerodynamic issues

  10. 30 CFR 57.14101 - Brakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... its typical load on the maximum grade it travels. (3) All braking systems installed on the equipment... the braking surface. (iii) Braking is to be performed using only those braking systems, including... mobile equipment shall be equipped with a service brake system capable of stopping and holding...

  11. 30 CFR 57.14101 - Brakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... its typical load on the maximum grade it travels. (3) All braking systems installed on the equipment... the braking surface. (iii) Braking is to be performed using only those braking systems, including... mobile equipment shall be equipped with a service brake system capable of stopping and holding...

  12. Thermal Performance of Aircraft Polyurethane Seat Cushions

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.

    1982-01-01

    Aircraft seat materials were evaluated in terms of their thermal performance. The materials were evaluated using (a) thermogravimetric analysis, (b) differential scanning calorimetry, (c) a modified NBS smoke chamber to determine the rate of mass loss and (d) the NASA T-3 apparatus to determine the thermal efficiency. In this paper, the modified NBS smoke chamber will be described in detail since it provided the most conclusive results. The NBS smoke chamber was modified to measure the weight loss of material when exposed to a radiant heat source over the range of 2.5 to 7.5 W/sq cm. This chamber has been utilized to evaluate the thermal performance of various heat blocking layers utilized to protect the polyurethane cushioning foam used in aircraft seats. Various kinds of heat blocking layers were evaluated by monitoring the weight loss of miniature seat cushions when exposed to the radiant heat. The effectiveness of aluminized heat blocking systems was demonstrated when compared to conventional heat blocking layers such as neoprene. All heat blocking systems showed good fire protection capabilities when compared to the state-of-the-art, i.e., wool-nylon over polyurethane foam.

  13. Thermal performance of aircraft polyurethane seat cushions

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.

    1982-01-01

    Measurements were conducted on 7.6 x 7.6 cm samples of polyurethane seat cushion material in a modified National Bureau of Standards smoke density chamber to simulate real life conditions for an onboard aircraft fire or post-crash fire. In this study, a non-flaming heat radiation condition was simulated. Two aluminized polymeric fabrics (Norfab 11HT-26-A and Preox 1100-4) and one neoprene type material in two thicknesses (Vonar 2 and 3) were tested as heat blocking layers to protect the urethane foam from rapid heat degradation. Thermogravimetric analysis and differential scanning calorimetry were performed to characterize thermally the materials tested. It was found that Vonar 2 or 3 provided approximately equal thermal protection to F.R. urethane as the aluminized fabrics, but at a significant weight penalty. The efficiency of the foams to absorb heat per unit mass loss when protected with the heat blocking layer decreases in the heating range of 2.5-5.0 W/sq cm, but remains unchanged or slightly increases in the range of 5.0-7.5 W/sq cm. The results show that at all heat flux ranges tested the usage of a heat blocking layer in aircraft seats significantly improves their thermal performance.

  14. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2015-01-01

    The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  15. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2016-01-01

    The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  16. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2015-01-01

    The purpose of this presentation is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  17. Aircraft Anomaly Detection Using Performance Models Trained on Fleet Data

    NASA Technical Reports Server (NTRS)

    Gorinevsky, Dimitry; Matthews, Bryan L.; Martin, Rodney

    2012-01-01

    This paper describes an application of data mining technology called Distributed Fleet Monitoring (DFM) to Flight Operational Quality Assurance (FOQA) data collected from a fleet of commercial aircraft. DFM transforms the data into aircraft performance models, flight-to-flight trends, and individual flight anomalies by fitting a multi-level regression model to the data. The model represents aircraft flight performance and takes into account fixed effects: flight-to-flight and vehicle-to-vehicle variability. The regression parameters include aerodynamic coefficients and other aircraft performance parameters that are usually identified by aircraft manufacturers in flight tests. Using DFM, the multi-terabyte FOQA data set with half-million flights was processed in a few hours. The anomalies found include wrong values of competed variables, (e.g., aircraft weight), sensor failures and baises, failures, biases, and trends in flight actuators. These anomalies were missed by the existing airline monitoring of FOQA data exceedances.

  18. The effects of control-display gain on performance of race car drivers in an isometric braking task.

    PubMed

    de Winter, J C F; de Groot, S

    2012-12-01

    To minimise lap times during car racing, it is important to build up brake forces rapidly and maintain precise control. We examined the effect of the amplification factor (gain) between brake pedal force and a visually represented output value on a driver's ability to track a target value. The test setup was a formula racing car cockpit fitted with an isometric brake pedal. Thirteen racing drivers performed tracking tasks with four control-display gains and two target functions: a step function (35 trials per gain) and a multisine function (15 trials per gain). The control-display gain had only minor effects on root mean-squared error between output value and target value, but it had large effects on build-up speed, overshoot, within-participants variability, and self-reported physical load. The results confirm the hypothesis that choosing an optimum gain involves balancing stability against physical effort.

  19. Aircraft

    DTIC Science & Technology

    2002-01-01

    Company, Washington, DC Boeing Commercial Aircraft Division, Seattle, WA and Long Beach, CA Boeing Military Aircraft and Missile Division, St. Louis, MO and... aircraft ; military fixed-wing aircraft ; rotorcraft (helicopters and tiltrotor aircraft ); and aircraft jet engines. Two companies dominate the commercial... aircraft business, Boeing and Airbus. Four companies dominate the military fixed-wing market, Boeing, Lockheed Martin, BAE Systems, and European

  20. New materials drive high-performance aircraft

    NASA Technical Reports Server (NTRS)

    Ruhmann, Douglas C.; Bates, William F., Jr.; Dexter, H. B.; June, Reid B.

    1992-01-01

    This report shows how advanced composite materials and new processing methods are enabling lighter, lower cost aircraft structures. High-temperature polymers research will focus on systems capable of 50,000 to 100,000 hours of operation in the 212-400 F temperature range. Prospective materials being evaluated include high-temperature epoxies, toughened bismaleimides, cyanates, thermoplastics, polyimides and other polymers.

  1. Gravity brake

    DOEpatents

    Lujan, Richard E.

    2001-01-01

    A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.

  2. Better Brakes

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Through continuing studies on high-temperature space materials useful for better brake linings, Bendix Corporation worked with Ames Research Center to develop a novel composite. This team worked to fabricate several combinations of composite materials and evaluated results. The one selected increases wear rates and lowers costs. It exhibits constant coefficient of friction at temperatures as high as 650 degrees Fahrenheit, a region where conventional brake linings fade markedly. Other suitable markets include brakes for trucks and industrial equipment such as overhead cranes and hoists. Afterwards brake linings could find successful application in passenger cars.

  3. Vehicle brake testing system

    SciTech Connect

    Stevens, Samuel S; Hodgson, Jeffrey W

    2002-11-19

    This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

  4. Subsonic aircraft: Evolution and the matching of size to performance

    NASA Technical Reports Server (NTRS)

    Loftin, L. K., Jr.

    1980-01-01

    Methods for estimating the approximate size, weight, and power of aircraft intended to meet specified performance requirements are presented for both jet-powered and propeller-driven aircraft. The methods are simple and require only the use of a pocket computer for rapid application to specific sizing problems. Application of the methods is illustrated by means of sizing studies of a series of jet-powered and propeller-driven aircraft with varying design constraints. Some aspects of the technical evolution of the airplane from 1918 to the present are also briefly discussed.

  5. Transient switching control strategy from regenerative braking to anti-lock braking with a semi-brake-by-wire system

    NASA Astrophysics Data System (ADS)

    Li, Liang; Li, Xujian; Wang, Xiangyu; Liu, Yahui; Song, Jian; Ran, Xu

    2016-02-01

    Regenerative braking is an important technology in improving fuel economy of an electric vehicle (EV). However, additional motor braking will change the dynamic characteristics of the vehicle, leading to braking instability, especially when the anti-lock braking system (ABS) is triggered. In this paper, a novel semi-brake-by-wire system, without the use of a pedal simulator and fail-safe device, is proposed. In order to compensate for the hysteretic characteristics of the designed brake system while ensure braking reliability and fuel economy when the ABS is triggered, a novel switching compensation control strategy using sliding mode control is brought forward. The proposed strategy converts the complex coupling braking process into independent control of hydraulic braking and regenerative braking, through which a balance between braking performance, braking reliability, braking safety and fuel economy is achieved. Simulation results show that the proposed strategy is effective and adaptable in different road conditions while the large wheel slip rate is triggered during a regenerative braking course. The research provides a new possibility of low-cost equipment and better control performance for the regenerative braking in the EV and the hybrid EV.

  6. Deployable Engine Air Brake

    NASA Technical Reports Server (NTRS)

    2014-01-01

    On approach, next-generation aircraft are likely to have airframe noise levels that are comparable to or in excess of engine noise. ATA Engineering, Inc. (ATA) is developing a novel quiet engine air brake (EAB), a device that generates "equivalent drag" within the engine through stream thrust reduction by creating a swirling outflow in the turbofan exhaust nozzle. Two Phase II projects were conducted to mature this technology: (1) a concept development program (CDP) and (2) a system development program (SDP).

  7. The effect of interior aircraft noise on pilot performance.

    PubMed

    Lindvall, Johan; Västfjall, Daniel

    2013-04-01

    This study examined the effect of the interior sounds of an aircraft cockpit on ratings of affect and expected performance decrement. While exposed to 12 interior aircraft sounds, of which half were modified to correspond to what is experienced with an active noise reduction (ANR) headset, 23 participants rated their affective reactions and how they believed their performance on various tasks would be affected. The results suggest that implementation of ANR-technique has a positive effect on ratings of expected performance. In addition, affective reactions to the noise are related to ratings of expected performance. The implications of these findings for both research and pilot performance are discussed.

  8. 49 CFR 232.305 - Single car air brake tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Single car air brake tests. 232.305 Section 232... car air brake tests. (a) Single car air brake tests shall be performed by a qualified person in... single car air brake test on a car when: (1) A car has its brakes cut-out or inoperative when...

  9. 49 CFR 232.305 - Single car air brake tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Single car air brake tests. 232.305 Section 232... car air brake tests. (a) Single car air brake tests shall be performed by a qualified person in... single car air brake test on a car when: (1) A car has its brakes cut-out or inoperative when...

  10. 49 CFR 232.305 - Single car air brake tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Single car air brake tests. 232.305 Section 232... car air brake tests. (a) Single car air brake tests shall be performed by a qualified person in... single car air brake test on a car when: (1) A car has its brakes cut-out or inoperative when...

  11. 49 CFR 232.305 - Single car air brake tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Single car air brake tests. 232.305 Section 232... car air brake tests. (a) Single car air brake tests shall be performed by a qualified person in... single car air brake test on a car when: (1) A car has its brakes cut-out or inoperative when...

  12. 49 CFR 232.305 - Single car air brake tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Single car air brake tests. 232.305 Section 232... car air brake tests. (a) Single car air brake tests shall be performed by a qualified person in... single car air brake test on a car when: (1) A car has its brakes cut-out or inoperative when...

  13. A performance measure for evaluating aircraft landing trajectories

    NASA Technical Reports Server (NTRS)

    Witt, R. M.; Cook, G.

    1978-01-01

    A general performance index is developed for evaluating aircraft landing trajectories. The primary term in the index is the effect of noise on people residing near the air terminal. Other terms included are passenger comfort, fuel consumed, and the time spent in the near-terminal area. Models are developed for aircraft engine noise, passenger comfort, the population distribution about a specific airport, and the aircraft flight behavior. While this performance index may be used in computing optimal trajectories, it is also useful for comparing nonoptimal trajectories which, for one reason or another, may be worthy of consideration. Some examples of such comparisons are included through simulations of landing. The aircraft considered is a Boeing 737.

  14. Digital control of high performance aircraft using adaptive estimation techniques

    NASA Technical Reports Server (NTRS)

    Van Landingham, H. F.; Moose, R. L.

    1977-01-01

    In this paper, an adaptive signal processing algorithm is joined with gain-scheduling for controlling the dynamics of high performance aircraft. A technique is presented for a reduced-order model (the longitudinal dynamics) of a high performance STOL aircraft. The actual controller views the nonlinear behavior of the aircraft as equivalent to a randomly switching sequence of linear models taken from a preliminary piecewise-linear fit of the system nonlinearities. The adaptive nature of the estimator is necessary to select the proper sequence of linear models along the flight trajectory. Nonlinear behavior is approximated by effective switching of the linear models at random times, with durations reflecting aircraft motion in response to pilot commands.

  15. Study of materials performance model for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Leary, K.; Skratt, J.

    1980-01-01

    A demonstration version of an aircraft interior materials computer data library was developed and contains information on selected materials applicable to aircraft seats and wall panels, including materials for the following: panel face sheets, bond plies, honeycomb, foam, decorative film systems, seat cushions, adhesives, cushion reinforcements, fire blocking layers, slipcovers, decorative fabrics and thermoplastic parts. The information obtained for each material pertains to the material's performance in a fire scenario, selected material properties and several measures of processability.

  16. Stability and control of maneuvering high-performance aircraft

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.; Berry, P. W.

    1977-01-01

    The stability and control of a high-performance aircraft was analyzed, and a design methodology for a departure prevention stability augmentation system (DPSAS) was developed. A general linear aircraft model was derived which includes maneuvering flight effects and trim calculation procedures for investigating highly dynamic trajectories. The stability and control analysis systematically explored the effects of flight condition and angular motion, as well as the stability of typical air combat trajectories. The effects of configuration variation also were examined.

  17. Braking system

    DOEpatents

    Norgren, D.U.

    1982-09-23

    A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling means causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location.

  18. Magnetostrictive Brake

    NASA Technical Reports Server (NTRS)

    Diftler, Myron A.; Hulse, Aaron

    2010-01-01

    A magnetostrictive brake has been designed as a more energy-efficient alternative to a magnetic fail-safe brake in a robot. (In the specific application, failsafe signifies that the brake is normally engaged; that is, power must be supplied to allow free rotation.) The magnetic failsafe brake must be supplied with about 8 W of electric power to initiate and maintain disengagement. In contrast, the magnetostrictive brake, which would have about the same dimensions and the same torque rating as those of the magnetic fail-safe brake, would demand only about 2 W of power for disengagement. The brake (see figure) would include a stationary base plate and a hub mounted on the base plate. Two solenoid assemblies would be mounted in diametrically opposed recesses in the hub. The cores of the solenoids would be made of the magnetostrictive alloy Terfenol-D or equivalent. The rotating part of the brake would be a ring-and spring- disk subassembly. By means of leaf springs not shown in the figure, this subassembly would be coupled with the shaft that the brake is meant to restrain. With no power supplied to the solenoids, a permanent magnet would pull axially on a stepped disk and on a shelf in the hub, causing the ring to be squeezed axially between the stepped disk and the hub. The friction associated with this axial squeeze would effect the braking action. Supplying electric power to the solenoids would cause the magnetostrictive cylinders to push radially inward against a set of wedges that would be in axial contact with the stepped disk. The wedges would convert the radial magnetostrictive strain to a multiplied axial displacement of the stepped disk. This axial displacement would be just large enough to lift the stepped disk, against the permanent magnetic force, out of contact with the ring. The ring would then be free to turn because it would no longer be squeezed axially between the stepped disk and the hub.

  19. Improving Student Naval Aviator Aircraft Carrier Landing Performance

    ERIC Educational Resources Information Center

    Sheppard, Thomas H.; Foster, T. Chris

    2008-01-01

    This article discusses the use of human performance technology (HPT) to improve qualification rates for learning to land onboard aircraft carriers. This project started as a request for a business case analysis and evolved into a full-fledged performance improvement project, from mission analysis through evaluation. The result was a significant…

  20. Optimizing aircraft performance with adaptive, integrated flight/propulsion control

    NASA Technical Reports Server (NTRS)

    Smith, R. H.; Chisholm, J. D.; Stewart, J. F.

    1991-01-01

    The Performance-Seeking Control (PSC) integrated flight/propulsion adaptive control algorithm presented was developed in order to optimize total aircraft performance during steady-state engine operation. The PSC multimode algorithm minimizes fuel consumption at cruise conditions, while maximizing excess thrust during aircraft accelerations, climbs, and dashes, and simultaneously extending engine service life through reduction of fan-driving turbine inlet temperature upon engagement of the extended-life mode. The engine models incorporated by the PSC are continually upgraded, using a Kalman filter to detect anomalous operations. The PSC algorithm will be flight-demonstrated by an F-15 at NASA-Dryden.

  1. Advances in Experiment Design for High Performance Aircraft

    NASA Technical Reports Server (NTRS)

    Morelli, Engene A.

    1998-01-01

    A general overview and summary of recent advances in experiment design for high performance aircraft is presented, along with results from flight tests. General theoretical background is included, with some discussion of various approaches to maneuver design. Flight test examples from the F-18 High Alpha Research Vehicle (HARV) are used to illustrate applications of the theory. Input forms are compared using Cramer-Rao bounds for the standard errors of estimated model parameters. Directions for future research in experiment design for high performance aircraft are identified.

  2. Night time aircraft noise exposure and children's cognitive performance.

    PubMed

    Stansfeld, Stephen; Hygge, Staffan; Clark, Charlotte; Alfred, Tamuno

    2010-01-01

    Chronic aircraft noise exposure in children is associated with impairment of reading and long-term memory. Most studies have not differentiated between day or nighttime noise exposure. It has been hypothesized that sleep disturbance might mediate the association of aircraft noise exposure and cognitive impairment in children. This study involves secondary analysis of data from the Munich Study and the UK Road Traffic and Aircraft Noise Exposure and Children's Cognition and Health (RANCH) Study sample to test this. In the Munich study, 330 children were assessed on cognitive measures in three measurement waves a year apart, before and after the switchover of airports. Self-reports of sleep quality were analyzed across airports, aircraft noise exposure and measurement wave to test whether changes in nighttime noise exposure had any effect on reported sleep quality, and whether this showed the same pattern as for changes in cognitive performance. For the UK sample of the RANCH study, night noise contour information was linked to the children's home and related to sleep disturbance and cognitive performance. In the Munich study, analysis of sleep quality questions showed no consistent interactions between airport, noise, and measurement wave, suggesting that poor sleep quality does not mediate the association between noise exposure and cognition. Daytime and nighttime aircraft noise exposure was highly correlated in the RANCH study. Although night noise exposure was significantly associated with impaired reading and recognition memory, once home night noise exposure was centered on daytime school noise exposure, night noise had no additional effect to daytime noise exposure. These analyses took advantage of secondary data available from two studies of aircraft noise and cognition. They were not initially designed to examine sleep disturbance and cognition, and thus, there are methodological limitations which make it less than ideal in giving definitive answers to these

  3. Adaptive Optimization of Aircraft Engine Performance Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Long, Theresa W.

    1995-01-01

    Preliminary results are presented on the development of an adaptive neural network based control algorithm to enhance aircraft engine performance. This work builds upon a previous National Aeronautics and Space Administration (NASA) effort known as Performance Seeking Control (PSC). PSC is an adaptive control algorithm which contains a model of the aircraft's propulsion system which is updated on-line to match the operation of the aircraft's actual propulsion system. Information from the on-line model is used to adapt the control system during flight to allow optimal operation of the aircraft's propulsion system (inlet, engine, and nozzle) to improve aircraft engine performance without compromising reliability or operability. Performance Seeking Control has been shown to yield reductions in fuel flow, increases in thrust, and reductions in engine fan turbine inlet temperature. The neural network based adaptive control, like PSC, will contain a model of the propulsion system which will be used to calculate optimal control commands on-line. Hopes are that it will be able to provide some additional benefits above and beyond those of PSC. The PSC algorithm is computationally intensive, it is valid only at near steady-state flight conditions, and it has no way to adapt or learn on-line. These issues are being addressed in the development of the optimal neural controller. Specialized neural network processing hardware is being developed to run the software, the algorithm will be valid at steady-state and transient conditions, and will take advantage of the on-line learning capability of neural networks. Future plans include testing the neural network software and hardware prototype against an aircraft engine simulation. In this paper, the proposed neural network software and hardware is described and preliminary neural network training results are presented.

  4. Wireless Local Area Network Performance Inside Aircraft Passenger Cabins

    NASA Technical Reports Server (NTRS)

    Whetten, Frank L.; Soroker, Andrew; Whetten, Dennis A.; Whetten, Frank L.; Beggs, John H.

    2005-01-01

    An examination of IEEE 802.11 wireless network performance within an aircraft fuselage is performed. This examination measured the propagated RF power along the length of the fuselage, and the associated network performance: the link speed, total throughput, and packet losses and errors. A total of four airplanes: one single-aisle and three twin-aisle airplanes were tested with 802.11a, 802.11b, and 802.11g networks.

  5. General aviation components. [performance and capabilities of general aviation aircraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An overview is presented of selected aviation vehicles. The capabilities and performance of these vehicles are first presented, followed by a discussion of the aerodynamics, structures and materials, propulsion systems, noise, and configurations of fixed-wing aircraft. Finally the discussion focuses on the history, status, and future of attempts to provide vehicles capable of short-field operations.

  6. Wind Information Uplink to Aircraft Performing Interval Management Operations

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat; Barmore, Bryan; Swieringa, Kurt

    2015-01-01

    The accuracy of the wind information used to generate trajectories for aircraft performing Interval Management (IM) operations is critical to the success of an IM operation. There are two main forms of uncertainty in the wind information used by the Flight Deck Interval Management (FIM) equipment. The first is the accuracy of the forecast modeling done by the weather provider. The second is that only a small subset of the forecast data can be uplinked to the aircraft for use by the FIM equipment, resulting in loss of additional information. This study focuses on what subset of forecast data, such as the number and location of the points where the wind is sampled should be made available to uplink to the aircraft.

  7. Coordinated crew performance in commercial aircraft operations

    NASA Technical Reports Server (NTRS)

    Murphy, M. R.

    1977-01-01

    A specific methodology is proposed for an improved system of coding and analyzing crew member interaction. The complexity and lack of precision of many crew and task variables suggest the usefulness of fuzzy linguistic techniques for modeling and computer simulation of the crew performance process. Other research methodologies and concepts that have promise for increasing the effectiveness of research on crew performance are identified.

  8. Performance and aerodynamic braking of a horizontal-axis wind turbine from small-scale wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Cao, H. V.; Wentz, W. H., Jr.

    1987-01-01

    Wind tunnel tests of three 20" diameter, zero twist, zero pitch wind turbine rotor models were conducted in a 7' x 10' wind tunnel to determine the performance of such rotors with NACA 23024 and NACA 64 sub 3-621 airfoil sections. Aerodynamic braking characteristics of a 38% span, 30% chord, vented aileron configuration were measured on the NACA 23024 rotor. Surface flow patterns were observed using fluorescent mini-tufts attached to the suction side of the rotor blades. Experimental results with and without ailerons are compared to predictions using airfoil section data and a momentum performance code. Results of the performance studies show that the 64 sub 3-621 rotor produces higher peak power than the 23024 rotor for a given rotor speed. Analytical studies, however, indicate that the 23024 should produce higher power. Transition strip experiments show that the 23024 rotor is much more sensitive to roughness than the 64 sub 3-621 rotor. These trends agree with analytical predictions. Results of the aileron test show that this aileron, when deflected, produces a braking torque at all tip speed ratios. In free wheeling coastdowns the rotor blade stopped, then rotated backward at a tip speed ratio of -0.6.

  9. Wind Information Uplink to Aircraft Performing Interval Management Operations

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Barmore, Bryan E.; Swieringa, Kurt A.

    2016-01-01

    provider. This is generally a global environmental prediction obtained from a weather model such as the Rapid Refresh (RAP) from the National Centers for Environmental Prediction (NCEP). The weather forecast data will have errors relative to the actual, or truth, winds that the aircraft will encounter. The second source of uncertainty is that only a small subset of the forecast data can be uplinked to the aircraft for use by the FIM equipment. This results in loss of additional information. The Federal Aviation Administration (FAA) and RTCA are currently developing standards for the communication of wind and atmospheric data to the aircraft for use in NextGen operations. This study examines the impact of various wind forecast sampling methods on IM performance metrics to inform the standards development.

  10. Experiences performing conceptual design optimization of transport aircraft

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. D.; Sliwa, S. M.

    1984-01-01

    Optimum Preliminary Design of Transports (OPDOT) is a computer program developed at NASA Langley Research Center for evaluating the impact of new technologies upon transport aircraft. For example, it provides the capability to look at configurations which have been resized to take advantage of active controls and provide and indication of economic sensitivity to its use. Although this tool returns a conceptual design configuration as its output, it does not have the accuracy, in absolute terms, to yield satisfactory point designs for immediate use by aircraft manufacturers. However, the relative accuracy of comparing OPDOT-generated configurations while varying technological assumptions has been demonstrated to be highly reliable. Hence, OPDOT is a useful tool for ascertaining the synergistic benefits of active controls, composite structures, improved engine efficiencies and other advanced technological developments. The approach used by OPDOT is a direct numerical optimization of an economic performance index. A set of independent design variables is iterated, given a set of design constants and data. The design variables include wing geometry, tail geometry, fuselage size, and engine size. This iteration continues until the optimum performance index is found which satisfies all the constraint functions. The analyst interacts with OPDOT by varying the input parameters to either the constraint functions or the design constants. Note that the optimization of aircraft geometry parameters is equivalent to finding the ideal aircraft size, but with more degrees of freedom than classical design procedures will allow.

  11. Evaluation of C/C-SiC Composites as Potential Candidate Materials for High Performance Braking Systems

    NASA Astrophysics Data System (ADS)

    Saptono Duryat, Rahmat

    2016-05-01

    This paper is aimed at evaluating the characteristic and performance of C/C-SiC composites as potential candidate materials for high performance braking system. A set of material specifications had been derived from specific engineering design requirements. Analysis was performed by formulating the function(s), constraint(s), and objective(s) of design and materials selection. Function of a friction material is chiefly to provide friction, absorb and dissipate energy. It is done while withstanding load and maintaining the structural adequacy and characteristic of tribology at high temperature. Objective of the material selection and design is to maximize the absorption and dissipation of energy and to minimize weight and cost. Candidate materials were evaluated based on their friction and wear, thermal capacity and conductivity, structural properties, manufacturing properties, and densities. The present paper provides a state of the art example on how materials - function - geometry - design, are all interrelated.

  12. Eddy current braking experiment using brake disc from aluminium series of A16061 and A17075

    NASA Astrophysics Data System (ADS)

    Baharom, M. Z.; Nuawi, M. Z.; Priyandoko, G.; Harris, S. M.

    2012-09-01

    The electromagnetic braking using eddy current was studied, focused on two series of aluminium as the brake disc which are A16061 and A17075. This paper presents the comparison for both series in a few varied parameters related to eddy current braking such as air-gap, number of turns and brake disc thickness. Optical tachometer has been used along with PULSE analyzer to capture the speed (rpm) and time (s). The findings shows that the smaller the air-gap, the larger of electromagnet turns and the thicker disc thickness is, will generate higher braking torque to stop the rotational motion of disc brake and give great performance for eddy current braking. Thos parameters that been evaluated also addressed a potential on expanding this knowledge to develop an electromagnetic braking system to replace the conventional braking system.

  13. Design of MR brake featuring tapered inner magnetic core

    NASA Astrophysics Data System (ADS)

    Sohn, Jung Woo; Oh, Jong-Soek; Choi, Seung-Bok

    2015-04-01

    In this work, a new type of MR brake featuring tapered inner magnetic core is proposed and its braking performance is numerically evaluated. In order to achieve high braking torque with restricted size and weight of MR brake system, tapered inner magnetic core is designed and expands the area that the magnetic flux is passing by MR fluid-filled gap. The mathematical braking torque model of the proposed MR brake is derived based on the field-dependent Bingham rheological model of MR fluid. Finite element analysis is carried out to identify electromagnetic characteristics of the conventional and the proposed MR brake configuration. To demonstrate the superiority of the proposed MR brake, the braking torque of the proposed MR brake is numerically evaluated and compared with that of conventional MR brake model.

  14. NASA Boeing 737 Aircraft Test Results from 1996 Joint Winter Runway Friction Measurement Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1996-01-01

    A description of the joint test program objectives and scope is given together with the performance capability of the NASA Langley B-737 instrumented aircraft. The B-737 test run matrix conducted during the first 8 months of this 5-year program is discussed with a description of the different runway conditions evaluated. Some preliminary test results are discussed concerning the Electronic Recording Decelerometer (ERD) readings and a comparison of B-737 aircraft braking performance for different winter runway conditions. Detailed aircraft parameter time history records, analysis of ground vehicle friction measurements and harmonization with aircraft braking performance, assessment of induced aircraft contaminant drag, and evaluation of the effects of other factors on aircraft/ground vehicle friction performance will be documented in a NASA Technical Report which is being prepared for publication next year.

  15. BRAKE DEVICE

    DOEpatents

    O'Donnell, T.J.

    1959-03-10

    A brake device is described for utilization in connection with a control rod. The device comprises a pair of parallelogram link mechanisms, a control rod moveable rectilinearly therebetween in opposite directions, and shoes resiliently supported by the mechanism for frictional engagement with the control rod.

  16. 49 CFR 570.59 - Service brake system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... Backing plates, brake spiders and caliper assemblies shall not be deformed or cracked. System parts shall... 49 Transportation 6 2011-10-01 2011-10-01 false Service brake system. 570.59 Section 570.59... 10,000 Pounds § 570.59 Service brake system. (a) Service brake performance. Compliance with any...

  17. 49 CFR 570.59 - Service brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... Backing plates, brake spiders and caliper assemblies shall not be deformed or cracked. System parts shall... 49 Transportation 6 2010-10-01 2010-10-01 false Service brake system. 570.59 Section 570.59... 10,000 Pounds § 570.59 Service brake system. (a) Service brake performance. Compliance with any...

  18. 49 CFR 570.59 - Service brake system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... Backing plates, brake spiders and caliper assemblies shall not be deformed or cracked. System parts shall... 49 Transportation 6 2012-10-01 2012-10-01 false Service brake system. 570.59 Section 570.59... 10,000 Pounds § 570.59 Service brake system. (a) Service brake performance. Compliance with any...

  19. 49 CFR 570.59 - Service brake system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... Backing plates, brake spiders and caliper assemblies shall not be deformed or cracked. System parts shall... 49 Transportation 6 2014-10-01 2014-10-01 false Service brake system. 570.59 Section 570.59... 10,000 Pounds § 570.59 Service brake system. (a) Service brake performance. Compliance with any...

  20. 49 CFR 570.59 - Service brake system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... Backing plates, brake spiders and caliper assemblies shall not be deformed or cracked. System parts shall... 49 Transportation 6 2013-10-01 2013-10-01 false Service brake system. 570.59 Section 570.59... 10,000 Pounds § 570.59 Service brake system. (a) Service brake performance. Compliance with any...

  1. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces - A velocity-rate-controlled, pressure-bias-modulated system

    NASA Technical Reports Server (NTRS)

    Stubbs, S. M.; Tanner, J. A.

    1976-01-01

    During maximum braking the average ratio of drag-force friction coefficient developed by the antiskid system to maximum drag-force friction coefficient available at the tire/runway interface was higher on dry surfaces than on wet surfaces. The gross stopping power generated by the brake system on the dry surface was more than twice that obtained on the wet surfaces. With maximum braking applied, the average ratio of side-force friction coefficient developed by the tire under antiskid control to maximum side-force friction available at the tire/runway interface of a free-rolling yawed tire was shown to decrease with increasing yaw angle. Braking reduced the side-force friction coefficient on a dry surface by 75 percent as the wheel slip ratio was increased to 0.3; on a flooded surface the coefficient dropped to near zero for the same slip ratio. Locked wheel skids were observed when the tire encountered a runway surface transition from dry to flooded, due in part to the response time required for the system to sense abrupt changes in the runway friction; however, the antiskid system quickly responded by reducing brake pressure and cycling normally during the remainder of the run on the flooded surface.

  2. Design and Analysis of a Novel Centrifugal Braking Device for a Mechanical Antilock Braking System.

    PubMed

    Yang, Cheng-Ping; Yang, Ming-Shien; Liu, Tyng

    2015-06-01

    A new concept for a mechanical antilock braking system (ABS) with a centrifugal braking device (CBD), termed a centrifugal ABS (C-ABS), is presented and developed in this paper. This new CBD functions as a brake in which the output braking torque adjusts itself depending on the speed of the output rotation. First, the structure and mechanical models of the entire braking system are introduced and established. Second, a numerical computer program for simulating the operation of the system is developed. The characteristics of the system can be easily identified and can be designed with better performance by using this program to studying the effects of different design parameters. Finally, the difference in the braking performance between the C-ABS and the braking system with or without a traditional ABS is discussed. The simulation results indicate that the C-ABS can prevent the wheel from locking even if excessive operating force is provided while still maintaining acceptable braking performance.

  3. Flexible body dynamic stability for high performance aircraft

    NASA Technical Reports Server (NTRS)

    Goforth, E. A.; Youssef, H. M.; Apelian, C. V.; Schroeder, S. C.

    1991-01-01

    Dynamic equations which include the effects of unsteady aerodynamic forces and a flexible body structure were developed for a free flying high performance fighter aircraft. The linear and angular deformations are assumed to be small in the body reference frame, allowing the equations to be linearized in the deformation variables. Equations for total body dynamics and flexible body dynamics are formulated using the hybrid coordinate method and integrated in a state space format. A detailed finite element model of a generic high performance fighter aircraft is used to generate the mass and stiffness matrices. Unsteady aerodynamics are represented by a rational function approximation of the doublet lattice matrices. The equations simplify for the case of constant angular rate of the body reference frame, allowing the effect of roll rate to be studied by computing the eigenvalues of the system. It is found that the rigid body modes of the aircraft are greatly affected by introducing a constant roll rate, while the effect on the flexible modes is minimal for this configuration.

  4. Switching LPV Control for High Performance Tactical Aircraft

    NASA Technical Reports Server (NTRS)

    Lu, Bei; Wu, Fen; Kim, SungWan

    2004-01-01

    This paper examines a switching Linear Parameter-Varying (LPV) control approach to determine if it is practical to use for flight control designs within a wide angle of attack region. The approach is based on multiple parameter-dependent Lyapunov functions. The full parameter space is partitioned into overlapping subspaces and a family of LPV controllers are designed, each suitable for a specific parameter subspace. The hysteresis switching logic is used to accomplish the transition among different parameter subspaces. The proposed switching LPV control scheme is applied to an F-16 aircraft model with different actuator dynamics in low and high angle of attack regions. The nonlinear simulation results show that the aircraft performs well when switching among different angle of attack regions.

  5. 49 CFR 238.15 - Movement of passenger equipment with power brake defects.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... passenger equipment containing a power brake defect at the time a Class I or IA brake test is performed... route after a Class I or IA brake test was performed), a commuter or passenger train that has in its consist passenger equipment containing a power brake defect at the time that a Class I or IA brake...

  6. Automotive Brake Systems.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This correspondence course, orginally developed for the Marine Corps, is designed to provide mechanics with an understanding of the basic operations of automotive brake systems on military vehicles. The course contains four study units covering hydraulic brakes, air brakes, power brakes, and auxiliary brake systems. A troubleshooting guide for…

  7. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  8. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  9. Analysis of Aircraft Control Performance using a Fuzzy Rule Base Representation of the Cooper-Harper Aircraft Handling Quality Rating

    NASA Technical Reports Server (NTRS)

    Tseng, Chris; Gupta, Pramod; Schumann, Johann

    2006-01-01

    The Cooper-Harper rating of Aircraft Handling Qualities has been adopted as a standard for measuring the performance of aircraft since it was introduced in 1966. Aircraft performance, ability to control the aircraft, and the degree of pilot compensation needed are three major key factors used in deciding the aircraft handling qualities in the Cooper- Harper rating. We formulate the Cooper-Harper rating scheme as a fuzzy rule-based system and use it to analyze the effectiveness of the aircraft controller. The automatic estimate of the system-level handling quality provides valuable up-to-date information for diagnostics and vehicle health management. Analyzing the performance of a controller requires a set of concise design requirements and performance criteria. Ir, the case of control systems fm a piloted aircraft, generally applicable quantitative design criteria are difficult to obtain. The reason for this is that the ultimate evaluation of a human-operated control system is necessarily subjective and, with aircraft, the pilot evaluates the aircraft in different ways depending on the type of the aircraft and the phase of flight. In most aerospace applications (e.g., for flight control systems), performance assessment is carried out in terms of handling qualities. Handling qualities may be defined as those dynamic and static properties of a vehicle that permit the pilot to fully exploit its performance in a variety of missions and roles. Traditionally, handling quality is measured using the Cooper-Harper rating and done subjectively by the human pilot. In this work, we have formulated the rules of the Cooper-Harper rating scheme as fuzzy rules with performance, control, and compensation as the antecedents, and pilot rating as the consequent. Appropriate direct measurements on the controller are related to the fuzzy Cooper-Harper rating system: a stability measurement like the rate of change of the cost function can be used as an indicator if the aircraft is under

  10. Thermal analysis and temperature characteristics of a braking resistor for high-speed trains for changes in the braking current

    NASA Astrophysics Data System (ADS)

    Lee, Dae-Dong; Kang, Hyun-Il; Shim, Jae-Myung

    2015-09-01

    Electric brake systems are used in high-speed trains to brake trains by converting the kinetic energy of a railway vehicle to electric energy. The electric brake system consists of a regenerative braking system and a dynamic braking system. When the electric energy generated during the dynamic braking process is changed to heat through the braking resistor, the braking resistor can overheat; thus, failures can occur to the motor block. In this paper, a braking resistor for a high-speed train was used to perform thermal analyses and tests, and the results were analyzed. The analyzed data were used to estimate the dependence of the brake currents and the temperature rises on speed changes up to 300 km/h, at which a test could not be performed.

  11. Aircraft radial-belted tire evaluation

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Stubbs, Sandy M.; Davis, Pamela A.

    1990-01-01

    An overview is given of the ongoing joint NASA/FAA/Industry Surface Traction And Radial Tire (START) Program being conducted at NASA Langley's Aircraft Landing Dynamics Facility (ALDF). The START Program involves tests using three different tire sizes to evaluate tire rolling resistance, braking, and cornering performance throughout the aircraft ground operational speed range for both dry and wet runway surfaces. Preliminary results from recent 40 x 14 size bias-ply, radial-belted, and H-type aircraft tire tests are discussed. The paper concludes with a summary of the current program status and planned ALDF test schedule.

  12. Modelling and validation of magnetorheological brake responses using parametric approach

    NASA Astrophysics Data System (ADS)

    Z, Zainordin A.; A, Abdullah M.; K, Hudha

    2013-12-01

    Magnetorheological brake (MR Brake) is one x-by-wire systems which performs better than conventional brake systems. MR brake consists of a rotating disc that is immersed with Magnetorheological Fluid (MR Fluid) in an enclosure of an electromagnetic coil. The applied magnetic field will increase the yield strength of the MR fluid where this fluid was used to decrease the speed of the rotating shaft. The purpose of this paper is to develop a mathematical model to represent MR brake with a test rig. The MR brake model is developed based on actual torque characteristic which is coupled with motion of a test rig. Next, the experimental are performed using MR brake test rig and obtained three output responses known as angular velocity response, torque response and load displacement response. Furthermore, the MR brake was subjected to various current. Finally, the simulation results of MR brake model are then verified with experimental results.

  13. Aircraft

    DTIC Science & Technology

    2003-01-01

    national power. But with the recent events such as the war with Iraq, the Severe Acute Respiratory Syndrome (SARS) outbreak, some major carriers... TITLE AND SUBTITLE 2003 Industry Studies: Aircraft 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER

  14. Numerical modelling methods for predicting antenna performance on aircraft

    NASA Astrophysics Data System (ADS)

    Kubina, S. J.

    1983-09-01

    Typical case studies that involve the application of Moment Methods to the prediction of the radiation characteristics of antennas in the HF frequency band are examined. The examples consist of the analysis of a shorted transmission line HF antenna on a CHSS-2/Sea King helicopter, wire antennas on the CP-140/Aurora patrol aircraft and a long dipole antenna on the Space Shuttle Orbiter spacecraft. In each of these cases the guidelines for antenna modeling by the use of the program called the Numerical Electromagnetic Code are progressively applied and results are compared to measurements made by the use of scale-model techniques. In complex examples of this type comparisons based on individual radiation patterns are insufficient for the validation of computer models. A volumetric method of radiation pattern comparison is used based on criteria that result from pattern integration and that are related to communication system performance. This is supplemented by hidden-surface displays of an entire set of conical radiation patterns resulting from measurements and computations. Antenna coupling considerations are discussed for the case of the dual HF installation on the CP-140/Aurora aircraft.

  15. Mechanically versus electro-magnetically braked cycle ergometer: performance and energy cost of the Wingate Anaerobic Test.

    PubMed

    Micklewright, D; Alkhatib, A; Beneke, R

    2006-04-01

    Performance and metabolic profiles of the Wingate Anaerobic Test (WAnT) were compared between a mechanically resisted (ME) and an electro-magnetically braked (EE) cycle ergometer. Fifteen healthy subjects (24.0+/-3.5 years, 180.5+/-6.1 cm, 75.4+/-11.9 kg) performed a WAnT on ME, and EE 3 days apart. Performance was measured as peak power (PP), minimum power (MP), mean power (AP), time to PP (TTPP), fatigue rate (FR), and maximum cadence (RPM(MAX)). Lactic (W (LAC)) and alactic (W (PCR)) anaerobic energy were calculated from net lactate appearance and the fast component of post-exercise oxygen uptake. Aerobic metabolism (W (AER)) was calculated from oxygen uptake during the WAnT. Total energy cost (W (TOT)) was calculated as the sum of W (LAC), W (PCR), and W (AER). There was no difference between ME and EE in PP (873+/-159 vs. 931+/-193 W) or AP (633+/-89 vs. 630+/-89 W). In the EE condition TTPP (2.3+/-0.7 vs. 4.3+/-0.7 s) was longer (P<0.001), MP (464+/-78 vs. 388+/-57 W) was lower (P<0.001), FR (15.2+/-5.2 vs. 20.5+/-6.8%) was higher (P<0.005), and RPM(MAX) (168+/-18 vs. 128+/-15 rpm) was slower (P<0.001). There was no difference in W (TOT) (1,331+/-182 vs. 1,373+/-120 J kg(-1)), W (AER) (292+/-76 vs. 309+/-72 J kg(-1)), W (PCR) (495+/-153 vs. 515+/-111 J kg(-1)) or W (LAC) (545+/-132 vs. 549+/-141 J kg(-1)) between ME and EE devices. The EE produces distinctly different performance measures but valid metabolic WAnT results that may be used to evaluate anaerobic fitness.

  16. Optimal design of a novel configuration of MR brake with coils placed on the side housings

    NASA Astrophysics Data System (ADS)

    Nguyen, Quoc Hung; Nguyen, Ngoc Diep; Choi, Seung-Bok

    2014-03-01

    It is well known that in design of traditional magneto-rheological brake (MRB), coils are placed on the cylindrical housing of the brake. In this study, a new configuration of MR brake with coils placed on the side housings of the brake is proposed and analyzed. After briefly explaining the operating principle of the proposed configuration, the braking torque of the MR brake is analyze based on Bingham-plastic rheological model of MR fluid. The optimization of the proposed and conventional MR brakes is then performed considering maximum braking torque and mass of the brake. Based on the optimal results, a comparison between the proposed MR brakes and the conventional ones is undertaken. In addition, experimental test of the MR brakes is conducted and the results are presented in order to validate the performance characteristics of the proposed MR brake.

  17. Ski jump takeoff performance predictions for a mixed-flow, remote-lift STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Birckelbaw, Lourdes G.

    1992-01-01

    A ski jump model was developed to predict ski jump takeoff performance for a short takeoff and vertical landing (STOVL) aircraft. The objective was to verify the model with results from a piloted simulation of a mixed flow, remote lift STOVL aircraft. The prediction model is discussed. The predicted results are compared with the piloted simulation results. The ski jump model can be utilized for basic research of other thrust vectoring STOVL aircraft performing a ski jump takeoff.

  18. Performance of Several Combustion Chambers Designed for Aircraft Oil Engines

    NASA Technical Reports Server (NTRS)

    Joachim, William F; Kemper, Carlton

    1928-01-01

    Several investigations have been made on single-cylinder test engines to determine the performance characteristics of four types of combustion chambers designed for aircraft oil engines. Two of the combustion chambers studied were bulb-type precombustion chambers, the connecting orifice of one having been designed to produce high turbulence by tangential air flow in both the precombustion chamber and the cylinder. The other two were integral combustion chambers, one being dome-shaped and the other pent-roof shaped. The injection systems used included cam and eccentric driven fuel pumps, and diaphragm and spring-loaded fuel-injection valves. A diaphragm type maximum cylinder pressure indicator was used in part of these investigations with which the cylinder pressures were controlled to definite valves. The performance of the engines when equipped with each of the combustion chambers is discussed. The best performance for the tests reported was obtained with a bulb-type combustion chamber designed to give a high degree of turbulence within the bulb and cylinder. (author)

  19. The sealed lead-acid battery: performance and present aircraft applications

    NASA Astrophysics Data System (ADS)

    Timmons, John; Kurian, Raju; Goodman, Alan; Johnson, William R.

    The United States Navy has flown valve-regulated lead-acid batteries (VRLA) for approximately 22 years. The first VRLA aircraft batteries were of a cylindrical cell design and these evolved to a prismatic design to save weight, volume, and to increase rate capability. This paper discusses the evolution of the VRLA aircraft battery designs, present VRLA battery performance, and battery size availability along with their aircraft applications (both military and commercial). The paper provides some of the reliability data from present applications. Finally, the paper discusses what future evolution of the VRLA technology is required to improve performance and to remain the technology of choice over other sealed aircraft battery designs.

  20. Performance and safety aspects of the XV-15 tilt rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Wernicke, K. G.

    1977-01-01

    Aircraft performance is presented illustrating the flexibility and capability of the XV-15 to conduct its planned proof-of-concept flight research in the areas of dynamics, stability and control, and aerodynamics. Additionally, the aircraft will demonstrate mission-type performance typical of future operational aircraft. The aircraft design is described and discussed with emphasis on the safety and fail-operate features of the aircraft and its systems. Two or more levels of redundancy are provided in the dc and ac electrical systems, hydraulics, conversion, flaps, landing gear extension, SCAS, and force-feel. RPM is maintained by a hydro-electrical blade pitch governor that consists of a primary and standby governor with a cockpit wheel control for manual backup. The two engines are interconnected for operation on a single engine. In the event of total loss of power, the aircraft can enter autorotation starting from the airplane as well as the helicopter mode of flight.

  1. 26 x 6.6 radial-belted aircraft tire performance

    NASA Technical Reports Server (NTRS)

    Davis, Pamela A.; Martinson, Veloria J.; Yager, Thomas J.; Stubbs, Sandy M.

    1991-01-01

    Preliminary results from testing of 26 x 6.6 radial-belted and bias-ply aircraft tires at NASA Langley's Aircraft Landing Dynamics Facility (ALDF) are reviewed. The 26 x 6.6 tire size evaluation includes cornering performance tests throughout the aircraft ground operational speed range for both dry and wet runway surfaces. Static test results to define 26 x 6.6 tire vertical stiffness properties are also presented and discussed.

  2. 14 CFR 25.735 - Brakes and braking systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Brakes and braking systems. 25.735 Section... braking systems. (a) Approval. Each assembly consisting of a wheel(s) and brake(s) must be approved. (b... an automatic braking system is installed, means are provided to: (i) Arm and disarm the system,...

  3. 14 CFR 25.735 - Brakes and braking systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Brakes and braking systems. 25.735 Section... braking systems. (a) Approval. Each assembly consisting of a wheel(s) and brake(s) must be approved. (b... an automatic braking system is installed, means are provided to: (i) Arm and disarm the system,...

  4. 14 CFR 25.735 - Brakes and braking systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Brakes and braking systems. 25.735 Section... braking systems. (a) Approval. Each assembly consisting of a wheel(s) and brake(s) must be approved. (b... an automatic braking system is installed, means are provided to: (i) Arm and disarm the system,...

  5. 14 CFR 25.735 - Brakes and braking systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Brakes and braking systems. 25.735 Section... braking systems. (a) Approval. Each assembly consisting of a wheel(s) and brake(s) must be approved. (b... an automatic braking system is installed, means are provided to: (i) Arm and disarm the system,...

  6. 14 CFR 25.735 - Brakes and braking systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Brakes and braking systems. 25.735 Section... braking systems. (a) Approval. Each assembly consisting of a wheel(s) and brake(s) must be approved. (b... an automatic braking system is installed, means are provided to: (i) Arm and disarm the system,...

  7. Motion Perception and Driving: Predicting Performance Through Testing and Shortening Braking Reaction Times Through Training

    DTIC Science & Technology

    2013-12-01

    to deficits in a variety of conditions for which standard VA is normal. These include amblyopia,29 early enucleation,30 multiple sclerosis,31 and...Factors. 1991;33:507–519. 11. Sanderson FH, Whiting HTA . Dynamic visual-acuity – possible factor in catching performance. J Motor Behav. 1978;10:7–14. 12...2489. 30. Steeves JKE, Gonzalez EG, Gallie BL, Steinbach MJ. Early unilateral enucleation disrupts motion processing. Vision Res. 2002;42:143–150. 31

  8. Current Research in Aircraft Tire Design and Performance

    NASA Technical Reports Server (NTRS)

    Tanner, J. A.; Mccarthy, J. L.; Clark, S. K.

    1981-01-01

    A review of the tire research programs which address the various needs identified by landing gear designers and airplane users is presented. The experimental programs are designed to increase tire tread lifetimes, relate static and dynamic tire properties, establish the tire hydroplaning spin up speed, study gear response to tire failures, and define tire temperature profiles during taxi, braking, and cornering operations. The analytical programs are aimed at providing insights into the mechanisms of heat generation in rolling tires and developing the tools necessary to streamline the tire design process and to aid in the analysis of landing gear problems.

  9. 49 CFR 238.319 - Running brake test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Running brake test. 238.319 Section 238.319... Requirements for Tier I Passenger Equipment § 238.319 Running brake test. (a) As soon as conditions safely permit, a running brake test shall be performed on each passenger train after the train has received,...

  10. 49 CFR 238.319 - Running brake test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Running brake test. 238.319 Section 238.319... Requirements for Tier I Passenger Equipment § 238.319 Running brake test. (a) As soon as conditions safely permit, a running brake test shall be performed on each passenger train after the train has received,...

  11. 49 CFR 238.319 - Running brake test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Running brake test. 238.319 Section 238.319... Requirements for Tier I Passenger Equipment § 238.319 Running brake test. (a) As soon as conditions safely permit, a running brake test shall be performed on each passenger train after the train has received,...

  12. 49 CFR 238.319 - Running brake test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Running brake test. 238.319 Section 238.319... Requirements for Tier I Passenger Equipment § 238.319 Running brake test. (a) As soon as conditions safely permit, a running brake test shall be performed on each passenger train after the train has received,...

  13. 49 CFR 238.319 - Running brake test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Running brake test. 238.319 Section 238.319... Requirements for Tier I Passenger Equipment § 238.319 Running brake test. (a) As soon as conditions safely permit, a running brake test shall be performed on each passenger train after the train has received,...

  14. Quest for Performance: the Evolution of Modern Aircraft

    NASA Technical Reports Server (NTRS)

    Loftin, Lawrence K., Jr.

    1985-01-01

    The technical evolution of the subsonic airplane is traced from a curiosity at the beginning of World War I to the highly useful machine of today. Included are descriptions of significant aircraft which incorporated important technical innovations and served to shape the future course of aeronautical development, as well as aircraft which represented the state-of-art in a particular time frame or were much used or liked. The discussion is related primarily to aircraft configuration evolution and associated aerodynamic characteristics and, to a lesser extent, to developments in aircraft construction and propulsion. The material is presented in a manner designed to appeal to the nontechnical reader who is interested in the evolution of the airplane, as well as to students of aeronautical engineering and others with an aeronautical background.

  15. Human Performance Considerations for Remotely Piloted Aircraft Systems (RPAS)

    NASA Technical Reports Server (NTRS)

    Shively, R. Jay; Hobbs, Alan; Lyall, Beth; Rorie, Conrad

    2015-01-01

    Successful integration of Remotely Piloted Aircraft Systems (RPAS) into civil airspace will not only require solutions to technical challenges, but will also require that the design and operation of RPAS take into account human limitations and capabilities. Human factors can affect overall system performance whenever the system relies on people to interact with another element of the system. Four types of broad interactions can be described. These are (1) interactions between people and hardware, such as controls and displays; (2) human use of procedures and documentation; (3) impact of the task environment, including lighting, noise and monotony; and lastly, (4) interactions between operational personnel, including communication and coordination. In addition to the human factors that have been identified for conventional aviation, RPAS operations introduce a set of unique human challenges. The purpose of document is to raise human factors issues for consideration by workgroups of the ICAO RPAS panel as they work to develop guidance material and additions to ICAO annexes. It is anticipated that the content of this document will be revised and updated as the work of the panel progresses.

  16. Tailless aircraft performance improvements with relaxed static stability

    NASA Technical Reports Server (NTRS)

    Ashkenas, Irving L.; Klyde, David H.

    1989-01-01

    The purpose is to determine the tailless aircraft performance improvements gained from relaxed static stability, to quantify this potential in terms of range-payload improvements, and to identify other possible operational and handling benefits or problems. Two configurations were chosen for the study: a modern high aspect ratio, short-chord wing proposed as a high-altitude long endurance (HALE) remotely piloted vehicle; a wider, lower aspect ratio, high volume wing suitable for internal stowage of all fuel and payload required for a manned long-range reconnaissance mission. Flying at best cruise altitude, both unstable configurations were found to have a 14 percent improvement in range and a 7 to 9 percent improvement in maximum endurance compared to the stable configurations. The unstable manned configuration also shows a 15 percent improvement in the 50 ft takeoff obstacle distance and an improved height response to elevator control. However, it is generally more deficient in control power due to its larger adverse aileron yaw and its higher takeoff and landing lift coefficient C(sub L), both due to the downward trimmed (vs. upward trimmed for stable configurations) trailing edge surfaces.

  17. Practice and Incentive Effects on Learner Performance: Aircraft Instrument Comprehension Task.

    ERIC Educational Resources Information Center

    Tenpas, Barbara G.; Higgins, Norman C.

    To study the effects of practice and incentive on learner performance on the aircraft instrument comprehension task, 48 third-year Air Force cadets were chosen as subjects. The subjects were expected to be able to identify which one of four pictures of aircraft in flight most nearly corresponded to the position indicated on a panel of attitude and…

  18. Pulsed Holographic Nondestructive Testing On Aircraft

    NASA Astrophysics Data System (ADS)

    Fagot, Hubert; Smigielski, Paul; Albe, Felix; Arnaud, Jean-Louis

    1983-06-01

    An holographic camera composed of two ruby lasers was built at ISL. It provides double exposure holograms with an adjustable time interval ranging from few ns to infinity. Various aircraft structures were first tested at ISL in laboratory conditions: honeycomb panels, wings ... The industrial tests on a military aircraft in maintenance checking were performed in a hangar of the SNIAS at Saint-Nazaire: wings, trap-door of the rear landing gear, air-brake... Electromechanical shocks were used to make the structure vibrate and to allow a fast trigger of the lasers. This avoids disturbance due to ambiant noises and vibrations.

  19. Obstacle Detection Algorithms for Aircraft Navigation: Performance Characterization of Obstacle Detection Algorithms for Aircraft Navigation

    NASA Technical Reports Server (NTRS)

    Kasturi, Rangachar; Camps, Octavia; Coraor, Lee

    2000-01-01

    The research reported here is a part of NASA's Synthetic Vision System (SVS) project for the development of a High Speed Civil Transport Aircraft (HSCT). One of the components of the SVS is a module for detection of potential obstacles in the aircraft's flight path by analyzing the images captured by an on-board camera in real-time. Design of such a module includes the selection and characterization of robust, reliable, and fast techniques and their implementation for execution in real-time. This report describes the results of our research in realizing such a design. It is organized into three parts. Part I. Data modeling and camera characterization; Part II. Algorithms for detecting airborne obstacles; and Part III. Real time implementation of obstacle detection algorithms on the Datacube MaxPCI architecture. A list of publications resulting from this grant as well as a list of relevant publications resulting from prior NASA grants on this topic are presented.

  20. Supersonic through-flow fan engine and aircraft mission performance

    NASA Technical Reports Server (NTRS)

    Franciscus, Leo C.; Maldonado, Jaime J.

    1989-01-01

    A study was made to evaluate potential improvement to a commercial supersonic transport by powering it with supersonic through-flow fan turbofan engines. A Mach 3.2 mission was considered. The three supersonic fan engines considered were designed to operate at bypass ratios of 0.25, 0.5, and 0.75 at supersonic cruise. For comparison a turbine bypass turbojet was included in the study. The engines were evaluated on the basis of aircraft takeoff gross weight with a payload of 250 passengers for a fixed range of 5000 N.MI. The installed specific fuel consumption of the supersonic fan engines was 7 to 8 percent lower than that of the turbine bypass engine. The aircraft powered by the supersonic fan engines had takeoff gross weights 9 to 13 percent lower than aircraft powered by turbine bypass engines.

  1. Performance Characterization of Obstacle Detection Algorithms for Aircraft Navigation

    NASA Technical Reports Server (NTRS)

    Kasturi, Rangachar; Camps, Octavia; Coraor, Lee; Gandhi, Tarak; Hartman, Kerry; Yang, Mau-Tsuen

    2000-01-01

    The research reported here is a part of NASA's Synthetic Vision System (SVS) project for the development of a High Speed Civil Transport Aircraft (HSCT). One of the components of the SVS is a module for detection of potential obstacles in the aircraft's flight path by analyzing the images captured by an on-board camera in real-time. Design of such a module includes the selection and characterization of robust, reliable, and fast techniques and their implementation for execution in real-time. This report describes the results of our research in realizing such a design.

  2. 76 FR 9717 - Parts and Accessories Necessary for Safe Operation; Saddle-Mount Braking Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ..., however, specify performance requirements for the emergency brakes, after the service braking system has... antilock braking systems (ABS) on the lead unit. Some of the combinations tested exceeded 75 feet in length... & Associates, Inc., Vehicle Systems Consultants (August 1996). ``Braking and Offtracking Tests on...

  3. 76 FR 56318 - Parts and Accessories Necessary for Safe Operation; Saddle-Mount Braking Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    .../pdf/E8-785.pdf . II. Abbreviations ABS antilock braking systems. ACC Automobile Carriers Conference... performance requirements for the emergency brakes, which deploy after the service braking system has failed... for Safe Operation; Saddle-Mount Braking Requirements AGENCY: Federal Motor Carrier...

  4. Wing Rock Prediction Method for a High Performance Fighter Aircraft

    DTIC Science & Technology

    1992-05-01

    are statically stable at lower angles-of-attack. Therefore, it is possible to study basic stable motions of these aircraft without an added stabilizing ... control system. Third, extensive and well validated F-15 and F-4 aerodynamic databases were available. Finally, as part of the AFIT/TPS joint program

  5. Structure Topology Optimization of Brake Pad in Large- megawatt Wind Turbine Brake Considering Thermal- structural Coupling

    NASA Astrophysics Data System (ADS)

    Zhang, S. F.; Yin, J.; Liu, Y.; Sha, Z. H.; Ma, F. J.

    2016-11-01

    There always exists severe non-uniform wear of brake pad in large-megawatt wind turbine brake during the braking process, which has the brake pad worn out in advance and even threats the safety production of wind turbine. The root cause of this phenomenon is the non-uniform deformation caused by thermal-structural coupling effect between brake pad and disc while braking under the conditions of both high speed and heavy load. For this problem, mathematical model of thermal-structural coupling analysis is built. Based on the topology optimization method of Solid Isotropic Microstructures with Penalization, SIMP, structure topology optimization of brake pad is developed considering the deformation caused by thermal-structural coupling effect. The objective function is the minimum flexibility, and the structure topology optimization model of brake pad is established after indirect thermal- structural coupling analysis. Compared with the optimization result considering non-thermal- structural coupling, the conspicuous influence of thermal effect on brake pad wear and deformation is proven as well as the rationality of taking thermal-structural coupling effect as optimization condition. Reconstructed model is built according to the result, meanwhile analysis for verification is carried out with the same working condition. This study provides theoretical foundation for the design of high-speed and heavy-load brake pad. The new structure may provide design reference for improving the stress condition between brake pad and disc, enhancing the use ratio of friction material and increasing the working performance of large-megawatt wind turbine brake.

  6. EGADS: A microcomputer program for estimating the aerodynamic performance of general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Melton, John E.

    1994-01-01

    EGADS is a comprehensive preliminary design tool for estimating the performance of light, single-engine general aviation aircraft. The software runs on the Apple Macintosh series of personal computers and assists amateur designers and aeronautical engineering students in performing the many repetitive calculations required in the aircraft design process. The program makes full use of the mouse and standard Macintosh interface techniques to simplify the input of various design parameters. Extensive graphics, plotting, and text output capabilities are also included.

  7. First Assessments of Predicted ICESat-2 Performance Using Aircraft Data

    NASA Technical Reports Server (NTRS)

    Neumann, Thomas; Markus, Thorsten; Cook, William; Hancock, David; Brenner, Anita; Kelly, Brunt; DeMarco, Eugenia; Reed, Daniel; Walsh, Kaitlin

    2012-01-01

    The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) is a next-generation laser altimeter designed to continue key observations of ice sheet elevation change, sea ice freeboard, vegetation canopy height, earth surface elevation, and sea surface height. Scheduled for launch in mid-2016, ICESat-2 will use a high repetition rate (10 kHz), small footprint (10 m nominal ground diameter) laser, and a single-photon-sensitive detection strategy (photon counting) to measure precise range to the earth's surface. Using green light (532 nm), the six beams of ICESat-2 will provide improved spatial coverage compared with the single beam of ICESat, while the differences in transmit energy among the beams provide a large dynamic range. The six beams are arranged into three pairs of beams which allow slopes to measured on an orbit-by-orbit basis. In order to evaluate models of predicted ICESat-2 performance and provide ICESat-2-like data for algorithm development, an airborne ICESat-2 simulator was developed and first flown in 2010. This simulator, the Multiple Altimeter Beam Experimental Lidar (MABEL) was most recently deployed to Iceland in April 2012 and collected approx 85 hours of science data over land ice, sea ice, and calibration targets. MABEL uses a similar photon-counting measurement strategy to what will be used on ICESat-2. MABEL collects data in 16 green channels and an additional 8 channels in the infrared aligned across the direction of flight. By using NASA's ER-2 aircraft flying at 20km altitude, MABEL flies as close to space as is practical, and collects data through approx 95% of the atmosphere. We present background on the MABEL instrument, and data from the April 2012 deployment to Iceland. Among the 13 MABEL flights, we collected data over the Greenland ice sheet interior and outlet glaciers in the southwest and western Greenland, sea ice data over the Nares Strait and Greenland Sea, and a number of small glaciers and ice caps in Iceland and Svalbard

  8. Aircraft landing gear systems

    NASA Technical Reports Server (NTRS)

    Tanner, John A. (Editor)

    1990-01-01

    Topics presented include the laboratory simulation of landing gear pitch-plane dynamics, a summary of recent aircraft/ground vehicle friction measurement tests, some recent aircraft tire thermal studies, and an evaluation of critical speeds in high-speed aircraft. Also presented are a review of NASA antiskid braking research, titanium matrix composite landing gear development, the current methods and perspective of aircraft flotation analysis, the flow rate and trajectory of water spray produced by an aircraft tire, and spin-up studies of the Space Shuttle Orbiter main gear tire.

  9. Brake Fundamentals. Automotive Articulation Project.

    ERIC Educational Resources Information Center

    Cunningham, Larry; And Others

    Designed for secondary and postsecondary auto mechanics programs, this curriculum guide contains learning exercises in seven areas: (1) brake fundamentals; (2) brake lines, fluid, and hoses; (3) drum brakes; (4) disc brake system and service; (5) master cylinder, power boost, and control valves; (6) parking brakes; and (7) trouble shooting. Each…

  10. Robust Damage-Mitigating Control of Aircraft for High Performance and Structural Durability

    NASA Technical Reports Server (NTRS)

    Caplin, Jeffrey; Ray, Asok; Joshi, Suresh M.

    1999-01-01

    This paper presents the concept and a design methodology for robust damage-mitigating control (DMC) of aircraft. The goal of DMC is to simultaneously achieve high performance and structural durability. The controller design procedure involves consideration of damage at critical points of the structure, as well as the performance requirements of the aircraft. An aeroelastic model of the wings has been formulated and is incorporated into a nonlinear rigid-body model of aircraft flight-dynamics. Robust damage-mitigating controllers are then designed using the H(infinity)-based structured singular value (mu) synthesis method based on a linearized model of the aircraft. In addition to penalizing the error between the ideal performance and the actual performance of the aircraft, frequency-dependent weights are placed on the strain amplitude at the root of each wing. Using each controller in turn, the control system is put through an identical sequence of maneuvers, and the resulting (varying amplitude cyclic) stress profiles are analyzed using a fatigue crack growth model that incorporates the effects of stress overload. Comparisons are made to determine the impact of different weights on the resulting fatigue crack damage in the wings. The results of simulation experiments show significant savings in fatigue life of the wings while retaining the dynamic performance of the aircraft.

  11. Remotely Piloted Aircraft (RPA) Performing the Air Refueling Mission

    DTIC Science & Technology

    2012-06-01

    designed as a test of the feasibility of putting fuel on ships in such a way that aircraft could grab it and refuel in-flight on transatlantic flights. On...AR technology has evolved little in the last 50 years; the AF still uses the same basic refueling systems designed for SAC over half a century ago...to say that an additional advantage is the time compression from design , flight testing and operational delivery since the basic airframe has already

  12. Aircraft design for mission performance using nonlinear multiobjective optimization methods

    NASA Technical Reports Server (NTRS)

    Dovi, Augustine R.; Wrenn, Gregory A.

    1990-01-01

    A new technique which converts a constrained optimization problem to an unconstrained one where conflicting figures of merit may be simultaneously considered was combined with a complex mission analysis system. The method is compared with existing single and multiobjective optimization methods. A primary benefit from this new method for multiobjective optimization is the elimination of separate optimizations for each objective, which is required by some optimization methods. A typical wide body transport aircraft is used for the comparative studies.

  13. Reel safety brake

    NASA Technical Reports Server (NTRS)

    Carle, C. E. (Inventor)

    1976-01-01

    A braking apparatus is described for a tape transport device having two stacked coaxial reels and feelers mounted in proximity to the reels for sensing the tape being wound on each reel. A device is mounted in proximity to adjacent central hubs of the reels to a simultaneously, frictionally engage both hubs and brake both reels. A mechanical actuator is coupled to both feelers and to the brake device. The brake means comprises a pair of rubber shoulders that extend in opposite directions relative to a common axis, and turns about the axis in response to either of the feelers.

  14. Review of NASA antiskid braking research

    NASA Technical Reports Server (NTRS)

    Tanner, J. A.

    1982-01-01

    NASA antiskid braking system research programs are reviewed. These programs include experimental studies of four antiskid systems on the Langley Landing Loads Track, flights tests with a DC-9 airplane, and computer simulation studies. Results from these research efforts include identification of factors contributing to degraded antiskid performance under adverse weather conditions, tire tread temperature measurements during antiskid braking on dry runway surfaces, and an assessment of the accuracy of various brake pressure-torque computer models. This information should lead to the development of better antiskid systems in the future.

  15. An antilock molecular braking system.

    PubMed

    Sun, Wei-Ting; Huang, Shou-Ling; Yao, Hsuan-Hsiao; Chen, I-Chia; Lin, Ying-Chih; Yang, Jye-Shane

    2012-08-17

    A light-driven molecular brake displaying an antilock function is constructed by introducing a nonradiative photoinduced electron transfer (PET) decay channel to compete with the trans (brake-off) → cis (brake-on) photoisomerization. A fast release of the brake can be achieved by deactivating the PET process through addition of protons. The cycle of irradiation-protonation-irradiation-deprotonation conducts the brake function and mimics the antilock braking system (ABS) of vehicles.

  16. Airborne Performance Measurement System Design: C-5 Aircraft

    DTIC Science & Technology

    1984-08-01

    simulator to the aircraft. In addition, these data may be utilized to predict or test the effects of training program *. modifications. The AFHRL...equipment diagnostic for the magnetic tape unit and controller. The second involves modification of the Confidence program to test only the equipment...IND 3 C: 57 S: 01 25-L-OXYGEN-QTY-LOW-LT 1 C: 57 25-L-OXYGEN--QTY- TEST -SW 1 C: 57 75-L-OXYGEN-QTY-IND 3 C: 57 S: 02 75-L-OXYGEN-QTY-LOW-LT 1 C: 57 75-L

  17. Computer code for estimating installed performance of aircraft gas turbine engines. Volume 2: Users manual

    NASA Technical Reports Server (NTRS)

    Kowalski, E. J.

    1979-01-01

    A computerized method which utilizes the engine performance data and estimates the installed performance of aircraft gas turbine engines is presented. This installation includes: engine weight and dimensions, inlet and nozzle internal performance and drag, inlet and nacelle weight, and nacelle drag. A user oriented description of the program input requirements, program output, deck setup, and operating instructions is presented.

  18. Computer code for estimating installed performance of aircraft gas turbine engines. Volume 1: Final report

    NASA Technical Reports Server (NTRS)

    Kowalski, E. J.

    1979-01-01

    A computerized method which utilizes the engine performance data is described. The method estimates the installed performance of aircraft gas turbine engines. This installation includes: engine weight and dimensions, inlet and nozzle internal performance and drag, inlet and nacelle weight, and nacelle drag.

  19. Modeling regenerative braking and storage for vehicles

    SciTech Connect

    Wicks, F.; Donnelly, K.

    1997-12-31

    The fuel savings benefits of regenerative braking and storage for vehicles are often described but not quantified. For example, the federal government and automobile manufacturers are sponsoring a Program for a New Generation of Vehicles (PGNV) with a goal of obtaining a performance of 80 mpg in a family size car. It is typically suggested that such a vehicle will be a hybrid engine and electric drive with regenerative braking. The authors note that while regenerative braking has the potential of saving fuel, it may also do more harm than good as a result of additional weight, less than ideal charge/discharge efficiency on the batteries or storage flywheels and the limited portion of the entire driving cycle when regenerative braking can be utilized. The authors also noted that if regenerative braking can have a net benefit, it would be on a heavy vehicle such as a municipal bus because of the frequent stop and go requirements for both traffic light and passengers. Thus the authors initiated a study of regenerative braking on such a vehicle. The resulting analysis presented in this paper includes data following municipal buses to define the driving cycle, modeling the bus power requirements from weight, aerodynamics and rolling resistance, and then calculating the fuel saving that could result from an ideal regenerative braking system.

  20. 49 CFR 393.53 - Automatic brake adjusters and brake adjustment indicators.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... brake adjustment indicators. (a) Automatic brake adjusters (hydraulic brake systems). Each commercial motor vehicle manufactured on or after October 20, 1993, and equipped with a hydraulic brake...

  1. Noise reduction of a tilt-rotor aircraft including effects on weight and performance

    NASA Technical Reports Server (NTRS)

    Gibs, J.; Stepniewski, W. Z.; Spencer, R.; Kohler, G.

    1973-01-01

    Various methods for far-field noise reduction of a tilt-rotor acoustic signature and the performance and weight tradeoffs which result from modification of the noise sources are considered in this report. In order to provide a realistic approach for the investigation, the Boeing tilt-rotor flight research aircraft (Model 222), was selected as the baseline. This aircraft has undergone considerable engineering development. Its rotor has been manufactured and tested in the Ames full-scale wind tunnel. The study reflects the current state-of-the-art of aircraft design for far-field acoustic signature reduction and is not based solely on an engineering feasibility aircraft. This report supplements a previous study investigating reduction of noise signature through the management of the terminal flight trajectory.

  2. Brake squeal reduction of vehicle disc brake system with interval parameters by uncertain optimization

    NASA Astrophysics Data System (ADS)

    Lü, Hui; Yu, Dejie

    2014-12-01

    An uncertain optimization method for brake squeal reduction of vehicle disc brake system with interval parameters is presented in this paper. In the proposed method, the parameters of frictional coefficient, material properties and the thicknesses of wearing components are treated as uncertain parameters, which are described as interval variables. Attention is focused on the stability analysis of a brake system in squeal, and the stability of brake system is investigated via the complex eigenvalue analysis (CEA) method. The dominant unstable mode is extracted by performing CEA based on a linear finite element (FE) model, and the negative damping ratio corresponding to the dominant unstable mode is selected as the indicator of instability. The response surface method (RSM) is applied to approximate the implicit relationship between the unstable mode and the system parameters. A reliability-based optimization model for improving the stability of the vehicle disc brake system with interval parameters is constructed based on RSM, interval analysis and reliability analysis. The Genetic Algorithm is used to get the optimal values of design parameters from the optimization model. The stability analysis and optimization of a disc brake system are carried out, and the results show that brake squeal propensity can be reduced by using stiffer back plates. The proposed approach can be used to improve the stability of the vehicle disc brake system with uncertain parameters effectively.

  3. Geometric optimal design of a magneto-rheological brake considering different shapes for the brake envelope

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. H.; Lang, V. T.; Nguyen, N. D.; Choi, S. B.

    2014-01-01

    When designing a magneto-rheological brake (MRB), it is well known that the shape of the brake envelope significantly affects the performance characteristics of the brake. In this study, different shapes for the MR brake envelope, such as rectangular, polygonal or spline shape, are considered and the most suitable shape identified. MRBs with different envelope shapes are introduced followed by the derivation of the braking torque based on Bingham-plastic behavior of the magneto-rheological fluid (MRF). Optimization of the design of the MRB with different envelope shapes is then done. The optimization problem is to find the optimal value for the significant geometric dimensions of the MRB that can produce a certain required braking torque while the brake mass is minimized. A finite element analysis integrated with an optimization tool is employed to obtain optimal solutions for the MRBs. From the results, the most suitable shape for the brake envelope is identified and discussed with the reduction of mass. In addition, the results of the analysis are compared with the experimental results to verify the proposed optimal design characteristics.

  4. What ASRS incident data tell about flight crew performance during aircraft malfunctions

    NASA Technical Reports Server (NTRS)

    Sumwalt, Robert L.; Watson, Alan W.

    1995-01-01

    This research examined 230 reports in NASA's Aviation Safety Reporting System's (ASRS) database to develop a better understanding of factors that can affect flight crew performance when crew are faced with inflight aircraft malfunctions. Each report was placed into one of two categories, based on severity of the malfunction. Report analysis was then conducted to extract information regarding crew procedural issues, crew communications and situational awareness. A comparison of these crew factors across malfunction type was then performed. This comparison revealed a significant difference in ways that crews dealt with serious malfunctions compared to less serious malfunctions. The authors offer recommendations toward improving crew performance when faced with inflight aircraft malfunctions.

  5. A New Dynamometer Brake

    NASA Technical Reports Server (NTRS)

    Segre, Marco

    1921-01-01

    The mechanism here described belongs to the class of dynamometer brake in which the motive power is transformed into heat in the brake itself. This mechanism was invented by the writer for the purpose of measuring forces in which the two factors, torque and speed, vary within broad limits, the mechanism itself being of simple construction and of still simpler operation.

  6. Physiologic responses of pilots flying high-performance aircraft.

    PubMed

    Comens, P; Reed, D; Mette, M

    1987-03-01

    This study deals with the physiologic responses to stress in F-4 fighter pilots and aircrew engaged in surface attack training (SAT) missions. Blood levels of HDL-cholesterol, LDH and LDH isoenzymes, CPK, and myoglobin were determined before and after each mission. Continuous EKG and transcutaneous PO2 recordings were made during briefing, preflight, and inflight. The personal history and habits of each participant were recorded. Each mission consisted of six successive bomb deliveries at 80-s intervals and at increasingly steep dive angles, each terminating in 5.5-6 +Gz during pull-up. Results revealed no apparent effect on HDL, COP isoenzymes, and LDH isoenzymes. Many myoglobin levels dropped as much as 50%. EKG recordings revealed ST elevations, ST depressions, T wave inversions, and marked sinus arrhythmias in some, while others showed increases in cardiac rate. Pilots flying these SAT missions in F-4C aircraft were found not to be significantly physiologically stressed.

  7. Predicted Performances of Power Line Communication in Aircraft

    NASA Astrophysics Data System (ADS)

    Degardin, V.; Junqua, I.; Lienard, M.; Degauque, P.; Bertuol, S.; Genoulaz, J.; Dunand, M.

    2012-05-01

    The possibility of using power line communication to transmit information in a large aircraft is studied. The communication link, which has been identified and chosen in the frame of the TAUPE European project, is the cabin lighting system since its tree shape and large structure allows covering most of the other possible applications. A statistical theoretical analysis, based on the multiconductor transmission line theory, has been carried out to determine the properties of the channel transfer function. This has been done in two steps: First a simplified network was considered to outline the parameters of the network geometry playing an important role on the path loss, and then by modelling a test bench which will be used as a demonstrator. The PLC link has been modelled for predicting data rate and bit error rate, taking the EMC constraints into account.

  8. Performance analysis of bonded composite doublers on aircraft structures

    SciTech Connect

    Roach, D.

    1995-08-01

    Researchers contend that composite repairs (or structural reinforcement doublers) offer numerous advantages over metallic patches including corrosion resistance, light weight, high strength, elimination of rivets, and time savings in installation. Their use in commercial aviation has been stifled by uncertainties surrounding their application, subsequent inspection and long-term endurance. The process of repairing or reinforcing airplane structures is time consuming and the design is dependent upon an accompanying stress and fatigue analysis. A repair that is too stiff may result in a loss of fatigue life, continued growth of the crack being repaired, and the initiation of a new flaw in the undesirable high stress field around the patch. Uncertainties in load spectrums used to design repairs exacerbates these problems as does the use of rivets to apply conventional doublers. Many of these repair or structural reinforcement difficulties can be addressed through the use of composite doublers. Primary among unknown entities are the effects of non-optimum installations and the certification of adequate inspection procedures. This paper presents on overview of a program intended to introduce composite doubler technology to the US commercial aircraft fleet. In this project, a specific composite application has been chosen on an L-1011 aircraft in order to focus the tasks on application and operation issues. Through the use of laboratory test structures and flight demonstrations on an in-service L-1011 airplane, this study is investigating composite doubler design, fabrication, installation, structural integrity, and non-destructive evaluation. In addition to providing an overview of the L-1011 project, this paper focuses on a series of fatigue and strength tests which have been conducted in order to study the damage tolerance of composite doublers. Test results to-date are presented.

  9. WIND BRAKING OF MAGNETARS

    SciTech Connect

    Tong, H.; Xu, R. X.; Qiao, G. J.; Song, L. M.

    2013-05-10

    We explore the wind braking of magnetars considering recent observations challenging the traditional magnetar model. There is evidence for strong multipole magnetic fields in active magnetars, but the dipole field inferred from spin-down measurements may be strongly biased by particle wind. Recent observations challenging the traditional model of magnetars may be explained naturally by the wind braking scenario: (1) the supernova energies of magnetars are of normal value; (2) the non-detection in Fermi observations of magnetars; (3) the problem posed by low magnetic field soft gamma-ray repeaters; (4) the relation between magnetars and high magnetic field pulsars; and (5) a decreasing period derivative during magnetar outbursts. Transient magnetars with L{sub x}<- E-dot{sub rot} may still be magnetic dipole braking. This may explain why low luminosity magnetars are more likely to have radio emissions. A strong reduction of the dipole magnetic field is possible only when the particle wind is very collimated at the star surface. A small reduction of the dipole magnetic field may result from detailed considerations of magnetar wind luminosity. In the wind braking scenario, magnetars are neutron stars with a strong multipole field. For some sources, a strong dipole field may no longer be needed. A magnetism-powered pulsar wind nebula will be one of the consequences of wind braking. For a magnetism-powered pulsar wind nebula, we should see a correlation between the nebula luminosity and the magnetar luminosity. Under the wind braking scenario, a braking index smaller than three is expected. Future braking index measurement of a magnetar may tell us whether magnetars are wind braking or magnetic dipole braking.

  10. Performance degradation of a typical twin engine commuter type aircraft in measured natural icing conditions

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.; Mikkelsen, K. L.; Mcknight, R. C.; Perkins, P. J., Jr.

    1984-01-01

    The performance of an aircraft in various measured icing conditions was investigated. Icing parameters such as liquid water content, temperature, cloud droplet sizes and distributions were measured continuously while in icinig. Flight data wre reduced to provide plots of the aircraft drag polars and lift curves (CL vs. alpha) for the measured 'iced' condition as referenced to the uniced aircraft. These data were also reduced to provide plots of thrust horsepower required vs. single engine power available to show how icing affects engine out capability. It is found that performance degradation is primarily influenced by the amount and shape of the accumulated ice. Glaze icing caused the greatest aerodynamic performance penalties in terms of increased drag and reduction in lift while aerodynamic penalties due to rime icing were significantly lower. Previously announced in STAR as N84-13173

  11. Performance degradation of a typical twin engine commuter type aircraft in measured natural icing conditions

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.; Mikkelsen, K. L.; Mcknight, R. C.; Perkins, P. J., Jr.

    1984-01-01

    The performance of an aircraft in various measured icing conditions was investigated. Icing parameters such as liquid water content, temperature, cloud droplet sizes and distributions were measured continuously while in icing. Flight data were reduced to provide plots of the aircraft drag polars and lift curves (CL vs. alpha) for the measured ""iced'' condition as referenced to the uniced aircraft. These data were also reduced to provide plots of thrust horsepower required vs. single engine power available to show how icing affects engine out capability. It is found that performance degradation is primarily influenced by the amount and shape of the accumulated ice. Glaze icing caused the greatest aerodynamic performance penalties in terms of increased drag and reduction in lift while aerodynamic penalties due to rime icing were significantly lower.

  12. Study of a pursuit-evasion guidance law for high performance aircraft

    NASA Technical Reports Server (NTRS)

    Williams, Peggy S.; Menon, P. K. A.; Antoniewicz, Robert F.; Duke, Eugene L.

    1989-01-01

    The study of a one-on-one aircraft pursuit-evasion guidance scheme for high-performance aircraft is discussed. The research objective is to implement a guidance law derived earlier using differential game theory in conjunction with the theory of feedback linearization. Unlike earlier research in this area, the present formulation explicitly recognizes the two-sided nature of the pursuit-evasion scenario. The present research implements the guidance law in a realistic model of a modern high-performance fighter aircraft. Also discussed are the details of the guidance law, implementation in a highly detailed simulation of a high-performance fighter, and numerical results for two engagement geometries. Modifications of the guidance law for onboard implementation is also discussed.

  13. Multilevel modelling of aircraft noise on performance tests in schools around Heathrow Airport London

    PubMed Central

    Haines, M; Stansfeld, S; Head, J; Job, R

    2002-01-01

    Design: This is a cross sectional study using the National Standardised Scores (SATs) in mathematics, science, and English (11 000 scores from children aged 11 years). The analyses used multilevel modelling to determine the effects of chronic aircraft noise exposure on childrens' school performance adjusting for demographic, socioeconomic and school factors in 123 primary schools around Heathrow Airport. Schools were assigned aircraft noise exposure level from the 1994 Civil Aviation Authority aircraft noise contour maps. Setting: Primary schools. Participants: The sample were approximately 11 000 children in year 6 (approximately 11 years old) from 123 schools in the three boroughs surrounding Heathrow Airport. Main results: Chronic exposure to aircraft noise was significantly related to poorer reading and mathematics performance. After adjustment for the average socioeconomic status of the school intake (measured by percentage of pupils eligible for free school meals) these associations were no longer statistically significant. Conclusions: Chronic exposure to aircraft noise is associated with school performance in reading and mathematics in a dose-response function but this association is confounded by socioeconomic factors. PMID:11812814

  14. Improved Electromagnetic Brake

    NASA Technical Reports Server (NTRS)

    Martin, Toby B.

    2004-01-01

    A proposed design for an electromagnetic brake would increase the reliability while reducing the number of parts and the weight, relative to a prior commercially available electromagnetic brake. The reductions of weight and the number of parts could also lead to a reduction of cost. A description of the commercial brake is prerequisite to a description of the proposed electromagnetic brake. The commercial brake (see upper part of figure) includes (1) a permanent magnet and an electromagnet coil on a stator and (2) a rotor that includes a steel contact plate mounted, with tension spring loading, on an aluminum hub. The stator is mounted securely on a stationary object, which would ordinarily be the housing of a gear drive or a motor. The rotor is mounted on the shaft of the gear drive or motor. The commercial brake nominally operates in a fail-safe (in the sense of normally braking) mode: In the absence of current in the electromagnet coil, the permanent magnet pulls the contact plate, against the spring tension, into contact with the stator. To release the brake, one excites the electromagnet with a current of the magnitude and polarity chosen to cancel the magnetic flux of the permanent magnet, thereby enabling the spring tension to pull the contact plate out of contact with the stator. The fail-safe operation of the commercial brake depends on careful mounting of the rotor in relation to the stator. The rotor/stator gap must be set with a tolerance between 10 and 15 mils (between about 0.25 and about 0.38 mm). If the gap or the contact pad is thicker than the maximum allowable value, then the permanent magnetic field will not be strong enough to pull the steel plate across the gap. (For this reason, any contact pad between the contact plate and the stator must also be correspondingly thin.) If the gap exceeds the maximum allowable value because of shaft end play, it becomes impossible to set the brake by turning off the electromagnet current. Although it may

  15. Braking hazards of golf cars and low speed vehicles.

    PubMed

    Seluga, K J; Ojalvo, I U

    2006-11-01

    Research and analysis of braking issues for golf cars and other low speed vehicles (LSVs) are reported in this study. It is shown that many such vehicles only provide braking for their rear wheels, which can lead to a driver losing control during travel on typical steep downgrades. The braking performance of a golf car equipped with brakes on two or four wheels was analyzed to determine the effects of two and four wheel brake designs on braking efficiency and vehicle yaw stability. Besides reducing braking efficiency, it is demonstrated that installing brakes on only the rear wheels can lead to directional instability (fishtailing) and rollover when the rear wheels are braked until skidding occurs. The nonexistence of golf course standards and the inadequacy of golf car and LSV standards are noted and a connection between this and the comparatively high level of accidents with such vehicles is inferred. Based on these results, it is advisable to install brakes on all four wheels of golf cars and LSVs. In addition, new safety standards should be considered to reduce the occurrence of golf car accidents on steep downhill slopes.

  16. A concept for adaptive performance optimization on commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, Michael R.; Enns, Dale F.

    1995-01-01

    An adaptive control method is presented for the minimization of drag during flight for transport aircraft. The minimization of drag is achieved by taking advantage of the redundant control capability available in the pitch axis, with the horizontal tail used as the primary surface and symmetric deflection of the ailerons and cruise flaps used as additional controls. The additional control surfaces are excited with sinusoidal signals, while the altitude and velocity loops are closed with guidance and control laws. A model of the throttle response as a function of the additional control surfaces is formulated and the parameters in the model are estimated from the sensor measurements using a least squares estimation method. The estimated model is used to determine the minimum drag positions of the control surfaces. The method is presented for the optimization of one and two additional control surfaces. The adaptive control method is extended to optimize rate of climb with the throttle fixed. Simulations that include realistic disturbances are presented, as well as the results of a Monte Carlo simulation analysis that shows the effects of changing the disturbance environment and the excitation signal parameters.

  17. Braking System for Wind Turbines

    NASA Technical Reports Server (NTRS)

    Krysiak, J. E.; Webb, F. E.

    1987-01-01

    Operating turbine stopped smoothly by fail-safe mechanism. Windturbine braking systems improved by system consisting of two large steel-alloy disks mounted on high-speed shaft of gear box, and brakepad assembly mounted on bracket fastened to top of gear box. Lever arms (with brake pads) actuated by spring-powered, pneumatic cylinders connected to these arms. Springs give specific spring-loading constant and exert predetermined load onto brake pads through lever arms. Pneumatic cylinders actuated positively to compress springs and disengage brake pads from disks. During power failure, brakes automatically lock onto disks, producing highly reliable, fail-safe stops. System doubles as stopping brake and "parking" brake.

  18. The Effect of Stages and Levels of Automation and Reliability on Workload and Performance for Remotely Piloted Aircraft Operations

    DTIC Science & Technology

    2015-03-26

    REMOTELY PILOTED AIRCRAFT OPERATIONS THESIS MARCH 2015 Stephen P. Katrein, 2d Lieutenant, USAF AFIT-ENV-MS-15-M-201 DEPARTMENT OF THE AIR...RELIABILITY ON WORKLOAD AND PERFORMANCE FOR REMOTELY PILOTED AIRCRAFT OPERATIONS THESIS Presented to the Faculty Department of Systems...STAGES AND LEVELS OF AUTOMATION AND RELIABILITY ON WORKLOAD AND PERFORMANCE FOR REMOTELY PILOTED AIRCRAFT OPERATIONS Stephen P. Katrein, BS

  19. Electromagnetic braking for Mars spacecraft

    NASA Technical Reports Server (NTRS)

    Holt, A. C.

    1986-01-01

    Aerobraking concepts are being studied to improve performance and cost effectiveness of propulsion systems for Mars landers and Mars interplanetary spacecraft. Access to megawatt power levels (nuclear power coupled to high-storage inductive or capacitive devices) on a manned Mars interplanetary spacecraft may make feasible electromagnetic braking and lift modulation techniques which were previously impractical. Using pulsed microwave and magnetic field technology, potential plasmadynamic braking and hydromagnetic lift modulation techniques have been identified. Entry corridor modulation to reduce loads and heating, to reduce vertical descent rates, and to expand horizontal and lateral landing ranges are possible benefits. In-depth studies are needed to identify specific design concepts for feasibility assessments. Standing wave/plasma sheath interaction techniques appear to be promising. The techniques may require some tailoring of spacecraft external structures and materials. In addition, rapid response guidance and control systems may require the use of structurally embedded sensors coupled to expert systems or to artificial intelligence systems.

  20. Airborne Laboratory Measurement of Aircraft Performance and Stability and Control for Light Aircraft. Supplement.

    DTIC Science & Technology

    1983-06-24

    B-4 TESI PLAN I-IPAIIMJ:NI OF ALKoNAI’lICS SIERRA C2/iR I.IMITED PERFORMANCE VVALUArON i "! )W I’r I ON .\\ I irni ted...pr .-%Iled 1, thtn pilot. ri ov i do, asset te tape Piliver for each f I~liht . (opt ini I igv 0 o d t o iomi or roa.d i vi), it whiiclr tite ij

  1. Automated visual inspection of brake shoe wear

    NASA Astrophysics Data System (ADS)

    Lu, Shengfang; Liu, Zhen; Nan, Guo; Zhang, Guangjun

    2015-10-01

    With the rapid development of high-speed railway, the automated fault inspection is necessary to ensure train's operation safety. Visual technology is paid more attention in trouble detection and maintenance. For a linear CCD camera, Image alignment is the first step in fault detection. To increase the speed of image processing, an improved scale invariant feature transform (SIFT) method is presented. The image is divided into multiple levels of different resolution. Then, we do not stop to extract the feature from the lowest resolution to the highest level until we get sufficient SIFT key points. At that level, the image is registered and aligned quickly. In the stage of inspection, we devote our efforts to finding the trouble of brake shoe, which is one of the key components in brake system on electrical multiple units train (EMU). Its pre-warning on wear limitation is very important in fault detection. In this paper, we propose an automatic inspection approach to detect the fault of brake shoe. Firstly, we use multi-resolution pyramid template matching technology to fast locate the brake shoe. Then, we employ Hough transform to detect the circles of bolts in brake region. Due to the rigid characteristic of structure, we can identify whether the brake shoe has a fault. The experiments demonstrate that the way we propose has a good performance, and can meet the need of practical applications.

  2. 49 CFR 393.45 - Brake tubing and hoses; hose assemblies and end fittings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... connections. All connections for air, vacuum, or hydraulic braking systems shall be installed so as to ensure... damage; and (3) Be installed in a manner that prevents it from contacting the vehicle's exhaust system or... performance of the brake system....

  3. 49 CFR 393.45 - Brake tubing and hoses; hose assemblies and end fittings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... connections. All connections for air, vacuum, or hydraulic braking systems shall be installed so as to ensure... damage; and (3) Be installed in a manner that prevents it from contacting the vehicle's exhaust system or... performance of the brake system....

  4. 49 CFR 393.45 - Brake tubing and hoses; hose assemblies and end fittings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... connections. All connections for air, vacuum, or hydraulic braking systems shall be installed so as to ensure... damage; and (3) Be installed in a manner that prevents it from contacting the vehicle's exhaust system or... performance of the brake system....

  5. 14 CFR 135.183 - Performance requirements: Land aircraft operated over water.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Performance requirements: Land aircraft operated over water. 135.183 Section 135.183 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING...

  6. Current Methods for Modeling and Simulating Icing Effects on Aircraft Performance, Stability and Control

    NASA Technical Reports Server (NTRS)

    Ralvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam

    2008-01-01

    Icing alters the shape and surface characteristics of aircraft components, which results in altered aerodynamic forces and moments caused by air flow over those iced components. The typical effects of icing are increased drag, reduced stall angle of attack, and reduced maximum lift. In addition to the performance changes, icing can also affect control surface effectiveness, hinge moments, and damping. These effects result in altered aircraft stability and control and flying qualities. Over the past 80 years, methods have been developed to understand how icing affects performance, stability and control. Emphasis has been on wind tunnel testing of two-dimensional subscale airfoils with various ice shapes to understand their effect on the flow field and ultimately the aerodynamics. This research has led to wind tunnel testing of subscale complete aircraft models to identify the integrated effects of icing on the aircraft system in terms of performance, stability, and control. Data sets of this nature enable pilot in the loop simulations to be performed for pilot training, or engineering evaluation of system failure impacts or control system design.

  7. Application of a cost/performance measurement system on a research aircraft project

    NASA Technical Reports Server (NTRS)

    Diehl, J. J.

    1978-01-01

    The fundamentals of the cost/performance management system used in the procurement of two tilt rotor aircraft for a joint NASA/Army research project are discussed. The contractor's reporting system and the GPO's analyses are examined. The use of this type of reporting system is assessed. Recommendations concerning the use of like systems on future projects are included.

  8. Fabrication of Fabry-Perot Interferometer Sensors and Characterization of their Performances for Aircraft Inspection

    NASA Technical Reports Server (NTRS)

    Pendergrass, LeRuth Q.

    1995-01-01

    This work provides the information for fabricating Fabry-Perot Interferometer sensors and their performances. The Fabry-Perot Interferometer sensors developed here will be used for the detection of flaws in aircraft structures. The sequel also contains discussion of the experimental setups for the Ultrasonic technique and the Fabry-Perot Interferometer.

  9. Current Methods Modeling and Simulating Icing Effects on Aircraft Performance, Stability, Control

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam

    2010-01-01

    Icing alters the shape and surface characteristics of aircraft components, which results in altered aerodynamic forces and moments caused by air flow over those iced components. The typical effects of icing are increased drag, reduced stall angle of attack, and reduced maximum lift. In addition to the performance changes, icing can also affect control surface effectiveness, hinge moments, and damping. These effects result in altered aircraft stability and control and flying qualities. Over the past 80 years, methods have been developed to understand how icing affects performance, stability, and control. Emphasis has been on wind-tunnel testing of two-dimensional subscale airfoils with various ice shapes to understand their effect on the flowfield and ultimately the aerodynamics. This research has led to wind-tunnel testing of subscale complete aircraft models to identify the integrated effects of icing on the aircraft system in terms of performance, stability, and control. Data sets of this nature enable pilot-in-the-loop simulations to be performed for pilot training or engineering evaluation of system failure impacts or control system design.

  10. Computer program to perform cost and weight analysis of transport aircraft. Volume 2: Technical volume

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An improved method for estimating aircraft weight and cost using a unique and fundamental approach was developed. The results of this study were integrated into a comprehensive digital computer program, which is intended for use at the preliminary design stage of aircraft development. The program provides a means of computing absolute values for weight and cost, and enables the user to perform trade studies with a sensitivity to detail design and overall structural arrangement. Both batch and interactive graphics modes of program operation are available.

  11. Summary of directional divergence characteristics of several high performance aircraft configurations

    NASA Technical Reports Server (NTRS)

    Greer, H. D.

    1972-01-01

    The present paper summarizes the high-angle-of-attack characteristics of a number of high-performance aircraft as determined from model force tests and free-flight model tests and correlates these characteristics with the dynamic directional-stability parameter. This correlation shows that the dynamic directional-stability parameter correlates fairly well with directional divergence. Data are also presented to show the effect of some airframe modifications on the directional divergence potential of the configuration. These results show that leading-edge slates seem to be the most effective airframe modification for reducing or eliminating the directional divergence potential of aircraft with moderately swept wings.

  12. Computerized systems analysis and optimization of aircraft engine performance, weight, and life cycle costs

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.

    1980-01-01

    The computational techniques are described which are utilized at Lewis Research Center to determine the optimum propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements. Cycle performance, and engine weight can be calculated along with costs and installation effects as opposed to fuel consumption alone. Almost any conceivable turbine engine cycle can be studied. These computer codes are: NNEP, WATE, LIFCYC, INSTAL, and POD DRG. Examples are given to illustrate how these computer techniques can be applied to analyze and optimize propulsion system fuel consumption, weight and cost for representative types of aircraft and missions.

  13. Performance and Environmental Assessment of an Advanced Aircraft with Open Rotor Propulsion

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Berton, Jeffrey J.; Haller, William J.; Hendricks, Eric S.; Tong, Michael T.

    2012-01-01

    Application of high speed, advanced turboprops, or "propfans," to transonic transport aircraft received significant attention during the 1970s and 1980s when fuel efficiency was the driving focus of aeronautical research. Unfortunately, after fuel prices declined sharply there was no longer sufficient motivation to continue maturing this technology. Recent volatility in fuel prices and increasing concern for aviation s environmental impact, however, have renewed interest in unducted, open rotor propulsion. Because of the renewed interest in open rotor propulsion, the lack of publicly available up-to-date studies assessing its benefits, and NASA s focus on reducing fuel consumption, a preliminary aircraft system level study on open rotor propulsion was initiated to inform decisions concerning research in this area. New analysis processes were established to assess the characteristics of open rotor aircraft. These processes were then used to assess the performance, noise, and emissions characteristics of an advanced, single-aisle aircraft using open rotor propulsion. The results of this initial study indicate open rotor engines have the potential to provide significant reductions in fuel consumption and landing-takeoff cycle NOX emissions. Noise analysis of the study configuration indicates that an open rotor aircraft in the single-aisle class would be able to meet current noise regulations with margin.

  14. Wear Modalities and Mechanisms of the Mining Non-asbestos Composite Brake Material

    NASA Astrophysics Data System (ADS)

    Bao, Jiusheng; Yin, Yan; Zhu, Zhencai; Tong, Minming; Lu, Yuhao; Peng, Yuxing

    2013-08-01

    The mining brake material is generally made of composite materials and its wear has important influences on the braking performance of disc brakes. In order to improve the braking reliability of mine hoisters, this paper did some tribological investigations on the mining brake material to reveal its wear modalities and mechanisms. The mining non-asbestos brake shoe and 16Mn steel were selected as braking pairs and tested on a pad-on-disc friction tester. And a SEM was used to observe the worn surface of the brake shoe. It is shown that the non-asbestos brake material has mainly five wear modalities: adhesive wear, abrasive wear, cutting wear, fatigue wear and high heat wear. At the front period of a single braking the wear modality is mainly composed of some light mechanical wear such as abrasive, cutting and point adhesive. With the temperature rising at the back period it transforms to some heavy mechanical wear such as piece adhesive and fatigue. While in several repeated brakings once the surface temperature rises beyond the thermal-decomposition point of the bonding material, the strong destructive high heat wear takes leading roles on the surface. And a phenomenon called friction catastrophe (FC) occurs easily, which as a result causes a braking failure. It is considered that the friction heat has important influences on the wear modalities of the brake material. And the reduction of friction heat must be an effective technical method for decreasing wear and avoiding braking failures.

  15. Influence of landing gear flexibility on aircraft performance during ground roll

    NASA Technical Reports Server (NTRS)

    Sivaramakrishnan, M. M.

    1981-01-01

    An analysis is made of the influence of landing gear deflection characteristics on aircraft performance on the ground up to rotation. A quasi-steady dynamic equilibrium state is assumed, including other simplifying assumptions such as calm air conditions and normal aircraft lift and drag. Ground incidence is defined as the angle made by the mean aerodynamic chord of the wing with respect to the ground plane, and equations are given for force and balance which determine the quasi-equilibrium conditions for the aircraft during ground roll. Results indicate that the landing gear deflections lead to a substantial increase in the angle of attack, and the variation in the ground incidence due to landing gear flexibility could be as much as + or - 50%, and the reduction in tail load requirements almost 25%.

  16. Optimum Wing Shape Determination of Highly Flexible Morphing Aircraft for Improved Flight Performance

    NASA Technical Reports Server (NTRS)

    Su, Weihua; Swei, Sean Shan-Min; Zhu, Guoming G.

    2016-01-01

    In this paper, optimum wing bending and torsion deformations are explored for a mission adaptive, highly flexible morphing aircraft. The complete highly flexible aircraft is modeled using a strain-based geometrically nonlinear beam formulation, coupled with unsteady aerodynamics and six-degrees-of-freedom rigid-body motions. Since there are no conventional discrete control surfaces for trimming the flexible aircraft, the design space for searching the optimum wing geometries is enlarged. To achieve high performance flight, the wing geometry is best tailored according to the specific flight mission needs. In this study, the steady level flight and the coordinated turn flight are considered, and the optimum wing deformations with the minimum drag at these flight conditions are searched by utilizing a modal-based optimization procedure, subject to the trim and other constraints. The numerical study verifies the feasibility of the modal-based optimization approach, and shows the resulting optimum wing configuration and its sensitivity under different flight profiles.

  17. Research on flight stability performance of rotor aircraft based on visual servo control method

    NASA Astrophysics Data System (ADS)

    Yu, Yanan; Chen, Jing

    2016-11-01

    control method based on visual servo feedback is proposed, which is used to improve the attitude of a quad-rotor aircraft and to enhance its flight stability. Ground target images are obtained by a visual platform fixed on aircraft. Scale invariant feature transform (SIFT) algorism is used to extract image feature information. According to the image characteristic analysis, fast motion estimation is completed and used as an input signal of PID flight control system to realize real-time status adjustment in flight process. Imaging tests and simulation results show that the method proposed acts good performance in terms of flight stability compensation and attitude adjustment. The response speed and control precision meets the requirements of actual use, which is able to reduce or even eliminate the influence of environmental disturbance. So the method proposed has certain research value to solve the problem of aircraft's anti-disturbance.

  18. A performance improvement case study in aircraft maintenance and its implications for hazard identification.

    PubMed

    Ward, Marie; McDonald, Nick; Morrison, Rabea; Gaynor, Des; Nugent, Tony

    2010-02-01

    Aircraft maintenance is a highly regulated, safety critical, complex and competitive industry. There is a need to develop innovative solutions to address process efficiency without compromising safety and quality. This paper presents the case that in order to improve a highly complex system such as aircraft maintenance, it is necessary to develop a comprehensive and ecologically valid model of the operational system, which represents not just what is meant to happen, but what normally happens. This model then provides the backdrop against which to change or improve the system. A performance report, the Blocker Report, specific to aircraft maintenance and related to the model was developed gathering data on anything that 'blocks' task or check performance. A Blocker Resolution Process was designed to resolve blockers and improve the current check system. Significant results were obtained for the company in the first trial and implications for safety management systems and hazard identification are discussed. Statement of Relevance: Aircraft maintenance is a safety critical, complex, competitive industry with a need to develop innovative solutions to address process and safety efficiency. This research addresses this through the development of a comprehensive and ecologically valid model of the system linked with a performance reporting and resolution system.

  19. Assessment of aerodynamic performance of V/STOL and STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Nelms, W. P.

    1984-01-01

    The aerodynamic performance of V/STOL and STOVL fighter/attack aircraft was assessed. Aerodynamic and propulsion/airframe integration activities are described and small and large scale research programs are considered. Uncertainties affecting aerodynamic performance that are associated with special configuration features resulting from the V/STOL requirement are addressed. Example uncertainties relate to minimum drag, wave drag, high angle of attack characteristics, and power induced effects.

  20. Results of T56 Engine Performance Monitoring Trial in Hercules Aircraft, February-July 1977.

    DTIC Science & Technology

    1981-04-01

    Engine Removals/Rejections 2 3.1.1 Resume 5 3.2 Faults not Associated with Engine Removals 5 * NOTATION REFERENCES I TABLES FIGURES APPENDIX 1 ANNEX A...in those cases in which performance monitoring could have been expected to reflect the fault , the appropriate engine performance trend plots were...the appropriate EL 500. (ihis form is used by aircrew and maiintenazice personnel to record any aircraft/ engine fault and its subsequent

  1. Using Intelligent Simulation to Enhance Human Performance in Aircraft Maintenance

    NASA Technical Reports Server (NTRS)

    Johnson, William B.; Norton, Jeffrey E.

    1992-01-01

    Human factors research and development investigates the capabilities and limitations of the human within a system. Of the many variables affecting human performance in the aviation maintenance system, training is among the most important. The advent of advanced technology hardware and software has created intelligent training simulations. This paper describes one advanced technology training system under development for the Federal Aviation Administration.

  2. Performance characteristics of nonaxisymmetric nozzles installed on the F-18 aircraft

    NASA Technical Reports Server (NTRS)

    Capone, F. J.; Gowadia, N. S.; Wooten, W. H.

    1979-01-01

    The Langley Research Center has conducted an experimental program on a model of the F-18 airplane to determine the performance of nonaxisymmetric nozzles relative to the aircraft's baseline axisymmetric nozzle. The performance of a single expansion ramp (ADEN) and two-dimensional convergent-divergent (2-D C-D) nozzle were compared to the baseline axisymmetric nozzles. The effects of vectoring and reversing were also studied. Performance of a modified YF-17 airplane with the ADEN nozzle was also estimated. The results of this investigation indicate that nonaxisymmetric nozzles can be installed on a twin engine fighter airplane with equal or better performance than axisymmetric nozzles. The nonaxisymmetric nozzles also offer potential for innovative and improved aircraft maneuver through thrust vectoring and reversing. The YF-17/ADEN flown as a technology demonstrator would have reduced performance compared to an unmodified YF-17. However, on an equal aircraft weight basis, performance would essentially be equivalent. This study also showed that the YF-17 can serve as a testbed to validate nonaxisymmetric nozzle technology.

  3. Attention in aviation. [to aircraft design and pilot performance

    NASA Technical Reports Server (NTRS)

    Wickens, Christopher D.

    1987-01-01

    The relevance of four principles or mechanisms of human attention to the design of aviation systems and the performance of pilots in multitask environments, including workload prediction and measurement, control-display integration, and the use of voice and head-up displays is discussed. The principles are: the mental energy that supplies task performance (resources), the resulting cross-talk between tasks as they are made more similar (confusion), the combination of different task elements (integration), and the way in which one task is processed and another is ignored (selection or tunneling). The introduction of greater levels of complexity into the validation of attentional theories in order to approach the demands of the cockpit or ATC console is proposed.

  4. Visual Effects in the High Performance Aircraft Cockpit

    DTIC Science & Technology

    1988-04-01

    Convergence: To be 10cm or less. Media and Fundi There should be no evidence of pathology which could impair visual performance either at the time of...that our prevention actions are not based only on a few spectacular, media interesting, accidents. 3. Visual related accidents/incidents As described...From Air Scoop DOCs TURN (Lt. Col. 3.D. Stevenson): There’s a trend developing which the flying safety folks and I have noted in recent mis- hap reports

  5. Computer code for estimating installed performance of aircraft gas turbine engines. Volume 3: Library of maps

    NASA Technical Reports Server (NTRS)

    Kowalski, E. J.

    1979-01-01

    A computerized method which utilizes the engine performance data and estimates the installed performance of aircraft gas turbine engines is presented. This installation includes: engine weight and dimensions, inlet and nozzle internal performance and drag, inlet and nacelle weight, and nacelle drag. The use of two data base files to represent the engine and the inlet/nozzle/aftbody performance characteristics is discussed. The existing library of performance characteristics for inlets and nozzle/aftbodies and an example of the 1000 series of engine data tables is presented.

  6. Optimal design of a magneto-rheological brake absorber for torsional vibration control

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. H.; Choi, S. B.

    2012-02-01

    This research presents an optimal design of a magneto-rheological (MR) brake absorber for torsional vibration control of a rotating shaft. Firstly, the configuration of an MR brake absorber for torsional vibration control of a rotating shaft system is proposed. Then, the braking torque of the MR brake is derived based on the Bingham plastic model of the MR fluid. By assuming that the behaviour of the MR brake absorber is similar to that of a dry friction torsional damper, the optimal braking torque to control the torsional vibration is determined and validated by simulation. The optimal design problem of the MR brake absorber is then developed and a procedure to solve the optimal problem is proposed. Based on the proposed optimal design procedure, the optimal design of a specific rotating shaft system is performed. Vibration control performance of the shaft system employing the optimized MR brake absorber is then investigated through simulation and discussion on the results is given.

  7. Point and path performance of light aircraft: A review and analysis

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Summey, D. C.; Johnson, W. D.

    1973-01-01

    The literature on methods for predicting the performance of light aircraft is reviewed. The methods discussed in the review extend from the classical instantaneous maximum or minimum technique to techniques for generating mathematically optimum flight paths. Classical point performance techniques are shown to be adequate in many cases but their accuracies are compromised by the need to use simple lift, drag, and thrust relations in order to get closed form solutions. Also the investigation of the effect of changes in weight, altitude, configuration, etc. involves many essentially repetitive calculations. Accordingly, computer programs are provided which can fit arbitrary drag polars and power curves with very high precision and which can then use the resulting fits to compute the performance under the assumption that the aircraft is not accelerating.

  8. Noise of High-Performance Aircraft at Afterburner

    DTIC Science & Technology

    2015-07-11

    next progress report. Through the advocacy of Dr. John Spyropulos and the excellent cooperation of Mr. Allan Aubert, we received a set of F -18E jet...noise data for study. The principal objective of our study is to find out if the dominant noise components of the F -18E, especially at high power...setting, are the same as those of a high temperature supersonic laboratory jet. Previously, we have performed a similar study of the noise of a F -22A

  9. Brake Fluid Compatibility Studies with Advanced Brake Systems

    DTIC Science & Technology

    2016-01-16

    brake fluid in a hydraulic power brake system revealed deposits only with the silicone brake fluid after 20,000- cycles of testing. These results are...revealed deposits formed only with the silicone brake fluid after 20,000- cycles of testing. The objective was accomplished by conducting static soak...testing to halt when testing MIL-PRF-46176. Deposits were not present in SAE J1703 testing for the same number of test cycles . The objective of this

  10. Development of Hydraulic Friction Brake for Railway Rolling Stock

    NASA Astrophysics Data System (ADS)

    Chenvisuwat, Thum; Park, Sung-Hwan; Kitagawa, Ato

    A novel hydraulic brake pressure control (BPC) valve for the railway rolling stock was proposed in the part I of this study. As a second report, this paper is concerned with the dynamic analysis and the performance evaluation of the hydraulic brake system using the BPC valve. In order to analyze the behavior of the BPC valve, a simplified transfer function and a nonlinear model of the valve are derived respectively. By use of simple linear model, it is achieved to determine the initial values of essential parameter simply. In addition, it is also achieved to investigate overall dynamic performance of brake system and to evaluate the effect of design parameters through the numerical analysis using detailed nonlinear model. The validity of mathematical models is confirmed by experiments. Finally, the performance of the hydraulic brake system using newly manufactured BPC valve is confirmed with an actual braking device of the E2 series Shinkansen railway.

  11. Design of haptic master featuring small-sized MR brakes

    NASA Astrophysics Data System (ADS)

    Gang, Han Gyeol; Choi, Seung-Bok; Sohn, Jung Woo

    2016-04-01

    In this work, a new type of haptic master featuring small-sized MR brake is proposed and its performances are evaluated. The proposed haptic master consists of base frame, stick grip and small-sized four MR brakes for 3-DOF rotational motion and 1-DOF gripper motion. To obtain large braking torque under limited small size of MR brake, dual tapered shape inner magnetic core is proposed and its performance is evaluated via both numerical estimation and experimental test. After design and implementation of control algorithm, it has been demonstrated through experiment that the proposed actuator has good performances on tracking control of desired torques. Then, a new haptic master device is designed and constructed by adopting the proposed MR brakes and light weight frame structures. It is verified that the proposed haptic master device is effective for the real application in the field.

  12. The Effect of Modified Control Limits on the Performance of a Generic Commercial Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; May, Ryan D.; Gou, Ten-Huei; Litt, Jonathan S.

    2012-01-01

    This paper studies the effect of modifying the control limits of an aircraft engine to obtain additional performance. In an emergency situation, the ability to operate an engine above its normal operating limits and thereby gain additional performance may aid in the recovery of a distressed aircraft. However, the modification of an engine s limits is complex due to the risk of an engine failure. This paper focuses on the tradeoff between enhanced performance and risk of either incurring a mechanical engine failure or compromising engine operability. The ultimate goal is to increase the engine performance, without a large increase in risk of an engine failure, in order to increase the probability of recovering the distressed aircraft. The control limit modifications proposed are to extend the rotor speeds, temperatures, and pressures to allow more thrust to be produced by the engine, or to increase the rotor accelerations and allow the engine to follow a fast transient. These modifications do result in increased performance; however this study indicates that these modifications also lead to an increased risk of engine failure.

  13. First Assessments of ICESat-2 Performance Using Aircraft Data

    NASA Technical Reports Server (NTRS)

    Neumann, Tom; Markus, Thorsten; Brunt, Kelly M.; Hancock, David; Brenner, Anita C.

    2011-01-01

    The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) Is a next-generation laser altimeter designed to continue key observations of ice sheet elevation change, sea ice freeboard, vegetation canopy height, earth surface elevation, and sea surface height. Scheduled for launch in early 2016, ICESat-2 will use a high repetition rate (approximately 10 kHz), small footprint (10m diameter) laser, and a single-photon-sensitive detection strategy (photon counting) to measure precise ranges to the earth's surface. Operating in the green (approximately 532nm), the six beams of ICESat-2 will provide improved spatial coverage compared with ICESat while the differences in transmit energy among the beams provide a large dynamic range. In order to evaluate models of predicted ICESat-2 performance, and provide ICESat-2-like data for algorithm development an airborne ICESat-2 simulator was developed and first flown in 2010, this simulator, the Multiple Altimeter Beam Experimental Lidar (MABEL) has now had three deployments in the western US, and will be deployed to the polar regions in spring of 2012. MABEL uses a similar measurement strategy to what will be used on ICESat-2. MABEL collects more spatially-dense data than ICESat-2 (approximately 2-cm along track) with a smaller 2m diameter footprint in 16 green channels and an additional 8 channels in the infrared. The comparison between frequencies allows for analysis of possible penetration of green energy into water or snow. We present MABEL data collected over deserts, forests, ocean water, lakes. snow covered mountains, and saft flats, provide examples of how these data are being used to develop algorithms that derive geophysical products from ICESat 2 and assess expected performances.

  14. 49 CFR 238.15 - Movement of passenger equipment with power brake defects.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... route after a Class I or IA brake test was performed), a commuter or passenger train that has in its... Class I or IA brake test. Passenger equipment hauled or used in service in a commuter or passenger train... brakes. Commuter, short-distance intercity, and short-distance Tier II passenger trains which...

  15. 49 CFR 238.15 - Movement of passenger equipment with power brake defects.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... route after a Class I or IA brake test was performed), a commuter or passenger train that has in its... Class I or IA brake test. Passenger equipment hauled or used in service in a commuter or passenger train... brakes. Commuter, short-distance intercity, and short-distance Tier II passenger trains which...

  16. 49 CFR 238.15 - Movement of passenger equipment with power brake defects.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... route after a Class I or IA brake test was performed), a commuter or passenger train that has in its... Class I or IA brake test. Passenger equipment hauled or used in service in a commuter or passenger train... brakes. Commuter, short-distance intercity, and short-distance Tier II passenger trains which...

  17. 49 CFR 232.207 - Class IA brake tests-1,000-mile inspection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Class IA brake tests-1,000-mile inspection. 232... Class IA brake tests—1,000-mile inspection. (a) Except as provided in § 232.213, each train shall receive a Class IA brake test performed by a qualified person, as defined in § 232.5, at a location...

  18. 49 CFR 232.207 - Class IA brake tests-1,000-mile inspection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Class IA brake tests-1,000-mile inspection. 232... Class IA brake tests—1,000-mile inspection. (a) Except as provided in § 232.213, each train shall receive a Class IA brake test performed by a qualified person, as defined in § 232.5, at a location...

  19. 49 CFR 232.207 - Class IA brake tests-1,000-mile inspection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Class IA brake tests-1,000-mile inspection. 232... Class IA brake tests—1,000-mile inspection. (a) Except as provided in § 232.213, each train shall receive a Class IA brake test performed by a qualified person, as defined in § 232.5, at a location...

  20. 49 CFR 232.207 - Class IA brake tests-1,000-mile inspection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Class IA brake tests-1,000-mile inspection. 232... Class IA brake tests—1,000-mile inspection. (a) Except as provided in § 232.213, each train shall receive a Class IA brake test performed by a qualified person, as defined in § 232.5, at a location...

  1. 49 CFR 232.207 - Class IA brake tests-1,000-mile inspection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Class IA brake tests-1,000-mile inspection. 232... Class IA brake tests—1,000-mile inspection. (a) Except as provided in § 232.213, each train shall receive a Class IA brake test performed by a qualified person, as defined in § 232.5, at a location...

  2. 49 CFR 571.122a - Standard No. 122; Motorcycle brake systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Standard No. 122; Motorcycle brake systems. 571... Federal Motor Vehicle Safety Standards § 571.122a Standard No. 122; Motorcycle brake systems. S1. Scope. This standard specifies performance requirements for motorcycle brake systems. S2. Purpose. The...

  3. Real-Time Adaptive Control Allocation Applied to a High Performance Aircraft

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Lallman, Frederick J.; Bundick, W. Thomas

    2001-01-01

    Abstract This paper presents the development and application of one approach to the control of aircraft with large numbers of control effectors. This approach, referred to as real-time adaptive control allocation, combines a nonlinear method for control allocation with actuator failure detection and isolation. The control allocator maps moment (or angular acceleration) commands into physical control effector commands as functions of individual control effectiveness and availability. The actuator failure detection and isolation algorithm is a model-based approach that uses models of the actuators to predict actuator behavior and an adaptive decision threshold to achieve acceptable false alarm/missed detection rates. This integrated approach provides control reconfiguration when an aircraft is subjected to actuator failure, thereby improving maneuverability and survivability of the degraded aircraft. This method is demonstrated on a next generation military aircraft Lockheed-Martin Innovative Control Effector) simulation that has been modified to include a novel nonlinear fluid flow control control effector based on passive porosity. Desktop and real-time piloted simulation results demonstrate the performance of this integrated adaptive control allocation approach.

  4. Safety brake for tape reels

    NASA Technical Reports Server (NTRS)

    Carle, C. E.

    1977-01-01

    All-mechanical device senses end of tape and stops reel, even in event of electronic system failure. Assembly includes stop to prevent brake from overriding tape. Recentering mechanism returns brake to neutral position after torque is removed from reels.

  5. Perceptual learning and the visual control of braking.

    PubMed

    Fajen, Brett R

    2008-08-01

    Performance on a visually guided action may improve with practice because observers become perceptually attuned to more reliable optical information. Fajen and Devaney (2006) investigated perceptual attunement, using an emergency braking task in which subjects waited until the last possible moment before slamming on the brakes. The subjects in that study learned to use more reliable optical variables with practice, allowing them to perform the task more successfully across changes in the size of the approached object and the speed of approach. In Experiment 1 of the present study, subjects completed blocks of normal, regulated braking before and after practice on emergency braking. Size and speed effects that were present at early stages diminished or were eliminated after practice, suggesting that perceptual attunement resulting from practice on emergency braking transfers to normal, regulated braking. In Experiment 2, practice on regulated braking alone also resulted in perceptual attunement. The findings suggest that braking is not always guided on the basis of an optical invariant and that perceptual attunement plays an important role in learning to perform a visually guided action.

  6. Brake-By-Wire Program

    DTIC Science & Technology

    2006-05-31

    SUPPLEMENTARY NOTES Report contains color. 14. ABSTRACT Two design iterations for electric calipers and two systems (full brake by wire and hybrid brakes ...were developed for use on a ground vehicle. The program demonstrated a fully integrated electric caliper and full brake -by-wire system on a sports...release. Project Context The development of an electric brake caliper and associated systems for automotive application represented a significant

  7. Disorienting effects of aircraft catapult launchings: III. Cockpit displays and piloting performance.

    PubMed

    Cohen, M M

    1977-09-01

    Accelerations closely approximating those encountered in catapult launchings of carrier-based aircraft were generated on the Naval Air Development Center's human centrifuge Dynamic Flight Simulator. Flight instruments, controls, and flight dynamics of an A-7 aircraft were provided to four experienced Naval Aviators, who exercised closed-loop control of a simulated climbout immediately after they were exposed to the accelerations. Four experimental conditions were employed for each aviator: 1) no operational flight instruments, 2) conventional flight instruments, 3) a single carrier takeoff director display operating concurrently. Measures of flight parameters, including indicated airspeed, angle of attack, rate of climb, altitude, pitch attitude, and pitch trim adjustment were monitored throughout the simulation. Subjective reactions and piloting performance were examined under each of the four conditions. Results indicate that the carrier takeoff director display significantly reduced pilot workload and enhanced performance during the climbout.

  8. Graphical User Interface for the NASA FLOPS Aircraft Performance and Sizing Code

    NASA Technical Reports Server (NTRS)

    Lavelle, Thomas M.; Curlett, Brian P.

    1994-01-01

    XFLOPS is an X-Windows/Motif graphical user interface for the aircraft performance and sizing code FLOPS. This new interface simplifies entering data and analyzing results, thereby reducing analysis time and errors. Data entry is simpler because input windows are used for each of the FLOPS namelists. These windows contain fields to input the variable's values along with help information describing the variable's function. Analyzing results is simpler because output data are displayed rapidly. This is accomplished in two ways. First, because the output file has been indexed, users can view particular sections with the click of a mouse button. Second, because menu picks have been created, users can plot engine and aircraft performance data. In addition, XFLOPS has a built-in help system and complete on-line documentation for FLOPS.

  9. Evaluation of bio-inspired morphing concepts with regard to aircraft dynamics and performance

    NASA Astrophysics Data System (ADS)

    Wickenheiser, Adam M.; Garcia, Ephrahim; Waszak, Martin

    2004-07-01

    This paper will discuss the application of various bio-inspired morphing concepts to unmanned aerial vehicle (UAV) designs. Several analysis tools will be introduced to calculate the aerodynamic benefits, dynamic response, and mission-level benefits of morphing shape changes. Empirical relations are employed to calculate the effects of various geometry changes on the aerodynamics of the vehicle. A six-degree-of-freedom simulation will evaluate the stability and dynamic response of each vehicle configuration as well as "snapshots" of the morphing change. Subsequently, an aircraft performance analysis will be conducted for various shape configurations. Specifically, the performance of a bio-inspired wing is compared to conventional designs. The aircraft dynamic improvements that morphing technologies introduce will be discussed.

  10. A Comparative Study on Automotive Brake Testing Standards

    NASA Astrophysics Data System (ADS)

    Kumbhar, Bhau Kashinath; Patil, Satyajit Ramchandra; Sawant, Suresh Maruti

    2016-06-01

    Performance testing of automotive brakes involves determination of stopping time, distance and deceleration level. Braking performance of an automobile is required to be ensured for various surfaces like dry, wet, concrete, bitumen etc. as well as for prolonged applications. Various brake testing standards are used worldwide to assure vehicle and pedestrian safety. This article presents methodologies used for automotive service brake testing for two wheelers. The main contribution of this work lies in comparative study of three main brake testing standards; viz. Indian Standards, Federal Motor Vehicle Safety Standards and European Economic Commission Standards. This study shall help the policy makers to choose the best criteria out of these three while formulating newer edition of testing standards.

  11. An experimental evaluation of the performance deficit of an aircraft engine starter turbine

    NASA Technical Reports Server (NTRS)

    Hass, J. E.; Roelke, R. J.; Hermann, P.

    1980-01-01

    An experimental investigation was made to determine the reasons for the low aerodynamic performance of a 13.5 centimeter tip diameter aircraft engine starter turbine. The investigation consisted of an evaluation of both the stator and the stage. An approximate ten percent improvement in turbine efficiency was obtained when the honeycomb shroud over the rotor blade tips was filled to obtain a solid shroud surface.

  12. A multi-layer robust adaptive fault tolerant control system for high performance aircraft

    NASA Astrophysics Data System (ADS)

    Huo, Ying

    Modern high-performance aircraft demand advanced fault-tolerant flight control strategies. Not only the control effector failures, but the aerodynamic type failures like wing-body damages often result in substantially deteriorate performance because of low available redundancy. As a result the remaining control actuators may yield substantially lower maneuvering capabilities which do not authorize the accomplishment of the air-craft's original specified mission. The problem is to solve the control reconfiguration on available control redundancies when the mission modification is urged to save the aircraft. The proposed robust adaptive fault-tolerant control (RAFTC) system consists of a multi-layer reconfigurable flight controller architecture. It contains three layers accounting for different types and levels of failures including sensor, actuator, and fuselage damages. In case of the nominal operation with possible minor failure(s) a standard adaptive controller stands to achieve the control allocation. This is referred to as the first layer, the controller layer. The performance adjustment is accounted for in the second layer, the reference layer, whose role is to adjust the reference model in the controller design with a degraded transit performance. The upmost mission adjust is in the third layer, the mission layer, when the original mission is not feasible with greatly restricted control capabilities. The modified mission is achieved through the optimization of the command signal which guarantees the boundedness of the closed-loop signals. The main distinguishing feature of this layer is the the mission decision property based on the current available resources. The contribution of the research is the multi-layer fault-tolerant architecture that can address the complete failure scenarios and their accommodations in realities. Moreover, the emphasis is on the mission design capabilities which may guarantee the stability of the aircraft with restricted post

  13. A Performance Measurement System for the Aircraft Intermediate Maintenance Department Officer

    DTIC Science & Technology

    1976-06-01

    Air Station or ship and performs intermediate level maintenance on aircraft remuovable V components such as engines, avionic ec•uipment, ejection...seats, etc. In resource management terminolcgy, a shore-based AIMD is Al a cost center of a Naval Air Station which is designated as a responsibility...parent Naval Air Station . Thus, the purpose of the management control process is to accomplish the stated organizational objectives, effectively and

  14. Brake Fluid Compatibility with Hardware

    DTIC Science & Technology

    2014-05-19

    had two servo valves for each wheel. One of the wheel servo valves controlled pressurized fluid to the brake calipers , while the second servo valve...was responsible for anti-lock or brake release action by relieving caliper circuit pressure back to the reservoir. Brake circuit action was initiated...

  15. Predicted Performance of a Thrust-Enhanced SR-71 Aircraft with an External Payload

    NASA Technical Reports Server (NTRS)

    Conners, Timothy R.

    1997-01-01

    NASA Dryden Flight Research Center has completed a preliminary performance analysis of the SR-71 aircraft for use as a launch platform for high-speed research vehicles and for carrying captive experimental packages to high altitude and Mach number conditions. Externally mounted research platforms can significantly increase drag, limiting test time and, in extreme cases, prohibiting penetration through the high-drag, transonic flight regime. To provide supplemental SR-71 acceleration, methods have been developed that could increase the thrust of the J58 turbojet engines. These methods include temperature and speed increases and augmentor nitrous oxide injection. The thrust-enhanced engines would allow the SR-71 aircraft to carry higher drag research platforms than it could without enhancement. This paper presents predicted SR-71 performance with and without enhanced engines. A modified climb-dive technique is shown to reduce fuel consumption when flying through the transonic flight regime with a large external payload. Estimates are included of the maximum platform drag profiles with which the aircraft could still complete a high-speed research mission. In this case, enhancement was found to increase the SR-71 payload drag capability by 25 percent. The thrust enhancement techniques and performance prediction methodology are described.

  16. Copper leaching from brake wear debris in standard extraction solutions.

    PubMed

    Hur, Jin; Yim, Soobin; Schlautman, Mark A

    2003-10-01

    Quantification of the copper content of and copper leaching from a disc brake wear debris sample was performed using microwave-assisted acid digestion, the Federal Toxicity Characteristic Leaching Procedure (TCLP), and the State of California Waste Extraction Test (WET). The brake wear debris tested was a composite sample obtained from a brake dynamometer test of one brake pad source material. Comparative digestion studies demonstrated that a modified aqua regia matrix (HNO3:HCl:H2O2 = 1:3:0.5) optimized the digestion effectiveness for determining the total copper content in the brake wear debris. No significant sample heterogeneity within the brake wear debris was observed, based on statistically indistinguishable total copper content results for subsamples with a wide range of sample masses. Upon pooling all subsample results, an overall total copper content for the composite brake wear debris sample was determined to be 10.8% (g/g), with a 95% confidence limit of +/- 0.5% (g/g). Copper leaching increased with decreasing solid-to-liquid ratios in TCLP tests, but was unaffected by the solid-to-liquid ratio in the WET. For a 1:10(4) (g/g) solid-to-liquid ratio, 85% and 99% of the total mass of copper present in the composite brake wear debris sample was leached into solution during the TCLP and WET, respectively. Rate studies also demonstrated that the WET resulted in a faster rate and higher extent of copper leaching relative to the TCLP. Compared to reference copper-containing materials, the composite brake wear debris sample exhibited relatively higher TCLP and WET copper leaching characteristics. The higher copper leaching exhibited by the brake wear debris sample may have resulted from its higher specific surface area and/or from changes in the chemical form of copper that occurred during the braking process.

  17. Optimal Tuner Selection for Kalman-Filter-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2011-01-01

    An emerging approach in the field of aircraft engine controls and system health management is the inclusion of real-time, onboard models for the inflight estimation of engine performance variations. This technology, typically based on Kalman-filter concepts, enables the estimation of unmeasured engine performance parameters that can be directly utilized by controls, prognostics, and health-management applications. A challenge that complicates this practice is the fact that an aircraft engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. Through Kalman-filter-based estimation techniques, the level of engine performance degradation can be estimated, given that there are at least as many sensors as health parameters to be estimated. However, in an aircraft engine, the number of sensors available is typically less than the number of health parameters, presenting an under-determined estimation problem. A common approach to address this shortcoming is to estimate a subset of the health parameters, referred to as model tuning parameters. The problem/objective is to optimally select the model tuning parameters to minimize Kalman-filterbased estimation error. A tuner selection technique has been developed that specifically addresses the under-determined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine that seeks to minimize the theoretical mean-squared estimation error of the Kalman filter. This approach can significantly reduce the error in onboard aircraft engine parameter estimation

  18. Exploration of the Trade Space Between Unmanned Aircraft Systems Descent Maneuver Performance and Sense-and-Avoid System Performance Requirements

    NASA Technical Reports Server (NTRS)

    Jack, Devin P.; Hoffler, Keith D.; Johnson, Sally C.

    2014-01-01

    A need exists to safely integrate Unmanned Aircraft Systems (UAS) into the United States' National Airspace System. Replacing manned aircraft's see-and-avoid capability in the absence of an onboard pilot is one of the key challenges associated with safe integration. Sense-and-avoid (SAA) systems will have to achieve yet-to-be-determined required separation distances for a wide range of encounters. They will also need to account for the maneuver performance of the UAS they are paired with. The work described in this paper is aimed at developing an understanding of the trade space between UAS maneuver performance and SAA system performance requirements, focusing on a descent avoidance maneuver. An assessment of current manned and unmanned aircraft performance was used to establish potential UAS performance test matrix bounds. Then, near-term UAS integration work was used to narrow down the scope. A simulator was developed with sufficient fidelity to assess SAA system performance requirements. The simulator generates closest-point-of-approach (CPA) data from the wide range of UAS performance models maneuvering against a single intruder with various encounter geometries. Initial attempts to model the results made it clear that developing maneuver performance groups is required. Discussion of the performance groups developed and how to know in which group an aircraft belongs for a given flight condition and encounter is included. The groups are airplane, flight condition, and encounter specific, rather than airplane-only specific. Results and methodology for developing UAS maneuver performance requirements are presented for a descent avoidance maneuver. Results for the descent maneuver indicate that a minimum specific excess power magnitude can assure a minimum CPA for a given time-to-go prediction. However, smaller amounts of specific excess power may achieve or exceed the same CPA if the UAS has sufficient speed to trade for altitude. The results of this study will

  19. Study to determine operational and performance criteria for STOL aircraft operating in low visibility conditions

    NASA Technical Reports Server (NTRS)

    Gorham, J. A.

    1978-01-01

    The operational and performance criteria for civil CTOL passenger-carrying airplanes landing in low visibilities depend upon the characteristics of the airplane, the nature and use of the ground and airborne guidance and control systems, and the geometry and lighting of the landing field. Based upon these criteria, FAA advisory circulars, airplane and equipment design characteristics, and airline operational and maintenance procedures were formulated. The documents are selected, described, and discussed in relationship to the potential low weather minima operation of STOL aircraft. An attempt is made to identify fundamental differences between CTOL and STOL aircraft characteristics which could impact upon existing CTOL documentation. Further study and/or flight experiments are recommended.

  20. Aerodynamic Parameters of High Performance Aircraft Estimated from Wind Tunnel and Flight Test Data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Murphy, Patrick C.

    1998-01-01

    A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares an mixed estimation methods, At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.

  1. An Integrated Architecture for Aircraft Engine Performance Monitoring and Fault Diagnostics: Engine Test Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Aidan W.; Simon, Donald L.

    2015-01-01

    This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.

  2. A Theory for the Roll-Ratchet Phenomenon in High Performance Aircraft

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1997-01-01

    Roll-ratchet refers to a high frequency oscillation which can occur in pilot-in-the-loop control of roll attitude in high performance aircraft. The frequencies of oscillation are typically well beyond those associated with the more familiar pilot-induced oscillation. A structural model of the human pilot which has been employed to provide a unified theory for aircraft handling qualities and pilot-induced oscillations is employed here to provide a theory for the existence of roll-ratchet. It is hypothesized and demonstrated using the structural model that the pilot's inappropriate use of vestibular acceleration feedback can cause this phenomenon, a possibility which has been discussed previously by other researchers. The possible influence of biodynamic feedback on roll ratchet is also discussed.

  3. A.I.-based real-time support for high performance aircraft operations

    NASA Technical Reports Server (NTRS)

    Vidal, J. J.

    1985-01-01

    Artificial intelligence (AI) based software and hardware concepts are applied to the handling system malfunctions during flight tests. A representation of malfunction procedure logic using Boolean normal forms are presented. The representation facilitates the automation of malfunction procedures and provides easy testing for the embedded rules. It also forms a potential basis for a parallel implementation in logic hardware. The extraction of logic control rules, from dynamic simulation and their adaptive revision after partial failure are examined. It uses a simplified 2-dimensional aircraft model with a controller that adaptively extracts control rules for directional thrust that satisfies a navigational goal without exceeding pre-established position and velocity limits. Failure recovery (rule adjusting) is examined after partial actuator failure. While this experiment was performed with primitive aircraft and mission models, it illustrates an important paradigm and provided complexity extrapolations for the proposed extraction of expertise from simulation, as discussed. The use of relaxation and inexact reasoning in expert systems was also investigated.

  4. An Integrated Architecture for Aircraft Engine Performance Monitoring and Fault Diagnostics: Engine Test Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Aidan W.; Simon, Donald L.

    2014-01-01

    This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.

  5. Design optimization of a magnetorheological brake in powered knee orthosis

    NASA Astrophysics Data System (ADS)

    Ma, Hao; Liao, Wei-Hsin

    2015-04-01

    Magneto-rheological (MR) fluids have been utilized in devices like orthoses and prostheses to generate controllable braking torque. In this paper, a flat shape rotary MR brake is designed for powered knee orthosis to provide adjustable resistance. Multiple disk structure with interior inner coil is adopted in the MR brake configuration. In order to increase the maximal magnetic flux, a novel internal structure design with smooth transition surface is proposed. Based on this design, a parameterized model of the MR brake is built for geometrical optimization. Multiple factors are considered in the optimization objective: braking torque, weight, and, particularly, average power consumption. The optimization is then performed with Finite Element Analysis (FEA), and the optimal design is obtained among the Pareto-optimal set considering the trade-offs in design objectives.

  6. Effect of lead-aircraft ground-speed on self-spacing performance using a cockpit display of traffic information

    NASA Technical Reports Server (NTRS)

    Kelly, J. R.

    1983-01-01

    A simulator investigation was conducted to determine the effect of the lead-aircraft ground-speed quantization level on self-spacing performance using a Cockpit Display of Traffic Information (CDTI). The study utilized a simulator employing cathode-ray tubes for the primary flight and navigation displays and highly augmented flight control modes. The pilot's task was to follow, and self-space on, a lead aircraft which was performing an idle-thrust profile descent to an instrument landing system (ILS) approach and landing. The spacing requirement was specified in terms of both a minimum distance and a time interval. The results indicate that the ground-speed quantization level, lead-aircraft scenario, and pilot technique had a significant effect on self-spacing performance. However, the ground-speed quantization level only had a significant effect on the performance when the lead aircraft flew a fast final approach.

  7. Heat distribution in disc brake

    NASA Astrophysics Data System (ADS)

    Klimenda, Frantisek; Soukup, Josef; Kampo, Jan

    2016-06-01

    This article is deals by the thermal analysis of the disc brake with floating caliper. The issue is solved by numerically. The half 2D model is used for solution in program ADINA 8.8. Two brake discs without the ventilation are solved. One disc is made from cast iron and the second is made from stainless steel. Both materials are an isotropic. By acting the pressure force on the brake pads will be pressing the pads to the brake disc. Speed will be reduced (slowing down). On the contact surface generates the heat, which the disc and pads heats. In the next part of article is comparison the maximum temperature at the time of braking. The temperatures of both materials for brake disc (gray cast iron, stainless steel) are compares. The heat flux during braking for the both materials is shown.

  8. Navigation performance of the Triscan concept for shipboard VTOL aircraft operations

    NASA Technical Reports Server (NTRS)

    Mcgee, L. A.; Schmidt, S. F.; Miyashiro, S. K.

    1978-01-01

    The paper deals with the Triscan concept - a dual-antenna microwave landing guidance system, using triangulation for close-in accuracy - developed to facilitate the landing of VTOL aircraft on ships in all-weather conditions. Analysis of the navigation performance of an onboard system receiving data from Triscan and data-linked information regarding the motion of the ship showed that the approach navigation performance depends on the approach path profile flown, the magnitude of the measurement bias error, and the navigation system's knowledge of the shipboard landing pad motion, which was implemented through the concept of a landing pad deviation vector.

  9. Preliminary investigation of effects of heavy rain on the performance of aircraft

    NASA Technical Reports Server (NTRS)

    Lee, O. W. K.

    1982-01-01

    A guideline was defined for the analysis of flight data to determine the effects of rain on the aerodynamic performance of an aircraft. It distinguishes and separates the effects of horizontal wind shears, downdrafts, gusts at the phugoid frequency, and rain based on various aerodynamic parameters. Flight data from NASA LaRC's TCV B-737 were inconclusive because precipitation rates encountered probably were not high enough. However, the guideline seemed to be valid and can be used on further flight data evaluations. Difficulties in this type of data analysis are discussed. Other indirect influences of rain on the degradation of airplane performance are also considered.

  10. Vehicle Design Evaluation Program (VDEP). A computer program for weight sizing, economic, performance and mission analysis of fuel-conservative aircraft, multibodied aircraft and large cargo aircraft using both JP and alternative fuels

    NASA Technical Reports Server (NTRS)

    Oman, B. H.

    1977-01-01

    The NASA Langley Research Center vehicle design evaluation program (VDEP-2) was expanded by (1) incorporating into the program a capability to conduct preliminary design studies on subsonic commercial transport type aircraft using both JP and such alternate fuels as hydrogen and methane;(2) incorporating an aircraft detailed mission and performance analysis capability; and (3) developing and incorporating an external loads analysis capability. The resulting computer program (VDEP-3) provides a preliminary design tool that enables the user to perform integrated sizing, structural analysis, and cost studies on subsonic commercial transport aircraft. Both versions of the VDEP-3 Program which are designated preliminary Analysis VDEP-3 and detailed Analysis VDEP utilize the same vehicle sizing subprogram which includes a detailed mission analysis capability, as well as a geometry and weight analysis for multibodied configurations.

  11. Braking index of isolated pulsars

    NASA Astrophysics Data System (ADS)

    Hamil, O.; Stone, J. R.; Urbanec, M.; Urbancová, G.

    2015-03-01

    moment of inertia and other macroscopic properties of rotating neutron stars. The calculations are performed for fixed values of MB (as masses of isolated pulsars are not known) ranging from 1.0 - 2.2 M⊙ , and fixed magnetic dipole moment and inclination angle between the rotational and magnetic field axes. The results are used to solve for the value of the braking index as a function of frequency, and find the effect of the choice of the EoS, MB. The density profile of a star with a given MB is calculated to determine the transition between the crust and the core and used in estimation of the effect of core superfluidity on the braking index. Our results show conclusively that, within the model used in this work, any significant deviation of the braking index away from the value n =3 occurs at frequencies higher than about ten times the frequency of the slow rotating isolated pulsars most accurately measured to date. The rate of change of n with frequency is related to the softness of the EoS and the MB of the star as this controls the degree of departure from sphericity. Change in the moment of inertia in the MDR model alone, even with the more realistic features considered here, cannot explain the observational data on the braking index and other mechanisms have to be sought.

  12. AGFATL- ACTIVE GEAR FLEXIBLE AIRCRAFT TAKEOFF AND LANDING ANALYSIS

    NASA Technical Reports Server (NTRS)

    Mcgehee, J. R.

    1994-01-01

    The Active Gear, Flexible Aircraft Takeoff and Landing Analysis program, AGFATL, was developed to provide a complete simulation of the aircraft takeoff and landing dynamics problem. AGFATL can represent an airplane either as a rigid body with six degrees of freedom or as a flexible body with multiple degrees of freedom. The airframe flexibility is represented by the superposition of up to twenty free vibration modes on the rigid-body motions. The analysis includes maneuver logic and autopilots programmed to control the aircraft during glide slope, flare, landing, and takeoff. The program is modular so that performance of the aircraft in flight and during landing and ground maneuvers can be studied separately or in combination. A program restart capability is included in AGFATL. Effects simulated in the AGFATL program include: (1) flexible aircraft control and performance during glide slope, flare, landing roll, and takeoff roll under conditions of changing winds, engine failures, brake failures, control system failures, strut failures, restrictions due to runway length, and control variable limits and time lags; (2) landing gear loads and dynamics for up to five gears; (3) single and multiple engines (maximum of four) including selective engine reversing and failure; (4) drag chute and spoiler effects; (5) wheel braking (including skid-control) and selective brake failure; (6) aerodynamic ground effects; (7) aircraft carrier operations; (8) inclined runways and runway perturbations; (9) flexible or rigid airframes; 10) rudder and nose gear steering; and 11) actively controlled landing gear shock struts. Input to the AGFATL program includes data which describe runway roughness; vehicle geometry, flexibility and aerodynamic characteristics; landing gear(s); propulsion; and initial conditions such as attitude, attitude change rates, and velocities. AGFATL performs a time integration of the equations of motion and outputs comprehensive information on the airframe

  13. Performance of an Electro-Hydrostatic Actuator on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    1997-01-01

    An electro-hydrostatic actuator was evaluated at NASA Dryden Flight Research Center, Edwards, California. The primary goal of testing this actuator system was the flight demonstration of power-by-wire technology on a primary flight control surface. The electro-hydrostatic actuator uses an electric motor to drive a hydraulic pump and relies on local hydraulics for force transmission. This actuator replaced the F-18 standard left aileron actuator on the F-18 Systems Research Aircraft and was evaluated throughout the Systems Research Aircraft flight envelope. As of July 24, 1997 the electro-hydrostatic actuator had accumulated 23.5 hours of flight time. This paper presents the electro-hydrostatic actuator system configuration and component description, ground and flight test plans, ground and flight test results, and lessons learned. This actuator performs as well as the standard actuator and has more load capability than required by aileron actuator specifications of McDonnell- Douglas Aircraft, St. Louis, Missouri. The electro-hydrostatic actuator system passed all of its ground tests with the exception of one power-off test during unloaded dynamic cycling.

  14. Common display performance requirements for military and commercial aircraft product lines

    NASA Astrophysics Data System (ADS)

    Hoener, Steven J.; Behrens, Arthur J.; Flint, John R.; Jacobsen, Alan R.

    2001-09-01

    Obtaining high quality Active Matrix Liquid Crystal (AMLCD) glass to meet the needs of the commercial and military aerospace business is a major challenge, at best. With the demise of all domestic sources of AMLCD substrate glass, the industry is now focused on overseas sources, which are primarily producing glass for consumer electronics. Previous experience with ruggedizing commercial glass leads to the expectation that the aerospace industry can leverage off the commercial market. The problem remains, while the commercial industry is continually changing and improving its products, the commercial and military aerospace industries require stable and affordable supplies of AMLCD glass for upwards of 20 years to support production and maintenance operations. The Boeing Engineering and Supplier Management Process Councils have chartered a group of displays experts from multiple aircraft product divisions within the Boeing Company, the Displays Process Action Team (DPAT), to address this situation from an overall corporate perspective. The DPAT has formulated a set of Common Displays Performance Requirements for use across the corporate line of commercial and military aircraft products. Though focused on the AMLCD problem, the proposed common requirements are largely independent of display technology. This paper describes the strategy being pursued within the Boeing Company to address the AMLCD supply problem and details the proposed implementation process, centered on common requirements for both commercial and military aircraft displays. Highlighted in this paper are proposed common, or standard, display sizes and the other major requirements established by the DPAT, along with the rationale for these requirements.

  15. Exploring QDES as a Tool for Determining Limits of Achievable Performance in Aircraft Design

    DTIC Science & Technology

    1993-12-01

    Standard Feedback Diagram y: Sensed Outputs. Output signals that are accessible to the controller. These must be measurable. For the aircraft longitudinal axis...of an aircraft to pushover more than two or tbree g’s is not of great operational importance. 4.3 Aircraft Model The aircraft longitudinal model used...Appendix (A), section (A.1). 4.4 Inner Loop Pitch SAS Theory Control of an aircraft longitudinal axis which exhibits the classical Short Period and Phugoid

  16. EEG potentials predict upcoming emergency brakings during simulated driving

    NASA Astrophysics Data System (ADS)

    Haufe, Stefan; Treder, Matthias S.; Gugler, Manfred F.; Sagebaum, Max; Curio, Gabriel; Blankertz, Benjamin

    2011-10-01

    Emergency braking assistance has the potential to prevent a large number of car crashes. State-of-the-art systems operate in two stages. Basic safety measures are adopted once external sensors indicate a potential upcoming crash. If further activity at the brake pedal is detected, the system automatically performs emergency braking. Here, we present the results of a driving simulator study indicating that the driver's intention to perform emergency braking can be detected based on muscle activation and cerebral activity prior to the behavioural response. Identical levels of predictive accuracy were attained using electroencephalography (EEG), which worked more quickly than electromyography (EMG), and using EMG, which worked more quickly than pedal dynamics. A simulated assistance system using EEG and EMG was found to detect emergency brakings 130 ms earlier than a system relying only on pedal responses. At 100 km h-1 driving speed, this amounts to reducing the braking distance by 3.66 m. This result motivates a neuroergonomic approach to driving assistance. Our EEG analysis yielded a characteristic event-related potential signature that comprised components related to the sensory registration of a critical traffic situation, mental evaluation of the sensory percept and motor preparation. While all these components should occur often during normal driving, we conjecture that it is their characteristic spatio-temporal superposition in emergency braking situations that leads to the considerable prediction performance we observed.

  17. EEG potentials predict upcoming emergency brakings during simulated driving.

    PubMed

    Haufe, Stefan; Treder, Matthias S; Gugler, Manfred F; Sagebaum, Max; Curio, Gabriel; Blankertz, Benjamin

    2011-10-01

    Emergency braking assistance has the potential to prevent a large number of car crashes. State-of-the-art systems operate in two stages. Basic safety measures are adopted once external sensors indicate a potential upcoming crash. If further activity at the brake pedal is detected, the system automatically performs emergency braking. Here, we present the results of a driving simulator study indicating that the driver's intention to perform emergency braking can be detected based on muscle activation and cerebral activity prior to the behavioural response. Identical levels of predictive accuracy were attained using electroencephalography (EEG), which worked more quickly than electromyography (EMG), and using EMG, which worked more quickly than pedal dynamics. A simulated assistance system using EEG and EMG was found to detect emergency brakings 130 ms earlier than a system relying only on pedal responses. At 100 km h(-1) driving speed, this amounts to reducing the braking distance by 3.66 m. This result motivates a neuroergonomic approach to driving assistance. Our EEG analysis yielded a characteristic event-related potential signature that comprised components related to the sensory registration of a critical traffic situation, mental evaluation of the sensory percept and motor preparation. While all these components should occur often during normal driving, we conjecture that it is their characteristic spatio-temporal superposition in emergency braking situations that leads to the considerable prediction performance we observed.

  18. An Integrated Approach for Aircraft Engine Performance Estimation and Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    imon, Donald L.; Armstrong, Jeffrey B.

    2012-01-01

    A Kalman filter-based approach for integrated on-line aircraft engine performance estimation and gas path fault diagnostics is presented. This technique is specifically designed for underdetermined estimation problems where there are more unknown system parameters representing deterioration and faults than available sensor measurements. A previously developed methodology is applied to optimally design a Kalman filter to estimate a vector of tuning parameters, appropriately sized to enable estimation. The estimated tuning parameters can then be transformed into a larger vector of health parameters representing system performance deterioration and fault effects. The results of this study show that basing fault isolation decisions solely on the estimated health parameter vector does not provide ideal results. Furthermore, expanding the number of the health parameters to address additional gas path faults causes a decrease in the estimation accuracy of those health parameters representative of turbomachinery performance deterioration. However, improved fault isolation performance is demonstrated through direct analysis of the estimated tuning parameters produced by the Kalman filter. This was found to provide equivalent or superior accuracy compared to the conventional fault isolation approach based on the analysis of sensed engine outputs, while simplifying online implementation requirements. Results from the application of these techniques to an aircraft engine simulation are presented and discussed.

  19. The measurement of aircraft performance and stability and control after flight through natural icing conditions

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.; Mikkelsen, K. L.; Mcknight, R. C.; Ide, R. F.; Reehorst, A. L.; Jordan, J. L.; Schinstock, W. C.; Platz, S. J.

    1986-01-01

    The effects of airframe icing on the performance and stability and control of a twin-engine commuter-class aircraft were measured by the NASA Lewis Research Center. This work consisted of clear air tests with artificial ice shapes attached to the horizontal tail, and natural icing flight tests in measured icing clouds. The clear air tests employed static longitudinal flight test methods to determine degradation in stability margins for four simulated ice shapes. The natural icing flight tests employed a data acquisition system, which was provided under contract to NASA by Kohlman Systems Research Incorporated. This system used a performance modeling method and modified maximum likelihood estimation (MMLE) technique to determine aircraft performance degradation and stability and control. Flight test results with artificial ice shapes showed that longitudinal, stick-fixed, static margins are reduced on the order of 5 percent with flaps up. Natural icing tests with the KSR system corroborated these results and showed degradation in the elevator control derivatives on the order of 8 to 16 percent depending on wing flap configuration. Performance analyses showed the individual contributions of major airframe components to the overall degration in lift and drag.

  20. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  1. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  2. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  3. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  4. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 6 2012-10-01 2012-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  5. Effect of at-the-source noise reduction on performance and weights of a tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Gibs, J.; Stepniewski, W. Z.; Spencer, R.

    1975-01-01

    Reduction of far-field acoustic signature through modification of basic design parameters (tip speed, number of blades, disc loading and rotor blade area) was examined, using a tilt-rotor flight research aircraft as a baseline configuration. Of those design parameters, tip speed appeared as the most important. Next, preliminary design of two aircraft was performed, postulating the following reduction of noise level from that of the baseline machine, at 500 feet from the spot of OGE hover. In one aircraft, the PNL was lowered by 10 PNdB and in the other, OASPL decreased by 10 dB. The resulting weight and performance penalties were examined. Then, PNL and EPNL aspects of terminal operation were compared for the baseline and quieter aircraft.

  6. Theoretical and experimental studies on a magnetorheological brake operating under compression plus shear mode

    NASA Astrophysics Data System (ADS)

    Sarkar, C.; Hirani, H.

    2013-11-01

    The torque characteristics of magnetorheological brakes, consisting of rotating disks immersed in a MR fluid and enclosed in an electromagnetic casing, are controlled by regulating the yield stress of the MR fluid. An increase in yield stress increases the braking torque, which means that the higher the yield strength of the MR fluid, the better the performance of the MR brake will be. In the present research an application of compressive force on MR fluid has been proposed to increase the torque capacity of MR brakes. The mathematical expressions to estimate the torque values for MR brake, operating under compression plus shear mode accounting Herschel-Bulkley shear thinning model, have been detailed. The required compressive force on MR fluid of the proposed brake has been applied using an electromagnetic actuator. The development of a single-plate MR disk brake and an experimental test rig are described. Experiments have been performed to illustrate braking torque under different control currents (0.0-2.0 A). The torque results have been plotted and compared with theoretical study. Experimental results as well as theoretical calculations indicate that the braking torque of the proposed MR brake is higher than that of the MR brake operating only under shear.

  7. Aircraft hydraulic systems. Third edition

    SciTech Connect

    Neese, W.A.

    1991-12-31

    The first nine chapters concern hydraulic components including: tubing, hoses, fittings, seals, pumps, valves, cylinders, and motors. General hydraulic system considerations are included in chapters five and nine, while pneumatic systems are covered in chapter ten. Chapters eleven through fifteen are devoted to aircraft-specific systems such as: landing gear, flight controls, brakes, etc. The material is rounded out with excerpts from the Canadair Challenger 601 training guide to illustrate the use of hydraulic systems in a specific aircraft application.

  8. Experiments with airplane brakes

    NASA Technical Reports Server (NTRS)

    Michael, Franz

    1931-01-01

    This report begins by examining the forces on the brake shoes. For the determination of the load distribution over the shoes it was assumed that the brake linings follow Hooke's law, are neatly fitted and bedded in by wear. The assumption of Hooke's law, that is, the proportionality between compression of the lining and the absorption of force, is fulfilled to a certain extent for the loading, as becomes apparent from the load tests described further on. But there is a material discrepancy at unloading. From the load distribution we merely defined the position of the normal force resultant, while for the rest, the effect of the distribution was disregarded in the comparison of the different shoe dispositions.

  9. Turbulence modeling of free shear layers for high-performance aircraft

    NASA Technical Reports Server (NTRS)

    Sondak, Douglas L.

    1993-01-01

    The High Performance Aircraft (HPA) Grand Challenge of the High Performance Computing and Communications (HPCC) program involves the computation of the flow over a high performance aircraft. A variety of free shear layers, including mixing layers over cavities, impinging jets, blown flaps, and exhaust plumes, may be encountered in such flowfields. Since these free shear layers are usually turbulent, appropriate turbulence models must be utilized in computations in order to accurately simulate these flow features. The HPCC program is relying heavily on parallel computers. A Navier-Stokes solver (POVERFLOW) utilizing the Baldwin-Lomax algebraic turbulence model was developed and tested on a 128-node Intel iPSC/860. Algebraic turbulence models run very fast, and give good results for many flowfields. For complex flowfields such as those mentioned above, however, they are often inadequate. It was therefore deemed that a two-equation turbulence model will be required for the HPA computations. The k-epsilon two-equation turbulence model was implemented on the Intel iPSC/860. Both the Chien low-Reynolds-number model and a generalized wall-function formulation were included.

  10. Optimal Tuner Selection for Kalman Filter-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2010-01-01

    A linear point design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. This paper derives theoretical Kalman filter estimation error bias and variance values at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the conventional approach of tuner selection. Experimental simulation results are found to be in agreement with theoretical predictions. The new methodology is shown to yield a significant improvement in on-line engine performance estimation accuracy

  11. A Systematic Approach for Model-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2010-01-01

    A requirement for effective aircraft engine performance estimation is the ability to account for engine degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. This paper presents a linear point design methodology for minimizing the degradation-induced error in model-based aircraft engine performance estimation applications. The technique specifically focuses on the underdetermined estimation problem, where there are more unknown health parameters than available sensor measurements. A condition for Kalman filter-based estimation is that the number of health parameters estimated cannot exceed the number of sensed measurements. In this paper, the estimated health parameter vector will be replaced by a reduced order tuner vector whose dimension is equivalent to the sensed measurement vector. The reduced order tuner vector is systematically selected to minimize the theoretical mean squared estimation error of a maximum a posteriori estimator formulation. This paper derives theoretical estimation errors at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the estimation accuracy achieved through conventional maximum a posteriori and Kalman filter estimation approaches. Maximum a posteriori estimation results demonstrate that reduced order tuning parameter vectors can be found that approximate the accuracy of estimating all health parameters directly. Kalman filter estimation results based on the same reduced order tuning parameter vectors demonstrate that significantly improved estimation accuracy can be achieved over the conventional approach of selecting a subset of health parameters to serve as the tuner vector. However, additional development is necessary to fully extend the methodology to Kalman filter

  12. Combined hydraulic and regenerative braking system

    DOEpatents

    Venkataperumal, R.R.; Mericle, G.E.

    1979-08-09

    A combined hydraulic and regenerative braking system and method for an electric vehicle is disclosed. The braking system is responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  13. Combined hydraulic and regenerative braking system

    SciTech Connect

    Venkataperumal, Rama R.; Mericle, Gerald E.

    1981-06-02

    A combined hydraulic and regenerative braking system and method for an electric vehicle, with the braking system being responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  14. 49 CFR 229.53 - Brake gauges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.53 Brake gauges. All... engineer to aid in the control or braking of the train or locomotive shall be located so that they may...

  15. 49 CFR 229.53 - Brake gauges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.53 Brake gauges. All... engineer to aid in the control or braking of the train or locomotive shall be located so that they may...

  16. 49 CFR 229.53 - Brake gauges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.53 Brake gauges. All... engineer to aid in the control or braking of the train or locomotive shall be located so that they may...

  17. 49 CFR 229.53 - Brake gauges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.53 Brake gauges. All... engineer to aid in the control or braking of the train or locomotive shall be located so that they may...

  18. 49 CFR 229.53 - Brake gauges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.53 Brake gauges. All... engineer to aid in the control or braking of the train or locomotive shall be located so that they may...

  19. Performance characteristics of a one-third-scale, vectorable ventral nozzle for SSTOVL aircraft

    NASA Technical Reports Server (NTRS)

    Esker, Barbara S.; Mcardle, Jack G.

    1990-01-01

    Several proposed configurations for supersonic short takeoff, vertical landing aircraft will require one or more ventral nozzles for lift and pitch control. The swivel nozzle is one possible ventral nozzle configuration. A swivel nozzle (approximately one-third scale) was built and tested on a generic model tailpipe. This nozzle was capable of vectoring the flow up to + or - 23 deg from the vertical position. Steady-state performance data were obtained at pressure ratios to 4.5, and pitot-pressure surveys of the nozzle exit plane were made. Two configurations were tested: the swivel nozzle with a square contour of the leading edge of the ventral duct inlet, and the same nozzle with a round leading edge contour. The swivel nozzle showed good performance overall, and the round-leading edge configuration showed an improvement in performance over the square-leading edge configuration.

  20. Hybrid Neural-Network: Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics Developed and Demonstrated

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2002-01-01

    As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.

  1. Correcting Students' Misconceptions about Automobile Braking Distances and Video Analysis Using Interactive Program Tracker

    NASA Astrophysics Data System (ADS)

    Hockicko, Peter; Trpišová, Beáta; Ondruš, Ján

    2014-12-01

    The present paper informs about an analysis of students' conceptions about car braking distances and also presents one of the novel methods of learning: an interactive computer program Tracker that we used to analyse the process of braking of a car. The analysis of the students' conceptions about car braking distances consisted in obtaining their estimates of these quantities before and after watching a video recording of a car braking from various initial speeds to a complete stop and subsequent application of mathematical statistics to the obtained sets of students' answers. The results revealed that the difference between the value of the car braking distance estimated before watching the video and the real value of this distance was not caused by a random error but by a systematic error which was due to the incorrect students' conceptions about the car braking process. Watching the video significantly improved the students' estimates of the car braking distance, and we show that in this case, the difference between the estimated value and the real value of the car braking distance was due only to a random error, i.e. the students' conceptions about the car braking process were corrected. Some of the students subsequently performed video analysis of the braking processes of cars of various brands and under various conditions by means of Tracker that gave them exact knowledge of the physical quantities, which characterize a motor vehicle braking. Interviewing some of these students brought very positive reactions to this novel method of learning.

  2. Computerized systems analysis and optimization of aircraft engine performance, weight, and life cycle costs

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.

    1979-01-01

    The computational techniques utilized to determine the optimum propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements are described. The characteristics and use of the following computer codes are discussed: (1) NNEP - a very general cycle analysis code that can assemble an arbitrary matrix fans, turbines, ducts, shafts, etc., into a complete gas turbine engine and compute on- and off-design thermodynamic performance; (2) WATE - a preliminary design procedure for calculating engine weight using the component characteristics determined by NNEP; (3) POD DRG - a table look-up program to calculate wave and friction drag of nacelles; (4) LIFCYC - a computer code developed to calculate life cycle costs of engines based on the output from WATE; and (5) INSTAL - a computer code developed to calculate installation effects, inlet performance and inlet weight. Examples are given to illustrate how these computer techniques can be applied to analyze and optimize propulsion system fuel consumption, weight, and cost for representative types of aircraft and missions.

  3. Extended-Kalman-filter-based regenerative and friction blended braking control for electric vehicle equipped with axle motor considering damping and elastic properties of electric powertrain

    NASA Astrophysics Data System (ADS)

    Lv, Chen; Zhang, Junzhi; Li, Yutong

    2014-11-01

    Because of the damping and elastic properties of an electrified powertrain, the regenerative brake of an electric vehicle (EV) is very different from a conventional friction brake with respect to the system dynamics. The flexibility of an electric drivetrain would have a negative effect on the blended brake control performance. In this study, models of the powertrain system of an electric car equipped with an axle motor are developed. Based on these models, the transfer characteristics of the motor torque in the driveline and its effect on blended braking control performance are analysed. To further enhance a vehicle's brake performance and energy efficiency, blended braking control algorithms with compensation for the powertrain flexibility are proposed using an extended Kalman filter. These algorithms are simulated under normal deceleration braking. The results show that the brake performance and blended braking control accuracy of the vehicle are significantly enhanced by the newly proposed algorithms.

  4. A Hierarchy of Objectives and Related Performance Indicators for Aircraft Maintenance Organizations.

    DTIC Science & Technology

    MAINTENANCE, *MANAGEMENT PLANNING AND CONTROL ), (* AIRCRAFT , *LOGISTICS), MANAGEMENT PLANNING AND CONTROL, DATA PROCESSING, OPERATIONAL READINESS, INVENTORY CONTROL, MANPOWER, QUESTIONNAIRES, THESES

  5. Development of Hydraulic Friction Brake for Railway Rolling Stock

    NASA Astrophysics Data System (ADS)

    Chenvisuwat, Thum; Park, Sung-Hwan; Kitagawa, Ato

    In this study, a novel hydraulic brake system is proposed in order to increase the reliability of railway brake systems. The reason hydraulic brake systems have not been taken up as a practical railway brake system until now is that the brake pressure control valve inherently has internal leakage and this causes insufficient fail-safe function. Accordingly, We focus on the development of a hydraulic brake pressure control valve (BPC valve) in this study. By virtue of adopting poppet elements in the valve, the braking force is maintained without internal leakage even when the electric power supply fails. The developed BPC valve includes a built-in pressure feedback mechanism and it enables the pressure control function to be maintained when the pressure transducer is broken. The operating principle and wear compensation methods for poppet elements are also examined in this study. The experimental results verify the linearity of static behavior, the stability, and the performance of the valve in maintaining output pressure.

  6. Reaction times to neon, LED, and fast incandescent brake lamps.

    PubMed

    Sivak, M; Flannagan, M J; Sato, T; Traube, E C; Aoki, M

    1994-06-01

    Standard incandescent brake lamps have a relatively slow rise time. It takes approximately a quarter of a second for them to reach 90% of asymptotic light output, causing potential delays in responses by following drivers. The present study evaluated reaction times to brake signals from standard incandescent brake lamps and from three alternative brake lamps with substantially faster rise times: neon, LED, and fast incandescent. The study, performed in a laboratory, simulated a daytime driving condition. The subject's task was to respond as quickly as possible to the onset of either of two brake lamps in the visual periphery, while engaged in a central tracking task. Brake signals were presented at two levels of luminous intensity. The results showed that reaction times to the alternative brake lamps were faster than to the standard incandescent lamp, with the advantage averaging 166 ms for the LED and neon lamps, and 135 ms for the fast incandescent lamp. A reduction of the signals' luminous intensity from 42 cd to 5 cd increased the reaction time by 84 ms.

  7. Engine Performance and Knock Rating of Fuels for High-output Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Rothbrock, A M; Biermann, Arnold E

    1938-01-01

    Data are presented to show the effects of inlet-air pressure, inlet-air temperature, and compression ratio on the maximum permissible performance obtained on a single-cylinder test engine with aircraft-engine fuels varying from a fuel of 87 octane number to one 100 octane number plus 1 ml of tetraethyl lead per gallon. The data were obtained on a 5-inch by 5.75-inch liquid-cooled engine operating at 2,500 r.p.m. The compression ratio was varied from 6.50 to 8.75. The inlet-air temperature was varied from 120 to 280 F. and the inlet-air pressure from 30 inches of mercury absolute to the highest permissible. The limiting factors for the increase in compression ratio and in inlet-air pressure was the occurrence of either audible or incipient knock. The data are correlated to show that, for any one fuel,there is a definite relationship between the limiting conditions of inlet-air temperature and density at any compression ratio. This relationship is dependent on the combustion-gas temperature and density relationship that causes knock. The report presents a suggested method of rating aircraft-engine fuels based on this relationship. It is concluded that aircraft-engine fuels cannot be satisfactorily rated by any single factor, such as octane number, highest useful compression ratio, or allowable boost pressure. The fuels should be rated by a curve that expresses the limitations of the fuel over a variety of engine conditions.

  8. The STOL performance of a two-engine, USB powered-lift aircraft with cross-shafted fans

    NASA Technical Reports Server (NTRS)

    Stevens, V. C.; Wilson, S. B., III; Zola, C. A.

    1985-01-01

    The short takeoff and landing capabilities that characterize the performance of powered-lift aircraft are dependent on engine thrust and are, therefore, severely affected by loss of an engine. This paper shows that the effects of engine loss on the short takeoff and landing performance of powered-lift aircraft can be effectively mitigated by cross-shafting the engine fans in a twin-engine configuration. Engine-out takeoff and landing performances are compared for three powered-lift aircraft configurations: one with four engines, one with two engines, and one with two engines in which the fans are cross-shafted. The results show that the engine-out takeoff and landing performance of the cross-shafted two-engine configuration is significantly better than that of the two-engine configuration without cross-shafting.

  9. A simulation study of crew performance in operating an advanced transport aircraft in an automated terminal area environment

    NASA Technical Reports Server (NTRS)

    Houck, J. A.

    1983-01-01

    A simulation study assessing crew performance operating an advanced transport aircraft in an automated terminal area environment is described. The linking together of the Langley Advanced Transport Operating Systems Aft Flight Deck Simulator with the Terminal Area Air Traffic Model Simulation was required. The realism of an air traffic control (ATC) environment with audio controller instructions for the flight crews and the capability of inserting a live aircraft into the terminal area model to interact with computer generated aircraft was provided. Crew performance using the advanced displays and two separate control systems (automatic and manual) in flying area navigation routes in the automated ATC environment was assessed. Although the crews did not perform as well using the manual control system, their performances were within acceptable operational limits with little increase in workload. The crews favored using the manual control system and felt they were more alert and aware of their environment when using it.

  10. Aircraft Dynamic Response to Damaged Runways.

    DTIC Science & Technology

    1980-03-01

    translation freedoms, - Aircraft flexible normal modes. - Nose and main gear lever rotations. - Several tyre models. - Brake torque time- history ... history of a force or acceleration (see Figure 3) at som point of interest on the aircraft. Figure 3 also shows a comparison of computed versus measured...EXPERIMENTAL PSA CBA 0 5 10 TIME ISECI Fix.3 Plotted time history vertical accelerations READ PROFILE READ AIRCRAFT CONFIGURATION DELTA = 0 ~1

  11. Development of Anti-lock Braking System (ABS) for Vehicles Braking

    NASA Astrophysics Data System (ADS)

    Minh, Vu Trieu; Oamen, Godwin; Vassiljeva, Kristina; Teder, Leo

    2016-11-01

    This paper develops a real laboratory of anti-lock braking system (ABS) for vehicle and conducts real experiments to verify the ability of this ABS to prevent the vehicle wheel from being locked while braking. Two controllers of PID and fuzzy logic are tested for analysis and comparison. This ABS laboratory is designed for bachelor and master students to simulate and analyze performances of ABS with different control techniques on various roads and load conditions. This paper provides educational theories and practices on the design of control for system dynamics.

  12. Airborne measurements performed by a light aircraft during Pegasos spring 2013 campaign

    NASA Astrophysics Data System (ADS)

    Väänänen, Riikka; Krejci, Radovan; Manninen, Hanna E.; Nieminen, Tuomo; Yli-Juuti, Taina; Kangasluoma, Juha; Pohja, Toivo; Aalto, Pasi P.; Petäjä, Tuukka; Kulmala, Markku

    2014-05-01

    To fully understand the chemical and physical processes in atmosphere, measuring only on-ground is not sufficient. To extend the measurements into the lower troposphere, the University of Helsinki has performed airborne campaigns since 2009. During spring 2013, a light aircraft was used to measure the aerosol size distribution over boreal forests as a part of the Pegasos 'Norhern Mission'. The aims of the measurements were to quantify the vertical profiles of aerosols up to the altitude of 3.5 km, to study the new particle formation in the lower troposphere, to measure the planetary boundary layer evolution, and to support the measurements performed by Zeppelin NT. We used a Cessna 172 light aircraft as a platform. An aerosol and gas inlet was mounted under the right wing and the sample air was conducted inside the cabin where most of the instruments were placed. The aerosol measurement instruments included a TSI 3776 condensation particle counter (CPC) with a cut-off size of 3 nm, a Scanning Mobility Particle Sizer (SMPS), with a size range of 10-350 nm, and a Particle Size Magnifier (PSM) connected with a TSI 3772 condensation particle counter. As the properties of the PSM measuring in airborne conditions were still under testing during the campaign, the setups of the PSM varied between the measurements. Other instruments on board included a Li-Cor Li-840 H2O/Co2-analyzer, a temperature sensor, a relative humidity sensor, and a GPS receiver. Total amount of 45 flights with 118 flight hours were performed between 24th April and 15th June 2013. The majority of the flights were flown around SMEAR II station located in Hyytiälä, and when possible, the flights were synchronized with the Zeppelin flights. Simultaneously, an extensive field campaign to measure aerosol and gas properties was performed on-ground at SMEAR II station. A time series of airborne aerosol data of around 1.5 months allows us to construct statistical vertical profiles of aerosol size

  13. Sensor Selection for Aircraft Engine Performance Estimation and Gas Path Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Rinehart, Aidan W.

    2016-01-01

    This paper presents analytical techniques for aiding system designers in making aircraft engine health management sensor selection decisions. The presented techniques, which are based on linear estimation and probability theory, are tailored for gas turbine engine performance estimation and gas path fault diagnostics applications. They enable quantification of the performance estimation and diagnostic accuracy offered by different candidate sensor suites. For performance estimation, sensor selection metrics are presented for two types of estimators including a Kalman filter and a maximum a posteriori estimator. For each type of performance estimator, sensor selection is based on minimizing the theoretical sum of squared estimation errors in health parameters representing performance deterioration in the major rotating modules of the engine. For gas path fault diagnostics, the sensor selection metric is set up to maximize correct classification rate for a diagnostic strategy that performs fault classification by identifying the fault type that most closely matches the observed measurement signature in a weighted least squares sense. Results from the application of the sensor selection metrics to a linear engine model are presented and discussed. Given a baseline sensor suite and a candidate list of optional sensors, an exhaustive search is performed to determine the optimal sensor suites for performance estimation and fault diagnostics. For any given sensor suite, Monte Carlo simulation results are found to exhibit good agreement with theoretical predictions of estimation and diagnostic accuracies.

  14. Sensor Selection for Aircraft Engine Performance Estimation and Gas Path Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.

    2015-01-01

    This paper presents analytical techniques for aiding system designers in making aircraft engine health management sensor selection decisions. The presented techniques, which are based on linear estimation and probability theory, are tailored for gas turbine engine performance estimation and gas path fault diagnostics applications. They enable quantification of the performance estimation and diagnostic accuracy offered by different candidate sensor suites. For performance estimation, sensor selection metrics are presented for two types of estimators including a Kalman filter and a maximum a posteriori estimator. For each type of performance estimator, sensor selection is based on minimizing the theoretical sum of squared estimation errors in health parameters representing performance deterioration in the major rotating modules of the engine. For gas path fault diagnostics, the sensor selection metric is set up to maximize correct classification rate for a diagnostic strategy that performs fault classification by identifying the fault type that most closely matches the observed measurement signature in a weighted least squares sense. Results from the application of the sensor selection metrics to a linear engine model are presented and discussed. Given a baseline sensor suite and a candidate list of optional sensors, an exhaustive search is performed to determine the optimal sensor suites for performance estimation and fault diagnostics. For any given sensor suite, Monte Carlo simulation results are found to exhibit good agreement with theoretical predictions of estimation and diagnostic accuracies.

  15. Heavy and Overweight Vehicle Brake Testing: Five-Axle Combination Tractor-Flatbed Final Report

    SciTech Connect

    Lascurain, Mary Beth; Capps, Gary J; Franzese, Oscar

    2013-10-01

    The Federal Motor Carrier Safety Administration, in coordination with the Federal Highway Administration, sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gross vehicle weight (GVW) on braking performance. Because the Federal Motor Carrier Safety Regulations limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways, the examination of the effect of brake defects on brake performance for increased loads is also relevant. The HOVBT program seeks to provide relevant information to policy makers responsible for establishing load limits, beginning with providing test data for a combination tractor/trailer. This testing was conducted on a five-axle combination vehicle with tractor brakes meeting the Reduced Stopping Distance requirement rulemaking. This report provides a summary of the testing activities, the results of various analyses of the data, and recommendations for future research. Following a complete brake rebuild, instrumentation, and brake burnish, stopping tests were performed from 20 and 40 mph with various brake application pressures (15 psi, 25 psi, 35 psi, 45 psi, 55 psi, and full system pressure). These tests were conducted for various brake conditions at the following GVWs: 60,000, 80,000, 91,000, 97,000, 106,000, and 116,000 lb. The 80,000-lb GVWs included both balanced and unbalanced loads. The condition of the braking system was also varied. To introduce these defects, brakes (none, forward drive axle, or rear trailer axle) were made inoperative. In addition to the stopping tests, performance-based brake tests were conducted for the various loading and brake conditions. Analysis of the stopping test data showed the stopping distance to increase with load (as expected) and also showed that more braking force was generated by the drive axle brakes than the trailer axle brakes. The constant-pressure stopping test data

  16. Emergency Brake for Tracked Vehicles

    NASA Technical Reports Server (NTRS)

    Green, G. L.; Hooper, S. L.

    1986-01-01

    Caliper brake automatically stops tracked vehicle as vehicle nears end of travel. Bar on vehicle, traveling to right, dislodges block between brake pads. Pads then press against bar, slowing vehicle by friction. Emergencybraking system suitable for elevators, amusement rides and machine tools.

  17. Investigation of aerodynamic braking devices for wind turbine applications

    SciTech Connect

    Griffin, D.A.

    1997-04-01

    This report documents the selection and preliminary design of a new aerodynamic braking system for use on the stall-regulated AWT-26/27 wind turbines. The goal was to identify and design a configuration that offered improvements over the existing tip brake used by Advanced Wind Turbines, Inc. (AWT). Although the design objectives and approach of this report are specific to aerodynamic braking of AWT-26/27 turbines, many of the issues addressed in this work are applicable to a wider class of turbines. The performance trends and design choices presented in this report should be of general use to wind turbine designers who are considering alternative aerodynamic braking methods. A literature search was combined with preliminary work on device sizing, loads and mechanical design. Candidate configurations were assessed on their potential for benefits in the areas of cost, weight, aerodynamic noise, reliability and performance under icing conditions. As a result, two configurations were identified for further study: the {open_quotes}spoiler-flap{close_quotes} and the {open_quotes}flip-tip.{close_quotes} Wind tunnel experiments were conducted at Wichita State University to evaluate the performance of the candidate aerodynamic brakes on an airfoil section representative of the AWT-26/27 blades. The wind tunnel data were used to predict the braking effectiveness and deployment characteristics of the candidate devices for a wide range of design parameters. The evaluation was iterative, with mechanical design and structural analysis being conducted in parallel with the braking performance studies. The preliminary estimate of the spoiler-flap system cost was $150 less than the production AWT-26/27 tip vanes. This represents a reduction of approximately 5 % in the cost of the aerodynamic braking system. In view of the preliminary nature of the design, it would be prudent to plan for contingencies in both cost and weight.

  18. Performance of collision damage mitigation braking systems and their effects on human injury in the event of car-to-pedestrian accidents.

    PubMed

    Matsui, Yasuhiro; Han, Yong; Mizuno, Koji

    2011-11-01

    The number of traffic deaths in Japan was 4,863 in 2010. Pedestrians account for the highest number (1,714, 35%), and vehicle occupants the second highest (1,602, 33%). Pedestrian protection is a key countermeasure to reduce casualties in traffic accidents. A striking vehicle's impact velocity could be considered a parameter influencing the severity of injury and possibility of death in pedestrian crashes. A collision damage mitigation braking system (CDMBS) using a sensor to detect pedestrians could be effective for reducing the vehicle/pedestrian impact velocity. Currently in Japan, cars equipped with the CDMBS also have vision sensors such as a stereo camera for pedestrian detection. However, the ability of vision sensors in production cars to properly detect pedestrians has not yet been established. The effect of reducing impact velocity on the pedestrian injury risk has also not been determined. The first objective of this study is to evaluate the performance of the CDMBS in detecting pedestrians when it is installed in production cars. The second objective of this study is to evaluate the effect of reducing impact velocity on mitigating pedestrian injury. Firstly, impact experiments were performed using a car with the CDMBS in which the car collided with a pedestrian surrogate. In these tests, the velocity was chosen for the various test runs to be 20, 40 and 60 km/h, respectively, which were based on the velocity distribution in real-world pedestrian crashes. The results indicated that the impact velocity reduction ranged approximately from 10 to 15 km/h at the standing location of a pedestrian surrogate at both daytime and nighttime lighting conditions. These results show that the system has the potential to reduce pedestrian casualties from car-to-pedestrian contacts. Secondly, finite-element analyses were performed simulating vehicle-to- pedestrian impacts with the THUMS pedestrian models. The vehicle models selected for the study included a medium sedan

  19. Automatic transmission brake assembly including an overrunning roller brake and a friction brake

    SciTech Connect

    Premiski, V.; Hohnel, R.; Premiski, C.

    1988-10-11

    This patent describes an overrunning roller brake assembly for a planetary gear unit in an automatic transmission for automobiles, the gear unit having a ring gear, a carrier and a sun gear, the carrier having planet pinions thereon engaging the sun and ring gears; a brake for anchoring a reaction member of the gear unit, at least one other member of the gear unit being adapted to receive driving torque; the brake comprising an annular inner brake race surrounding a fixed part of the transmission, an annular outer brake race connected to the reaction member and surrounding the inner race, the outer race comprising an extrusion with an outer brake drum surface adapted to be engaged by a reaction friction brake band; overrunning brake rollers between the races, a pair of support rings between the races on either side of the rollers; the support rings having a C-shaped cross section whereby the inner and outer surfaces thereof provide a bearing support for the races; retainer rings enclosed within the support rings, the retainer rings having a radial thickness approximately equal to the radial inside dimension of the C-shaped cross section of the support rings whereby radial loads are transmitted between the races through the retainer rings and support rings.

  20. Evaluation strategy of regenerative braking energy for supercapacitor vehicle.

    PubMed

    Zou, Zhongyue; Cao, Junyi; Cao, Binggang; Chen, Wen

    2015-03-01

    In order to improve the efficiency of energy conversion and increase the driving range of electric vehicles, the regenerative energy captured during braking process is stored in the energy storage devices and then will be re-used. Due to the high power density of supercapacitors, they are employed to withstand high current in the short time and essentially capture more regenerative energy. The measuring methods for regenerative energy should be investigated to estimate the energy conversion efficiency and performance of electric vehicles. Based on the analysis of the regenerative braking energy system of a supercapacitor vehicle, an evaluation system for energy recovery in the braking process is established using USB portable data-acquisition devices. Experiments under various braking conditions are carried out. The results verify the higher efficiency of energy regeneration system using supercapacitors and the effectiveness of the proposed measurement method. It is also demonstrated that the maximum regenerative energy conversion efficiency can reach to 88%.

  1. Experimental investigations for uncertainty quantification in brake squeal analysis

    NASA Astrophysics Data System (ADS)

    Renault, A.; Massa, F.; Lallemand, B.; Tison, T.

    2016-04-01

    The aim of this paper is to improve the correlation between the experimental and the numerical prediction of unstable frequencies for automotive brake systems considering uncertainty. First, an experimental quantification of uncertainty and a discussion analysing the contributions of uncertainty to a numerical squeal simulation are proposed. Frequency and transient simulations are performed considering nominal values of model parameters, determined experimentally. The obtained results are compared with those derived from experimental tests to highlight the limitation of deterministic simulations. The effects of the different kinds of uncertainty detected in working conditions of brake system, the pad boundary condition, the brake system material properties and the pad surface topography are discussed by defining different unstable mode classes. Finally, a correlation between experimental and numerical results considering uncertainty is successfully proposed for an industrial brake system. Results from the different comparisons reveal also a major influence of the pad topography and consequently the contact distribution.

  2. Electromechanical imitator of antilock braking modes of wheels with pneumatic tire and its application for the runways friction coefficient measurement

    NASA Astrophysics Data System (ADS)

    Putov, A. V.; Kopichev, M. M.; Ignatiev, K. V.; Putov, V. V.; Stotckaia, A. D.

    2017-01-01

    In this paper it is considered a discussion of the technique that realizes a brand new method of runway friction coefficient measurement based upon the proposed principle of measuring wheel braking control for the imitation of antilock braking modes that are close to the real braking modes of the aircraft chassis while landing that are realized by the aircraft anti-skid systems. Also here is the description of the model of towed measuring device that realizes a new technique of runway friction coefficient measuring, based upon the measuring wheel braking control principle. For increasing the repeatability accuracy of electromechanical braking imitation system the sideslip (brake) adaptive control system is proposed. Based upon the Burkhard model and additive random processes several mathematical models were created that describes the friction coefficient arrangement along the airstrip with different qualitative adjectives. Computer models of friction coefficient measuring were designed and first in the world the research of correlation between the friction coefficient measuring results and shape variations, intensity and cycle frequency of the measuring wheel antilock braking modes. The sketch engineering documentation was designed and prototype of the latest generation measuring device is ready to use. The measuring device was tested on the autonomous electromechanical examination laboratory treadmill bench. The experiments approved effectiveness of method of imitation the antilock braking modes for solving the problem of correlation of the runway friction coefficient measuring.

  3. Non-ejection cervical spine injuries due to +Gz in high performance aircraft.

    PubMed

    Schall, D G

    1989-05-01

    The potential for significant neck injuries exists in today's high performance fighter aircraft. The G-loads required to produce injury need not be excessive, nor is experience level necessarily protective. Eight cervical spine injury cases, due to or aggravated by +Gz in F-15 and F-16 aircrew members are reviewed. These include two compression fractures (C5/C7), three left HNP's (C5-6/C6-7), one fracture of the spinous process (C7), one interspinous ligament tear (C6-7), and one myofascial syndrome (C6). Mechanisms of injury and evaluation are discussed. Exercise conditioning may play an important role in prevention and protection. The role of screening X-rays and improving equipment remain as areas where further work needs to be done.

  4. Effect of winglets on performance and handling qualities of general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Van Dam, C. P.; Holmes, B. J.; Pitts, C.

    1980-01-01

    Recent flight and wind tunnel evaluations of winglets mounted on general aviation airplanes have shown improvements in cruise fuel efficiency, and climbing and turning performance. Some of these analyses have also uncovered various effects of winglets on airplane handling qualities. Retrofitting an airplane with winglets can result in reduced cross wind take-off and landing capabilities. Also, winglets can have a detrimental effect on the lateral directional response characteristics of aircraft which have a moderate to high level of adverse yaw due to aileron. Introduction of an aileron-rudder-interconnect, and reduction of the effective dihedral by canting-in of the winglets, or addition of a lower winglet can eliminate these flying quality problems.

  5. Computerized systems analysis and optimization of aircraft engine performance, weight, and life cycle costs

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.

    1979-01-01

    The paper describes the computational techniques employed in determining the optimal propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements. The computer programs used to perform calculations for all the factors that enter into the selection process of determining the optimum combinations of airplanes and engines are examined. Attention is given to the description of the computer codes including NNEP, WATE, LIFCYC, INSTAL, and POD DRG. A process is illustrated by which turbine engines can be evaluated as to fuel consumption, engine weight, cost and installation effects. Examples are shown as to the benefits of variable geometry and of the tradeoff between fuel burned and engine weights. Future plans for further improvements in the analytical modeling of engine systems are also described.

  6. Nonlinear stability and control study of highly maneuverable high performance aircraft, phase 2

    NASA Technical Reports Server (NTRS)

    Mohler, R. R.

    1992-01-01

    This research should lead to the development of new nonlinear methodologies for the adaptive control and stability analysis of high angle-of-attack aircraft such as the F18 (HARV). The emphasis has been on nonlinear adaptive control, but associated model development, system identification, stability analysis and simulation is performed in some detail as well. Various models under investigation for different purposes are summarized in tabular form. Models and simulation for the longitudinal dynamics have been developed for all types except the nonlinear ordinary differential equation model. Briefly, studies completed indicate that nonlinear adaptive control can outperform linear adaptive control for rapid maneuvers with large changes in alpha. The transient responses are compared where the desired alpha varies from 5 degrees to 60 degrees to 30 degrees and back to 5 degrees in all about 16 sec. Here, the horizontal stabilator is the only control used with an assumed first-order linear actuator with a 1/30 sec time constant.

  7. High-performance parallel analysis of coupled problems for aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Lanteri, S.; Gumaste, U.; Ronaghi, M.

    1994-01-01

    Applications are described of high-performance parallel, computation for the analysis of complete jet engines, considering its multi-discipline coupled problem. The coupled problem involves interaction of structures with gas dynamics, heat conduction and heat transfer in aircraft engines. The methodology issues addressed include: consistent discrete formulation of coupled problems with emphasis on coupling phenomena; effect of partitioning strategies, augmentation and temporal solution procedures; sensitivity of response to problem parameters; and methods for interfacing multiscale discretizations in different single fields. The computer implementation issues addressed include: parallel treatment of coupled systems; domain decomposition and mesh partitioning strategies; data representation in object-oriented form and mapping to hardware driven representation, and tradeoff studies between partitioning schemes and fully coupled treatment.

  8. The relationship of an integral wind shear hazard to aircraft performance limitations

    NASA Technical Reports Server (NTRS)

    Lewis, M. S.; Robinson, P. A.; Hinton, D. A.; Bowles, R. L.

    1994-01-01

    The development and certification of airborne forward-looking wind shear detection systems has required a hazard definition stated in terms of sensor observable wind field characteristics. This paper outlines the definition of the F-factor wind shear hazard index and an average F-factor quantity, calculated over a specified averaging interval, which may be used to judge an aircraft's potential performance loss due to a given wind shear field. A technique for estimating airplane energy changes during a wind shear encounter is presented and used to determine the wind shear intensity, as a function of the averaging interval, that presents significant hazard to transport category airplanes. The wind shear hazard levels are compared to averaged F-factor values at various averaging intervals for four actual wind shear encounters. Results indicate that averaging intervals of about one kilometer could be used in a simple method to discern hazardous shears.

  9. A model for nocturnal frost formation on a wing section: Aircraft takeoff performance penalties

    NASA Technical Reports Server (NTRS)

    Dietenberger, M. A.

    1983-01-01

    The nocturnal frost formation on a wing section, to explain the hazard associated with frost during takeoff was investigated. A model of nocturnal frost formation on a wing section which predicts when the nocturnal frost will form and also its thickness and density as a function of time was developed. The aerodynamic penalities as related to the nocturnal frost formation properties were analyzed to determine how much the takeoff performance would be degraded by a specific frost layer. With an aircraft takeoff assuming equations representing a steady climbing flight, it is determined that a reduction in the maximum gross weight or a partial frost clearance and a reduction in the takeoff angle of attack is needed to neutralize drag and life penalities which are due to frost. Atmospheric conditions which produce the most hazardous frost buildup are determined.

  10. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2001-01-01

    In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.

  11. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 6 2012-10-01 2012-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic brake subsystem. The following requirements apply to vehicles with air brake and...

  12. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic brake subsystem. The following requirements apply to vehicles with air brake and...

  13. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic brake subsystem. The following requirements apply to vehicles with air brake and...

  14. 49 CFR 393.53 - Automatic brake adjusters and brake adjustment indicators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... indicators. 393.53 Section 393.53 Transportation Other Regulations Relating to Transportation (Continued... brake adjustment indicators. (a) Automatic brake adjusters (hydraulic brake systems). Each commercial... vehicle at the time it was manufactured. (c) Brake adjustment indicator (air brake systems). On...

  15. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic brake subsystem. The following requirements apply to vehicles with air brake and...

  16. 49 CFR 393.53 - Automatic brake adjusters and brake adjustment indicators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... brake adjustment indicators. (a) Automatic brake adjusters (hydraulic brake systems). Each commercial motor vehicle manufactured on or after October 20, 1993, and equipped with a hydraulic brake system, shall meet the automatic brake adjustment system requirements of Federal Motor Vehicle Safety...

  17. Flight system design for a receiver aircraft to perform autonomous aerial refueling provided with relative position data link

    NASA Astrophysics Data System (ADS)

    Awni, Kahtan A.

    An automatic aerial refueling system was developed that is capable of controlling the receiving aircraft to rendezvous, dock and station keep the receiver refueling probe in the tanker refueling probe. The automatic refueling system consisted of an active trajectory generator, a guidance system and a control system. The active trajectory generator continuously updated the commanded rendezvous trajectory to be flown by the receiver aircraft. This active trajectory generator concept incorporated design variables that the designer could use to specify the time sequence of the rendezvous and docking maneuver. The output of the trajectory generator was then the command to the flight systems guidance and control systems. To demonstrate this automatic aerial refueling system concept, a detailed design of the flight system algorithms was done for typical aerial refueling mission with a heavy jet tanker aircraft similar to the KC135 and the SIAI-Marchetti S-211 Jet Trainer as a receiver aircraft. The systems gains were selected to minimize the control surface activity while achieving adequate tracking. A simulation was developed that included the flight system algorithms, linear models of the receiver aircraft, atmospheric and tanker wake disturbance models. The performance of the aerial refueling system design was then evaluated in a batch computer simulator. The simulation study demonstrated results showed better disturbance rejection relative to the controller performance while minimizing the utilization of the control surfaces. Results also demonstrated the ability to schedule rendezvous.

  18. Brakes Specialist. Teacher Edition. Automotive Service Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains teacher's materials for a course on becoming an automotive brakes specialist, based on the National Institute of Automotive Service Excellence task lists. The course consists of three instructional units: service brake hydraulic system and wheel bearings, service drum brakes, and service disc brakes. Depending on the…

  19. An Investigation of Sensory Information, Levels of Automation, and Piloting Experience on Unmanned Aircraft Pilot Performance

    DTIC Science & Technology

    2012-03-01

    17. Key Words 18. Distribution Statement Unmanned Aircraft Systems, UAS, UAV Levels of Automation, Sensory Information, Alerts...interface.requirements.on.the.pilot . Finally,.there.is.an.unresolved.question.regarding.the. need.for.manned.aircraft.experience.for.piloting.a.UAS. (Fogel,.Gill,. Mout ...affect.training.and/or.selection.requirements.for.pilots. of.unmanned.aircraft.systems . 10..... rEFErENCEs Fogel,. L .J .,.Gill,. R .S .,. Mout ,.M .L

  20. Computer programs for estimating aircraft takeoff performance in three dimensional space

    NASA Technical Reports Server (NTRS)

    Bowles, J. V.

    1974-01-01

    A set of computer programs has been developed to estimate the takeoff and initial climb-out maneuver of a given aircraft in three-dimensional space. The program is applicable to conventional, vectored lift and power-lift concept aircraft. The aircraft is treated as a point mass flying over a flat earth with no side slip, and the rotational dynamics have been neglected. The required input is described and a sample case presented.

  1. Study on the dynamic characteristics of a high frequency brake based on giant magnetostrictive material

    NASA Astrophysics Data System (ADS)

    Xu, Ai Qun

    2016-06-01

    In order to meet the requirements of rapid and smooth braking, high-frequency braking using a giant magnetostrictive actuator is proposed, which can solve the problems in hydraulic braking, such as, it leaks easily, catches fire easily, is difficult to find failures, high cost on maintenance and repairing, etc. The main factors affecting the force of a high-frequency braking actuator are emphatically analyzed, the brakes dynamic model is established and a performance testing device for high frequency braking is constructed based on LabVIEW. The output force of the actuator increases with the excitation current of the driving coil increasing, and the increased multiple of the output force is greater than that of the excitation current; the range of the actuator force amplitude is 121.63 N ∼ 158.14 N, which changes little, while excitation frequency changes between 200 Hz ∼ 1000 Hz. In a minor range of pre-stress, the output force decreases with an increase in the axial pre-stress of the giant magnetostrictive rod, but is not obvious. It is known by finite element simulation analysis that high-frequency braking shortens the braking displacement and time effectively, which proves the feasibility and effectiveness of high frequency braking. Theoretical analysis and experimental results indicate that the output force of the actuator changes at the same frequency with excitation current; it is controllable and its mechanical properties meet the requirements of high frequency braking.

  2. 49 CFR 570.58 - Electric brake system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Electric brake system. 570.58 Section 570.58... 10,000 Pounds § 570.58 Electric brake system. (a) Electric brake system integrity. The average brake... reading by the number of brakes and determine the brake amperage value. (b) Electric brake...

  3. 49 CFR 570.58 - Electric brake system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Electric brake system. 570.58 Section 570.58... 10,000 Pounds § 570.58 Electric brake system. (a) Electric brake system integrity. The average brake... reading by the number of brakes and determine the brake amperage value. (b) Electric brake...

  4. 49 CFR 570.58 - Electric brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Electric brake system. 570.58 Section 570.58... 10,000 Pounds § 570.58 Electric brake system. (a) Electric brake system integrity. The average brake... reading by the number of brakes and determine the brake amperage value. (b) Electric brake...

  5. 49 CFR 570.58 - Electric brake system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 6 2012-10-01 2012-10-01 false Electric brake system. 570.58 Section 570.58... 10,000 Pounds § 570.58 Electric brake system. (a) Electric brake system integrity. The average brake... reading by the number of brakes and determine the brake amperage value. (b) Electric brake...

  6. Airdata calibration of a high-performance aircraft for measuring atmospheric wind profiles

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.

    1990-01-01

    The research airdata system of an instrumented F-104 aircraft has been calibrated to measure winds aloft in support of the Space Shuttle wind measurement investigation. The F-104 aircraft was equipped with a research pitot-static noseboom with integral angle-of-attack and flank angle-of-attack vanes and a ring-laser-gyro inertial reference unit. The F-104 aircraft and instrumentation configuration, flight test maneuvers, data corrections, calibration techniques, and resulting calibrations and data repeatability are presented. Recommendations for future airdata systems on aircraft used to measure winds aloft are also given.

  7. Design of high performance multivariable control systems for supermaneuverable aircraft at high angle of attack

    NASA Technical Reports Server (NTRS)

    Valavani, Lena

    1995-01-01

    The main motivation for the work under the present grant was to use nonlinear feedback linearization methods to further enhance performance capabilities of the aircraft, and robustify its response throughout its operating envelope. The idea was to use these methods in lieu of standard Taylor series linearization, in order to obtain a well behaved linearized plant, in its entire operational regime. Thus, feedback linearization was going to constitute an 'inner loop', which would then define a 'design plant model' to be compensated for robustness and guaranteed performance in an 'outer loop' application of modern linear control methods. The motivation for this was twofold; first, earlier work had shown that by appropriately conditioning the plant through conventional, simple feedback in an 'inner loop', the resulting overall compensated plant design enjoyed considerable enhancement of performance robustness in the presence of parametric uncertainty. Second, the nonlinear techniques did not have any proven robustness properties in the presence of unstructured uncertainty; a definition of robustness (and performance) is very difficult to achieve outside the frequency domain; to date, none is available for the purposes of control system design. Thus, by proper design of the outer loop, such properties could still be 'injected' in the overall system.

  8. Performance Evaluation of Particle Sampling Probes for Emission Measurements of Aircraft Jet Engines

    NASA Technical Reports Server (NTRS)

    Lee, Poshin; Chen, Da-Ren; Sanders, Terry (Technical Monitor)

    2001-01-01

    Considerable attention has been recently received on the impact of aircraft-produced aerosols upon the global climate. Sampling particles directly from jet engines has been performed by different research groups in the U.S. and Europe. However, a large variation has been observed among published data on the conversion efficiency and emission indexes of jet engines. The variation results surely from the differences in test engine types, engine operation conditions, and environmental conditions. The other factor that could result in the observed variation is the performance of sampling probes used. Unfortunately, it is often neglected in the jet engine community. Particle losses during the sampling, transport, and dilution processes are often not discussed/considered in literatures. To address this issue, we evaluated the performance of one sampling probe by challenging it with monodisperse particles. A significant performance difference was observed on the sampling probe evaluated under different temperature conditions. Thermophoretic effect, nonisokinetic sampling and turbulence loss contribute to the loss of particles in sampling probes. The results of this study show that particle loss can be dramatic if the sampling probe is not well designed. Further, the result allows ones to recover the actual size distributions emitted from jet engines.

  9. Brake Stops Both Rotation And Translation

    NASA Technical Reports Server (NTRS)

    Allred, Johnny W.; Fleck, Vincent J., Jr.

    1995-01-01

    Combination of braking and positioning mechanisms allows both rotation and translation before brake engaged. Designed for use in positioning model airplane in wind tunnel. Modified version used to position camera on tripod. Brake fast and convenient to use; contains single actuator energizing braking actions against both rotation and translation. Braking actuator electric, but pneumatic actuator could be used instead. Compact and lightweight, applies locking forces close to load, and presents minimal cross section to airflow.

  10. Debiasing overoptimistic beliefs about braking capacity.

    PubMed

    Svenson, Ola; Eriksson, Gabriella; Mertz, C K

    2013-09-01

    We investigated, using questionnaires, different strategies for removing drivers' overoptimism (Svenson et al., 2012a) about how fast their speed could be decreased when they were speeding compared with braking at the speed limit speed. Three different learning groups and a control group made collision speed judgments. The first learning group had the distance a car travels during a driver's reaction time for each problem. The second group had this information and also feedback after each judgment (correct speed). The third group judged collision speed but also braking distance and received correct facts after each problem. The control group had no information at all about reaction time and the distance traveled during that time. The results suggested the following rank order from poor to improved performance: control, group 1, group 3 and group 2 indicating that information about distance driven during a driver's reaction time improved collision speed judgments and that adding stopping distance information did not add to this improvement.

  11. A review and preliminary evaluation of methodological factors in performance assessments of time-varying aircraft noise effects

    NASA Technical Reports Server (NTRS)

    Coates, G. D.; Alluisi, E. A.

    1975-01-01

    The effects of aircraft noise on human performance is considered. Progress is reported in the following areas: (1) review of the literature to identify the methodological and stimulus parameters involved in the study of noise effects on human performance; (2) development of a theoretical framework to provide working hypotheses as to the effects of noise on complex human performance; and (3) data collection on the first of several experimental investigations designed to provide tests of the hypotheses.

  12. Systematic Variations of Instructional Variables on Learner Performance: Aircraft Instrument Comprehension Task. Final Report, June 1973-July 1974.

    ERIC Educational Resources Information Center

    Tenpas, Barbara G.; And Others

    Incentive, practice, instruction, and feedback were manipulated in a series of four 2 x 2 factorial studies, with Air Force Reserve Officer Training Corps cadets and graduate students in education, to determine the individual and combined effects of these variables on learner performance (both speed and accuracy) of an aircraft comprehension task.…

  13. Regenerative braking device

    DOEpatents

    Hoppie, Lyle O.

    1982-01-12

    Disclosed are several embodiments of a regenerative braking device for an automotive vehicle. The device includes a plurality of rubber rollers (24, 26) mounted for rotation between an input shaft (14) connectable to the vehicle drivetrain and an output shaft (16) which is drivingly connected to the input shaft by a variable ratio transmission (20). When the transmission ratio is such that the input shaft rotates faster than the output shaft, the rubber rollers are torsionally stressed to accumulate energy, thereby slowing the vehicle. When the transmission ratio is such that the output shaft rotates faster than the input shaft, the rubber rollers are torsionally relaxed to deliver accumulated energy, thereby accelerating or driving the vehicle.

  14. Aircraft Design Considerations to Meet One Engine Inoperative (OEI) Safety Requirements

    NASA Technical Reports Server (NTRS)

    Scott, Mark W.

    2012-01-01

    Commercial airlines are obligated to operate such that an aircraft can suffer an engine failure at any point in its mission and terminate the flight without an accident. Only minimal aircraft damage is allowable, such as brake replacement due to very heavy application, or an engine inspection and/or possible removal due to use of an emergency rating. Such performance criteria are often referred to as zero exposure, referring to zero accident exposure to an engine failure. The critical mission segment for meeting one engine inoperative (OEI) criteria is takeoff. For a given weight, wind, and ambient condition, fixed wing aircraft require a balanced field length. This is the longer of the distance to take off if an engine fails at a predetermined critical point in the takeoff profile, or the distance to reject the takeoff and brake to a stop. Rotorcraft have requirements for horizontal takeoff procedures that are equivalent to a balanced field length requirements for fixed wing aircraft. Rotorcraft also perform vertical procedures where no runway or heliport distance is available. These were developed primarily for elevated heliports as found on oil rigs or rooftops. They are also used for ground level operations as might be found at heliports at the end of piers or other confined areas.

  15. Intelligent adaptive nonlinear flight control for a high performance aircraft with neural networks.

    PubMed

    Savran, Aydogan; Tasaltin, Ramazan; Becerikli, Yasar

    2006-04-01

    This paper describes the development of a neural network (NN) based adaptive flight control system for a high performance aircraft. The main contribution of this work is that the proposed control system is able to compensate the system uncertainties, adapt to the changes in flight conditions, and accommodate the system failures. The underlying study can be considered in two phases. The objective of the first phase is to model the dynamic behavior of a nonlinear F-16 model using NNs. Therefore a NN-based adaptive identification model is developed for three angular rates of the aircraft. An on-line training procedure is developed to adapt the changes in the system dynamics and improve the identification accuracy. In this procedure, a first-in first-out stack is used to store a certain history of the input-output data. The training is performed over the whole data in the stack at every stage. To speed up the convergence rate and enhance the accuracy for achieving the on-line learning, the Levenberg-Marquardt optimization method with a trust region approach is adapted to train the NNs. The objective of the second phase is to develop intelligent flight controllers. A NN-based adaptive PID control scheme that is composed of an emulator NN, an estimator NN, and a discrete time PID controller is developed. The emulator NN is used to calculate the system Jacobian required to train the estimator NN. The estimator NN, which is trained on-line by propagating the output error through the emulator, is used to adjust the PID gains. The NN-based adaptive PID control system is applied to control three angular rates of the nonlinear F-16 model. The body-axis pitch, roll, and yaw rates are fed back via the PID controllers to the elevator, aileron, and rudder actuators, respectively. The resulting control system has learning, adaptation, and fault-tolerant abilities. It avoids the storage and interpolation requirements for the too many controller parameters of a typical flight control

  16. Performance of WVSS-II hygrometers on the FAAM research aircraft

    NASA Astrophysics Data System (ADS)

    Vance, A. K.; Abel, S. J.; Cotton, R. J.; Woolley, A. M.

    2015-03-01

    We compare the performance of five hygrometers fitted to the Facility for Airborne Atmospheric Measurement's (FAAM) BAe 146-301 research aircraft using data from approximately 100 flights executed over the course of 2 years under a wide range of conditions. Bulk comparison of cloud free data show good agreement between chilled mirror hygrometers and a WVSS-II fed from a modified Rosemount inlet, but that a WVSS-II fed from the standard flush inlet appears to over-read compared to the other instruments, except at higher humidities. Statistical assessment of hygrometer performance in cloudy conditions is problematic due to the variable nature of clouds, so a number of case studies are used instead to investigate the performance of the hygrometers in sub-optimal conditions. It is found that the flush inlet is not susceptible to either liquid or solid water but that the Rosemount inlet has a significant susceptibility to liquid water and may also be susceptible to ice. In all conditions the WVSS-II responds much more rapidly than the chilled mirror devices, with the flush inlet-fed WVSS-II being more rapid than that connected to the Rosemount.

  17. Nonlinear stability and control study of highly maneuverable high performance aircraft

    NASA Technical Reports Server (NTRS)

    Mohler, R. R.

    1993-01-01

    This project is intended to research and develop new nonlinear methodologies for the control and stability analysis of high-performance, high angle-of-attack aircraft such as HARV (F18). Past research (reported in our Phase 1, 2, and 3 progress reports) is summarized and more details of final Phase 3 research is provided. While research emphasis is on nonlinear control, other tasks such as associated model development, system identification, stability analysis, and simulation are performed in some detail as well. An overview of various models that were investigated for different purposes such as an approximate model reference for control adaptation, as well as another model for accurate rigid-body longitudinal motion is provided. Only a very cursory analysis was made relative to type 8 (flexible body dynamics). Standard nonlinear longitudinal airframe dynamics (type 7) with the available modified F18 stability derivatives, thrust vectoring, actuator dynamics, and control constraints are utilized for simulated flight evaluation of derived controller performance in all cases studied.

  18. Hard Braking Events Among Novice Teenage Drivers By Passenger Characteristics

    PubMed Central

    Simons-Morton, Bruce G.; Ouimet, Marie Claude; Wang, Jing; Klauer, Sheila G.; Lee, Suzanne E.; Dingus, Thomas A.

    2010-01-01

    Summary In a naturalistic study of teenage drivers (N = 42) hard braking events of ≤−0.45 g were assessed over the first 6 months of licensure. A total of 1,721 hard braking events were recorded. The video footage of a sample (816) of these events was examined to evaluate validity and reasons for hard braking. Of these, 788 (96.6%) were estimated valid, of which 79.1% were due to driver misjudgment, 10.8% to risky driving behavior, 5.3% to legitimate evasive maneuvers, and 4.8% to distraction. Hard braking events per 10 trips and per 100 miles were compared across passenger characteristics. Hard braking rates per 10 trips among newly licensed teenagers during the first 6 months of licensure were significantly higher when driving with teen passengers and lower with adult passengers than driving alone; rates per 100 miles were lower with adult passengers than with no passengers. Further examination of the results indicates that rates of hard braking with teenage passengers were significantly higher compared with no passengers: 1) for male drivers; 2) during the first month of licensure. The data suggest that that novice teenage driving performance may not be as good or safe when driving alone or with teenage passengers than with adult passengers and provide support for the hypothesis that teenage passengers increase driving risks, particularly during the first month of licensure. PMID:21243109

  19. Hard Braking Events Among Novice Teenage Drivers By Passenger Characteristics.

    PubMed

    Simons-Morton, Bruce G; Ouimet, Marie Claude; Wang, Jing; Klauer, Sheila G; Lee, Suzanne E; Dingus, Thomas A

    2009-06-22

    In a naturalistic study of teenage drivers (N = 42) hard braking events of ≤-0.45 g were assessed over the first 6 months of licensure. A total of 1,721 hard braking events were recorded. The video footage of a sample (816) of these events was examined to evaluate validity and reasons for hard braking. Of these, 788 (96.6%) were estimated valid, of which 79.1% were due to driver misjudgment, 10.8% to risky driving behavior, 5.3% to legitimate evasive maneuvers, and 4.8% to distraction. Hard braking events per 10 trips and per 100 miles were compared across passenger characteristics. Hard braking rates per 10 trips among newly licensed teenagers during the first 6 months of licensure were significantly higher when driving with teen passengers and lower with adult passengers than driving alone; rates per 100 miles were lower with adult passengers than with no passengers. Further examination of the results indicates that rates of hard braking with teenage passengers were significantly higher compared with no passengers: 1) for male drivers; 2) during the first month of licensure. The data suggest that that novice teenage driving performance may not be as good or safe when driving alone or with teenage passengers than with adult passengers and provide support for the hypothesis that teenage passengers increase driving risks, particularly during the first month of licensure.

  20. Braking and cornering studies on an air cushion landing system

    NASA Technical Reports Server (NTRS)

    Daugherty, R. H.

    1983-01-01

    An experimental investigation was conducted to evaluate several concepts for braking and steering a vehicle equipped with an air cushion landing system (ACLS). The investigation made use of a modified airboat equipped with an ACLS. Braking concepts were characterized by the average deceleration of the vehicle. Reduced lobe flow and cavity venting braking concepts were evaluated in this program. The cavity venting braking concept demonstrated the best performance, producing decelerations on the test vehicle on the same order as moderate braking with conventional wheel brakes. Steering concepts were evaluated by recording the path taken while attempting to follow a prescribed maneuver. The steering concepts evaluated included using rudders only, using differential lobe flow, and using rudders combined with a lightly loaded, nonsteering center wheel. The latter concept proved to be the most accurate means of steering the vehicle on the ACLS, producing translational deviations two to three times higher than those from conventional nose-gear steering. However, this concept was still felt to provide reasonably precise steering control for the ACLS-equipped vehicle.

  1. Smart skin technology development for measuring ice accretion, stall, and high AOA aircraft performance. Part 1: Capacitive ice detector development

    NASA Technical Reports Server (NTRS)

    Pruzan, Daniel A.; Khatkhate, Ateen A.; Gerardi, Joseph J.; Hickman, Gail A.

    1993-01-01

    A reliable way to detect and measure ice accretion during flight is required to reduce the hazards of icing currently threatening present day aircraft. Many of the sensors used for this purpose are invasive (probe) sensors which must be placed in areas of the airframe where ice does not naturally form. Due to the difference in capture efficiency of the exposed surface, difficulties result in correlating the ice accretion on the probe to what is happening on a number of vastly different airfoil sections. Most flush mounted sensors in use must be integrated into the aircraft surface by cutting or drilling the aircraft surface. An alternate type of ice detector which is based on a NASA patent is currently being investigated at Innovative Dynamics, Inc. (IDI). Results of the investigation into the performance of different capacitive type sensor designs, both rigid as well as elastic, are presented.

  2. Comparison of the Performance of Noise Metrics as Predictions of the Annoyance of Stage 2 and Stage 3 Aircraft Overflights

    NASA Technical Reports Server (NTRS)

    Pearsons, Karl S.; Howe, Richard R.; Sneddon, Matthew D.; Fidell, Sanford

    1996-01-01

    Thirty audiometrically screened test participants judged the relative annoyance of two comparison (variable level) and thirty-four standard (fixed level) signals in an adaptive paired comparison psychoacoustic study. The signal ensemble included both FAR Part 36 Stage 2 and 3 aircraft overflights, as well as synthesized aircraft noise signatures and other non-aircraft signals. All test signals were presented for judgment as heard indoors, in the presence of continuous background noise, under free-field listening conditions in an anechoic chamber. Analyses of the performance of 30 noise metrics as predictors of these annoyance judgments confirmed that the more complex metrics were generally more accurate and precise predictors than the simpler methods. EPNL was somewhat less accurate and precise as a predictor of the annoyance judgments than a duration-adjusted variant of Zwicker's Loudness Level.

  3. The knocking characteristics of fuels in relation to maximum permissible performance of aircraft engines

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Biermann, Arnold E

    1939-01-01

    An analysis is presented of the relationship of various engine factors to knock in preignition in an aircraft engine. From this analysis and from the available experimental data, a method of evaluating the knocking characteristics of the fuel in an aircraft-engine cylinder is suggested.

  4. The effect of runway surface and braking on Shuttle Orbiter main gear tire wear

    NASA Technical Reports Server (NTRS)

    Daugherty, Robert H.; Stubbs, Sandy M.

    1992-01-01

    In 1988, a 1067 m long touchdown zone on each end of the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF) was modified from its original heavy-broom finish with transverse grooves configuration to a longitudinal corduroy surface texture with no transverse grooves. The intent of this modification was to reduce the spin-up wear on the Orbiter main gear tires and provide for somewhat higher crosswind capabilities at that site. The modification worked well, so it was proposed that the remainder of the runway be modified as well to permit even higher crosswind landing capability. Tests were conducted at the NASA Langley Aircraft Landing Dynamics Facility (ALDF) to evaluate the merit of such a modification. This paper discusses the results of these tests, and explains why the proposed modification did not provide the expected improvement and thus was not implemented. Also, in an ongoing program to evaluate the origin of various tire wear phenomenon, a series of tests was conducted to evaluate the effect of braking on tire wear. Finally, a modified tire is discussed in terms of its wear performance under rollout and braking operations.

  5. Variable ratio regenerative braking device

    DOEpatents

    Hoppie, Lyle O.

    1981-12-15

    Disclosed is a regenerative braking device (10) for an automotive vehicle. The device includes an energy storage assembly (12) having a plurality of rubber rollers (26, 28) mounted for rotation between an input shaft (36) and an output shaft (42), clutches (38, 46) and brakes (40, 48) associated with each shaft, and a continuously variable transmission (22) connectable to a vehicle drivetrain and to the input and output shafts by the respective clutches. The rubber rollers are torsionally stressed to accumulate energy from the vehicle when the input shaft is clutched to the transmission while the brake on the output shaft is applied, and are torsionally relaxed to deliver energy to the vehicle when the output shaft is clutched to the transmission while the brake on the input shaft is applied. The transmission ratio is varied to control the rate of energy accumulation and delivery for a given rotational speed of the vehicle drivetrain.

  6. Lateral-Directional Eigenvector Flying Qualities Guidelines for High Performance Aircraft

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Andrisani, Dominick, II

    1996-01-01

    This report presents the development of lateral-directional flying qualities guidelines with application to eigenspace (eigenstructure) assignment methods. These guidelines will assist designers in choosing eigenvectors to achieve desired closed-loop flying qualities or performing trade-offs between flying qualities and other important design requirements, such as achieving realizable gain magnitudes or desired system robustness. This has been accomplished by developing relationships between the system's eigenvectors and the roll rate and sideslip transfer functions. Using these relationships, along with constraints imposed by system dynamics, key eigenvector elements are identified and guidelines for choosing values of these elements to yield desirable flying qualities have been developed. Two guidelines are developed - one for low roll-to-sideslip ratio and one for moderate-to-high roll-to-sideslip ratio. These flying qualities guidelines are based upon the Military Standard lateral-directional coupling criteria for high performance aircraft - the roll rate oscillation criteria and the sideslip excursion criteria. Example guidelines are generated for a moderate-to-large, an intermediate, and low value of roll-to-sideslip ratio.

  7. In-flight adaptive performance optimization (APO) control using redundant control effectors of an aircraft

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B. (Inventor)

    1999-01-01

    Practical application of real-time (or near real-time) Adaptive Performance Optimization (APO) is provided for a transport aircraft in steady climb, cruise, turn descent or other flight conditions based on measurements and calculations of incremental drag from a forced response maneuver of one or more redundant control effectors defined as those in excess of the minimum set of control effectors required to maintain the steady flight condition in progress. The method comprises the steps of applying excitation in a raised-cosine form over an interval of from 100 to 500 sec. at the rate of 1 to 10 sets/sec of excitation, and data for analysis is gathered in sets of measurements made during the excitation to calculate lift and drag coefficients C.sub.L and C.sub.D from two equations, one for each coefficient. A third equation is an expansion of C.sub.D as a function of parasitic drag, induced drag, Mach and altitude drag effects, and control effector drag, and assumes a quadratic variation of drag with positions .delta..sub.i of redundant control effectors i=1 to n. The third equation is then solved for .delta..sub.iopt the optimal position of redundant control effector i, which is then used to set the control effector i for optimum performance during the remainder of said steady flight or until monitored flight conditions change by some predetermined amount as determined automatically or a predetermined minimum flight time has elapsed.

  8. A preliminary study of the performance and characteristics of a supersonic executive aircraft

    NASA Technical Reports Server (NTRS)

    Mascitti, V. R.

    1977-01-01

    The impact of advanced supersonic technologies on the performance and characteristics of a supersonic executive aircraft was studied in four configurations with different engine locations and wing/body blending and an advanced nonafterburning turbojet or variable cycle engine. An M 2.2 design Douglas scaled arrow-wing was used with Learjet 35 accommodations. All four configurations with turbojet engines meet the performance goals of 5926 km (3200 n.mi.) range, 1981 meters (6500 feet) takeoff field length, and 77 meters per second (150 knots) approach speed. The noise levels of of turbojet configurations studied are excessive. However, a turbojet with mechanical suppressor was not studied. The variable cycle engine configuration is deficient in range by 555 km (300 n.mi) but nearly meets subsonic noise rules (FAR 36 1977 edition), if coannular noise relief is assumed. All configurations are in the 33566 to 36287 kg (74,000 to 80,000 lbm) takeoff gross weight class when incorporating current titanium manufacturing technology.

  9. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response Performance Constraints

    NASA Technical Reports Server (NTRS)

    Welstead, Jason

    2014-01-01

    This research focused on incorporating stability and control into a multidisciplinary de- sign optimization on a Boeing 737-class advanced concept called the D8.2b. A new method of evaluating the aircraft handling performance using quantitative evaluation of the sys- tem to disturbances, including perturbations, continuous turbulence, and discrete gusts, is presented. A multidisciplinary design optimization was performed using the D8.2b transport air- craft concept. The con guration was optimized for minimum fuel burn using a design range of 3,000 nautical miles. Optimization cases were run using xed tail volume coecients, static trim constraints, and static trim and dynamic response constraints. A Cessna 182T model was used to test the various dynamic analysis components, ensuring the analysis was behaving as expected. Results of the optimizations show that including stability and con- trol in the design process drastically alters the optimal design, indicating that stability and control should be included in conceptual design to avoid system level penalties later in the design process.

  10. Applying Required Navigation Performance Concept for Traffic Management of Small Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Jung, Jaewoo; D'Souza, Sarah N.; Johnson, Marcus A.; Ishihara, Abraham K.; Modi, Hemil C.; Nikaido, Ben; Hasseeb, Hashmatullah

    2016-01-01

    In anticipation of a rapid increase in the number of civil Unmanned Aircraft System(UAS) operations, NASA is researching prototype technologies for a UAS Traffic Management (UTM) system that will investigate airspace integration requirements for enabling safe, efficient low-altitude operations. One aspect a UTM system must consider is the correlation between UAS operations (such as vehicles, operation areas and durations), UAS performance requirements, and the risk to people and property in the operational area. This paper investigates the potential application of the International Civil Aviation Organizations (ICAO) Required Navigation Performance (RNP) concept to relate operational risk with trajectory conformance requirements. The approach is to first define a method to quantify operational risk and then define the RNP level requirement as a function of the operational risk. Greater operational risk corresponds to more accurate RNP level, or smaller tolerable Total System Error (TSE). Data from 19 small UAS flights are used to develop and validate a formula that defines this relationship. An approach to assessing UAS-RNP conformance capability using vehicle modeling and wind field simulation is developed to investigate how this formula may be applied in a future UTM system. The results indicate the modeled vehicles flight path is robust to the simulated wind variation, and it can meet RNP level requirements calculated by the formula. The results also indicate how vehicle-modeling fidelity may be improved to adequately verify assessed RNP level.

  11. Real-Time Dynamic Brake Assessment Proof of Concept Final Report

    SciTech Connect

    Lascurain, Mary Beth; Franzese, Oscar; Capps, Gary J

    2011-11-01

    This proof-of-concept research was performed to explore the feasibility of using real-world braking data from commercial motor vehicles to make a diagnosis of brake condition similar to that of the performance-based brake tester (PBBT). This was done by determining the relationship between pressure and brake force (P-BF), compensating for the gross vehicle weight (GVW). The nature of this P-BF relationship (e.g., low braking force for a given brake application pressure) may indicate brake system problems. In order to determine the relationship between brake force and brake application pressure, a few key parameters of duty cycle information were collected. Because braking events are often brief, spanning only a few seconds, a sample rate of 10 Hz was needed. The algorithm under development required brake application pressure and speed (from which deceleration was calculated). Accurate weight estimation was also needed to properly derive the braking force from the deceleration. In order to ensure that braking force was the predominant factor in deceleration for the segments of data used in analysis, the data was screened for grade as well. Also, the analysis needed to be based on pressures above the crack pressure. The crack pressure is the pressure below which the individual brakes are not applied due the nature of the mechanical system. This value, which may vary somewhat from one wheel end to another, is approximately 10 psi. Therefore, only pressures 15 psi and above were used in the analysis. The Department of Energy s Medium Truck Duty Cycle research has indicated that under the real-world circumstances of the test vehicle brake pressures of up to approximately 30 psi can be expected. Several different types of data were collected during the testing task of this project. Constant-pressure stopping tests were conducted at several combinations of brake application pressure (15, 20, 25, and 30 psi), load conditions (moderately and fully laden), and speeds (20 and

  12. Longitudinal wheel slip during ABS braking

    NASA Astrophysics Data System (ADS)

    Hartikainen, Lassi; Petry, Frank; Westermann, Stephan

    2015-02-01

    Anti-lock braking system (ABS) braking tests with two subcompact passenger cars were performed on dry and wet asphalt, as well as on snow and ice surfaces. The operating conditions of the tyres in terms of wheel slip were evaluated using histograms of the wheel slip data. The results showed different average slip levels for different road surfaces. It was also found that changes in the tyre tread stiffness affected the slip operating range through a modification of the slip value at which the maximum longitudinal force is achieved. Variation of the tyre footprint length through modifications in the inflation pressure affected the slip operating range as well. Differences in the slip distribution between vehicles with different brake controllers were also observed. The changes in slip operating range in turn modified the relative local sliding speeds between the tyre and the road. The results highlight the importance of the ABS controller's ability to adapt to changing slip-force characteristics of tyres and provide estimates of the magnitude of the effects of different tyre and road operating conditions.

  13. Optimal design of disc-type magneto-rheological brake for mid-sized motorcycle: experimental evaluation

    NASA Astrophysics Data System (ADS)

    Sohn, Jung Woo; Jeon, Juncheol; Nguyen, Quoc Hung; Choi, Seung-Bok

    2015-08-01

    In this paper, a disc-type magneto-rheological (MR) brake is designed for a mid-sized motorcycle and its performance is experimentally evaluated. The proposed MR brake consists of an outer housing, a rotating disc immersed in MR fluid, and a copper wire coiled around a bobbin to generate a magnetic field. The structural configuration of the MR brake is first presented with consideration of the installation space for the conventional hydraulic brake of a mid-sized motorcycle. The design parameters of the proposed MR brake are optimized to satisfy design requirements such as the braking torque, total mass of the MR brake, and cruising temperature caused by the magnetic-field friction of the MR fluid. In the optimization procedure, the braking torque is calculated based on the Herschel-Bulkley rheological model, which predicts MR fluid behavior well at high shear rate. An optimization tool based on finite element analysis is used to obtain the optimized dimensions of the MR brake. After manufacturing the MR brake, mechanical performances regarding the response time, braking torque and cruising temperature are experimentally evaluated.

  14. Engineering report. Part 2: NASA wheel and brake material tradeoff study for space shuttle type environmental requirements

    NASA Technical Reports Server (NTRS)

    Bok, L. D.

    1973-01-01

    The study included material selection and trade-off for the structural components of the wheel and brake optimizing weight vs cost and feasibility for the space shuttle type application. Analytical methods were used to determine section thickness for various materials, and a table was constructed showing weight vs. cost trade-off. The wheel and brake were further optimized by considering design philosophies that deviate from standard aircraft specifications, and designs that best utilize the materials being considered.

  15. Flight test evaluation of a method to determine the level flight performance propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Cross, E. J., Jr.

    1976-01-01

    A procedure is developed for deriving the level flight drag and propulsive efficiency of propeller-driven aircraft. This is a method in which the overall drag of the aircraft is expressed in terms of the measured increment of power required to overcome a corresponding known increment of drag. The aircraft is flown in unaccelerated, straight and level flight, and thus includes the effects of the propeller drag and slipstream. Propeller efficiency and airplane drag are computed on the basis of data obtained during flight test and do not rely on the analytical calculations of inadequate theory.

  16. Optimal controller design for high performance aircraft undergoing large disturbance angles

    NASA Technical Reports Server (NTRS)

    Rhoten, R. P.

    1974-01-01

    An examination of two aircraft controller structures applicable to on-line implementation was conducted. The two controllers, a linear regulator model follower and an inner-product model follower, were applied to the lateral dynamics of the F8-C aircraft. For the purposes of this research effort, the lateral dynamics of the F8-C aircraft were considered. The controller designs were evaluated for four flight conditions. Additionally, effects of pilot input, rapid variation of flight condition and control surface rate and magnitude deflection limits were considered.

  17. Application of a Constant Gain Extended Kalman Filter for In-Flight Estimation of Aircraft Engine Performance Parameters

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.; Litt, Jonathan S.

    2005-01-01

    An approach based on the Constant Gain Extended Kalman Filter (CGEKF) technique is investigated for the in-flight estimation of non-measurable performance parameters of aircraft engines. Performance parameters, such as thrust and stall margins, provide crucial information for operating an aircraft engine in a safe and efficient manner, but they cannot be directly measured during flight. A technique to accurately estimate these parameters is, therefore, essential for further enhancement of engine operation. In this paper, a CGEKF is developed by combining an on-board engine model and a single Kalman gain matrix. In order to make the on-board engine model adaptive to the real engine s performance variations due to degradation or anomalies, the CGEKF is designed with the ability to adjust its performance through the adjustment of artificial parameters called tuning parameters. With this design approach, the CGEKF can maintain accurate estimation performance when it is applied to aircraft engines at offnominal conditions. The performance of the CGEKF is evaluated in a simulation environment using numerous component degradation and fault scenarios at multiple operating conditions.

  18. A review of methodological factors in performance assessments of time-varying aircraft noise effects. [with annotated bibliography

    NASA Technical Reports Server (NTRS)

    Coates, G. D.; Alluisi, E. A.; Adkins, C. J., Jr.

    1977-01-01

    Literature on the effects of general noise on human performance is reviewed in an attempt to identify (1) those characteristics of noise that have been found to affect human performance; (2) those characteristics of performance most likely to be affected by the presence of noise, and (3) those characteristics of the performance situation typically associated with noise effects. Based on the characteristics identified, a theoretical framework is proposed that will permit predictions of possible effects of time-varying aircraft-type noise on complex human performance. An annotated bibliography of 50 articles is included.

  19. Operational performance of vapor-screen systems for in-flight visualization of leading-edge vortices on the F-106B aircraft

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Bruce, Robert A.; Bruce, Robert A.; Bruce, Robert A.; Bruce, Robert A.; Bruce, Robert A.; Bruce, Robert A.

    1987-01-01

    A flight research program was undertaken at the NASA Langley Research Center to apply the vapor-screen technique, widely used in wind tunnels, to an aircraft. The purpose was to obtain qualitative and quantitative information about near-field vortex flows above the wings of fighter aircraft and ascertain the effects of Reynolds and Mach numbers over the angle-of-attack range. The hardware for the systems required for flight application of the vapor-screen technique was successfully developed and integrated. Details of each system, its operational performance on the F-106B aircraft, and pertinent aircraft and environmental data collected are presented.

  20. Top-mounted inlet performance for a V/STOL fighter/attack aircraft configuration

    NASA Technical Reports Server (NTRS)

    Smeltzer, Donald B.

    1987-01-01

    Inlet flow-field and compressor-face performance data were obtained for a 0.095-scale model of vertical/short take-off landing (V/STOL) fighter/attack aircraft configuration with twin top-mounted inlets. Tests were conducted at Mach numbers from 0.6 to 2.0 and angles of attack and sideslip up to 27 deg. and 12 deg., respectively. Reynolds number was held constant at 9.8 x 10 to the 6th power per meter. The effects of inlet location, wing leading-edge extension (LEX) planform area, canopy-dorsal integration, variable incidence canards, and wing leading- and trailing-edge flap deflections were determined. The results show that at Mach numbers up to 0.9, distortion is relatively low (20% or less) at all angles of attack and sideslip. However, at Mach numbers of 1.2 and above, operation may be restricted because of either high distortion or low pressure recovery (80% or less), or both. These difficulties may be overcome with alterations to the LEX/canopy/body juncture.

  1. Insulation Performance of Heat-Resistant Material for High-Speed Aircraft Under Thermal Environments

    NASA Astrophysics Data System (ADS)

    Wu, Dafang; Wang, Yuewu; Gao, Zhentong; Yang, Jialing

    2015-09-01

    Lightweight insulation materials are widely used to thermally protect high-speed aircraft, such as missiles. Thermal conductivity is an important parameter used to evaluate the efficiency of a material's thermal insulation performance. Since thermal conductivities provided from material handbooks or manufacturers are discrete data for different temperature ranges, there is a deviation between those and actual parameters in terms of continuous nonlinear variations. Therefore, this study measures the thermal conductivities of lightweight thermal insulation materials at high temperatures, and the relationship between the thermal conductivity and temperature is obtained. A finite element model of the thermal insulation materials is also established and applied to numerically calculate the thermal insulation properties for high-temperature ceramic fiber insulation materials using the experimentally obtained nonlinear relationship between thermal conductivity and temperature. Additionally, a transient aerodynamic heating experiment simulation system is used to thermally test the same materials; the calculated and experimental results for the same materials are compared, which exhibit good consistency that demonstrates that accurate results can be obtained from the numerical computation using the relationship established from the experimentally measured conductivity and temperature.

  2. Optimal design of a novel hybrid MR brake for motorcycles considering axial and radial magnetic flux

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. H.; Choi, S. B.

    2012-05-01

    This work presents an optimal solution of a new type of motorcycle brake featuring different smart magnetorheological (MR) fluids. In this study, typical types of commercial MR fluid are considered there for the design of a motorcycle MR brake; MRF-122-2ED (low yield stress), MRF-132-DG (medium yield stress) and MRF-140-CG (high yield stress). As a first step, a new configuration featuring a T-shaped drum MR brake is introduced and a hybrid concept of magnetic circuit (using both axial and radial magnetic flux) to generate braking force is analyzed based on the finite element method. An optimal design of the MR brake considering the required braking torque, the temperature due to friction of the MR fluid, the mass of the brake system and all significant geometric dimensions is then performed. For the optimization, the finite element analysis (FEA) is used to achieve principal geometric dimensions of the MR brake. In addition, the size, mass and power consumption of three different MR motorcycle brakes are quantitatively analyzed and compared.

  3. Evaluation of a sudden brake warning system: effect on the response time of the following driver.

    PubMed

    Isler, Robert B; Starkey, Nicola J

    2010-07-01

    This study used a video-based braking simulation dual task to carry out a preliminary evaluation of the effect of a sudden brake warning system (SBWS) in a leading passenger vehicle on the response time of the following driver. The primary task required the participants (N=25, 16 females, full NZ license holders) to respond to sudden braking manoeuvres of a lead vehicle during day and night driving, wet and dry conditions and in rural and urban traffic, while concurrently performing a secondary tracking task using a computer mouse. The SBWS in the lead vehicle consisted of g-force controlled activation of the rear hazard lights (the rear indicators flashed), in addition to the standard brake lights. Overall, the results revealed that responses to the braking manoeuvres of the leading vehicles when the hazard lights were activated by the warning system were 0.34 s (19%) faster compared to the standard brake lights. The SBWS was particularly effective when the simulated braking scenario of the leading vehicle did not require an immediate and abrupt braking response. Given this, the SBWS may also be beneficial for allowing smoother deceleration, thus reducing fuel consumption. These preliminary findings justify a larger, more ecologically valid laboratory evaluation which may lead to a naturalistic study in order to test this new technology in 'real world' braking situations.

  4. The market for airline aircraft: A study of process and performance

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The key variables accounting for the nature, timing and magnitude of the equipment and re-equipment cycle are identified and discussed. Forecasts of aircraft purchases by U.S. trunk airlines over the next 10 years are included to examine the anatomy of equipment forecasts in a way that serves to illustrate how certain of these variables or determinants of aircraft demand can be considered in specific terms.

  5. A two-time-scale autopilot for high-performance aircraft

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Chatterji, G. B.; Cheng, V. H. L.

    1991-01-01

    A two-time-scale autopilot is proposed for the Aircraft Controls Design Challenge problem. This control law uses a nonlinear aircraft model constructed from the given vehicle simulation. The vehicle model is partitioned into slow translational dynamics and fast rotational dynamics. Feedback linearization is then employed to synthesize control laws for these two-time scales. Due to the nature of the synthesis, the control law is suitable for automatic trajectory following, and also for pilot control.

  6. Processing of on-board recorded data for quick analysis of aircraft performance. [rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    Michaud, N. H.

    1979-01-01

    A system of independent computer programs for the processing of digitized pulse code modulated (PCM) and frequency modulated (FM) data is described. Information is stored in a set of random files and accessed to produce both statistical and graphical output. The software system is designed primarily to present these reports within a twenty-four hour period for quick analysis of the helicopter's performance.

  7. Traction Characteristics of a 30 by 11.5-14.5, Type 8, Aircraft Tire on Dry, Wet and Flooded Surfaces

    NASA Technical Reports Server (NTRS)

    Yager, T. J.; Dreher, R. C.

    1976-01-01

    A limited test program was conducted to extend and supplement the braking and cornering data on a 30 x 11.5-14.5, type VIII, aircraft tire to refine the tire/runway friction model for use in the development of an aircraft ground performance simulation. Tire traction data were obtained on dry, wet and flooded runway surfaces at ground speeds ranging from 5 to 100 knots and at yaw angles extending up to 12 deg. These friction coefficients are presented as a function of slip characteristics, namely, the maximum and skidding drag coefficients and the maximum cornering coefficients are presented as a function of both ground speed and yaw angle to extend existing data on that tire size. Tire braking and cornering capabilities were shown to be affected by vehicle ground speed, wheel yaw attitude and the extent of surface wetness.

  8. A summary of recent aircraft/ground vehicle friction measurement tests

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1988-01-01

    Tests were carried out to evaluate a variety of runway surface types and wetness conditions, using specially instrumented NASA B-737 and B-727 aircraft and several ground friction measuring devices. The performance data for aircraft braking on dry, wet, snow-covered, and ice-covered runway conditions are presented and compared to ground-vehicle friction data obtained under similar runway conditions. The relationships between ground vehicles and the aircraft friction data are identified, and the effects on friction of major test parameters, such as the speed, the tire characteristics, and the type of surface-contaminant are discussed. The results demonstrated that properly maintained and calibrated ground vehicles can be used to monitor the runway friction conditions.

  9. Analysis and flight evaluation of a small, fixed-wing aircraft equipped with hinged plate spoilers

    NASA Technical Reports Server (NTRS)

    Olcott, J. W.; Sackel, E.; Ellis, D. R.

    1981-01-01

    The results of a four phase effort to evaluate the application of hinged plate spoilers/dive brakes to a small general aviation aircraft are presented. The test vehicle was a single engine light aircraft modified with an experimental set of upper surface spoilers and lower surface dive brakes similar to the type used on sailplanes. The lift, drag, stick free stability, trim, and dynamic response characteristics of four different spoiler/dive brake configurations were determined. Tests also were conducted, under a wide range of flight conditions and with pilots of various experience levels, to determine the most favorable methods of spoiler control and to evaluate how spoilers might best be used during the approach and landing task. The effects of approach path angle, approach airspeed, and pilot technique using throttle/spoiler integrated control were investigated for day, night, VFR, and IFR approaches and landings. The test results indicated that spoilers offered significant improvements in the vehicle's performance and flying qualities for all elements of the approach and landing task, provided a suitable method of control was available.

  10. 49 CFR 393.45 - Brake tubing and hoses; hose assemblies and end fittings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... connections. All connections for air, vacuum, or hydraulic braking systems shall be installed so as to ensure... damage; and (3) Be installed in a manner that prevents it from contacting the vehicle's exhaust system or... performance of the brake system. [70 FR 48050, Aug. 15, 2005]...

  11. 49 CFR 393.45 - Brake tubing and hoses; hose assemblies and end fittings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... connections. All connections for air, vacuum, or hydraulic braking systems shall be installed so as to ensure... damage; and (3) Be installed in a manner that prevents it from contacting the vehicle's exhaust system or... performance of the brake system. [70 FR 48050, Aug. 15, 2005]...

  12. General Aviation Aircraft Reliability Study

    NASA Technical Reports Server (NTRS)

    Pettit, Duane; Turnbull, Andrew; Roelant, Henk A. (Technical Monitor)

    2001-01-01

    This reliability study was performed in order to provide the aviation community with an estimate of Complex General Aviation (GA) Aircraft System reliability. To successfully improve the safety and reliability for the next generation of GA aircraft, a study of current GA aircraft attributes was prudent. This was accomplished by benchmarking the reliability of operational Complex GA Aircraft Systems. Specifically, Complex GA Aircraft System reliability was estimated using data obtained from the logbooks of a random sample of the Complex GA Aircraft population.

  13. X-29 aircraft takeoff

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Two X-29 aircraft, featuring one of the most unusual designs in aviation history, were flown at the NASA Dryden Flight Research Center, Edwards, Calif., as technology demonstrators to investigate a host of advanced concepts and technologies. This movie clip runs 26 seconds and begins with a rear view of the X-29 in full afterburner at brake release, then a chase plane shot as it rotates off the runway beginning a rapid climb and finally an air-to-air view of the tail as the chase plane with the camera moves from right to left.

  14. 49 CFR 238.309 - Periodic brake equipment maintenance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., ABDX, 26-C, or equivalent brake system. (e) Cab cars. The brake equipment of each cab car shall be..., KB-HS1, or Fastbrake brake systems. (2) Every 1,476 days for that portion of the cab car brake system... that portion of the cab car brake system using brake valves that are identical to the locomotive...

  15. 49 CFR 238.309 - Periodic brake equipment maintenance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., ABDX, 26-C, or equivalent brake system. (e) Cab cars. The brake equipment of each cab car shall be..., KB-HS1, or Fastbrake brake systems. (2) Every 1,476 days for that portion of the cab car brake system... that portion of the cab car brake system using brake valves that are identical to the locomotive...

  16. 49 CFR 238.313 - Class I brake test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... shoes or pads are firmly seated against the wheel or disc with the brakes applied; (3) Piston travel is... the case of tread or disc brakes by determining that the brake shoe or pad provides pressure to the... of the clearance between the brake shoe and the wheel or between the brake pad and the brake disc....

  17. 49 CFR 238.313 - Class I brake test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... shoes or pads are firmly seated against the wheel or disc with the brakes applied; (3) Piston travel is... the case of tread or disc brakes by determining that the brake shoe or pad provides pressure to the... of the clearance between the brake shoe and the wheel or between the brake pad and the brake disc....

  18. 49 CFR 238.313 - Class I brake test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... shoes or pads are firmly seated against the wheel or disc with the brakes applied; (3) Piston travel is... the case of tread or disc brakes by determining that the brake shoe or pad provides pressure to the... of the clearance between the brake shoe and the wheel or between the brake pad and the brake disc....

  19. Integrated lift/drag controller for aircraft

    NASA Technical Reports Server (NTRS)

    Olcott, J. W.; Seckel, E.; Ellis, D. R. (Inventor)

    1974-01-01

    A system for altering the lift/drag characteristics of powered aircraft to provide a safe means of glide path control includes a control device integrated for coordination action with the aircraft throttle. Such lift/drag alteration devices as spoilers, dive brakes, and the like are actuated by manual operation of a single lever coupled with the throttle for integrating, blending or coordinating power control. Improper operation of the controller is inhibited by safety mechanisms.

  20. Analysis of heat conduction in a drum brake system of the wheeled armored personnel carriers

    NASA Astrophysics Data System (ADS)

    Puncioiu, A. M.; Truta, M.; Vedinas, I.; Marinescu, M.; Vinturis, V.

    2015-11-01

    This paper is an integrated study performed over the Braking System of the Wheeled Armored Personnel Carriers. It mainly aims to analyze the heat transfer process which is present in almost any industrial and natural process. The vehicle drum brake systems can generate extremely high temperatures under high but short duration braking loads or under relatively light but continuous braking. For the proper conduct of the special vehicles mission in rough terrain, we are talking about, on one hand, the importance of the possibility of immobilization and retaining position and, on the other hand, during the braking process, the importance movement stability and reversibility or reversibility, to an encounter with an obstacle. Heat transfer processes influence the performance of the braking system. In the braking phase, kinetic energy transforms into thermal energy resulting in intense heating and high temperature states of analyzed vehicle wheels. In the present work a finite element model for the temperature distribution in a brake drum is developed, by employing commercial finite element software, ANSYS. These structural and thermal FEA models will simulate entire braking event. The heat generated during braking causes distortion which modifies thermoelastic contact pressure distribution drum-shoe interface. In order to capture the effect of heat, a transient thermal analysis is performed in order to predict the temperature distribution transitional brake components. Drum brakes are checked both mechanical and thermal. These tests aim to establish their sustainability in terms of wear and the variation coefficient of friction between the friction surfaces with increasing temperature. Modeling using simulation programs led eventually to the establishment of actual thermal load of the mechanism of brake components. It was drawn the efficiency characteristic by plotting the coefficient of effectiveness relative to the coefficient of friction shoe-drum. Thus induced

  1. A Demonstration of Car Braking Instabilities.

    ERIC Educational Resources Information Center

    Irwin, Jack; Swinson, Derek

    1990-01-01

    Detailed are the construction of a demonstration car, apparatus and procedures used in the demonstration, and the analysis of the effects of car braking. The cases of rear-wheel and front-wheel braking are considered. (CW)

  2. Four-wheel dual braking for automobiles

    NASA Technical Reports Server (NTRS)

    Edwards, H. B.

    1981-01-01

    Each master cylinder applies braking power to all four wheels unlike conventional systems where cylinder operates only two wheels. If one master system fails because of fluid loss, other stops car by braking all four wheels although at half force.

  3. The effect of a braking device in reducing the ground impact forces inherent in plyometric training.

    PubMed

    Humphries, B J; Newton, R U; Wilson, G J

    1995-02-01

    As a consequence of performing plyometric type exercises, such as depth jumps, impact forces placed on the musculoskeletal system during landing can lead to a potential for injury. A reduction of impact forces upon landing could therefore contribute to reduce the risk of injury. Twenty subjects performed a series of loaded jumps for maximal height, with and without a brake mechanism designed to reduce impact force during landing. The braked jumps were performed on the Plyometric Power System (PPS) with its braking mechanism set at 75% of body weight during the downward phase. The non-braked condition involved jumps with no braking. Vertical ground reaction force data, sampled for 5.5 s at 550 Hz from a Kistler forceplate, were collected for each jump condition. The following parameters were then calculated: peak vertical force, time to peak force, passive impact impulse and maximum concentric force. The brake served to significantly (p < 0.01) reduce peak impact force by 155% and passive impact impulse by 200%. No significant differences were found for peak concentric force production. The braking mechanism of the PPS significantly reduced ground impact forces without impeding concentric force production. The reduction in eccentric loading, using the braking mechanism, may reduce the incidence of injury associated with landings from high intensity plyometric exercises.

  4. Airdata calibration of a high-performance aircraft for measuring atmospheric wind profiles

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.

    1990-01-01

    The research airdata system of an instrumented F-104 aircraft has been calibrated to measure winds aloft in support of the space shuttle wind measurement investigation at the National Aeronautics and Space Administration Ames Research Center Dryden Flight Research Facility. For this investigation, wind measurement accuracies comparable to those obtained from Jimsphere balloons were desired. This required an airdata calibration more accurate than needed for most aircraft research programs. The F-104 aircraft was equipped with a research pilot-static noseboom with integral angle-of-attack and flank angle-of-attack vanes and a ring-laser-gyro inertial reference unit. Tower fly-bys and radar acceleration-decelerations were used to calibrate Mach number and total temperature. Angle of attack and angle of sideslip were calibrated with a trajectory reconstruction technique using a multiple-state linear Kalman filter. The F-104 aircraft and instrumentation configuration, flight test maneuvers, data corrections, calibration techniques, and resulting calibrations and data repeatability are presented. Recommendations for future airdata systems on aircraft used to measure winds aloft are also given.

  5. Estimated performance of an adaptive trailing-edge device aimed at reducing fuel consumption on a medium-size aircraft

    NASA Astrophysics Data System (ADS)

    Diodati, Gianluca; Concilio, Antonio; Ricci, Sergio; De Gaspari, Alessandro; Huvelin, Fabien; Dumont, Antoine; Godard, Jean-Luc

    2013-03-01

    This paper deals with the estimation of the performance of a medium-size aircraft (3-hour flight range) equipped with an adaptive trailing edge device (ATED) that runs span-wise from the wing root in the flap zone and extends chord-wise for a limited percentage of the MAC. Computations are calculated referring to the full wing and do not refer to the complete aircraft configuration. Aerodynamic computations, taking into account ideal shapes, have been performed by using both Euler and Navier- Stokes method in order to extract the wing polars for the reference and the optimal wing, implementing an ATED, deflected upwards and downwards. A comparison of the achieved results is discussed. Considering the shape domain, a suitable interpolation procedure has been set up to obtain the wing polar envelop of the adaptive wing, intended as the set of "best" values, picked by each different polar. At the end, the performances of the complete reference and adaptive wing are computed and compared for a symmetric, centered, leveled and steady cruise flight for a medium size aircraft. A significant fuel burn reduction estimate or, alternatively, an increased range capability is demonstrated, with margins of further improvements. The research leading to these results has gratefully received funding from the European Union Seventh Framework Programme (FP7/2007- 2013) under Grant Agreement n° 284562.

  6. Effect of different flight conditions at the release of a small spacecraft from a high performance aircraft

    NASA Astrophysics Data System (ADS)

    Ridolfi, L.; Pontani, M.; Teofilatto, P.

    2010-03-01

    In recent years, mainly due to miniaturization of electronics as well as to the improvement of computer performance, small spacecraft have increased their capabilities. More and more frequently specific mission objectives can be achieved with cheap satellites of reduced size. The growing use of small satellites stimulates the development of systems specifically dedicated to orbit injection of small payloads. In this context, one option is represented by air-launched rockets. The use of an air-launched rocket for delivering a small payload into the desired orbit has several advantages. First of all, payload release is much more flexible, because the delivery conditions are directly related to the dynamics of the aircraft and can be viewed as independent of ground facilities. In addition, reduced costs are associated with higher efficiency of an aircraft in the lower layers of the atmosphere with respect to traditional ground-launched rockets. To date, air-launched rockets separate from the aircraft in a horizontal flight condition. Then they maneuver in order to achieve the correct flight path angle for injecting into a gravity-turn arc of trajectory. Relevant losses are associated to this pitch maneuver; in addition, in this phase the rocket usually needs an aerodynamic control. Hence, the release of a rocket departing with a high flight path angle from the aircraft would avoid these losses and would simplify the control system, because in such a situation the pitch maneuver becomes unnecessary. This paper is aimed at investigating the dynamic behavior and performance of a payload delivered from a high performance aircraft, which flies with a high flight path angle. In particular, this work is concerned with showing the differences and tradeoffs among different starting conditions of a multistage air-launched rocket related to several flight path angles of the aircraft at release. An optimal system configuration, which allows placing a micro-satellite into a

  7. An evaluation of short-term exposures of brake mechanics to asbestos during automotive and truck brake cleaning and machining activities.

    PubMed

    Richter, Richard O; Finley, Brent L; Paustenbach, Dennis J; Williams, Pamela R D; Sheehan, Patrick J

    2009-07-01

    Historically, the greatest contributions to airborne asbestos concentrations during brake repair work were likely due to specific, short-duration, dust-generating activities. In this paper, the available short-term asbestos air sampling data for mechanics collected during the cleaning and machining of vehicle brakes are evaluated to determine their impact on both short-term and daily exposures. The high degree of variability and lack of transparency for most of the short-term samples limit their use in reconstructing past asbestos exposures for brake mechanics. However, the data are useful in evaluating how reducing short-term, dust-generating activities reduced long-term exposures, especially for auto brake mechanics. Using the short-term dose data for grinding brake linings from these same studies, in combination with existing time-weighted average (TWA) data collected in decades after grinding was commonplace in rebuilding brake shoes, an average 8-h TWA of approximately 0.10 f/cc was estimated for auto brake mechanics that performed arc grinding of linings during automobile brake repair (in the 1960s or earlier). In the 1970s and early 1980s, a decline in machining activities led to a decrease in the 8-h TWA to approximately 0.063 f/cc. Improved cleaning methods in the late 1980s further reduced the 8-h TWA for most brake mechanics to about 0.0021 f/cc. It is noteworthy that when compared with the original OSHA excursion level, only 15 of the more than 300 short-term concentrations for brake mechanics measured during the 1970s and 1980s possibly exceeded the standard. Considering exposure duration, none of the short-term exposures were above the current OSHA excursion level.

  8. Use of optimization to predict the effect of selected parameters on commuter aircraft performance

    NASA Technical Reports Server (NTRS)

    Wells, V. L.; Shevell, R. S.

    1982-01-01

    The relationships between field length and cruise speed and aircraft direct operating cost were determined. A gradient optimizing computer program was developed to minimize direct operating cost (DOC) as a function of airplane geometry. In this way, the best airplane operating under one set of constraints can be compared with the best operating under another. A constant 30-passenger fuselage and rubberized engines based on the General Electric CT-7 were used as a baseline. All aircraft had to have a 600 nautical mile maximum range and were designed to FAR part 25 structural integrity and climb gradient regulations. Direct operating cost was minimized for a typical design mission of 150 nautical miles. For purposes of C sub L sub max calculation, all aircraft had double-slotted flaps but with no Fowler action.

  9. Compact, Lightweight Servo-Controllable Brakes

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher S.; Townsend, William; Guertin, Jeffrey; Matsuoka, Yoky

    2010-01-01

    Compact, lightweight servo-controllable brakes capable of high torques are being developed for incorporation into robot joints. A brake of this type is based partly on the capstan effect of tension elements. In a brake of the type under development, a controllable intermediate state of torque is reached through on/off switching at a high frequency.

  10. 30 CFR 56.14101 - Brakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... its typical load on the maximum grade it travels. (3) All braking systems installed on the equipment... those braking systems, including auxiliary retarders, which are designed to bring the equipment to a... mobile equipment shall be equipped with a service brake system capable of stopping and holding...

  11. 49 CFR 238.431 - Brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... (e) The following requirements apply to blended braking systems: (1) Loss of power or failure of the... adhesion control system designed to automatically adjust the braking force on each wheel to prevent sliding during braking. In the event of a failure of this system to prevent wheel slide within preset...

  12. 30 CFR 56.14101 - Brakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... its typical load on the maximum grade it travels. (3) All braking systems installed on the equipment... those braking systems, including auxiliary retarders, which are designed to bring the equipment to a... mobile equipment shall be equipped with a service brake system capable of stopping and holding...

  13. 49 CFR 238.431 - Brake system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... (e) The following requirements apply to blended braking systems: (1) Loss of power or failure of the... adhesion control system designed to automatically adjust the braking force on each wheel to prevent sliding during braking. In the event of a failure of this system to prevent wheel slide within preset...

  14. 49 CFR 238.431 - Brake system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... (e) The following requirements apply to blended braking systems: (1) Loss of power or failure of the... adhesion control system designed to automatically adjust the braking force on each wheel to prevent sliding during braking. In the event of a failure of this system to prevent wheel slide within preset...

  15. 14 CFR 23.735 - Brakes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... wheel braking system must not exceed the pressure specified by the brake manufacturer. (d) If antiskid devices are installed, the devices and associated systems must be designed so that no single probable malfunction or failure will result in a hazardous loss of braking ability or directional control of...

  16. 30 CFR 56.14101 - Brakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... its typical load on the maximum grade it travels. (3) All braking systems installed on the equipment... those braking systems, including auxiliary retarders, which are designed to bring the equipment to a... mobile equipment shall be equipped with a service brake system capable of stopping and holding...

  17. 30 CFR 56.14101 - Brakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... its typical load on the maximum grade it travels. (3) All braking systems installed on the equipment... those braking systems, including auxiliary retarders, which are designed to bring the equipment to a... mobile equipment shall be equipped with a service brake system capable of stopping and holding...

  18. 49 CFR 238.431 - Brake system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... (e) The following requirements apply to blended braking systems: (1) Loss of power or failure of the... adhesion control system designed to automatically adjust the braking force on each wheel to prevent sliding during braking. In the event of a failure of this system to prevent wheel slide within preset...

  19. 49 CFR 238.431 - Brake system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... (e) The following requirements apply to blended braking systems: (1) Loss of power or failure of the... adhesion control system designed to automatically adjust the braking force on each wheel to prevent sliding during braking. In the event of a failure of this system to prevent wheel slide within preset...

  20. Analysis of Complexity Evolution Management and Human Performance Issues in Commercial Aircraft Automation Systems

    NASA Technical Reports Server (NTRS)

    Vakil, Sanjay S.; Hansman, R. John

    2000-01-01

    Autoflight systems in the current generation of aircraft have been implicated in several recent incidents and accidents. A contributory aspect to these incidents may be the manner in which aircraft transition between differing behaviours or 'modes.' The current state of aircraft automation was investigated and the incremental development of the autoflight system was tracked through a set of aircraft to gain insight into how these systems developed. This process appears to have resulted in a system without a consistent global representation. In order to evaluate and examine autoflight systems, a 'Hybrid Automation Representation' (HAR) was developed. This representation was used to examine several specific problems known to exist in aircraft systems. Cyclomatic complexity is an analysis tool from computer science which counts the number of linearly independent paths through a program graph. This approach was extended to examine autoflight mode transitions modelled with the HAR. A survey was conducted of pilots to identify those autoflight mode transitions which airline pilots find difficult. The transitions identified in this survey were analyzed using cyclomatic complexity to gain insight into the apparent complexity of the autoflight system from the perspective of the pilot. Mode transitions which had been identified as complex by pilots were found to have a high cyclomatic complexity. Further examination was made into a set of specific problems identified in aircraft: the lack of a consistent representation of automation, concern regarding appropriate feedback from the automation, and the implications of physical limitations on the autoflight systems. Mode transitions involved in changing to and leveling at a new altitude were identified across multiple aircraft by numerous pilots. Where possible, evaluation and verification of the behaviour of these autoflight mode transitions was investigated via aircraft-specific high fidelity simulators. Three solution

  1. Performance, emissions, and physical characteristics of a rotating combustion aircraft engine, supplement A

    NASA Technical Reports Server (NTRS)

    Lamping, R. K.; Manning, I.; Myers, D.; Tjoa, B.

    1980-01-01

    Testing was conducted using the basic RC2-75 engine, to which several modifications were incorporated which were designed to reduce the hydrocarbon emissions and reduce the specific fuel consumption. The modifications included close-in surface gap spark plugs, increased compression ratio rotors, and provisions for utilizing either side or peripheral intake ports, or a combination of the two if required. The proposed EPA emissions requirements were met using the normal peripheral porting. The specific fuel economy demonstrated for the modified RC2-75 was 283 g/kW-hr at 75% power and 101 brake mean effective pressure (BMEP) and 272.5 g/kW-hr at 75% power and 111 BMEP. The latter would result from rating the engine for takeoff at 285 hp and 5500 rpm, instead of 6000 rpm.

  2. Marquardt's Mach 4.5 Supercharged Ejector Ramjet (SERJ) High-Performance Aircraft Engine Project: Unfulfilled Aspirations Ca.1970

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.; Roddy, Jordan E.; Hyde, Eric H.

    2000-01-01

    The Supercharged Ejector Ramjet (SERJ) engine developments of the 1960s, as pursued by The Marquardt Corporation and its associated industry team members, are described. In just three years, engineering work on this combined-cycle powerplant type evolved, from its initial NASA-sponsored reusable space transportation system study status, into a U.S. Air Force/Navy-supported exploratory development program as a candidate 4.5 high-performance military aircraft engine. Bridging a productive transition from the spaceflight to the aviation arena, this case history supports the expectation that fully-integrated airbreathing/rocket propulsion systems hold high promise toward meeting the demanding propulsion requirements of tomorrow's aircraft-like Spaceliner class transportation systems. Lessons to be learned from this "SERJ Story" are offered for consideration by today's advanced space transportation and combined-cycle propulsion researchers and forward-planning communities.

  3. Elastic Contact Analysis of Functionally Graded Brake Disks Subjected to Thermal and Mechanical Loads

    NASA Astrophysics Data System (ADS)

    Shahzamanian, M. M.; Sahari, B. B.; Bayat, M.; Mustapha, F.; Ismarrubie, Z. N.

    2013-01-01

    In this paper, finite element contact analysis of a functionally graded (FG) brake disk in contact with a pad, subjected to rotation, contact pressure, and frictional heat, is presented. The material properties vary through the thickness according to a power-law characterized by a grading index, n. The contact surfaces are full-ceramic with full-metal free surface. The effects of n on the displacement, contact status, strain and stress are investigated. From the analysis, thermo-elastic and contact results are extremely dependent on n. Hence, n is an important criteria for the design of FG brake disks for automotive and aircraft applications.

  4. Cost and Performance Report Enhanced Biological Attenuation of Aircraft Deicing Fluid Runoff Using Constructed Wetlands

    DTIC Science & Technology

    2005-04-01

    During winter months at Department of Defense (DOD) air bases, large amounts of aircraft deicing and anti-icing fluids (ADF) (primarily propylene ... glycol , ethylene glycol, and various additives) are used to ensure flight safety during certain adverse weather conditions. Standard practices at both

  5. The Optokinetic Cervical Reflex (OKCR) in Pilots of High-Performance Aircraft.

    DTIC Science & Technology

    1997-04-01

    The impact of these results on pilot training, spatial disorientation, physiological injury and safety, and the re-design of displays for aircraft... Physiological /Physical Interpretations of the OKCR Asymptotic Response ................................ 62 6.6.2 Cognitive Interpretation of OKCR Asymptotic...displays (HMD), head-up displays (HUD), and virtual reality displays. Furthermore, flight-related topics such as training and physiological effects

  6. Finite element parametric study of the influence of friction pad material and morphological characteristics on disc brake vibration phenomena

    NASA Astrophysics Data System (ADS)

    Forte, P.; Frendo, F.; Rodrigues, R. N.

    2016-09-01

    Since nowadays the NVH performance of vehicles has become an important priority, the noise radiating from brakes is considered a source of considerable passenger discomfort and dissatisfaction. Creep groan and squeal that show up with annoying vibrations and noise in specific frequency ranges are typical examples of self-excited brake vibrations caused by the stick-slip effect, the former, by the mode coupling of brake disc and friction pads or calliper, the latter. In both cases, the friction coefficient, which depends, among other factors, on the morphology of the mating surfaces and on the operating conditions, is a fundamental parameter but not the only one for the occurrence of the vibratory phenomena. Finite element complex eigenvalue parametric analyses were performed on a disc brake assembly to evaluate propensity to dynamic instability of brakes with multiple pads, as in railway brakes, as a function of the number of pads, pad shape and size, and material parameters.

  7. Propfan test assessment testbed aircraft stability and control/performance 1/9-scale wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Little, B. H., Jr.; Tomlin, K. H.; Aljabri, A. S.; Mason, C. A.

    1988-01-01

    One-ninth scale wind tunnel model tests of the Propfan Test Assessment (PTA) aircraft were performed in three different NASA facilities. Wing and propfan nacelle static pressures, model forces and moments, and flow field at the propfan plane were measured in these tests. Tests started in June 1985 and were completed in January 1987. These data were needed to assure PTA safety of flight, predict PTA performance, and validate analytical codes that will be used to predict flow fields in which the propfan will operate.

  8. Evaluation of Corrosion Failure in Tractor-Trailer Brake System

    SciTech Connect

    Wilson, DF

    2002-10-22

    As reported to ORNL, concomitant with the introduction of different deicing and anti-icing compounds, there was an increase in the brake failure rate of tractor-trailer trucks. A forensic evaluation of a failed brake system was performed. Optical and scanning electron microscopic evaluation showed corrosion to be mostly confined to the brake table/lining interface. The corrosion is non-uniform as is to be expected for plain carbon steel in chloride environments. This initial analysis found no evidence for the chlorides of calcium and magnesium, which are the newly introduced deicing and antiicing compounds and are less soluble in water than the identified chlorides of sodium and potassium, in the scale. The result could be as a result of non-exposure of the examined brake table to calcium and magnesium chloride. The mechanisms for the increased failure rate are postulated as being an increased rate of corrosion due to positive shifts in the corrosion potential, and an increased amount of corrosion due to an increased ''time of wetness'' that results from the presence of hygroscopic salts. Laboratory scale evaluation of the corrosion of plain carbon steel in simulated deicing and anti-icing solutions need to be performed to determine corrosion rates and morphological development of corrosion product, to compare laboratory data to in-service data, and to rank economically feasible replacement materials for low carbon steel. In addition, the mechanical behavior of the lining attached to the brake shoe table needs to be assessed. It is opined that an appropriate adjustment of materials could easily allow for a doubling of a brake table/lining lifetime. Suggestions for additional work, to clarify the mechanisms of rust jacking and to develop possible solutions, are described.

  9. Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles

    NASA Astrophysics Data System (ADS)

    Hagino, Hiroyuki; Oyama, Motoaki; Sasaki, Sousuke

    2016-04-01

    To measure driving-distance-based mass emission factors for airborne brake wear particulate matter (PM; i.e., brake wear particles) related to the non-asbestos organic friction of brake assembly materials (pads and lining), and to characterize the components of brake wear particles, a brake wear dynamometer with a constant-volume sampling system was developed. Only a limited number of studies have investigated brake emissions under urban city driving cycles that correspond to the tailpipe emission test (i.e., JC08 or JE05 mode of Japanese tailpipe emission test cycles). The tests were performed using two passenger cars and one middle-class truck. The observed airborne brake wear particle emissions ranged from 0.04 to 1.4 mg/km/vehicle for PM10 (particles up to 10 μm (in size), and from 0.04 to 1.2 mg/km/vehicle for PM2.5. The proportion of brake wear debris emitted as airborne brake wear particles was 2-21% of the mass of wear. Oxygenated carbonaceous components were included in the airborne PM but not in the original friction material, which indicates that changes in carbon composition occurred during the abrasion process. Furthermore, this study identified the key tracers of brake wear particles (e.g., Fe, Cu, Ba, and Sb) at emission levels comparable to traffic-related atmospheric environments.

  10. Bidirectional drive and brake mechanism

    NASA Technical Reports Server (NTRS)

    Swan, Scott A. (Inventor)

    1991-01-01

    A space transport vehicle is disclosed as including a body which is arranged to be movably mounted on an elongated guide member disposed in outer space and driven therealong. A drive wheel is mounted on a drive shaft and arranged to be positioned in rolling engagement with the elongated guide carrying the vehicle. A brake member is arranged on the drive shaft for movement into and out of engagement with an adjacent surface of the drive wheel. An actuator is mounted on the body to be manually moved back and forth between spaced positions in an arc of movement. A ratchet-and-pawl mechanism is arranged to operate upon movements of the actuator in one direction between first and second positions for coupling the actuator to the drive wheel to incrementally rotate the wheel in one rotational direction and to operate upon movements of the actuator in the opposite direction for uncoupling the actuator from the wheel. The brake member is threadedly coupled to the drive shaft in order that the brake member will be operated only when the actuator is moved on beyond its first and second positions for shifting the brake member along the drive shaft and into frictional engagement with the adjacent surface on the drive wheel.

  11. Brake blending strategy for a hybrid vehicle

    SciTech Connect

    Boberg, Evan S.

    2000-12-05

    A hybrid electric powertrain system is provided including a transmission for driving a pair of wheels of a vehicle and a heat engine and an electric motor/generator coupled to the transmission. A friction brake system is provided for applying a braking torque to said vehicle. A controller unit generates control signals to the electric motor/generator and the friction brake system for controllably braking the vehicle in response to a drivers brake command. The controller unit determines and amount of regenerative torque available and compares this value to a determined amount of brake torque requested for determining the control signals to the electric motor/generator and the friction brake system.

  12. Terminal area considerations for an advanced CTOL transport aircraft

    NASA Technical Reports Server (NTRS)

    Sussman, M. B.

    1975-01-01

    Projected future conditions at large urban airports were used to identify design objectives for a long-haul, advanced transport airplane introduced for operation in the mid-1980s. Operating constraints associated with airport congestion and aircraft noise and emissions were of central interest. In addition, some of the interaction of these constraints with aircraft fuel usage were identified. The study allowed for advanced aircraft design features consistent with the future operating period. A baseline 200 passenger airplane design was modified to comply with design requirements imposed by terminal area constraints. Specific design changes included: (1) modification of engine arrangement; wing planform; (2) drag and spoiler surfaces; (3) secondary power systems; (4) brake and landing gear characteristics; and (5) the aircraft avionics. These changes, based on exploratory design estimates and allowing for technology advance, were judged to enable the airplane to: reduce wake turbulence; handle steeper descent paths with fewer limitation due to engine characteristics; reduce runway occupancy times; improve community noise contours; and reduce the total engine emittants deposited in the terminal area. The penalties to airplane performance and operating cost associated with improving the terminal area characteristics of the airplane were assessed. Finally, key research problems requiring solution in order to validate the assumed advanced airplane technology were identified.

  13. The Effect of a Variable Disc Pad Friction Coefficient for the Mechanical Brake System of a Railway Vehicle

    PubMed Central

    Lee, Nam-Jin; Kang, Chul-Goo

    2015-01-01

    A brake hardware-in-the-loop simulation (HILS) system for a railway vehicle is widely applied to estimate and validate braking performance in research studies and field tests. When we develop a simulation model for a full vehicle system, the characteristics of all components are generally properly simplified based on the understanding of each component’s purpose and interaction with other components. The friction coefficient between the brake disc and the pad used in simulations has been conventionally considered constant, and the effect of a variable friction coefficient is ignored with the assumption that the variability affects the performance of the vehicle braking very little. However, the friction coefficient of a disc pad changes significantly within a range due to environmental conditions, and thus, the friction coefficient can affect the performance of the brakes considerably, especially on the wheel slide. In this paper, we apply a variable friction coefficient and analyzed the effects of the variable friction coefficient on a mechanical brake system of a railway vehicle. We introduce a mathematical formula for the variable friction coefficient in which the variable friction is represented by two variables and five parameters. The proposed formula is applied to real-time simulations using a brake HILS system, and the effectiveness of the formula is verified experimentally by testing the mechanical braking performance of the brake HILS system. PMID:26267883

  14. The Effect of a Variable Disc Pad Friction Coefficient for the Mechanical Brake System of a Railway Vehicle.

    PubMed

    Lee, Nam-Jin; Kang, Chul-Goo

    2015-01-01

    A brake hardware-in-the-loop simulation (HILS) system for a railway vehicle is widely applied to estimate and validate braking performance in research studies and field tests. When we develop a simulation model for a full vehicle system, the characteristics of all components are generally properly simplified based on the understanding of each component's purpose and interaction with other components. The friction coefficient between the brake disc and the pad used in simulations has been conventionally considered constant, and the effect of a variable friction coefficient is ignored with the assumption that the variability affects the performance of the vehicle braking very little. However, the friction coefficient of a disc pad changes significantly within a range due to environmental conditions, and thus, the friction coefficient can affect the performance of the brakes considerably, especially on the wheel slide. In this paper, we apply a variable friction coefficient and analyzed the effects of the variable friction coefficient on a mechanical brake system of a railway vehicle. We introduce a mathematical formula for the variable friction coefficient in which the variable friction is represented by two variables and five parameters. The proposed formula is applied to real-time simulations using a brake HILS system, and the effectiveness of the formula is verified experimentally by testing the mechanical braking performance of the brake HILS system.

  15. A strategy for in-flight measurements of physiology of pilots of high-performance fighter aircraft.

    PubMed

    West, John B

    2013-07-01

    Some pilots flying modern high-performance fighter aircraft develop "hypoxia-like" incidents characterized by short periods of confusion and cognitive impairment. The problem is serious and recently led to the grounding of a fleet of aircraft. Extensive discussions of the incidents have taken place but some people believe that there is inadequate data to determine the cause. There is a tremendous disconnect between what is known about the function of the aircraft and the function of the pilot. This paper describes a plan for measuring the inspired and expired Po2 and Pco2 in the pilot's mask, the inspiratory flow rate, and pressure in the mask. A critically important requirement is that the interference with the function of the pilot is minimal. Although extensive physiological measurements were previously made on pilots in ground-based experiments such as rapid decompression in an altitude chamber and increased acceleration on a centrifuge, in-flight measurements of gas exchange have not been possible until now primarily because of the lack of suitable equipment. The present paper shows how the recent availability of small, rapidly responding oxygen and carbon dioxide analyzers make sophisticated in-flight measurements feasible. The added information has the potential of greatly improving our knowledge of pilot physiology, which could lead to an explanation for the incidents.

  16. A Laboratory Activity on the Eddy Current Brake

    ERIC Educational Resources Information Center

    Molina-Bolivar, J. A.; Abella-Palacios, A. J.

    2012-01-01

    The aim of this paper is to introduce a simple and low-cost experimental setup that can be used to study the eddy current brake, which considers the motion of a sliding magnet on an inclined conducting plane in terms of basic physical principles. We present a set of quantitative experiments performed to study the influence of the geometrical and…

  17. Closed-Loop System Identification Experience for Flight Control Law and Flying Qualities Evaluation of a High Performance Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.

    1996-01-01

    This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA-High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high order characteristics of the system. In this paper, only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles at attack : 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.

  18. Closed-Loop System Identification Experience for Flight Control Law and Flying Qualities Evaluation of a High Performance Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.

    1999-01-01

    This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high-order characteristics of the system. In this paper only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles of attack: 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of the identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the estimated closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.

  19. Analysis of the stability of PTW riders in autonomous braking scenarios.

    PubMed

    Symeonidis, Ioannis; Kavadarli, Gueven; Erich, Schuller; Graw, Matthias; Peldschus, Steffen

    2012-11-01

    While fatalities of car occupants in the EU decreased remarkably over the last decade, Powered Two Wheelers (PTWs) fatalities still increase following the increase of PTW ownership. Autonomous braking systems have been implemented in several types of vehicles and are presently addressed by research in the field of PTWs. A major concern in this context is the rider stability. Experiments with volunteers were performed in order to find out whether autonomous braking for PTWs will produce a greater instability of the rider in comparison to manual braking. The PTW's braking conditions were simulated in a laboratory with a motorcycle mock-up mounted on a sled, which was accelerated with an average of 0.35 g. The motion of the rider was captured in autonomous braking scenarios with and without pre-warning as well as in manual braking scenarios. No significant differences between the scenarios were found with respect to maximum forward displacement of the volunteer's torso and head (p<0.05). By performing clustering analysis on two kinematic parameters, two different strategies of the volunteers were identified. They were not related to the braking scenarios. A relation of the clusters with the initial posture represented by the elbow angle was revealed (p<0.05). It is concluded that autonomous braking at low deceleration will not cause significant instabilities of the rider in comparison to manual braking in idealized laboratory conditions. Based on this, further research into the development and implementation of autonomous braking systems for PTWs, e.g. by extensive riding tests, seems valuable.

  20. Some metal-graphite and metal-ceramic composites for use as high energy brake lining materials

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1974-01-01

    Materials were studied as candidates for development as potential new aircraft brake lining materials. These families were (1) copper-graphite composites; (2) nickel-graphite composites; (3) copper - rare-earth-oxide (gadolinium oxide (Gd2O3) or lanthanum oxide (La2O3)) composites and copper - rare-earth-oxide (La2O3) - rare-earth-fluoride (lanthanum fluoride (LaF3)) composites; (4) nickel - rare-earth-oxide composites and nickel - rare-earth-oxide - rare-earth-fluoride composites. For comparison purposes, a currently used metal-ceramic composite was also studied. Results showed that the nickel-Gd2O3 and nickel-La2O3-LaF3 composites were comparable or superior in friction and wear performance to the currently used composite and therefore deserve to be considered for further development.

  1. Nonlinear stability and control study of highly maneuverable high performance aircraft

    NASA Technical Reports Server (NTRS)

    Mohler, R. R.

    1991-01-01

    The purpose was to develop and apply new nonlinear system methodologies to the stability analysis and adaptive control of high angle of attack (alpha) aircraft such as the F-18. Considerable progress is documented on nonlinear adaptive control and associated model development, identification, and simulation. The analysis considered linear and nonlinear, longitudinal, high alpha aircraft dynamics with varying degrees of approximation dependent on the purpose. In all cases, angle of attack or pitch rate was controlled primarily by a horizontal stabilizer. In most cases studied, a linear adaptive controller provided sufficient stability. However, it has been demonstrated by simulation of a simplified nonlinear model that certain large rapid maneuvers were not readily stabilized by the investigated linear adaptive control, but were controlled instead by means of a nonlinear time-series based adaptive control.

  2. Flight test evaluation of predicted light aircraft drag, performance, and stability

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Fox, S. R.

    1979-01-01

    A technique was developed which permits simultaneous extraction of complete lift, drag, and thrust power curves from time histories of a single aircraft maneuver such as a pull up (from V max to V stall) and pushover (to V max for level flight). The technique, which is an extension of nonlinear equations of motion of the parameter identification methods of Iliff and Taylor and includes provisions for internal data compatibility improvement as well, was shown to be capable of correcting random errors in the most sensitive data channel and yielding highly accurate results. Flow charts, listings, sample inputs and outputs for the relevant routines are provided as appendices. This technique was applied to flight data taken on the ATLIT aircraft. Lack of adequate knowledge of the correct full throttle thrust horsepower true airspeed variation and considerable internal data inconsistency made it impossible to apply the trajectory matching features of the technique.

  3. Aircraft design for mission performance using non-linear multiobjective optimization methods

    NASA Technical Reports Server (NTRS)

    Dovi, Augustine R.; Wrenn, Gregory A.

    1989-01-01

    A new technique which converts a constrained optimization problem to an unconstrained one where conflicting figures of merit may be simultaneously considered has been combined with a complex mission analysis system. The method is compared with existing single and multiobjective optimization methods. A primary benefit from this new method for multiobjective optimization is the elimination of separate optimizations for each objective, which is required by some optimization methods. A typical wide body transport aircraft is used for the comparative studies.

  4. Corrosion Protection of Al Alloys for Aircraft by Coatings With Advanced Properties and Enhanced Performance

    DTIC Science & Technology

    2007-12-20

    Sim6es, D. E. Tallman, G. P. Bierwagen, "Electrochemical Behaviour of a Mg-Rich Primer in the Protection of Al Alloys ," Corrosion Science 48 (2006...December 20, 200 Final Report July 1, 2004-June 30, 2007 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Corrosion Protection of Al Alloys for Aircraft by...Prof. Dennis E. Tallman: A) New Scanning Probe Studies of Novel Cr-free Active Coatings B) Examination of the Influence of Surface Preparation of Al

  5. Preliminary Axial Flow Turbine Design and Off-Design Performance Analysis Methods for Rotary Wing Aircraft Engines. Part 1; Validation

    NASA Technical Reports Server (NTRS)

    Chen, Shu-cheng, S.

    2009-01-01

    For the preliminary design and the off-design performance analysis of axial flow turbines, a pair of intermediate level-of-fidelity computer codes, TD2-2 (design; reference 1) and AXOD (off-design; reference 2), are being evaluated for use in turbine design and performance prediction of the modern high performance aircraft engines. TD2-2 employs a streamline curvature method for design, while AXOD approaches the flow analysis with an equal radius-height domain decomposition strategy. Both methods resolve only the flows in the annulus region while modeling the impact introduced by the blade rows. The mathematical formulations and derivations involved in both methods are documented in references 3, 4 for TD2-2) and in reference 5 (for AXOD). The focus of this paper is to discuss the fundamental issues of applicability and compatibility of the two codes as a pair of companion pieces, to perform preliminary design and off-design analysis for modern aircraft engine turbines. Two validation cases for the design and the off-design prediction using TD2-2 and AXOD conducted on two existing high efficiency turbines, developed and tested in the NASA/GE Energy Efficient Engine (GE-E3) Program, the High Pressure Turbine (HPT; two stages, air cooled) and the Low Pressure Turbine (LPT; five stages, un-cooled), are provided in support of the analysis and discussion presented in this paper.

  6. Design and evaluation of a novel magnetorheological brake with coils placed on the side housings

    NASA Astrophysics Data System (ADS)

    Nguyen, Quoc Hung; Diep Nguyen, Ngoc; Bok Choi, Seung

    2015-04-01

    In the design of a traditional magnetorheological brake (MRB), coils are often placed on the cylindrical housing of the brake. This results in many disadvantages such as a ‘bottle-neck’ problem of magnetic flux. Moreover, in this design a nonmagnetic bobbin is required, and difficulties in manufacturing and maintenance exist. In order to resolve this problem, in this study a new configuration of MRB with coils placed on the side housings of the brake is proposed, optimally designed and experimentally evaluated. After describing an introduction of the proposed configuration, braking torque of the MRB is analyzed based on the Bingham-plastic rheological model of magnetorheological fluid (MRF). The optimization of the proposed and conventional MRBs is then performed considering maximum braking torque and mass of the brakes. In the optimization, both rectangular and polygonal shapes of the brake housing are considered. Based on the optimal results, a comparison of the performance characteristics of the proposed MRB and the conventional one is undertaken. In addition, an experimental test of the MRBs is conducted, and the results are presented in order to validate the performance characteristics of the proposed MRB.

  7. A Study on Rotordynamic Characteristics of Swirl Brakes for Three Types of Seals

    NASA Astrophysics Data System (ADS)

    Xu, Wanjun; Yang, Jiangang

    2017-03-01

    In order to understand swirl brakes mechanisms and their influence on rotordynamic characteristics for different types of seals, a three-dimensional flow numerical simulation was presented. Three typical seals including labyrinth seal, fully partitioned damper seal and hole-pattern seal were compared under three inlet conditions of no preswirl, preswirl and preswirl with swirl brakes. FAN boundary condition was used to provide inlet preswirl. A modified identification method of effective damping was proposed. Feasibility of the swirl brakes on improving performance of damper seals was discussed. The results show that the swirl brakes influence the seal stability characteristics with whirl frequency. For the labyrinth seal the swirl brakes reverse the sign of effective damping at low frequency and improve the seal stability performance in a wide frequency range. The swirl brakes also improve the damper seals’ stability performance by increasing the low frequency effective damping and reducing their crossover frequency. Further results indicate the swirl brakes affect the rotational direction of the maximum (minimum) pressure positions and enhance the stability of the seals by reducing tangential force in each cavity.

  8. 49 CFR 570.55 - Hydraulic brake system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Hydraulic brake system. 570.55 Section 570.55... 10,000 Pounds § 570.55 Hydraulic brake system. The following requirements apply to vehicles with hydraulic brake systems. (a) Brake system failure indicator. The hydraulic brake system failure...

  9. 49 CFR 570.55 - Hydraulic brake system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Hydraulic brake system. 570.55 Section 570.55... 10,000 Pounds § 570.55 Hydraulic brake system. The following requirements apply to vehicles with hydraulic brake systems. (a) Brake system failure indicator. The hydraulic brake system failure...

  10. 49 CFR 570.55 - Hydraulic brake system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 6 2012-10-01 2012-10-01 false Hydraulic brake system. 570.55 Section 570.55... 10,000 Pounds § 570.55 Hydraulic brake system. The following requirements apply to vehicles with hydraulic brake systems. (a) Brake system failure indicator. The hydraulic brake system failure...

  11. 16 CFR 1512.5 - Requirements for braking system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... (6) Pad and pad holders. Caliper brake pad shall be replaceable and adjustable to engage the braking... caliper assembly. The brake pad material shall be retained in its holder without movement when the bicycle.... Bicycles shall be equipped with front- and rear-wheel brakes or rear-wheel brakes only. (b)...

  12. 16 CFR 1512.5 - Requirements for braking system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... (6) Pad and pad holders. Caliper brake pad shall be replaceable and adjustable to engage the braking... caliper assembly. The brake pad material shall be retained in its holder without movement when the bicycle.... Bicycles shall be equipped with front- and rear-wheel brakes or rear-wheel brakes only. (b)...

  13. 16 CFR 1512.5 - Requirements for braking system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... (6) Pad and pad holders. Caliper brake pad shall be replaceable and adjustable to engage the braking... caliper assembly. The brake pad material shall be retained in its holder without movement when the bicycle.... Bicycles shall be equipped with front- and rear-wheel brakes or rear-wheel brakes only. (b)...

  14. 16 CFR 1512.5 - Requirements for braking system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... (6) Pad and pad holders. Caliper brake pad shall be replaceable and adjustable to engage the braking... caliper assembly. The brake pad material shall be retained in its holder without movement when the bicycle.... Bicycles shall be equipped with front- and rear-wheel brakes or rear-wheel brakes only. (b)...

  15. 16 CFR 1512.5 - Requirements for braking system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... (6) Pad and pad holders. Caliper brake pad shall be replaceable and adjustable to engage the braking... caliper assembly. The brake pad material shall be retained in its holder without movement when the bicycle.... Bicycles shall be equipped with front- and rear-wheel brakes or rear-wheel brakes only. (b)...

  16. 49 CFR 393.41 - Parking brake system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... NECESSARY FOR SAFE OPERATION Brakes § 393.41 Parking brake system. (a) Hydraulic-braked vehicles... 49 Transportation 5 2011-10-01 2011-10-01 false Parking brake system. 393.41 Section 393.41...,536 kg (10,000 pounds) shall be equipped with a parking brake system as required by FMVSS No....

  17. 49 CFR 570.55 - Hydraulic brake system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Hydraulic brake system. 570.55 Section 570.55... 10,000 Pounds § 570.55 Hydraulic brake system. The following requirements apply to vehicles with hydraulic brake systems. (a) Brake system failure indicator. The hydraulic brake system failure...

  18. 49 CFR 393.41 - Parking brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... NECESSARY FOR SAFE OPERATION Brakes § 393.41 Parking brake system. (a) Hydraulic-braked vehicles... 49 Transportation 5 2010-10-01 2010-10-01 false Parking brake system. 393.41 Section 393.41...,536 kg (10,000 pounds) shall be equipped with a parking brake system as required by FMVSS No....

  19. 49 CFR 570.55 - Hydraulic brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Hydraulic brake system. 570.55 Section 570.55... 10,000 Pounds § 570.55 Hydraulic brake system. The following requirements apply to vehicles with hydraulic brake systems. (a) Brake system failure indicator. The hydraulic brake system failure...

  20. 49 CFR 230.77 - Foundation brake gear.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Foundation brake gear. 230.77 Section 230.77... Tenders Brake and Signal Equipment § 230.77 Foundation brake gear. (a) Maintenance. Foundation brake gear...) Distance above the rails. No part of the foundation brake gear of the steam locomotive or tender shall...

  1. 49 CFR 230.77 - Foundation brake gear.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Foundation brake gear. 230.77 Section 230.77... Tenders Brake and Signal Equipment § 230.77 Foundation brake gear. (a) Maintenance. Foundation brake gear...) Distance above the rails. No part of the foundation brake gear of the steam locomotive or tender shall...

  2. 49 CFR 230.77 - Foundation brake gear.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Foundation brake gear. 230.77 Section 230.77... Tenders Brake and Signal Equipment § 230.77 Foundation brake gear. (a) Maintenance. Foundation brake gear...) Distance above the rails. No part of the foundation brake gear of the steam locomotive or tender shall...

  3. 49 CFR 230.77 - Foundation brake gear.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Foundation brake gear. 230.77 Section 230.77... Tenders Brake and Signal Equipment § 230.77 Foundation brake gear. (a) Maintenance. Foundation brake gear...) Distance above the rails. No part of the foundation brake gear of the steam locomotive or tender shall...

  4. 49 CFR 230.77 - Foundation brake gear.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Foundation brake gear. 230.77 Section 230.77... Tenders Brake and Signal Equipment § 230.77 Foundation brake gear. (a) Maintenance. Foundation brake gear...) Distance above the rails. No part of the foundation brake gear of the steam locomotive or tender shall...

  5. Test-engine and inlet performance of an aircraft used for investigating flight effects on fan noise

    NASA Technical Reports Server (NTRS)

    Golub, R. A.; Preisser, J. S.

    1984-01-01

    As part of the NASA Flight Effects on Fan Noise Program, a Grumman OV-1B Mohawk aircraft was modified to carry a modified and instrumented Pratt & Whitney JT15D-1 turbofan engine. Onboard flight data, together with simultaneously measured farfield acoustic data, comprise a flight data base to which JT15D-1 static and wind-tunnel data are compared. The overall objective is to improve the ability to use ground-based facilities for the prediction of flight inlet radiated noise. This report describes the hardware and presents performance results for the research engine.

  6. NACA research on combustors for aircraft gas turbines I : effects of operating variables on steady-state performance

    NASA Technical Reports Server (NTRS)

    Olson, Walter T; Childs, J Howard

    1950-01-01

    Some of the systematic research conducted by the NACA on aircraft gas-turbine combustors is reviewed. Trends depicting the effect of inlet-air pressure, temperature, and velocity and fuel-air ratio on performance characteristics, such as combustion efficiency, maximum temperature rise attainable, pressure loss, and combustor-outlet temperature distribution are described for a variety of turbojet combustors of the liquid-fuel type. These trends are further discussed as effects significant to the turbojet engine, such as altitude operational limits, specific fuel consumption, thrust, acceleration, and turbine life.

  7. Recycled brake linings as partial aggregate substitute in asphalt paving. Construction and final report. Report for July 1992-August 1996

    SciTech Connect

    Miller, P.A.; Sukley, R.

    1996-09-01

    The purpose of this project was to evaluate the performance of asphalt containing various percentages of brake lining as an aggregate, and compare its performance to that of normal asphalt containing natural aggregate. This project is an effort to explore alternate ways to use waste product. Four test section of FB-2 Modified mix containing brake lining materials were placed in July 1992 along with one control section on SR 3022 in Mercer county. To date all sections are performing satisfactory, and Brake linings should be recommended as a viable partial replacement of aggregate in bituminous materials. This study only considered the performance of only off-spec brake linings, therefore, any performance data or enviromental effects of placement of used brake material should be addressed.

  8. Material combinations and parametric study of thermal and mechanical performance of pyramidal core sandwich panels used for hypersonic aircrafts

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiping; Zhang, Xiaoqing; Lorenzini, Giulio; Xie, Gongnan

    2016-11-01

    A novel kind of lightweight integrated thermal protection system, named pyramidal core sandwich panel, is proposed to be a good safeguard for hypersonic aircrafts in the current study. Such system is considered as not only an insulation structure but also a load-bearing structure. In the context of design for hypersonic aircrafts, an efficient optimization should be paid enough attention. This paper concerns with the homogenization of the proposed pyramidal sandwich core panel using two-dimensional model in subsequent research for material selection. According to the required insulation performance and thermal-mechanical properties, several suitable material combinations are chosen as candidates for the pyramidal core sandwich panel by adopting finite element analysis and approximate response surface. To obtain lightweight structure with an excellent capability of heat insulation and load-bearing, an investigation on some specific design variables, which are significant for thermal-mechanical properties of the structure, is performed. Finally, a good balance between the insulation performance, the capability of load-bearing and the lightweight has attained.

  9. Preliminary test results of the joint FAA-USAF-NASA runway research program. Part 1: Traction measurements of several runways under wet and dry conditions with a Boeing 727, a diagonal-braked vehicle, and a mu-meter

    NASA Technical Reports Server (NTRS)

    Horne, W. B.; Yager, T. J.; Sleeper, R. K.; Merritt, L. R.

    1977-01-01

    The stopping distance, brake application velocity, and time of brake application were measured for two modern jet transports, along with the NASA diagonal-braked vehicle and the British Mu-Meter on several runways, which when wetted, cover the range of slipperiness likely to be encountered in the United States. Tests were designed to determine if correlation between the aircraft and friction measuring vehicles exists. The test procedure, data reduction techniques, and preliminary test results obtained with the Boeing 727, the Douglas DC-9, and the ground vehicles are given. Time histories of the aircraft test run parameters are included.

  10. Small transport aircraft technology

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1983-01-01

    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  11. Neural-network hybrid control for antilock braking systems.

    PubMed

    Lin, Chih-Min; Hsu, C F

    2003-01-01

    The antilock braking systems are designed to maximize wheel traction by preventing the wheels from locking during braking, while also maintaining adequate vehicle steerability; however, the performance is often degraded under harsh road conditions. In this paper, a hybrid control system with a recurrent neural network (RNN) observer is developed for antilock braking systems. This hybrid control system is comprised of an ideal controller and a compensation controller. The ideal controller, containing an RNN uncertainty observer, is the principal controller; and the compensation controller is a compensator for the difference between the system uncertainty and the estimated uncertainty. Since for dynamic response the RNN has capabilities superior to the feedforward NN, it is utilized for the uncertainty observer. The Taylor linearization technique is employed to increase the learning ability of the RNN. In addition, the on-line parameter adaptation laws are derived based on a Lyapunov function, so the stability of the system can be guaranteed. Simulations are performed to demonstrate the effectiveness of the proposed NN hybrid control system for antilock braking control under various road conditions.

  12. Human and behavioral factors contributing to spine-based neurological cockpit injuries in pilots of high-performance aircraft: recommendations for management and prevention

    NASA Technical Reports Server (NTRS)

    Jones, J. A.; Hart, S. F.; Baskin, D. S.; Effenhauser, R.; Johnson, S. L.; Novas, M. A.; Jennings, R.; Davis, J.

    2000-01-01

    In high-performance aircraft, the need for total environmental awareness coupled with high-g loading (often with abrupt onset) creates a predilection for cervical spine injury while the pilot is performing routine movements within the cockpit. In this study, the prevalence and severity of cervical spine injury are assessed via a modified cross-sectional survey of pilots of multiple aircraft types (T-38 and F-14, F-16, and F/A-18 fighters). Ninety-five surveys were administered, with 58 full responses. Fifty percent of all pilots reported in-flight or immediate post-flight spine-based pain, and 90% of fighter pilots reported at least one event, most commonly (> 90%) occurring during high-g (> 5 g) turns of the aircraft with the head deviated from the anatomical neutral position. Pre-flight stretching was not associated with a statistically significant reduction in neck pain episodes in this evaluation, whereas a regular weight training program in the F/A-18 group approached a significant reduction (mean = 2.492; p < 0.064). Different cockpit ergonomics may vary the predisposition to cervical injury from airframe to airframe. Several strategies for prevention are possible from both an aircraft design and a preventive medicine standpoint. Countermeasure strategies against spine injury in pilots of high-performance aircraft require additional research, so that future aircraft will not be limited by the human in control.

  13. Space shuttle wheels and brakes

    NASA Technical Reports Server (NTRS)

    Carsley, R. B.

    1985-01-01

    The Space Shuttle Orbiter wheels were subjected to a combination of tests which are different than any previously conducted in the aerospace industry. The major testing difference is the computer generated dynamic landing profiles used during the certification process which subjected the wheels and tires to simulated landing loading conditions. The orbiter brakes use a unique combination of carbon composite linings and beryllium heat sink to minimize weight. The development of a new lining retention method was necessary in order to withstand the high temperature generated during the braking roll. As with many programs, the volume into which this hardware had to fit was established early in the program, with no provisions made for growth to offset the continuously increasing predicted orbiter landing weight.

  14. An Integrated Architecture for On-Board Aircraft Engine Performance Trend Monitoring and Gas Path Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.

    2010-01-01

    Aircraft engine performance trend monitoring and gas path fault diagnostics are closely related technologies that assist operators in managing the health of their gas turbine engine assets. Trend monitoring is the process of monitoring the gradual performance change that an aircraft engine will naturally incur over time due to turbomachinery deterioration, while gas path diagnostics is the process of detecting and isolating the occurrence of any faults impacting engine flow-path performance. Today, performance trend monitoring and gas path fault diagnostic functions are performed by a combination of on-board and off-board strategies. On-board engine control computers contain logic that monitors for anomalous engine operation in real-time. Off-board ground stations are used to conduct fleet-wide engine trend monitoring and fault diagnostics based on data collected from each engine each flight. Continuing advances in avionics are enabling the migration of portions of the ground-based functionality on-board, giving rise to more sophisticated on-board engine health management capabilities. This paper reviews the conventional engine performance trend monitoring and gas path fault diagnostic architecture commonly applied today, and presents a proposed enhanced on-board architecture for future applications. The enhanced architecture gains real-time access to an expanded quantity of engine parameters, and provides advanced on-board model-based estimation capabilities. The benefits of the enhanced architecture include the real-time continuous monitoring of engine health, the early diagnosis of fault conditions, and the estimation of unmeasured engine performance parameters. A future vision to advance the enhanced architecture is also presented and discussed

  15. Use of optimization to predict the effect of selected parameters on commuter aircraft performance

    NASA Technical Reports Server (NTRS)

    Wells, V. L.; Shevell, R. S.

    1982-01-01

    An optimizing computer program determined the turboprop aircraft with lowest direct operating cost for various sets of cruise speed and field length constraints. External variables included wing area, wing aspect ratio and engine sea level static horsepower; tail sizes, climb speed and cruise altitude were varied within the function evaluation program. Direct operating cost was minimized for a 150 n.mi typical mission. Generally, DOC increased with increasing speed and decreasing field length but not by a large amount. Ride roughness, however, increased considerably as speed became higher and field length became shorter.

  16. Nonlinear stability and control study of highly maneuverable high performance aircraft, phase 2

    NASA Technical Reports Server (NTRS)

    Mohler, R. R.

    1992-01-01

    Research leading to the development of new nonlinear methodologies for the adaptive control and stability analysis of high angle of attack aircraft such as the F-18 is discussed. The emphasis has been on nonlinear adaptive control, but associated model development, system identification, stability analysis, and simulation were studied in some detail as well. Studies indicated that nonlinear adaptive control can outperform linear adaptive control for rapid maneuvers with large changes in angle of attack. Included here are studies on nonlinear model algorithmic controller design and an analysis of nonlinear system stability using robust stability analysis for linear systems.

  17. Utilisation of optimisation solutions to control active suspension for decreased braking distance

    NASA Astrophysics Data System (ADS)

    Edrén, Johannes; Jonasson, Mats; Jerrelind, Jenny; Stensson Trigell, Annika; Drugge, Lars

    2015-02-01

    This work deals with how to utilise active suspension on individual vehicle wheels in order to improve the vehicle performance during straight-line braking. Through numerical optimisation, solutions have been found as regards how active suspension should be controlled and coordinated with friction brakes to shorten the braking distance. The results show that, for the studied vehicle, the braking distance can be shortened by more than 1 m when braking from 100 km/h. The applicability of these results is studied by investigating the approach for different vehicle speeds and actuator stroke limitations. It is shown that substantial improvements in the braking distance can also be found for lower velocities, and that the actuator strokes are an important parameter. To investigate the potential of implementing these findings in a real vehicle, a validated detailed vehicle model equipped with active struts is analysed. Simplified control laws, appropriate for on-board implementation and based on knowledge of the optimised solution, are proposed and evaluated. The results show that substantial improvements of the braking ability, and thus safety, can be made using this simplified approach. Particle model simulations have been made to explain the underlying physical mechanisms and limitations of the approach. These results provide valuable guidance on how active suspension can be used to achieve significant improvements in vehicle performance with reasonable complexity and energy consumption.

  18. Frictional behavior of automotive brake materials under wet and dry conditions

    SciTech Connect

    Blau, P.J.; Martin, R.L.; Weintraub, M.H.; Jang, Ho; Donlon, W.

    1996-12-15

    The purpose of this effort was to develop an improved understanding of the relationship between the structure and frictional behavior of materials in the disc brake/rotor interface with a view toward improving the performance of automotive disc brakes. The three tasks involved in this Cooperative Research and Development Agreement (CRADA) were as follows: Task 1. Investigation of Brake Pads and Rotors. Characterize surface features of worn brake pads and rotors, with special attention to the transfer film which forms on them during operation. Ford to supply specimens for examination and other supporting information. Task 2. Effects of Atmosphere and Repeated Applications on Brake Material Friction. Conduct pin-on-disk friction tests at ORNL under controlled moisture levels to determine effects of relative humidity on frictional behavior of brake pad and rotor materials. Conduct limited tests on the characteristics of friction under application of repeated contacts. Task 3. Comparison of Dynamometer Tests with Laboratory Friction Tests. Compare ORNL friction data with Ford dynamometer test data to establish the degree to which the simple bench tests can be useful in helping to understand frictional behavior in full-scale brake component tests. This final report summarizes work performed under this CRADA.

  19. Gravity Slides With Magnetic Braking

    NASA Technical Reports Server (NTRS)

    Goodrick, Thomas F.

    1995-01-01

    Slides with magnetic braking enable safe emergency descent from tall buildings, fire-truck ladders, towers, and like. According to concept, slide includes sled that moves along stationary aluminum track tilted against top of building. Sled holds set of permanent magnets at preset small distance from surface of track. Passenger stands on, sits on, or strapped to platform on sled. Release device at top of slide holds sled in place until passenger prepared for descent.

  20. What brakes the Crab pulsar?

    NASA Astrophysics Data System (ADS)

    Čadež, A.; Zampieri, L.; Barbieri, C.; Calvani, M.; Naletto, G.; Barbieri, M.; Ponikvar, D.

    2016-03-01

    Context. Optical observations provide convincing evidence that the optical phase of the Crab pulsar follows the radio one closely. Since optical data do not depend on dispersion measure variations, they provide a robust and independent confirmation of the radio timing solution. Aims: The aim of this paper is to find a global mathematical description of Crab pulsar's phase as a function of time for the complete set of published Jodrell Bank radio ephemerides (JBE) in the period 1988-2014. Methods: We apply the mathematical techniques developed for analyzing optical observations to the analysis of JBE. We break the whole period into a series of episodes and express the phase of the pulsar in each episode as the sum of two analytical functions. The first function is the best-fitting local braking index law, and the second function represents small residuals from this law with an amplitude of only a few turns, which rapidly relaxes to the local braking index law. Results: From our analysis, we demonstrate that the power law index undergoes "instantaneous" changes at the time of observed jumps in rotational frequency (glitches). We find that the phase evolution of the Crab pulsar is dominated by a series of constant braking law episodes, with the braking index changing abruptly after each episode in the range of values between 2.1 and 2.6. Deviations from such a regular phase description behave as oscillations triggered by glitches and amount to fewer than 40 turns during the above period, in which the pulsar has made more than 2 × 1010 turns. Conclusions: Our analysis does not favor the explanation that glitches are connected to phenomena occurring in the interior of the pulsar. On the contrary, timing irregularities and changes in slow down rate seem to point to electromagnetic interaction of the pulsar with the surrounding environment.

  1. Mountain Braking Test Venue Study

    DTIC Science & Technology

    2013-12-12

    estimates used in this analysis are based upon engine friction measurements measured by TARDEC on a Caterpillar 3116 Diesel engine as shown in Figure 1...This engine is the predecessor of and similar to the Caterpillar C7 engine used in some MRAP vehicles. The engine braking horsepower based on a...5 UNCLASSIFIED Figure 1: Caterpillar 3116 Diesel Engine Horsepower and Torque Seventy-five to eighty percent of the power absorbed by

  2. Position control optimization of aerodynamic brake device for high-speed trains

    NASA Astrophysics Data System (ADS)

    Zuo, Jianyong; Luo, Zhuojun; Chen, Zhongkai

    2014-03-01

    The aerodynamic braking is a clean and non-adhesion braking, and can be used to provide extra braking force during high-speed emergency braking. The research of aerodynamic braking has attracted more and more attentions in recent years. However, most researchers in this field focus on aerodynamic effects and seldom on issues of position control of the aerodynamic braking board. The purpose of this paper is to explore position control optimization of the braking board in an aerodynamic braking prototype. The mathematical models of the hydraulic drive unit in the aerodynamic braking system are analyzed in detail, and the simulation models are established. Three control functions—constant, linear, and quadratic—are explored. Two kinds of criteria, including the position steady-state error and the acceleration of the piston rod, are used to evaluate system performance. Simulation results show that the position steady state-error is reduced from around 12-2 mm by applying a linear instead of a constant function, while the acceleration is reduced from 25.71-3.70 m/s2 with a quadratic control function. Use of the quadratic control function is shown to improve system performance. Experimental results obtained by measuring the position response of the piston rod on a test-bench also suggest a reduced position error and smooth movement of the piston rod. This implies that the acceleration is smaller when using the quadratic function, thus verifying the effectiveness of control schemes to improve to system performance. This paper proposes an effective and easily implemented control scheme that improves the position response of hydraulic cylinders during position control.

  3. NAC Aftermarket Brake Components Project (Secondary Items)

    DTIC Science & Technology

    2006-09-25

    NAC Aftermarket Brake Components Project (Secondary Items) SAE Paper #2006-01-3192 25 September 2006, Grapevine Version R4 (Final) Report...REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE NAC Aftermarket Brake Components Project (Secondary Items) 5a. CONTRACT NUMBER 5b...PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 NAC Aftermarket Brake Components Project By: Leo Miller, USA

  4. Braking, Wheeled Vehicles. Test Operations Procedure (TOP)

    DTIC Science & Technology

    2008-05-20

    are as follows: a. Micrometer calipers (inside, outside, and dial types). b. Surface finish gauges. c. Torque wrench. d. Brake shoe...is imminent. 11. Front Disc Brakes Procedure: Step 1: Visually inspect and measure rotors, calipers , and pads. Equipment needed...4. TITLE AND SUBTITLE Test Operations Procedure (TOP) 2-2-608 Braking , Wheeled Vehicles 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e

  5. PREDICTING RANGES FOR PULSARS' BRAKING INDICES

    SciTech Connect

    Magalhaes, Nadja S.; Miranda, Thaysa A.; Frajuca, Carlos

    2012-08-10

    The theoretical determination of braking indices of pulsars is still an open problem. In this paper we report results of a study concerning such determination based on a modification of the canonical model, which admits that pulsars are rotating magnetic dipoles, and on data from the seven pulsars with known braking indices. In order to test the modified model, we predict ranges for the braking indices of other pulsars.

  6. Flight test evaluation of predicted light aircraft drag, performance, and stability

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Fox, S. R.

    1979-01-01

    A technique was developed which permits simultaneous extraction of complete lift, drag, and thrust power curves from time histories of a single aircraft maneuver such as a pullup (from V sub max to V sub stall) and pushover (to sub V max for level flight.) The technique is an extension to non-linear equations of motion of the parameter identification methods of lliff and Taylor and includes provisions for internal data compatibility improvement as well. The technique was show to be capable of correcting random errors in the most sensitive data channel and yielding highly accurate results. This technique was applied to flight data taken on the ATLIT aircraft. The drag and power values obtained from the initial least squares estimate are about 15% less than the 'true' values. If one takes into account the rather dirty wing and fuselage existing at the time of the tests, however, the predictions are reasonably accurate. The steady state lift measurements agree well with the extracted values only for small values of alpha. The predicted value of the lift at alpha = 0 is about 33% below that found in steady state tests while the predicted lift slope is 13% below the steady state value.

  7. Subsonic Maneuvering Effectiveness of High Performance Aircraft Which Employ Quasi-Static Shape Change Devices

    NASA Technical Reports Server (NTRS)

    Montgomery, Raymond C.; Scott, Michael A.; Weston, Robert P.

    1998-01-01

    This paper represents an initial study on the use of quasi-static shape change devices in aircraft maneuvering. The macroscopic effects and requirements for these devices in flight control are the focus of this study. Groups of devices are postulated to replace the conventional leading-edge flap (LEF) and the all-moving wing tip (AMT) on the tailless LMTAS-ICE (Lockheed Martin Tactical Aircraft Systems - Innovative Control Effectors) configuration. The maximum quasi-static shape changes are 13.8% and 7.7% of the wing section thickness for the LEF and AMT replacement devices, respectively. A Computational Fluid Dynamics (CFD) panel code is used to determine the control effectiveness of groups of these devices. A preliminary design of a wings-leveler autopilot is presented. Initial evaluation at 0.6 Mach at 15,000 ft. altitude is made through batch simulation. Results show small disturbance stability is achieved, however, an increase in maximum distortion is needed to statically offset five degrees of sideslip. This only applies to the specific device groups studied, encouraging future research on optimal device placement.

  8. Dynamics of Braking Vehicles: From Coulomb Friction to Anti-Lock Braking Systems

    ERIC Educational Resources Information Center

    Tavares, J. M.

    2009-01-01

    The dynamics of braking of wheeled vehicles is studied using the Coulomb approximation for the friction between road and wheels. The dependence of the stopping distance on the mass of the vehicle, on the number of its wheels and on the intensity of the braking torque is established. It is shown that there are two regimes of braking, with and…

  9. 49 CFR 238.231 - Brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... designs of braking systems, the design process shall include computer modeling or dynamometer simulation... equipment operating speeds. A new simulation is required prior to implementing a change in...

  10. 49 CFR 238.231 - Brake system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... designs of braking systems, the design process shall include computer modeling or dynamometer simulation... equipment operating speeds. A new simulation is required prior to implementing a change in...

  11. 49 CFR 238.231 - Brake system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... designs of braking systems, the design process shall include computer modeling or dynamometer simulation... equipment operating speeds. A new simulation is required prior to implementing a change in...

  12. 49 CFR 238.231 - Brake system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... designs of braking systems, the design process shall include computer modeling or dynamometer simulation... equipment operating speeds. A new simulation is required prior to implementing a change in...

  13. 49 CFR 238.231 - Brake system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... designs of braking systems, the design process shall include computer modeling or dynamometer simulation... equipment operating speeds. A new simulation is required prior to implementing a change in...

  14. Bidirectional Drive-And-Brake Mechanism

    NASA Technical Reports Server (NTRS)

    Swan, Scott A.

    1991-01-01

    Vehicle that crawls along monorail combines features of both bicycle and railroad handcar. Bidirectional drive-and-brake mechanism includes selectable-pawl-and-ratchet overrunning clutch (drive mechanism) and mating stationary and rotating conical surfaces pressing against each other (brake mechanism). Operates similarly to bicycle drive-and-brake mechanism except limits rotation of sprocket in both directions and brakes at both limits. Conceived for use by astronaut traveling along structure in outer space, concept also applied on Earth to make very small railraod handcars or crawling vehicles for use on large structures, in pipelines under construction, or underwater.

  15. Tunable diode laser in-situ CH4 measurements aboard the CARIBIC passenger aircraft: instrument performance assessment

    NASA Astrophysics Data System (ADS)

    Dyroff, C.; Zahn, A.; Sanati, S.; Christner, E.; Rauthe-Schöch, A.; Schuck, T. J.

    2013-10-01

    A laser spectrometer for automated monthly measurements of methane (CH4) mixing ratios aboard the CARIBIC passenger aircraft is presented. The instrument is based on a commercial Fast Greenhouse Gas Analyzer (FGGA, Los Gatos Res.), which was adapted to meet the requirements imposed by unattended airborne employment. The modified instrument is described. A laboratory characterization was performed to determine the instrument stability, precision, cross sensitivity to H2O, and accuracy. For airborne operation a calibration strategy is described, that utilizes CH4 measurements obtained from flask samples taken during the same flights. The precision of airborne measurements is 2 ppbv for 10 s averages. The accuracy at aircraft cruising altitude is 3.85 ppbv. During aircraft ascent and descent, where no flask samples were obtained, instrumental drifts can be less accurately considered and the uncertainty is estimated to be 12.4 ppbv. A linear humidity bias correction was applied to the CH4 measurements, which was most important in the lower troposphere. On average, the correction bias was around 6.5 ppbv at an altitude of 2 km, and negligible at cruising flight level. Observations from 103 long-distance flights are presented that span a large part of the northern hemispheric upper troposphere and lowermost stratosphere (UT/LMS), with occasional crossing of the tropics on flights to southern Africa. These accurate data mark the largest UT/LMS in-situ CH4 dataset worldwide. An example of a tracer-tracer correlation study with ozone is given, highlighting the possibility for accurate cross-tropopause transport analyses.

  16. Numerical Stability and Control Analysis Towards Falling-Leaf Prediction Capabilities of Splitflow for Two Generic High-Performance Aircraft Models

    NASA Technical Reports Server (NTRS)

    Charlton, Eric F.

    1998-01-01

    Aerodynamic analysis are performed using the Lockheed-Martin Tactical Aircraft Systems (LMTAS) Splitflow computational fluid dynamics code to investigate the computational prediction capabilities for vortex-dominated flow fields of two different tailless aircraft models at large angles of attack and sideslip. These computations are performed with the goal of providing useful stability and control data to designers of high performance aircraft. Appropriate metrics for accuracy, time, and ease of use are determined in consultations with both the LMTAS Advanced Design and Stability and Control groups. Results are obtained and compared to wind-tunnel data for all six components of forces and moments. Moment data is combined to form a "falling leaf" stability analysis. Finally, a handful of viscous simulations were also performed to further investigate nonlinearities and possible viscous effects in the differences between the accumulated inviscid computational and experimental data.

  17. Disk brake squeal prediction using the ABLE algorithm

    NASA Astrophysics Data System (ADS)

    Lou, G.; Wu, T. W.; Bai, Z.

    2004-05-01

    Disk brake squeal noise is mainly due to unstable friction-induced vibration. A typical disk brake system includes two pads, a rotor, a caliper and a piston. In order to predict if a disk brake system will generate squeal, the finite element method (FEM) is used to simulate the system. At the contact interfaces between the pads and the rotor, the normal displacement is continuous and Coulomb's friction law is applied. Thus, the resulting FEM matrices of the dynamic system become unsymmetric, which will yield complex eigenvalues. Any complex eigenvalue with a positive real part indicates an unstable mode, which may result in squeal. In real-world applications, the FEM model of a disk brake system usually contains tens of thousands of degrees of freedom (d.o.f.s). Therefore any direct eigenvalue solver based on the dense matrix data structure cannot efficiently perform the analysis, mainly due to its huge memory requirement and long computation time. It is well known that the FEM matrices are generally sparse and hence only the non-zeros of the matrices need to be stored for eigenvalue analysis. A recently developed iterative method named ABLE is used in this paper to search for any unstable modes within a certain user-specified frequency range. The complex eigenvalue solver ABLE is based on an adaptive block Lanczos method for sparse unsymmetric matrices. Numerical examples are presented to demonstrate the formulation and the eigenvalues are compared to the results from the component modal synthesis (CMS).

  18. Mapping automotive like controls to a general aviation aircraft

    NASA Astrophysics Data System (ADS)

    Carvalho, Christopher G.

    The purpose of this thesis was to develop fly-by-wire control laws enabling a general aviation aircraft to be flown with automotive controls, i.e. a steering wheel and gas/brake pedals. There was a six speed shifter used to change the flight mode of the aircraft. This essentially allows the pilot to have control over different aspects of the flight profile such as climb/descend or cruise. A highway in the sky was used to aid in the navigation since it is not intuitive to people without flight experience how to navigate from the sky or when to climb and descend. Many believe that general aviation could become as widespread as the automobile. Every person could have a personal aircraft at their disposal and it would be as easy to operate as driving an automobile. The goal of this thesis is to fuse the ease of drivability of a car with flight of a small general aviation aircraft. A standard automotive control hardware setup coupled with variably autonomous control laws will allow new pilots to fly a plane as easily as driving a car. The idea is that new pilots will require very little training to become proficient with these controls. Pilots with little time to stay current can maintain their skills simply by driving a car which is typically a daily activity. A human factors study was conducted to determine the feasibility of the applied control techniques. Pilot performance metrics were developed to compare candidates with no aviation background and experienced pilots. After analyzing the relative performance between pilots and non-pilots, it has been determined that the control system is robust and easy to learn. Candidates with no aviation experience whatsoever can learn to fly an aircraft as safely and efficiently as someone with hundreds of hours of flight experience using these controls.

  19. Airborne asbestos concentration from brake changing does not exceed permissible exposure limit.

    PubMed

    Blake, Charles L; Van Orden, Drew R; Banasik, Marek; Harbison, Raymond D

    2003-08-01

    The use in the past, and to a lesser extent today, of chrysotile asbestos in automobile brake systems causes health concerns among professional mechanics. Therefore, we conducted four separate tests in order to evaluate an auto mechanic's exposure to airborne asbestos fibers while performing routine brake maintenance. Four nearly identical automobiles from 1960s having four wheel drum brakes were used. Each automobile was fitted with new replacement asbestos-containing brake shoes and then driven over a predetermined public road course for about 2253 km. Then, each car was separately brought into a repair facility; the brakes removed and replaced with new asbestos-containing shoes. The test conditions, methods, and tools were as commonly used during the 1960s. The mechanic was experienced in brake maintenance, having worked in the automobile repair profession beginning in the 1960s. Effects of three independent variables, e.g., filing, sanding, and arc grinding of the replacement brake shoe elements, were tested. Personal and area air samples were collected and analyzed for the presence of fibers, asbestos fibers, total dust, and respirable dust. The results indicated a presence in the air of only chrysotile asbestos and an absence of other types of asbestos. Airborne chrysotile fiber exposures for each test remained below currently applicable limit of 0.1 fiber/ml (eight-hour time-weighted average).

  20. A method to model anticipatory postural control in driver braking events.

    PubMed

    Östh, Jonas; Eliasson, Erik; Happee, Riender; Brolin, Karin

    2014-09-01

    Human body models (HBMs) for vehicle occupant simulations have recently been extended with active muscles and postural control strategies. Feedback control has been used to model occupant responses to autonomous braking interventions. However, driver postural responses during driver initiated braking differ greatly from autonomous braking. In the present study, an anticipatory postural response was hypothesized, modelled in a whole-body HBM with feedback controlled muscles, and validated using existing volunteer data. The anticipatory response was modelled as a time dependent change in the reference value for the feedback controllers, which generates correcting moments to counteract the braking deceleration. The results showed that, in 11 m/s(2) driver braking simulations, including the anticipatory postural response reduced the peak forward displacement of the head by 100mm, of the shoulder by 30 mm, while the peak head flexion rotation was reduced by 18°. The HBM kinematic response was within a one standard deviation corridor of corresponding test data from volunteers performing maximum braking. It was concluded that the hypothesized anticipatory responses can be modelled by changing the reference positions of the individual joint feedback controllers that regulate muscle activation levels. The addition of anticipatory postural control muscle activations appears to explain the difference in occupant kinematics between driver and autonomous braking. This method of modelling postural reactions can be applied to the simulation of other driver voluntary actions, such as emergency avoidance by steering.

  1. Evaluation the course of the vehicle braking process in case of hydraulic circuit malfunction

    NASA Astrophysics Data System (ADS)

    Szczypiński-Sala, W.; Lubas, J.

    2016-09-01

    In the paper, the results of the research were discussed, the aim of which was the evaluation of the vehicle braking performance efficiency and the course of this process with regard to the dysfunction which may occur in braking hydraulic circuit. As part of the research, on-road tests were conducted. During the research, the delay of the vehicle when braking was measured with the use of the set of sensors placed in the parallel and the perpendicular axis of the vehicle. All the tests were conducted on the same flat section of asphalt road with wet surface. Conditions of diminished tire-to-road adhesion were chosen in order to force the activity of anti-lock braking system. The research was conducted comparatively for the vehicle with acting anti-lock braking system and subsequently for the vehicle without the system. In both cases, there was a subsequent evaluation of the course of braking with efficient braking system and with the dysfunction of hydraulic circuit.

  2. Thermal measurement of brake pad lining surfaces during the braking process

    NASA Astrophysics Data System (ADS)

    Piątkowski, Tadeusz; Polakowski, Henryk; Kastek, Mariusz; Baranowski, Pawel; Damaziak, Krzysztof; Małachowski, Jerzy; Mazurkiewicz, Łukasz

    2012-06-01

    This paper presents the test campaign concept and definition and the analysis of the recorded measurements. One of the most important systems in cars and trucks are brakes. The braking temperature on a lining surface can rise above 500°C. This shows how linings requirements are so strict and, what is more, continuously rising. Besides experimental tests, very supportive method for investigating processes which occur on the brake pad linings are numerical analyses. Experimental tests were conducted on the test machine called IL-68. The main component of IL-68 is so called frictional unit, which consists of: rotational head, which convey a shaft torque and where counter samples are placed and translational head, where samples of coatings are placed and pressed against counter samples. Due to the high rotational speeds and thus the rapid changes in temperature field, the infrared camera was used for testing. The paper presents results of analysis registered thermograms during the tests with different conditions. Furthermore, based on this testing machine, the numerical model was developed. In order to avoid resource demanding analyses only the frictional unit (described above) was taken into consideration. Firstly the geometrical model was performed thanks to CAD techniques, which in the next stage was a base for developing the finite element model. Material properties and boundary conditions exactly correspond to experimental tests. Computations were performed using a dynamic LS-Dyna code where heat generation was estimated assuming full (100%) conversion of mechanical work done by friction forces. Paper presents the results of dynamic thermomechanical analysis too and these results were compared with laboratory tests.

  3. Hover performance tests of baseline metal and Advanced Technology Blade (ATB) rotor systems for the XV-15 tilt rotor aircraft

    NASA Technical Reports Server (NTRS)

    Bartie, K.; Alexander, H.; Mcveigh, M.; Lamon, S.; Bishop, H.

    1986-01-01

    Rotor hover performance data were obtained for two full-scale rotor systems designed for the XV-15 Tilt Rotor Research Aircraft. One rotor employed the rectangular planform metal blades (rotor solidity = 0.089) which were used on the initial flight configuration of the XV-15. The second rotor configuration examined the nonlinear taper, composite-construction, Advanced Technology Blade (ATB), (rotor solidity = 0.10) designed to replace the metal blades on the XV-15. Variations of the baseline ATB tip and cuff shapes were also tested. A new six-component rotor force and moment balance designed to obtain highly accurate data over a broad range of thrust and torque conditions is described. The test data are presented in nondimensional coefficient form for the performance results, and in dimensional form for the steady and alternating loads. Some wake and acoustic data are also shown.

  4. An Evaluation of Performance Metrics for High Efficiency Tube-and-Wing Aircraft Entering Service in 2030 to 2035

    NASA Technical Reports Server (NTRS)

    Perkins, H. Douglas; Wilson, Jack; Raymer, Daniel P.

    2011-01-01

    An analysis of basic vehicle characteristics required to meet the Fundamental Aeronautics Program s 70 percent energy consumption reduction goal for commercial airliners in the 2030 to 2035 timeframe was conducted. A total of 29 combinations of vehicle parasitic drag coefficient, vehicle induced drag coefficient, vehicle empty weight and engine Specific Fuel Consumption were used to create sized tube-and-wing vehicle models. The mission fuel burn for each of these sized vehicles was then compared to a baseline current technology vehicle. A response surface equation was generated of fuel burn reduction as a function of the four basic vehicle performance metrics, so that any values of the performance metrics up to a 50 percent reduction could be used to estimate fuel burn reduction of tube-and-wing aircraft for future studies.

  5. Maritime Patrol Aircraft Engine Study P&WA Derivative Engines. Volume II. Performance Data.

    DTIC Science & Technology

    1979-04-30

    U) APR 79 R C NEWELL. P W HERRICK N62269-78C-0GIG UNCLASSIFIED PWA -FR-10966B/C"VOL-2 NAC-79132-60-VOL-2 NL mmEhE mhm 111 1 4;.c~ 111128 12.5 IIIIIII...MARITIME PATROL AIRCRAFT ENGINE STUDT PIWA DERIVATIVE ENGINES. --EC(U) APR 79 R C NEWELL. P W HERRICK N62269-78-C-010 UNCLASSIFIED PWA -FR-10966B/C-VOL-2 NADC...0.80 823. n. 524 -165. 51.3 5.8 1635. MAX .LIft 5.000. 0.85 6289 o 0.333 249. 125.3 17.*6 2535. MAX CKUISE 45000. 0.85 5629. 0.331 150.. 11,.6 16.3

  6. Friction characteristics of three 30 by 11.5-14.5, type 8, aircraft tires with various tread groove patterns and rubber compounds

    NASA Technical Reports Server (NTRS)

    Yager, T. J.; Mccarty, J. L.

    1977-01-01

    A test program was conducted to evaluate friction performance and wear characteristics on wet runways of three 30 x 11.5-14.5, type, aircraft tires having two different tread patterns and natural rubber contents. All test tires had the standard three circumferential groove tread, but two had molded transverse grooves which extended from shoulder to shoulder. The tread rubber content of the two tires with transverse grooves differed in that one had a 100 percent natural rubber tread and the other had a rubber tread composition that was 30 percent synthetic and 70 percent natural. The third test tire had the conventional 100 percent natural rubber tread. Results indicate that the differences in tire tread design and rubber composition do not significantly affect braking and cornering friction capability on wet or dry surfaces. Braking performance of the tires decreases with increased speed, with increased yaw angle and, at higher speeds, with increased wetness of the surface.

  7. Performance Evaluation of SARDA: An Individual Aircraft-Based Advisory Concept for Surface Management

    NASA Technical Reports Server (NTRS)

    Jung, Yoon; Malik, Waqar; Tobias, Leonard; Gupta, Gautam; Hoang, Ty; Hayashi, Miwa

    2015-01-01

    Surface operations at airports in the US are based on tactical operations, where departure aircraft primarily queue up and wait at the departure runways. NASAs Spot And Runway Departure Advisor (SARDA) tool was developed to address these inefficiencies through Air Traffic Control Tower advisories. The SARDA system is being updated to include collaborative gate hold, either tactically or strategically. This paper presents the results of the human-in-the-loop evaluation of the tactical gate hold version of SARDA in a 360 degree simulated tower setting. The simulations were conducted for the east side of the Dallas-Fort Worth airport. The new system provides gate hold, ground controller and local controller advisories based on a single scheduler. Simulations were conducted with SARDA on and off, the off case reflecting current day operations with no gate hold. Scenarios based on medium (1.2x current levels) and heavy (1.5x current levels) traffic were explored. Data collected from the simulation was analyzed for runway usage, delay for departures and arrivals, and fuel consumption. Further, Traffic Management Initiatives were introduced for a subset of the aircraft. Results indicated that runway usage did not change with the use of SARDA, i.e., there was no loss in runway throughput as compared to baseline. Taxiing delay was significantly reduced with the use of advisory by 45 in medium scenarios and 60 in heavy. Arrival delay was unaffected by the use of advisory. Total fuel consumption was also reduced by 23 in medium traffic and 33 in heavy. TMI compliance appeared unaffected by the advisory.

  8. Performance Evaluation of Individual Aircraft Based Advisory Concept for Surface Management

    NASA Technical Reports Server (NTRS)

    Gupta, Gautam; Malik, Waqar; Tobias, Leonard; Jung, Yoon; Hong, Ty; Hayashi, Miwa

    2013-01-01

    Surface operations at airports in the US are based on tactical operations, where departure aircraft primarily queue up and wait at the departure runways. NASA's Spot And Runway Departure Advisor (SARDA) tool was developed to address these inefficiencies through Air Traffic Control Tower advisories. The SARDA system is being updated to include collaborative gate hold, either tactically or strategically. This paper presents the results of the human-in-the-loop evaluation of the tactical gate hold version of SARDA in a 360 degree simulated tower setting. The simulations were conducted for the east side of the Dallas/Fort Worth airport. The new system provides gate hold, ground controller and local controller advisories based on a single scheduler. Simulations were conducted with SARDA on and off, the off case reflecting current day operations with no gate hold. Scenarios based on medium (1.2x current levels) and heavy (1.5x current levels) traffic were explored. Data collected from the simulation was analyzed for runway usage, delay for departures and arrivals, and fuel consumption. Further, Traffic Management Initiatives were introduced for a subset of the aircraft. Results indicated that runway usage did not change with the use of SARDA, i.e., there was no loss in runway throughput as compared to baseline. Taxiing delay was significantly reduced with the use of advisory by 45% in medium scenarios and 60% in heavy. Arrival delay was unaffected by the use of advisory. Total fuel consumption was also reduced by 23% in medium traffic and 33% in heavy. TMI compliance appeared unaffected by the advisory

  9. A miniature powerplant for very small, very long range autonomous aircraft. Final report

    SciTech Connect

    Tad McGeer

    1999-09-29

    The authors have developed a new piston engine offering unprecedented efficiency for a new generation of miniature robotic aircraft. Following Phase 1 preliminary design in 1996--97, they have gone forward in Phase 2 to complete detail design, and are nearing completion of a first batch of ten engines. A small-engine dynamometer facility has been built in preparation for the test program. Provisions have been included for supercharging, which will allow operation at ceilings in the 10,000 m range. Component tests and detailed analysis indicate that the engine will achieve brake-specific fuel consumption well below 300 gm/kWh at power levels of several hundred watts. This level of performance opens the door to development of tabletop-sized aircraft having transpacific range and multi-day endurance, which will offer extraordinary new capabilities for meteorology, geomagnetic, and a variety of applications in environmental monitoring and military operations.

  10. CV-990 Landing Systems Research Aircraft (LSRA) during final Space Shuttle tire test

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A Convair 990 (CV-990) was used as a Landing Systems Research Aircraft (LSRA) at NASA's Dryden Flight Research Center, Edwards, California, to test space shuttle landing gear and braking systems as part of NASA's effort to upgrade and improve space shuttle capabilities. The first flight at Dryden of the CV-990 with shuttle test components occurred in April 1993, and tests continued into August 1995, when this photo shows a test of the shuttle tires. The purpose of this series of tests was to determine the performance parameters and failure limits of the tires. This particular landing was on the dry lakebed at Edwards, but other tests occurred on the main runway there. The CV-990, built in 1962 by the Convair Division of General Dynamics Corp., Ft. Worth, Texas, served as a research aircraft at Ames Research Center, Moffett Field, California, before it came to Dryden.

  11. Research on Heat-Mechanical Coupling of Ventilated Disc Brakes under the Condition of Emergency Braking

    NASA Astrophysics Data System (ADS)

    Tan, Xuelong; Zhang, Jian; Tang, Wenxian; Zhang, Yang

    Taking the ventilated disc brake in some company as research object, and using UG to build 3D models of brake disc and pad, and making use of ABAQUS/Standard to set up two parts' finite element model, via the decelerated motion of actual simulation brake disc, which gets ventilated disc brake in the case of emergency breaking in time and space distribution of conditions of temperature and stress field, summarizes the distribution of temperature field and stress field, proves complex coupling between temperature, stress, and supplies the direct basis for brake's fatigue life analysis.

  12. Comparing the performance of expert user heuristics and an integer linear program in aircraft carrier deck operations.

    PubMed

    Ryan, Jason C; Banerjee, Ashis Gopal; Cummings, Mary L; Roy, Nicholas

    2014-06-01

    Planning operations across a number of domains can be considered as resource allocation problems with timing constraints. An unexplored instance of such a problem domain is the aircraft carrier flight deck, where, in current operations, replanning is done without the aid of any computerized decision support. Rather, veteran operators employ a set of experience-based heuristics to quickly generate new operating schedules. These expert user heuristics are neither codified nor evaluated by the United States Navy; they have grown solely from the convergent experiences of supervisory staff. As unmanned aerial vehicles (UAVs) are introduced in the aircraft carrier domain, these heuristics may require alterations due to differing capabilities. The inclusion of UAVs also allows for new opportunities for on-line planning and control, providing an alternative to the current heuristic-based replanning methodology. To investigate these issues formally, we have developed a decision support system for flight deck operations that utilizes a conventional integer linear program-based planning algorithm. In this system, a human operator sets both the goals and constraints for the algorithm, which then returns a proposed schedule for operator approval. As a part of validating this system, the performance of this collaborative human-automation planner was compared with that of the expert user heuristics over a set of test scenarios. The resulting analysis shows that human heuristics often outperform the plans produced by an optimization algorithm, but are also often more conservative.

  13. Autogenic-feedback training as a treatment for airsickness in high-performance military aircraft: Two case studies

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Toscano, William B.; Miller, Neal E.; Reynoso, Samuel

    1994-01-01

    The purpose of this paper is to present a detailed description of the physiological and performance responses of two military pilots undergoing a treatment for motion sickness. The treatment used, Autogenic-Feedback Training (AFT), is an operant conditioning procedure where subjects are taught to control several of their autonomic responses and thereby suppress their motion sickness symptoms. Two male, active duty military pilots (U.S. Navy and U. S. Marine Corps), ages 30 and 35, were each given twelve 30-minute training sessions. The primary criterion for success of training was the subject's ability to tolerate rotating chair motion sickness tests for progressively longer periods of time and at higher rotational velocities. A standardized diagnostic scale was used during motion sickness to assess changes in the subject's perceived malaise. Physiological data were obtained from one pilot during tactical maneuvers in an F-18 aircraft after completion of his training. A significant increase in tolerance to laboratory-induced motion sickness tests and a reduction in autonomic nervous system (ANS) response variability was observed for both subjects after training. Both pilots were successful in applying AFT for controlling their airsickness during subsequent qualification tests on F-18 and T-38 aircraft and were returned to active duty flight status.

  14. Design and control of a dual unidirectional brake hybrid actuation system for haptic devices.

    PubMed

    Rossa, Carlos; Lozada, José; Micaelli, Alain

    2014-01-01

    Hybrid actuators combining brakes and motors have emerged as an efficient solution to achieve high performance in haptic devices. In this paper, an actuation approach using two unidirectional brakes and a DC motor is proposed. The brakes are coupled to overrunning clutches and can apply a torque in only one rotational direction. The associated control laws, that are independent of the virtual environment model, calculate the control gains in real time in order limit the energy and the stiffness delivered by the motor to ensure stability. The reference torque is respected using the combination of the motor and the brake. Finally, an user experiment has been performed to evaluate the influence of passive and active torque differences in the perception of elasticity. The proposed actuator has a torque range of 0.03 Nm to 5.5 Nm with a 17.75 kNm (-2) torque density.

  15. A flight-test and simulation evaluation of the longitudinal final approach and landing performance of an automatic system for a light wing loading STOL aircraft

    NASA Technical Reports Server (NTRS)

    Brown, S. C.; Hardy, G. H.; Hindson, W. S.

    1983-01-01

    As part of a comprehensive flight-test program of STOL operating systems for the terminal area, an automatic landing system was developed and evaluated for a light wing loading turboprop aircraft. The aircraft utilized an onboard advanced digital avionics system. Flight tests were conducted at a facility that included a STOL runway site with a microwave landing system. Longitudinal flight-test results were presented and compared with available (basically CTOL) criteria. These comparisons were augmented by results from a comprehensive simulation of the controlled aircraft which included representations of navigation errors that were encountered in flight and atmospheric disturbances. Acceptable performance on final approach and at touchdown was achieved by the autoland (automatic landing) system for the moderate winds and turbulence conditions encountered in flight. However, some touchdown performance goals were marginally achieved, and simulation results suggested that difficulties could be encountered in the presence of more extreme atmospheric conditions. Suggestions were made for improving performance under those more extreme conditions.

  16. Driving and braking control of PM synchronous motor based on low-resolution hall sensor for battery electric vehicle

    NASA Astrophysics Data System (ADS)

    Gu, Jing; Ouyang, Minggao; Li, Jianqiu; Lu, Dongbin; Fang, Chuan; Ma, Yan

    2013-01-01

    Resolvers are normally employed for rotor positioning in motors for electric vehicles, but resolvers are expensive and vulnerable to vibrations. Hall sensors have the advantages of low cost and high reliability, but the positioning accuracy is low. Motors with Hall sensors are typically controlled by six-step commutation algorithm, which brings high torque ripple. This paper studies the high-performance driving and braking control of the in-wheel permanent magnetic synchronous motor (PMSM) based on low-resolution Hall sensors. Field oriented control (FOC) based on Hall-effect sensors is developed to reduce the torque ripple. The positioning accuracy of the Hall sensors is improved by interpolation between two consecutive Hall signals using the estimated motor speed. The position error from the misalignment of the Hall sensors is compensated by the precise calibration of Hall transition timing. The braking control algorithms based on six-step commutation and FOC are studied. Two variants of the six-step commutation braking control, namely, half-bridge commutation and full-bridge commutation, are discussed and compared, which shows that the full-bridge commutation could better explore the potential of the back electro-motive forces (EMF), thus can deliver higher efficiency and smaller current ripple. The FOC braking is analyzed with the phasor diagrams. At a given motor speed, the motor turns from the regenerative braking mode into the plug braking mode if the braking torque exceeds a certain limit, which is proportional to the motor speed. Tests in the dynamometer show that a smooth control could be realized by FOC driving control and the highest efficiency and the smallest current ripple could be achieved by FOC braking control, compared to six-step commutation braking control. Therefore, FOC braking is selected as the braking control algorithm for electric vehicles. The proposed research ensures a good motor control performance while maintaining low cost and high

  17. Detection of visually unrecognizable braking tracks using Laser-Induced Breakdown Spectroscopy, a feasibility study

    NASA Astrophysics Data System (ADS)

    Prochazka, David; Bilík, Martin; Prochazková, Petra; Brada, Michal; Klus, Jakub; Pořízka, Pavel; Novotný, Jan; Novotný, Karel; Ticová, Barbora; Bradáč, Albert; Semela, Marek; Kaiser, Jozef

    2016-04-01

    Identification of the position, length and mainly beginning of a braking track has proven to be essential for determination of causes of a road traffic accident. With the introduction of modern safety braking systems and assistance systems such as the Anti-lock Braking System (ABS) or Electronic Stability Control (ESC), the visual identification of braking tracks that has been used up until the present is proving to be rather complicated or even impossible. This paper focuses on identification of braking tracks using a spectrochemical analysis of the road surface. Laser-Induced Breakdown Spectroscopy (LIBS) was selected as a method suitable for fast in-situ element detection. In the course of detailed observations of braking tracks it was determined that they consist of small particles of tire treads that are caught in intrusions in the road surface. As regards detection of the "dust" resulting from wear and tear of tire treads in the environment, organic zinc was selected as the identification element in the past. The content of zinc in tire treads has been seen to differ with regard to various sources and tire types; however, the arithmetic mean and modus of these values are approximately 1% by weight. For in-situ measurements of actual braking tracks a mobile LIBS device equipped with a special module was used. Several measurements were performed for 3 different cars and tire types respectively which slowed down with full braking power. Moreover, the influence of different initial speed, vehicle mass and braking track length on detected signal is discussed here.

  18. Immobilisation of the knee and ankle and its impact on drivers' braking times: a driving simulator study.

    PubMed

    Waton, A; Kakwani, R; Cooke, N J; Litchfield, D; Kok, D; Middleton, H; Irwin, L

    2011-07-01

    The purpose of this study was to investigate the effects of right leg restriction at the knee, ankle or both, on a driver's braking times. Previous studies have not investigated the effects of knee restriction on braking performance. A total of 23 healthy drivers performed a series of emergency braking tests in a driving simulator in either an above-knee plaster cast, a below-knee cast, or in a knee brace with an increasing range of restriction. The study showed that total braking reaction time was significantly longer when wearing an above-knee plaster cast, a below-knee plaster cast or a knee brace fixed at 0°, compared with braking normally (p < 0.001). Increases in the time taken to move the foot from the accelerator to the brake accounted for some of the increase in the total braking reaction time. Unexpectedly, thinking time also increased with the level of restriction (p < 0.001). The increase in braking time with an above-knee plaster cast in this study would increase the stopping distance at 30 miles per hour by almost 3 m. These results suggest that all patients wearing any lower-limb plaster cast or knee brace are significantly impaired in their ability to perform an emergency stop. We suggest changes to the legislation to prevent patients from driving with lower-limb plaster casts or knee braces.

  19. Preliminary Axial Flow Turbine Design and Off-Design Performance Analysis Methods for Rotary Wing Aircraft Engines. Part 2; Applications

    NASA Technical Reports Server (NTRS)

    Chen, Shu-cheng, S.

    2009-01-01

    In this paper, preliminary studies on two turbine engine applications relevant to the tilt-rotor rotary wing aircraft are performed. The first case-study is the application of variable pitch turbine for the turbine performance improvement when operating at a substantially lower shaft speed. The calculations are made on the 75 percent speed and the 50 percent speed of operations. Our results indicate that with the use of the variable pitch turbines, a nominal (3 percent (probable) to 5 percent (hypothetical)) efficiency improvement at the 75 percent speed, and a notable (6 percent (probable) to 12 percent (hypothetical)) efficiency improvement at the 50 percent speed, without sacrificing the turbine power productions, are achievable if the technical difficulty of turning the turbine vanes and blades can be circumvented. The second casestudy is the contingency turbine power generation for the tilt-rotor aircraft in the One Engine Inoperative (OEI) scenario. For this study, calculations are performed on two promising methods: throttle push and steam injection. By isolating the power turbine and limiting its air mass flow rate to be no more than the air flow intake of the take-off operation, while increasing the turbine inlet total temperature (simulating the throttle push) or increasing the air-steam mixture flow rate (simulating the steam injection condition), our results show that an amount of 30 to 45 percent extra power, to the nominal take-off power, can be generated by either of the two methods. The methods of approach, the results, and discussions of these studies are presented in this paper.

  20. 14 CFR 29.735 - Brakes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Landing Gear § 29.735 Brakes. For rotorcraft with wheel-type landing gear, a braking device must be installed that is— (a) Controllable by the pilot; (b) Usable during power-off landings; and (c) Adequate to— (1) Counteract any normal...