Science.gov

Sample records for aircraft cabin air

  1. [Aircraft cabin air quality: exposure to ozone].

    PubMed

    Uva, António De Sousa

    2002-01-01

    Ozone is the principal component involved in photochemical pollution of the air. As an irritant of the respiratory system, its effects on the health of those exposed to it are characterised essentially by coughing, shortness of breath, chest pain or tightness and alterations to the pulmonary mechanical function. Additionally, a higher frequency and severity of asthmatic exacerbation and the occurrence of eye irritation are linked to environmental exposure to O3. In the early 1960s the first studies on the exposure to O3 in aircraft cabins appeared, prompted by the occurrence of clinical complaints of irritation of the respiratory tract in crewmembers and passengers. The symptoms had hitherto been attributed to the action of other factors, such as the ventilation system and low level of humidity in the air. An updating is done by author of some factors related to the quality of air inside aircraft cabins, namely the exposure to ozone in crewmembers and passengers.

  2. Passenger aircraft cabin air quality: trends, effects, societal costs, proposals.

    PubMed

    Hocking, M B

    2000-08-01

    As aircraft operators have sought to substantially reduce propulsion fuel cost by flying at higher altitudes, the energy cost of providing adequate outside air for ventilation has increased. This has lead to a significant decrease in the amount of outside air provided to the passenger cabin, partly compensated for by recirculation of filtered cabin air. The purpose of this review paper is to assemble the available measured air quality data and some calculated estimates of the air quality for aircraft passenger cabins to highlight the trend of the last 25 years. The influence of filter efficiencies on air quality, and a few medically documented and anecdotal cases of illness transmission aboard aircraft are discussed. Cost information has been collected from the perspective of both the airlines and passengers. Suggestions for air quality improvement are given which should help to result in a net, multistakeholder savings and improved passenger comfort.

  3. Indoor air quality: recommendations relevant to aircraft passenger cabins.

    PubMed

    Hocking, M B

    1998-07-01

    To evaluate the human component of aircraft cabin air quality the effects of respiration of a resting adult on air quality in an enclosed space are estimated using standard equations. Results are illustrated for different air volumes per person, with zero air exchange, and with various air change rates. Calculated ventilation rates required to achieve a specified air quality for a wide range of conditions based on theory agree to within 2% of the requirements determined using a standard empirical formula. These calculations quantitatively confirm that the air changes per hour per person necessary for ventilation of an enclosed space vary inversely with the volume of the enclosed space. However, they also establish that the ventilation required to achieve a target carbon dioxide concentration in the air of an enclosed space with a resting adult remains the same regardless of the volume of the enclosed space. Concentration equilibria resulting from the interaction of the respiration of a resting adult with various ventilation conditions are compared with the rated air exchange rates of samples of current passenger aircraft, both with and without air recirculation capability. Aircraft cabin carbon dioxide concentrations calculated from the published ventilation ratings are found to be intermediate to these sets of results obtained by actual measurement. These findings are used to arrive at recommendations for aircraft builders and operators to help improve aircraft cabin air quality at minimum cost. Passenger responses are suggested to help improve their comfort and decrease their exposure to disease transmission, particularly on long flights.

  4. Incident-response monitoring technologies for aircraft cabin air quality

    NASA Astrophysics Data System (ADS)

    Magoha, Paul W.

    Poor air quality in commercial aircraft cabins can be caused by volatile organophosphorus (OP) compounds emitted from the jet engine bleed air system during smoke/fume incidents. Tri-cresyl phosphate (TCP), a common anti-wear additive in turbine engine oils, is an important component in today's global aircraft operations. However, exposure to TCP increases risks of certain adverse health effects. This research analyzed used aircraft cabin air filters for jet engine oil contaminants and designed a jet engine bleed air simulator (BAS) to replicate smoke/fume incidents caused by pyrolysis of jet engine oil. Field emission scanning electron microscopy (FESEM) with X-ray energy dispersive spectroscopy (EDS) and neutron activation analysis (NAA) were used for elemental analysis of filters, and gas chromatography interfaced with mass spectrometry (GC/MS) was used to analyze used filters to determine TCP isomers. The filter analysis study involved 110 used and 90 incident filters. Clean air filter samples exposed to different bleed air conditions simulating cabin air contamination incidents were also analyzed by FESEM/EDS, NAA, and GC/MS. Experiments were conducted on a BAS at various bleed air conditions typical of an operating jet engine so that the effects of temperature and pressure variations on jet engine oil aerosol formation could be determined. The GC/MS analysis of both used and incident filters characterized tri- m-cresyl phosphate (TmCP) and tri-p-cresyl phosphate (TpCP) by a base peak of an m/z = 368, with corresponding retention times of 21.9 and 23.4 minutes. The hydrocarbons in jet oil were characterized in the filters by a base peak pattern of an m/z = 85, 113. Using retention times and hydrocarbon thermal conductivity peak (TCP) pattern obtained from jet engine oil standards, five out of 110 used filters tested had oil markers. Meanwhile 22 out of 77 incident filters tested positive for oil fingerprints. Probit analysis of jet engine oil aerosols obtained

  5. Concentrations of selected contaminants in cabin air of airbus aircrafts.

    PubMed

    Dechow, M; Sohn, H; Steinhanses, J

    1997-07-01

    The concentrations of selected air quality parameters in aircraft cabins were investigated including particle numbers in cabin air compared to fresh air and recirculation air, the microbiological contamination and the concentration of volatile organic compounds (VOC). The Airbus types A310 of Swissair and A340 of Lufthansa were used for measurements. The particles were found to be mainly emitted by the passengers, especially by smokers. Depending on recirculation filter efficiency the recirculation air contained a lower or equal amount of particles compared to the fresh air, whereas the amount of bacteria exceeded reported concentrations within other indoor spaces. The detected species were mainly non-pathogenic, with droplet infection over short distances identified as the only health risk. The concentration of volatile organic compounds (VOC) were well below threshold values. Ethanol was identified as the compound with the highest amount in cabin air. Further organics were emitted by the passengers--as metabolic products or by smoking--and on ground as engine exhaust (bad airport air quality). Cleaning agents may be the source of further compounds.

  6. Experimental investigation of personal air supply nozzle use in aircraft cabins.

    PubMed

    Fang, Zhaosong; Liu, Hong; Li, Baizhan; Baldwin, Andrew; Wang, Jian; Xia, Kechao

    2015-03-01

    To study air passengers' use of individual air supply nozzles in aircraft cabins, we constructed an experimental chamber which replicated the interior of a modern passenger aircraft. A series of experiments were conducted at different levels of cabin occupancy. Survey data were collected focused on the reasons for opening the nozzle, adjusting the level of air flow, and changing the direction of the air flow. The results showed that human thermal and draft sensations change over time in an aircraft cabin. The thermal sensation response was highest when the volunteers first entered the cabin and decreased over time until it stablized. Fifty-one percent of volunteers opened the nozzle to alleviate a feeling of stuffiness, and more than 50% adjusted the nozzle to improve upper body comfort. Over the period of the experiment the majority of volunteers chose to adjust their the air flow of their personal system. This confirms airline companies' decisions to install the individual aircraft ventilation systems in their aircraft indicates that personal air systems based on nozzle adjustment are essential for cabin comfort. These results will assist in the design of more efficient air distribution systems within passenger aircraft cabins where there is a need to optimize the air flow in order to efficiently improve aircraft passengers' thermal comfort and reduce energy use. PMID:25479988

  7. Experimental investigation of personal air supply nozzle use in aircraft cabins.

    PubMed

    Fang, Zhaosong; Liu, Hong; Li, Baizhan; Baldwin, Andrew; Wang, Jian; Xia, Kechao

    2015-03-01

    To study air passengers' use of individual air supply nozzles in aircraft cabins, we constructed an experimental chamber which replicated the interior of a modern passenger aircraft. A series of experiments were conducted at different levels of cabin occupancy. Survey data were collected focused on the reasons for opening the nozzle, adjusting the level of air flow, and changing the direction of the air flow. The results showed that human thermal and draft sensations change over time in an aircraft cabin. The thermal sensation response was highest when the volunteers first entered the cabin and decreased over time until it stablized. Fifty-one percent of volunteers opened the nozzle to alleviate a feeling of stuffiness, and more than 50% adjusted the nozzle to improve upper body comfort. Over the period of the experiment the majority of volunteers chose to adjust their the air flow of their personal system. This confirms airline companies' decisions to install the individual aircraft ventilation systems in their aircraft indicates that personal air systems based on nozzle adjustment are essential for cabin comfort. These results will assist in the design of more efficient air distribution systems within passenger aircraft cabins where there is a need to optimize the air flow in order to efficiently improve aircraft passengers' thermal comfort and reduce energy use.

  8. Prediction of air temperature in the aircraft cabin under different operational conditions

    NASA Astrophysics Data System (ADS)

    Volavý, F.; Fišer, J.; Nöske, I.

    2013-04-01

    This paper deals with the prediction of the air temperature in the aircraft cabin by means of Computational Fluid Dynamics. The simulations are performed on the CFD model which is based on geometry and cabin interior arrangement of the Flight Test Facility (FTF) located at Fraunhofer IBP, Germany. The experimental test flights under three different cabin temperatures were done in FTF and the various data were gathered during these flights. Air temperature in the cabin was measured on probes located near feet, torso and head of each passenger and also surface temperature and air temperature distributed from inlets were measured. The data were firstly analysed in order to obtain boundary conditions for cabin surfaces and inlets. Then the results of air temperature from the simulations were compared with measured data. The suitability and accuracy of the CFD approach for temperature prediction is discussed.

  9. Trends in cabin air quality of commercial aircraft: industry and passenger perspectives.

    PubMed

    Hocking, Martin B

    2002-01-01

    The small air space available per person in a fully occupied aircraft passenger cabin accentuates the human bioeffluent factor in the maintenance of air quality. The accumulation of carbon dioxide and other contributions to poor air quality that can occur with inadequate ventilation, even under normal circumstances, is related to the volume of available air space per person and various ventilation rates. This information is compared with established air quality guidelines to make specific recommendations with reference to aircraft passenger cabins under both normal and abnormal operating conditions. The effects of respiration on the air quality of any enclosed space from the respiration of a resting adult are estimated using standard equations. Results are given for different volumes of space per person, for zero air exchange, and for various air change rates. The required ventilation rates estimated in this way compared closely with results calculated using a standard empirical formula. The results confirm that the outside air ventilation required to achieve a target carbon dioxide concentration in the air of an occupied enclosed space remains the same regardless of the volume of that space. The outside air ventilation capability of older and more recent aircraft is then reviewed and compared with the actual measurements of cabin air quality for these periods. The correlation between calculated and measured aircraft cabin carbon dioxide concentrations from other studies was very good. Respiratory benefits and costs of returning to the 30% higher outside air ventilation rates and 8% higher cabin pressures of the 1960s and 1970s are outlined. Consideration is given to the occasional occurrence of certain types of aircraft malfunction that can introduce more serious contaminants to the aircraft cabin. Recommendations and suggestions for aircraft builders and operators are made that will help improve aircraft cabin air quality and the partial pressure of oxygen that

  10. A critical review of reported air concentrations of organic compounds in aircraft cabins.

    PubMed

    Nagda, N L; Rector, H E

    2003-09-01

    This paper presents a review and assessment of aircraft cabin air quality studies with measured levels of volatile and semivolatile organic compounds (VOCs and SVOCs). VOC and SVOC concentrations reported for aircraft cabins are compared with those reported for residential and office buildings and for passenger compartments of other types of transportation. An assessment of measurement technologies and quality assurance procedures is included. The six studies reviewed in the paper range in coverage from two to about 30 flights per study. None of the monitored flights included any unusual or episodic events that could affect cabin air quality. Most studies have used scientifically sound methods for measurements. Study results indicate that under routine aircraft operations, contaminant levels in aircraft cabins are similar to those in residential and office buildings, with two exceptions: (1). levels of ethanol and acetone, indicators of bioeffluents and chemicals from consumer products are higher in aircraft than in home or office environments, and (2). levels of certain chlorinated hydrocarbons and fuel-related contaminants are higher in residential/office buildings than in aircraft. Similarly, ethanol and acetone levels are higher in aircraft than in other transportation modes but the levels of some pollutants, such as m-/p-xylenes, tend to be lower in aircraft.

  11. The influence of air duct geometry on air jet direction in aircraft cabin ventilated by mixing ventilation.

    NASA Astrophysics Data System (ADS)

    Fišer, J.; Jícha, M.

    2013-04-01

    The paper deals with instigation of influence of air duct geometry on air jet direction in aircraft cabin ventilated by mixing ventilation. CFD approach was used for investigation and model geometry was based on small aircraft cabin mock-up geometry. Model was also equipped by nine seats and five manikins that represent passengers. The air jet direction was observed for selected ambient environment parameters and several types of air duct geometry and influence of main air duct geometry on jets direction is discussed. The model was created in StarCCM+ ver. 6.04.014 software and polyhedral mesh was used.

  12. [The modelling of the composition of the thermal oxidative breakdown products of aviation oils determined in the cabin air of aircraft].

    PubMed

    Belkin, B I; Filippov, A F; Kozlovskaia, N N

    1994-01-01

    The authors suggested a method to obtain a mixture of chemicals from splitting thermo-oxidation of aviation oil. The qualitative and quantitative aspects of the mixture correspond to the concentration of the chemicals in the air of aircraft cabins. The possibility to obtain such mixtures helps to assess in hygienic laboratory conditions a level of air pollution with aviation oil in aircraft cabins.

  13. [The modelling of the composition of the thermal oxidative breakdown products of aviation oils determined in the cabin air of aircraft].

    PubMed

    Belkin, B I; Filippov, A F; Kozlovskaia, N N

    1994-01-01

    The authors suggested a method to obtain a mixture of chemicals from splitting thermo-oxidation of aviation oil. The qualitative and quantitative aspects of the mixture correspond to the concentration of the chemicals in the air of aircraft cabins. The possibility to obtain such mixtures helps to assess in hygienic laboratory conditions a level of air pollution with aviation oil in aircraft cabins. PMID:7834229

  14. Cabin air quality: an overview.

    PubMed

    Rayman, Russell B

    2002-03-01

    In recent years, there have been increasing complaints from cockpit crew, cabin crew, and passengers that the cabin air quality of commercial aircraft is deficient. A myriad of complaints including headache, fatigue, fever, and respiratory difficulties among many others have been registered, particularly by flight attendants on long-haul routes. There is also much concern today regarding the transmission of contagious disease inflight, particularly tuberculosis. The unanswered question is whether these complaints are really due to poor cabin air quality or to other factors inherent intlight such as lowered barometric pressure, hypoxia, low humidity, circadian dysynchrony, work/rest cycles, vibration, etc. This paper will review some aspects relevant to cabin air quality such as volatile organic compounds (VOCs), carbon dioxide (CO2), carbon monoxide (CO), ozone (O3), particulates, and microorganisms, as well as the cabin ventilation system, to discern possible causes and effects of illness contracted inflight. The paper will conclude with recommendations on how the issue of cabin air quality may be resolved.

  15. Organophosphates in aircraft cabin and cockpit air--method development and measurements of contaminants.

    PubMed

    Solbu, Kasper; Daae, Hanne Line; Olsen, Raymond; Thorud, Syvert; Ellingsen, Dag Gunnar; Lindgren, Torsten; Bakke, Berit; Lundanes, Elsa; Molander, Paal

    2011-05-01

    Methods for measurements and the potential for occupational exposure to organophosphates (OPs) originating from turbine and hydraulic oils among flying personnel in the aviation industry are described. Different sampling methods were applied, including active within-day methods for OPs and VOCs, newly developed passive long-term sample methods (deposition of OPs to wipe surface areas and to activated charcoal cloths), and measurements of OPs in high-efficiency particulate air (HEPA) recirculation filters (n = 6). In total, 95 and 72 within-day OP and VOC samples, respectively, have been collected during 47 flights in six different models of turbine jet engine, propeller and helicopter aircrafts (n = 40). In general, the OP air levels from the within-day samples were low. The most relevant OP in this regard originating from turbine and engine oils, tricresyl phosphate (TCP), was detected in only 4% of the samples (min-max cabin and cockpit air, was an order of magnitude higher as compared to after engine replacement (p = 0.02).

  16. Organophosphates in aircraft cabin and cockpit air--method development and measurements of contaminants.

    PubMed

    Solbu, Kasper; Daae, Hanne Line; Olsen, Raymond; Thorud, Syvert; Ellingsen, Dag Gunnar; Lindgren, Torsten; Bakke, Berit; Lundanes, Elsa; Molander, Paal

    2011-05-01

    Methods for measurements and the potential for occupational exposure to organophosphates (OPs) originating from turbine and hydraulic oils among flying personnel in the aviation industry are described. Different sampling methods were applied, including active within-day methods for OPs and VOCs, newly developed passive long-term sample methods (deposition of OPs to wipe surface areas and to activated charcoal cloths), and measurements of OPs in high-efficiency particulate air (HEPA) recirculation filters (n = 6). In total, 95 and 72 within-day OP and VOC samples, respectively, have been collected during 47 flights in six different models of turbine jet engine, propeller and helicopter aircrafts (n = 40). In general, the OP air levels from the within-day samples were low. The most relevant OP in this regard originating from turbine and engine oils, tricresyl phosphate (TCP), was detected in only 4% of the samples (min-max cabin and cockpit air, was an order of magnitude higher as compared to after engine replacement (p = 0.02). PMID:21399836

  17. Aircraft Cabin Environmental Quality Sensors

    SciTech Connect

    Gundel, Lara; Kirchstetter, Thomas; Spears, Michael; Sullivan, Douglas

    2010-05-06

    The Indoor Environment Department at Lawrence Berkeley National Laboratory (LBNL) teamed with seven universities to participate in a Federal Aviation Administration (FAA) Center of Excellence (COE) for research on environmental quality in aircraft. This report describes research performed at LBNL on selecting and evaluating sensors for monitoring environmental quality in aircraft cabins, as part of Project 7 of the FAA's COE for Airliner Cabin Environmental Research (ACER)1 effort. This part of Project 7 links to the ozone, pesticide, and incident projects for data collection and monitoring and is a component of a broader research effort on sensors by ACER. Results from UCB and LBNL's concurrent research on ozone (ACER Project 1) are found in Weschler et al., 2007; Bhangar et al. 2008; Coleman et al., 2008 and Strom-Tejsen et al., 2008. LBNL's research on pesticides (ACER Project 2) in airliner cabins is described in Maddalena and McKone (2008). This report focused on the sensors needed for normal contaminants and conditions in aircraft. The results are intended to complement and coordinate with results from other ACER members who concentrated primarily on (a) sensors for chemical and biological pollutants that might be released intentionally in aircraft; (b) integration of sensor systems; and (c) optimal location of sensors within aircraft. The parameters and sensors were selected primarily to satisfy routine monitoring needs for contaminants and conditions that commonly occur in aircraft. However, such sensor systems can also be incorporated into research programs on environmental quality in aircraft cabins.

  18. Net in-cabin emission rates of VOCs and contributions from outside and inside the aircraft cabin

    NASA Astrophysics Data System (ADS)

    Guan, Jun; Li, Zheng; Yang, Xudong

    2015-06-01

    Volatile organic compounds (VOCs) are one of the most important types of air pollutants in aircraft cabin. Balancing source intensity of VOCs and ventilation strategies is an essential conducive way to obtain acceptable aircraft cabin environment. This paper intends to develop a simplified model by a case study to estimate the net VOC emission rates of cabin interior, and contributions from outside and inside the aircraft cabin. In-flight continuous measurements of total VOCs (TVOC) in cabin air were made in six domestic flights in March 2013. The results indicate that the concentrations of TVOC mostly ranged from 0.20 mg m-3 to 0.40 mg m-3 in cabin air, which first increased at ascent, and then kept elevated during cruise, and decreased at descent in general. For further ventilation information, carbon dioxide (CO2) in supply air and re-circulated air was simultaneously observed as a ventilation tracer to calculate the bleed air ratios, outside airflow rates and total airflow rates in these flights. And thus, the emission rates derived from cabin interior and contributions of TVOC from bleed air and cabin interior were estimated for the whole flight accordingly. Results indicate that during the cruise phase, TVOC in cabin air mainly came from cabin interiors. However, contributions from outside air also became significant during taxiing on the ground, ascent and descent phases. The simplified model would be useful for developing better control strategies of aircraft cabin air quality.

  19. Ozone contamination in aircraft cabins: Objectives and approach

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.

    1979-01-01

    Three panels were developed to solve the problem of ozone contamination in aircraft cabins. The problem is defined from direct in-flight measurements of ozone concentrations inside and outside airliners in their normal operations. Solutions to the cabin ozone problem are discussed under two areas: (1) flight planning to avoid high ozone concentrations, and (2) ozone destruction techniques installed in the cabin air systems.

  20. Aircraft Cabin Turbulence Warning Experiment

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.; Larcher, Kenneth

    2006-01-01

    New turbulence prediction technology offers the potential for advance warning of impending turbulence encounters, thereby allowing necessary cabin preparation time prior to the encounter. The amount of time required for passengers and flight attendants to be securely seated (that is, seated with seat belts fastened) currently is not known. To determine secured seating-based warning times, a consortium of aircraft safety organizations have conducted an experiment involving a series of timed secured seating trials. This demonstrative experiment, conducted on October 1, 2, and 3, 2002, used a full-scale B-747 wide-body aircraft simulator, human passenger subjects, and supporting staff from six airlines. Active line-qualified flight attendants from three airlines participated in the trials. Definitive results have been obtained to provide secured seating-based warning times for the developers of turbulence warning technology

  1. Characterization of endotoxin and 3-hydroxy fatty acid levels in air and settled dust from commercial aircraft cabins.

    PubMed

    Hines, C J; Waters, M A; Larsson, L; Petersen, M R; Saraf, A; Milton, D K

    2003-06-01

    Endotoxin was measured in air and dust samples collected during four commercial aircraft flights. Samples were analyzed for endotoxin biological activity using the Limulus assay. 3-hydroxy fatty acids (3-OH FA) of carbon chain lengths C10:0-C18:0 were determined in dust by gas chromatography-ion trap tandem mass spectrometry. The geometric mean (geometric standard deviation) endotoxin air level was 1.5 EU/m3 (1.9, n = 28); however, significant differences were found by flight within aircraft type. Mean endotoxin levels were significantly higher in carpet dust than in seat dust (140 +/- 81 vs. 51 +/- 25 EU/mg dust, n = 32 each, P < 0.001). Airborne endotoxin levels were not significantly related to either carpet or seat dust endotoxin levels. Mean 3-OH FA levels were significantly higher in carpet dust than in seat dust for C10:2, C12:0, and C14:0 (P < 0.001 for each), while the mean level of C16:0 was significantly higher in seat dust than in carpet dust (P < 0.01). Carpet dust endotoxin was significantly, but moderately, correlated with 3-OH-C12:0 and 3-OH-C14:0 (Pearson r = 0.52 and 0.48, respectively), while correlation of seat dust endotoxin with individual 3-OH FAs depended on the test statistic used. Mean endotoxin potency was significantly higher for carpet dust than for seat dust (6.3 +/- 3.0 vs. 3.0 +/- 1.4 EU/pmol LPS, P < 0.0001). Mean endotoxin levels in the air and dust of commercial aircraft cabins were generally higher than mean levels reported in homes and office buildings. These results suggest that exposure route and dust source are important considerations when relating endotoxin exposure to specific health outcomes.

  2. Ozone contamination in aircraft cabins - Results from GASP data and analyses

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Nastrom, G. D.

    1981-01-01

    The paper reviews results from the NASA Global Atmospheric Sampling Program (GASP) pertaining to the problem of ozone contamination in commercial aircraft cabins. Specifically, analyses of GASP data have (1) confirmed the high ozone levels in aircraft cabins and documented the ratio of ozone inside and outside the cabins of two B747 airliners, including the effects of air conditioning modifications on that ratio; (2) defined ambient ozone climatology at commercial aircraft cruise altitudes, including tabulation of encounter frequency data; and (3) outlined procedures for estimating the frequency of flights encountering high cabin ozone levels using climatological ambient ozone data and verified these procedures against cabin measurements.

  3. Cabin air filtration: helping to protect occupants from infectious diseases.

    PubMed

    Bull, Karen

    2008-05-01

    Presentation made at the Aviation Health Conference, London, November 2006. In modern aircraft, the air in the cabin is provided by the environmental control system (ECS) and consists of approximately 50% outside air (engine 'bleed air') mixed with approximately 50% filtered, recirculated air. This paper describes how modern aircraft cabin air filters are effective at removing airborne particulate contamination (such as bacteria and viruses) from the recirculated air system. It also describes one of the technological solutions that is currently available to treat any odours or volatile organic compounds (VOCs) that may be present in the aircraft ECS. PMID:18486070

  4. Airborne aldehydes in cabin-air of commercial aircraft: Measurement by HPLC with UV absorbance detection of 2,4-dinitrophenylhydrazones.

    PubMed

    Rosenberger, Wolfgang; Beckmann, Bibiana; Wrbitzky, Renate

    2016-04-15

    This paper presents the strategy and results of in-flight measurements of airborne aldehydes during normal operation and reported "smell events" on commercial aircraft. The aldehyde-measurement is a part of a large-scale study on cabin-air quality. The aims of this study were to describe cabin-air quality in general and to detect chemical abnormalities during the so-called "smell-events". Adsorption and derivatization of airborne aldehydes on 2,4-dinitrophenylhydrazine coated silica gel (DNPH-cartridge) was applied using tailor-made sampling kits. Samples were collected with battery supplied personal air sampling pumps during different flight phases. Furthermore, the influence of ozone was investigated by simultaneous sampling with and without ozone absorption unit (ozone converter) assembled to the DNPH-cartridges and found to be negligible. The method was validated for 14 aldehydes and found to be precise (RSD, 5.5-10.6%) and accurate (recovery, 98-103 %), with LOD levels being 0.3-0.6 μg/m(3). According to occupational exposure limits (OEL) or indoor air guidelines no unusual or noticeable aldehyde pollution was observed. In total, 353 aldehyde samples were taken from two types of aircraft. Formaldehyde (overall average 5.7 μg/m(3), overall median 4.9 μg/m(3), range 0.4-44 μg/m(3)), acetaldehyde (overall average 6.5 μg/m(3), overall median 4.6, range 0.3-90 μg/m(3)) and mostly very low concentrations of other aldehydes were measured on 108 flights. Simultaneous adsorption and derivatization of airborne aldehydes on DNPH-cartridges to the Schiff bases and their HPLC analysis with UV absorbance detection is a useful method to measure aldehydes in cabin-air of commercial aircraft.

  5. Airborne aldehydes in cabin-air of commercial aircraft: Measurement by HPLC with UV absorbance detection of 2,4-dinitrophenylhydrazones.

    PubMed

    Rosenberger, Wolfgang; Beckmann, Bibiana; Wrbitzky, Renate

    2016-04-15

    This paper presents the strategy and results of in-flight measurements of airborne aldehydes during normal operation and reported "smell events" on commercial aircraft. The aldehyde-measurement is a part of a large-scale study on cabin-air quality. The aims of this study were to describe cabin-air quality in general and to detect chemical abnormalities during the so-called "smell-events". Adsorption and derivatization of airborne aldehydes on 2,4-dinitrophenylhydrazine coated silica gel (DNPH-cartridge) was applied using tailor-made sampling kits. Samples were collected with battery supplied personal air sampling pumps during different flight phases. Furthermore, the influence of ozone was investigated by simultaneous sampling with and without ozone absorption unit (ozone converter) assembled to the DNPH-cartridges and found to be negligible. The method was validated for 14 aldehydes and found to be precise (RSD, 5.5-10.6%) and accurate (recovery, 98-103 %), with LOD levels being 0.3-0.6 μg/m(3). According to occupational exposure limits (OEL) or indoor air guidelines no unusual or noticeable aldehyde pollution was observed. In total, 353 aldehyde samples were taken from two types of aircraft. Formaldehyde (overall average 5.7 μg/m(3), overall median 4.9 μg/m(3), range 0.4-44 μg/m(3)), acetaldehyde (overall average 6.5 μg/m(3), overall median 4.6, range 0.3-90 μg/m(3)) and mostly very low concentrations of other aldehydes were measured on 108 flights. Simultaneous adsorption and derivatization of airborne aldehydes on DNPH-cartridges to the Schiff bases and their HPLC analysis with UV absorbance detection is a useful method to measure aldehydes in cabin-air of commercial aircraft. PMID:26376451

  6. Douglas Aircraft cabin fire tests

    NASA Technical Reports Server (NTRS)

    Klinck, D.

    1978-01-01

    Program objectives are outlined as follows: (1) examine the thermal and environmental characteristics of three types of fuels burned in two quantities contained within a metal lavatory; (2) determine the hazard experienced in opening the door of a lavatory containing a developed fire; (3) select the most severe source fuel for use in a baseline test; and (4) evaluate the effect of the most severe source upon a lavatory constructed of contemporary materials. All test were conducted in the Douglas Cabin Fire Simulator.

  7. Aircraft cabin water spray disbenefits study

    NASA Technical Reports Server (NTRS)

    Reynolds, Thomas L.; Porter, Kent W.

    1993-01-01

    The concept of utilizing a cabin water spray system (CWSS) as a means of increasing passenger evacuation and survival time following an accident has received considerable publicity and has been the subject of testing by the regulatory agencies in both the United States and Europe. A test program, initiated by the CAA in 1987, involved the regulatory bodies in both Europe and North America in a collaborative research effort to determine the benefits and 'disbenefits' (disadvantages) of a CWSS. In order to obtain a balanced opinion of an onboard CWSS, NASA, and FAA requested the Boeing Commercial Airplane Group to investigate the potential 'disbenefits' of the proposed system from the perspective of the manufacturer and an operator. This report is the result of a year-long, cost-sharing contract study between the Boeing Commercial Airplane Group, NASA, and FAA. Delta Air Lines participated as a subcontract study team member and investigated the 'return to service' costs for an aircraft that would experience an uncommanded operation of a CWSS without the presence of fire. Disbenefits identified include potential delays in evacuation, introduction of 'common cause failure' in redundant safety of flight systems, physiological problems for passengers, high cost of refurbishment for inadvertent discharge, and potential to negatively affect other safety systems.

  8. Ozone contamination in aircraft cabins: Results from GASP data and analyses

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Nastrom, G. D.

    1981-01-01

    The global atmospheric sampling program pertaining to the problem of ozone contamination in commercial airplane cabins is described. Specifically, analyses of GASP data have: confirmed the occurrence of high ozone levels in aircraft cabins and documented the ratio of ozone inside and outside the cabins of two B747 airliners, including the effects of air conditioning modifications on that ratio; defined ambient ozone climatology at commercial airplane cruise altitudes, including tabulation of encounter frequency data which were not available before GASP; and outlined procedures for estimating the frequency of flights encountering high cabin ozone levels using climatological ambient ozone data, and verified these procedures against cabin measurements.

  9. Aerospace toxicology overview: aerial application and cabin air quality.

    PubMed

    Chaturvedi, Arvind K

    2011-01-01

    Aerospace toxicology is a rather recent development and is closely related to aerospace medicine. Aerospace toxicology can be defined as a field of study designed to address the adverse effects of medications, chemicals, and contaminants on humans who fly within or outside the atmosphere in aviation or on space flights. The environment extending above and beyond the surface of the Earth is referred to as aerospace. The term aviation is frequently used interchangeably with aerospace. The focus of the literature review performed to prepare this paper was on aerospace toxicology-related subject matters, aerial application and aircraft cabin air quality. Among the important topics addressed are the following: · Aerial applications of agricultural chemicals, pesticidal toxicity, and exposures to aerially applied mixtures of chemicals and their associated formulating solvents/surfactants The safety of aerially encountered chemicals and the bioanalytical methods used to monitor exposures to some of them · The presence of fumes and smoke, as well as other contaminants that may generally be present in aircraft/space vehicle cabin air · And importantly, the toxic effects of aerially encountered contaminants, with emphasis on the degradation products of oils, fluids, and lubricants used in aircraft, and finally · Analytical methods used for monitoring human exposure to CO and HCN are addressed in the review, as are the signs and symptoms associated with exposures to these combustion gases. Although many agricultural chemical monitoring studies have been published, few have dealt with the occurrence of such chemicals in aircraft cabin air. However, agricultural chemicals do appear in cabin air; indeed, attempts have been made to establish maximum allowable concentrations for several of the more potentially toxic ones that are found in aircraft cabin air. In this article, I emphasize the need for precautionary measures to be taken to minimize exposures to aerially

  10. Aerospace toxicology overview: aerial application and cabin air quality.

    PubMed

    Chaturvedi, Arvind K

    2011-01-01

    Aerospace toxicology is a rather recent development and is closely related to aerospace medicine. Aerospace toxicology can be defined as a field of study designed to address the adverse effects of medications, chemicals, and contaminants on humans who fly within or outside the atmosphere in aviation or on space flights. The environment extending above and beyond the surface of the Earth is referred to as aerospace. The term aviation is frequently used interchangeably with aerospace. The focus of the literature review performed to prepare this paper was on aerospace toxicology-related subject matters, aerial application and aircraft cabin air quality. Among the important topics addressed are the following: · Aerial applications of agricultural chemicals, pesticidal toxicity, and exposures to aerially applied mixtures of chemicals and their associated formulating solvents/surfactants The safety of aerially encountered chemicals and the bioanalytical methods used to monitor exposures to some of them · The presence of fumes and smoke, as well as other contaminants that may generally be present in aircraft/space vehicle cabin air · And importantly, the toxic effects of aerially encountered contaminants, with emphasis on the degradation products of oils, fluids, and lubricants used in aircraft, and finally · Analytical methods used for monitoring human exposure to CO and HCN are addressed in the review, as are the signs and symptoms associated with exposures to these combustion gases. Although many agricultural chemical monitoring studies have been published, few have dealt with the occurrence of such chemicals in aircraft cabin air. However, agricultural chemicals do appear in cabin air; indeed, attempts have been made to establish maximum allowable concentrations for several of the more potentially toxic ones that are found in aircraft cabin air. In this article, I emphasize the need for precautionary measures to be taken to minimize exposures to aerially

  11. Aircraft Instrument, Fire Protection, Warning, Communication, Navigation and Cabin Atmosphere Control System (Course Outline), Aviation Mechanics 3 (Air Frame): 9067.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with manipulative skills and theoretical knowledge concerning aircraft instrument systems like major flight and engine instruments; fire protection and fire fighting systems; warning systems and navigation systems; aircraft cabin control systems, such as…

  12. Ozone-initiated chemistry in an occupied simulated aircraft cabin.

    PubMed

    Weschler, Charles J; Wisthaler, Armin; Cowlin, Shannon; Tamás, Gyöngyi; Strøm-Tejsen, Peter; Hodgson, Alfred T; Destaillats, Hugo; Herrington, Jason; Zhang, Junfeng; Nazaroff, William W

    2007-09-01

    We have used multiple analytical methods to characterize the gas-phase products formed when ozone was added to cabin air during simulated 4-hour flights that were conducted in a reconstructed section of a B-767 aircraft containing human occupants. Two separate groups of 16 females were each exposed to four conditions: low air exchange (4.4 (h-1)), <2 ppb ozone; low air exchange, 61-64 ppb ozone; high air exchange (8.8 h(-1)), <2 ppb ozone; and high air exchange, 73-77 ppb ozone. The addition of ozone to the cabin air increased the levels of identified byproducts from approximately 70 to 130 ppb at the lower air exchange rate and from approximately 30 to 70 ppb at the higher air exchange rate. Most of the increase was attributable to acetone, nonanal, decanal, 4-oxopentanal (4-OPA), 6-methyl-5-hepten-2-one (6-MHO), formic acid, and acetic acid, with 0.25-0.30 mol of quantified product volatilized per mol of ozone consumed. Several of these compounds reached levels above their reported odor thresholds. Most byproducts were derived from surface reactions with occupants and their clothing, consistent with the inference that occupants were responsible for the removal of >55% of the ozone in the cabin. The observations made in this study have implications for other indoor settings. Whenever human beings and ozone are simultaneously present, one anticipates production of acetone, nonanal, decanal, 6-MHO, geranyl acetone, and 4-OPA.

  13. Airborne exposure patterns from a passenger source in aircraft cabins

    PubMed Central

    Bennett, James S.; Jones, Byron W.; Hosni, Mohammad H.; Zhang, Yuanhui; Topmiller, Jennifer L.; Dietrich, Watts L.

    2015-01-01

    Airflow is a critical factor that influences air quality, airborne contaminant distribution, and disease transmission in commercial airliner cabins. The general aircraft-cabin air-contaminant transport effect model seeks to build exposure-spatial relationships between contaminant sources and receptors, quantify the uncertainty, and provide a platform for incorporation of data from a variety of studies. Knowledge of infection risk to flight crews and passengers is needed to form a coherent response to an unfolding epidemic, and infection risk may have an airborne pathogen exposure component. The general aircraf-tcabin air-contaminant transport effect model was applied to datasets from the University of Illinois and Kansas State University and also to case study information from a flight with probable severe acute respiratory syndrome transmission. Data were fit to regression curves, where the dependent variable was contaminant concentration (normalized for source strength and ventilation rate), and the independent variable was distance between source and measurement locations. The data-driven model showed exposure to viable small droplets and post-evaporation nuclei at a source distance of several rows in a mock-up of a twin-aisle airliner with seven seats per row. Similar behavior was observed in tracer gas, particle experiments, and flight infection data for severe acute respiratory syndrome. The study supports the airborne pathway as part of the matrix of possible disease transmission modes in aircraft cabins. PMID:26526769

  14. Airborne exposure patterns from a passenger source in aircraft cabins.

    PubMed

    Bennett, James S; Jones, Byron W; Hosni, Mohammad H; Zhang, Yuanhui; Topmiller, Jennifer L; Dietrich, Watts L

    2013-01-01

    Airflow is a critical factor that influences air quality, airborne contaminant distribution, and disease transmission in commercial airliner cabins. The general aircraft-cabin air-contaminant transport effect model seeks to build exposure-spatial relationships between contaminant sources and receptors, quantify the uncertainty, and provide a platform for incorporation of data from a variety of studies. Knowledge of infection risk to flight crews and passengers is needed to form a coherent response to an unfolding epidemic, and infection risk may have an airborne pathogen exposure component. The general aircraf-tcabin air-contaminant transport effect model was applied to datasets from the University of Illinois and Kansas State University and also to case study information from a flight with probable severe acute respiratory syndrome transmission. Data were fit to regression curves, where the dependent variable was contaminant concentration (normalized for source strength and ventilation rate), and the independent variable was distance between source and measurement locations. The data-driven model showed exposure to viable small droplets and post-evaporation nuclei at a source distance of several rows in a mock-up of a twin-aisle airliner with seven seats per row. Similar behavior was observed in tracer gas, particle experiments, and flight infection data for severe acute respiratory syndrome. The study supports the airborne pathway as part of the matrix of possible disease transmission modes in aircraft cabins. PMID:26526769

  15. Ozone and ozone byproducts in the cabins of commercial aircraft.

    PubMed

    Weisel, Clifford; Weschler, Charles J; Mohan, Kris; Vallarino, Jose; Spengler, John D

    2013-05-01

    The aircraft cabin represents a unique indoor environment due to its high surface-to-volume ratio, high occupant density, and the potential for high ozone concentrations at cruising altitudes. Ozone was continuously measured and air was sampled on sorbent traps, targeting carbonyl compounds, on 52 transcontinental U.S. or international flights between 2008 and 2010. The sampling was predominantly on planes that did not have ozone scrubbers (catalytic converters). Peak ozone levels on aircraft without catalytic convertors exceeded 100 ppb, with some flights having periods of more than an hour when the ozone levels were >75 ppb. Ozone was greatly reduced on relatively new aircraft with catalytic convertors, but ozone levels on two flights whose aircraft had older convertors were similar to those on planes without catalytic convertors. Hexanal, heptanal, octanal, nonanal, decanal, and 6-methyl-5-hepten-2-one (6-MHO) were detected in the aircraft cabin at sub- to low ppb levels. Linear regression models that included the log transformed mean ozone concentration, percent occupancy, and plane type were statistically significant and explained between 18 and 25% of the variance in the mixing ratio of these carbonyls. Occupancy was also a significant factor for 6-MHO, but not the linear aldehydes, consistent with 6-MHO's formation from the reaction between ozone and squalene, which is present in human skin oils. PMID:23517299

  16. Computational fluid dynamics modeling of transport and deposition of pesticides in an aircraft cabin

    NASA Astrophysics Data System (ADS)

    Isukapalli, Sastry S.; Mazumdar, Sagnik; George, Pradeep; Wei, Binnian; Jones, Byron; Weisel, Clifford P.

    2013-04-01

    Spraying of pesticides in aircraft cabins is required by some countries as part of a disinsection process to kill insects that pose a public health threat. However, public health concerns remain regarding exposures of cabin crew and passengers to pesticides in aircraft cabins. While large scale field measurements of pesticide residues and air concentrations in aircraft cabins scenarios are expensive and time consuming, Computational Fluid Dynamics (CFD) models provide an effective alternative for characterizing concentration distributions and exposures. This study involved CFD modeling of a twin-aisle 11 row cabin mockup with heated manikins, mimicking a part of a fully occupied Boeing 767 cabin. The model was applied to study the flow and deposition of pesticides under representative scenarios with different spraying patterns (sideways and overhead) and cabin air exchange rates (low and high). Corresponding spraying experiments were conducted in the cabin mockup, and pesticide deposition samples were collected at the manikin's lap and seat top for a limited set of five seats. The CFD model performed well for scenarios corresponding to high air exchange rates, captured the concentration profiles for middle seats under low air exchange rates, and underestimated the concentrations at window seats under low air exchange rates. Additionally, both the CFD and experimental measurements showed no major variation in deposition characteristics between sideways and overhead spraying. The CFD model can estimate concentration fields and deposition profiles at very high resolutions, which can be used for characterizing the overall variability in air concentrations and surface loadings. Additionally, these model results can also provide a realistic range of surface and air concentrations of pesticides in the cabin that can be used to estimate potential exposures of cabin crew and passengers to these pesticides.

  17. Simulations of ozone distributions in an aircraft cabin using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Rai, Aakash C.; Chen, Qingyan

    2012-07-01

    Ozone is a major pollutant of indoor air. Many studies have demonstrated the adverse health effect of ozone and the byproducts generated as a result of ozone-initiated reactive chemistry in an indoor environment. This study developed a Computational Fluid Dynamics (CFD) model to predict the ozone distribution in an aircraft cabin. The model was used to simulate the distribution of ozone in an aircraft cabin mockup for the following cases: (1) empty cabin; (2) cabin with seats; (3) cabin with soiled T-shirts; (4) occupied cabin with simple human geometry; and (5) occupied cabin with detailed human geometry. The agreement was generally good between the CFD results and the available experimental data. The ozone removal rate, deposition velocity, retention ratio, and breathing zone levels were well predicted in those cases. The CFD model predicted breathing zone ozone concentration to be 77-99% of the average cabin ozone concentration depending on the seat location. The ozone concentration at the breathing zone in the cabin environment can better assess the health risk to passengers and can be used to develop strategies for a healthier cabin environment.

  18. Source apportionment of airborne particles in commercial aircraft cabin environment: Contributions from outside and inside of cabin

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Guan, Jun; Yang, Xudong; Lin, Chao-Hsin

    2014-06-01

    Airborne particles are an important type of air pollutants in aircraft cabin. Finding sources of particles is conducive to taking appropriate measures to remove them. In this study, measurements of concentration and size distribution of particles larger than 0.3 μm (PM>0.3) were made on nine short haul flights from September 2012 to March 2013. Particle counts in supply air and breathing zone air were both obtained. Results indicate that the number concentrations of particles ranged from 3.6 × 102 counts L-1 to 1.2 × 105 counts L-1 in supply air and breathing zone air, and they first decreased and then increased in general during the flight duration. Peaks of particle concentration were found at climbing, descending, and cruising phases in several flights. Percentages of particle concentration in breathing zone contributed by the bleed air (originated from outside) and cabin interior sources were calculated. The bleed air ratios, outside airflow rates and total airflow rates were calculated by using carbon dioxide as a ventilation tracer in five of the nine flights. The calculated results indicate that PM>0.3 in breathing zone mainly came from unfiltered bleed air, especially for particle sizes from 0.3 to 2.0 μm. And for particles larger than 2.0 μm, contributions from the bleed air and cabin interior were both important. The results would be useful for developing better cabin air quality control strategies.

  19. Factors affecting ozone removal rates in a simulated aircraft cabin environment

    NASA Astrophysics Data System (ADS)

    Tamás, Gyöngyi; Weschler, Charles J.; Bakó-Biró, Zsolt; Wyon, David P.; Strøm-Tejsen, Peter

    Ozone concentrations were measured concurrently inside a simulated aircraft cabin and in the airstream providing ventilation air to the cabin. Ozone decay rates were also measured after cessation of ozone injection into the supply airstream. By systematically varying the presence or absence of people, soiled T-shirts, aircraft seats and a used HEPA filter, we have been able in the course of 24 experiments to isolate the contributions of these and other factors to the removal of ozone from the cabin air. In the case of this simulated aircraft, people were responsible for almost 60% of the ozone removal occurring within the cabin and recirculation system; respiration can only have been responsible for about 4% of this removal. The aircraft seats removed about 25% of the ozone; the loaded HEPA filter, 7%; and the other surfaces, 10%. A T-shirt that had been slept in overnight removed roughly 70% as much ozone as a person, indicating the importance of skin oils in ozone removal. The presence of the used HEPA filter in the recirculated airstream reduced the perceived air quality. Over a 5-h period, the overall ozone removal rate by cabin surfaces decreased at ˜3% h -1. With people present, the measured ratio of ozone's concentration in the cabin versus that outside the cabin was 0.15-0.21, smaller than levels reported in the literature. The results reinforce the conclusion that the optimal way to reduce people's exposure to both ozone and ozone oxidation products is to efficiently remove ozone from the air supply system of an aircraft.

  20. A simplified method for assessing particle deposition rate in aircraft cabins

    NASA Astrophysics Data System (ADS)

    You, Ruoyu; Zhao, Bin

    2013-03-01

    Particle deposition in aircraft cabins is important for the exposure of passengers to particulate matter, as well as the airborne infectious diseases. In this study, a simplified method is proposed for initial and quick assessment of particle deposition rate in aircraft cabins. The method included: collecting the inclined angle, area, characteristic length, and freestream air velocity for each surface in a cabin; estimating the friction velocity based on the characteristic length and freestream air velocity; modeling the particle deposition velocity using the empirical equation we developed previously; and then calculating the particle deposition rate. The particle deposition rates for the fully-occupied, half-occupied, 1/4-occupied and empty first-class cabin of the MD-82 commercial airliner were estimated. The results show that the occupancy did not significantly influence the particle deposition rate of the cabin. Furthermore, the simplified human model can be used in the assessment with acceptable accuracy. Finally, the comparison results show that the particle deposition rate of aircraft cabins and indoor environments are quite similar.

  1. Cabin air quality. Aerospace Medical Association.

    PubMed

    Thibeault, C

    1997-01-01

    Cabin Air Quality has generated considerable public and workers' concern and controversy in the last few years. To clarify the situation, AsMA requested the Passenger Health Subcommittee of the Air Transport Medicine Committee to review the situation and prepare a position statement. After identifying the various sources of confusion, we review the scientifically accepted facts in the different elements involved in Cabin Air Quality: pressurization, ventilation, contaminants, humidity and temperature. At the same time, we identify areas that need more research and make recommendations accordingly.

  2. The microbiological composition of airliner cabin air.

    PubMed

    Wick, R L; Irvine, L A

    1995-03-01

    Hundreds of millions of passengers travel on U.S. airliners annually. These large numbers, together with the close proximity required onboard, raise a concern about microbiologic disease transmission in cabin air. Previous air quality surveys generally concentrated on environmental tobacco smoke and particulate matter. They largely ignored the microorganisms also present. We sampled the microbiologic climate of 45 domestic and international flights. We also sampled common locations in a major southwestern city. The concentration of microorganisms in airline cabin air is much lower than in ordinary city locations. We conclude that the small number of microorganisms found in U.S. airliner cabin environments does not contribute to the risk of disease transmission among passengers.

  3. Aircraft cabin ozone measurements on B747-100 and B747-SP aircraft: Correlations with atmospheric ozone and ozone encounter statistics

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.; Holdeman, J. D.; Gauntner, D. J.

    1978-01-01

    Simultaneous measurements of atmospheric (outside) ozone concentration and ozone levels in the cabin of the B747-100 and B747-SP airliners were made by NASA to evaluate the aircraft cabin ozone contamination problem. Instrumentation on these aircraft measured ozone from an outside probe and at one point in the cabin. Average ozone in the cabin of the B747-100 was 39 percent of the outside. Ozone in the cabin of the B747-SP measured 82 percent of the outside, before corrective measures. Procedures to reduce the ozone in this aircraft included changes in the cabin air circulation system, use of the high-temperature 15th stage compressor bleed, and charcoal filters in the inlet cabin air ducting, which as separate actions reduced the ozone to 58, 19 and 5 percent, respectively. The potential for the NASA instrumented B747 aircraft to encounter high levels of cabin ozone was derived from atmospheric oxone measurements on these aircraft. Encounter frequencies for two B747-100's were comparable even though the route structures were different. The B747-SP encountered high ozone than did the B747-100's.

  4. The influence of ozone on self-evaluation of symptoms in a simulated aircraft cabin.

    PubMed

    Strøm-Tejsen, Peter; Weschler, Charles J; Wargocki, Pawel; Myśków, Danuta; Zarzycka, Julita

    2008-05-01

    Simulated 4-h flights were carried out in a realistic model of a three-row, 21-seat section of an aircraft cabin that was reconstructed inside a climate chamber. Twenty-nine female subjects, age 19-27 years, were split into two groups; each group was exposed to four conditions: two levels of ozone (<2 and 60-80 p.p.b.) at two outside air supply rates (2.4 and 4.7 l/s per person). A companion study measured the chemicals present in the cabin air during each of the simulated flights. The subjects completed questionnaires to provide subjective assessments of air quality and symptoms typical of complaints experienced during actual flight. Additionally, the subjects' visual acuity, nasal peak flow and skin dryness were measured. Based on self-recorded responses after 3(1/4) h in the simulated aircraft cabin, they judged the air quality and 12 of the symptoms (including eye and nasal irritation, lip and skin dryness, headache, dizziness, mental tension, claustrophobia) to be significantly worse (P<0.05) for the "ozone" condition compared to the "no ozone" condition. The results indicate that ozone and products of ozone-initiated chemistry are contributing to such complaints, and imply previously unappreciated benefits when ozone is removed from the ventilation air supplied to an aircraft cabin.

  5. A Cabin Air Separator for EVA Oxygen

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    2011-01-01

    Presently, the Extra-Vehicular Activities (EVAs) conducted from the Quest Joint Airlock on the International Space Station use high pressure, high purity oxygen that is delivered to the Space Station by the Space Shuttle. When the Space Shuttle retires, a new method of delivering high pressure, high purity oxygen to the High Pressure Gas Tanks (HPGTs) is needed. One method is to use a cabin air separator to sweep oxygen from the cabin air, generate a low pressure/high purity oxygen stream, and compress the oxygen with a multistage mechanical compressor. A main advantage to this type of system is that the existing low pressure oxygen supply infrastructure can be used as the source of cabin oxygen. ISS has two water electrolysis systems that deliver low pressure oxygen to the cabin, as well as chlorate candles and compressed gas tanks on cargo vehicles. Each of these systems can feed low pressure oxygen into the cabin, and any low pressure oxygen source can be used as an on-board source of oxygen. Three different oxygen separator systems were evaluated, and a two stage Pressure Swing Adsorption system was selected for reasons of technical maturity. Two different compressor designs were subjected to long term testing, and the compressor with better life performance and more favorable oxygen safety characteristics was selected. These technologies have been used as the basis of a design for a flight system located in Equipment Lock, and taken to Preliminary Design Review level of maturity. This paper describes the Cabin Air Separator for EVA Oxygen (CASEO) concept, describes the separator and compressor technology trades, highlights key technology risks, and describes the flight hardware concept as presented at Preliminary Design Review (PDR)

  6. 78 FR 52848 - Occupational Safety and Health Standards for Aircraft Cabin Crewmembers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... conditions of aircraft cabin crew while they are onboard aircraft in operation. DATES: This action becomes... the working conditions of aircraft cabin crewmembers while they are onboard aircraft in operation... enforcement onboard the aircraft. The FAA agrees with the proposed recommendation. Specific procedures...

  7. Calibration of the Ogawa passive ozone sampler for aircraft cabins

    NASA Astrophysics Data System (ADS)

    Bhangar, Seema; Singer, Brett C.; Nazaroff, William W.

    2013-02-01

    Elevated ozone levels in aircraft cabins would pose a health hazard to exposed passengers and crew. The Ogawa passive sampler is a potentially useful tool for measuring in-cabin ozone levels. Accurate interpretation of measured values requires knowing the effective collection rate of the sampler. To calibrate the passive sampler for the aircraft-cabin environment, ozone was measured simultaneously with an Ogawa sampler and an active ozone analyzer that served as a transfer standard, on 11 commercial passenger flights, during Feb-Apr 2007. An empirical pressure-independent effective collection rate that can be used to convert nitrate mass to ozone mixing ratio was determined to be 14.3 ± 0.9 atm cm3 min-1 (mean ± standard error). This value is similar to estimates from other applications where airflow rates are low, such as in personal monitoring and in chamber studies. This study represents the first field calibration of any passive sampler for the aircraft cabin environment.

  8. Modeling flight attendants' exposures to pesticide in disinsected aircraft cabins.

    PubMed

    Zhang, Yong; Isukapalli, Sastry; Georgopoulos, Panos; Weisel, Clifford

    2013-12-17

    Aircraft cabin disinsection is required by some countries to kill insects that may pose risks to public health and native ecological systems. A probabilistic model has been developed by considering the microenvironmental dynamics of the pesticide in conjunction with the activity patterns of flight attendants, to assess their exposures and risks to pesticide in disinsected aircraft cabins under three scenarios of pesticide application. Main processes considered in the model are microenvironmental transport and deposition, volatilization, and transfer of pesticide when passengers and flight attendants come in contact with the cabin surfaces. The simulated pesticide airborne mass concentration and surface mass loadings captured measured ranges reported in the literature. The medians (means ± standard devitions) of daily total exposure intakes were 0.24 (3.8 ± 10.0), 1.4 (4.2 ± 5.7), and 0.15 (2.1 ± 3.2) μg day(-1) kg(-1) of body weight for scenarios of residual application, preflight, and top-of-descent spraying, respectively. Exposure estimates were sensitive to parameters corresponding to pesticide deposition, body surface area and weight, surface-to-body transfer efficiencies, and efficiency of adherence to skin. Preflight spray posed 2.0 and 3.1 times higher pesticide exposure risk levels for flight attendants in disinsected aircraft cabins than top-of-descent spray and residual application, respectively.

  9. Aircraft cabin noise prediction and optimization

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.

    1985-01-01

    Theoretical and experimental studies were conducted to determine the noise transmission into acoustic enclosures ranging from simple rectangular box models to full scale light aircraft in flight. The structural models include simple, stiffened, curved stiffened, and orthotropic panels and double wall windows. The theoretical solutions were obtained by model analysis. Transfer matrix and finite element procedures were utilized. Good agreement between theory and experiment has been achieved. An efficient acoustic add-on treatment was developed for interior noise control in a twin engine light aircraft.

  10. Ozone-Initiated Chemistry in an Occupied Simulated AircraftCabin

    SciTech Connect

    Weschler, C.J.; Wisthaler, A.; Cowlind, S.; Tamas, G.; Strom-Tejsena, P.; Hodgson, A.T.; Destaillats, H.; Herrington, J.; Zhang,J.; Nazaroff, W.W.

    2007-07-01

    We have used multiple analytical methods to characterize the gas-phase products formed when ozone was added to cabin air during simulated 4-hour flights that were conducted in a reconstructed section of a B-767 aircraft containing human occupants. Two separate groups of 16 females were each exposed to four conditions: low air exchange (4.4 h-1), <2 ppb ozone; low air exchange, 61-64 ppb ozone; high air exchange (8.8 h-1), <2 ppb ozone; and high air exchange, 73-77 ppb ozone. The addition of ozone to the cabin air increased the levels of identified byproducts from {approx}70 to 130 ppb at the lower air exchange rate and from {approx}30 to 70 ppb at the higher air exchange rate. Most of the increase was attributable to acetone, nonanal, decanal, 4-oxopentanal (4-OPA), 6-methyl-5-hepten-2-one (6-MHO), formic acid, and acetic acid, with 0.25-0.30 mol of quantified product volatilized per mol of ozone consumed. Several of these compounds reached levels above their reported odor thresholds. Most byproducts were derived from surface reactions with occupants and their clothing, consistent with the inference that occupants were responsible for the removal of >55% of the ozone in the cabin. The observations made in this study have implications for other indoor settings. Whenever human beings and ozone are simultaneously present, one anticipates production of acetone, nonanal, decanal, 6-MHO, geranyl acetone, and 4-OPA.

  11. Furry pet allergens, fungal DNA and microbial volatile organic compounds (MVOCs) in the commercial aircraft cabin environment.

    PubMed

    Fu, Xi; Lindgren, Torsten; Guo, Moran; Cai, Gui-Hong; Lundgren, Håkan; Norbäck, Dan

    2013-06-01

    There has been concern about the cabin environment in commercial aircraft. We measured cat, dog and horse allergens and fungal DNA in cabin dust and microbial volatile organic compounds (MVOCs) in cabin air. Samples were collected from two European airline companies, one with cabins having textile seats (TSC) and the other with cabins having leather seats (LSC), 9 airplanes from each company. Dust was vacuumed from seats and floors in the flight deck and different parts of the cabin. Cat (Fel d1), dog (Can f1) and horse allergens (Equ cx) were analyzed by ELISA. Five sequences of fungal DNA were analyzed by quantitative PCR. MVOCs were sampled on charcoal tubes in 42 TSC flights, and 17 compounds were analyzed by gas chromatography mass spectrometry (GC-MS) with selective ion monitoring (SIM). MVOC levels were compared with levels in homes from Nordic countries. The weight of dust was 1.8 times larger in TSC cabins as compared to LSC cabins (p < 0.001). In cabins with textile seats, the geometric mean (GM) concentrations of Fel d1, Can f1 and Equ cx were 5359 ng g(-1), 6067 ng g(-1), and 13 703 ng g(-1) (GM) respectively. Levels of Fel d1, Can f1 and Equ cx were 50 times, 27 times and 75 times higher respectively, in TSC cabins as compared to LSC cabins (p < 0.001). GM levels of Aspergillus/Penicillium DNA, Aspergillus versicolor DNA, Stachybotrys chartarum DNA and Streptomyces DNA were all higher in TSC as compared to LSC (p < 0.05). The sum of MVOCs in cabin air (excluding butanols) was 3192 ng m(-3) (GM), 3.7 times higher than in homes (p < 0.001) and 2-methyl-1-butanol and 3-methyl-1-butanol concentrations were 15-17 times higher as compared to homes (p < 0.001). Concentrations of isobutanol, 1-butanol, dimethyldisulfide, 2-hexanone, 2-heptanone, 3-octanone, isobutyl acetate and ethyl-2-methylbutyrate were lower in cabin air as compared to homes (p < 0.05). In conclusion, textile seats are much more contaminated by pet allergens and fungal DNA than leather

  12. Furry pet allergens, fungal DNA and microbial volatile organic compounds (MVOCs) in the commercial aircraft cabin environment.

    PubMed

    Fu, Xi; Lindgren, Torsten; Guo, Moran; Cai, Gui-Hong; Lundgren, Håkan; Norbäck, Dan

    2013-06-01

    There has been concern about the cabin environment in commercial aircraft. We measured cat, dog and horse allergens and fungal DNA in cabin dust and microbial volatile organic compounds (MVOCs) in cabin air. Samples were collected from two European airline companies, one with cabins having textile seats (TSC) and the other with cabins having leather seats (LSC), 9 airplanes from each company. Dust was vacuumed from seats and floors in the flight deck and different parts of the cabin. Cat (Fel d1), dog (Can f1) and horse allergens (Equ cx) were analyzed by ELISA. Five sequences of fungal DNA were analyzed by quantitative PCR. MVOCs were sampled on charcoal tubes in 42 TSC flights, and 17 compounds were analyzed by gas chromatography mass spectrometry (GC-MS) with selective ion monitoring (SIM). MVOC levels were compared with levels in homes from Nordic countries. The weight of dust was 1.8 times larger in TSC cabins as compared to LSC cabins (p < 0.001). In cabins with textile seats, the geometric mean (GM) concentrations of Fel d1, Can f1 and Equ cx were 5359 ng g(-1), 6067 ng g(-1), and 13 703 ng g(-1) (GM) respectively. Levels of Fel d1, Can f1 and Equ cx were 50 times, 27 times and 75 times higher respectively, in TSC cabins as compared to LSC cabins (p < 0.001). GM levels of Aspergillus/Penicillium DNA, Aspergillus versicolor DNA, Stachybotrys chartarum DNA and Streptomyces DNA were all higher in TSC as compared to LSC (p < 0.05). The sum of MVOCs in cabin air (excluding butanols) was 3192 ng m(-3) (GM), 3.7 times higher than in homes (p < 0.001) and 2-methyl-1-butanol and 3-methyl-1-butanol concentrations were 15-17 times higher as compared to homes (p < 0.001). Concentrations of isobutanol, 1-butanol, dimethyldisulfide, 2-hexanone, 2-heptanone, 3-octanone, isobutyl acetate and ethyl-2-methylbutyrate were lower in cabin air as compared to homes (p < 0.05). In conclusion, textile seats are much more contaminated by pet allergens and fungal DNA than leather

  13. Reduced bleed air extraction for DC-10 cabin air conditioning

    NASA Technical Reports Server (NTRS)

    Newman, W. H.; Viele, M. R.; Hrach, F. J.

    1980-01-01

    It is noted that a significant fuel savings can be achieved by reducing bleed air used for cabin air conditioning. Air in the cabin can be recirculated to maintain comfortable ventilation rates but the quality of the air tends to decrease due to entrainment of smoke and odors. Attention is given to a development system designed and fabricated under the NASA Engine Component Improvement Program to define the recirculation limit for the DC-10. It is shown that with the system, a wide range of bleed air reductions and recirculation rates is possible. A goal of 0.8% fuel savings has been achieved which results from a 50% reduction in bleed extraction from the engine.

  14. Quelling Cabin Noise in Turboprop Aircraft via Active Control

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.; Laba, Keith E.; Padula, Sharon L.

    1997-01-01

    Cabin noise in turboprop aircraft causes passenger discomfort, airframe fatigue, and employee scheduling constraints due to OSHA standards for exposure to high levels of noise. The noise levels in the cabins of turboprop aircraft are typically 10 to 30 decibels louder than commercial jet noise levels. However. unlike jet noise the turboprop noise spectrum is dominated by a few low frequency tones. Active structural acoustic control is a method in which the control inputs (used to reduce interior noise) are applied directly to a vibrating structural acoustic system. The control concept modeled in this work is the application of in-plane force inputs to piezoceramic patches bonded to the wall of a vibrating cylinder. The goal is to determine the force inputs and locations for the piezoceramic actuators so that: (1) the interior noise is effectively damped; (2) the level of vibration of the cylinder shell is not increased; and (3) the power requirements needed to drive the actuators are not excessive. Computational experiments for data taken from a computer generated model and from a laboratory test article at NASA Langley Research Center are provided.

  15. UV disinfection system for cabin air

    NASA Astrophysics Data System (ADS)

    Lim, Soojung; Blatchley, Ernest R.

    2009-10-01

    The air of indoor cabin environments is susceptible to contamination by airborne microbial pathogens. A number of air treatment processes are available for inactivation or removal of airborne pathogens; included among these processes is ultraviolet (UV) irradiation. The effectiveness of UV-based processes is known to be determined by the combined effects of UV dose delivery by the reactor and the UV dose-response behavior of the target microbe(s). To date, most UV system designs for air treatment have been based on empirical approaches, often involving crude representations of dose delivery and dose-response behavior. The objective of this research was to illustrate the development of a UV system for disinfection of cabin air based on well-defined methods of reactor and reaction characterization. UV dose-response behavior of a test microorganism was measured using a laboratory (bench-scale) system. Target microorganisms (bacterial spores) were first applied to membrane filters at sub-monolayer coverage. The filters were then transferred to a humidity chamber at fixed relative humidity (RH) and allowed to equilibrate with their surroundings. Microorganisms were then subjected to UV exposure under a collimated beam. The experiment was repeated at RH values ranging from 20% to 100%. UV dose-response behavior was observed to vary with RH. For example, at 100% RH, a UV dose of 20 mJ/cm 2 accomplished 99.7% (2.5 log10 U) of the Bacillus subtilis spore inactivation, whereas 99.94% (3.2 log10 U) inactivation was accomplished at this same UV dose under 20% RH conditions. To determine reactor behavior, UV dose-response behavior was combined with simulated results of computational fluid dynamics (CFD) and radiation intensity field models. This modeling approach allowed estimating the UV dose distribution delivered by the reactor. The advantage of this approach is that simulation of many reactor configurations can be done in a relatively short period of time. Moreover, by

  16. Development and testing of cabin sidewall acoustic resonators for the reduction of cabin tone levels in propfan-powered aircraft

    NASA Technical Reports Server (NTRS)

    Kuntz, H. L.; Gatineau, R. J.; Prydz, R. A.; Balena, F. J.

    1991-01-01

    The use of Helmholtz resonators to increase the sidewall transmission loss (TL) in aircraft cabin sidewalls is evaluated. Development, construction, and test of an aircraft cabin acoustic enclosure, built in support of the Propfan Test Assessment (PTA) program, is described. Laboratory and flight test results are discussed. Resonators (448) were located between the enclosure trim panels and the fuselage shell. In addition, 152 resonators were placed between the enclosure and aircraft floors. The 600 resonators were each tuned to a propfan fundamental blade passage frequency (235 Hz). After flight testing on the PTA aircraft, noise reduction (NR) tests were performed with the enclosure in the Kelly Johnson Research and Development Center Acoustics Laboratory. Broadband and tonal excitations were used in the laboratory. Tonal excitation simulated the propfan flight test excitation. The resonators increase the NR of the cabin walls around the resonance frequency of the resonator array. Increases in NR of up to 11 dB were measured. The effects of flanking, sidewall absorption, cabin absorption, resonator loading of trim panels, and panel vibrations are presented. Resonator and sidewall panel design and test are discussed.

  17. Experimental investigation of airborne contaminant transport by a human wake moving in a ventilated aircraft cabin

    NASA Astrophysics Data System (ADS)

    Poussou, Stephane B.

    The air ventilation system in jetliners provides a comfortable and healthy environment for passengers. Unfortunately, the increase in global air traffic has amplified the risks presented by infectious aerosols or noxious material released during flight. Inside the cabin, air typically flows continuously from overhead outlets into sidewall exhausts in a circular pattern that minimizes secondary flow between adjacent seat rows. However, disturbances frequently introduced by individuals walking along an aisle may alter air distribution, and contribute to spreading of contaminants. Numerical simulation of these convoluted transient flow phenomena is difficult and complex, and experimental assessment of contaminant distribution in real cabins often impractical. A fundamental experimental study was undertaken to examine the transport phenomena, to validate computations and to improve air monitoring systems. A finite moving body was modeled in a 10:1 scale simplified aircraft cabin equipped with ventilation, at a Reynolds number (based on body diameter) of the order of 10,000. An experimental facility was designed and constructed to permit measurements of the ventilation and wake velocity fields using particle image velocimetry (PIV). Contaminant migration was imaged using the planar laser induced fluorescence (PLIF) technique. The effect of ventilation was estimated by comparison with a companion baseline study. Results indicate that the evolution of a downwash predominant behind finite bodies of small aspect ratio is profoundly perturbed by the ventilation flow. The reorganization of vortical structures in the near-wake leads to a shorter longitudinal recirculation region. Furthermore, mixing in the wake is modified and contaminant is observed to convect to higher vertical locations corresponding to seated passenger breathing level.

  18. Experimental Model of Contaminant Transport by a Moving Wake Inside an Aircraft Cabin

    NASA Astrophysics Data System (ADS)

    Poussou, Stephane; Sojka, Paul; Plesniak, Michael

    2008-11-01

    The air cabin environment in jetliners is designed to provide comfortable and healthy conditions for passengers. The air ventilation system produces a recirculating pattern designed to minimize secondary flow between seat rows. However, disturbances are frequently introduced by individuals walking along the aisle and may significantly modify air distribution and quality. Spreading of infectious aerosols or biochemical agents presents potential health hazards. A fundamental study has been undertaken to understand the unsteady transport phenomena, to validate numerical simulations and to improve air monitoring systems. A finite moving body is modeled experimentally in a 10:1 scale simplified aircraft cabin equipped with ventilation, at a Reynolds number (based on body height) of the order of 10,000. Measurements of the ventilation and wake velocity fields are obtained using PIV and PLIF. Results indicate that the evolution of the typical downwash behind the body is profoundly perturbed by the ventilation flow. Furthermore, the interaction between wake and ventilation flow significantly alters scalar contaminant migration.

  19. Magnetic analyses of powders from exhausted cabin air filters

    NASA Astrophysics Data System (ADS)

    Winkler, Aldo; Sagnotti, Leonardo

    2013-04-01

    The automotive cabin air filter is a pleated-paper filter placed in the outside-air intake for the car's passenger compartment. Dirty and saturated cabin air filters significantly reduce the airflow from the outside and introduce particulate matter (PM) and allergens (for example, pollen) into the cabin air stream. Magnetic measurements and analyses have been carried out on powders extracted from exhausted cabin air filters to characterize their magnetic properties and to compare them to those already reported for powders collected from disk brakes, gasoline exhaust pipes and Quercus ilex leaves. This study is also aimed at the identification and quantification of the contribution of the ultrafine fraction, superparamagnetic (SP) at room temperature, to the overall magnetic properties of these powders. This contribution was estimated by interpreting and comparing data from FORCs, isothermal remanent magnetization vs time decay curves, frequency and field dependence of the magnetic susceptibility and out-of-phase susceptibility. The magnetic properties and the distribution of the SP particles are generally homogenous and independent of the brand of the car, of the model of the filter and of its level of usage. The relatively high concentration of magnetic PM trapped in these filters poses relevant questions about the air quality inside a car.

  20. Cabin air quality: indoor pollutants and climate during intercontinental flights with and without tobacco smoking.

    PubMed

    Lindgren, T; Norbäck, D

    2002-12-01

    The aim was to determine cabin air quality and in-flight exposure for cabin attendants of specific pollutants during intercontinental flights. Measurements of air humidity, temperature, carbon dioxide (CO2), respirable particles, ozone (O3), nitrogen dioxide (NO2) and formaldehyde were performed during 26 intercontinental flights with Boeing 767-300 with and without tobacco smoking onboard. The mean temperature in cabin was 22.2 degrees C (range 17.4-26.8 degrees C), and mean relative air humidity was 6% (range 1-27%). The CO2 concentration during cruises was below the recommended limit of 1000 ppm during 96% of measured time. Mean indoor concentration of NO2 and O3, were 14.1 and 19.2 micrograms/m3, with maximum values of 37 and 66 micrograms/m3, respectively. The concentration of formaldehyde was below the detection limit (< 5 micrograms/m3), in most samples (77%), and the maximum value was 15 micrograms/m3. The mean concentration of respirable particles in the rear part of the aircraft (AFT galley area) was much higher (49 micrograms/m3) during smoking as compared with non-smoking conditions (3 micrograms/m3) (P < 0.001), with maximum values of 253 and 7 micrograms/m3. In conclusion, air humidity is very low on intercontinental flights, and the large variation of temperature shows a need for better temperature control. Tobacco smoking onboard leads to a significant pollution of respirable particles, particularly in the rear part of the cabin. The result supports the view that despite the high air exchange rate and efficient air filtration, smoking in commercial aircraft leads to a significant pollution and should be prohibited.

  1. The possible effects on health, comfort and safety of aircraft cabin environments.

    PubMed

    Brown, T P; Shuker, L K; Rushton, L; Warren, F; Stevens, J

    2001-09-01

    A consultation was undertaken to investigate the views and concerns of stakeholders in the aircraft industry about the possible harmful effects on personal health, comfort and safety of aircraft cabin environments. Stakeholders were identified from a variety of sources including Government agencies, the Internet, House of Lords inquiry, and suggestions of interviewees. They represented: aircraft crews, aircraft constructors and engineers, government departments and authorities, holiday/flight companies, insurance companies, non-governmental organisations, occupational health physicians, passenger representatives, and independent researchers and consultants. Eighty-seven were contacted of which 57 were interviewed over the telephone using a semi-structured questionnaire. Their concerns were transcribed into a standard format and analysed qualitatively. Key stakeholders, along with Government officials, were invited to a workshop to discuss and prioritize the issues raised during the interviews. The main concerns expressed by the participants fell into five main areas: deep vein thrombosis, air quality, infection, cosmic radiation, and jet lag and work patterns. In addition, a number of safety concerns were raised as well as comments on the provision of appropriate advice to passengers. It was generally felt that further research was required on each of these subjects, as well as an improvement in the quality, quantity and availability of information provided for passengers prior to boarding a flight.

  2. Microbial assessment of cabin air quality on commercial airliners

    NASA Technical Reports Server (NTRS)

    La Duc, Myron T.; Stuecker, Tara; Bearman, Gregory; Venkateswaran, Kasthuri

    2005-01-01

    The microbial burdens of 69 cabin air samples collected from commercial airliners were assessed via conventional culture-dependent, and molecular-based microbial enumeration assays. Cabin air samples from each of four separate flights aboard two different carriers were collected via air-impingement. Microbial enumeration techniques targeting DNA, ATP, and endotoxin were employed to estimate total microbial burden. The total viable microbial population ranged from 0 to 3.6 x10 4 cells per 100 liters of air, as assessed by the ATP-assay. When these same samples were plated on R2A minimal medium, anywhere from 2% to 80% of these viable populations were cultivable. Five of the 29 samples examined exhibited higher cultivable counts than ATP derived viable counts, perhaps a consequence of the dormant nature (and thus lower concentration of intracellular ATP) of cells inhabiting these air cabin samples. Ribosomal RNA gene sequence analysis showed these samples to consist of a moderately diverse group of bacteria, including human pathogens. Enumeration of ribosomal genes via quantitative-PCR indicated that population densities ranged from 5 x 10 1 ' to IO 7 cells per 100 liters of air. Each of the aforementioned strategies for assessing overall microbial burden has its strengths and weaknesses; this publication serves as a testament to the power of their use in concert.

  3. Ozone Contamination in Aircraft Cabins: Appendix B: Overview papers. Ozone destruction techniques

    NASA Technical Reports Server (NTRS)

    Wilder, R.

    1979-01-01

    Ozone filter test program and ozone instrumentation are presented. Tables on the flight tests, samll scale lab tests, and full scale lab tests were reviewed. Design verification, flammability, vibration, accelerated contamination, life cycle, and cabin air quality are described.

  4. Impact of cabin ozone concentrations on passenger reported symptoms in commercial aircraft.

    PubMed

    Bekö, Gabriel; Allen, Joseph G; Weschler, Charles J; Vallarino, Jose; Spengler, John D

    2015-01-01

    Due to elevated ozone concentrations at high altitudes, the adverse effect of ozone on air quality, human perception and health may be more pronounced in aircraft cabins. The association between ozone and passenger-reported symptoms has not been investigated under real conditions since smoking was banned on aircraft and ozone converters became more common. Indoor environmental parameters were measured at cruising altitude on 83 US domestic and international flights. Passengers completed a questionnaire about symptoms and satisfaction with the indoor air quality. Average ozone concentrations were relatively low (median: 9.5 ppb). On thirteen flights (16%) ozone levels exceeded 60 ppb, while the highest peak level reached 256 ppb for a single flight. The most commonly reported symptoms were dry mouth or lips (26%), dry eyes (22.1%) and nasal stuffiness (18.9%). 46% of passengers reported at least one symptom related to the eyes or mouth. A third of the passengers reported at least one upper respiratory symptom. Using multivariate logistic (individual symptoms) and linear (aggregated continuous symptom variables) regression, ozone was consistently associated with symptoms related to the eyes and certain upper respiratory endpoints. A concentration-response relationship was observed for nasal stuffiness and eye and upper respiratory symptom indicators. Average ozone levels, as opposed to peak concentrations, exhibited slightly weaker associations. Medium and long duration flights were significantly associated with more symptoms compared to short flights. The relationship between ultrafine particles and ozone on flights without meal service was indicative of ozone-initiated chemistry.

  5. Impact of cabin ozone concentrations on passenger reported symptoms in commercial aircraft.

    PubMed

    Bekö, Gabriel; Allen, Joseph G; Weschler, Charles J; Vallarino, Jose; Spengler, John D

    2015-01-01

    Due to elevated ozone concentrations at high altitudes, the adverse effect of ozone on air quality, human perception and health may be more pronounced in aircraft cabins. The association between ozone and passenger-reported symptoms has not been investigated under real conditions since smoking was banned on aircraft and ozone converters became more common. Indoor environmental parameters were measured at cruising altitude on 83 US domestic and international flights. Passengers completed a questionnaire about symptoms and satisfaction with the indoor air quality. Average ozone concentrations were relatively low (median: 9.5 ppb). On thirteen flights (16%) ozone levels exceeded 60 ppb, while the highest peak level reached 256 ppb for a single flight. The most commonly reported symptoms were dry mouth or lips (26%), dry eyes (22.1%) and nasal stuffiness (18.9%). 46% of passengers reported at least one symptom related to the eyes or mouth. A third of the passengers reported at least one upper respiratory symptom. Using multivariate logistic (individual symptoms) and linear (aggregated continuous symptom variables) regression, ozone was consistently associated with symptoms related to the eyes and certain upper respiratory endpoints. A concentration-response relationship was observed for nasal stuffiness and eye and upper respiratory symptom indicators. Average ozone levels, as opposed to peak concentrations, exhibited slightly weaker associations. Medium and long duration flights were significantly associated with more symptoms compared to short flights. The relationship between ultrafine particles and ozone on flights without meal service was indicative of ozone-initiated chemistry. PMID:26011001

  6. Impact of Cabin Ozone Concentrations on Passenger Reported Symptoms in Commercial Aircraft

    PubMed Central

    Bekö, Gabriel; Allen, Joseph G.; Weschler, Charles J.; Vallarino, Jose; Spengler, John D.

    2015-01-01

    Due to elevated ozone concentrations at high altitudes, the adverse effect of ozone on air quality, human perception and health may be more pronounced in aircraft cabins. The association between ozone and passenger-reported symptoms has not been investigated under real conditions since smoking was banned on aircraft and ozone converters became more common. Indoor environmental parameters were measured at cruising altitude on 83 US domestic and international flights. Passengers completed a questionnaire about symptoms and satisfaction with the indoor air quality. Average ozone concentrations were relatively low (median: 9.5 ppb). On thirteen flights (16%) ozone levels exceeded 60 ppb, while the highest peak level reached 256 ppb for a single flight. The most commonly reported symptoms were dry mouth or lips (26%), dry eyes (22.1%) and nasal stuffiness (18.9%). 46% of passengers reported at least one symptom related to the eyes or mouth. A third of the passengers reported at least one upper respiratory symptom. Using multivariate logistic (individual symptoms) and linear (aggregated continuous symptom variables) regression, ozone was consistently associated with symptoms related to the eyes and certain upper respiratory endpoints. A concentration-response relationship was observed for nasal stuffiness and eye and upper respiratory symptom indicators. Average ozone levels, as opposed to peak concentrations, exhibited slightly weaker associations. Medium and long duration flights were significantly associated with more symptoms compared to short flights. The relationship between ultrafine particles and ozone on flights without meal service was indicative of ozone-initiated chemistry. PMID:26011001

  7. Optimum Noise Reduction Methods for the Interior of Vehicles and Aircraft Cabins

    NASA Astrophysics Data System (ADS)

    Tavossi, Ph. D., Hasson M.

    The most effective methods of noise reduction in vehicles and Aircraft cabins are investigated. The first goal is to determine the optimal means of noise mitigation without change in external shape of the vehicle, or aircraft cabin exterior such as jet engine or fuselage design, with no significant added weight. The second goal is to arrive at interior designs that can be retrofitted to the existing interiors, to reduce overall noise level for the passengers. The physical phenomena considered are; relaxation oscillations, forced vibrations with non-linear damping and sub-harmonic resonances. The negative and positive damping coefficients and active noise cancelations methods are discussed. From noise power-spectrum for a prototype experimental setup, the most energetic vibration modes are determined, that require the highest damping. The proposed technique will utilize the arrangement of uniformly distributed open Helmholtz resonators, with sound absorbing surface. They are tuned to the frequencies that correspond to the most energetic noise levels. The resonators dissipate noise energy inside the vehicle, or aircraft cabin, at the peak frequencies of the noise spectrum, determined for different vehicle or aircraft cabin, interior design models.

  8. Ozone Contamination in Aircraft Cabins. Appendix B: Overview papers. In-flight measurements

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.

    1979-01-01

    The NASA Global Atmospheric Sampling Program ozone measurements were obtained to establish to characteristics of the ambient ozone concentration during routine operations and to determine the attenuation of ambient concentrations of cabin air systems from simultaneous ambient and in cabin measurements. The characteristics of ambient ozone include: (1) maximum concentration; (2) duration of ozone encounters; (3) frequency of ozone during a flight; (4) variability of ozone during a flight; (5) in relation to routes, altitude, and meteorological conditions.

  9. Flight investigation of cabin noise control treatments for a light turboprop aircraft

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Oneal, R. L.; Mixson, J. S.

    1985-01-01

    The in-flight evaluation of noise control treatments for a light, twin-engined turboprop aircraft presents several problems associated with data analysis and interpretation. These problems include data repeatability, propeller synchronization, spatial distributions of the exterior pressure field and acoustic treatment, and the presence of flanking paths. They are discussed here with regard to a specific aeroplane configuration. Measurements were made in an untreated cabin and in a cabin fitted with an experimental sidewall treatment. Results are presented in terms of the insertion loss provided by the treatment and comparison made with predictions based on laboratory measurements.

  10. Laboratory test and acoustic analysis of cabin treatment for propfan test assessment aircraft

    NASA Technical Reports Server (NTRS)

    Kuntz, H. L.; Gatineau, R. J.

    1991-01-01

    An aircraft cabin acoustic enclosure, built in support of the Propfan Test Assessment (PTA) program, is described. Helmholtz resonators were attached to the cabin trim panels to increase the sidewall transmission loss (TL). Resonators (448) were located between the trim panels and fuselage shell. In addition, 152 resonators were placed between the enclosure and aircraft floors. The 600 resonators were each tuned to a 235 Hz resonance frequency. After flight testing on the PTA aircraft, the enclosure was tested in the Kelly Johnson R and D Center Acoustics Lab. Laboratory noise reduction (NR) test results are discussed. The enclosure was placed in a Gulfstream 2 fuselage section. Broadband (138 dB overall SPL) and tonal (149 dB overall SPL) excitations were used in the lab. Tonal excitation simulated the propfan flight test excitation. The fundamental tone was stepped in 2 Hz intervals from 225 through 245 Hz. The resonators increase the NR of the cabin walls around the resonance frequency of the resonator array. The effects of flanking, sidewall absorption, cabin adsorption, resonator loading of trim panels, and panel vibrations are presented. Increases in NR of up to 11 dB were measured.

  11. UV Disinfection System for Cabin Air

    NASA Astrophysics Data System (ADS)

    Lim, Soojung

    Ultraviolet (UV) radiation is commonly used for disinfection of water. As a result of advancements made in the last 10-15 years, the analysis and design of UV disinfection systems for water is well developed. UV disinfection is also used for disinfection of air; however, despite the fact the UV-air systems have a longer record of application than UV-water systems, the methods used to analyze and design UV-air disinfection systems remain quite empirical. It is well-established that the effectiveness of UV-air systems is strongly affected by the type of microorganisms, the irradiation level/type (lamp power and wavelength), duration of irradiation (exposure time), air movement pattern (mixing degree), and relative humidity. This paper will describe ongoing efforts to evaluate, design and test a UV-air system based on first principles. Specific issues to be addressed in this work will include laboratory measurements of relevant kinetics (i.e., UV dose-response behavior) and numerical simulations designed to represent fluid mechanics and the radiation intensity field. UV dose-response behavior of test microorganism was measured using a laboratory (bench-scale) system. Target microorganisms (e.g., bacterial spores) were first applied to membrane filters at sub-monolayer coverage. The filters were then transferred to an environmental chamber at fixed relative humidity (RH) and allowed to equilibrate with their surroundings. Microorganisms were then subjected to UV exposure under a collimated beam. The experiment was repeated at RH values ranging from 20% to 100%. UV dose-response behavior was observed to vary with RH. For example, at 100% RH, a UV dose of 20 mJ/cm2 accomplished 90% (1 log10 units) of the B. subtilis spore inactivation, whereas 99 % (2 log10 units) inactivation was accomplished at this same UV dose under 20% RH conditions. However, at higher doses, the result was opposite of that in low dose. Reactor behavior is simulated using an integrated application

  12. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    Forty-one annotated abstracts of reports generated at MIT and the University of Sheffield are presented along with summaries of the technical projects undertaken. Work completed includes: (1) an analysis of the soot formation and oxidation rates in gas turbine combustors, (2) modelling the nitric oxide formation process in gas turbine combustors, (3) a study of the mechanisms causing high carbon monoxide emissions from gas turbines at low power, (4) an analysis of the dispersion of pollutants from aircraft both around large airports and from the wakes of subsonic and supersonic aircraft, (5) a study of the combustion and flow characteristics of the swirl can modular combustor and the development and verification of NO sub x and CO emissions models, (6) an analysis of the influence of fuel atomizer characteristics on the fuel-air mixing process in liquid fuel spray flames, and (7) the development of models which predict the stability limits of fully and partially premixed fuel-air mixtures.

  13. Theoretical design of acoustic treatment for cabin noise control of a light aircraft

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Mixson, J. S.

    1984-01-01

    An analytical procedure has been used to design an acoustic treatment for cabin noise control of a light aircraft. Using this approach acoustic add-on treatments capable of reducing the average noise levels in the cabin by about 17 dB from the untreated condition are developed. The added weight of the noise control package is about 2 percent of the total gross take-off weight of the aircraft. The analytical model uses modal solutions wherein the structural modes of the sidewall and the acoustic modes of the receiving space are accounted for. The additional noise losses due to add-on treatments are calculated by the impedance transfer method. The input noise spectral levels are selected utilizing experimental flight data. The add-on treatments considered for cabin noise control include aluminum honeycomb panels, constrained layer damping tape, porous acoustic materials, noise barriers and limp trim panels. To reduce the noise transmitted through the double wall aircraft windows to acceptable levels, changes in the design of the aircraft window are recommended.

  14. Cabin Air Quality Dynamics On Board the International Space Station

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Peterson, B. V.

    2003-01-01

    Spacecraft cabin air quality is influenced by a variety of factors. Beyond normal equipment offgassing and crew metabolic loads, the vehicle s operational configuration contributes significantly to overall air quality. Leaks from system equipment and payload facilities, operational status of the atmospheric scrubbing systems, and the introduction of new equipment and modules to the vehicle all influence air quality. The dynamics associated with changes in the International Space Station's (ISS) configuration since the launch of the U.S. Segment s laboratory module, Destiny, is summarized. Key classes of trace chemical contaminants that are important to crew health and equipment performance are emphasized. The temporary effects associated with attaching each multi-purpose logistics module (MPLM) to the ISS and influence of in-flight air quality on the post-flight ground processing of the MPLM are explored.

  15. Predictive Techniques for Spacecraft Cabin Air Quality Control

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Cromes, Scott D. (Technical Monitor)

    2001-01-01

    As assembly of the International Space Station (ISS) proceeds, predictive techniques are used to determine the best approach for handling a variety of cabin air quality challenges. These techniques use equipment offgassing data collected from each ISS module before flight to characterize the trace chemical contaminant load. Combined with crew metabolic loads, these data serve as input to a predictive model for assessing the capability of the onboard atmosphere revitalization systems to handle the overall trace contaminant load as station assembly progresses. The techniques for predicting in-flight air quality are summarized along with results from early ISS mission analyses. Results from groundbased analyses of in-flight air quality samples are compared to the predictions to demonstrate the technique's relative conservatism.

  16. Speech intelligibility and speech quality of modified loudspeaker announcements examined in a simulated aircraft cabin.

    PubMed

    Pennig, Sibylle; Quehl, Julia; Wittkowski, Martin

    2014-01-01

    Acoustic modifications of loudspeaker announcements were investigated in a simulated aircraft cabin to improve passengers' speech intelligibility and quality of communication in this specific setting. Four experiments with 278 participants in total were conducted in an acoustic laboratory using a standardised speech test and subjective rating scales. In experiments 1 and 2 the sound pressure level (SPL) of the announcements was varied (ranging from 70 to 85 dB(A)). Experiments 3 and 4 focused on frequency modification (octave bands) of the announcements. All studies used a background noise with the same SPL (74 dB(A)), but recorded at different seat positions in the aircraft cabin (front, rear). The results quantify speech intelligibility improvements with increasing signal-to-noise ratio and amplification of particular octave bands, especially the 2 kHz and the 4 kHz band. Thus, loudspeaker power in an aircraft cabin can be reduced by using appropriate filter settings in the loudspeaker system. PMID:25183056

  17. Speech intelligibility and speech quality of modified loudspeaker announcements examined in a simulated aircraft cabin.

    PubMed

    Pennig, Sibylle; Quehl, Julia; Wittkowski, Martin

    2014-01-01

    Acoustic modifications of loudspeaker announcements were investigated in a simulated aircraft cabin to improve passengers' speech intelligibility and quality of communication in this specific setting. Four experiments with 278 participants in total were conducted in an acoustic laboratory using a standardised speech test and subjective rating scales. In experiments 1 and 2 the sound pressure level (SPL) of the announcements was varied (ranging from 70 to 85 dB(A)). Experiments 3 and 4 focused on frequency modification (octave bands) of the announcements. All studies used a background noise with the same SPL (74 dB(A)), but recorded at different seat positions in the aircraft cabin (front, rear). The results quantify speech intelligibility improvements with increasing signal-to-noise ratio and amplification of particular octave bands, especially the 2 kHz and the 4 kHz band. Thus, loudspeaker power in an aircraft cabin can be reduced by using appropriate filter settings in the loudspeaker system.

  18. Cabin Noise Control for Twin Engine General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Slazak, M.

    1982-01-01

    An analytical model based on modal analysis was developed to predict the noise transmission into a twin-engine light aircraft. The model was applied to optimize the interior noise to an A-weighted level of 85 dBA. To achieve the required noise attenuation, add-on treatments in the form of honeycomb panels, damping tapes, acoustic blankets, septum barriers and limp trim panels were added to the existing structure. The added weight of the noise control treatment is about 1.1 percent of the total gross take-off weight of the aircraft.

  19. Wireless Local Area Network Performance Inside Aircraft Passenger Cabins

    NASA Technical Reports Server (NTRS)

    Whetten, Frank L.; Soroker, Andrew; Whetten, Dennis A.; Whetten, Frank L.; Beggs, John H.

    2005-01-01

    An examination of IEEE 802.11 wireless network performance within an aircraft fuselage is performed. This examination measured the propagated RF power along the length of the fuselage, and the associated network performance: the link speed, total throughput, and packet losses and errors. A total of four airplanes: one single-aisle and three twin-aisle airplanes were tested with 802.11a, 802.11b, and 802.11g networks.

  20. Determination of On-Orbit Cabin Air Loss from the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Williams, David E.; Leonard, Daniel J.; Smith, Patrick J.

    2004-01-01

    The International Space Station (ISS) loses cabin atmosphere mass at some rate. Due to oxygen partial pressures fluctuations from metabolic usage, the total pressure is not a good data source for tracking total pressure loss. Using the nitrogen partial pressure is a good data source to determine the total on-orbit cabin atmosphere loss from the ISS, due to no nitrogen addition or losses. There are several important reasons to know the daily average cabin air loss of the ISS including logistics planning for nitrogen and oxygen. The total average daily cabin atmosphere loss was estimated from January 14 to April 9 of 2003. The total average daily cabin atmosphere loss includes structural leakages, Vozdukh losses, Carbon Dioxide Removal Assembly (CDRA) losses, and other component losses. The total average daily cabin atmosphere loss does not include mass lost during Extra-Vehicular Activities (EVAs), Progress dockings, Space Shuttle dockings, calibrations, or other specific one-time events.

  1. A composite system approach to aircraft cabin fire safety

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Gilwee, W. J., Jr.; Lerner, N. R.; Hilado, C. J.; Labossiere, L. A.; Hsu, M. T. S.

    1976-01-01

    The thermochemical and flammability characteristics of two polymeric composites currently in use and seven others being considered for use as aircraft interior panels are described. The properties studied included: (1) limiting oxygen index of the composite constituents; (2) fire containment capability of the composite; (3) smoke evolution from the composite; (4) thermogravimetric analysis; (5) composition of the volatile products of thermal degradation; and (6) relative toxicity of the volatile products of pyrolysis. The performance of high temperature laminating resins such as bismaleimides is compared with the performance of phenolics and epoxies. The relationship of increased fire safety with the use of polymers with high anaerobic char yield is shown. Processing parameters of one of the baremaleimide composites are detailed.

  2. Characteristics of cabin air quality in school buses in Central Texas

    NASA Astrophysics Data System (ADS)

    Rim, Donghyun; Siegel, Jeffrey; Spinhirne, Jarett; Webb, Alba; McDonald-Buller, Elena

    This study assessed in-cabin concentrations of diesel-associated air pollutants in six school buses with diesel engines during a typical route in suburban Austin, Texas. Air exchange rates measured by SF 6 decay were 2.60-4.55 h -1. In-cabin concentrations of all pollutants measured exhibited substantial variability across the range of tests even between buses of similar age, mileage, and engine type. In-cabin NO x concentrations ranged from 44.7 to 148 ppb and were 1.3-10 times higher than roadway NO x concentrations. Mean in-cabin PM 2.5 concentrations were 7-20 μg m -3 and were generally lower than roadway levels. In-cabin concentrations exhibited higher variability during cruising mode than frequent stops. Mean in-cabin ultrafine PM number concentrations were 6100-32,000 particles cm -3 and were generally lower than roadway levels. Comparison of median concentrations indicated that in-cabin ultrafine PM number concentrations were higher than or approximately the same as the roadway concentrations, which implied that, by excluding the bias caused by local traffic, ultrafine PM levels were higher in the bus cabin than outside of the bus. Cabin pollutant concentrations on three buses were measured prior to and following the phased installation of a Donaldson Spiracle Crankcase Filtration System and a Diesel Oxidation Catalyst. Following installation of the Spiracle, the Diesel Oxidation Catalyst provided negligible or small additional reductions of in-cabin pollutant levels. In-cabin concentration decreases with the Spiracle alone ranged from 24 to 37% for NO x and 26 to 62% and 6.6 to 43% for PM 2.5 and ultrafine PM, respectively. Comparison of the ranges of PM 2.5 and ultrafine PM variations between repetitive tests suggested that retrofit installation could not always be conclusively linked to the decrease of pollutant levels in the bus cabin.

  3. Loss of cabin pressure in Canadian Forces ejection seat aircraft, 1962-1982.

    PubMed

    Brooks, C J

    1984-12-01

    A review of all aircraft accidents and incidents in the Canadian Forces over the last 20 years (1962-1982) has been carried out. There have been 47 cases of serious loss of cabin pressurization in ejection seat equipped aircraft. Altitudes varied from 15,000 to 54,000 ft (4,572-16,459 m). No one aircraft appears to be more vulnerable. The most common cause was problems with the canopy seal (25%). There were three cases of hypoxia and two cases of decompression sickness. No deaths or permanent injuries occurred. Loss of pressurization is an extremely low, but definite risk to the pilot and aeromedical training with practical demonstration in the hypobaric chamber should continue. PMID:6517823

  4. Ozone Contamination in Aircraft Cabins. Appendix A: Ozone toxicity

    NASA Technical Reports Server (NTRS)

    Melton, C. E.

    1979-01-01

    The recommendation that at various altitudes the amount of air with which ozone has mixed changes, thus changing the volume per volume relationship is discussed. The biological effects of ozone on human health and the amount of ozone necessary to produce symptoms were investigated.

  5. Cabin Air Quality On Board Mir and the International Space Station: A Comparison

    NASA Technical Reports Server (NTRS)

    Macatangay, Ariel; Perry, Jay L.

    2007-01-01

    The maintenance of the cabin atmosphere aboard spacecraft is critical not only to its habitability but also to its function. Ideally, air quality can be maintained by striking a proper balance between the generation and removal of contaminants. Both very dynamic processes, the balance between generation and removal can be difficult to maintain and control because the state of the cabin atmosphere is in constant evolution responding to different perturbations. Typically, maintaining a clean cabin environment on board crewed spacecraft and space habitats is the central function of the environmental control and life support (ECLS) system. While active air quality control equipment is deployed on board every vehicle to remove carbon dioxide, water vapor, and trace chemical components from the cabin atmosphere, perturbations associated with logistics, vehicle construction and maintenance, and ECLS system configuration influence the resulting cabin atmospheric quality. The air-quality data obtained from the International Space Station (ISS) and NASA-Mir programs provides a wealth of information regarding the maintenance of the cabin atmosphere aboard long-lived space habitats. A comparison of the composition of the trace chemical contaminant load is presented. Correlations between ground-based and in-flight operations that influence cabin atmospheric quality are identified and discussed, and observations on cabin atmospheric quality during the NASA-Mir expeditions and the International Space Station are explored.

  6. Corrosion protection of aerospace grade magnesium alloy Elektron 43(TM) for use in aircraft cabin interiors

    NASA Astrophysics Data System (ADS)

    Baillio, Sarah S.

    Magnesium alloys exhibit desirable properties for use in transportation technology. In particular, the low density and high specific strength of these alloys is of interest to the aerospace community. However, the concerns of flammability and susceptibility to corrosion have limited the use of magnesium alloys within the aircraft cabin. This work studies a magnesium alloy containing rare earth elements designed to increase resistance to ignition while lowering rate of corrosion. The microstructure of the alloy was documented using scanning electron microscopy. Specimens underwent salt spray testing and the corrosion products were examined using energy dispersive spectroscopy.

  7. Full-scale aircraft cabin flammability tests of improved fire-resistant materials

    NASA Technical Reports Server (NTRS)

    Stuckey, R. N.; Surpkis, D. E.; Price, L. J.

    1974-01-01

    Full-scale aircraft cabin flammability tests to evaluate the effectiveness of new fire-resistant materials by comparing their burning characteristics with those of older aircraft materials are described. Three tests were conducted and are detailed. Test 1, using pre-1968 materials, was run to correlate the procedures and to compare the results with previous tests by other organizations. Test 2 included newer, improved fire-resistant materials. Test 3 was essentially a duplicate of test 2, but a smokeless fuel was used. Test objectives, methods, materials, and results are presented and discussed. Results indicate that the pre-1968 materials ignited easily, allowed the fire to spread, produced large amounts of smoke and toxic combustion products, and resulted in a flash fire and major fire damage. The newer fire-resistant materials did not allow the fire to spread. Furthermore, they produced less, lower concentrations of toxic combustion products, and lower temperatures. The newer materials did not produce a flash fire.

  8. Experimental investigation of thermal comfort and air quality in an automobile cabin during the cooling period

    NASA Astrophysics Data System (ADS)

    Kilic, M.; Akyol, S. M.

    2012-08-01

    The air quality and thermal comfort strongly influenced by the heat and mass transfer take place together in an automobile cabin. In this study, it is aimed to investigate and assess the effects of air intake settings (recirculation and fresh air) on the thermal comfort, air quality satisfaction and energy usage during the cooling period of an automobile cabin. For this purpose, measurements (temperature, air velocity, CO2) were performed at various locations inside the cabin. Furthermore, whole body and local responses of the human subjects were noted while skin temperatures were measured. A mathematical model was arranged in order to estimate CO2 concentration and energy usage inside the vehicle cabin and verified with experimental data. It is shown that CO2 level inside of the cabin can be greater than the threshold value recommended for the driving safety if two and more occupants exist in the car. It is also shown that an advanced climate control system may satisfy the requirements for the air quality and thermal comfort as well as to reduce the energy usage for the cooling of a vehicle cabin.

  9. Determination of tricresyl phosphate air contamination in aircraft.

    PubMed

    Denola, G; Hanhela, P J; Mazurek, W

    2011-08-01

    Monitoring of tricresyl phosphate (TCP) contamination of cockpit air was undertaken in three types of military aircraft [fighter trainer (FT), fighter bomber (FB), and cargo transport (CT) aircraft]. The aircraft had a previous history of pilot complaints about cockpit air contamination suspected to originate from the engine bleed air supply through the entry of aircraft turbine engine oil (ATO) into the engine compressor. Air samples were collected in flight and on the ground during engine runs using sorbent tubes packed with Porapak Q and cellulose filters. A total of 78 air samples were analysed, from 46 different aircraft, and 48 samples were found to be below the limit of detection. Nine incidents of smoke/odour were identified during the study. The concentrations of toxic o-cresyl phosphate isomers were below the level of detection in all samples. The highest total TCP concentration was 51.3 μg m(-3), while most were generally found to be <5 μg m(-3) compared with the 8-h time-weighted average exposure limit of 100 μg m(-3) for tri-o-cresyl phosphate. The highest concentrations were found at high engine power. Although TCP contamination of cabin/cockpit air has been the subject of much concern in aviation, quantitative data are sparse. PMID:21730359

  10. Determination of tricresyl phosphate air contamination in aircraft.

    PubMed

    Denola, G; Hanhela, P J; Mazurek, W

    2011-08-01

    Monitoring of tricresyl phosphate (TCP) contamination of cockpit air was undertaken in three types of military aircraft [fighter trainer (FT), fighter bomber (FB), and cargo transport (CT) aircraft]. The aircraft had a previous history of pilot complaints about cockpit air contamination suspected to originate from the engine bleed air supply through the entry of aircraft turbine engine oil (ATO) into the engine compressor. Air samples were collected in flight and on the ground during engine runs using sorbent tubes packed with Porapak Q and cellulose filters. A total of 78 air samples were analysed, from 46 different aircraft, and 48 samples were found to be below the limit of detection. Nine incidents of smoke/odour were identified during the study. The concentrations of toxic o-cresyl phosphate isomers were below the level of detection in all samples. The highest total TCP concentration was 51.3 μg m(-3), while most were generally found to be <5 μg m(-3) compared with the 8-h time-weighted average exposure limit of 100 μg m(-3) for tri-o-cresyl phosphate. The highest concentrations were found at high engine power. Although TCP contamination of cabin/cockpit air has been the subject of much concern in aviation, quantitative data are sparse.

  11. Transmission loss characteristics of aircraft sidewall systems to control cabin interior noise

    NASA Astrophysics Data System (ADS)

    Yesil, Oktay; Serati, Paul M.; Hofbeck, Eric V.; Glover, Billy M.

    We have explored the possibility of using new, light weight, and acoustically effective materials on aircraft interiors to control noise. The sidewall system elements were evaluated for increased TL in the laboratory. Measured TL for a given configuration, relative to a baseline, was used as an indication of the TL change to be expected for modifications. Test data were in good agreement with the predicted levels. The TL contributions due to all sidewall components were important for interior cabin noise control. Polyimide foam insulation was inferior to fiberglass in the mid-frequency range; however, foam was a better performer at high frequencies. Fiberglass/polyimide foam composite blankets, with less weight, provided noise reductions similar to fiberglass. 'Premium' fiberglass was slightly better performer than the standard fiberglass. Solid fiberglass interior trim panel provided adequate noise performance. Production-type trim attachment design could be improved to control flanking path for sound transmission.

  12. Numerical Modelling and Damage Assessment of Rotary Wing Aircraft Cabin Door Using Continuum Damage Mechanics Model

    NASA Astrophysics Data System (ADS)

    Boyina, Gangadhara Rao T.; Rayavarapu, Vijaya Kumar; Subba Rao, V. V.

    2016-08-01

    The prediction of ultimate strength remains the main challenge in the simulation of the mechanical response of composite structures. This paper examines continuum damage model to predict the strength and size effects for deformation and failure response of polymer composite laminates when subjected to complex state of stress. The paper also considers how the overall results of the exercise can be applied in design applications. The continuum damage model is described and the resulting prediction of size effects are compared against the standard benchmark solutions. The stress analysis for strength prediction of rotary wing aircraft cabin door is carried out. The goal of this study is to extend the proposed continuum damage model such that it can be accurately predict the failure around stress concentration regions. The finite element-based continuum damage mechanics model can be applied to the structures and components of arbitrary configurations where analytical solutions could not be developed.

  13. Development of hybrid particle tracking algorithms and their applications in airflow measurement within an aircraft cabin mock-up

    NASA Astrophysics Data System (ADS)

    Yan, Wei

    Obtaining reliable experimental airflow data within an indoor environment is a challenging task and critical in studying and solving indoor air quality problems. The Hybrid Particle Tracking Velocimetry (HPTV) system is aimed at fulfilling this need. It was developed based on existing Particle Tracking Velocimety (PTV) and Volumetric Particle Tracking Velocimetry (VPTV) techniques. The HPTV system requires three charge-coupled device (CCD) cameras to view the illuminated flow field and capture the trajectories of the seeded particles. By adopting the hybrid spatial matching and object tracking algorithms, this system can acquire the 3-Dimensional velocity components within a large volume with relatively high spatial and temporal resolution. Synthetic images were employed to validate the performance of three components of the system: image processing, camera calibration and 3D velocity reconstruction. These three components are also the main error sources. The accuracy of the whole algorithm was analyzed and discussed through a back projection approach. The results showed that the algorithms performed effectively and accurately. The reconstructed 3D trajectories and streaks agreed well with the simulated streamline of the particles. As an overall testing and application of the system, HPTV was applied to measure the airflow pattern within a full-scale, five-row section of a Boeing 767-300 aircraft cabin mockup. A complete experimental procedure was developed and strictly followed throughout the experiment. Both global flow field at the whole cabin scale and the local flow field at the breathing zone of one passenger were studied. Each test case was also simulated numerically using a commercial computational fluid dynamic (CFD) package. Through comparison between the results from the numerical simulation and the experimental measurement, the potential model validation capability of the system was demonstrated. Possible reasons explaining the difference between

  14. Effects of Cabin Upsets on Adsorption Columns for Air Revitalization

    NASA Technical Reports Server (NTRS)

    LeVan, Douglas

    1999-01-01

    The National Aeronautics and Space Administration (NASA) utilizes adsorption technology as part of contaminant removal systems designed for long term missions. A variety of trace contaminants can be effectively removed from gas streams by adsorption onto activated carbon. An activated carbon adsorption column meets NASA's requirements of a lightweight and efficient means of controlling trace contaminant levels aboard spacecraft and space stations. The activated carbon bed is part of the Trace Contaminant Control System (TCCS) which is utilized to purify the cabin atmosphere. TCCS designs oversize the adsorption columns to account for irregular fluctuations in cabin atmospheric conditions. Variations in the cabin atmosphere include changes in contaminant concentrations, temperature, and relative humidity. Excessively large deviations from typical conditions can result from unusual crew activity, equipment malfunctions, or even fires. The research carried out under this award focussed in detail on the effects of cabin upsets on the performance of activated carbon adsorption columns. Both experiments and modeling were performed with an emphasis on the roll of a change in relative humidity on adsorption of trace contaminants. A flow through fixed-bed apparatus was constructed at the NASA Ames Research Center, and experiments were performed there. Modeling work was performed at the University of Virginia.

  15. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    A series of fundamental problems related to jet engine air pollution and combustion were examined. These include soot formation and oxidation, nitric oxide and carbon monoxide emissions mechanisms, pollutant dispension, flow and combustion characteristics of the NASA swirl can combustor, fuel atomization and fuel-air mixing processes, fuel spray drop velocity and size measurement, ignition and blowout. A summary of this work, and a bibliography of 41 theses and publications which describe this work, with abstracts, is included.

  16. Effects of Cabin Upsets on Adsorption Columns for Air Revitalization

    NASA Technical Reports Server (NTRS)

    LeVan, M. Douglas

    1999-01-01

    The National Aeronautics and Space Administration (NASA) utilizes adsorption technology as part of contaminant removal systems designed for long term missions. A variety of trace contaminants can be effectively removed from gas streams by adsorption onto activated carbon. An activated carbon adsorption column meets NASA's requirements of a lightweight and efficient means of controlling trace contaminant levels aboard spacecraft and space stations. The activated carbon bed is part of the Trace Contaminant Control System (TCCS) which is utilized to purify the cabin atmosphere. TCCS designs oversize the adsorption columns to account for irregular fluctuations in cabin atmospheric conditions. Variations in the cabin atmosphere include changes in contaminant concentrations, temperature, and relative humidity. Excessively large deviations from typical conditions can result from unusual crew activity, equipment malfunctions, or even fires. The research carried out under this award focussed in detail on the effects of cabin upsets on the performance of activated carbon adsorption columns. Both experiments and modeling were performed with an emphasis on the roll of a change in relative humidity on adsorption of trace contaminants. A flow through fixed-bed apparatus was constructed at the NASA Ames Research Center, and experiments were performed there by W. Scot Appel under the direction of Dr. John E. Finn. Modeling work was performed at the University of Virginia and at Vanderbilt University by W. Scot Appel under the direction of M. Douglas LeVan. All three participants collaborated in all of the various phases of the research. The most comprehensive document describing the research is the Ph.D. dissertation of W. Scot Appel. Results have been published in several papers and presented in talks at technical conferences. All documents have been transmitted to Dr. John E. Finn.

  17. The thematic structure of passenger comfort experience and its relationship to the context features in the aircraft cabin.

    PubMed

    Ahmadpour, Naseem; Lindgaard, Gitte; Robert, Jean-Marc; Pownall, Bernard

    2014-01-01

    This paper describes passenger comfort as an experience generated by the cabin interior features. The findings of previous studies are affirmed regarding a set of 22 context features. Passengers experience a certain level of comfort when these features impact their body and elicit subjective perceptions. New findings characterise these perceptions in the form of eight themes and outline their particular eliciting features. Comfort is depicted as a complex construct derived by passengers' perceptions beyond the psychological (i.e. peace of mind) and physical (i.e. physical well-being) aspects, and includes perceptual (e.g. proxemics) and semantic (e.g. association) aspects. The seat was shown to have a focal role in eliciting seven of those themes and impacting comfort through its diverse characteristics. In a subsequent study, a group of aircraft cabin interior designers highlighted the possibility of employing the eight themes and their eliciting features as a framework for design and evaluation of new aircraft interiors.

  18. Opportunities to Reduce Air-Conditioning Loads Through Lower Cabin Soak Temperatures

    SciTech Connect

    Farrington, R.; Cuddy, M.; Keyser, M.; Rugh, J.

    1999-07-12

    Air-conditioning loads can significantly reduce electric vehicle (EV) range and hybrid electric vehicle (HEV) fuel economy. In addition, a new U. S. emissions procedure, called the Supplemental Federal Test Procedure (SFTP), has provided the motivation for reducing the size of vehicle air-conditioning systems in the United States. The SFTP will measure tailpipe emissions with the air-conditioning system operating. If the size of the air-conditioning system is reduced, the cabin soak temperature must also be reduced, with no penalty in terms of passenger thermal comfort. This paper presents the impact of air-conditioning on EV range and HEV fuel economy, and compares the effectiveness of advanced glazing and cabin ventilation. Experimental and modeled results are presented.

  19. First report of Legionella pneumophila in car cabin air filters. Are these a potential exposure pathway for professional drivers?

    PubMed

    Alexandropoulou, Ioanna G; Konstantinidis, Theocharis G; Parasidis, Theodoros A; Nikolaidis, Christos; Panopoulou, Maria; Constantinidis, Theodoros C

    2013-12-01

    Recent findings have identified professional drivers as being at an increased risk of Legionnaires' disease. Our hypothesis was that used car cabin air filters represent a reservoir of Legionella bacteria, and thus a potential pathway for contamination. We analysed used cabin air filters from various types of car. The filters were analysed by culture and by molecular methods. Our findings indicated that almost a third of air filters were colonized with Legionella pneumophila. Here, we present the first finding of Legionella spp. in used car cabin air filters. Further investigations are needed in order to confirm this exposure pathway. The presence of Legionella bacteria in used cabin air filters may have been an unknown source of infection until now.

  20. First report of Legionella pneumophila in car cabin air filters. Are these a potential exposure pathway for professional drivers?

    PubMed

    Alexandropoulou, Ioanna G; Konstantinidis, Theocharis G; Parasidis, Theodoros A; Nikolaidis, Christos; Panopoulou, Maria; Constantinidis, Theodoros C

    2013-12-01

    Recent findings have identified professional drivers as being at an increased risk of Legionnaires' disease. Our hypothesis was that used car cabin air filters represent a reservoir of Legionella bacteria, and thus a potential pathway for contamination. We analysed used cabin air filters from various types of car. The filters were analysed by culture and by molecular methods. Our findings indicated that almost a third of air filters were colonized with Legionella pneumophila. Here, we present the first finding of Legionella spp. in used car cabin air filters. Further investigations are needed in order to confirm this exposure pathway. The presence of Legionella bacteria in used cabin air filters may have been an unknown source of infection until now. PMID:24099652

  1. Influence of cabin conditions on placement and response of contaminant detection sensors in a commercial aircraft.

    PubMed

    Mazumdar, Sagnik; Chen, Qingyan

    2008-01-01

    Potential causalities due to airborne disease transmission and risk of chem-bio terrorism in commercial airliner cabins can be reduced by fast responses. Fast responses are only possible by using sensors at appropriate locations in the cabins. Cost, size and weight factors restrict the number of sensors that could be installed inside a cabin. Since release locations and seating patterns of passengers can impact airborne contaminant transports, this study first addressed this impact by using a validated computational fluid dynamics (CFD) program in a four-row mockup of twin-aisle airliner cabin. It was observed that occupancy patterns and release locations have little influence on longitudinal contaminant transports though localized variations of contaminant concentrations may exist. The results show that response time of the sensors is considerably reduced with the increase in number of sensors. If only a single sensor is available across a cabin cross-section then it should be placed at the middle of the ceiling. A cabin model of a fully occupied twin-aisle airliner with 210 seats was also build to study the diverse contaminant distribution trends along cabin length. The results reveal that seating arrangements can make cross-sectional airflow pattern considerably asymmetrical. Similar airflow patterns make the longitudinal contaminant transport in the business and economy classes alike. The presence of galleys greatly affected the longitudinal transport of contaminants in a particular cabin section. The effects due to galleys were less significant if a multipoint sampling system was used. The multipoint sampling system can also reduce the number of sensors required in a cabin.

  2. International Space Station Common Cabin Air Assembly Condensing Heat Exchanger Hydrophilic Coating Failures and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Balistreri, Steven F.; Shaw, Laura A.; Laliberte, Yvon

    2010-01-01

    The ability to control the temperature and humidity of an environment or habitat is critical for human survival. These factors are important to maintaining human health and comfort, as well as maintaining mechanical and electrical equipment in good working order to support the human and to accomplish mission objectives. The temperature and humidity of the International Space Station (ISS) United States On-orbit Segment (USOS) cabin air is controlled by the Common Cabin Air Assembly (CCAA). The CCAA consists of a fan, a condensing heat exchanger (CHX), an air/water separator, temperature and liquid sensors, and electrical controlling hardware and software. The CHX is the primary component responsible for control of temperature and humidity. The CCAA CHX contains a chemical coating that was developed to be hydrophilic and thus attract water from the humid influent air. This attraction forms the basis for water removal and therefore cabin humidity control. However, there have been several instances of CHX coatings becoming hydrophobic and repelling water. When this behavior is observed in an operational CHX, the unit s ability to remove moisture from the air is compromised and the result is liquid water carryover into downstream ducting and systems. This water carryover can have detrimental effects on the cabin atmosphere quality and on the health of downstream hardware. If the water carryover is severe and widespread, this behavior can result in an inability to maintain humidity levels in the USOS. This paper will describe the operation of the five CCAAs within in the USOS, the potential causes of the hydrophobic condition, and the impacts of the resulting water carryover to downstream systems. It will describe the history of this behavior and the actual observed impacts to the ISS USOS. Information on mitigation steps to protect the health of future CHX hydrophilic coatings and potential remediation techniques will also be discussed.

  3. Method of Separating Oxygen From Spacecraft Cabin Air to Enable Extravehicular Activities

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    2013-01-01

    Extravehicular activities (EVAs) require high-pressure, high-purity oxygen. Shuttle EVAs use oxygen that is stored and transported as a cryogenic fluid. EVAs on the International Space Station (ISS) presently use the Shuttle cryo O2, which is transported to the ISS using a transfer hose. The fluid is compressed to elevated pressures and stored as a high-pressure gas. With the retirement of the shuttle, NASA has been searching for ways to deliver oxygen to fill the highpressure oxygen tanks on the ISS. A method was developed using low-pressure oxygen generated onboard the ISS and released into ISS cabin air, filtering the oxygen from ISS cabin air using a pressure swing absorber to generate a low-pressure (high-purity) oxygen stream, compressing the oxygen with a mechanical compressor, and transferring the high-pressure, high-purity oxygen to ISS storage tanks. The pressure swing absorber (PSA) can be either a two-stage device, or a single-stage device, depending on the type of sorbent used. The key is to produce a stream with oxygen purity greater than 99.5 percent. The separator can be a PSA device, or a VPSA device (that uses both vacuum and pressure for the gas separation). The compressor is a multi-stage mechanical compressor. If the gas flow rates are on the order of 5 to 10 lb (.2.3 to 4.6 kg) per day, the compressor can be relatively small [3 16 16 in. (.8 41 41 cm)]. Any spacecraft system, or other remote location that has a supply of lowpressure oxygen, a method of separating oxygen from cabin air, and a method of compressing the enriched oxygen stream, has the possibility of having a regenerable supply of highpressure, high-purity oxygen that is compact, simple, and safe. If cabin air is modified so there is very little argon, the separator can be smaller, simpler, and use less power.

  4. Effect of car speed on amount of air supplied by ventilation system to the space of car cabin

    NASA Astrophysics Data System (ADS)

    Fišer, Jan; Pokorný, Jan

    2014-03-01

    The amount of air supplied by ventilation system (HVAC system) of a car into a cabin is one of the main parameters for the correct simulation and prediction of a car cabin heat load. This amount is not based only on the current setting of the HVAC system, but also on the actual operating conditions and speed of the car. The authors therefore carried out experiments in the cabin of a passenger car in real traffic, while observing the amount of air on the speed of the car and setting of flap in mixing chamber. In a subsequent analysis the authors defined dependence of the airflow rate supplied by HVAC system on the speed of the car. Obtained empirical formulas were then used as a part of the code which calculates the data for the HVAC boundary conditions in the simulation of the car cabin environment.

  5. An Approximate Method of Calculation of Relative Humidity Required to Prevent Frosting on Inside of Aircraft Pressure Cabin Windows, Special Report

    NASA Technical Reports Server (NTRS)

    Jones, Alun R.

    1940-01-01

    This report has been prepare in response to a request for information from an aircraft company. A typical example was selected for the presentation of an approximate method of calculation of the relative humidity required to prevent frosting on the inside of a plastic window in a pressure type cabin on a high speed airplane. The results of the study are reviewed.

  6. Vehicle cabin cooling system for capturing and exhausting heated boundary layer air from inner surfaces of solar heated windows

    DOEpatents

    Farrington, Robert B.; Anderson, Ren

    2001-01-01

    The cabin cooling system includes a cooling duct positioned proximate and above upper edges of one or more windows of a vehicle to exhaust hot air as the air is heated by inner surfaces of the windows and forms thin boundary layers of heated air adjacent the heated windows. The cabin cooling system includes at least one fan to draw the hot air into the cooling duct at a flow rate that captures the hot air in the boundary layer without capturing a significant portion of the cooler cabin interior air and to discharge the hot air at a point outside the vehicle cabin, such as the vehicle trunk. In a preferred embodiment, the cooling duct has a cross-sectional area that gradually increases from a distal point to a proximal point to the fan inlet to develop a substantially uniform pressure drop along the length of the cooling duct. Correspondingly, this cross-sectional configuration develops a uniform suction pressure and uniform flow rate at the upper edge of the window to capture the hot air in the boundary layer adjacent each window.

  7. A Comprehensive Assessment of Biologicals Contained Within Commercial Airliner Cabin Air

    NASA Technical Reports Server (NTRS)

    LaDuc, Myron T.; Osman, Shariff; Dekas, Anne; Stuecker, Tara; Newcombe, Dave; Piceno, Yvette; Fuhrman, J.; Andersen, Gary; Venkateswaran, Kasthuri; Bearman, Greg

    2006-01-01

    Both culture-based and culture-independent, biomarker-targeted microbial enumeration and identification technologies were employed to estimate total microbial and viral burden and diversity within the cabin air of commercial airliners. Samples from each of twenty flights spanning three commercial carriers were collected via air-impingement. When the total viable microbial population was estimated by assaying relative concentrations of the universal energy carrier ATP, values ranged from below detection limits (BDL) to 4.1 x 106 cells/cubic m of air. The total viable microbial population was extremely low in both of Airline A (approximately 10% samples) and C (approximately 18% samples) compared to the samples collected aboard flights on Airline A and B (approximately 70% samples). When samples were collected as a function of time over the course of flights, a gradual accumulation of microbes was observed from the time of passenger boarding through mid-flight, followed by a sharp decline in microbial abundance and viability from the initiation of descent through landing. It is concluded in this study that only 10% of the viable microbes of the cabin air were cultivable and suggested a need to employ state-of-the art molecular assay that measures both cultivable and viable-but-non-cultivable microbes. Among the cultivable bacteria, colonies of Acinetobacter sp. were by far the most profuse in Phase I, and Gram-positive bacteria of the genera Staphylococcus and Bacillus were the most abundant during Phase II. The isolation of the human pathogens Acinetobacter johnsonii, A. calcoaceticus, Janibacter melonis, Microbacterium trichotecenolyticum, Massilia timonae, Staphylococcus saprophyticus, Corynebacterium lipophiloflavum is concerning, as these bacteria can cause meningitis, septicemia, and a handful of sometimes fatal diseases and infections. Molecular microbial community analyses exhibited presence of the alpha-, beta-, gamma-, and delta- proteobacteria, as well as

  8. Spacecraft Cabin Air Quality Control and Its Application to Tight Buildings

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Graf, J. C.

    1995-01-01

    Air quality is an important consideration not only for the external environment, but also for the indoor environment. Most people spend a majority of their lives indoors and the air that they breathe is important to their physical and emotional well being. Since most modern building designs have focused on energy efficiency, less fresh air is brought from the outside. As a result, pollutants from building materials, furniture, cleaning, and cooking have no place to go. To make matters worse, most ventilation systems do not include any means for removing pollutants from the recycled air. Unfortunately, pollution at even a small level can result in eye, throat, and lung irritation in addition to chronic headaches, nausea, and fatigue. A spacecraft cabin, which represents the worst case in tight building design, requires special consideration of air quality since any effects pollutants may have on a crewmember can potentially place a mission or other crewmembers at risk. A detailed approach has been developed by the National Aeronautics and Space Administration (NASA) to minimize cabin atmosphere pollution and provide the crew with an environment which is as free of pollutants as possible. This approach is a combination of passive and active contamination control concepts involving the evaluation and selection of materials to be used onboard the spacecraft, the establishment of air quality standards to ensure crew health, and the use of active control means onboard the spacecraft to further ensure an acceptable atmosphere. This approach has allowed NASA to prevent illness by providing crewmembers with a cabin atmosphere which contains pollutant concentrations up to 100 times lower than those specified for terrestrial indoor environments. Standard building construction, however, does not take into account the potentially harmful effects of materials used in the construction process on the health of future occupants and relies primarily on remedial rather than

  9. International Space Station Common Cabin Air Assembly Water Separator On-Orbit Operation, Failure, and Redesign

    NASA Technical Reports Server (NTRS)

    Balistreri, Steven F., Jr.; Shaw, Laura A.; Laliberte, Yvon

    2010-01-01

    The ability to control the temperature and humidity of an environment or habitat is critical for human survival. These factors are important to maintaining human health and comfort, as well as maintaining mechanical and electrical equipment in good working order to support the human and to accomplish mission objectives. The temperature and humidity of the International Space Station (ISS) United States On-orbit Segment (USOS) cabin air is controlled by the Common Cabin Air Assembly (CCAA). The CCAA consists of a fan, a condensing heat exchanger (CHX), an air/water separator, temperature and liquid sensors, and electrical controlling hardware and software. The Water Separator (WS) pulls in air and water from the CHX, and centrifugally separates the mixture, sending the water to the condensate bus and the air back into the CHX outlet airstream. Two distinct early failures of the CCAA Water Separator in the Quest Airlock forced operational changes and brought about the re-design of the Water Separator to improve the useful life via modification kits. The on-orbit operational environment of the Airlock presented challenges that were not foreseen with the original design of the Water Separator. Operational changes were instituted to prolong the life of the third installed WS, while waiting for newly designed Water Separators to be delivered on-orbit. The modification kit design involved several different components of the Water Separator, including the innovative use of a fabrication technique to build the impellers used in Water Separators out of titanium instead of aluminum. The technique allowed for the cost effective production of the low quantity build. This paper will describe the failures of the Water Separators in the Quest Airlock, the operational constraints that were implemented to prolong the life of the installed Water Separators throughout the USOS, and the innovative re-design of the CCAA Water Separator.

  10. Indoor to outdoor air quality associations with self-pollution implications inside passenger car cabins

    NASA Astrophysics Data System (ADS)

    Abi-Esber, L.; El-Fadel, M.

    2013-12-01

    In this study, in-vehicle and out-vehicle concentrations of fine particulate matter (PM2.5) and carbon monoxide (CO) are measured to assess commuter's exposure in a commercial residential area and on a highway, under three popular ventilation modes namely, one window half opened, air conditioning on fresh air intake, and air conditioning on recirculation and examine its relationship to scarcely studied parameters including self pollution, out-vehicle sample intake location and meteorological gradients. Self pollution is the intrusion of a vehicle's own engine fumes into the passenger's compartment. For this purpose, six car makes with different ages were instrumented to concomitantly monitor in- and out-vehicle PM2.5 and CO concentrations as well as meteorological parameters. Air pollution levels were unexpectedly higher in new cars compared to old cars, with in-cabin air quality most correlated to that of out-vehicle air near the front windshield. Self-pollution was observed at variable rates in three of the six tested cars. Significant correlations were identified between indoor to outdoor pressure difference and PM2.5 and CO In/Out (IO) ratios under air recirculation and window half opened ventilation modes whereas temperature and humidity difference affected CO IO ratios only under the air recirculation ventilation mode.

  11. Scorpion: Close Air Support (CAS) aircraft

    NASA Technical Reports Server (NTRS)

    Allen, Chris; Cheng, Rendy; Koehler, Grant; Lyon, Sean; Paguio, Cecilia

    1991-01-01

    The objective is to outline the results of the preliminary design of the Scorpion, a proposed close air support aircraft. The results obtained include complete preliminary analysis of the aircraft in the areas of aerodynamics, structures, avionics and electronics, stability and control, weight and balance, propulsion systems, and costs. A conventional wing, twin jet, twin-tail aircraft was chosen to maximize the desirable characteristics. The Scorpion will feature low speed maneuverability, high survivability, low cost, and low maintenance. The life cycle cost per aircraft will be 17.5 million dollars. The maximum takeoff weight will be 52,760 pounds. Wing loading will be 90 psf. The thrust to weight will be 0.6 lbs/lb. This aircraft meets the specified mission requirements. Some modifications have been suggested to further optimize the design.

  12. Indoor air quality investigation on commercial aircraft.

    PubMed

    Lee, S C; Poon, C S; Li, X D; Luk, F

    1999-09-01

    Sixteen flights had been investigated for indoor air quality (IAQ) on Cathay Pacific aircraft from June 1996 to August 1997. In general, the air quality on Cathay Pacific aircraft was within relevant air quality standards because the average age of aircraft was less than 2 years. Carbon dioxide (CO2) levels on all flights measured were below the Federal Aviation Administration (FAA) standard (30,000 ppm). The CO2 level was substantially higher during boarding and de-boarding than cruise due to low fresh air supply. Humidity on the aircraft was low, especially for long-haul flights. Minimum humidity during cruise was below the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) minimum humidity standard (20%). The average temperature was within a comfortable temperature range of 23 +/- 2 degrees C. The vertical temperature profile on aircraft was uniform and below the International Standard Organization (ISO) standard. Carbon monoxide levels were below the FAA standard (50 ppm). Trace amount of ozone detected ranged from undetectable to 90 ppb, which was below the FAA standard. Particulate level was low for most non-smoking flights, but peaks were observed during boarding and de-boarding. The average particulate level in smoking flights (138 micrograms/m3) was higher than non-smoking flights (7.6 micrograms/m3). The impact on IAQ by switching from low-mode to high-mode ventilation showed a reduction in CO2 levels, temperature, and relative humidity.

  13. 77 FR 72998 - Policy Statement on Occupational Safety and Health Standards for Aircraft Cabin Crewmembers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-07

    ..., 2000 (65 FR 19477-19478), as well as at http://DocketsInfo.dot.gov . Docket: Background documents or... they are onboard aircraft in operation. DATES: Send comments on or before January 7, 2013....

  14. Characterization of the frequency and nature of bleed air contamination events in commercial aircraft.

    PubMed

    Shehadi, M; Jones, B; Hosni, M

    2016-06-01

    Contamination of the bleed air used to pressurize and ventilate aircraft cabins is of concern due to the potential health and safety hazards for passengers and crew. Databases from the Federal Aviation Administration, NASA, and other sources were examined in detail to determine the frequency of bleed air contamination incidents. The frequency was examined on an aircraft model basis with the intent of identifying aircraft make and models with elevated frequencies of contamination events. The reported results herein may help investigators to focus future studies of bleed air contamination incidents on smaller number of aircrafts. Incident frequency was normalized by the number of aircraft, number of flights, and flight hours for each model to account for the large variations in the number of aircraft of different models. The focus of the study was on aircraft models that are currently in service and are used by major airlines in the United States. Incidents examined in this study include those related to smoke, oil odors, fumes, and any symptom that might be related to exposure to such contamination, reported by crew members, between 2007 and 2012, for US-based carriers for domestic flights and all international flights that either originated or terminated in the US. In addition to the reported frequency of incidents for different aircraft models, the analysis attempted to identify propulsion engines and auxiliary power units associated with aircrafts that had higher frequencies of incidents. While substantial variations were found in frequency of incidents, it was found that the contamination events were widely distributed across nearly all common models of aircraft.

  15. Characterization of the frequency and nature of bleed air contamination events in commercial aircraft.

    PubMed

    Shehadi, M; Jones, B; Hosni, M

    2016-06-01

    Contamination of the bleed air used to pressurize and ventilate aircraft cabins is of concern due to the potential health and safety hazards for passengers and crew. Databases from the Federal Aviation Administration, NASA, and other sources were examined in detail to determine the frequency of bleed air contamination incidents. The frequency was examined on an aircraft model basis with the intent of identifying aircraft make and models with elevated frequencies of contamination events. The reported results herein may help investigators to focus future studies of bleed air contamination incidents on smaller number of aircrafts. Incident frequency was normalized by the number of aircraft, number of flights, and flight hours for each model to account for the large variations in the number of aircraft of different models. The focus of the study was on aircraft models that are currently in service and are used by major airlines in the United States. Incidents examined in this study include those related to smoke, oil odors, fumes, and any symptom that might be related to exposure to such contamination, reported by crew members, between 2007 and 2012, for US-based carriers for domestic flights and all international flights that either originated or terminated in the US. In addition to the reported frequency of incidents for different aircraft models, the analysis attempted to identify propulsion engines and auxiliary power units associated with aircrafts that had higher frequencies of incidents. While substantial variations were found in frequency of incidents, it was found that the contamination events were widely distributed across nearly all common models of aircraft. PMID:25864418

  16. [Progress of biological air filter (BAF) development in manned spacecraft cabin].

    PubMed

    Tang, Yong-kang; Guo, Shuang-sheng; Ai, Wei-dang

    2005-06-01

    The contaminants originating from human metabolism, material off-gassing and waste processing, may influence human health and the growth and development of higher plants when they accumulate at some degree in the spacecraft cabin. So the contaminants concentrations must be controlled below the spacecraft maximum allowable concentration (SMAC). For the long manned space missions and planetary habitation, biological technique is available for the removal of the contaminants. The biological air filter, BAF, is a system that degrades the contaminants into carbon dioxide, water and salts. It holds many advantages such as small weight and volume, low power consumption, easy maintenance and good working performance under the condition of microgravity. Its wide application will be seen in the space field in near future.

  17. Full-scale aircraft cabin flammability tests of improved fire-resistant materials, test series 2

    NASA Technical Reports Server (NTRS)

    Stuckey, R. N.; Bricker, R. W.; Kuminecz, J. F.; Supkis, D. E.

    1976-01-01

    Full-scale aircraft flammability tests in which the effectiveness of new fire-resistant materials was evaluated by comparing their burning characteristics with those of other fire-resistant aircraft materials were described. New-fire-resistant materials that are more economical and better suited for aircraft use than the previously tested fire-resistant materials were tested. The fuel ignition source for one test was JP-4; a smokeless fuel was used for the other test. Test objectives, methods, materials, and results are presented and discussed. The results indicate that, similar to the fire-resistant materials tested previously, the new materials decompose rather than ignite and do not support fire propagation. Furthermore, the new materials did not produce a flash fire.

  18. Discussion of "Polybrominated diphenyl ethers in aircraft cabins--a source of human exposure?" by Anna Christiansson et al. [Chemosphere 73(10) (2008) 1654-1660].

    PubMed

    Schecter, Arnold; Colacino, Justin; Haffner, Darrah; Patel, Keyur; Opel, Matthias; Päpke, Olaf

    2010-01-01

    This paper presents new data on the levels of polybrominated diphenyl ethers (PBDEs) in American airline workers. This pilot study did not find elevated total PBDEs in the blood of nine flight attendants and one aircraft pilot who have worked in airplanes for at least the past 5 years. These findings are not consistent with the findings of elevated blood levels of PBDEs from the 2008 Christiansson et al. publication "Polybrominated diphenyl ethers in aircraft cabins - A source of human exposure?" We agree that more research needs to be done on larger, more representative samples of airline workers to better characterize exposure of airline workers and other frequent flyers to PBDEs.

  19. Ozone levels in passenger cabins of commercial aircraft on North American and transoceanic routes.

    PubMed

    Bhangar, Seema; Cowlin, Shannon C; Singer, Brett C; Sextro, Richard G; Nazaroff, William W

    2008-06-01

    Ozone levels in airplane cabins, and factors that influence them, were studied on northern hemisphere commercial passenger flights on domestic U.S., transatlantic, and transpacific routes. Real-time data from 76 flights were collected in 2006--2007 with a battery-powered UV photometric monitor. Sample mean ozone level, peak-hour ozone level, and flight-integrated ozone exposures were highly variable across domestic segments (N = 68), with ranges of < 1.5 to 146 parts per billion by volume (ppbv), 3--275 ppbv, and < 1.5 to 488 ppbv-hour, respectively. On planes equipped with ozone catalysts, the mean peak-hour ozone level (4.7 ppbv, N = 22)was substantially lower than on planes not equipped with catalysts (47 ppbv, N = 46). Peak-hour ozone levels on eight transoceanic flight segments, all on planes equipped with ozone catalysts, were in the range < 1.5 to 65 [corrected] ppbv. Seasonal variation on domestic routes without converters is reasonably modeled by a sinusoidal curve that predicts peak-hour levels to be approximately 70 ppbv higher in Feb--March than in Aug--Sept The temporal trend is broadly consistent with expectations, given the seasonal cycle in tropopause height. Episodically elevated (>100 ppbv) ozone levels on domestic flights were associated with winter-spring storms that are linked to enhanced exchange between the lower stratosphere and the upper troposphere.

  20. Monitoring of Air Quality in Passenger Cabins of the Athens Metro

    NASA Astrophysics Data System (ADS)

    Tsairidi, Evangelia; Assimakopoulos, Vasiliki D.; Assimakopoulos, Margarita-Niki; Barbaresos, Nicolaos; Karagiannis, Athanassios

    2013-04-01

    The air pollution induced by various transportation means combines the emission of pollutants with the simultaneous presence of people. In this respect, the scientific community has focused its efforts in studying both the air quality within busy streets and inside cars, buses and the underground railway network in order to identify the pollutants' sources and levels as well as the human exposure. The impact of the air pollution on commuters of the underground may be more severe because it is a confined space, extended mostly under heavily trafficked urban streets, relies on mechanical ventilation for air renewal and gathers big numbers of passengers. The purpose of the present work is to monitor the air quality of the city of Athens Metro Network cabins and platforms during the unusually hot summer of 2012. For that cause particulate matter (PM10, PM2.5, PM1), carbon dioxide (CO2), the number of commuters along with temperature (T) and humidity (RH) were recorded inside the Athens Metro Blue Line trains (covering a route from the centre of Athens (Aigaleo) to the Athens International Airport) and on the platforms of a central (Syntagma) and a suburban-traffic (Doukissis Plakentias) station between June and August. The data collection included six different experiments that took place for 2 consecutive working days each, for a time period of 6 weeks from 6:30 am too 7:00 pm in order to account for different outdoor climatic conditions and for morning and evening rush hours respectively. Measurements were taken in the middle car of the moving trains and the platform end of the selected stations. The results show PM concentrations to be higher (approximately 2 to 5 times) inside the cabins and o the platforms of the underground network as compared to the outdoor levels monitored routinely by the Ministry of Environment. Moreover, PM1, PM2.5 and PM10 average concentrations recorded at the Syntagma Station Platform were almost constantly higher reaching 11 μg m-3 47

  1. Application of a high-efficiency cabin air filter for simultaneous mitigation of ultrafine particle and carbon dioxide exposures inside passenger vehicles.

    PubMed

    Lee, Eon S; Zhu, Yifang

    2014-02-18

    Modern passenger vehicles are commonly equipped with cabin air filters but their filtration efficiency for ultrafine particle (UFP) is rather low. Although setting the vehicle ventilation system to recirculation (RC) mode can reduce in-cabin UFPs by ∼ 90%, passenger-exhaled carbon dioxide (CO2) can quickly accumulate inside the cabin. Using outdoor air (OA) mode instead can provide sufficient air exchange to prevent CO2 buildup, but in-cabin UFP concentrations would increase. To overcome this dilemma, we developed a simultaneous mitigation method for UFP and CO2 using high-efficiency cabin air (HECA) filtration in OA mode. Concentrations of UFP and other air pollutants were simultaneously monitored in and out of 12 different vehicles under 3 driving conditions: stationary, on local roadways, and on freeways. Under each experimental condition, data were collected with no filter, in-use original equipment manufacturer (OEM) filter, and two types of HECA filters. The HECA filters offered an average in-cabin UFP reduction of 93%, much higher than the OEM filters (∼ 50% on average). Throughout the measurements, the in-cabin CO2 concentration remained in the range of 620-930 ppm, significantly lower than the typical level of 2500-4000 ppm observed in the RC mode. PMID:24471775

  2. From animal cage to aircraft cabin: an overview of evidence translation in jet lag research.

    PubMed

    Atkinson, Greg; Batterham, Alan M; Dowdall, Nigel; Thompson, Andrew; van Drongelen, Alwin

    2014-12-01

    Recent laboratory experiments on rodents have increased our understanding of circadian rhythm mechanisms. Typically, circadian biologists attempt to translate their laboratory-based findings to treatment of jet lag symptoms in humans. We aimed to scrutinise the strength of the various links in the translational pathway from animal model to human traveller. First, we argue that the translation of findings from pre-clinical studies to effective jet lag treatments and knowledge regarding longer-term population health is not robust, e.g. the association between circadian disruption and cancer found in animal models does not translate well to cabin crew and pilots, who have a lower risk of most cancers. Jet lag symptoms are heterogeneous, making the true prevalence and the effects of any intervention difficult to quantify precisely. The mechanistic chain between in vitro and in vivo treatment effects has weak links, especially between circadian rhythm disruption in animals and the improvement of jet lag symptoms in humans. While the number of animal studies has increased exponentially between 1990 and 2014, only 1-2 randomised controlled trials on jet lag treatments are published every year. There is one relevant Cochrane review, in which only 2-4 studies on melatonin, without baseline measures, were meta-analysed. Study effect sizes reduced substantially between 1987, when the first paper on melatonin was published, and 2000. We suggest that knowledge derived from a greater number of human randomised controlled trials would provide a firmer platform for circadian biologists to cite jet lag treatment as an important application of their findings. PMID:25342081

  3. From animal cage to aircraft cabin: an overview of evidence translation in jet lag research.

    PubMed

    Atkinson, Greg; Batterham, Alan M; Dowdall, Nigel; Thompson, Andrew; van Drongelen, Alwin

    2014-12-01

    Recent laboratory experiments on rodents have increased our understanding of circadian rhythm mechanisms. Typically, circadian biologists attempt to translate their laboratory-based findings to treatment of jet lag symptoms in humans. We aimed to scrutinise the strength of the various links in the translational pathway from animal model to human traveller. First, we argue that the translation of findings from pre-clinical studies to effective jet lag treatments and knowledge regarding longer-term population health is not robust, e.g. the association between circadian disruption and cancer found in animal models does not translate well to cabin crew and pilots, who have a lower risk of most cancers. Jet lag symptoms are heterogeneous, making the true prevalence and the effects of any intervention difficult to quantify precisely. The mechanistic chain between in vitro and in vivo treatment effects has weak links, especially between circadian rhythm disruption in animals and the improvement of jet lag symptoms in humans. While the number of animal studies has increased exponentially between 1990 and 2014, only 1-2 randomised controlled trials on jet lag treatments are published every year. There is one relevant Cochrane review, in which only 2-4 studies on melatonin, without baseline measures, were meta-analysed. Study effect sizes reduced substantially between 1987, when the first paper on melatonin was published, and 2000. We suggest that knowledge derived from a greater number of human randomised controlled trials would provide a firmer platform for circadian biologists to cite jet lag treatment as an important application of their findings.

  4. International Space Station Common Cabin Air Assembly Condensing Heat Exchanger Hydrophilic Coating Operation, Recovery, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Balistreri, Steven F.; Steele, John W.; Caron, Mark E.; Laliberte, Yvon J.; Shaw, Laura A.

    2013-01-01

    The ability to control the temperature and humidity of an environment or habitat is critical for human survival. These factors are important to maintaining human health and comfort, as well as maintaining mechanical and electrical equipment in good working order to support the human and to accomplish mission objectives. The temperature and humidity of the International Space Station (ISS) United States On-orbit Segment (USOS) cabin air is controlled by the Common Cabin Air Assembly (CCAA). The CCAA consists of a fan, a condensing heat exchanger (CHX), an air/water separator, temperature and liquid sensors, and electrical controlling hardware and software. The CHX is the primary component responsible for control of temperature and humidity. The CCAA CHX contains a chemical coating that was developed to be hydrophilic and thus attract water from the humid influent air. This attraction forms the basis for water removal and therefore cabin humidity control. However, there have been several instances of CHX coatings becoming hydrophobic and repelling water. When this behavior is observed in an operational CHX in the ISS segments, the unit s ability to remove moisture from the air is compromised and the result is liquid water carryover into downstream ducting and systems. This water carryover can have detrimental effects on the ISS cabin atmosphere quality and on the health of downstream hardware. If the water carryover is severe and widespread, this behavior can result in an inability to maintain humidity levels in the USOS. This paper will describe the operation of the five CCAAs within the USOS, the potential causes of the hydrophobic condition, and the impacts of the resulting water carryover to downstream systems. It will describe the history of this behavior and the actual observed impacts to the ISS USOS. Information on mitigation steps to protect the health of future CHX hydrophilic coatings as well as remediation and recovery of the full heat exchanger will be

  5. Simultaneous measurements of ozone outside and inside cabins of two B-747 airliners and a Gates Learjet business jet

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.; Briel, D.

    1978-01-01

    The average amount of ozone measured in the cabins of two B-747 airliners varied from 40 percent to 80 percent of the atmospheric concentrations without special ozone destruction systems. A charcoal filter in the cabin air inlet system of one B-747 reduced the ozone to about 5 percent of the atmospheric concentration. A Learjet 23 was also instrumented with monitors to measure simultaneously the atmospheric and ozone concentrations. Results indicate that a significant portion of the atmospheric ozone is not destroyed in the pressurization system and remains in the aircraft cabin of the Learjet. For the two cabin configurations tested, the ozone retentions were 63 and 41 percent of the atmospheric ozone concentrations. Ozone concentrations measured in the cabin near the conditioned-air outlets were reduced only slightly from atmospheric ozone concentrations. It is concluded that a constant difference between ozone concentrations inside and outside the cabin does not exist.

  6. Low frequency cabin noise reduction based on the intrinsic structural tuning concept: The theory and the experimental results, phase 2. [jet aircraft noise

    NASA Technical Reports Server (NTRS)

    Sengupta, G.

    1978-01-01

    Low frequency cabin noise and sonically induced stresses in an aircraft fuselage may be reduced by intrinsic tuning of the various structural members such as the skin, stringers, and frames and then applying damping treatments on these members. The concept is also useful in identifying the key structural resonance mechanisms controlling the fuselage response to broadband random excitation and in developing suitable damping treatments for reducing the structural response in various frequency ranges. The mathematical proof of the concept and the results of some laboratory and field tests on a group of skin-stringer panels are described. In the so-called stiffness-controlled region, the noise transmission may actually be controlled by stiffener resonances, depending upon the relationship between the natural frequencies of the skin bay and the stiffeners. Therefore, cabin noise in the stiffness-controlled region may be effectively reduced by applying damping treatments on the stiffeners.

  7. 36 CFR 2.17 - Aircraft and air delivery.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Aircraft and air delivery. 2... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.17 Aircraft and air delivery. (a) The following are prohibited: (1) Operating or using aircraft on lands or waters other than at locations designated pursuant...

  8. 36 CFR 2.17 - Aircraft and air delivery.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Aircraft and air delivery. 2... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.17 Aircraft and air delivery. (a) The following are prohibited: (1) Operating or using aircraft on lands or waters other than at locations designated pursuant...

  9. 36 CFR 2.17 - Aircraft and air delivery.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Aircraft and air delivery. 2... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.17 Aircraft and air delivery. (a) The following are prohibited: (1) Operating or using aircraft on lands or waters other than at locations designated pursuant...

  10. 36 CFR 2.17 - Aircraft and air delivery.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Aircraft and air delivery. 2... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.17 Aircraft and air delivery. (a) The following are prohibited: (1) Operating or using aircraft on lands or waters other than at locations designated pursuant...

  11. Cryocooler for Air Liquefaction Onboard Large Aircraft

    NASA Astrophysics Data System (ADS)

    Breedlove, J. J.; Magari, P. J.; Miller, G. W.

    2008-03-01

    Creare has developed a turbo-Brayton cryocooler for the Air Force that is designed to produce approximately 1 kW of refrigeration at 95 K. The cryocooler is intended to provide cryogenic cooling for an air separation system being developed to produce and store liquid oxygen and liquid nitrogen onboard large aircraft. The oxygen will be used for high-altitude breathing and medical evacuation operations, while the nitrogen will be used to inert the ullage space inside the fuel tanks. The cryocooler utilizes gas bearings in the turbomachines for long life without maintenance, which is a critical requirement for this application. The mass of a flight version of this cryocooler is expected to be around 270 kg, while the input power is expected to be 21 to 25 kW. This paper describes the design and testing of the technology demonstration cryocooler that was constructed to establish the feasibility of the approach. In the future, the cryocooler will be integrated and tested with a distillation column subsystem. Subsequent testing may also be performed in-flight on an Air Force transport aircraft.

  12. Efficiency of automotive cabin air filters to reduce acute health effects of diesel exhaust in human subjects

    PubMed Central

    Rudell, B.; Wass, U.; Horstedt, P.; Levin, J. O.; Lindahl, R.; Rannug, U.; Sunesson, A. L.; Ostberg, Y.; Sandstrom, T.

    1999-01-01

    OBJECTIVES: To evaluate the efficiency of different automotive cabin air filters to prevent penetration of components of diesel exhaust and thereby reduce biomedical effects in human subjects. Filtered air and unfiltered diluted diesel exhaust (DDE) were used as negative and positive controls, respectively, and were compared with exposure to DDE filtered with four different filter systems. METHODS: 32 Healthy non- smoking subjects (age 21-53) participated in the study. Each subject was exposed six times for 1 hour in a specially designed exposure chamber: once to air, once to unfiltered DDE, and once to DDE filtered with the four different cabin air filters. Particle concentrations during exposure to unfiltered DDE were kept at 300 micrograms/m3. Two of the filters were particle filters. The other two were particle filters combined with active charcoal filters that might reduce certain gaseous components. Subjective symptoms were recorded and nasal airway lavage (NAL), acoustic rhinometry, and lung function measurements were performed. RESULTS: The two particle filters decreased the concentrations of diesel exhaust particles by about half, but did not reduce the intensity of symptoms induced by exhaust. The combination of active charcoal filters and a particle filter significantly reduced the symptoms and discomfort caused by the diesel exhaust. The most noticable differences in efficacy between the filters were found in the reduction of detection of an unpleasant smell from the diesel exhaust. In this respect even the two charcoal filter combinations differed significantly. The efficacy to reduce symptoms may depend on the abilities of the filters investigated to reduce certain hydrocarbons. No acute effects on NAL, rhinometry, and lung function variables were found. CONCLUSIONS: This study has shown that the use of active charcoal filters, and a particle filter, clearly reduced the intensity of symptoms induced by diesel exhaust. Complementary studies on vehicle

  13. Manx: Close air support aircraft preliminary design

    NASA Technical Reports Server (NTRS)

    Amy, Annie; Crone, David; Hendrickson, Heidi; Willis, Randy; Silva, Vince

    1991-01-01

    The Manx is a twin engine, twin tailed, single seat close air support design proposal for the 1991 Team Student Design Competition. It blends advanced technologies into a lightweight, high performance design with the following features: High sensitivity (rugged, easily maintained, with night/adverse weather capability); Highly maneuverable (negative static margin, forward swept wing, canard, and advanced avionics result in enhanced aircraft agility); and Highly versatile (design flexibility allows the Manx to contribute to a truly integrated ground team capable of rapid deployment from forward sites).

  14. Development of a Prototype Algal Reactor for Removing CO2 from Cabin Air

    NASA Technical Reports Server (NTRS)

    Patel, Vrajen; Monje, Oscar

    2013-01-01

    Controlling carbon dioxide in spacecraft cabin air may be accomplished using algal photobioreactors (PBRs). The purpose of this project was to evaluate the use of a commercial microcontroller, the Arduino Mega 2560, for measuring key photioreactor variables: dissolved oxygen, pH, temperature, light, and carbon dioxide. The Arduino platform is an opensource physical computing platform composed of a compact microcontroller board and a C++/C computer language (Arduino 1.0.5). The functionality of the Arduino platform can be expanded by the use of numerous add-ons or 'shields'. The Arduino Mega 2560 was equipped with the following shields: datalogger, BNC shield for reading pH sensor, a Mega Moto shield for controlling CO2 addition, as well as multiple sensors. The dissolved oxygen (DO) probe was calibrated using a nitrogen bubbling technique and the pH probe was calibrated via an Omega pH simulator. The PBR was constructed using a 2 L beaker, a 66 L box for addition of CO2, a micro porous membrane, a diaphragm pump, four 25 watt light bulbs, a MasterFiex speed controller, and a fan. The algae (wild type Synechocystis PCC6803) was grown in an aerated flask until the algae was dense enough to used in the main reactor. After the algae was grown, it was transferred to the 2 L beaker where CO2 consumption and O2 production was measured using the microcontroller sensor suite. The data was recorded via the datalogger and transferred to a computer for analysis.

  15. Evaluation of a high efficiency cabin air (HECA) filtration system for reducing particulate pollutants inside school buses.

    PubMed

    Lee, Eon S; Fung, Cha-Chen D; Zhu, Yifang

    2015-03-17

    An increasing number of studies have reported deleterious health effects of vehicle-emitted particulate matter (PM), including PM2.5 (aerodynamic diameter≤2.5 μm), black carbon (BC), and ultrafine particles (UFPs, diameter≤100 nm). When commuting inside school buses, children are exposed to high level of these pollutants due to emissions from both school bus itself and other on-road vehicles. This study developed an on-board high efficiency cabin air (HECA) filtration system for reducing children's exposure inside school buses. Six school buses were driven on two typical routes to evaluate to what extent the system reduces particulate pollutant levels inside the buses. The testing routes included freeways and major arterial roadways in Los Angeles, CA. UFP number concentrations and size distributions as well as BC and PM2.5 concentrations were monitored concurrently inside and outside of each bus. With the HECA filtration system on, in-cabin UFP and BC levels were reduced by 88±6% and 84±5% on averages across all driving conditions, respectively. The system was less effective for PM2.5 (55±22%) but successfully kept its levels below 12 μg/m3 inside all the buses. For all three types of particulate pollutants, in-cabin reductions were higher on freeways than on arterial roadways.

  16. Evaluation of a high efficiency cabin air (HECA) filtration system for reducing particulate pollutants inside school buses.

    PubMed

    Lee, Eon S; Fung, Cha-Chen D; Zhu, Yifang

    2015-03-17

    An increasing number of studies have reported deleterious health effects of vehicle-emitted particulate matter (PM), including PM2.5 (aerodynamic diameter≤2.5 μm), black carbon (BC), and ultrafine particles (UFPs, diameter≤100 nm). When commuting inside school buses, children are exposed to high level of these pollutants due to emissions from both school bus itself and other on-road vehicles. This study developed an on-board high efficiency cabin air (HECA) filtration system for reducing children's exposure inside school buses. Six school buses were driven on two typical routes to evaluate to what extent the system reduces particulate pollutant levels inside the buses. The testing routes included freeways and major arterial roadways in Los Angeles, CA. UFP number concentrations and size distributions as well as BC and PM2.5 concentrations were monitored concurrently inside and outside of each bus. With the HECA filtration system on, in-cabin UFP and BC levels were reduced by 88±6% and 84±5% on averages across all driving conditions, respectively. The system was less effective for PM2.5 (55±22%) but successfully kept its levels below 12 μg/m3 inside all the buses. For all three types of particulate pollutants, in-cabin reductions were higher on freeways than on arterial roadways. PMID:25728749

  17. Advanced Air Data Systems for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    2006-01-01

    It is possible to get a crude estimate of wind speed and direction while driving a car at night in the rain, with the motion of the raindrop reflections in the headlights providing clues about the wind. The clues are difficult to interpret, though, because of the relative motions of ground, car, air, and raindrops. More subtle interpretation is possible if the rain is replaced by fog, because the tiny droplets would follow the swirling currents of air around an illuminated object, like, for example, a walking pedestrian. Microscopic particles in the air (aerosols) are better for helping make assessments of the wind, and reflective air molecules are best of all, providing the most refined measurements. It takes a bright light to penetrate fog, so it is easy to understand how other factors, like replacing the headlights with the intensity of a searchlight, can be advantageous. This is the basic principle behind a lidar system. While a radar system transmits a pulse of radiofrequency energy and interprets the received reflections, a lidar system works in a similar fashion, substituting a near-optical laser pulse. The technique allows the measurement of relative positions and velocities between the transmitter and the air, which allows measurements of relative wind and of air temperature (because temperature is associated with high-frequency random motions on a molecular level). NASA, as well as the National Oceanic and Atmospheric Administration (NOAA), have interests in this advanced lidar technology, as much of their explorative research requires the ability to measure winds and turbulent regions within the atmosphere. Lidar also shows promise for providing warning of turbulent regions within the National Airspace System to allow commercial aircraft to avoid encounters with turbulence and thereby increase the safety of the traveling public. Both agencies currently employ lidar and optical sensing for a variety of weather-related research projects, such as analyzing

  18. Assessing Aircraft Supply Air to Recommend Compounds for Timely Warning of Contamination

    NASA Astrophysics Data System (ADS)

    Fox, Richard B.

    Taking aircraft out of service for even one day to correct fume-in-cabin events can cost the industry roughly $630 million per year in lost revenue. The quantitative correlation study investigated quantitative relationships between measured concentrations of contaminants in bleed air and probability of odor detectability. Data were collected from 94 aircraft engine and auxiliary power unit (APU) bleed air tests from an archival data set between 1997 and 2011, and no relationships were found. Pearson correlation was followed by regression analysis for individual contaminants. Significant relationships of concentrations of compounds in bleed air to probability of odor detectability were found (p<0.05), as well as between compound concentration and probability of sensory irritancy detectability. Study results may be useful to establish early warning levels. Predictive trend monitoring, a method to identify potential pending failure modes within a mechanical system, may influence scheduled down-time for maintenance as a planned event, rather than repair after a mechanical failure and thereby reduce operational costs associated with odor-in-cabin events. Twenty compounds (independent variables) were found statistically significant as related to probability of odor detectability (dependent variable 1). Seventeen compounds (independent variables) were found statistically significant as related to probability of sensory irritancy detectability (dependent variable 2). Additional research was recommended to further investigate relationships between concentrations of contaminants and probability of odor detectability or probability of sensory irritancy detectability for all turbine oil brands. Further research on implementation of predictive trend monitoring may be warranted to demonstrate how the monitoring process might be applied to in-flight application.

  19. 36 CFR 2.17 - Aircraft and air delivery.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Aircraft and air delivery. 2.17 Section 2.17 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.17 Aircraft and air delivery. (a) The following...

  20. 36 CFR 1002.17 - Aircraft and air delivery.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the Federal Aviation Administration as found in 14 CFR chapter I. (e) The operation or use of... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Aircraft and air delivery... USE AND RECREATION § 1002.17 Aircraft and air delivery. (a) Delivering or retrieving a person...

  1. 36 CFR 1002.17 - Aircraft and air delivery.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the Federal Aviation Administration as found in 14 CFR chapter I. (e) The operation or use of... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Aircraft and air delivery... USE AND RECREATION § 1002.17 Aircraft and air delivery. (a) Delivering or retrieving a person...

  2. 36 CFR 1002.17 - Aircraft and air delivery.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the Federal Aviation Administration as found in 14 CFR chapter I. (e) The operation or use of... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Aircraft and air delivery... USE AND RECREATION § 1002.17 Aircraft and air delivery. (a) Delivering or retrieving a person...

  3. 36 CFR 1002.17 - Aircraft and air delivery.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the Federal Aviation Administration as found in 14 CFR chapter I. (e) The operation or use of... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Aircraft and air delivery... USE AND RECREATION § 1002.17 Aircraft and air delivery. (a) Delivering or retrieving a person...

  4. 36 CFR 1002.17 - Aircraft and air delivery.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the Federal Aviation Administration as found in 14 CFR chapter I. (e) The operation or use of... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Aircraft and air delivery... USE AND RECREATION § 1002.17 Aircraft and air delivery. (a) Delivering or retrieving a person...

  5. KSC inventor tests cabin pressure monitor

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Jan Zysko (left) and Rich Mizell (right) test a Personal Cabin Pressure Altitude Monitor in an altitude chamber at Tyndall Air Force Base in Florida. Zysko invented the pager-sized monitor that alerts wearers of a potentially dangerous or deteriorating cabin pressure altitude condition, which can lead to life- threatening hypoxia. Zysko is chief of the KSC Spaceport Engineering and Technology directorate's data and electronic systems branch. Mizell is a Shuttle processing engineer. The monitor, which has drawn the interest of such organizations as the Federal Aviation Administration for use in commercial airliners and private aircraft, was originally designed to offer Space Shuttle and Space Station crew members added independent notification about any depressurization.

  6. Aircraft accident report: NASA 712, Convair 990, N712NA, March Air Force Base, California, July 17, 1985, facts and analysis

    NASA Technical Reports Server (NTRS)

    Batthauer, Byron E.; Mccarthy, G. T.; Hannah, Michael; Hogan, Robert J.; Marlow, Frank J.; Reynard, William D.; Stoklosa, Janis H.; Yager, Thomas J.

    1986-01-01

    On July 17, l985, at 1810 P.d.t., NASA 712, a Convair 990 aircraft, was destroyed by fire at March Air Force Base, California. The fire started during the rollout after the pilot rejected the takeoff on runway 32. The rejected takeoff was initiated during the takeoff roll because of blown tires on the right landing gear. During the rollout, fragments of either the blown tires or the wheel/brake assemblies penetrated a right-wing fuel tank forward of the right main landing gear. Leaking fuel ignited while the aircraft was rolling, and fire engulfed the right wing and the fuselage after the aircraft was stopped on the runway. The 4-man flightcrew and the 15 scientists and technicians seated in the cabin evacuated the aircraft without serious injury. The fire was not extinguished by crash/rescue efforts and the aircraft was destroyed.

  7. Assessment of the capacity of vehicle cabin air inlet filters to reduce diesel exhaust-induced symptoms in human volunteers

    PubMed Central

    2014-01-01

    Background Exposure to particulate matter (PM) air pollution especially derived from traffic is associated with increases in cardiorespiratory morbidity and mortality. In this study, we evaluated the ability of novel vehicle cabin air inlet filters to reduce diesel exhaust (DE)-induced symptoms and markers of inflammation in human subjects. Methods Thirty healthy subjects participated in a randomized double-blind controlled crossover study where they were exposed to filtered air, unfiltered DE and DE filtered through two selected particle filters, one with and one without active charcoal. Exposures lasted for one hour. Symptoms were assessed before and during exposures and lung function was measured before and after each exposure, with inflammation assessed in peripheral blood five hours after exposures. In parallel, PM were collected from unfiltered and filtered DE and assessed for their capacity to drive damaging oxidation reactions in a cell-free model, or promote inflammation in A549 cells. Results The standard particle filter employed in this study reduced PM10 mass concentrations within the exposure chamber by 46%, further reduced to 74% by the inclusion of an active charcoal component. In addition use of the active charcoal filter was associated by a 75% and 50% reduction in NO2 and hydrocarbon concentrations, respectively. As expected, subjects reported more subjective symptoms after exposure to unfiltered DE compared to filtered air, which was significantly reduced by the filter with an active charcoal component. There were no significant changes in lung function after exposures. Similarly diesel exhaust did not elicit significant increases in any of the inflammatory markers examined in the peripheral blood samples 5 hour post-exposure. Whilst the filters reduced chamber particle concentrations, the oxidative activity of the particles themselves, did not change following filtration with either filter. In contrast, diesel exhaust PM passed through the

  8. A prospective observational study of the association between cabin and outside air temperature, and patient temperature gradient during helicopter transport in New South Wales.

    PubMed

    Miller, M; Richmond, C; Ware, S; Habig, K; Burns, B

    2016-05-01

    The prevalence of hypothermia in patients following helicopter transport varies widely. Low outside air temperature has been identified as a risk factor. Modern helicopters are insulated and have heating; therefore outside temperature may be unimportant if cabin heat is maintained. We sought to describe the association between outside air, cabin and patient temperature, and having the cabin temperature in the thermoneutral zone (18-36°C) in our helicopter-transported patients. We conducted a prospective observational study over one year. Patient temperature was measured on loading and engines off. Cabin and outside air temperature were recorded for the same time periods for each patient, as well as in-flight. Previously identified risk factors were recorded. Complete data was obtained for 133 patients. Patients' temperature increased by a median of 0.15°C (P=0.013). There was no association between outside air temperature or cabin temperature and patient temperature gradient. The best predictor of patient temperature on landing was patient temperature on loading (R2=0.86) and was not improved significantly when other risk factors were added (P=0.63). Thirty-five percent of patients were hypothermic on loading, including those transferred from district hospitals. No patient loaded normothermic became hypothermic when the cabin temperature was in the thermoneutral zone (P=0.04). A large proportion of patients in our sample were hypothermic at the referring hospital. The best predictor of patient temperature on landing is patient temperature on loading. This has implications for studies that fail to account for pre-flight temperature. PMID:27246941

  9. A prospective observational study of the association between cabin and outside air temperature, and patient temperature gradient during helicopter transport in New South Wales.

    PubMed

    Miller, M; Richmond, C; Ware, S; Habig, K; Burns, B

    2016-05-01

    The prevalence of hypothermia in patients following helicopter transport varies widely. Low outside air temperature has been identified as a risk factor. Modern helicopters are insulated and have heating; therefore outside temperature may be unimportant if cabin heat is maintained. We sought to describe the association between outside air, cabin and patient temperature, and having the cabin temperature in the thermoneutral zone (18-36°C) in our helicopter-transported patients. We conducted a prospective observational study over one year. Patient temperature was measured on loading and engines off. Cabin and outside air temperature were recorded for the same time periods for each patient, as well as in-flight. Previously identified risk factors were recorded. Complete data was obtained for 133 patients. Patients' temperature increased by a median of 0.15°C (P=0.013). There was no association between outside air temperature or cabin temperature and patient temperature gradient. The best predictor of patient temperature on landing was patient temperature on loading (R2=0.86) and was not improved significantly when other risk factors were added (P=0.63). Thirty-five percent of patients were hypothermic on loading, including those transferred from district hospitals. No patient loaded normothermic became hypothermic when the cabin temperature was in the thermoneutral zone (P=0.04). A large proportion of patients in our sample were hypothermic at the referring hospital. The best predictor of patient temperature on landing is patient temperature on loading. This has implications for studies that fail to account for pre-flight temperature.

  10. Cyclone: A close air support aircraft for tomorrow

    NASA Technical Reports Server (NTRS)

    Cox, George; Croulet, Donald; Dunn, James; Graham, Michael; Ip, Phillip; Low, Scott; Vance, Gregg; Volckaert, Eric

    1991-01-01

    To meet the threat of the battlefield of the future, the U.S. ground forces will require reliable air support. To provide this support, future aircrews demand a versatile close air support aircraft capable of delivering ordinance during the day, night, or in adverse weather with pin-point accuracy. The Cyclone aircraft meets these requirements, packing the 'punch' necessary to clear the way for effective ground operations. Possessing anti-armor, missile, and precision bombing capability, the Cyclone will counter the threat into the 21st Century. Here, it is shown that the Cyclone is a realistic, economical answer to the demand for a capable close air support aircraft.

  11. Bower Cabin

    SciTech Connect

    Harold Drollinger

    2007-11-02

    The Bower Cabin, located in southern Nevada, was built and occupied by B.M. Bower and her family during the early 1920s. Bower, a prominent writer of western novels, had over 90 novels to her credit. She wrote 11 of the stories while living at the cabin and, at times, incorporated the surrounding landscape features, including the cabin site itself, into them. The site was subsequently used by a gang of rustlers and for a mining base camp. Archaeological research has identified the remnants of the main structures at the site as well as the artifact material and nearby mining activities associated with the Bower and later occupations.

  12. Prediction of light aircraft interior sound pressure level from the measured sound power flowing in to the cabin

    NASA Technical Reports Server (NTRS)

    Atwal, Mahabir S.; Heitman, Karen E.; Crocker, Malcolm J.

    1986-01-01

    The validity of the room equation of Crocker and Price (1982) for predicting the cabin interior sound pressure level was experimentally tested using a specially constructed setup for simultaneous measurements of transmitted sound intensity and interior sound pressure levels. Using measured values of the reverberation time and transmitted intensities, the equation was used to predict the space-averaged interior sound pressure level for three different fuselage conditions. The general agreement between the room equation and experimental test data is considered good enough for this equation to be used for preliminary design studies.

  13. Vehicle Cabin Atmosphere Monitor

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara; Darrach, Muray

    2007-01-01

    Vehicle Cabin Atmosphere Monitor (VCAM) identifies gases that are present in minute quantities in the International Space Station (ISS) breathing air that could harm the crew s health. If successful, instruments like VCAM could accompany crewmembers during long-duration exploration missions to the Moon or traveling to Mars.

  14. A new laser vibrometry-based 2D selective intensity method for source identification in reverberant fields: part II. Application to an aircraft cabin

    NASA Astrophysics Data System (ADS)

    Revel, G. M.; Martarelli, M.; Chiariotti, P.

    2010-07-01

    The selective intensity technique is a powerful tool for the localization of acoustic sources and for the identification of the structural contribution to the acoustic emission. In practice, the selective intensity method is based on simultaneous measurements of acoustic intensity, by means of a couple of matched microphones, and structural vibration of the emitting object. In this paper high spatial density multi-point vibration data, acquired by using a scanning laser Doppler vibrometer, have been used for the first time. Therefore, by applying the selective intensity algorithm, the contribution of a large number of structural sources to the acoustic field radiated by the vibrating object can be estimated. The selective intensity represents the distribution of the acoustic monopole sources on the emitting surface, as if each monopole acted separately from the others. This innovative selective intensity approach can be very helpful when the measurement is performed on large panels in highly reverberating environments, such as aircraft cabins. In this case the separation of the direct acoustic field (radiated by the vibrating panels of the fuselage) and the reverberant one is difficult by traditional techniques. The work shown in this paper is the application of part of the results of the European project CREDO (Cabin Noise Reduction by Experimental and Numerical Design Optimization) carried out within the framework of the EU. Therefore the aim of this paper is to illustrate a real application of the method to the interior acoustic characterization of an Alenia Aeronautica ATR42 ground test facility, Alenia Aeronautica being a partner of the CREDO project.

  15. Prediction of car cabin environment by means of 1D and 3D cabin model

    NASA Astrophysics Data System (ADS)

    Fišer, J.; Pokorný, J.; Jícha, M.

    2012-04-01

    Thermal comfort and also reduction of energy requirements of air-conditioning system in vehicle cabins are currently very intensively investigated and up-to-date issues. The article deals with two approaches of modelling of car cabin environment; the first model was created in simulation language Modelica (typical 1D approach without cabin geometry) and the second one was created in specialized software Theseus-FE (3D approach with cabin geometry). Performance and capabilities of this tools are demonstrated on the example of the car cabin and the results from simulations are compared with the results from the real car cabin climate chamber measurements.

  16. Steering Aircraft Clear of Choppy Air

    NASA Technical Reports Server (NTRS)

    2006-01-01

    AeroTech Research (U.S.A.), Inc., a leader in turbulence-detection and warning systems, has been involved with NASA Aviation Safety research since 1998. AeroTech served as a contractor for the TPAWS government/industry development project, and was funded by NASA to develop the E-Turb Mode Radar algorithms and the TAPS software. (Other contributors to this project include the National Center for Atmospheric Research, the FAA, North Carolina State University, and the Research Triangle Institute.) The radar algorithms combine an aircraft's turbulenceresponse characteristics with radar measurements to determine the predicted turbulence loads the aircraft will experience, and present this information to the pilot. The TAPS software monitors and processes onboard aircraft sensor data; generates automatic reports when an aircraft encounters turbulence and a set turbulence threshold is exceeded; and then displays the reports and underlying information to ground personnel to improve situational awareness of the location and the severity of the turbulence encounter.

  17. A-2000: Close air support aircraft design team

    NASA Technical Reports Server (NTRS)

    Carrannanto, Paul; Lim, Don; Lucas, Evangeline; Risse, Alan; Weaver, Dave; Wikse, Steve

    1991-01-01

    The US Air Force is currently faced with the problem of providing adequate close air support for ground forces. Air response to troops engaged in combat must be rapid and devastating due to the highly fluid battle lines of the future. The A-2000 is the result of a study to design an aircraft to deliver massive fire power accurately. The low cost A-2000 incorporates: large weapons payload; excellent maneuverability; all weather and terrain following capacity; redundant systems; and high survivability.

  18. 14 CFR 382.67 - What is the requirement for priority space in the cabin to store passengers' wheelchairs?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false What is the requirement for priority space in the cabin to store passengers' wheelchairs? 382.67 Section 382.67 Aeronautics and Space OFFICE OF... NONDISCRIMINATION ON THE BASIS OF DISABILITY IN AIR TRAVEL Accessibility of Aircraft § 382.67 What is...

  19. 14 CFR 382.67 - What is the requirement for priority space in the cabin to store passengers' wheelchairs?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false What is the requirement for priority space in the cabin to store passengers' wheelchairs? 382.67 Section 382.67 Aeronautics and Space OFFICE OF... NONDISCRIMINATION ON THE BASIS OF DISABILITY IN AIR TRAVEL Accessibility of Aircraft § 382.67 What is...

  20. 14 CFR 382.67 - What is the requirement for priority space in the cabin to store passengers' wheelchairs?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false What is the requirement for priority space in the cabin to store passengers' wheelchairs? 382.67 Section 382.67 Aeronautics and Space OFFICE OF... NONDISCRIMINATION ON THE BASIS OF DISABILITY IN AIR TRAVEL Accessibility of Aircraft § 382.67 What is...

  1. Brominated flame retardant exposure of aircraft personnel.

    PubMed

    Strid, Anna; Smedje, Greta; Athanassiadis, Ioannis; Lindgren, Torsten; Lundgren, Håkan; Jakobsson, Kristina; Bergman, Åke

    2014-12-01

    The use of brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) in aircraft is the result of high fire safety demands. Personnel working in or with aircraft might therefore be exposed to several BFRs. Previous studies have reported PBDE exposure in flight attendants and in passengers. One other group that may be subjected to significant BFR exposure via inhalation, are the aircraft maintenance workers. Personnel exposure both during flights and maintenance of aircraft, are investigated in the present study. Several BFRs were present in air and dust sampled during both the exposure scenarios; PBDEs, hexabromocyclododecane (HBCDD), decabromodiphenyl ethane (DBDPE) and 1,2-bis (2,4,6-tribromophenoxy) ethane. PBDEs were also analyzed in serum from pilots/cabin crew, maintenance workers and from a control group of individuals without any occupational aircraft exposure. Significantly higher concentrations of PBDEs were found in maintenance workers compared to pilots/cabin crew and control subjects with median total PBDE concentrations of 19, 6.8 and 6.6 pmol g(-1) lipids, respectively. Pilots and cabin crew had similar concentrations of most PBDEs as the control group, except for BDE-153 and BDE-154 which were significantly higher. Results indicate higher concentrations among some of the pilots compared to the cabin crew. It is however, evident that the cabin personnel have lower BFR exposures compared to maintenance workers that are exposed to such a degree that their blood levels are significantly different from the control group. PMID:24745557

  2. Brominated flame retardant exposure of aircraft personnel.

    PubMed

    Strid, Anna; Smedje, Greta; Athanassiadis, Ioannis; Lindgren, Torsten; Lundgren, Håkan; Jakobsson, Kristina; Bergman, Åke

    2014-12-01

    The use of brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) in aircraft is the result of high fire safety demands. Personnel working in or with aircraft might therefore be exposed to several BFRs. Previous studies have reported PBDE exposure in flight attendants and in passengers. One other group that may be subjected to significant BFR exposure via inhalation, are the aircraft maintenance workers. Personnel exposure both during flights and maintenance of aircraft, are investigated in the present study. Several BFRs were present in air and dust sampled during both the exposure scenarios; PBDEs, hexabromocyclododecane (HBCDD), decabromodiphenyl ethane (DBDPE) and 1,2-bis (2,4,6-tribromophenoxy) ethane. PBDEs were also analyzed in serum from pilots/cabin crew, maintenance workers and from a control group of individuals without any occupational aircraft exposure. Significantly higher concentrations of PBDEs were found in maintenance workers compared to pilots/cabin crew and control subjects with median total PBDE concentrations of 19, 6.8 and 6.6 pmol g(-1) lipids, respectively. Pilots and cabin crew had similar concentrations of most PBDEs as the control group, except for BDE-153 and BDE-154 which were significantly higher. Results indicate higher concentrations among some of the pilots compared to the cabin crew. It is however, evident that the cabin personnel have lower BFR exposures compared to maintenance workers that are exposed to such a degree that their blood levels are significantly different from the control group.

  3. Life management of aging Air Force aircraft: NDE perspective

    NASA Astrophysics Data System (ADS)

    Cordell, Tobey M.

    1995-07-01

    Continuing trends toward reduced procurement of new aircraft is forcing the United States Air Force (USAF) to extend the operational life of its current aircraft. In the past, the USAF operator was able to replace fleet aircraft on a fairly regular basis. This process has been drastically altered by the significant reductions in the Defense Department budget as a result of the end of the Cold War. The requirement to extend the fleet's operational life is placing greater importance on the ability to find, characterize, and ameliorate the deleterious effects of operation and maintenance. In addition, many aircraft are being asked to operate with changed mission requirements that were not envisioned when they were originally procured. The life management of the aging fleet is interwoven with the ability to utilize nondestructive evaluation (NDE) to identify and characterize changes in the materials and structures throughout their lifetime.

  4. Impact of aircraft plume dynamics on airport local air quality

    NASA Astrophysics Data System (ADS)

    Barrett, Steven R. H.; Britter, Rex E.; Waitz, Ian A.

    2013-08-01

    Air quality degradation in the locality of airports poses a public health hazard. The ability to quantitatively predict the air quality impacts of airport operations is of importance for assessing the air quality and public health impacts of airports today, of future developments, and for evaluating approaches for mitigating these impacts. However, studies such as the Project for the Sustainable Development of Heathrow have highlighted shortcomings in understanding of aircraft plume dispersion. Further, if national or international aviation environmental policies are to be assessed, a computationally efficient method of modeling aircraft plume dispersion is needed. To address these needs, we describe the formulation and validation of a three-dimensional integral plume model appropriate for modeling aircraft exhaust plumes at airports. We also develop a simplified concentration correction factor approach to efficiently account for dispersion processes particular to aircraft plumes. The model is used to explain monitoring station results in the London Heathrow area showing that pollutant concentrations are approximately constant over wind speeds of 3-12 m s-1, and is applied to reproduce empirically derived relationships between engine types and peak NOx concentrations at Heathrow. We calculated that not accounting for aircraft plume dynamics would result in a factor of 1.36-2.3 over-prediction of the mean NOx concentration (depending on location), consistent with empirical evidence of a factor of 1.7 over-prediction. Concentration correction factors are also calculated for aircraft takeoff, landing and taxi emissions, providing an efficient way to account for aircraft plume effects in atmospheric dispersion models.

  5. Current LTA technology developments. [Lighter-Than-Air aircraft

    NASA Technical Reports Server (NTRS)

    Mayer, N. J.

    1981-01-01

    Lighter-than-air aircraft (LTA) developments and research in the United States and other countries are reviewed. The emphasis in the U.S. is on VTOL airships capable of heavy lift, and on long endurance types for coastal maritime patrol. Design concepts include hybrids which combine heavier-than-air and LTA components and characteristics. Research programs are concentrated on aerodynamics, flight dynamics, and control of hybrid types.

  6. Air-sampling inlet contamination by aircraft emissions on the NASA CV-990 aircraft

    NASA Technical Reports Server (NTRS)

    Condon, E. P.; Vedder, J. F.

    1984-01-01

    Results of an experimental investigation of the contamination of air sampling inlets by aircraft emissions from the NASA CV-990 research aircraft are presented. This four-engine jet aircraft is a NASA facility used for many different atmospheric and meteorological experiments, as well as for developing spacecraft instrumentation for remote measurements. Our investigations were performed to provide information on which to base the selection of sampling locations for a series of multi-instrument missions for measuring tropospheric trace gases. The major source of contamination is the exhaust from the jet engines, which generate many of the same gases that are of interest in atmospheric chemistry, as well as other gases that may interfere with sampling measurements. The engine exhaust contains these gases in mixing ratios many orders of magnitude greater than those that occur in the clean atmosphere which the missions seek to quantify. Pressurized samples of air were collected simultaneously from a scoop located forward of the engines to represent clean air and from other multiport scoops at various aft positions on the aircraft. The air samples were analyzed in the laboratory by gas chromatography for carbon monoxide, an abundant combustion by-product. Data are presented for various scoop locations under various flight conditions.

  7. Aircraft: United States Air Force Child Care Program Activity Guide.

    ERIC Educational Resources Information Center

    Boggs, Juanita; Brant, Linda

    General information about United States' aircraft is provided in this program activity guide for teachers and caregivers in Air Force preschools and day care centers. The guide includes basic information for teachers and caregivers, basic understandings, suggested teaching methods and group activities, vocabulary, ideas for interest centers, and…

  8. The temperature fields measurement of air in the car cabin by infrared camera

    NASA Astrophysics Data System (ADS)

    Pešek, M.

    2013-04-01

    The article deals with the temperature fields measurement of air using the Jenoptic Variocam infrared camera inside the car Škoda Octavia Combi II. The temperature fields with the use of auxiliary material with a high emissivity value were visualized. The measurements through the viewing window with a high transmissivity value were performed. The viewing windows on the side car door were placed. In the rear car area, the temperature fields of air on the spacious sheet of auxiliary material were visualized which is a suitable method for 2D airstreams. In the front car area, the temperature fields in the air were measured with the use of the measuring net which is suitable for 3D airstreams measuring.

  9. On the reverse flow ceiling jet in pool fire-ventilation crossflow interactions in a simulated aircraft cabin interior

    NASA Technical Reports Server (NTRS)

    Kwack, E. Y.; Bankston, C. P.; Shakkottai, P.; Back, L. H.

    1989-01-01

    The behavior of the reverse flow ceiling jet against the ventilation flow from 0.58 to 0.87 m/s was investigated in a 1/3 scale model of a wide body aircraft interior. For all tests, strong reverse-flow ceiling jets of hot gases were detected well upstream of the fire. Both thicknesses of the reverse-flow ceiling jet and the smoke layer increased with the fire-crossflow parameter. The thickness of the smoke layer where the smoke flows along the main flow below the reverse-flow ceiling jet was almost twice that of the reverse-flow ceiling jet. Detailed spatial and time-varying temperatures of the gas in the test section were measured, and velocity profiles were also measured using a temperature compensated hot film.

  10. 77 FR 21834 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... Federal Aviation Administration Airborne Radar Altimeter Equipment (For Air Carrier Aircraft) AGENCY..., Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). SUMMARY: This is a confirmation notice of the cancellation of TSO-C67, Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). The...

  11. Venous gas bubbles while flying with cabin altitudes of airliners or general aviation aircraft 3 hours after diving.

    PubMed

    Balldin, U I

    1980-07-01

    Decompression venous gas bubbles were detected with the precordial Doppler utrasound technique in humans at simulated altitudes of 1,000-3,000 m 3 h after no-stage decompression dives to 15 or 39 m. Bubbles were detected at 3,000 m in a total of 60% of the subjects: in 90% after the 100-min shallow dives to 15 m with some bubbles present in the first minutes (mean onset 12 min), and in only 30% after the 10-min deeper dives to 39 m with later appearances of bubbles (mean onset 28 min). At both 2,000 and 1,000 m bubbles could also be detected, sometimes in the first minutes. The risk of decompression sickness must be considered high with the amount of gas bubbles found, even though only uncertain symptoms appeared in this study. Thus, a safe interval between ordinary SCUBA-diving and flying in airliners or general aviation aircraft seems to be more than 3 h.

  12. The Guardian: Preliminary design of a close air support aircraft

    NASA Technical Reports Server (NTRS)

    Haag, Jonathan; Huber, David; Mcinerney, Kelly; Mulligan, Greg; Pessin, David; Seelos, Michael

    1991-01-01

    One design is presented of a Close Air Support (CAS) aircraft. It is a canard wing, twin engine, twin vertical tail aircraft that has the capability to cruise at 520 knots. The Guardian contains state of the art flight control systems. Specific highlights of the Guardian include: (1) low cost (the acquisition cost per airplane is $13.6 million for a production of 500 airplanes); (2) low maintenance (it was designed to be easily maintainable in unprepared fields); and (3) high versatility (it can perform a wide range of missions). Along with being a CAS aircraft, it is capable of long ferry missions, battlefield interdiction, maritime attack, and combat rescue. The Guardian is capable of a maximum ferry of 3800 nm, can takeoff in a distance of 1700 ft, land in a ground roll distance of 1644 ft. It has a maximum takeoff weight of 48,753 lbs, and is capable of carrying up to 19,500 lbs of ordinance.

  13. Investigation of volatile organic compounds and phthalates present in the cabin air of used private cars.

    PubMed

    Geiss, Otmar; Tirendi, Salvatore; Barrero-Moreno, Josefa; Kotzias, Dimitrios

    2009-11-01

    The presence of selected volatile organic compounds (VOCs) including aromatic, aliphatic compounds and low molecular weight carbonyls, and a target set of phthalates were investigated in the interior of 23 used private cars during the summer and winter. VOC concentrations often exceeded levels typically found in residential indoor air, e.g. benzene concentrations reached values of up to 149.1 microg m(-3). Overall concentrations were 40% higher in summer, with temperatures inside the cars reaching up to 70 degrees C. The most frequently detected phthalates were di-n-butyl-phthalate and bis-(2-ethylhexyl) phthalate in concentrations ranging from 196 to 3656 ng m(-3). PMID:19729200

  14. Aircraft Weather Mitigation for the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III

    2007-01-01

    Atmospheric effects on aviation are described by Mahapatra (1999) as including (1) atmospheric phenomena involving air motion - wind shear and turbulence; (2) hydrometeorological phenomena - rain, snow and hail; (3) aircraft icing; (4) low visibility; and (5) atmospheric electrical phenomena. Aircraft Weather Mitigation includes aircraft systems (e.g. airframe, propulsion, avionics, controls) that can be enacted (by a pilot, automation or hybrid systems) to suppress and/or prepare for the effects of encountered or unavoidable weather or to facilitate a crew operational decision-making process relative to weather. Aircraft weather mitigation can be thought of as a continuum (Figure 1) with the need to avoid all adverse weather at one extreme and the ability to safely operate in all weather conditions at the other extreme. Realistic aircraft capabilities fall somewhere between these two extremes. The capabilities of small general aviation aircraft would be expected to fall closer to the "Avoid All Adverse Weather" point, and the capabilities of large commercial jet transports would fall closer to the "Operate in All Weather Conditions" point. The ability to safely operate in adverse weather conditions is dependent upon the pilot s capabilities (training, total experience and recent experience), the airspace in which the operation is taking place (terrain, navigational aids, traffic separation), the capabilities of the airport (approach guidance, runway and taxiway lighting, availability of air traffic control), as well as the capabilities of the airplane. The level of mitigation may vary depending upon the type of adverse weather. For example, a small general aviation airplane may be equipped to operate "in the clouds" without outside visual references, but not be equipped to prevent airframe ice that could be accreted in those clouds.

  15. Aircraft skin cooling system for thermal management of onboard high power electronic equipment

    SciTech Connect

    Hashemi, A.; Dyson, E.

    1996-12-31

    Integration of high-power electronic devices into existing aircraft, while minimizing the impact of additional heat load on the environmental control system of the aircraft, requires innovative approaches. One such approach is to reject heat through the aircraft skin by use of internal skin ducts with enhanced surfaces. This approach requires a system level consideration of the effect of cooling ducts, inlets and outlets on the performance of the electronic equipment and effectiveness of the heat rejection system. This paper describes the development of a system-level model to evaluate the performance of electronic equipment in an aircraft cabin and heat rejection through the skin. In this model, the outer surface of the fuselage is treated as a heat exchanger. Hot air from an equipment exhaust plenum is drawn into a series of baffled ducts within the fuselage support structure, where the heat is rejected, and then recirculated into the cabin. The cooler air form the cabin is then drawn into the electronic equipment. The aircraft air conditioning unit is also modeled to provide chilled air directly into the cabin. In addition, this paper describes a series of tests which were performed to verify the model assumptions for heat dissipation from and air flow through the equipment. The tests were performed using the actual electronic equipment in a representative cabin configuration. Results indicate very good agreement between the analytical calculations for the design point and model predictions.

  16. Cabin air temperature of parked vehicles in summer conditions: life-threatening environment for children and pets calculated by a dynamic model

    NASA Astrophysics Data System (ADS)

    Horak, Johannes; Schmerold, Ivo; Wimmer, Kurt; Schauberger, Günther

    2016-07-01

    In vehicles that are parked, no ventilation and/or air conditioning takes place. If a vehicle is exposed to direct solar radiation, an immediate temperature rise occurs. The high cabin air temperature can threaten children and animals that are left unattended in vehicles. In the USA, lethal heat strokes cause a mean death rate of 37 children per year. In addition, temperature-sensitive goods (e.g. drugs in ambulances and veterinary vehicles) can be adversely affected by high temperatures. To calculate the rise of the cabin air temperature, a dynamic model was developed that is driven by only three parameters, available at standard meteorological stations: air temperature, global radiation and wind velocity. The transition from the initial temperature to the constant equilibrium temperature depends strongly on the configuration of the vehicle, more specifically on insulation, window area and transmission of the glass, as well as on the meteorological conditions. The comparison of the model with empirical data showed good agreement. The model output can be applied to assess the heat load of children and animals as well as temperature-sensitive goods, which are transported and/or stored in a vehicle.

  17. A tobacco industry study of airline cabin air quality: dropping inconvenient findings

    PubMed Central

    Neilsen, K; Glantz, S

    2004-01-01

    Objective: To examine an industry funded and controlled study of in flight air quality (IFAQ). Methods: Systematic search of internal tobacco industry documents available on the internet and at the British American Tobacco Guildford Depository. Results: Individuals from several tobacco industry companies, led by Philip Morris, designed, funded, conducted, and controlled the presentation of results of a study of IFAQ for the Scandinavian airline SAS in 1988 while attempting to minimise the appearance of industry control. Industry lawyers and scientists deleted results unfavourable to the industry's position from the study before delivering it to the airline. The published version of the study further downplayed the results, particularly with regard to respirable suspended particulates. The study ignored the health implications of the results and instead promoted the industry position that ventilation could solve problems posed by secondhand smoke. Conclusions: Sponsoring IFAQ studies was one of several tactics the tobacco industry employed in attempts to reverse or delay implementation of in-flight smoking restrictions. As a result, airline patrons and employees, particularly flight attendants, continued to be exposed to pollution from secondhand smoke, especially particulates, which the industry's own consultants had noted exceeded international standards. This case adds to the growing body of evidence that scientific studies associated with the tobacco industry cannot be taken at face value. PMID:14985613

  18. 14 CFR 23.841 - Pressurized cabins.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... maximum relief valve setting in combination with landing loads. (8) A means to stop rotation of the compressor or to divert airflow from the cabin if continued rotation of an engine-driven cabin compressor or continued flow of any compressor bleed air will create a hazard if a malfunction occurs....

  19. 14 CFR 23.841 - Pressurized cabins.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... maximum relief valve setting in combination with landing loads. (8) A means to stop rotation of the compressor or to divert airflow from the cabin if continued rotation of an engine-driven cabin compressor or continued flow of any compressor bleed air will create a hazard if a malfunction occurs....

  20. 14 CFR 23.841 - Pressurized cabins.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... maximum relief valve setting in combination with landing loads. (8) A means to stop rotation of the compressor or to divert airflow from the cabin if continued rotation of an engine-driven cabin compressor or continued flow of any compressor bleed air will create a hazard if a malfunction occurs. (c)...

  1. The Eliminator: A design of a close air support aircraft

    NASA Technical Reports Server (NTRS)

    Hendrix, Mandy; Hoang, TY; Kokolios, Alex; Selyem, Sharon; Wardell, Mark; Winterrowd, David

    1991-01-01

    The Eliminator is the answer to the need for an affordable, maintainable, survivable, high performance close air support aircraft primarily for the United States, but with possible export sales to foreign customers. The Eliminator is twin turbofan, fixed wing aircraft with high mounted canards and low mounted wings. It is designed for high subsonic cruise and an attack radius of 250 nautical miles. Primarily it would carry 20 500 pound bombs as its main ordnance , but is versatile enough to carry a variety of weapons configurations to perform several different types of missions. It carries state of the art navigation and targeting systems to deliver its payload with pinpoint precision and is designed for maximum survivability of the crew and aircraft for a safe return and quick turnaround. It can operate from fields as short as 1800 ft. with easy maintenance for dispersed operation during hostile situations. It is designed for exceptional maneuverability and could be used in a variety of roles from air-to-air operations to anti-submarine warfare and maritime patrol duties.

  2. Aircraft Recirculation Filter for Air-Quality and Incident Assessment

    PubMed Central

    Eckels, Steven J.; Jones, Byron; Mann, Garrett; Mohan, Krishnan R.; Weisel, Clifford P.

    2015-01-01

    The current research examines the possibility of using recirculation filters from aircraft to document the nature of air-quality incidents on aircraft. These filters are highly effective at collecting solid and liquid particulates. Identification of engine oil contaminants arriving through the bleed air system on the filter was chosen as the initial focus. A two-step study was undertaken. First, a compressor/bleed air simulator was developed to simulate an engine oil leak, and samples were analyzed with gas chromatograph-mass spectrometry. These samples provided a concrete link between tricresyl phosphates and a homologous series of synthetic pentaerythritol esters from oil and contaminants found on the sample paper. The second step was to test 184 used aircraft filters with the same gas chromatograph-mass spectrometry system; of that total, 107 were standard filters, and 77 were nonstandard. Four of the standard filters had both markers for oil, with the homologous series synthetic pentaerythritol esters being the less common marker. It was also found that 90% of the filters had some detectable level of tricresyl phosphates. Of the 77 nonstandard filters, 30 had both markers for oil, a significantly higher percent than the standard filters. PMID:25641977

  3. The impact of recirculating industrial air on aircraft painting operations.

    PubMed

    LaPuma, P T; Bolch, W E

    1999-10-01

    The 1990 Clean Air Act Amendments resulted in new environmental regulations for hazardous air pollutants. Industries such as painting facilities may have to treat large volumes of air, which increases the cost of an air control system. Recirculating a portion of the air back into the facility is an option to reduce the amount of air to be treated. The authors of this study developed a computer model written in Microsoft Excel 97 to analyze the impact of recirculation on worker safety and compliance costs. The model has a chemical database with over 1300 chemicals. The model will predict indoor air concentrations using mass balance calculations and results are compared to occupational exposure limits. A case study is performed on a C-130 aircraft painting facility at Hill Air Force Base, Utah. The model predicts strontium chromate concentrations found in primer paints will reach 1000 times the exposure limit. Strontium chromate and other solid particulates are nearly unaffected by recirculation because the air is filtered during recirculation. The next highest chemical, hexamethylene diisocyanate, increases from 2.6 to 10.5 times the exposure limit at 0 percent and 75 percent recirculation, respectively. Due to the level of respiratory protection required for the strontium chromate, workers are well protected from the modest increases in concentrations caused by recirculating 75 percent of the air. The initial cost of an air control system is $4.5 million with no recirculation and $1.8 million at 75 percent recirculation. The model is an excellent tool to evaluate air control options with a focus on worker safety. In the case study, the model highlights strontium chromate primers as good candidates for substitution. The model shows that recirculating 75 percent of the air at the Hill painting facility has a negligible impact on safety and could save $2.7 million on the initial expenses of a thermal treatment system.

  4. Pseudo Aircraft Systems - A multi-aircraft simulation system for air traffic control research

    NASA Technical Reports Server (NTRS)

    Weske, Reid A.; Danek, George L.

    1993-01-01

    Pseudo Aircraft Systems (PAS) is a computerized flight dynamics and piloting system designed to provide a high fidelity multi-aircraft real-time simulation environment to support Air Traffic Control research. PAS is composed of three major software components that run on a network of computer workstations. Functionality is distributed among these components to allow the system to execute fast enough to support real-time operation. PAS workstations are linked by an Ethernet Local Area Network, and standard UNIX socket protocol is used for data transfer. Each component of PAS is controlled and operated using a custom designed Graphical User Interface. Each of these is composed of multiple windows, and many of the windows and sub-windows are used in several of the components. Aircraft models and piloting logic are sophisticated and realistic and provide complex maneuvering and navigational capabilities. PAS will continually be enhanced with new features and improved capabilities to support ongoing and future Air Traffic Control system development.

  5. Experimental Aircraft Association (EAA) - AirVenture 2003

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Experimental Aircraft Association (EAA) - AirVenture 2003: Artist Robert T. McCall discussed the motivation for his new NASA century-of-flight mural during unveiling ceremonies July 30, 2003 at the EAA convention in Oshkosh, Wisconsin. A panoramic mural commissioned by NASA to depict highlights of the first century of flight was unveiled at the world's largest aviation event, the Experimental Aircraft Associations AirVenture - Oshkosh convention in Oshkosh, Wisconsin. The mural, by aviation artist Robert McCall, measures six by 18 feet. McCall was on hand with NASA Dryden Flight Research Center director Kevin Peterson and Experimental Aircraft Association president Tom Poberezny for the official unveiling at Noon July 30, 2003. The painting depicts a host of milestone aircraft and spacecraft swirling around the original Wright Flyer, symbolically airborne in front of the sun at the dawn of the age of flight. In the foreground, fliers ranging from a happy-go-lucky aviator of World War One to a pair of free-floating astronauts, anonymous behind the reflective shields of their helmets, depict the people who animate the vehicles in the painting. The mural entitled 'Celebrating One Hundred Years of Powered Flight, 1903-2003' will be exhibited at the EAA as part fo the commemoration of a century of flight and eventually will go on permanent display at NASA's Dryden Flight Research Center on Edwards Air Force Base in California. NASA Dryden director Keven Peterson said: ' This is an exciting day for us. The painting...has been years in the making. The events it records were a century in the making. But this is a celebration of the future yet to be.' Tom Poberezny said he was proud NASA chose to unveil the mural at AirVenture, 'Experimental Aircraft Association has valued the relationship it has with NASA.' Robert McCall told the audience he enjoys the awe of flight. He said he likes to think humanity is still just experiencing the beginnings of flight.

  6. 77 FR 65823 - Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 87 RIN 2060-AO70 Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures Correction In rule document 2012-13828 appearing on pages...

  7. BOREAS AFM-2 Wyoming King Air 1994 Aircraft Sounding Data

    NASA Technical Reports Server (NTRS)

    Kelly, Robert D.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-2 team used the University of Wyoming King Air aircraft during IFCs 1, 2, and 3 in 1994 to collected pass-by-pass fluxes (and many other statistics) for the large number of level (constant altitude), straight-line passes used in a variety of flight patterns over the SSA and NSA and areas along the transect between these study areas. The data described here form a second set, namely soundings that were incorporated into nearly every research flight by the King Air in 1994. These soundings generally went from near the surface to above the inversion layer. Most were flown immediately after takeoff or immediately after finishing the last flux pattern of that particular day's flights. The parameters that were measured include wind direction, wind speed, west wind component (u), south wind component (v), static pressure, air dry bulb temperature, potential temperature, dewpoint, temperature, water vapor mixing ratio, and CO2 concentration. Data on the aircraft's location, attitude, and altitude during data collection are also provided. These data are stored in tabular ASCH files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  8. Cabin Pressure Monitors Notify Pilots to Save Lives

    NASA Technical Reports Server (NTRS)

    2015-01-01

    In 2013, San Diego-based Aviation Technology Inc. obtained an exclusive license for the technology behind the cabin pressure monitor invented at Kennedy Space Center and built its own version of the product. The Alt Alert is designed to save lives by alerting aircraft pilots and crews when cabin pressure becomes dangerously low.

  9. 14 CFR 23.571 - Metallic pressurized cabin structures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Metallic pressurized cabin structures. 23... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Fatigue Evaluation § 23.571 Metallic pressurized cabin structures. For normal, utility, and...

  10. 14 CFR 23.571 - Metallic pressurized cabin structures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Metallic pressurized cabin structures. 23... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Fatigue Evaluation § 23.571 Metallic pressurized cabin structures. For normal, utility, and...

  11. Year 2015 Aircraft Emission Scenario for Scheduled Air Traffic

    NASA Technical Reports Server (NTRS)

    Baughcum, Steven L.; Sutkus, Donald J.; Henderson, Stephen C.

    1998-01-01

    This report describes the development of a three-dimensional scenario of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons)for projected year 2015 scheduled air traffic. These emission inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Aviation Project (AEAP) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxides, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer altitude grid and delivered to NASA as electronic files.

  12. System IDentification Programs for AirCraft (SIDPAC)

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2002-01-01

    A collection of computer programs for aircraft system identification is described and demonstrated. The programs, collectively called System IDentification Programs for AirCraft, or SIDPAC, were developed in MATLAB as m-file functions. SIDPAC has been used successfully at NASA Langley Research Center with data from many different flight test programs and wind tunnel experiments. SIDPAC includes routines for experiment design, data conditioning, data compatibility analysis, model structure determination, equation-error and output-error parameter estimation in both the time and frequency domains, real-time and recursive parameter estimation, low order equivalent system identification, estimated parameter error calculation, linear and nonlinear simulation, plotting, and 3-D visualization. An overview of SIDPAC capabilities is provided, along with a demonstration of the use of SIDPAC with real flight test data from the NASA Glenn Twin Otter aircraft. The SIDPAC software is available without charge to U.S. citizens by request to the author, contingent on the requestor completing a NASA software usage agreement.

  13. Preliminary design of a family of three close air support aircraft

    NASA Technical Reports Server (NTRS)

    Cox, Brian; Darrah, Paul; Lussier, Wayne; Mills, Nikos

    1989-01-01

    A family of three Close Air Support aircraft is presented. These aircraft are designed with commonality as the main design objective to reduce the life cycle cost. The aircraft are low wing, twin-boom, pusher turbo-prop configurations. The amount of information displayed to the pilot was reduced to a minimum to greatly simplify the cockpit. The aircraft met the mission specifications and the performance and cost characteristics compared well with other CAS aircraft. The concept of a family of CAS aircraft seems viable after preliminary design.

  14. 14 CFR 119.53 - Wet leasing of aircraft and other arrangements for transportation by air.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Wet leasing of aircraft and other arrangements for transportation by air. 119.53 Section 119.53 Aeronautics and Space FEDERAL AVIATION... Chapter § 119.53 Wet leasing of aircraft and other arrangements for transportation by air. (a)...

  15. Accurate and high-resolution boundary conditions and flow fields in the first-class cabin of an MD-82 commercial airliner

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Wen, Jizhou; Chao, Jiangyue; Yin, Weiyou; Shen, Chen; Lai, Dayi; Lin, Chao-Hsin; Liu, Junjie; Sun, Hejiang; Chen, Qingyan

    2012-09-01

    Flow fields in commercial airliner cabins are crucial for creating a thermally comfortable and healthy cabin environment. Flow fields depend on the thermo-fluid boundary conditions at the diffusers, in addition to the cabin geometry and furnishing. To study the flow fields in cabins, this paper describes a procedure to obtain the cabin geometry, boundary conditions at the diffusers, and flow fields. This investigation used a laser tracking system and reverse engineering to generate a digital model of an MD-82 aircraft cabin. Even though the measuring error by the system was very small, approximations and assumptions were needed to reduce the workload and data size. The geometric model can also be easily used to calculate the space volume. A combination of hot-sphere anemometers (HSA) and ultrasonic anemometers (UA) were applied to obtain the velocity magnitude, velocity direction, and turbulence intensity at the diffusers. The measured results indicate that the flow boundary conditions in a real cabin were rather complex and the velocity magnitude, velocity direction, and turbulence intensity varied significantly from one slot opening to another. UAs were also applied to measure the three-dimensional air velocity at 20 Hz, which could also be used to determine the turbulence intensity. Due to the instability of the flow, it should at least be measured for 4 min to obtain accurate averaged velocity and turbulence information. It was found that the flow fields were of low speed and high turbulence intensity. This study provides high quality data for validating Computational Fluid Dynamics (CFD) models, including cabin geometry, boundary conditions of diffusers, and high-resolution flow field in the first-class cabin of a functional MD-82 commercial airliner.

  16. Rise of Air Bubbles in Aircraft Lubricating Oils

    NASA Technical Reports Server (NTRS)

    Robinson, J. V.

    1950-01-01

    Lubricating and antifoaming additives in aircraft lubricating oils may impede the escape of small bubbles from the oil by forming shells of liquid with a quasi-solid or gel structure around the bubbles. The rates of rise of small air bubbles, up to 2 millimeters in diameter, were measured at room temperature in an undoped oil, in the same oil containing foam inhibitors, and in an oil containing lubricating additives. The apparent diameter of the air bubbles was measured visually through an ocular micrometer on a traveling telescope. The bubbles in the undoped oil obeyed Stokes' Law, the rate of rise being proportional to the square of the apparent diameter and inversely proportional to the viscosity of the oil. The bubbles in the oils containing lubricating additives or foam inhibitors rose more slowly than the rate predicted by Stokes 1 Law from the apparent diameter, and the rate of rise decreased as the length of path the bubbles traveled increased. A method is derived to calculate the thickness of the liquid shell which would have to move with the bubbles in the doped oils to account for the abnoi'I!l8.lly slow velocity. The maximum thickness of this shell, calculated from the velocities observed, was equal to the bubble radius.

  17. Maximum vehicle cabin temperatures under different meteorological conditions

    NASA Astrophysics Data System (ADS)

    Grundstein, Andrew; Meentemeyer, Vernon; Dowd, John

    2009-05-01

    A variety of studies have documented the dangerously high temperatures that may occur within the passenger compartment (cabin) of cars under clear sky conditions, even at relatively low ambient air temperatures. Our study, however, is the first to examine cabin temperatures under variable weather conditions. It uses a unique maximum vehicle cabin temperature dataset in conjunction with directly comparable ambient air temperature, solar radiation, and cloud cover data collected from April through August 2007 in Athens, GA. Maximum cabin temperatures, ranging from 41-76°C, varied considerably depending on the weather conditions and the time of year. Clear days had the highest cabin temperatures, with average values of 68°C in the summer and 61°C in the spring. Cloudy days in both the spring and summer were on average approximately 10°C cooler. Our findings indicate that even on cloudy days with lower ambient air temperatures, vehicle cabin temperatures may reach deadly levels. Additionally, two predictive models of maximum daily vehicle cabin temperatures were developed using commonly available meteorological data. One model uses maximum ambient air temperature and average daily solar radiation while the other uses cloud cover percentage as a surrogate for solar radiation. From these models, two maximum vehicle cabin temperature indices were developed to assess the level of danger. The models and indices may be useful for forecasting hazardous conditions, promoting public awareness, and to estimate past cabin temperatures for use in forensic analyses.

  18. Maximum vehicle cabin temperatures under different meteorological conditions.

    PubMed

    Grundstein, Andrew; Meentemeyer, Vernon; Dowd, John

    2009-05-01

    A variety of studies have documented the dangerously high temperatures that may occur within the passenger compartment (cabin) of cars under clear sky conditions, even at relatively low ambient air temperatures. Our study, however, is the first to examine cabin temperatures under variable weather conditions. It uses a unique maximum vehicle cabin temperature dataset in conjunction with directly comparable ambient air temperature, solar radiation, and cloud cover data collected from April through August 2007 in Athens, GA. Maximum cabin temperatures, ranging from 41-76 degrees C, varied considerably depending on the weather conditions and the time of year. Clear days had the highest cabin temperatures, with average values of 68 degrees C in the summer and 61 degrees C in the spring. Cloudy days in both the spring and summer were on average approximately 10 degrees C cooler. Our findings indicate that even on cloudy days with lower ambient air temperatures, vehicle cabin temperatures may reach deadly levels. Additionally, two predictive models of maximum daily vehicle cabin temperatures were developed using commonly available meteorological data. One model uses maximum ambient air temperature and average daily solar radiation while the other uses cloud cover percentage as a surrogate for solar radiation. From these models, two maximum vehicle cabin temperature indices were developed to assess the level of danger. The models and indices may be useful for forecasting hazardous conditions, promoting public awareness, and to estimate past cabin temperatures for use in forensic analyses. PMID:19234721

  19. 77 FR 3323 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... [Federal Register Volume 77, Number 14 (Monday, January 23, 2012)] [Notices] [Pages 3323-3324] [FR... Engineering Division, Aircraft Certification Service. [FR Doc. 2012-1243 Filed 1-20-12; 8:45 am] BILLING CODE... Altimeter Equipment (For Air Carrier Aircraft) AGENCY: Federal Aviation Administration (FAA), DOT....

  20. Aircraft modifications: Assessing the current state of Air Force aircraft modifications and the implications for future military capability

    NASA Astrophysics Data System (ADS)

    Hill, Owen Jacob

    How prepared is the U.S. Air Force to modify its aircraft fleet in upcoming years? Aircraft modernization is a complex interaction of new and legacy aircraft, organizational structure, and planning policy. This research will take one component of modernization: aircraft modification, and apply a new method of analysis in order to help formulate policy to promote modernization. Departing from previous small-sample studies dependent upon weight as a chief explanatory variable, this dissertation incorporates a comprehensive dataset that was constructed for this research of all aircraft modifications from 1996 through 2005. With over 700 modification programs, this dataset is used to examine changes to the current modification policy using policy-response regression models. These changes include separating a codependent procurement and installation schedule, reducing the documentation requirements for safety modifications, and budgeting for aging aircraft modifications. The research then concludes with predictive models for the F-15 and F-16 along with their replacements: the F-22 and F-35 Joint Strike Fighter.

  1. Ozone concentration in the cabin of a Gates Learjet measured simultaneously with atmospheric ozone concentrations

    NASA Technical Reports Server (NTRS)

    Briehl, D.; Perkins, P. J.

    1978-01-01

    A Gates Learjet Model 23 was instrumented with monitors to measure simultaneously the atmospheric and the cabin concentrations of ozone at altitudes up to 13 kilometers. Six data flights were made in February 1978. Results indicated that only a small amount of the atmospheric ozone is destroyed in the cabin pressurization system. Ozone concentrations measured in the cabin near the conditioned-air outlets were only slightly lower than the atmospheric ozone concentration. For the two cabin configurations tested, the ozone retention in the cabin was 63 and 41 percent of the atmospheric ozone concentration. Maximum cabin ozone concentration measured during these flights was 410 parts per billion by volume.

  2. Design of an air traffic computer simulation system to support investigation of civil tiltrotor aircraft operations

    NASA Technical Reports Server (NTRS)

    Rogers, Ralph V.

    1993-01-01

    The TATSS Project's goal was to develop a design for computer software that would support the attainment of the following objectives for the air traffic simulation model: (1) Full freedom of movement for each aircraft object in the simulation model. Each aircraft object may follow any designated flight plan or flight path necessary as required by the experiment under consideration. (2) Object position precision up to +/- 3 meters vertically and +/- 15 meters horizontally. (3) Aircraft maneuvering in three space with the object position precision identified above. (4) Air traffic control operations and procedures. (5) Radar, communication, navaid, and landing aid performance. (6) Weather. (7) Ground obstructions and terrain. (8) Detection and recording of separation violations. (9) Measures of performance including deviations from flight plans, air space violations, air traffic control messages per aircraft, and traditional temporal based measures.

  3. 78 FR 26103 - Proposed Standard Operating Procedure (SOP) of the Aircraft Certification Service (AIR) Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... Service (AIR) Project Prioritization and Resource Management ACTION: Notice of availability and request... process used to prioritize certification projects and manage certification project resources when local... Operating Procedure--Aircraft Certification Service Project Prioritization. FOR FURTHER INFORMATION...

  4. Air pollution from aircraft operations at San Jose Municipal Airport, California

    NASA Technical Reports Server (NTRS)

    Schairer, E. T.

    1978-01-01

    The amount of air pollution discharged by arriving and departing aircraft at the San Jose Municipal Airport was estimated. These estimates were made for each one hour interval of a summer weekday in 1977. The contributions of both general aviation (personal and business aircraft) and certified air carriers (scheduled airliners) were considered. The locations at which the pollutants were discharged were estimated by approximating the flight paths of arriving and departing aircraft. Three types of pollutants were considered: carbon monoxide, hydrocarbons, and oxides of nitrogen.

  5. Estimation of Flight Trajectories by Using GPS Data Measured in Airliner Cabin

    NASA Astrophysics Data System (ADS)

    Totoki, Hironori; Wickramasinghe, Navinda Kithmal; Hamada, Taturo; Miyazawa, Yoshikazu

    Flight trajectory of a passenger aircraft is critical for the research and development of future air traffic control system. Generally, though, flight data are closed to the public view. In this paper a simple method is introduced to estimate flight trajectories using a commercial GPS receiver at a cabin of an in-flight airplane and numerical weather data. Barometric pressure altitude and Mach number were evaluated at the study. Results prove that airplanes follow almost exactly the predetermined airway and cruising altitude. Maximum deviation was recorded only at a magnitude of several dozen meters.

  6. The variation in pressure in the cabin of an airplane in flight

    NASA Technical Reports Server (NTRS)

    Gough, Melvin N

    1931-01-01

    The pressure in the cabin of a Fairchild cabin monoplane wa surveyed in flight, and was found to decrease with increased air speed over the fuselage and to vary with the number and location of openings in the cabin. The maximum depression of 2.2 inches of water (equivalent pressure altitude at sea level of 152 feet) occurred at the high speed of the airplane in level flight with the cabin closed.

  7. The transfer of carbon fibers through a commercial aircraft water separator and air cleaner

    NASA Technical Reports Server (NTRS)

    Meyers, J. A.

    1979-01-01

    The fraction of carbon fibers passing through a water separator and an air filter was determined in order to estimate the proportion of fibers outside a closed aircraft that are transmitted to the electronics through the air conditioning system. When both devices were used together and only fibers 3 mm or larger were considered, a transfer function of .001 was obtained.

  8. Aircraft/Air Traffic Management Functional Analysis Model. Version 2.0; User's Guide

    NASA Technical Reports Server (NTRS)

    Etheridge, Melvin; Plugge, Joana; Retina, Nusrat

    1998-01-01

    The Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 (FAM 2.0), is a discrete event simulation model designed to support analysis of alternative concepts in air traffic management and control. FAM 2.0 was developed by the Logistics Management Institute (LMI) a National Aeronautics and Space Administration (NASA) contract. This document provides a guide for using the model in analysis. Those interested in making enhancements or modification to the model should consult the companion document, Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 Technical Description.

  9. Future Air Force aircraft propulsion control systems: The extended summary paper

    NASA Technical Reports Server (NTRS)

    Skira, C. A.

    1980-01-01

    Hydromechanical control technology simply cannot compete against the performance benefits offered by electronics. Future military aircraft propulsion control systems will be full authority, digital electronic, microprocessor base systems. Anticipating the day when microprocessor technology will permit the integration and management of aircraft flight control, fire control and propulsion control systems, the Air Force Aero Propulsion Laboratory is developing control logic algorithms for a real time, adaptive control and diagnostic information system.

  10. Development of EPA aircraft piston engine emission standards. [for air quality

    NASA Technical Reports Server (NTRS)

    Houtman, W.

    1976-01-01

    Piston engine light aircraft are significant sources of carbon monoxide in the vicinity of high activity general aviation airports. Substantial reductions in carbon monoxide were achieved by fuel mixture leaning using improved fuel management systems. The air quality impact of the hydrocarbon and oxides of nitrogen emissions from piston engine light aircraft were insufficient to justify the design constraints being confronted in present control system developments.

  11. NASA technical advances in aircraft occupant safety. [clear air turbulence detectors, fire resistant materials, and crashworthiness

    NASA Technical Reports Server (NTRS)

    Enders, J. H.

    1978-01-01

    NASA's aviation safety technology program examines specific safety problems associated with atmospheric hazards, crash-fire survival, control of aircraft on runways, human factors, terminal area operations hazards, and accident factors simulation. While aircraft occupants are ultimately affected by any of these hazards, their well-being is immediately impacted by three specific events: unexpected turbulence encounters, fire and its effects, and crash impact. NASA research in the application of laser technology to the problem of clear air turbulence detection, the development of fire resistant materials for aircraft construction, and to the improvement of seats and restraint systems to reduce crash injuries are reviewed.

  12. The SnoDog: Preliminary design of a close air support aircraft

    NASA Technical Reports Server (NTRS)

    Ashbaugh, Scott; Bartel, Kent; Cavalli, J. R.; Chan, John; Chung, Jason; Dimaranan, Liza; Freese, Mike; Levitt, Rick; Soban, Dani

    1991-01-01

    U.S. military forces are presently searching for the next generation Close Air Support aircraft. The following report presents the SnoDog, a low-cost ($14.8 million) aircraft capable of operating from remote battlefields and unimproved airstrips. The configuration consists of a conventional, low aspect-ratio wing, twin booms, twin canted vertical stabilizers along with a high-mounted joined horizontal tail. A supercritical airfoil for the wing enhances aerodynamic performance, while the SnoDog's instability increases maneuverability over current close air support aircraft. Survivability was incorporated into the design by the use of a titanium tub to protect the cockpit from anti-aircraft artillery, as well as, the twin booms and retracted gear disposition. The booms aid survivability by supplying separated, redundant controls, and the landing gear are slightly exposed when retracted to enable a belly landing in emergencies. Designed to fly at Mach .76, the SnoDog is powered by two low-bypass turbofan engines. Engine accessibility and interchangeable parts make the SnoDog highly maintainable. The SnoDog is adaptable to many different missions, as it is capable of carrying advanced avionics pods, carrying external fuel tanks or refueling in-air, and carrying various types of munitions. This makes the SnoDog a multirole aircraft capable of air-to-air and air-to-ground combat. This combination of features make the SnoDog unique as a close air support aircraft, capable of meeting the U.S. military's future needs.

  13. Mortality from cancer and other causes among airline cabin attendants in Europe: a collaborative cohort study in eight countries.

    PubMed

    Zeeb, Hajo; Blettner, Maria; Langner, Ingo; Hammer, Gaël P; Ballard, Terri J; Santaquilani, Mariano; Gundestrup, Maryanne; Storm, Hans; Haldorsen, Tor; Tveten, Ulf; Hammar, Niklas; Linnersjö, Annette; Velonakis, Emmanouel; Tzonou, Anastasia; Auvinen, Anssi; Pukkala, Eero; Rafnsson, Vilhjálmur; Hrafnkelsson, Jón

    2003-07-01

    There is concern about the health effects of exposure to cosmic radiation during air travel. To study the potential health effects of this and occupational exposures, the authors investigated mortality patterns among more than 44,000 airline cabin crew members in Europe. A cohort study was performed in eight European countries, yielding approximately 655,000 person-years of follow-up. Observed numbers of deaths were compared with expected numbers based on national mortality rates. Among female cabin crew, overall mortality (standardized mortality ratio (SMR) = 0.80, 95% confidence interval (CI): 0.73, 0.88) and all-cancer mortality (SMR = 0.78, 95% CI: 0.66, 0.95) were slightly reduced, while breast cancer mortality was slightly but nonsignificantly increased (SMR = 1.11, 95% CI: 0.82, 1.48). In contrast, overall mortality (SMR = 1.09, 95% CI: 1.00, 1.18) and mortality from skin cancer (for malignant melanoma, SMR = 1.93, 95% CI: 0.70, 4.44) among male cabin crew were somewhat increased. The authors noted excess mortality from aircraft accidents and from acquired immunodeficiency syndrome in males. Among airline cabin crew in Europe, there was no increase in mortality that could be attributed to cosmic radiation or other occupational exposures to any substantial extent. The risk of skin cancer among male crew members requires further attention. PMID:12835285

  14. 58. View of Writer's Cabin (or Three Pines Cabin) and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. View of Writer's Cabin (or Three Pines Cabin) and path looking from the southeast (similar to HALS no. LA-1-35) - Briarwood: The Caroline Dormon Nature Preserve, 216 Caroline Dormon Road, Saline, Bienville Parish, LA

  15. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  16. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  17. Fourth Aircraft Interior Noise Workshop

    NASA Technical Reports Server (NTRS)

    Stephens, David G. (Compiler)

    1992-01-01

    The fourth in a series of NASA/SAE Interior Noise Workshops was held on May 19 and 20, 1992. The theme of the workshop was new technology and applications for aircraft noise with emphasis on source noise prediction; cabin noise prediction; cabin noise control, including active and passive methods; and cabin interior noise procedures. This report is a compilation of the presentations made at the meeting which addressed the above issues.

  18. The Pope Air Force Base aircraft crash and burn disaster.

    PubMed

    Mozingo, David W; Barillo, David J; Holcomb, John B

    2005-01-01

    This report describes the initial hospital and burn center management of a mass casualty incident resulting from an aircraft crash and fire. One hundred thirty soldiers were injured, including 10 immediate fatalities. Womack Army Medical Center at Fort Bragg, North Carolina, managed the casualties and began receiving patients 15 minutes after the crash. As a result of repetitive training that included at least two mass casualty drills each year, the triage area and emergency department were cleared of all patients within 2 hours. Fifty patients were transferred to burn centers, including 43 patients to the US Army Institute of Surgical Research. This constitutes the largest single mass casualty incident experienced in the 57-year history of the Institute. All patients of the US Army Institute of Surgical Research survived to hospital discharge, and 34 returned to duty 3 months after the crash. The scenario of an on-ground aircraft explosion and fire approximates what might be seen as a result of an aircraft hijacking, bombing, or intentional crash. Lessons learned from this incident have utility in the planning of future response to such disasters.

  19. The Pope Air Force Base aircraft crash and burn disaster.

    PubMed

    Mozingo, David W; Barillo, David J; Holcomb, John B

    2005-01-01

    This report describes the initial hospital and burn center management of a mass casualty incident resulting from an aircraft crash and fire. One hundred thirty soldiers were injured, including 10 immediate fatalities. Womack Army Medical Center at Fort Bragg, North Carolina, managed the casualties and began receiving patients 15 minutes after the crash. As a result of repetitive training that included at least two mass casualty drills each year, the triage area and emergency department were cleared of all patients within 2 hours. Fifty patients were transferred to burn centers, including 43 patients to the US Army Institute of Surgical Research. This constitutes the largest single mass casualty incident experienced in the 57-year history of the Institute. All patients of the US Army Institute of Surgical Research survived to hospital discharge, and 34 returned to duty 3 months after the crash. The scenario of an on-ground aircraft explosion and fire approximates what might be seen as a result of an aircraft hijacking, bombing, or intentional crash. Lessons learned from this incident have utility in the planning of future response to such disasters. PMID:15756114

  20. Comfort and health in commercial aircraft: a literature review.

    PubMed

    Brundrett, G

    2001-03-01

    Air travel is becoming increasingly more accessible to people both through the availability of cheap flights and because the airlines are now able to cater for individuals of all ages and disabilities. The wide bodies of many new aircraft permit the airlines to have very flexible seating options. Airline operators currently have an important role in determining the comfort and spaciousness of the seating in their aircraft. Passengers who remain seated for the bulk of a flight may risk oedema or deep vein thrombosis. This could be particularly important for larger people in certain economy class seats. The absence of smoking on planes has encouraged designers to cut back on the rate of cabin ventilation and hence introduce filtered recirculated air to the aircraft cabin. In new planes the ventilation rate is under pilot control and savings (economies) can be achieved by using decreased ventilation. A lower ventilation rate may lead to 'less comfortable air quality' in some parts of the plane and an increased risk of possible cross-infection from other passengers on the flight. Technological advances in jet engine design has permitted larger passenger planes to fly longer distances and at greater altitudes than ever before. The higher flying altitude is associated with a lower cabin pressure, which has an important physiological effect on oxygen saturation in the blood of both crew and passengers, particularly for the very young, the elderly and those who are less fit.

  1. Air cycle machine for an aircraft environmental control system

    NASA Technical Reports Server (NTRS)

    Decrisantis, Angelo A. (Inventor); O'Coin, James R. (Inventor); Taddey, Edmund P. (Inventor)

    2010-01-01

    An ECS system includes an ACM mounted adjacent an air-liquid heat exchanger through a diffuser that contains a diffuser plate. The diffuser plate receives airflow from the ACM which strikes the diffuser plate and flows radially outward and around the diffuser plate and into the air-liquid heat exchanger to provide minimal pressure loss and proper flow distribution into the air-liquid heat exchanger with significantly less packaging space.

  2. Advanced air transport concepts. [review of design methods for very large aircraft

    NASA Technical Reports Server (NTRS)

    Molloy, J. K.

    1979-01-01

    The concepts of laminar flow control, very large all-wing aircraft, an aerial relay transportation system and alternative fuels, which would enable large improvements in fuel conservation in air transportation in the 1990's are discussed. Laminar boundary layer control through suction would greatly reduce skin friction and has been reported to reduce fuel consumption by up to 29%. Distributed load aircraft, in which all fuel and payload are carried in the wing and the fuselage is absent, permit the use of lighter construction materials and the elimination of fuselage and tail drag. Spanloader aircraft with laminar flow control could be used in an aerial relay transportation system which would employ a network of continuously flying liners supplied with fuel, cargo and crews by smaller feeder aircraft. Liquid hydrogen and methane fuels derived from coal are shown to be more weight efficient and less costly than coal-derived synthetic jet fuels.

  3. Divisible cabin for a windmill

    SciTech Connect

    Van Degeer, P. M.

    1985-07-02

    A cabin for a windmill comprises inherently rigid, self-supporting, relatively disengageable parts. Cabin parts which occasionally have to be submitted for repair and/or maintenance work are removable from the windmill. During the repair and/or maintenance work a part similar to the removed part of the cabin can be easily installed.

  4. Products of ozone-initiated chemistry in a simulated aircraft environment.

    PubMed

    Wisthaler, Armin; Tamás, Gyöngyi; Wyon, David P; Strøm-Tejsen, Peter; Space, David; Beauchamp, Jonathan; Hansel, Armin; Märk, Tilmann D; Weschler, Charles J

    2005-07-01

    We used proton-transfer-reaction mass spectrometry (PTR-MS) to examine the products formed when ozone reacted with the materials in a simulated aircraft cabin, including a loaded high-efficiency particulate air (HEPA) filter in the return air system. Four conditions were examined: cabin (baseline), cabin plus ozone, cabin plus soiled T-shirts (surrogates for human occupants), and cabin plus soiled T-shirts plus ozone. The addition of ozone to the cabin without T-shirts, at concentrations typically encountered during commercial air travel, increased the mixing ratio (v:v concentration) of detected pollutants from 35 ppb to 80 ppb. Most of this increase was due to the production of saturated and unsaturated aldehydes and tentatively identified low-molecular-weight carboxylic acids. The addition of soiled T-shirts, with no ozone present, increased the mixing ratio of pollutants in the cabin air only slightly, whereas the combination of soiled T-shirts and ozone increased the mixing ratio of detected pollutants to 110 ppb, with more than 20 ppb originating from squalene oxidation products (acetone, 4-oxopentanal, and 6-methyl-5-hepten-2-one). For the two conditions with ozone present, the more-abundant oxidation products included acetone/propanal (8-20 ppb), formaldehyde (8-10 ppb), nonanal (approximately 6 ppb), 4-oxopentanal (3-7 ppb), acetic acid (approximately 7 ppb), formic acid (approximately 3 ppb), and 6-methyl-5-hepten-2-one (0.5-2.5 ppb), as well as compounds tentatively identified as acrolein (0.6-1 ppb) and crotonaldehyde (0.6-0.8 ppb). The odor thresholds of certain products were exceeded. With an outdoor air exchange of 3 h(-1) and a recirculation rate of 20 h(-1), the measured ozone surface removal rate constant was 6.3 h(-1) when T-shirts were not present, compared to 11.4 h(-1) when T-shirts were present.

  5. Products of ozone-initiated chemistry in a simulated aircraft environment.

    PubMed

    Wisthaler, Armin; Tamás, Gyöngyi; Wyon, David P; Strøm-Tejsen, Peter; Space, David; Beauchamp, Jonathan; Hansel, Armin; Märk, Tilmann D; Weschler, Charles J

    2005-07-01

    We used proton-transfer-reaction mass spectrometry (PTR-MS) to examine the products formed when ozone reacted with the materials in a simulated aircraft cabin, including a loaded high-efficiency particulate air (HEPA) filter in the return air system. Four conditions were examined: cabin (baseline), cabin plus ozone, cabin plus soiled T-shirts (surrogates for human occupants), and cabin plus soiled T-shirts plus ozone. The addition of ozone to the cabin without T-shirts, at concentrations typically encountered during commercial air travel, increased the mixing ratio (v:v concentration) of detected pollutants from 35 ppb to 80 ppb. Most of this increase was due to the production of saturated and unsaturated aldehydes and tentatively identified low-molecular-weight carboxylic acids. The addition of soiled T-shirts, with no ozone present, increased the mixing ratio of pollutants in the cabin air only slightly, whereas the combination of soiled T-shirts and ozone increased the mixing ratio of detected pollutants to 110 ppb, with more than 20 ppb originating from squalene oxidation products (acetone, 4-oxopentanal, and 6-methyl-5-hepten-2-one). For the two conditions with ozone present, the more-abundant oxidation products included acetone/propanal (8-20 ppb), formaldehyde (8-10 ppb), nonanal (approximately 6 ppb), 4-oxopentanal (3-7 ppb), acetic acid (approximately 7 ppb), formic acid (approximately 3 ppb), and 6-methyl-5-hepten-2-one (0.5-2.5 ppb), as well as compounds tentatively identified as acrolein (0.6-1 ppb) and crotonaldehyde (0.6-0.8 ppb). The odor thresholds of certain products were exceeded. With an outdoor air exchange of 3 h(-1) and a recirculation rate of 20 h(-1), the measured ozone surface removal rate constant was 6.3 h(-1) when T-shirts were not present, compared to 11.4 h(-1) when T-shirts were present. PMID:16053080

  6. Design of a small personal air monitor and its application in aircraft.

    PubMed

    van Netten, Chris

    2009-01-15

    A small air sampling system using standard air filter sampling technology has been used to monitor the air in aircraft. The device is a small ABS constructed cylinder 5 cm in diameter and 9 cm tall and can be operated by non technical individuals at an instant notice. It is completely self contained with a 4 AAA cell power supply, DC motor, a centrifugal fan, and accommodates standard 37 mm filters and backup pads. The monitor is totally enclosed and pre assembled in the laboratory. A 45 degrees twist of the cap switches on the motor and simultaneously opens up the intake ports and exhaust ports allowing air to pass through the filter. A reverse 45 degrees twist of the cap switches off the motor and closes all intake and exhaust ports, completely enclosing the filter. The whole monitor is returned to the laboratory by standard mail for analysis and reassembly for future use. The sampler has been tested for electromagnetic interference and has been approved for use in aircraft during all phases of flight. A set of samples taken by a BAe-146-300 crew member during two flights in the same aircraft and analyzed by GC-MS, indicated exposure to tricresyl phosphate (TCP) levels ranging from 31 to 83 nanograms/m(3) (detection limit <4.5 nanograms/m(3)). The latter elevated level was associated with the use of the auxiliary power unit (APU) in the aircraft. It was concluded that the air sampler was capable of monitoring air concentrations of TCP isomers in aircraft above 4.5 nanogram/m(3).

  7. Design of a small personal air monitor and its application in aircraft.

    PubMed

    van Netten, Chris

    2009-01-15

    A small air sampling system using standard air filter sampling technology has been used to monitor the air in aircraft. The device is a small ABS constructed cylinder 5 cm in diameter and 9 cm tall and can be operated by non technical individuals at an instant notice. It is completely self contained with a 4 AAA cell power supply, DC motor, a centrifugal fan, and accommodates standard 37 mm filters and backup pads. The monitor is totally enclosed and pre assembled in the laboratory. A 45 degrees twist of the cap switches on the motor and simultaneously opens up the intake ports and exhaust ports allowing air to pass through the filter. A reverse 45 degrees twist of the cap switches off the motor and closes all intake and exhaust ports, completely enclosing the filter. The whole monitor is returned to the laboratory by standard mail for analysis and reassembly for future use. The sampler has been tested for electromagnetic interference and has been approved for use in aircraft during all phases of flight. A set of samples taken by a BAe-146-300 crew member during two flights in the same aircraft and analyzed by GC-MS, indicated exposure to tricresyl phosphate (TCP) levels ranging from 31 to 83 nanograms/m(3) (detection limit <4.5 nanograms/m(3)). The latter elevated level was associated with the use of the auxiliary power unit (APU) in the aircraft. It was concluded that the air sampler was capable of monitoring air concentrations of TCP isomers in aircraft above 4.5 nanogram/m(3). PMID:18801557

  8. Cabin fire simulator lavatory tests

    NASA Technical Reports Server (NTRS)

    Schutter, K. J.; Klinck, D. M.

    1980-01-01

    All tests were conducted in the Douglas Cabin Fire Simulator under in-flight ventilation conditions. All tests were allowed to continue for a period of one hour. Data obtained during these tests included: heat flux and temperatures of the lavatory; cabin temperature variations; gas analyses for O2, CO2, CO, HF, HC1, and HCN; respiration and electrocardiogram data on instrumented animal subjects (rats) exposed in the cabin; and color motion pictures. All tests resulted in a survivable cabin condition; however, occupants of the cabin would have been subjected to noxious fumes.

  9. Air Force F-16 Aircraft Engine Aerosol Emissions Under Cruise Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Anderson, Bruce E.; Cofer, W. Randy, III; McDougal, David S.

    1999-01-01

    Selected results from the June 1997 Third Subsonic Assessment Near-Field Interactions Flight (SNIF-III) Experiment are documented. The primary objectives of the SNIF-III experiment were to determine the partitioning and abundance of sulfur species and to examine the formation and growth of aerosol particles in the exhaust of F-16 aircraft as a function of atmospheric and aircraft operating conditions and fuel sulfur concentration. This information is, in turn, being used to address questions regarding the fate of aircraft fuel sulfur impurities and to evaluate the potential of their oxidation products to perturb aerosol concentrations and surface areas in the upper troposphere. SNIF-III included participation of the Vermont and New Jersey Air National Guard F-16's as source aircraft and the Wallops Flight Facility T-39 Sabreliner as the sampling platform. F-16's were chosen as a source aircraft because they are powered by the modern F-100 Series 220 engine which is projected to be representative of future commercial aircraft engine technology. The T-39 instrument suite included sensors for measuring volatile and non-volatile condensation nuclei (CN), aerosol size distributions over the range from 0.1 to 3.0 (micro)m, 3-D winds, temperature, dewpoint, carbon dioxide (CO2), sulfur dioxide (SO2), sulfuric acid (H2SO4), and nitric acid (HNO3).

  10. Development and evaluation of a profile negotiation process for integrating aircraft and air traffic control automation

    NASA Technical Reports Server (NTRS)

    Green, Steven M.; Denbraven, Wim; Williams, David H.

    1993-01-01

    The development and evaluation of the profile negotiation process (PNP), an interactive process between an aircraft and air traffic control (ATC) that integrates airborne and ground-based automation capabilities to determine conflict-free trajectories that are as close to an aircraft's preference as possible, are described. The PNP was evaluated in a real-time simulation experiment conducted jointly by NASA's Ames and Langley Research Centers. The Ames Center/TRACON Automation System (CTAS) was used to support the ATC environment, and the Langley Transport Systems Research Vehicle (TSRV) piloted cab was used to simulate a 4D Flight Management System (FMS) capable aircraft. Both systems were connected in real time by way of voice and data lines; digital datalink communications capability was developed and evaluated as a means of supporting the air/ground exchange of trajectory data. The controllers were able to consistently and effectively negotiate nominally conflict-free vertical profiles with the 4D-equipped aircraft. The actual profiles flown were substantially closer to the aircraft's preference than would have been possible without the PNP. However, there was a strong consensus among the pilots and controllers that the level of automation of the PNP should be increased to make the process more transparent. The experiment demonstrated the importance of an aircraft's ability to accurately execute a negotiated profile as well as the need for digital datalink to support advanced air/ground data communications. The concept of trajectory space is proposed as a comprehensive approach for coupling the processes of trajectory planning and tracking to allow maximum pilot discretion in meeting ATC constraints.

  11. Study of a very low cost air combat maneuvering trainer aircraft

    NASA Technical Reports Server (NTRS)

    Hill, G. C.; Bowles, J. V.

    1976-01-01

    A very low cost aircraft for performing Air Combat Maneuvering (ACM) training was studied using the BD-5J sport plane as a point of departure. The installation of a larger engine and increased fuel capacity were required to meet the performance and mission objectives. Reduced wing area increased the simulation of the ACM engagement, and a comparison with current tactical aircraft is presented. Other factors affecting the training transfer are considered analytically, but a flight evaluation is recommended to determine the concept utility.

  12. Aircraft/Air Traffic Management Functional Analysis Model: Technical Description. 2.0

    NASA Technical Reports Server (NTRS)

    Etheridge, Melvin; Plugge, Joana; Retina, Nusrat

    1998-01-01

    The Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 (FAM 2.0), is a discrete event simulation model designed to support analysis of alternative concepts in air traffic management and control. FAM 2.0 was developed by the Logistics Management Institute (LMI) under a National Aeronautics and Space Administration (NASA) contract. This document provides a technical description of FAM 2.0 and its computer files to enable the modeler and programmer to make enhancements or modifications to the model. Those interested in a guide for using the model in analysis should consult the companion document, Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 Users Manual.

  13. Air pollution from aircraft. [jet exhaust - aircraft fuels/combustion efficiency

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Chigier, N. A.

    1975-01-01

    A model which predicts nitric oxide and carbon monoxide emissions from a swirl can modular combustor is discussed. A detailed analysis of the turbulent fuel-air mixing process in the swirl can module wake region is reviewed. Hot wire anemometry was employed, and gas sampling analysis of fuel combustion emissions were performed.

  14. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review

    NASA Astrophysics Data System (ADS)

    Masiol, Mauro; Harrison, Roy M.

    2014-10-01

    Civil aviation is fast-growing (about +5% every year), mainly driven by the developing economies and globalisation. Its impact on the environment is heavily debated, particularly in relation to climate forcing attributed to emissions at cruising altitudes and the noise and the deterioration of air quality at ground-level due to airport operations. This latter environmental issue is of particular interest to the scientific community and policymakers, especially in relation to the breach of limit and target values for many air pollutants, mainly nitrogen oxides and particulate matter, near the busiest airports and the resulting consequences for public health. Despite the increased attention given to aircraft emissions at ground-level and air pollution in the vicinity of airports, many research gaps remain. Sources relevant to air quality include not only engine exhaust and non-exhaust emissions from aircraft, but also emissions from the units providing power to the aircraft on the ground, the traffic due to the airport ground service, maintenance work, heating facilities, fugitive vapours from refuelling operations, kitchens and restaurants for passengers and operators, intermodal transportation systems, and road traffic for transporting people and goods in and out to the airport. Many of these sources have received inadequate attention, despite their high potential for impact on air quality. This review aims to summarise the state-of-the-art research on aircraft and airport emissions and attempts to synthesise the results of studies that have addressed this issue. It also aims to describe the key characteristics of pollution, the impacts upon global and local air quality and to address the future potential of research by highlighting research needs.

  15. Venturi air-jet vacuum ejectors for high-volume atmospheric sampling on aircraft platforms

    NASA Technical Reports Server (NTRS)

    Hill, Gerald F.; Sachse, Glen W.; Young, Douglas C.; Wade, Larry O.; Burney, Lewis G.

    1992-01-01

    Documentation of the installation and use of venturi air-jet vacuum ejectors for high-volume atmospheric sampling on aircraft platforms is presented. Information on the types of venturis that are useful for meeting the pumping requirements of atmospheric-sampling experiments is also presented. A description of the configuration and installation of the venturi system vacuum line is included with details on the modifications that were made to adapt a venturi to the NASA Electra aircraft at GSFC, Wallops Flight Facility. Flight test results are given for several venturis with emphasis on applications to the Differential Absorption Carbon Monoxide Measurement (DACOM) system at LaRC. This is a source document for atmospheric scientists interested in using the venturi systems installed on the NASA Electra or adapting the technology to other aircraft.

  16. Study of air emissions related to aircraft deicing

    SciTech Connect

    Zarubiak, D.C.Z.; DeToro, J.A.; Menon, R.P.

    1997-12-31

    This paper outlines the results of a study that was conducted by Trinity Consultants Incorporated (Trinity) to estimate the airborne emissions of glycol from Type 1 Deicer fluid and potential exposure of ground personnel during routine deicing of aircraft. The study involved the experimental measurement of Type 1 Deicer fluid vapor emissions by Southern Research Institute (SRI, Research Triangle Park, NC). An open path Fourier Transform Infrared (FTIR) spectroscopic technique developed by SRI was used during a simulated airplane deicing event. The emissions measurement data are analyzed to obtain appropriate emission rates for an atmospheric dispersion modeling analysis. The modeled gaseous Type 1 Deicer fluid concentrations are determined from calculated emission rates and selected meteorological conditions. A propylene glycol (PG)-based Type 1 Deicer fluid was used. In order to examine the effects of the assumptions that are made for the development of the emission quantification and dispersion modeling methodologies, various scenarios are evaluated. A parametric analysis evaluates the effect of variations in the following parameters on the results of the study: glycol concentrations in deicing fluids, error limits of emission measurements, emission source heights, evaporation rate for various wind speeds, wind directions over typical physical layouts, and background (ambient) Type 1 Deicer fluid concentrations. The emissions for an EG based Type 1 Deicing fluid are expected to be between 80 and 85% of the reported data. In general, the model shows the region of maximum concentrations is located between 20 and 50 meters downwind from the trailing edge of the wing. This range is consistent with experimental findings. Depending on the specific modeled scenarios, maximum glycol concentrations are found to generally range between 50 and 500 milligrams per cubic meter.

  17. 89. Puckett Cabin. The cabin constructed by John Puckett around ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    89. Puckett Cabin. The cabin constructed by John Puckett around 1865 is a good example of the one-room log cabin once common to the mountains. This was the home of Mrs. Oleana Puckett who died in 1939 at the age of 102. She worked as a midwife in the surrounding area, assisting in the delivery of more than 1,000 children. View looking east. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  18. Cascade Optimization Strategy for Aircraft and Air-Breathing Propulsion System Concepts

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Lavelle, Thomas M.; Hopkins, Dale A.; Coroneos, Rula M.

    1996-01-01

    Design optimization for subsonic and supersonic aircraft and for air-breathing propulsion engine concepts has been accomplished by soft-coupling the Flight Optimization System (FLOPS) and the NASA Engine Performance Program analyzer (NEPP), to the NASA Lewis multidisciplinary optimization tool COMETBOARDS. Aircraft and engine design problems, with their associated constraints and design variables, were cast as nonlinear optimization problems with aircraft weight and engine thrust as the respective merit functions. Because of the diversity of constraint types and the overall distortion of the design space, the most reliable single optimization algorithm available in COMETBOARDS could not produce a satisfactory feasible optimum solution. Some of COMETBOARDS' unique features, which include a cascade strategy, variable and constraint formulations, and scaling devised especially for difficult multidisciplinary applications, successfully optimized the performance of both aircraft and engines. The cascade method has two principal steps: In the first, the solution initiates from a user-specified design and optimizer, in the second, the optimum design obtained in the first step with some random perturbation is used to begin the next specified optimizer. The second step is repeated for a specified sequence of optimizers or until a successful solution of the problem is achieved. A successful solution should satisfy the specified convergence criteria and have several active constraints but no violated constraints. The cascade strategy available in the combined COMETBOARDS, FLOPS, and NEPP design tool converges to the same global optimum solution even when it starts from different design points. This reliable and robust design tool eliminates manual intervention in the design of aircraft and of air-breathing propulsion engines where it eases the cycle analysis procedures. The combined code is also much easier to use, which is an added benefit. This paper describes COMETBOARDS

  19. 76 FR 54528 - Standard Operating Procedures (SOP) of the Aircraft Certification Service (AIR) Process for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... Certification Service, Aircraft Engineering Division, 950 L'Enfant Plaza, 5th Floor, SW., Washington, DC 20024... Administration, Aircraft Certification Service, Aircraft Engineering Division, Technical and Administrative..., Aircraft Engineering Division, Aircraft Certification Service. BILLING CODE 4910-13-P...

  20. Spacecraft Crew Cabin Condensation Control

    NASA Technical Reports Server (NTRS)

    Carrillo, Laurie Y.; Rickman, Steven L.; Ungar, Eugene K.

    2013-01-01

    A report discusses a new technique to prevent condensation on the cabin walls of manned spacecraft exposed to the cold environment of space, as such condensation could lead to free water in the cabin. This could facilitate the growth of mold and bacteria, and could lead to oxidation and weakening of the cabin wall. This condensation control technique employs a passive method that uses spacecraft waste heat as the primary wallheating mechanism. A network of heat pipes is bonded to the crew cabin pressure vessel, as well as the pipes to each other, in order to provide for efficient heat transfer to the cabin walls and from one heat pipe to another. When properly sized, the heat-pipe network can maintain the crew cabin walls at a nearly uniform temperature. It can also accept and distribute spacecraft waste heat to maintain the pressure vessel above dew point.

  1. Statistical approaches for identifying air pollutant mixtures associated with aircraft departures at Los Angeles International Airport.

    PubMed

    Diez, David M; Dominici, Francesca; Zarubiak, Darcy; Levy, Jonathan I

    2012-08-01

    Aircraft departures emit multiple pollutants common to other near-airport sources, making it challenging to determine relative source contributions. While there may not be unique tracers of aircraft emissions, examination of multipollutant concentration patterns in combination with flight activity can facilitate source attribution. In this study, we examine concentrations of continuously monitored air pollutants measured in 2008 near a departure runway at Los Angeles International Airport (LAX), considering single-pollutant associations with landing and takeoff (LTO) of the aircraft (LTO activity, weighted by LTO cycle fuel burn), as well as multipollutant predictors of binary LTO activity. In the single-pollutant analyses, one-minute average concentrations of carbon monoxide, carbon dioxide, nitrogen oxides, and sulfur dioxide are positively associated with fuel burn-weighted departures on the runway proximate to the monitor, whereas ozone is negatively associated with fuel burn-weighted departures. In analyses in which the flight departure is predicted by pollutant concentrations, carbon dioxide and nitrogen oxides are the best individual predictors, but including all five pollutants greatly increases the power of prediction compared to single-pollutant models. Our results demonstrate that air pollution impacts from aircraft departures can be isolated using time-resolved monitoring data, and that combinations of simultaneously measured pollutants can best identify contributions from flight activity.

  2. Design of an air traffic computer simulation system to support investigation of civil tiltrotor aircraft operations

    NASA Technical Reports Server (NTRS)

    Rogers, Ralph V.

    1992-01-01

    This research project addresses the need to provide an efficient and safe mechanism to investigate the effects and requirements of the tiltrotor aircraft's commercial operations on air transportation infrastructures, particularly air traffic control. The mechanism of choice is computer simulation. Unfortunately, the fundamental paradigms of the current air traffic control simulation models do not directly support the broad range of operational options and environments necessary to study tiltrotor operations. Modification of current air traffic simulation models to meet these requirements does not appear viable given the range and complexity of issues needing resolution. As a result, the investigation of systemic, infrastructure issues surrounding the effects of tiltrotor commercial operations requires new approaches to simulation modeling. These models should be based on perspectives and ideas closer to those associated with tiltrotor air traffic operations.

  3. [Life support of the Mars exploration crew. Control of a zeolite system for carbon dioxide removal from space cabin air within a closed air regeneration cycle].

    PubMed

    Chekov, Iu F

    2009-01-01

    The author describes a zeolite system for carbon dioxide removal integrated into a closed air regeneration cycle aboard spacecraft. The continuous operation of a double-adsorbent regeneration system with pCO2-dependable productivity is maintained through programmable setting of adsorption (desorption) semicycle time. The optimal system regulation curve is presented within the space of statistical performance family obtained in quasi-steady operating modes with controlled parameters of the recurrent adsorption-desorption cycle. The automatically changing system productivity ensures continuous intake of concentrated CO2. Control of the adsorption-desorption process is based on calculation of the differential adsorption (desorption) heat from gradient of adsorbent and test inert substance temperatures. The adaptive algorithm of digital control is implemented through the standard spacecraft interface with the board computer system and programmable microprocessor-based controllers. PMID:19621802

  4. Aircraft disinsection: A guide for military and civilian air carriers; Desinsectisation des aeronefs: Un guide a l`intention des responsables des transports aeriens civils et militaires

    SciTech Connect

    Ellis, R.A

    1996-05-01

    To prevent risks to air crews health, aircraft safety, and industry, Canada`s Department of National Defense (DND) has recently reviewed the potential problems associated with aircraft disinsection. Various directives for air crew, maintenance personnel and preventative medicine technicians to follow have been developed and updated periodically. This aircraft disinsection review is part of the latest effort to revise DND`s administrative orders on aircraft disinsection and could be a model for other military and civilian air carriers.

  5. SR-71B - in Flight with F-18 Chase Aircraft - View from Air Force Tanker

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA 831, an SR-71B operated by the Dryden Flight Research Center, Edwards, California, cruises over the Mojave Desert with an F/A-18 Hornet flying safety chase. They were photographed on a 1996 mission from an Air Force refueling tanker The F/A-18 Hornet is used primarily as a safety chase and support aircraft at Dryden. As support aircraft, the F-18s are used for safety chase, pilot proficiency and aerial photography. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used

  6. Respiratory infections during air travel.

    PubMed

    Leder, K; Newman, D

    2005-01-01

    An increasing number of individuals undertake air travel annually. Issues regarding cabin air quality and the potential risks of transmission of respiratory infections during flight have been investigated and debated previously, but, with the advent of severe acute respiratory syndrome and influenza outbreaks, these issues have recently taken on heightened importance. Anecdotally, many people complain of respiratory symptoms following air travel. However, studies of ventilation systems and patient outcomes indicate the spread of pathogens during flight occurs rarely. In the present review, aspects of the aircraft cabin environment that affect the likelihood of transmission of respiratory pathogens on airplanes are outlined briefly and evidence for the occurrence of outbreaks of respiratory illness among airline passengers are reviewed.

  7. The problem of cooling an air-cooled cylinder on an aircraft engine

    NASA Technical Reports Server (NTRS)

    Brevoort, M J; Joyner, U T

    1941-01-01

    An analysis of the cooling problem has been to show by what means the cooling of an air-cooled aircraft engine may be improved. Each means of improving cooling is analyzed on the basis of effectiveness in cooling with respect to power for cooling. The altitude problem is analyzed for both supercharged and unsupercharged engines. The case of ground cooling is also discussed. The heat-transfer process from the hot gases to the cylinder wall is discussed on the basis of the fundamentals of heat transfer and thermodynamics. Adiabatic air-temperature rise at a stagnation point in compressible flow is shown to depend only on the velocity of flow.

  8. 45. Peaks of Otter, Rosser Cabin. The cabin had been ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. Peaks of Otter, Rosser Cabin. The cabin had been interpreted by the National Park Service ad Polly Woods Ordinary since its relocation from the present location of Abbott Lake. Looking north. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  9. Formal Methods in Air Traffic Management: The Case of Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar A.

    2015-01-01

    As the technological and operational capabilities of unmanned aircraft systems (UAS) continue to grow, so too does the need to introduce these systems into civil airspace. Unmanned Aircraft Systems Integration in the National Airspace System is a NASA research project that addresses the integration of civil UAS into non-segregated airspace operations. One of the major challenges of this integration is the lack of an onboard pilot to comply with the legal requirement that pilots see and avoid other aircraft. The need to provide an equivalent to this requirement for UAS has motivated the development of a detect and avoid (DAA) capability to provide the appropriate situational awareness and maneuver guidance in avoiding and remaining well clear of traffic aircraft. Formal methods has played a fundamental role in the development of this capability. This talk reports on the formal methods work conducted under NASA's Safe Autonomous System Operations project in support of the development of DAA for UAS. This work includes specification of low-level and high-level functional requirements, formal verification of algorithms, and rigorous validation of software implementations. The talk also discusses technical challenges in formal methods research in the context of the development and safety analysis of advanced air traffic management concepts.

  10. Formaldehyde Concentration Dynamics of the International Space Station Cabin Atmosphere

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    2005-01-01

    Formaldehyde presents a significant challenge to maintaining cabin air quality on board crewed spacecraft. Generation sources include offgassing from a variety of non-metallic materials as well as human metabolism. Because generation sources are pervasive and human health can be affected by continual exposure to low concentrations, toxicology and air quality control engineering experts jointly identified formaldehyde as a key compound to be monitored as part the International Space Station's (ISS) environmental health monitoring and maintenance program. Data acquired from in-flight air quality monitoring methods are the basis for assessing the cabin environment's suitability for long-term habitation and monitoring the performance of passive and active controls that are in place to minimize crew exposure. Formaldehyde concentration trends and dynamics served in the ISS cabin atmosphere are reviewed implications to present and future flight operations discussed.

  11. Cabin fuselage structural design with engine installation and control system

    NASA Technical Reports Server (NTRS)

    Balakrishnan, Tanapaal; Bishop, Mike; Gumus, Ilker; Gussy, Joel; Triggs, Mike

    1994-01-01

    Design requirements for the cabin, cabin system, flight controls, engine installation, and wing-fuselage interface that provide adequate interior volume for occupant seating, cabin ingress and egress, and safety are presented. The fuselage structure must be sufficient to meet the loadings specified in the appropriate sections of Federal Aviation Regulation Part 23. The critical structure must provide a safe life of 10(exp 6) load cycles and 10,000 operational mission cycles. The cabin seating and controls must provide adjustment to account for various pilot physiques and to aid in maintenance and operation of the aircraft. Seats and doors shall not bind or lockup under normal operation. Cabin systems such as heating and ventilation, electrical, lighting, intercom, and avionics must be included in the design. The control system will consist of ailerons, elevator, and rudders. The system must provide required deflections with a combination of push rods, bell cranks, pulleys, and linkages. The system will be free from slack and provide smooth operation without binding. Environmental considerations include variations in temperature and atmospheric pressure, protection against sand, dust, rain, humidity, ice, snow, salt/fog atmosphere, wind and gusts, and shock and vibration. The following design goals were set to meet the requirements of the statement of work: safety, performance, manufacturing and cost. To prevent the engine from penetrating the passenger area in the event of a crash was the primary safety concern. Weight and the fuselage aerodynamics were the primary performance concerns. Commonality and ease of manufacturing were major considerations to reduce cost.

  12. Sonic booms produced by US Air Force and US Navy aircraft: Measured data

    NASA Astrophysics Data System (ADS)

    Lee, R. A.; Downing, J. M.

    1991-01-01

    A sonic measurement program was conducted at Edwards Air Force Base. Sonic boom signatures, produced by F-4, F-14, F-15, F-16, F-18, F-111, SR-71, and T-38 aircraft, were obtained under the flight track and at various lateral sites which were located up to 18 miles off-track. Thirteen monitors developed by Det 1 AL/BBE were used to collect full sonic boom waveforms, and nine modified dosimeters were used to collect supplemental peak overpressures and the C-weighted Sound Exposure Levels (CSEL) for 43 near steady supersonic flights of the above United States Air Force and United States Navy aircraft. This report describes the measured database (BOOMFILE) that contains sonic boom signatures and overpressures, aircraft tracking, and local weather data. These measured data highlight the major influences on sonic boom propagation and generation. The data from this study show that a constant offset of 26 from the peak overpressure expressed in dB gives a good estimate of the CSEL of a sonic boom.

  13. Emissions of greenhouse gases and air pollutants from commercial aircraft at international airports in Korea

    NASA Astrophysics Data System (ADS)

    Song, Sang-Keun; Shon, Zang-Ho

    2012-12-01

    The emissions of greenhouse gases (GHGs) and air pollutants from aircraft in the boundary layer at four major international airports in Korea over a two-year period (2009-2010) were estimated using the Emissions and Dispersion Modeling System (EDMS) (i.e. activity-based (Landing/Take-Off (LTO) cycle) methodology). Both domestic and international LTOs and ground support equipment at the airports were considered. The average annual emissions of GHGs (CO2, N2O, CH4 and H2O) at all four airports during the study period were 1.11 × 103, 1.76 × 10-2, -1.85 × 10-3 and 3.84 × 108 kt yr-1, respectively. The emissions of air pollutants (NOx, CO, VOCs and particulate matter) were 5.20, 4.12, 7.46 × 10-1 and 3.37 × 10-2 kt yr-1, respectively. The negative CH4 emission indicates the consumption of atmospheric CH4 in the engine. The monthly and daily emissions of GHGs and air pollutants showed no significant variations at all airports examined. The emissions of GHGs and air pollutants for each aircraft operational mode differed considerably, with the largest emission observed in taxi-out mode.

  14. Application of variable-sweep wings to commuter aircraft

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Beissner, F. L., Jr.; Lovell, W. A.; Price, J. E.; Turriiziani, R. V.; Washburn, F. F.

    1983-01-01

    The effects of using variable-sweep wings on the riding quality and mission-performance characteristics of commuter-type aircraft were studied. A fixed-wing baseline vehicle and a variable-sweep version of the baseline were designed and evaluated. Both vehicles were twin-turboprop, pressurized-cabin, 30-passenger commuter aircraft with identical mission requirements. Mission performance was calculated with and without various ride-quality constraints for several combinations of cruise altitude and stage lengths. The variable-sweep aircraft had a gross weight of almost four percent greater than the fixed-wing baseline in order to meet the design-mission requirements. In smooth air, the variable sweep configuration flying with low sweep had a two to three percent fuel-use penalty. However, the imposition of quality constraints in rough air can result in advantages in both fuel economy and flight time for the variable-sweep vehicle flying with high sweep.

  15. An Inter-comparative Study of the Effects of Aircraft on Surface Air Quality

    NASA Astrophysics Data System (ADS)

    Cameron, M. A.; Jacobson, M. Z.; Barrett, S. R. H.; Bian, H.; Chen, C. C.; Eastham, S. D.; Gettelman, A.; Khodayari, A.; Liang, Q.; Phoenix, D. B.; Selkirk, H. B.; Unger, N.; Wuebbles, D. J.; Yue, X.

    2015-12-01

    This study inter-compares, among five global models, the potential impacts of all commercial aircraft emissions worldwide on surface ozone and PM2.5. The models include climate-response models (CRMs) with interactive meteorology, chemical-transport models (CTMs) with prescribed meteorology, and models that integrate aspects of both. Previously, few studies have addressed the effects of cruise-altitude aircraft emissions on surface air quality, and each has provided a marginally different result. Here, model inputs are substantially harmonized in an effort to achieve a consensus about the state of understanding of impacts of 2006 commercial aviation emissions. Whereas, all models find that aircraft increase near-surface ozone (0.4 to 1.9% globally), perturbations in the Northern Hemisphere are highest in winter, when ambient ozone levels are lower and potentially of not as much concern to human health compared to the higher ozone in the summer months. Changes in surface-level PM2.5 in the CTMs (0.14 to 0.4%) and CRMs (-1.9 to 1.2%) may depend on highly-varying background aerosol fields among models and the inclusion of feedbacks between aircraft emissions and changes in meteorology. The CTMs tend to show an increase in surface PM2.5 primarily over high-traffic regions in the North American mid-latitudes. The CRMs, on the other hand, demonstrate the effects of changing meteorological fields and potential feedbacks on aviation emission impacts, and exhibit large perturbations over regions where natural emissions (e.g., soil dust and sea spray) are abundant. Excluding these emissions in the CRMs results in a smaller-in-magnitude surface change due to aviation. The changes in ozone and PM2.5 found here may be used to estimate ranges in the net impacts of aircraft on human health.

  16. An outlook for cargo aircraft of the future. [assessment of the future of air cargo by analyzing statistics and trends

    NASA Technical Reports Server (NTRS)

    Nicks, O. W.; Whitehead, A. H., Jr.; Alford, W. J., Jr.

    1975-01-01

    An assessment is provided of the future of air cargo by analyzing air cargo statistics and trends, by noting air cargo system problems and inefficiencies, by analyzing characteristics of air-eligible commodities, and by showing the promise of new technology for future cargo aircraft with significant improvements in costs and efficiency. NASA's proposed program is reviewed which would sponsor the research needed to provide for development of advanced designs by 1985.

  17. ADS-B within a Multi-Aircraft Simulation for Distributed Air-Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Palmer, Michael T.; Chung, William W.; Loveness, Ghyrn W.

    2004-01-01

    Automatic Dependent Surveillance Broadcast (ADS-B) is an enabling technology for NASA s Distributed Air-Ground Traffic Management (DAG-TM) concept. DAG-TM has the goal of significantly increasing capacity within the National Airspace System, while maintaining or improving safety. Under DAG-TM, aircraft exchange state and intent information over ADS-B with other aircraft and ground stations. This information supports various surveillance functions including conflict detection and resolution, scheduling, and conformance monitoring. To conduct more rigorous concept feasibility studies, NASA Langley Research Center s PC-based Air Traffic Operations Simulation models a 1090 MHz ADS-B communication structure, based on industry standards for message content, range, and reception probability. The current ADS-B model reflects a mature operating environment and message interference effects are limited to Mode S transponder replies and ADS-B squitters. This model was recently evaluated in a Joint DAG-TM Air/Ground Coordination Experiment with NASA Ames Research Center. Message probability of reception vs. range was lower at higher traffic levels. The highest message collision probability occurred near the meter fix serving as the confluence for two arrival streams. Even the highest traffic level encountered in the experiment was significantly less than the industry standard "LA Basin 2020" scenario. Future studies will account for Mode A and C message interference (a major effect in several industry studies) and will include Mode A and C aircraft in the simulation, thereby increasing the total traffic level. These changes will support ongoing enhancements to separation assurance functions that focus on accommodating longer ADS-B information update intervals.

  18. 14 CFR 298.63 - Reporting of aircraft operating expenses and related statistics by small certificated air carriers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and related statistics by small certificated air carriers. 298.63 Section 298.63 Aeronautics and Space... aircraft operating expenses and related statistics by small certificated air carriers. (a) Each small... Related Statistics.” This schedule shall be filed quarterly as prescribed in § 298.60. Data reported...

  19. 14 CFR 298.63 - Reporting of aircraft operating expenses and related statistics by small certificated air carriers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and related statistics by small certificated air carriers. 298.63 Section 298.63 Aeronautics and Space... aircraft operating expenses and related statistics by small certificated air carriers. (a) Each small... Related Statistics.” This schedule shall be filed quarterly as prescribed in § 298.60. Data reported...

  20. 14 CFR 298.63 - Reporting of aircraft operating expenses and related statistics by small certificated air carriers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and related statistics by small certificated air carriers. 298.63 Section 298.63 Aeronautics and Space... aircraft operating expenses and related statistics by small certificated air carriers. (a) Each small... Related Statistics.” This schedule shall be filed quarterly as prescribed in § 298.60. Data reported...

  1. 14 CFR 298.63 - Reporting of aircraft operating expenses and related statistics by small certificated air carriers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and related statistics by small certificated air carriers. 298.63 Section 298.63 Aeronautics and Space... aircraft operating expenses and related statistics by small certificated air carriers. (a) Each small... Related Statistics.” This schedule shall be filed quarterly as prescribed in § 298.60. Data reported...

  2. Determination of cooling air mass flow for a horizontally-opposed aircraft engine installation

    NASA Technical Reports Server (NTRS)

    Miley, S. J.; Cross, E. J., Jr.; Ghomi, N. A.; Bridges, P. D.

    1979-01-01

    The relationship between the amount of cooling air flow and the corresponding flow pressure difference across an aircraft engine was investigated in flight and on the ground. The flight test results were consistent with theory, but indicated a significant installation leakage problem. A ground test blower system was used to identify and reduce the leakage. The correlation between ground test cell determined engine orifice characteristics and flight measurements showed good agreement if the engine pressure difference was based on total pressure rather than static pressure.

  3. Learning Styles of Pilots Currently Qualified in United States Air Force Aircraft

    NASA Technical Reports Server (NTRS)

    Kanske, Craig A.

    2001-01-01

    Kolb's Learning Style Inventory was used to identify the predominant learning styles of pilots currently qualified in United States Air Force aircraft. The results indicate that these pilots show a significant preference for facts and things over people and feelings. By understanding the preferred learning styles of the target population, course material can be developed that take advantage of the strengths of these learning styles. This information can be especially useful in the future design of cockpit resource management training. The training program can be developed to demonstrate both that there are different learning styles and that it is possible to take advantage of the relative strengths of each of these learning styles.

  4. Comparison of Profiling Microwave Radiometer, Aircraft, and Radiosonde Measurements From the Alliance Icing Research Study (AIRS)

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.

    2001-01-01

    Measurements from a profiling microwave radiometer are compared to measurements from a research aircraft and radiosondes. Data compared is temperature, water vapor, and liquid water profiles. Data was gathered at the Alliance Icing Research Study (AIRS) at Mirabel Airport outside Montreal, Canada during December 1999 and January 2000. All radiometer measurements were found to lose accuracy when the radome was wet. When the radome was not wetted, the radiometer was seen to indicate an inverted distribution of liquid water within a cloud. When the radiometer measurements were made at 15 deg. instead of the standard zenith, the measurements were less accurate.

  5. Proposal for a low cost close air support aircraft for the year 2000: The Raptor

    NASA Technical Reports Server (NTRS)

    Brown, Jerome D.; Dewitt, Ward S.; Mcdonald, Mark; Riley, John W.; Roberts, Anthony E.; Watson, Sean; Whelan, Margaret M.

    1991-01-01

    The Raptor is a proposed low cost Close Air Support (CAS) aircraft for the U.S. Military. The Raptor incorporates a 'cranked arrow' wing planform, and uses canards instead of a traditional horizontal tail. The Raptor is designed to be capable of responsive delivery of effective ordnance in close proximity to friendly ground forces during the day, night, and 'under the weather' conditions. Details are presented of the Raptor's mission, configuration, performance, stability and control, ground support, manufacturing, and overall cost to permit engineering evaluation of the proposed design. A description of the design process and analysis methods used is also provided.

  6. Operational benefits from the Terminal Configured Vehicle. [aircraft equipment for air traffic improvement

    NASA Technical Reports Server (NTRS)

    Reeder, J. P.; Schmitz, R. A.

    1978-01-01

    The objective of Terminal Configured Vehicle (TCV) research activity is to provide improvements which lead to increased airport and runway capacity, increasing air traffic controller productivity, energy efficient terminal area operations, reduced weather minima with safety, and reduced community noise by use of appropriate measures. Some early results of this research activity are discussed, and present and future research needs to meet the broad research objectives are defined. Particular consideration is given to the development of the TCV B-737 aircraft, the integration of the TCV with MLS, and avionics configurations, flight profiles, and manually controlled approaches for TCV. Some particular test demonstrations are discussed.

  7. German Air Forces experiences with plastic media blasting and future requirements

    NASA Astrophysics Data System (ADS)

    Stoermer, Matthias

    1993-03-01

    German Air Force (GAF) has been researching a method of paint removal for a couple of years to replace the chemical method still in use. This is to improve corrosion prevention, environmental protection and health care. With the support of German aerospace company MBB and the University of the Armed Forces in Munich GAF selected Plastic Media Blasting (PMB) as the most suitable method. Having a stripping facility for the entire aircraft at MBB Manching already in existence, GAF decided that the next step forward to gain more experiences is to establish a smaller 'stripping cabin' at an air force base. This cabin is suitable for stripping removable parts and components of aircraft and equipment with the max. size of a half dismantled TORNADO wing. With these gained experiences GAF will be in position to formulate the specific requirements for an entire on-base aircraft stripping plant which will be suitable for F-4's, TORNADO's and EFA's, too.

  8. In-cabin ultrafine particle dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Bin

    To assess the total human health risks associated with human exposure to ultrafine particle (UFP), the concentrations and fates of UFPs in the in-cabin atmospheres must be understood. In order to assess human exposure more accurately and further prevent adverse health effects from UFP exposure in the in-cabins, it is essential to gain insight into UFP transport dynamics between in-cabin and outside atmospheres and the factors that are able to affect them. In this dissertation, mathematical model are developed and formulated as tools to improve the understanding of UFP dynamics in the in-cabin atmosphere. Under three different ventilation conditions, (i) Fan off-recirculation (RC) off, (ii) Fan on-RC off, and (iii) Fan on-RC on, the average modeled UFP I/O ratios were found to be 0.40, 0.25 and 0.10, respectively, and agree with the experimental data very well. Then, analysis focused on how the factors, such as ventilation settings, vehicle speed, filtration, penetration, and deposition, affect I/O ratios in broader categories of vehicle cabin microenvironments. Ventilation is the only mechanical process of exchanging air between the in-cabin and the outside. Under condition (ii), I/O ratio that varies from 0.2 to 0.7 was proportional to the airflow rate in the range of 0-360 m3/h. Under condition (iii), the modeled I/O ratio was inversely proportional to the airflow rate from mechanical ventilation within the range of 0.15-0.45 depending on the particle size. Significant variability of the penetration factor (5˜20%) was found due to the pressure difference. A coefficient "B" was successfully introduced to account for the electric charge effect on penetration factors. The effect of penetration on the I/O ratio was then evaluated by substituting penetration factor into the model. Under condition (i), the modeled I/O ratios increased linearly, up to ˜20%, within the penetration factor range. Under condition (iii), the effect of penetration factor is less but still

  9. Aircraft accident report: NASA 712, Convair 990, N712NA, March Air Force Base, California, July 17, 1985, executive summary

    NASA Technical Reports Server (NTRS)

    Batthauer, Byron E.; Mccarthy, G. T.; Hannah, Michael; Hogan, Robert J.; Marlow, Frank J.; Reynard, William D.; Stoklosa, Janis H.; Yager, Thomas J.

    1986-01-01

    On July 17, l985, NASA 712, a Convair 990 aircraft, was destroyed by fire during an aborted takeoff at March Air Force Base in California. Material ejected from a blowout in the tires of the right main landing gear penetrated the right-wing fuel tank. The leaking fuel ignited. Fire engulfed the right wing and fuselage as the aircraft stopped its forward motion. The crew of four and the 15 scientists and technicians aboard escaped without serious injury.

  10. Evaluation of Cabin Crew Technical Knowledge

    NASA Technical Reports Server (NTRS)

    Dunbar, Melisa G.; Chute, Rebecca D.; Jordan, Kevin

    1998-01-01

    Accident and incident reports have indicated that flight attendants have numerous opportunities to provide the flight-deck crew with operational information that may prevent or essen the severity of a potential problem. Additionally, as carrier fleets transition from three person to two person flight-deck crews, the reliance upon the cabin crew for the transfer of this information may increase further. Recent research (Chute & Wiener, 1996) indicates that light attendants do not feel confident in their ability to describe mechanical parts or malfunctions of the aircraft, and the lack of flight attendant technical training has been referenced in a number of recent reports (National Transportation Safety Board, 1992; Transportation Safety Board of Canada, 1995; Chute & Wiener, 1996). The present study explored both flight attendant technical knowledge and flight attendant and dot expectations of flight attendant technical knowledge. To assess the technical knowledge if cabin crewmembers, 177 current flight attendants from two U.S. carriers voluntarily :ompleted a 13-item technical quiz. To investigate expectations of flight attendant technical knowledge, 181 pilots and a second sample of 96 flight attendants, from the same two airlines, completed surveys designed to capture each group's expectations of operational knowledge required of flight attendants. Analyses revealed several discrepancies between the present level of flight attendants.

  11. Impact of aircraft emissions on air quality in the vicinity of airports. Volume II. An updated model assessment of aircraft generated air pollution at LAX, JFK, and ORD. Final report Jan 1978-Jul 1980

    SciTech Connect

    Yamartino, R.J.; Smith, D.G.; Bremer, S.A.; Heinold, D.; Lamich, D.

    1980-07-01

    This report documents the results of the Federal Aviation Administration (FAA)/Environmental Protection Agency (EPA) air quality study which has been conducted to assess the impact of aircraft emissions of carbon monoxide (CO), hydrocarbons (HC), and oxides of nitrogen (NOx) in the vicinity of airports. This assessment includes the results of recent modeling and monitoring efforts at Washington National (DCA), Los Angeles International (LAX), Dulles International (IAD), and Lakeland, Florida airports and an updated modeling of aircraft generated pollution at LAX, John F. Kennedy (JFK) and Chicago O'Hare (ORD) airports. The Airport Vicinity Air Pollution (AVAP) model which was designed for use at civil airports was used in this assessment. In addition the results of the application of the military version of the AVAP model the Air Quality Assessment Model (AQAM), are summarized. Both the results of the pollution monitoring analyses in Volume I and the modeling studies in Volume II suggest that: maximum hourly average CO concentrations from aircraft are unlikely to exceed 5 parts per million (ppm) in areas of public exposure and are thus small in comparison to the National Ambient Air Quality Standard of 35 ppm; maximum hourly HC concentrations from aircraft can exceed 0.25 ppm over an area several times the size of the airport; and annual average NO2 concentrations from aircraft are estimated to contribute only 10 to 20 percent of the NAAQS limit level.

  12. 33 CFR 334.630 - Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...″, longitude 82°33′02.44″; and thence to a point on the shore line of MacDill Air Force Base at latitude...

  13. 33 CFR 334.630 - Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...″, longitude 82°33′02.44″; and thence to a point on the shore line of MacDill Air Force Base at latitude...

  14. 33 CFR 334.630 - Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...″, longitude 82°33′02.44″; and thence to a point on the shore line of MacDill Air Force Base at latitude...

  15. Intensive probing of a clear air convective field by radar and instrumental drone aircraft.

    NASA Technical Reports Server (NTRS)

    Rowland, J. R.

    1973-01-01

    An instrumented drone aircraft was used in conjunction with ultrasensitive radar to study the development of a convective field in the clear air. Radar data are presented which show an initial constant growth rate in the height of the convective field of 3.8 m/min, followed by a short period marked by condensation and rapid growth at a rate in excess of 6.1 m/min. Drone aircraft soundings show general features of a convective field including progressive lifting of the inversion at the top of the convection and a cooling of the air at the top of the field. Calculations of vertical heat flux as a function of time and altitude during the early stages of convection show a linear decrease in heat flux with altitude to near the top of the convective field and a negative heat flux at the top. Evidence is presented which supports previous observations that convective cells overshoot their neutral buoyancy level into a region where they are cool and moist compared to their surroundings. Furthermore, only that portion of the convective cell that has overshot its neutral buoyancy level is generally visible to the radar.

  16. Investigation of acoustic properties of a rigid foam with application to noise reduction in light aircraft

    NASA Technical Reports Server (NTRS)

    Holmer, C. I.

    1972-01-01

    A analytic model of sound transmission into an aircraft cabin was developed as well as test procedures which appropriately rank order properties which affect sound transmission. The proposed model agrees well with available data, and reveals that the pertinent properties of an aircraft cabin for sound transmission include: stiffness of cabin walls at low frequencies (as this reflects on impedance of the walls) and cabin wall transmission loss and interior absorption at mid and high frequencies. Below 315 Hz the foam contributes substantially to wall stiffness and sound transmission loss of typical light aircraft cabin construction, and could potentially reduce cabin noise levels by 3-5 db in this frequency range at a cost of about 0:2 lb/sq. ft. of treated cabin area. The foam was found not to have significant sound absorbing properties.

  17. The Fate of Trace Contaminants in a Crewed Spacecraft Cabin Environment

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Kayatin, Matthew J.

    2016-01-01

    Trace chemical contaminants produced via equipment offgassing, human metabolic sources, and vehicle operations are removed from the cabin atmosphere by active contamination control equipment and incidental removal by other air quality control equipment. The fate of representative trace contaminants commonly observed in spacecraft cabin atmospheres is explored. Removal mechanisms are described and predictive mass balance techniques are reviewed. Results from the predictive techniques are compared to cabin air quality analysis results. Considerations are discussed for an integrated trace contaminant control architecture suitable for long duration crewed space exploration missions.

  18. Viper cabin-fuselage structural design concept with engine installation and wing structural design

    NASA Technical Reports Server (NTRS)

    Marchesseault, B.; Carr, D.; Mccorkle, T.; Stevens, C.; Turner, D.

    1993-01-01

    This report describes the process and considerations in designing the cabin, nose, drive shaft, and wing assemblies for the 'Viper' concept aircraft. Interfaces of these assemblies, as well as interfaces with the sections of the aircraft aft of the cabin, are also discussed. The results of the design process are included. The goal of this project is to provide a structural design which complies with FAR 23 requirements regarding occupant safety, emergency landing loads, and maneuvering loads. The design must also address the interfaces of the various systems in the cabin, nose, and wing, including the drive shaft, venting, vacuum, electrical, fuel, and control systems. Interfaces between the cabin assembly and the wing carrythrough and empennage assemblies were required, as well. In the design of the wing assemblies, consistency with the existing cabin design was required. The major areas considered in this report are materials and construction, loading, maintenance, environmental considerations, wing assembly fatigue, and weight. The first three areas are developed separately for the nose, cabin, drive shaft, and wing assemblies, while the last three are discussed for the entire design. For each assembly, loading calculations were performed to determine the proper sizing of major load carrying components. Table 1.0 lists the resulting margins of safety for these key components, along with the types of the loads involved, and the page number upon which they are discussed.

  19. Coverage of European air traffic for the Base Aircraft Data (BADA) revision 3.0. Report for January 1997-March 1998

    SciTech Connect

    Bos, A.

    1998-03-01

    The air traffic statistics from the CFMU for December 1997 and January 1998 are used to determine the coverage of European air traffic by the Base of Aircraft Data (BADA) Revision 3.0. BADA consists of a set of aircraft models used at the EEC and other European research institutes for aircraft trajectory simulation. The results show that the 67 aircraft types within BADA 3.0 cover 89.4% of the European air traffic. The addition of 1 type would bring the coverage to the target of 90%.

  20. An analytical approach to air defense: cost, effectiveness and SWOT analysis of employing fighter aircraft and modern SAM systems

    NASA Astrophysics Data System (ADS)

    Kus, Orcun; Kocaman, Ibrahim; Topcu, Yucel; Karaca, Volkan

    2012-05-01

    The problem of defending a specific airspace is among the main issues a military commander to solve. Proper protection of own airspace is crucial for mission success at the battlefield. The military doctrines of most world armed forces involve two main options of defending the airspace. One of them is utilizing formations of fighter aircraft, which is a flexible choice. The second option is deploying modern SAM (Surface to Air Missile) systems, which is more expansive. On the other hand the decision makers are to cope with miscellaneous restrictions such as the budgeting problems. This study defines air defense concept according to modern air warfare doctrine. It considers an air defense scenario over an arbitrary airspace and compares the performance and cost-effectiveness of employing fighter aircraft and SAM systems. It also presents SWOT (Strenghts - Weakness - Opportunities - Threats) analyses of air defense by fighter aircraft and by modern SAMs and tries to point out whichever option is better. We conclude that deploying SAMs has important advantages over using fighter aircraft by means of interception capacity within a given time period and is cost-effective.

  1. Cosmic radiation in aviation: radiological protection of Air France aircraft crew.

    PubMed

    Desmaris, G

    2016-06-01

    Cosmic radiation in aviation has been a concern since the 1960s, and measurements have been taken for several decades by Air France. Results show that aircraft crew generally receive 3-4 mSv y(-1) for 750 boarding hours. Compliance with the trigger level of 6 mSv y(-1) is achieved by route selection. Work schedules can be developed for pregnant pilots to enable the dose to the fetus to be kept below 1 mSv. Crew members are informed of their exposition and the potential health impact. The upcoming International Commission on Radiological Protection (ICRP) report on cosmic radiation in aviation will provide an updated guidance. A graded approach proportionate with the time of exposure is recommended to implement the optimisation principle. The objective is to keep exposures of the most exposed aircraft members to reasonable levels. ICRP also recommends that information about cosmic radiation be disseminated, and that awareness about cosmic radiation be raised in order to favour informed decision-making by all concerned stakeholders.

  2. Cosmic radiation in aviation: radiological protection of Air France aircraft crew.

    PubMed

    Desmaris, G

    2016-06-01

    Cosmic radiation in aviation has been a concern since the 1960s, and measurements have been taken for several decades by Air France. Results show that aircraft crew generally receive 3-4 mSv y(-1) for 750 boarding hours. Compliance with the trigger level of 6 mSv y(-1) is achieved by route selection. Work schedules can be developed for pregnant pilots to enable the dose to the fetus to be kept below 1 mSv. Crew members are informed of their exposition and the potential health impact. The upcoming International Commission on Radiological Protection (ICRP) report on cosmic radiation in aviation will provide an updated guidance. A graded approach proportionate with the time of exposure is recommended to implement the optimisation principle. The objective is to keep exposures of the most exposed aircraft members to reasonable levels. ICRP also recommends that information about cosmic radiation be disseminated, and that awareness about cosmic radiation be raised in order to favour informed decision-making by all concerned stakeholders. PMID:27044363

  3. Intensive probing of clear air convective fields by radar and instrumented drone aircraft.

    NASA Technical Reports Server (NTRS)

    Rowland, J. R.

    1972-01-01

    Clear air convective fields were probed in three summer experiments (1969, 1970, and 1971) on an S-band monopulse tracking radar at Wallops Island, Virginia, and a drone aircraft with a takeoff weight of 5.2 kg, wingspan of 2.5 m, and cruising glide speed of 10.3 m/sec. The drone was flown 23.2 km north of the radar and carried temperature, pressure/altitude, humidity, and vertical and airspeed velocity sensors. Extensive time-space convective field data were obtained by taking a large number of RHI and PPI pictures at short intervals of time. The rapidly changing overall convective field data obtained from the radar could be related to the meteorological information telemetered from the drone at a reasonably low cost by this combined technique.

  4. Analytical prediction of the interior noise for cylindrical models of aircraft fuselages for prescribed exterior noise fields. Phase 2: Models for sidewall trim, stiffened structures and cabin acoustics with floor partition

    NASA Technical Reports Server (NTRS)

    Pope, L. D.; Wilby, E. G.

    1982-01-01

    An airplane interior noise prediction model is developed to determine the important parameters associated with sound transmission into the interiors of airplanes, and to identify apropriate noise control methods. Models for stiffened structures, and cabin acoustics with floor partition are developed. Validation studies are undertaken using three test articles: a ring stringer stiffened cylinder, an unstiffened cylinder with floor partition, and ring stringer stiffened cylinder with floor partition and sidewall trim. The noise reductions of the three test articles are computed using the heoretical models and compared to measured values. A statistical analysis of the comparison data indicates that there is no bias in the predictions although a substantial random error exists so that a discrepancy of more than five or six dB can be expected for about one out of three predictions.

  5. 78 FR 49729 - Takes of Marine Mammals Incidental to Specified Activities; U.S. Air Force Launches, Aircraft and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... Related to Launch Vehicles From Vandenberg Air Force Base (VAFB), California AGENCY: National Marine... incidental to launching space launch vehicles, intercontinental ballistic and small missiles, aircraft and helicopter operations, and harbor activities related to the Delta IV/Evolved Expendable Launch Vehicle...

  6. 14 CFR 45.27 - Location of marks; nonfixed-wing aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... attachment of the basket or cabin suspension cables. (e) Powered parachutes and weight-shift-control aircraft. Each operator of a powered parachute or a weight-shift-control aircraft must display the marks...

  7. 14 CFR 45.27 - Location of marks; nonfixed-wing aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... attachment of the basket or cabin suspension cables. (e) Powered parachutes and weight-shift-control aircraft. Each operator of a powered parachute or a weight-shift-control aircraft must display the marks...

  8. 14 CFR 45.27 - Location of marks; nonfixed-wing aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... attachment of the basket or cabin suspension cables. (e) Powered parachutes and weight-shift-control aircraft. Each operator of a powered parachute or a weight-shift-control aircraft must display the marks...

  9. 14 CFR 45.27 - Location of marks; nonfixed-wing aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... attachment of the basket or cabin suspension cables. (e) Powered parachutes and weight-shift-control aircraft. Each operator of a powered parachute or a weight-shift-control aircraft must display the marks...

  10. Cabin Leader's Handbook: Environmental Education Program.

    ERIC Educational Resources Information Center

    Santa Barbara County Schools, CA.

    The cabin leaders for the Environmental Education Outdoor School program are selected by their high school and by the elementary school teachers of the children in their cabin. This handbook was developed to aid cabin leaders in their special role as "big brother" or "big sister" to 12 to 15 sixth graders. Not only is the handbook useful in…

  11. Apparatus and Method for Measuring Air Temperature Ahead of an Aircraft for Controlling a Variable Inlet/Engine Assembly

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L. (Inventor)

    2001-01-01

    The apparatus and method employ remote sensing to measure the air temperature a sufficient distance ahead of the aircraft to allow time for a variable inlet/engine assembly to be reconfigured in response to the measured temperature, to avoid inlet unstart and/or engine compressor stall. In one embodiment, the apparatus of the invention has a remote sensor for measuring at least one air temperature ahead of the vehicle and an inlet control system for varying the inlet. The remote sensor determines a change in temperature value using at least one temperature measurement and prior temperature measurements corresponding to the location of the aircraft. The control system uses the change in air temperature value to vary the inlet configuration to maintain the position of the shock wave during the arrival of the measured air in the inlet. In one embodiment, the method of the invention includes measuring at least one air temperature ahead of the vehicle, determining an air temperature at the vehicle from prior air temperature measurements, determining a change in temperature value using the air temperature at the vehicle and the at least one air temperature measurement ahead of the vehicle, and using the change in temperature value to-reposition the airflow inlet, to cause the shock wave to maintain substantially the same position within the inlet as the airflow temperature changes within the inlet.

  12. 14 CFR 382.123 - What are the requirements concerning priority cabin stowage for wheelchairs and other assistive...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... priority cabin stowage for wheelchairs and other assistive devices? 382.123 Section 382.123 Aeronautics and... NONDISCRIMINATION ON THE BASIS OF DISABILITY IN AIR TRAVEL Stowage of Wheelchairs, Other Mobility Aids, and Other Assistive Devices § 382.123 What are the requirements concerning priority cabin stowage for wheelchairs...

  13. 14 CFR 382.123 - What are the requirements concerning priority cabin stowage for wheelchairs and other assistive...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... priority cabin stowage for wheelchairs and other assistive devices? 382.123 Section 382.123 Aeronautics and... NONDISCRIMINATION ON THE BASIS OF DISABILITY IN AIR TRAVEL Stowage of Wheelchairs, Other Mobility Aids, and Other Assistive Devices § 382.123 What are the requirements concerning priority cabin stowage for wheelchairs...

  14. A parametric study of influence of material properties on car cabin environment

    NASA Astrophysics Data System (ADS)

    Pokorny, Jan; Fiser, Jan; Jicha, Miroslav

    2014-03-01

    Recently the author presented the paper describing a car cabin heat load model for the prediction of the car cabin environment. The model allowed to simulate a transient behavior of the car cabin, i.e. radiant temperature of surfaces, air temperature and relative humidity. The model was developed in Dymola and was built on the basic principles of thermodynamics and heat balance equations. The model was validated by experiments performed on the Škoda Felicia during various operational conditions. In this paper the authors present a parametric study investigating influence of material properties on a car cabin environment. The Matlab version of the car cabin heat load model has been developed and used. The model was extended by simple graphical user interface and it was deployed into the stand alone executable application. The aim of this parametric study is to identify most important material properties and its effect on the cabin environment during specific operational conditions of car. By means of a sensitive analysis it can identified which material parameters have to be defined precisely and which parameters are not so important for the prediction of the air temperature inside cabin.

  15. Aircraft Measurements Of Refractive And Clear Air Turbulence: Spectra, Budgets, And The Prediction Problem

    NASA Astrophysics Data System (ADS)

    Cote, O.; Dobosy, R.; Roadcap, J.; Crawford, T.; Hacker, J.

    Four turbulence measurement campaigns were performed in the winter sub-tropical jet streams of south coastal Japan and Australia during 1998-2001 with the objective to capture the dynamics of severe refractive and clear air turbulence events. The aircraft used was the GROB 520T EGRETT, which is owned and operated by Airborne Research Australia a unit of Flinders University of South Australia. Severe turbulence events are difficult to forecast and measure but are of critical importance to commercial air safety (NASA -FAA) and the High-Energy Laser (HEL) propagation disturbances. Measurements have shown that weak turbulence/severe turbulence events are associated with anisotropy/isotropy of the turbulent velocity spectra/structure parameters. Strong turbulence events are associated with Froude number that are near unity; weak turbulence with Froude numbers 1. The role that fluctuating velocity-pressure gradient correlation in maintaining strong turbulence, the limited success of Richardson number as a predictor, and limitations of diagnostic prediction schemes based on mesoscale model output will be considered.

  16. Air Quality in the Mid-Atlantic/Northeast Region: An Aircraft Survey

    NASA Astrophysics Data System (ADS)

    Marufu, L. T.; Doddridge, B.; Taubman, B.; Piety, C.

    2002-12-01

    Parts of the U.S. Mid-Atlantic and Northeast are frequently in violation of the 125 ppbv 1-hr national ambient air quality standard for ozone (O3). The frequency of occurrence and spatial coverage of these violations are expected to increase when/if new standards for fine particulate matter (PM) and ozone averaged over 8-hr come into effect. Online aircraft measurements provide a powerful tool for determining the levels and origins of both primary and secondary pollutants of interest. During the summer of 2002 the University of Maryland at College Park used a twin engine Piper Aztec-F PA-27-250 aircraft to; investigate pollution transport (ozone, haze, and gaseous precursors) over region, state, and class 1 area boundaries; characterize planetary boundary layer (PBL) height, dynamics and development; investigate cross-corridor (transport corridors, metropolitan/ industrial areas) differences in air quality aloft leading to downwind enhancements in pollutants; investigate mesoscale and sub-regional transport influences (e.g. bay and sea breezes, low-level jets, urban island effects) upon near surface air quality and visibility; acquire in situ data for initialization, constraint, and evaluation of ongoing and planned measurement analyses efforts and modeling studies within the region. A total of 54 research flights (192.5 hours), consisting of fixed-position vertical survey spirals and constant altitude transects, were made upwind, near and downwind of selected major cities/industrial areas, transport corridors and class 1 areas in the Northeast, Mid-Atlantic regions. Preliminary results from upwind, near and downwind data show that major cities/industrial areas (Richmond, Washington, Baltimore, Philadelphia, New York and Boston) and transport corridors are net sources of primary and secondary pollutants (gaseous precursors, ozone, and haze). Class 1 areas (Shenandoah national park VA, Lye Brook NY, Mt. Washington in New Hampshire NH and Acadia in ME), on the other

  17. Emissions of an AVCO Lycoming 0-320-DIAD air cooled light aircraft engine as a function of fuel-air ratio, timing, and air temperature and humidity

    NASA Technical Reports Server (NTRS)

    Meng, P. R.; Skorobatckyi, M.; Cosgrove, D. V.; Kempke, E. E., Jr.

    1976-01-01

    A carbureted aircraft engine was operated over a range of test conditions to establish the exhaust levels over the EPA seven-mode emissions cycle. Baseline (full rich production limit) exhaust emissions at an induction air temperature of 59 F and near zero relative humidity were 90 percent of the EPA standard for HC, 35 percent for NOx, and 161 percent for CO. Changes in ignition timing around the standard 25 deg BTDC from 30 deg BTDC to 20 deg BTDC had little effect on the exhaust emissions. Retarding the timing to 15 deg BTDC increased both the HC and CO emissions and decreased NOx emissions. HC and CO emissions decreased as the carburetor was leaned out, while NOx emissions increased. The EPA emission standards were marginally achieved at two leanout conditions. Variations in the quantity of cooling air flow over the engine had no effect on exhaust emissions. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased.

  18. Health issues of air travel.

    PubMed

    DeHart, Roy L

    2003-01-01

    Every day in the United States the airline industry boards over 1.7 million passengers for a total of 600 million passengers per year. As these passengers enter the cabin of their aircraft few are aware of the artificial environment that will protect them from the hazards of flight. Passengers are exposed to reduced atmospheric pressure, reduced available oxygen, noise, vibration, and are subject to below zero temperatures that are only a quarter inch away-the thickness of the aircraft's skin. Over the past decade there have been both technical and lay articles written on the perception of poor cabin air quality. Studies have, in part, supported some of those concerns, but, in general, the air quality exceeds that found in most enclosed spaces on terra firma. Since the events of September 11th, passengers have not only been exposed to the physical stress of flight, but also to social and emotional stress preceding departure. There has been a significant increase in air rage on board aircraft, which poses a threat to flight safety and a fear of harm to passengers and crew. The phrase "economy class syndrome" has received popular press attention and refers to the possibility of deep vein thrombosis (DVT) in the tight confines of an aircraft cabin. Studies have been conducted that demonstrate DVT can occur in flight just as it occurs in other modes of transportation or with prolonged sitting. In part, because of the stress related to commercial flight it is not a mode of transportation for everyone. Certain cardiovascular, pulmonary, and neuropsychiatric conditions are best left on the ground. Although medical problems and death are rare in flight, they do occur, and one major airline reported 1.52 medical diversions per billion revenue passenger miles flown. To provide medical support at 36,000 ft (11,000 m) most airlines now carry on-board medical kits as well as automatic external defibrillators. A recent survey conducted by a major airline revealed that there was

  19. Noise control mechanisms of inside aircraft

    NASA Astrophysics Data System (ADS)

    Zverev, A. Ya.

    2016-07-01

    World trends in the development of methods and approaches to noise reduction in aircraft cabins are reviewed. The paper discusses the mechanisms of passive and active noise and vibration control, application of "smart" and innovative materials, new approaches to creating all fuselage-design elements, and other promising directions of noise control inside aircraft.

  20. International Pacific Air and Space Technology Conference and Aircraft Symposium, 29th, Gifu, Japan, Oct. 7-11, 1991, Proceedings

    SciTech Connect

    Not Available

    1991-01-01

    Various papers on air and space technology are presented. Individual topics addressed include: media selection analysis: implications for training design, high-speed challenge for rotary wing aircraft, high-speed VSTOL answer to congestion, next generation in computational aerodynamics, acrobatic airship 'Acrostat', ducted fan VTOL for working platform, Arianespace launch of Lightsats, small particle acceleration by minirailgun, free-wake analyses of a hovering rotor using panel method, update of the X-29 high-angle-of-attack program, economic approach to accurate wing design, flow field around thick delta wing with rounded leading edge, aerostructural integrated design of forward-swept wing, static characteristics of a two-phase fluid drop system, simplfied-model approach to group combustion of fuel spray, avionics flight systems for the 21st century. Also discussed are: Aircraft Command in Emergency Situations, spectrogram diagnosis of aircraft disasters, shock interaction induced by two hemisphere-cylinders, impact response of composite UHB propeller blades, high-altitude lighter-than-air powered platform, integrated wiring system, auxiliary power units for current and future aircraft, Space Shuttle Orbiter Auxiliary Power Unit status, numerical analysis of RCS jet in hypersonic flights, energy requirements for the space frontier, electrical system options for space exploration, aerospace plane hydrogen scramjet boosting, manual control of vehicles with time-varying dynamics, design of strongly stabilizing controller, development of the Liquid Apogee Propulsion System for ETS-VI.

  1. Aircraft fires, smoke toxicity, and survival.

    PubMed

    Chaturvedi, A K; Sanders, D C

    1996-03-01

    In-flight fires in modern aircraft are rare, but post-crash fires do occur. Cabin occupants frequently survive initial forces of such crashes but are incapacitated from smoke inhalation. According to an international study, there were 95 fire-related civil passenger aircraft accidents worldwide over a 26-yr period, claiming approximately 2400 lives. Between 1985 and 1991, about 16% (32 accidents) of all U.S. transport aircraft accidents involved fire and 22% (140 fatalities) of the deaths in these accidents resulted from fire/smoke toxicity. Our laboratory analyses of postmortem blood samples (1967-93) indicate that 360 individuals in 134 fatal fire-related civil aircraft (air carrier and general aviation) accidents had carboxyhemoglobin saturation levels (> or = 20%), with or without blood cyanide, high enough to impair performance. Combustion toxicology is now moving from a descriptive to a mechanistic phase. Methods for gas analyses have been developed and combustion/animal-exposure assemblies have been constructed. Material/fire-retardant toxicity and interactions between smoke gases are being studied. Relationships between gas exposure concentrations, blood levels, and incapacitation onset are being established in animal models. Continuing basic research in smoke toxicity will be necessary to understand its complexities, and thus enhance aviation safety and fire survival chances. PMID:8775410

  2. Transfer of sick children by air.

    PubMed

    Aggarwal, N N; Aggarwal, S

    2000-08-01

    The annual growth rate of air traffic is increasing at the rate of about 7% all over the world. Children and adolescents make a significant chunk of travelling population. Some of the neonates too take to civil air and travel under various circumstances. Others travel for the reasons of medical air evacuation and better treatment at some specialized tertiary care centers, within India or abroad or simply as medical emergency. With the increasing availability of air taxis and air ambulances, it has become necessary for the pediatricians to know the consequences and potential hazards of transfer of the sick by air, lest they lose their patients unintentionally despite professional proficiency. Air evacuation of sick child is a highly specialized job, much different from an evacuation by any fast car ambulance. The paper discusses the general impact of aviation stresses in civil aviation with special reference to sick neonates, children and adolescents, and provides general guidelines, which could be applied to any particular clinical condition with knowledge of underlying physiological processes and anticipated alterations in cabin environment. It also brings out the issues of proper pre-flight assessment, fitness to undertake air transfer, general handling of patient under transfer, desirable onboard procedures, do s and don ts during air transfer, limitations of conventional neonatal/child resuscitation kits, available medical support in aircraft cabins, proper use of hardware including physiology monitoring systems, permissible specialized medical aids, and the requirement and use of equipment during air evacuation. The importance of high awareness and preventive measures is reiterated.

  3. The effects of aircraft noise at Williams Air Force Base Auxiliary Field on residential property values

    SciTech Connect

    Morey, M.J.

    1990-11-01

    This report considers the environmental consequences of moving the flight training operations of the US Air Force's 82nd Flying Training Wing from the auxiliary airfield, Coolidge-Florence Municipal Airport (CFMA), to a more remote location in Pinal County, Arizona. It examines how actual noise from touch-and-go flights of T-37 aircraft and perceived (anticipated) noise affect the market value of residential property near CFMA. Noise, measured by a noise index, is correlated with market values through a regression analysis applied to a hedonic price model of the Coolidge-Florence housing market. Prices and characteristics of 42 residential properties sold in 1987 and 1988 were used to estimate a perceived noise effect. The report finds that the coefficient on the measure of perceived noise, based on the noise exposure forecast (NEF) index, is statistically insignificant, even though the sign and value are consistent with those estimated in other studies. It concludes that current flights do not have a significant effect on residential property values, partially because there is no housing near CFMA. This and larger studies indicate that flight operations at a new auxiliary airfield would not affect property values if runways were at least 12,000 feet away from housing. 12 refs., 2 tabs.

  4. On fluttering modes for aircraft wing model in subsonic air flow

    PubMed Central

    Shubov, Marianna A.

    2014-01-01

    The paper deals with unstable aeroelastic modes for aircraft wing model in subsonic, incompressible, inviscid air flow. In recent author’s papers asymptotic, spectral and stability analysis of the model has been carried out. The model is governed by a system of two coupled integrodifferential equations and a two-parameter family of boundary conditions modelling action of self-straining actuators. The Laplace transform of the solution is given in terms of the ‘generalized resolvent operator’, which is a meromorphic operator-valued function of the spectral parameter λ, whose poles are called the aeroelastic modes. The residues at these poles are constructed from the corresponding mode shapes. The spectral characteristics of the model are asymptotically close to the ones of a simpler system, which is called the reduced model. For the reduced model, the following result is shown: for each value of subsonic speed, there exists a radius such that all aeroelastic modes located outside the circle of this radius centred at zero are stable. Unstable modes, whose number is always finite, can occur only inside this ‘circle of instability’. Explicit estimate of the ‘instability radius’ in terms of model parameters is given. PMID:25484610

  5. On fluttering modes for aircraft wing model in subsonic air flow.

    PubMed

    Shubov, Marianna A

    2014-12-01

    The paper deals with unstable aeroelastic modes for aircraft wing model in subsonic, incompressible, inviscid air flow. In recent author's papers asymptotic, spectral and stability analysis of the model has been carried out. The model is governed by a system of two coupled integrodifferential equations and a two-parameter family of boundary conditions modelling action of self-straining actuators. The Laplace transform of the solution is given in terms of the 'generalized resolvent operator', which is a meromorphic operator-valued function of the spectral parameter λ, whose poles are called the aeroelastic modes. The residues at these poles are constructed from the corresponding mode shapes. The spectral characteristics of the model are asymptotically close to the ones of a simpler system, which is called the reduced model. For the reduced model, the following result is shown: for each value of subsonic speed, there exists a radius such that all aeroelastic modes located outside the circle of this radius centred at zero are stable. Unstable modes, whose number is always finite, can occur only inside this 'circle of instability'. Explicit estimate of the 'instability radius' in terms of model parameters is given.

  6. Fast response sequential measurements and modelling of nanoparticles inside and outside a car cabin

    NASA Astrophysics Data System (ADS)

    Joodatnia, Pouyan; Kumar, Prashant; Robins, Alan

    2013-06-01

    Commuters are regularly exposed to short-term peak concentration of traffic produced nanoparticles (i.e. particles <300 nm in size). Studies indicate that these exposures pose adverse health effects (i.e. cardiovascular). This study aims to obtain particle number concentrations (PNCs) and distributions (PNDs) inside and outside a car cabin whilst driving on a road in Guildford, a typical UK town. Other objectives are to: (i) investigate the influences of particle transformation processes on particle number and size distributions in the cabin, (ii) correlate PNCs inside the cabin to those measured outside, and (iii) predict PNCs in the cabin based on those outside the cabin using a semi-empirical model. A fast response differential mobility spectrometer (DMS50) was employed in conjunction with an automatic switching system to measure PNCs and PNDs in the 5-560 nm range at multiple locations inside and outside the cabin at 10 Hz sampling rate over 10 s sequential intervals. Two separate sets of measurements were made at: (i) four seats in the car cabin during ˜700 min of driving, and (ii) two points, one the driver seat and the other near the ventilation air intake outside the cabin, during ˜500 min of driving. Results of the four-point measurements indicated that average PNCs at all for locations were nearly identical (i.e. 3.96, 3.85, 3.82 and 4.00 × 104 cm-3). The modest difference (˜0.1%) revealed a well-mixed distribution of nanoparticles in the car cabin. Similar magnitude and shapes of PNDs at all four sampling locations suggested that transformation processes (e.g. nucleation, coagulation, condensation) have minimal effect on particles in the cabin. Two-point measurements indicated that on average, PNCs inside the cabin were about 72% of those measured outside. Time scale analysis indicated that dilution was the fastest and dominant process in the cabin, governing the variations of PNCs in time. A semi-empirical model was proposed to predict PNCs inside

  7. Measurements of CO in an aircraft experiment and their correlation with biomass burning and air mass origin in South America

    NASA Astrophysics Data System (ADS)

    Boian, C.; Kirchhoff, V. W. J. H.

    Carbon monoxide (CO) measurements are obtained in an aircraft experiment during 1-7 September 2000, conducted over Central Brazil in a special region of anticyclonic circulation. This is a typical transport regime during the dry season (July-September), when intense biomass burning occurs, and which gives origin to the transport of burning poluents from the source to distant regions. This aircraft experiment included in situ measurements of CO concentrations in three different scenarios: (1) areas of fresh biomass burning air masses, or source areas; (2) areas of aged biomass burning air masses; and (3) areas of clean air or pristine air masses. The largest CO concentrations were of the order of 450 ppbv in the source region near Conceicao do Araguaia (PA), and the smallest value near 100 ppbv, was found in pristine air masses, for example, near the northeast coastline (clean air, or background region). The observed concentrations were compared to the number of fire pixels seen by the AVHRR satellite instrument. Backward isentropic trajectories were used to determine the origin of the air masses at each sampling point. From the association of the observed CO mixing ratios, fire pixels and air mass trajectories, the previous scenarios may be subdivided as follows: (1a) source regions of biomass burning with large CO concentrations; (1b) regions with few local fire pixels and absence of contributions by transport. Areas with these characteristics include the northeast region of Brazil; (1c) regions close to the source region and strongly affected by transport (region of Para and Amazonas); (2) regions that have a consistent convergence of air masses, that have traveled over biomass burning areas during a few days (western part of the Cerrado region); (3a) Pristine air masses with origin from the ocean; (3b) regions with convergent transport that has passed over areas of no biomass burning, such as frontal weather systems in the southern regions.

  8. Short-range optical air data measurements for aircraft control using rotational Raman backscatter.

    PubMed

    Fraczek, Michael; Behrendt, Andreas; Schmitt, Nikolaus

    2013-07-15

    A first laboratory prototype of a novel concept for a short-range optical air data system for aircraft control and safety was built. The measurement methodology was introduced in [Appl. Opt. 51, 148 (2012)] and is based on techniques known from lidar detecting elastic and Raman backscatter from air. A wide range of flight-critical parameters, such as air temperature, molecular number density and pressure can be measured as well as data on atmospheric particles and humidity can be collected. In this paper, the experimental measurement performance achieved with the first laboratory prototype using 532 nm laser radiation of a pulse energy of 118 mJ is presented. Systematic measurement errors and statistical measurement uncertainties are quantified separately. The typical systematic temperature, density and pressure measurement errors obtained from the mean of 1000 averaged signal pulses are small amounting to < 0.22 K, < 0.36% and < 0.31%, respectively, for measurements at air pressures varying from 200 hPa to 950 hPa but constant air temperature of 298.95 K. The systematic measurement errors at air temperatures varying from 238 K to 308 K but constant air pressure of 946 hPa are even smaller and < 0.05 K, < 0.07% and < 0.06%, respectively. A focus is put on the system performance at different virtual flight altitudes as a function of the laser pulse energy. The virtual flight altitudes are precisely generated with a custom-made atmospheric simulation chamber system. In this context, minimum laser pulse energies and pulse numbers are experimentally determined, which are required using the measurement system, in order to meet measurement error demands for temperature and pressure specified in aviation standards. The aviation error margins limit the allowable temperature errors to 1.5 K for all measurement altitudes and the pressure errors to 0.1% for 0 m and 0.5% for 13000 m. With regard to 100-pulse-averaged temperature measurements, the pulse energy using 532 nm

  9. Short-range optical air data measurements for aircraft control using rotational Raman backscatter.

    PubMed

    Fraczek, Michael; Behrendt, Andreas; Schmitt, Nikolaus

    2013-07-15

    A first laboratory prototype of a novel concept for a short-range optical air data system for aircraft control and safety was built. The measurement methodology was introduced in [Appl. Opt. 51, 148 (2012)] and is based on techniques known from lidar detecting elastic and Raman backscatter from air. A wide range of flight-critical parameters, such as air temperature, molecular number density and pressure can be measured as well as data on atmospheric particles and humidity can be collected. In this paper, the experimental measurement performance achieved with the first laboratory prototype using 532 nm laser radiation of a pulse energy of 118 mJ is presented. Systematic measurement errors and statistical measurement uncertainties are quantified separately. The typical systematic temperature, density and pressure measurement errors obtained from the mean of 1000 averaged signal pulses are small amounting to < 0.22 K, < 0.36% and < 0.31%, respectively, for measurements at air pressures varying from 200 hPa to 950 hPa but constant air temperature of 298.95 K. The systematic measurement errors at air temperatures varying from 238 K to 308 K but constant air pressure of 946 hPa are even smaller and < 0.05 K, < 0.07% and < 0.06%, respectively. A focus is put on the system performance at different virtual flight altitudes as a function of the laser pulse energy. The virtual flight altitudes are precisely generated with a custom-made atmospheric simulation chamber system. In this context, minimum laser pulse energies and pulse numbers are experimentally determined, which are required using the measurement system, in order to meet measurement error demands for temperature and pressure specified in aviation standards. The aviation error margins limit the allowable temperature errors to 1.5 K for all measurement altitudes and the pressure errors to 0.1% for 0 m and 0.5% for 13000 m. With regard to 100-pulse-averaged temperature measurements, the pulse energy using 532 nm

  10. VOC and hazardous air pollutant emission factors for military aircraft fuel cell inspection, maintenance, and repair operations

    SciTech Connect

    Nand, K.; Sahu, R.

    1997-12-31

    Accurate emission estimation is one of the key aspects of implementation of any air quality program. The Federal Title 5 program, specially requires an accurate and updated inventory of criteria as well hazardous air pollutants (HAPs) from all facilities. An overestimation of these two categories of pollutants, may cause the facility to be classified as a major source, when in fact it may actually be a minor source, and may also trigger unnecessary compliance requirements. A good example of where overestimation of volatile organic compounds (VOCs) and HAPs is easily possible are military aircraft fuel cells inspection, maintenance, and repair operations. The military aircraft fuel tanks, which are commonly identified as fuel cells, are routinely inspected for maintenance and repairs at military aircraft handling facilities. Prior to entry into the fuel cell by an inspector, fuel cells are first drained into bowsers and then purged with fresh air; the purged air is generally released without any controls to the atmosphere through a stack. The VOC and HAPs emission factors from these operations are not available in the literature for JP-8 fuel, which is being used increasingly by military aircraft. This paper presents two methods for estimating emissions for this source type, which are based on engineering calculations and professional judgment. This paper presents several methods for estimating emissions for this source type, which are based on engineering calculations and professional judgment. There are three emission producing phases during the draining and purging operations: (1) emissions during splash loading of bowsers (unloading of fuel cells), (2) emissions from spillage of fuel during loading of bowsers, and (3) emissions from fuel cell purging operations. Results of the emission estimation, including a comparison of the two emission estimation methods are presented in this paper.

  11. The Cleveland Aircraft Fire Tests

    NASA Technical Reports Server (NTRS)

    Brenneman, James J.; Heine, Donald A.

    1968-01-01

    On June 30 and July 1, 1966, tests were conducted to evaluate high expansion foam's ability to extend the time for which an aircraft passenger cabin environment would remain survivable during a post-crash fire. While some results tend to confirm those of similar tests, others may shed new light on the problem.

  12. The induction of water to the inlet air as a means of internal cooling in aircraft-engine cylinders

    NASA Technical Reports Server (NTRS)

    Rothrock, Addison M; Krsek, Alois, Jr; Jones, Anthony W

    1943-01-01

    Report presents the results of investigations conducted on a full-scale air-cooled aircraft-engine cylinder of 202-cubic inch displacement to determine the effects of internal cooling by water induction on the maximum permissible power and output of an internal-combustion engine. For a range of fuel-air and water-fuel ratios, the engine inlet pressure was increased until knock was detected aurally, the power was then decreased 7 percent holding the ratios constant. The data indicated that water was a very effective internal coolant, permitting large increases in engine power as limited by either knock or by cylinder temperatures.

  13. Aerodynamic heating and the deflection of drops by an obstacle in an air stream in relation to aircraft icing

    NASA Technical Reports Server (NTRS)

    Kantrowitz, Arthur

    1940-01-01

    Two topics of interest to persons attempting to apply the heat method of preventing ice formation on aircraft are considered. Surfaces moving through air at high speed are shown, both theoretically and experimentally, to be subject to important aerodynamic heating effects that will materially reduce the heat required to prevent ice. Numerical calculations of the path of water drops in an air stream around a circular cylinder are given. From these calculations, information is obtained on the percentage of the swept area cleared of drops.

  14. 77 FR 36341 - Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ..., Distribution, or Use I. National Technology Transfer Advancement Act J. Executive Order 12898: Federal Actions... which EPA has established National Ambient Air Quality Standards (NAAQS), i.e., a criteria pollutant... Web site located at www.icao.int/icaonet/arch/doc/7300/7300_9ed.pdf . \\12\\ ICAO, ``Convention...

  15. 14. View of front of privy associated with Free Cabin, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. View of front of privy associated with Free Cabin, facing south. Privy is located approximately 150' south of free cabin - Free Cabin, State Route 121-U.S. Highway 25-Peach Orchard Road, Hephzibah, Richmond County, GA

  16. Report on the general design of commercial aircraft

    NASA Technical Reports Server (NTRS)

    Warner, Edward P

    1922-01-01

    Given here are evaluations of six different European aircraft from the point of view of a passenger. The aircraft discussed are the DH 34, the Handley-Page W8B, the Farman Goliath, the Potez IX, the Spad 33 (Berline), and the Fokker F.III. The airplanes were evaluated with regard to seating comfort, ventilation, noise, seating arrangements, cabin doors, baggage accommodation, interior arrangement of cabins, pilot's position and communication with the pilot, pilot accommodations, view from the cabin, safety, and lavatory accommodations.

  17. Occupational exposure of air crews to tricresyl phosphate isomers and organophosphate flame retardants after fume events.

    PubMed

    Schindler, Birgit Karin; Weiss, Tobias; Schütze, Andre; Koslitz, Stephan; Broding, Horst Christoph; Bünger, Jürgen; Brüning, Thomas

    2013-04-01

    Aircraft cabin air can possibly be contaminated by tricresyl phosphates (TCP) from jet engine oils during fume events. o-TCP, a known neurotoxin, has been addressed to be an agent that might cause the symptoms reported by cabin crews after fume events. A total of 332 urine samples of pilots and cabin crew members in common passenger airplanes, who reported fume/odour during their last flight, were analysed for three isomers of tricresyl phosphate metabolites as well as dialkyl and diaryl phosphate metabolites of four flame retardants. None of the samples contained o-TCP metabolites above the limit of detection (LOD 0.5 μg/l). Only one sample contained metabolites of m- and p-tricresyl phosphates with levels near the LOD. Median metabolite levels of tributyl phosphate (TBP), tris-(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPP) (DBP 0.28 μg/l; BCEP 0.33 μg/l; DPP 1.1 μg/l) were found to be significantly higher than in unexposed persons from the general population. Median tris-(2-chloropropyl) phosphate (TCPP) metabolite levels were significantly not higher in air crews than in controls. Health complaints reported by air crews can hardly be addressed to o-TCP exposure in cabin air. Elevated metabolite levels for TBP, TCEP and TPP in air crews might occur due to traces of hydraulic fluid in cabin air (TBP, TPP) or due to release of commonly used flame retardants from the highly flame protected environment in the airplane. A slight occupational exposure of air crews to organophosphates was shown. PMID:23179756

  18. Insecticide Exposures on Commercial Aircraft: A Literature Review and Screening Level Assessment

    SciTech Connect

    Maddalena, Randy I.; McKone, Thomas E.

    2008-10-01

    on a thin-film polymer-coated glass design, was developed specifically for deployment in the airliner ventilation system for long-term unattended monitoring of insecticide loading in the aircraft. Because access was not available for either treated aircraft or treatment records during the course of this study, the development and calibration of the passive samplers was halted prior to completion. Continued development of a field ready passive sampler for insecticides in aircraft would require collaboration with the airline industry to finalize the method for deployment and calibration conditions for the sampler. The Task 3 screening level modeling assessment used a dynamic two-box mass balance model that includes treated surfaces and air to explore the time-concentration history of insecticides in the cabin. The model was parameterized using information gathered during the literature review and run for several different insecticide use scenarios. Chemical degradation or sequestration in the surface compartment and mass transfer from the surface to the air limit the rate at which insecticides are removed from the system. This rate limiting process can result in an accumulation of insecticide in the airliner cabin following repeated applications. The extent of accumulation is a function of the overall persistence of the chemical in the system and the amount of chemical applied during each treatment.

  19. The Air Quality and Economic Impact of Atmospheric Lead from General Aviation Aircraft in the United States

    NASA Astrophysics Data System (ADS)

    Wolfe, P. J.; Selin, N. E.; Barrett, S. R. H.

    2015-12-01

    While leaded fuels for automobiles were phased-out of use in the United States by 1996, lead (Pb) continues to be used as an anti-knock additive for piston-driven aircraft. We model the annual concentration of atmospheric lead attributable to piston driven aircraft emissions in the continental United States using the Community Multi-scale Air Quality (CMAQ) model. Using aircraft emissions inventories for 2008, we then calculate annual economic damages from lead as lifetime employment losses for a one-year cohort exposed to elevated atmospheric lead concentrations using a range of concentration response functions from literature. Mean and median estimates of annual damages attributable to lifetime lost earnings are 1.06 and 0.60 billion respectively. Economy-wide impacts of IQ-deficits on productivity and labor increase expected damages by 54%. Damages are sensitive to background lead concentrations; as emissions decrease from other sources, the damages attributable to aviation are expected to increase holding aviation emissions constant. The monetary impact of General Aviation lead emissions on the environment is the same order of magnitude as noise, climate change, and air quality degradation from all commercial operations.

  20. Study of aircraft crashworthiness for fire protection

    NASA Technical Reports Server (NTRS)

    Cominsky, A.

    1981-01-01

    Impact-survivable postcrash fire accidents were surveyed. The data base developed includes foreign and domestic accidents involving airlines and jet aircraft. The emphasis was placed on domestic accidents, airlines, and jet aircraft due principally to availability of information. Only transport category aircraft in commercial service designed under FAR Part 25 were considered. A matrix was prepared to show the relationships between the accident characteristics and the fire fatalities. Typical postcrash fire scenaries were identified. Safety concepts were developed for three engineering categories: cabin interiors - cabin subsystems; power plant - engines and fuel systems; and structural mechanics - primary and secondary structures. The parameters identified for concept evaluation are cost, effectiveness, and societal concerns. Three concepts were selected for design definition and cost and effectiveness analysis: improved fire-resistant seat materials; anti-misting kerosene; and additional cabin emergency exits.

  1. Thermal design study of an air-cooled plug-nozzle system for a supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Clark, J. S.; Lieberman, A.

    1972-01-01

    A heat-transfer design analysis has been made of an air-cooled plug-nozzle system for a supersonic-cruise aircraft engine. The proposed 10deg half-angle conical plug is sting supported from the turbine frame. Plug cooling is accomplished by convection and film cooling. The flight profile studied includes maximum afterburning from takeoff to Mach 2.7 and supersonic cruise at Mach 2.7 with a low afterburner setting. The calculations indicate that, for maximum afterburning, about 2 percent of the engine primary flow, removed after the second stage of the nine-stage compressor, will adequately cool the plug and sting support. Ram air may be used for cooling during supersonic-cruise operations, however. Therefore, the cycle efficiency penalty paid for air cooling the plug and sting support should be low.

  2. 14 CFR 25.841 - Pressurized cabins.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... altitude of not more than 8,000 feet at the maximum operating altitude of the airplane under normal... be designed so that occupants will not be exposed to cabin pressure altitudes in excess of 15,000... designed so that occupants will not be exposed to a cabin pressure altitude that exceeds the...

  3. 14 CFR 25.841 - Pressurized cabins.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... altitude of not more than 8,000 feet at the maximum operating altitude of the airplane under normal... be designed so that occupants will not be exposed to cabin pressure altitudes in excess of 15,000... designed so that occupants will not be exposed to a cabin pressure altitude that exceeds the...

  4. 14 CFR 25.841 - Pressurized cabins.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... altitude of not more than 8,000 feet at the maximum operating altitude of the airplane under normal... be designed so that occupants will not be exposed to cabin pressure altitudes in excess of 15,000... designed so that occupants will not be exposed to a cabin pressure altitude that exceeds the...

  5. 14 CFR 25.841 - Pressurized cabins.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... altitude of not more than 8,000 feet at the maximum operating altitude of the airplane under normal... be designed so that occupants will not be exposed to cabin pressure altitudes in excess of 15,000... designed so that occupants will not be exposed to a cabin pressure altitude that exceeds the...

  6. 14 CFR 23.841 - Pressurized cabins.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the positive pressure differential to a predetermined value at the maximum rate of flow delivered by... required internal pressures and airflow rates. (5) Instruments to indicate to the pilot the pressure differential, the cabin pressure altitude, and the rate of change of cabin pressure altitude. (6)...

  7. Orange County Outdoor School: Cabin Leader's Manual.

    ERIC Educational Resources Information Center

    Orange County Dept. of Education, Santa Ana, CA.

    Presented in five sections, the manual furnishes cabin leaders (high school students) with background information concerning philosophy, teaching, objectives, daily schedule, and cabin leader responsibilities in the Orange County Outdoor School program. The welcome section contains the history of the Outdoor School, staff responsibilities,…

  8. Discover Presidential Log Cabins. Teacher's Discussion Guide.

    ERIC Educational Resources Information Center

    National Park Service (Dept. of Interior), Washington, DC.

    Discover Presidential Log Cabins is a set of materials designed to help educate 6-8 grade students about the significance of three log cabin sites occupied by George Washington, Ulysses Grant, Abraham Lincoln, and Theodore Roosevelt. This teacher's discussion guide is intended for use as part of a larger, comprehensive social studies program, and…

  9. Engine bleed air reduction in DC-10

    NASA Technical Reports Server (NTRS)

    Newman, W. H.; Viele, M. R.

    1980-01-01

    An 0.8 percent fuel savings was achieved by a reduction in engine bleed air through the use of cabin air recirculation. The recirculation system was evaluated in revenue service on a DC-10. The cabin remained comfortable with reductions in cabin fresh air (engine bleed air) as much as 50 percent. Flight test verified the predicted fuel saving of 0.8 percent.

  10. Monitoring microbial populations on wide-body commercial passenger aircraft.

    PubMed

    McKernan, Lauralynn Taylor; Wallingford, Kenneth M; Hein, Misty J; Burge, Harriet; Rogers, Christine A; Herrick, Robert

    2008-03-01

    Although exposure to bacteria has been assessed in cabin air previously, minimal numbers of samples have been collected in-flight. The purpose of this research was to comprehensively characterize bacterial concentrations in the aircraft cabin. Twelve randomly selected flights were sampled on Boeing-767 aircraft, each with a flight duration between 4.5 and 6.5 h. N-6 impactors were used to collect sequential, triplicate air samples in the front and rear of coach class during six sampling intervals throughout each flight: boarding, mid-climb, early cruise, mid-cruise, late cruise and deplaning. Comparison air samples were also collected inside and outside the airport terminals at the origin and destination cities. The MIXED procedure in SAS was used to model the mean and the covariance matrix of the natural log-transformed bacterial concentrations. A total of 513 airborne culturable bacterial samples were collected. During flight (mid-climb and cruise intervals), a model-adjusted geometric mean (GM) of 136 total colony-forming units per cubic meter of air sampled (CFU x m(-3)) and geometric standard deviation of 2.1 were observed. Bacterial concentrations were highest during the boarding (GM 290 CFU x m(-3)) and deplaning (GM 549 CFU x m(-3)) processes. Total bacterial concentrations observed during flight were significantly lower than GMs for boarding and deplaning (P values <0.0001-0.021) in the modeled results. Our findings highlight the fact that aerobiological concentrations can be dynamic and underscore the importance of appropriate sample size and design. The genera analysis indicates that passenger activity and high occupant density contribute to airborne bacterial generation. Overall, our research demonstrates that the bacteria recovered on observed flights were either common skin-surface organisms (primarily gram-positive cocci) or organisms common in dust and outdoor air.

  11. Cabin Environment Physics Risk Model

    NASA Technical Reports Server (NTRS)

    Mattenberger, Christopher J.; Mathias, Donovan Leigh

    2014-01-01

    This paper presents a Cabin Environment Physics Risk (CEPR) model that predicts the time for an initial failure of Environmental Control and Life Support System (ECLSS) functionality to propagate into a hazardous environment and trigger a loss-of-crew (LOC) event. This physics-of failure model allows a probabilistic risk assessment of a crewed spacecraft to account for the cabin environment, which can serve as a buffer to protect the crew during an abort from orbit and ultimately enable a safe return. The results of the CEPR model replace the assumption that failure of the crew critical ECLSS functionality causes LOC instantly, and provide a more accurate representation of the spacecraft's risk posture. The instant-LOC assumption is shown to be excessively conservative and, moreover, can impact the relative risk drivers identified for the spacecraft. This, in turn, could lead the design team to allocate mass for equipment to reduce overly conservative risk estimates in a suboptimal configuration, which inherently increases the overall risk to the crew. For example, available mass could be poorly used to add redundant ECLSS components that have a negligible benefit but appear to make the vehicle safer due to poor assumptions about the propagation time of ECLSS failures.

  12. Characteristics of future air cargo demand and impact on aircraft development: A report on the Cargo/Logistic Airlift Systems Study (CLASS) project

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1978-01-01

    Current domestic and international air cargo operations are studied and the characteristics of 1990 air cargo demand are postulated from surveys conducted at airports and with shippers, consignees, and freight forwarders as well as air, land, and ocean carriers. Simulation and route optimization programs are exercised to evaluate advanced aircraft concepts. The results show that proposed changes in the infrastructure and improved cargo loading efficiencies are as important enhancing the prospects of air cargo growth as is the advent of advanced freighter aircraft. Potential reductions in aircraft direct operating costs are estimated and related to future total revenue. Service and cost elasticities are established and utilized to estimate future potential tariff reductions that may be realized through direct and indirect operating cost reductions and economies of scale.

  13. High Performance Diesel Fueled Cabin Heater

    SciTech Connect

    Butcher, Tom

    2001-08-05

    Recent DOE-OHVT studies show that diesel emissions and fuel consumption can be greatly reduced at truck stops by switching from engine idle to auxiliary-fired heaters. Brookhaven National Laboratory (BNL) has studied high performance diesel burner designs that address the shortcomings of current low fire-rate burners. Initial test results suggest a real opportunity for the development of a truly advanced truck heating system. The BNL approach is to use a low pressure, air-atomized burner derived form burner designs used commonly in gas turbine combustors. This paper reviews the design and test results of the BNL diesel fueled cabin heater. The burner design is covered by U.S. Patent 6,102,687 and was issued to U.S. DOE on August 15, 2000.The development of several novel oil burner applications based on low-pressure air atomization is described. The atomizer used is a pre-filming, air blast nozzle of the type commonly used in gas turbine combustion. The air pressure used can b e as low as 1300 Pa and such pressure can be easily achieved with a fan. Advantages over conventional, pressure-atomized nozzles include ability to operate at low input rates without very small passages and much lower fuel pressure requirements. At very low firing rates the small passage sizes in pressure swirl nozzles lead to poor reliability and this factor has practically constrained these burners to firing rates over 14 kW. Air atomization can be used very effectively at low firing rates to overcome this concern. However, many air atomizer designs require pressures that can be achieved only with a compressor, greatly complicating the burner package and increasing cost. The work described in this paper has been aimed at the practical adaptation of low-pressure air atomization to low input oil burners. The objective of this work is the development of burners that can achieve the benefits of air atomization with air pressures practically achievable with a simple burner fan.

  14. A synergistic glance at the prospects of distributed propulsion technology and the electric aircraft concept for future unmanned air vehicles and commercial/military aviation

    NASA Astrophysics Data System (ADS)

    Gohardani, Amir S.

    2013-02-01

    Distributed propulsion is one of the revolutionary candidates for future aircraft propulsion. In this journal article, the potential role of distributed propulsion technology in future aviation is investigated. Following a historical journey that revisits distributed propulsion technology in unmanned air vehicles and military aircraft, features of this specific technology are highlighted in synergy with an electric aircraft concept and a first-of-a-kind comparison to commercial aircraft employing distributed propulsion arrangements. In light of propulsion-airframe integration and complementary technologies such as boundary layer ingestion, thrust vectoring and circulation control, transpired opportunities and challenges are addressed in addition to a number of identified research directions proposed for future aircraft. The motivation behind enhanced means of communication between engineers, researchers and scientists has stimulated a novel proposed definition for the distributed propulsion technology in aviation and is presented herein.

  15. The dynamics of the HSCT environment. [air pollution from High Speed Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Rood, Richard B.

    1991-01-01

    Assessments of the impact of aircraft engine exhausts on stratospheric ozone levels are currently limited to 2D zonally-averaged models which, while completely representing chemistry, involve high parameterization of transport processes. Prospective 3D models under development by NASA-Goddard will use winds from a data-assimilation procedure; the upper troposphere/lower stratosphere behavior of one such model has been verified by direct comparison of model simulations with satellite, balloon, and sonde measurements. Attention is presently given to the stratosphere/troposphere exchange and nonzonal distribution of aircraft engine exhaust.

  16. Full-scale flammability test data for validation of aircraft fire mathematical models

    NASA Technical Reports Server (NTRS)

    Kuminecz, J. F.; Bricker, R. W.

    1982-01-01

    Twenty-five large scale aircraft flammability tests were conducted in a Boeing 737 fuselage at the NASA Johnson Space Center (JSC). The objective of this test program was to provide a data base on the propagation of large scale aircraft fires to support the validation of aircraft fire mathematical models. Variables in the test program included cabin volume, amount of fuel, fuel pan area, fire location, airflow rate, and cabin materials. A number of tests were conducted with jet A-1 fuel only, while others were conducted with various Boeing 747 type cabin materials. These included urethane foam seats, passenger service units, stowage bins, and wall and ceiling panels. Two tests were also included using special urethane foam and polyimide foam seats. Tests were conducted with each cabin material individually, with various combinations of these materials, and finally, with all materials in the cabin. The data include information obtained from approximately 160 locations inside the fuselage.

  17. Graphical and Statistical Analysis of Airplane Passenger Cabin RF Coupling Paths to Avionics

    NASA Technical Reports Server (NTRS)

    Jafri, Madiha; Ely, Jay; Vahala, Linda

    2003-01-01

    Portable wireless technology provides many benefits to modern day travelers. Over the years however, numerous reports have cited portable electronic devices (PEDs) as a possible cause of electromagnetic interference (EMI) to aircraft navigation and communication radio systems. PEDs may act as transmitters, both intentional and unintentional, and their signals may be detected by the various radio receiver antennas installed on the aircraft. Measurement of the radiated field coupling between passenger cabin locations and aircraft communication and navigation receivers, via their antennas is defined herein as interference path loss (IPL). IPL data is required for assessing the threat of PEDs to aircraft radios, and is very dependent upon airplane size, the interfering transmitter position within the airplane, and the location of the particular antenna for the aircraft system of concern. NASA Langley Research Center, Eagles Wings Inc., and United Airlines personnel performed extensive IPL measurements on several Boeing 737 airplanes.

  18. Aircraft Fuel, Hydraulic and Pneumatic Systems (Course Outlines), Aviation Mechanics 3 (Air Frame): 9067.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with the operation, inspection, and repair of aircraft fuel, hydraulic, and pneumatic systems. It is designed to help the trainee master the knowledge and skills necessary to become an aviation airframe mechanic. The aviation airframe maintenance technician…

  19. Study of Ram-air Heat Exchangers for Reducing Turbine Cooling-air Temperature of a Supersonic Aircraft Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Diaguila, Anthony J; Livingood, John N B; Eckert, Ernst R G

    1956-01-01

    The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude of 70,000 feet. A compressor-bleed-air weight flow of 2.7 pounds per second was assumed for the coolant; ram air was considered as the other fluid. Pressure drops and inlet states of both fluids were prescribed, and ranges of compressor-bleed-air temperature reductions and of the ratio of compressor-bleed to ram-air weight flows were considered.

  20. Simultaneous cabin and ambient ozone measurements on two Boeing 747 airplanes, volume 1

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.; Holdeman, J. D.; Nastrom, G. D.

    1979-01-01

    Measurements of zone concentrations both outside and in the cabin of an airline operated Boeing 747SP and Boeing 747-100 airliner are presented. Plotted data and the corresponding tables of observations taken at altitude between the departure and destination airports of each flight are arranged chronologically for the two aircraft. Data were taken at five or ten minute intervals by automated instrumentation used in the NACA Global Atmospheric Sampling Program.

  1. 33 CFR 334.630 - Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.630 Tampa Bay south of MacDill...

  2. 14 CFR 298.63 - Reporting of aircraft operating expenses and related statistics by small certificated air carriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS... the space provided for “Aircraft Type.” “Aircraft Type” refers to aircraft models such as...

  3. Meeting Air Transportation Demand in 2025 by Using Larger Aircraft and Alternative Routing to Complement NextGen Operational Improvements

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Guerreiro, Nelson M.; Viken, Jeffrey K.; Dollyhigh, Samuel M.; Fenbert, James W.

    2010-01-01

    A study was performed that investigates the use of larger aircraft and alternative routing to complement the capacity benefits expected from the Next Generation Air Transportation System (NextGen) in 2025. National Airspace System (NAS) delays for the 2025 demand projected by the Transportation Systems Analysis Models (TSAM) were assessed using NASA s Airspace Concept Evaluation System (ACES). The shift in demand from commercial airline to automobile and from one airline route to another was investigated by adding the route delays determined from the ACES simulation to the travel times used in the TSAM and re-generating new flight scenarios. The ACES simulation results from this study determined that NextGen Operational Improvements alone do not provide sufficient airport capacity to meet the projected demand for passenger air travel in 2025 without significant system delays. Using larger aircraft with more seats on high-demand routes and introducing new direct routes, where demand warrants, significantly reduces delays, complementing NextGen improvements. Another significant finding of this study is that the adaptive behavior of passengers to avoid congested airline-routes is an important factor when projecting demand for transportation systems. Passengers will choose an alternative mode of transportation or alternative airline routes to avoid congested routes, thereby reducing delays to acceptable levels for the 2025 scenario; the penalty being that alternative routes and the option to drive increases overall trip time by 0.4% and may be less convenient than the first-choice route.

  4. Effect of cabin ventilation rate on ultrafine particle exposure inside automobiles.

    PubMed

    Knibbs, Luke D; de Dear, Richard J; Morawska, Lidia

    2010-05-01

    We alternately measured on-road and in-vehicle ultrafine (<100 nm) particle (UFP) concentration for 5 passenger vehicles that comprised an age range of 18 years. A range of cabin ventilation settings were assessed during 301 trips through a 4 km road tunnel in Sydney, Australia. Outdoor air flow (ventilation) rates under these settings were quantified on open roads using tracer gas techniques. Significant variability in tunnel trip average median in-cabin/on-road (I/O) UFP ratios was observed (0.08 to approximately 1.0). Based on data spanning all test automobiles and ventilation settings, a positive linear relationship was found between outdoor air flow rate and I/O ratio, with the former accounting for a substantial proportion of variation in the latter (R(2) = 0.81). UFP concentrations recorded in-cabin during tunnel travel were significantly higher than those reported by comparable studies performed on open roadways. A simple mathematical model afforded the ability to predict tunnel trip average in-cabin UFP concentrations with good accuracy. Our data indicate that under certain conditions, in-cabin UFP exposures incurred during tunnel travel may contribute significantly to daily exposure. The UFP exposure of automobile occupants appears strongly related to their choice of ventilation setting and vehicle. PMID:20369882

  5. Aircraft emissions and local air quality impacts from takeoff activities at a large International Airport

    NASA Astrophysics Data System (ADS)

    Zhu, Yifang; Fanning, Elinor; Yu, Rong Chun; Zhang, Qunfang; Froines, John R.

    2011-11-01

    Real time number concentrations and size distributions of ultrafine particles (UFPs, diameter <100 nm) and time integrated black carbon, PM 2.5 mass, and chemical species were studied at the Los Angeles International Airport (LAX) and a background reference site. At LAX, data were collected at the blast fence (˜140 m from the takeoff position) and five downwind sites up to 600 m from the takeoff runway and upwind of the 405 freeway. Size distributions of UFPs collected at the blast fence site showed very high number concentrations, with the highest numbers found at a particle size of approximately 14 nm. The highest spikes in the time series profile of UFP number concentrations were correlated with individual aircraft takeoff. Measurements indicate a more than 100-fold difference in particle number concentrations between the highest spikes during takeoffs and the lowest concentrations when no takeoff is occurring. Total UFP counts exceeded 10 7 particles cm -3 during some monitored takeoffs. Time averaged concentrations of PM 2.5 mass and two carbonyl compounds, formaldehyde and acrolein, were statistically elevated at the airport site relative to a background reference site. Peaks of 15 nm particles, associated with aircraft takeoffs, that occurred at the blast fence were matched with peaks observed 600 m downwind, with time lags of less than 1 min. The results of this study demonstrate that commercial aircraft at LAX emit large quantities of UFP at the lower end of currently measurable particle size ranges. The observed highly elevated UFP concentrations downwind of LAX associated with aircraft takeoff activities have significant exposure and possible health implications.

  6. Challenges and Opportunities in Nde, Ishm and Material State Awareness for Aircraft Structures: us Air Force Perspective

    NASA Astrophysics Data System (ADS)

    Buynak, C. F.; Blackshire, J.; Lindgren, E. A.; Jata, K. V.

    2008-02-01

    As one of the primary data and information sources in the maintenance of USAF Aging Military Fleet, NDE plays a major role in the definition and operation of maintenance processes on these aircraft. To focus new NDE developmental efforts, the AFRL NDE R&D group has the charter to research, develop and transition new capabilities to the field and depot users. This multi-faceted task is achieved through a balanced NDE and on-board sensor development program with the ultimate goal to transition technology to the Air Force user Commands. Technology requirements for NDE and Material State Awareness emerge from Air Force Initiatives to realize Condition Based Maintenance and to develop the "Depot of the Future". This evening session will present an overview of Air Force Initiatives, emerging R&D issues for Structural Health Monitoring and NDE methodologies as well as basic research initiatives within the Air Force Research Laboratory. It is intended that the session provide an open forum to pursue paths for new technology development and application.

  7. NASA's B377SGT Super Guppy Turbine cargo aircraft touches down at Edwards Air Force Base, Calif. on

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA's B377SGT Super Guppy Turbine cargo aircraft touches down at Edwards Air Force Base, Calif. on June 11, 2000 to deliver the latest version of the X-38 flight test vehicle to NASA's Dryden Flight Research Center. The B-377SGT Super Guppy Turbine evolved from the 1960s-vintage Pregnant Guppy, Mini Guppy and Super Guppy, used for transporting sections of the Saturn rocket used for the Apollo program moon launches and other outsized cargo. The various Guppies were modified from 1940's and 50's-vintage Boeing Model 377 and C-97 Stratocruiser airframes by Aero Spacelines, Inc., which operated the aircraft for NASA. NASA's Flight Research Center assisted in certification testing of the first Pregnant Guppy in 1962. One of the turboprop-powered Super Guppies, built up from a YC-97J airframe, last appeared at Dryden in May, 1976 when it was used to transport the HL-10 and X-24B lifting bodies from Dryden to the Air Force Museum at Wright-Patterson Air Force Base, Ohio. NASA's present Super Guppy Turbine, the fourth and last example of the final version, first flew in its outsized form in 1980. It and its three sister ships were built in the 1970s for Europe's Airbus Industrie to ferry outsized structures for Airbus jetliners to the final assembly plant in Toulouse, France. It later was acquired by the European Space Agency, and then acquired by NASA in late 1997 for transport of large structures for the International Space Station to the launch site. It replaced the earlier-model Super Guppy, which has been retired and is used for spare parts. NASA's Super Guppy Turbine carries NASA registration number N941NA, and is based at Ellington Field near the Johnson Space Center. For more information on NASA's Super Guppy Turbine, log onto the Johnson Space Center Super Guppy web page at http://spaceflight.nasa.gov/station/assembly/superguppy/

  8. Major Constituents Analysis for the Vehicle Cabin Atmosphere Monitor

    NASA Technical Reports Server (NTRS)

    Mandrake, Lukas; Bornstein, Benjamin J.; Madzunkov, Stojan; Macaskill, John A.

    2011-01-01

    Vehicle Cabin Atmosphere Monitor (VCAM) can provide a means for monitoring the air within enclosed environments such as the International Space Station, the Crew Exploration Vehicle (CEV), a Lunar habitat, or another vehicle traveling to Mars. The software processes a sum total spectra (counts vs. mass channel) with the intention of computing abundance ratios for N2, O2, CO2, Ar2, and H2O. A brute-force powerset expansion compares a library of expected mass lines with those found within the data. Least squares error is combined with a penalty term for using small peaks.

  9. Air travel and pneumothorax.

    PubMed

    Hu, Xiaowen; Cowl, Clayton T; Baqir, Misbah; Ryu, Jay H

    2014-04-01

    The number of medical emergencies onboard aircraft is increasing as commercial air traffic increases and the general population ages, becomes more mobile, and includes individuals with serious medical conditions. Travelers with respiratory diseases are at particular risk for in-flight events because exposure to lower atmospheric pressure in a pressurized cabin at cruising altitude may result in not only hypoxemia but also pneumothorax due to gas expansion within enclosed pulmonary parenchymal spaces based on Boyle's law. Risks of pneumothorax during air travel pertain particularly to those patients with cystic lung diseases, recent pneumothorax or thoracic surgery, and chronic pneumothorax. Currently available guidelines are admittedly based on sparse data and include recommendations to delay air travel for 1 to 3 weeks after thoracic surgery or resolution of the pneumothorax. One of these guidelines declares existing pneumothorax to be an absolute contraindication to air travel although there are reports of uneventful air travel for those with chronic stable pneumothorax. In this article, we review the available data regarding pneumothorax and air travel that consist mostly of case reports and retrospective surveys. There is clearly a need for additional data that will inform decisions regarding air travel for patients at risk for pneumothorax, including those with recent thoracic surgery and transthoracic needle biopsy. PMID:24687705

  10. Air travel and pneumothorax.

    PubMed

    Hu, Xiaowen; Cowl, Clayton T; Baqir, Misbah; Ryu, Jay H

    2014-04-01

    The number of medical emergencies onboard aircraft is increasing as commercial air traffic increases and the general population ages, becomes more mobile, and includes individuals with serious medical conditions. Travelers with respiratory diseases are at particular risk for in-flight events because exposure to lower atmospheric pressure in a pressurized cabin at cruising altitude may result in not only hypoxemia but also pneumothorax due to gas expansion within enclosed pulmonary parenchymal spaces based on Boyle's law. Risks of pneumothorax during air travel pertain particularly to those patients with cystic lung diseases, recent pneumothorax or thoracic surgery, and chronic pneumothorax. Currently available guidelines are admittedly based on sparse data and include recommendations to delay air travel for 1 to 3 weeks after thoracic surgery or resolution of the pneumothorax. One of these guidelines declares existing pneumothorax to be an absolute contraindication to air travel although there are reports of uneventful air travel for those with chronic stable pneumothorax. In this article, we review the available data regarding pneumothorax and air travel that consist mostly of case reports and retrospective surveys. There is clearly a need for additional data that will inform decisions regarding air travel for patients at risk for pneumothorax, including those with recent thoracic surgery and transthoracic needle biopsy.

  11. Impact data from a transport aircraft during a controlled impact demonstration

    NASA Technical Reports Server (NTRS)

    Fasanella, E. L.; Alfaro-Bou, E.; Hayduk, R. J.

    1986-01-01

    On December 1, 1984, the FAA and NASA conducted a remotely piloted air-to-ground crash test of a Boeing 720 transport aircraft instrumented to measure crash loads of the structure and the anthropomorphic dummy passengers. Over 330 time histories of accelerations and loads collected during the Full-Scale Transport Controlled Impact Demonstration (CID) for the 1-sec period after initial impact are presented. Although a symmetric 1 deg. nose-up attitude with a 17 ft/sec sink rate was planned, the plane was yawed and rolled 13 deg. at initial (left-wing) impact. The first fuselage impact occurred near the nose wheel well with the nose pitched down 2.5 deg. Peak normal (vertical) floor accelerations were highest in the cockpit and forward cabin near the nose wheel well and were approximately 14G. The remaining cabin floor received normal acceleration peaks of 7G or less. The peak longitudinal floor accelerations showed a similar distribution, with the highest (7G) in the cockpit and forward cabin, decreasing to 4G or less toward the rear. Peak transverse floor accelerations ranged from about 5G in the cockpit to 1G in the aft fuselage.

  12. Using memory for prior aircraft events to detect conflicts under conditions of proactive air traffic control and with concurrent task requirements.

    PubMed

    Bowden, Vanessa K; Loft, Shayne

    2016-06-01

    In 2 experiments we examined the impact of memory for prior events on conflict detection in simulated air traffic control under conditions where individuals proactively controlled aircraft and completed concurrent tasks. Individuals were faster to detect conflicts that had repeatedly been presented during training (positive transfer). Bayesian statistics indicated strong evidence for the null hypothesis that conflict detection was not impaired for events that resembled an aircraft pair that had repeatedly come close to conflicting during training. This is likely because aircraft altitude (the feature manipulated between training and test) was attended to by participants when proactively controlling aircraft. In contrast, a minor change to the relative position of a repeated nonconflicting aircraft pair moderately impaired conflict detection (negative transfer). There was strong evidence for the null hypothesis that positive transfer was not impacted by dividing participant attention, which suggests that part of the information retrieved regarding prior aircraft events was perceptual (the new aircraft pair "looked" like a conflict based on familiarity). These findings extend the effects previously reported by Loft, Humphreys, and Neal (2004), answering the recent strong and unanimous calls across the psychological science discipline to formally establish the robustness and generality of previously published effects. (PsycINFO Database Record PMID:27295467

  13. Using memory for prior aircraft events to detect conflicts under conditions of proactive air traffic control and with concurrent task requirements.

    PubMed

    Bowden, Vanessa K; Loft, Shayne

    2016-06-01

    In 2 experiments we examined the impact of memory for prior events on conflict detection in simulated air traffic control under conditions where individuals proactively controlled aircraft and completed concurrent tasks. Individuals were faster to detect conflicts that had repeatedly been presented during training (positive transfer). Bayesian statistics indicated strong evidence for the null hypothesis that conflict detection was not impaired for events that resembled an aircraft pair that had repeatedly come close to conflicting during training. This is likely because aircraft altitude (the feature manipulated between training and test) was attended to by participants when proactively controlling aircraft. In contrast, a minor change to the relative position of a repeated nonconflicting aircraft pair moderately impaired conflict detection (negative transfer). There was strong evidence for the null hypothesis that positive transfer was not impacted by dividing participant attention, which suggests that part of the information retrieved regarding prior aircraft events was perceptual (the new aircraft pair "looked" like a conflict based on familiarity). These findings extend the effects previously reported by Loft, Humphreys, and Neal (2004), answering the recent strong and unanimous calls across the psychological science discipline to formally establish the robustness and generality of previously published effects. (PsycINFO Database Record

  14. Methods for designing treatments to reduce interior noise of predominant sources and paths in a single engine light aircraft

    NASA Technical Reports Server (NTRS)

    Hayden, Richard E.; Remington, Paul J.; Theobald, Mark A.; Wilby, John F.

    1985-01-01

    The sources and paths by which noise enters the cabin of a small single engine aircraft were determined through a combination of flight and laboratory tests. The primary sources of noise were found to be airborne noise from the propeller and engine casing, airborne noise from the engine exhaust, structureborne noise from the engine/propeller combination and noise associated with air flow over the fuselage. For the propeller, the primary airborne paths were through the firewall, windshield and roof. For the engine, the most important airborne path was through the firewall. Exhaust noise was found to enter the cabin primarily through the panels in the vicinity of the exhaust outlet although exhaust noise entering the cabin through the firewall is a distinct possibility. A number of noise control techniques were tried, including firewall stiffening to reduce engine and propeller airborne noise, to stage isolators and engine mounting spider stiffening to reduce structure-borne noise, and wheel well covers to reduce air flow noise.

  15. [Cardiovascular disease and aircraft transportation: specificities and issues].

    PubMed

    Touze, Jean-Étienne; Métais, Patrick; Zawieja, Philippe

    2012-02-01

    With the development of air transport and travel to distant destinations, the number of passengers and elderly passengers on board increases each year. In this population, cardiovascular events are a major concern. Among medical incidents occurring in-flight they are second-ranked (10%) behind gastrointestinal disorders (25%). Their occurrence may involve life-threatening events and require resuscitation, difficult to perform during flight or in a precarious health environment. Coronary heart disease and pulmonary thromboembolic disease are the most serious manifestations. They are the leading cause of hospitalization in a foreign country and sudden cardiac death occurring during or subsequent to the flight. Their occurrence is explained on aircraft by hypoxia, hypobaria and decreased humidity caused by cabin pressurization and upon arrival by a different environmental context (extreme climates, tropical diseases). Moreover, the occurrence of a cardiovascular event during flight can represent for the air carrier a major economic and logistic problem when diversion occurred. Furthermore, the liability of the practitioner passenger could be involved according to airlines or to the country in which the aircraft is registered. In this context, cardiovascular events during aircraft transportation can be easily prevented by identifying high risk patients, respect of cardiovascular indications to travel, the implementation of simple preventive measures and optimization of medical equipment in commercial flights. PMID:21719248

  16. Mental health diagnoses and counseling among pilots of remotely piloted aircraft in the United States Air Force.

    PubMed

    Otto, Jean L; Webber, Bryant J

    2013-03-01

    Remotely piloted aircraft (RPA), also known as drones, have been used extensively in the recent conflicts in Iraq and Afghanistan. Although RPA pilots in the U.S. Air Force (USAF) have reported high levels of stress and fatigue, rates of mental health (MH) diagnoses and counseling in this population are unknown. We calculated incidence rates of 12 specific MH outcomes among all active component USAF RPA pilots between 1 October 2003 and 31 December 2011, and by various demographic and military variables. We compared these rates to those among all active component USAF manned aircraft (MA) pilots deployed to Iraq/Afghanistan during the same period. The unadjusted incidence rates of all MH outcomes among RPA pilots (n=709) and MA pilots (n=5,256) were 25.0 per 1,000 person-years and 15.9 per 1,000 person-years, respectively (adjusted incidence rate ratio=1.1, 95% confidence interval=0.9-1.5; adjusted for age, number of deployments, time in service, and history of any MH outcome). Th ere was no significant difference in the rates of MH diagnoses, including post-traumatic stress disorder, depressive disorders, and anxiety disorders between RPA and MA pilots. Military policymakers and clinicians should recognize that RPA and MA pilots have similar MH risk profiles.

  17. SIG: Multiple Views on Safety-Critical Automation: Aircraft, Autonomous Vehicles, Air Traffic Management and Satellite Ground Segments Perspectives

    NASA Technical Reports Server (NTRS)

    Feary, Michael; Palanque, Philippe; Martinie, Célia; Tscheligi, Manfred

    2016-01-01

    This SIG focuses on the engineering of automation in interactive critical systems. Automation has already been studied in a number of (sub-) disciplines and application fields: design, human factors, psychology, (software) engineering, aviation, health care, games. One distinguishing feature of the area we are focusing on is that in the field of interactive critical systems properties such as reliability, dependability, fault tolerance are as important as usability, user experience or overall acceptance issues. The SIG targets at two problem areas: first the engineering of the user interaction with (partly-) autonomous systems: how to design, build and assess autonomous behavior, especially in cases where there is a need to represent on the user interface both autonomous and interactive objects. An example of such integration is the representation of an unmanned aerial vehicle (UAV) (where no direct interaction is possible), together with aircrafts (that have to be instructed by an air traffic controller to avoid the UAV). Second the design and engineering of user interaction in general for autonomous objects/systems (for example a cruise control in a car or an autopilot in an aircraft). The goal of the SIG is to raise interest in the CHI community on the general aspects of automation and to identify a community of researchers and practitioners interested in those increasingly prominent issues of interfaces towards (semi)-autonomous systems. The expected audience should be interested in addressing the issues of integration of mainly unconnected research domains to formulate a new joint research agenda.

  18. Mental health diagnoses and counseling among pilots of remotely piloted aircraft in the United States Air Force.

    PubMed

    Otto, Jean L; Webber, Bryant J

    2013-03-01

    Remotely piloted aircraft (RPA), also known as drones, have been used extensively in the recent conflicts in Iraq and Afghanistan. Although RPA pilots in the U.S. Air Force (USAF) have reported high levels of stress and fatigue, rates of mental health (MH) diagnoses and counseling in this population are unknown. We calculated incidence rates of 12 specific MH outcomes among all active component USAF RPA pilots between 1 October 2003 and 31 December 2011, and by various demographic and military variables. We compared these rates to those among all active component USAF manned aircraft (MA) pilots deployed to Iraq/Afghanistan during the same period. The unadjusted incidence rates of all MH outcomes among RPA pilots (n=709) and MA pilots (n=5,256) were 25.0 per 1,000 person-years and 15.9 per 1,000 person-years, respectively (adjusted incidence rate ratio=1.1, 95% confidence interval=0.9-1.5; adjusted for age, number of deployments, time in service, and history of any MH outcome). Th ere was no significant difference in the rates of MH diagnoses, including post-traumatic stress disorder, depressive disorders, and anxiety disorders between RPA and MA pilots. Military policymakers and clinicians should recognize that RPA and MA pilots have similar MH risk profiles. PMID:23550927

  19. Securing passenger aircraft from the threat of man-portable air defense systems (MANPADS).

    PubMed

    Okpara, Uche; Bier, Vicki M

    2008-12-01

    In this article, we develop a model for the expected maximum hit probability of an attack on a commercial aircraft using MANPADS, as a function of the (random) location of the attacker. We also explore the sensitivity of the expected maximum hit probability to the parameters of the model, including both attacker parameters (such as weapon characteristics) and defender parameters (such as the size of the secure region around the airport). We conclude that having a large secure region around an airport offers some protection against MANPADS, and that installing onboard countermeasures reduces the success probability of a MANPADS attack.

  20. Operational Philosophy Concerning Manned Spacecraft Cabin Leaks

    NASA Technical Reports Server (NTRS)

    DeSimpelaere, Edward

    2011-01-01

    The last thirty years have seen the Space Shuttle as the prime United States spacecraft for manned spaceflight missions. Many lessons have been learned about spacecraft design and operation throughout these years. Over the next few decades, a large increase of manned spaceflight in the commercial sector is expected. This will result in the exposure of commercial crews and passengers to many of the same risks crews of the Space Shuttle have encountered. One of the more dire situations that can be encountered is the loss of pressure in the habitable volume of the spacecraft during on orbit operations. This is referred to as a cabin leak. This paper seeks to establish a general cabin leak response philosophy with the intent of educating future spacecraft designers and operators. After establishing a relative definition for a cabin leak, the paper covers general descriptions of detection equipment, detection methods, and general operational methods for management of a cabin leak. Subsequently, all these items are addressed from the perspective of the Space Shuttle Program, as this will be of the most value to future spacecraft due to similar operating profiles. Emphasis here is placed upon why and how these methods and philosophies have evolved to meet the Space Shuttle s needs. This includes the core ideas of: considerations of maintaining higher cabin pressures vs. lower cabin pressures, the pros and cons of a system designed to feed the leak with gas from pressurized tanks vs. using pressure suits to protect against lower cabin pressures, timeline and consumables constraints, re-entry considerations with leaks of unknown origin, and the impact the International Space Station (ISS) has had to the standard Space Shuttle cabin leak response philosophy. This last item in itself includes: procedural management differences, hardware considerations, additional capabilities due to the presence of the ISS and its resource, and ISS docking/undocking considerations with a

  1. VisNAV 100: a robust, compact imaging sensor for enabling autonomous air-to-air refueling of aircraft and unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Katake, Anup; Choi, Heeyoul

    2010-01-01

    To enable autonomous air-to-refueling of manned and unmanned vehicles a robust high speed relative navigation sensor capable of proving high accuracy 3DOF information in diverse operating conditions is required. To help address this problem, StarVision Technologies Inc. has been developing a compact, high update rate (100Hz), wide field-of-view (90deg) direction and range estimation imaging sensor called VisNAV 100. The sensor is fully autonomous requiring no communication from the tanker aircraft and contains high reliability embedded avionics to provide range, azimuth, elevation (3 degrees of freedom solution 3DOF) and closing speed relative to the tanker aircraft. The sensor is capable of providing 3DOF with an error of 1% in range and 0.1deg in azimuth/elevation up to a range of 30m and 1 deg error in direction for ranges up to 200m at 100Hz update rates. In this paper we will discuss the algorithms that were developed in-house to enable robust beacon pattern detection, outlier rejection and 3DOF estimation in adverse conditions and present the results of several outdoor tests. Results from the long range single beacon detection tests will also be discussed.

  2. Adaptation of Combustion Principles to Aircraft Propulsion. Volume I; Basic Considerations in the Combustion of Hydrocarbon Fuels with Air

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C (Editor); Hibbard, Robert R (Editor)

    1955-01-01

    The report summarizes source material on combustion for flight-propulsion engineers. First, several chapters review fundamental processes such as fuel-air mixture preparation, gas flow and mixing, flammability and ignition, flame propagation in both homogenous and heterogenous media, flame stabilization, combustion oscillations, and smoke and carbon formation. The practical significance and the relation of these processes to theory are presented. A second series of chapters describes the observed performance and design problems of engine combustors of the principal types. An attempt is made to interpret performance in terms of the fundamental processes and theories previously reviewed. Third, the design of high-speed combustion systems is discussed. Combustor design principles that can be established from basic considerations and from experience with actual combustors are described. Finally, future requirements for aircraft engine combustion systems are examined.

  3. Requirements for regional short-haul air service and the definition of a flight program to determine neighborhood reactions to small transport aircraft

    NASA Technical Reports Server (NTRS)

    Feher, K.; Bollinger, L.; Bowles, J. V.; Waters, M. H.

    1978-01-01

    An evaluation of the current status and future requirements of an intraregional short haul air service is given. A brief definition of the different types of short haul air service is given. This is followed by a historical review of previous attempts to develop short haul air service in high density urban areas and an assessment of the current status. The requirements for intraregional air service, the need for economic and environmental viability and the need for a flight research program are defined. A detailed outline of a research program that would determine urban community reaction to frequent operations of small transport aircraft is also given. Both the operation of such an experiment in a specific region (San Francisco Bay area) and the necessary design modifications of an existing fixed wing aircraft which could be used in the experiment are established. An estimate is made of overall program costs.

  4. Aircraft noise: accounting for changes in air traffic with time of day.

    PubMed

    Schäffer, Beat; Bütikofer, Rudolf; Plüss, Stefan; Thomann, Georg

    2011-01-01

    Aircraft noise contours are estimated using model calculations and, due to their impact on land use planning, they need to be highly accurate. During night time, not only the number and dominant types of aircraft may differ from daytime but also the flight paths flown may differ. To determine to which detail these variations in flight paths need to be considered, calculations were performed exemplarily for two airports using all available radar data over 1 year, taking into account their changes over the day. The results of this approach were compared with results of a simpler approach which does not consider such changes. While both calculations yielded similar results for the day and close to the airport, differences increased with distance as well as with the period of day (day

  5. Four-dimensional guidance algorithms for aircraft in an air traffic control environment

    NASA Technical Reports Server (NTRS)

    Pecsvaradi, T.

    1975-01-01

    Theoretical development and computer implementation of three guidance algorithms are presented. From a small set of input parameters the algorithms generate the ground track, altitude profile, and speed profile required to implement an experimental 4-D guidance system. Given a sequence of waypoints that define a nominal flight path, the first algorithm generates a realistic, flyable ground track consisting of a sequence of straight line segments and circular arcs. Each circular turn is constrained by the minimum turning radius of the aircraft. The ground track and the specified waypoint altitudes are used as inputs to the second algorithm which generates the altitude profile. The altitude profile consists of piecewise constant flight path angle segments, each segment lying within specified upper and lower bounds. The third algorithm generates a feasible speed profile subject to constraints on the rate of change in speed, permissible speed ranges, and effects of wind. Flight path parameters are then combined into a chronological sequence to form the 4-D guidance vectors. These vectors can be used to drive the autopilot/autothrottle of the aircraft so that a 4-D flight path could be tracked completely automatically; or these vectors may be used to drive the flight director and other cockpit displays, thereby enabling the pilot to track a 4-D flight path manually.

  6. Aerosol generation by blower motors as a bias in assessing aerosol penetration into cabin filtration systems.

    PubMed

    Heitbrink, William A; Collingwood, Scott

    2005-01-01

    In cabin filtration systems, blower motors pressurize a vehicle cabin with clean filtered air and recirculate air through an air-conditioning evaporator coil and a heater core. The exposure reduction offered by these cabins is evaluated by optical particle counters that measure size-dependent aerosol concentration inside and outside the cabin. The ratio of the inside-to-outside concentration is termed penetration. Blower motors use stationary carbon brushes to transmit an electrical current through a rotating armature that abrades the carbon brushes. This creates airborne dust that may affect experimental evaluations of aerosol penetration. To evaluate the magnitude of these dust emissions, blower motors were placed in a test chamber and operated at 12 and 13.5 volts DC. A vacuum cleaner drew 76 m3/hour (45 cfm) of air through HEPA filters, the test chamber, and through a 5 cm diameter pipe. An optical particle counter drew air through an isokinetic sampling probe and measured the size-dependent particle concentrations from 0.3 to 15 microm. The concentration of blower motor aerosol was between 2 x 10(5) and 1.8 x 10(6) particles/m3. Aerosol penetration into three stationary vehicles, two pesticide application vehicles and one tractor were measured at two conditions: low concentration (outside in the winter) and high concentration (inside repair shops and burning incense sticks used as a supplemental aerosol source). For particles smaller than 1 microm, the in-cabin concentrations can be explained by the blower motor emissions. For particles larger than 1 microm, other aerosol sources, such as resuspended dirt, are present. Aerosol generated by the operation of the blower motor and by other sources can bias the exposure reduction measured by optical particle counters.

  7. Aerosol generation by blower motors as a bias in assessing aerosol penetration into cabin filtration systems.

    PubMed

    Heitbrink, William A; Collingwood, Scott

    2005-01-01

    In cabin filtration systems, blower motors pressurize a vehicle cabin with clean filtered air and recirculate air through an air-conditioning evaporator coil and a heater core. The exposure reduction offered by these cabins is evaluated by optical particle counters that measure size-dependent aerosol concentration inside and outside the cabin. The ratio of the inside-to-outside concentration is termed penetration. Blower motors use stationary carbon brushes to transmit an electrical current through a rotating armature that abrades the carbon brushes. This creates airborne dust that may affect experimental evaluations of aerosol penetration. To evaluate the magnitude of these dust emissions, blower motors were placed in a test chamber and operated at 12 and 13.5 volts DC. A vacuum cleaner drew 76 m3/hour (45 cfm) of air through HEPA filters, the test chamber, and through a 5 cm diameter pipe. An optical particle counter drew air through an isokinetic sampling probe and measured the size-dependent particle concentrations from 0.3 to 15 microm. The concentration of blower motor aerosol was between 2 x 10(5) and 1.8 x 10(6) particles/m3. Aerosol penetration into three stationary vehicles, two pesticide application vehicles and one tractor were measured at two conditions: low concentration (outside in the winter) and high concentration (inside repair shops and burning incense sticks used as a supplemental aerosol source). For particles smaller than 1 microm, the in-cabin concentrations can be explained by the blower motor emissions. For particles larger than 1 microm, other aerosol sources, such as resuspended dirt, are present. Aerosol generated by the operation of the blower motor and by other sources can bias the exposure reduction measured by optical particle counters. PMID:15764523

  8. A study of the air movement in two aircraft-engine cylinders

    NASA Technical Reports Server (NTRS)

    Lee, Dana W

    1940-01-01

    Studies were made of the air movements in the NACA glass-cylinder apparatus using cylinder heads similar to those on the Wright R-1820-G engine and the Pratt & Whitney Wasp engine as modified by the Eclipse Aviation Corporation to use fuel-injection equipment. The air movements were made visible by mixing small feathers with the air; high-speed motion pictures were than taken of the feathers as they swirled about the inside the glass cylinder. The test engine speeds were 350, 500, and 1,000 r.p.m. Motion pictures were also taken of gasoline sprays injected into the cylinder during the intake stroke. The air flow produced by each cylinder head is described and some results of the velocity measurements of feathers are presented. The apparent time intervals required for vaporization of the gasoline sprays are also given.

  9. Air-consumption parameters for automatic mixture control of aircraft engines

    NASA Technical Reports Server (NTRS)

    Shames, Sidney J

    1945-01-01

    Data obtained from Navy calibration tests of an 18-cylinder, two-row, radial engine of 3350-cubic-inch displacement and a 14-cylinder, two-row, radial engine of 2600-cubic-inch displacement (carburetor types) were analyzed to show the correlation between the air consumption of these engines and the parameters that evaluate the air consumption from intake-manifold temperature and pressure, exhaust back pressure, and engine speed.

  10. Summary report on effects at temperature, humidity, and fuel-air ratio on two air-cooled light aircraft engines

    NASA Technical Reports Server (NTRS)

    Kempke, E. E., Jr.

    1976-01-01

    Five different engine models were tested to experimentally characterize emissions and to determine the effects of variation in fuel-air ratio and spark timing on emissions levels and other operating characteristics such as cooling, misfiring, roughness, power acceleration, etc. The results are given of two NASA reports covering the Avco Lycoming 0-320-D engine testing and the recently obtained results on the Teledyne Continental TSIO-360-C engine.

  11. Fault detection and isolation of aircraft air data/inertial system

    NASA Astrophysics Data System (ADS)

    Berdjag, D.; Cieslak, J.; Zolghadri, A.

    2013-12-01

    A method for failure detection and isolation (FDI) for redundant aircraft sensors is presented. The outputs of the concerned sensors are involved in the computation of flight control laws, and the objective is to eliminate any fault before propagation in the control loop when selecting a unique flight parameter among a set (generally, three) of redundant measurements. The particular case of an oscillatory failure is investigated. The proposed method allows an accurate FDI of erroneous sensor and computes a consolidated parameter based on the fusion of data from remaining valid sensors. The benefits of the presented method are to enhance the data fusion process with FDI techniques which improve the performance of the fusion when only few sources (less than three) are initially valid.

  12. Emission of atmospheric pollutants out of Africa - Analysis of CARIBIC aircraft air samples

    NASA Astrophysics Data System (ADS)

    Thorenz, Ute R.; Baker, Angela K.; Schuck, Tanja; van Velthoven, Peter F. J.; Ziereis, Helmut; Brenninkmeijer, Carl A. M.

    2014-05-01

    Africa is the single largest continental source of biomass burning (BB) emissions. The burning African savannas and tropical forests are a source for a wide range of chemical species, which are important for global atmospheric chemistry, especially for the pristine Southern Hemisphere. Emitted compounds include carbon monoxide (CO), nitrogen oxides (NOx), hydrocarbons, oxygenated hydrocarbons and particles. Deep convection over Central Africa transports boundary layer emissions to the free troposphere making aircraft-based observations useful for investigation of surface emissions and examination of transport and chemistry processes over Africa The CARIBIC project (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container, www.caribic-atmosphere.com part of IAGOS www.iagos.org) is a long term atmospheric measurement program using an instrument container deployed aboard a Lufthansa Airbus A340-600 for a monthly sequence of long-distance passenger flights. Besides the online measurements mixing ratios of greenhouse gases and a suite of C2-C8 non methane hydrocarbons (NMHCs) are measured from flask samples collected at cruise altitude. During northern hemispheric winter 2010/2011 CARIBIC flights took place from Frankfurt to Cape Town and Johannesburg in South Africa. Several BB tracers like methane, CO and various NMHCs were found to be elevated over tropical Africa. Using tracer-CO- and tracer-NOy-correlations emissions were characterized. The NMHC-CO correlations show monthly changing slopes, indicating a change in burned biomass, major fire stage, source region and/or other factors influencing NMHC emissions. To expand our analysis of emission sources a source region data filter was used, based on backward trajectories calculated along the flight tracks. Taking all CARIBIC samples into account having backward trajectories to the African boundary layer the dataset was enlarged from 77 to 168 samples. For both datasets tracer

  13. Air concentrations of PBDEs on in-flight airplanes and assessment of flight crew inhalation exposure.

    PubMed

    Allen, Joseph G; Sumner, Ann Louise; Nishioka, Marcia G; Vallarino, Jose; Turner, Douglas J; Saltman, Hannah K; Spengler, John D

    2013-07-01

    To address the knowledge gaps regarding inhalation exposure of flight crew to polybrominated diphenyl ethers (PBDEs) on airplanes, we measured PBDE concentrations in air samples collected in the cabin air at cruising altitudes and used Bayesian Decision Analysis (BDA) to evaluate the likelihood of inhalation exposure to result in the average daily dose (ADD) of a member of the flight crew to exceed EPA Reference Doses (RfDs), accounting for all other aircraft and non-aircraft exposures. A total of 59 air samples were collected from different aircraft and analyzed for four PBDE congeners-BDE 47, 99, 100 and 209 (a subset were also analyzed for BDE 183). For congeners with a published RfD, high estimates of ADD were calculated for all non-aircraft exposure pathways and non-inhalation exposure onboard aircraft; inhalation exposure limits were then derived based on the difference between the RfD and ADDs for all other exposure pathways. The 95th percentile measured concentrations of PBDEs in aircraft air were <1% of the derived inhalation exposure limits. Likelihood probabilities of 95th percentile exposure concentrations >1% of the defined exposure limit were zero for all congeners with published RfDs.

  14. Air concentrations of PBDEs on in-flight airplanes and assessment of flight crew inhalation exposure.

    PubMed

    Allen, Joseph G; Sumner, Ann Louise; Nishioka, Marcia G; Vallarino, Jose; Turner, Douglas J; Saltman, Hannah K; Spengler, John D

    2013-07-01

    To address the knowledge gaps regarding inhalation exposure of flight crew to polybrominated diphenyl ethers (PBDEs) on airplanes, we measured PBDE concentrations in air samples collected in the cabin air at cruising altitudes and used Bayesian Decision Analysis (BDA) to evaluate the likelihood of inhalation exposure to result in the average daily dose (ADD) of a member of the flight crew to exceed EPA Reference Doses (RfDs), accounting for all other aircraft and non-aircraft exposures. A total of 59 air samples were collected from different aircraft and analyzed for four PBDE congeners-BDE 47, 99, 100 and 209 (a subset were also analyzed for BDE 183). For congeners with a published RfD, high estimates of ADD were calculated for all non-aircraft exposure pathways and non-inhalation exposure onboard aircraft; inhalation exposure limits were then derived based on the difference between the RfD and ADDs for all other exposure pathways. The 95th percentile measured concentrations of PBDEs in aircraft air were <1% of the derived inhalation exposure limits. Likelihood probabilities of 95th percentile exposure concentrations >1% of the defined exposure limit were zero for all congeners with published RfDs. PMID:22739680

  15. 79. Rocky Knob Recreation area housekeeping cabin with stone chimney ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    79. Rocky Knob Recreation area housekeeping cabin with stone chimney mimicking the log cabins of the Southern Appalachians. Looking south. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  16. 5. View of immediate setting of Free Cabin across State ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View of immediate setting of Free Cabin across State Route 121/U.S. Highway 25/Peach Orchard Road, facing west. - Free Cabin, State Route 121-U.S. Highway 25-Peach Orchard Road, Hephzibah, Richmond County, GA

  17. The shuttle orbiter cabin atmospheric revitalization systems

    NASA Technical Reports Server (NTRS)

    Ward, C. F.; Owens, W. L.

    1975-01-01

    The Orbiter Atmospheric Revitalization Subsystem (ARS) and Pressure Control Subsystem (ARPCS) are designed to provide the flight crew and passengers with a pressurized environment that is both life-supporting and within crew comfort limitations. The ARPCS is a two-gas (oxygen-nitrogen) system that obtains oxygen from the Power Reactant Supply and Distribution (PRSD) subsystem and nitrogen from the nitrogen storage tanks. The ARS includes the water coolant loop; cabin CO2, odor, humidity and temperature control; and avionics cooling. Baseline ARPCS and ARS changes since 1973 include removal of the sublimator from the water coolant loop, an increase in flowrates to accommodate increased loads, elimination of the avionics bay isolation from the cabin, a decision to have an inert vehicle during ferry flight, elimination of coldwall tubing around windows and hatches, and deletion of the cabin heater.

  18. Human Factors in Cabin Accident Investigations

    NASA Technical Reports Server (NTRS)

    Chute, Rebecca D.; Rosekind, Mark R. (Technical Monitor)

    1996-01-01

    Human factors has become an integral part of the accident investigation protocol. However, much of the investigative process remains focussed on the flight deck, airframe, and power plant systems. As a consequence, little data has been collected regarding the human factors issues within and involving the cabin during an accident. Therefore, the possibility exists that contributing factors that lie within that domain may be overlooked. The FAA Office of Accident Investigation is sponsoring a two-day workshop on cabin safety accident investigation. This course, within the workshop, will be of two hours duration and will explore relevant areas of human factors research. Specifically, the three areas of discussion are: Information transfer and resource management, fatigue and other physical stressors, and the human/machine interface. Integration of these areas will be accomplished by providing a suggested checklist of specific cabin-related human factors questions for investigators to probe following an accident.

  19. Meteorological and operational aspects of 46 clear air turbulence sampling missions with an instrument B-57B aircraft. Volume 1: Program summary

    NASA Technical Reports Server (NTRS)

    Davis, R. E.; Champine, R. A.; Ehernberger, L. J.

    1979-01-01

    The results of 46 clear air turbulence (CAT) probing missions conducted with an extensively instrumented B-57B aircraft are summarized. Turbulence samples were obtained under diverse conditions including mountain waves, jet streams, upper level fronts and troughs, and low altitude mechanical and thermal turbulence. CAT was encouraged on 20 flights comprising 77 data runs. In all, approximately 4335 km were flown in light turbulence, 1415 km in moderate turbulence, and 255 km in severe turbulence during the program. The flight planning, operations, and turbulence forecasting aspects conducted with the B-57B aircraft are presented.

  20. Predicting the impacts of new technology aircraft on international air transportation demand

    NASA Technical Reports Server (NTRS)

    Ausrotas, R. A.

    1981-01-01

    International air transportation to and from the United States was analyzed. Long term and short term effects and causes of travel are described. The applicability of econometric methods to forecast passenger travel is discussed. A nomograph is developed which shows the interaction of economic growth, airline yields, and quality of service in producing international traffic.

  1. 36 CFR 13.118 - Cabin site compatibility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Cabin site compatibility. 13.118 Section 13.118 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Cabins General Provisions § 13.118 Cabin site...

  2. 36 CFR 13.118 - Cabin site compatibility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Cabin site compatibility. 13.118 Section 13.118 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Cabins General Provisions § 13.118 Cabin site...

  3. 36 CFR 13.118 - Cabin site compatibility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Cabin site compatibility. 13.118 Section 13.118 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Cabins General Provisions § 13.118 Cabin site...

  4. 36 CFR 13.118 - Cabin site compatibility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Cabin site compatibility. 13.118 Section 13.118 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Cabins General Provisions § 13.118 Cabin site...

  5. 36 CFR 13.118 - Cabin site compatibility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Cabin site compatibility. 13.118 Section 13.118 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Cabins General Provisions § 13.118 Cabin site...

  6. Efficacy of aerial spray applications using fuselage booms on Air Force C-130H aircraft against mosquitoes and biting midges.

    PubMed

    Breidenbaugh, Mark S; Haagsma, Karl A; Wojcik, George M; De Szalay, Ferenc A

    2009-12-01

    The effectiveness of a novel fuselage boom configuration was tested with flat-fan nozzles on U.S. Air Force C-130H aircraft to create ultra-low volume sprays to control mosquitoes (Culicidae) and biting midges (Ceratopogonidae). The mortality of mosquitoes and biting midges in bioassay cages and natural populations, using the organophosphate adulticide, naled, was measured. Mosquitoes in bioassay cages had 100% mortality at 639 m downwind in all single-pass spray trials, and most trials had >90% mortality up to 1491 m downwind. Mosquito mortality was negatively correlated with distance from the spray release point (r2 = 0.38, P < 0.001). The volume median diam of droplets collected was 44 tm at 213 m and decreased to 11 microm at 2130 m downwind of the release point. Droplet density decreased from an average of 18.4 drops/cm2 at 213 m to 2 drops/cm2 at 2130 m. Droplet densities of 10-18 droplets/cm2 were recorded at sampling stations with high mosquito mortality rates (>90%). In wide-area operational applications, numbers of mosquitoes from natural populations 1 wk postspray were 83% (range 55%-95%), lower than prespray numbers (P < 0.05). Biting midge numbers were reduced by 86% (range 53%-97%) on average (P = 0.051) after 7 days. The results of these field trials indicate that the fuselage boom configuration on C-130H aircraft are an effective method to conduct large-scale aerial sprays during military operations and public health emergencies. PMID:20099594

  7. Measured Changes in C-Band Radar Reflectivity of Clear Air Caused by Aircraft Wake Vortices

    NASA Technical Reports Server (NTRS)

    Mackenzie, Anne I.

    1997-01-01

    Wake vortices from a C-130 airplane were observed at the NASA Wallops Flight Facility with a ground-based, monostatic C-band radar and an antenna-mounted boresight video camera. The airplane wake was viewed from a distance of approximately 1 km, and radar scanning was adjusted to cross a pair of marker smoke trails generated by the C-130. For each airplane pass, changes in radar reflectivity were calculated by subtracting the signal magnitudes during an initial clutter scan from the signal magnitudes during vortex-plus-clutter scans. The results showed both increases and decreases in reflectivity on and near the smoke trails in a characteristic sinusoidal pattern of heightened reflectivity in the center and lessened reflectivity at the sides. Reflectivity changes in either direction varied from -131 to -102 dBm(exp -1); the vortex-plus-clutter to noise ratio varied from 20 to 41 dB. The radar recordings lasted 2.5 min each; evidence of wake vortices was found for up to 2 min after the passage of the airplane. Ground and aircraft clutter were eliminated as possible sources of the disturbance by noting the occurrence of vortex signatures at different positions relative to the ground and the airplane. This work supports the feasibility of vortex detection by radar, and it is recommended that future radar vortex detection be done with Doppler systems.

  8. A directional spotlight baffle for control cabins

    NASA Astrophysics Data System (ADS)

    Anderson, K. W.; Clark, B. A. J.

    1980-10-01

    Direct overhead lighting in control cabins frequently gives rise to unwanted bright images of the luminaries in the windows and these images may degrade the cabin operator's view of the external world. A directional baffle incorporating light traps which allow a high ratio of wanted to unwanted illumination from a specific conventional spotlamp is described. In practical tests, images from the spotlamp baffle combination were practically inconspicuous both in day and night conditions. A general method of design is described for extension of the principle to other types of spotlamps.

  9. Analyses on influencing factors of airborne VOCS pollution in taxi cabins.

    PubMed

    Chen, Xiaokai; Feng, Lili; Luo, Huilong; Cheng, Heming

    2014-11-01

    Due to the long time in vehicular cabins, people have high exposure to the airborne volatile organic compounds (VOCS), which will lead to negative effects on human health. In order to analyze the influencing factors of in-car VOCS pollution concentrations, 38 taxis were investigated on the static and closed conditions. The interior air of taxis was collected through activated Tenax adsorption tubes, and the air samples were analyzed with thermally desorbed gas chromatograph. The average concentrations of in-car benzene, toluene, ethylbenzene, xylenes, styrene, butyl acetate, undecane, and total VOCS (TVOC) were 82.7, 212.3, 74.7, 182.3, 24.7, 33.5, 61.3, and 1,441.7 μg/m(3), respectively. Furthermore, the VOCS and TVOC concentrations increase with the rise of in-car temperature and relative humidity, and decrease with the increase of car age and total mileage. In addition, the VOCS and TVOC concentrations are higher in vehicles with small cabins than in ones with big cabins, and change with different sampling sites and various vehicular grades. Finally, according to the multiple linear regression analysis and hierarchical cluster analysis, car age is the most important factor influencing airborne VOCS and TVOC pollution concentrations in vehicular cabins, followed by interior temperature and total mileage.

  10. BOREAS AFM-2 King Air 1994 Aircraft Flux and Moving Window Data

    NASA Technical Reports Server (NTRS)

    Kelly, Robert D.; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-2 team collected pass-by-pass fluxes (and many other statistics) for a large number of level (constant altitude), straight-line passes used in a variety of flight patterns. The data were collected by the University of Wyoming King Air in 1994 BOREAS IFCs 1-3. Most of these data were collected at 60-70 m above ground level, but a significant number of passes were also flown at various levels in the planetary boundary layer, up to about the inversion height. This documentation concerns only the data from the straight and level passes that are presented as original (over the NSA and SSA) and moving window values (over the Transect). Another archive of King Air data is also available, containing data from all the soundings flown by the King Air 1994 IFCs 1-3. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  11. Source identification of PM10 pollution in subway passenger cabins using positive matrix factorization

    NASA Astrophysics Data System (ADS)

    Park, Duckshin; Oh, Miseok; Yoon, Younghun; Park, Eunyoung; Lee, Kiyoung

    2012-03-01

    Monitoring the air quality in subway passenger cabins is important because of the large number of passengers and potentially high levels of air pollution. This report characterized PM10 levels in subway cabins in Seoul, Korea, and identified PM10 sources using elemental analysis and receptor modeling. PM10 levels in subway cabins were continuously measured using a light scattering monitor during rush and non-rush hours. A total of 41 measurements were taken during rush and non-rush hours, and the measurements were repeated in all four seasons. Filter samples were also collected for elemental composition analysis. Major PM10 sources were identified using positive matrix factorization (PMF). The in-cabin PM10 concentrations were the highest in the winter at 152.8 μg m-3 during rush hours and 90.2 μg m-3 during non-rush hours. While PM10 levels were higher during rush hours than during non-rush hours in three seasons (excluding summer), these levels were not associated with number of passenger. Elemental analysis showed that the PM10 was composed of 52.5% inorganic elements, 10.2% anions, and 37.3% other. Fe was the most abundant element and significantly correlated (p < 0.01) with Mn (r = 0.97), Ti (r = 0.91), Cr (r = 0.88), Ni (r = 0.89), and Cu (r = 0.88). Fe, Mn, Cr, and Cu are indicators of railroad-related PM10 sources. The PM10 sources characterized by PMF were soil and road dust sources (27.2%), railroad-related sources (47.6%), secondary nitrate sources (16.2%), and a chlorine factor mixed with a secondary sulfate source (9.1%). Overall, railroad-related sources contributed the most PM10 to subway cabin air.

  12. Controlled impact demonstration seat/cabin restraint systems: FAA

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.

    1986-01-01

    The FAA restraint system experiments consisted of 24 standard and modified seats, 2 standard galleys and 2 standard overhead compartments. Under the controlled impact demonstration (CID) program, the experimental objective was to demonstrate the effectiveness of individual restraint system designs when exposed to a survivable air-to-ground impact condition. What researchers were looking for was the performance exhibited by standard and modified designs, performance differences resulting from their installed cabin location, and interrelating performance demonstrated by test article and attaching floor and/or fuselage structure. The other restraint system experiment consisted of 2 standard overhead stowage compartments and 2 galley modules. Again, researchers were concerned with the retention of stowed equipment and carry-on articles. The overhead compartments were loaded with test weights up to their maximum capacity, and each of the galleys was filled with test articles: aft with normal galley equipment, forward with hazardous material test packages. A breakdown of instrumentation and distribution is given beginning with 11 instrumented type anthropomorphic dummies and 185 sensors which provided for acceleration and load measurements at the various experiment and associated structure locations. The onboard cameras provided additional coverage of these experiments, including the areas of cabin which were not instrumented. Test results showing the window-side leg forces versus pulse duration are given.

  13. Effect of air temperature and relative humidity at various fuel-air ratios on exhaust emissions on a per-mode basis of an Avco Lycoming 0-320 DIAD light aircraft engine. Volume 2: Individual data points

    NASA Technical Reports Server (NTRS)

    Skorobatckyi, M.; Cosgrove, D. V.; Meng, P. R.; Kempke, E. R.

    1976-01-01

    A carbureted four cylinder air cooled 0-320 DIAD Lycoming aircraft engine was tested to establish the effects of air temperature and humidity at various fuel-air ratios on the exhaust emissions on a per-mode basis. The test conditions included carburetor lean-out at air temperatures of 50, 59, 80, and 100 F at relative humidities of 0, 30, 60, and 80 percent. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased. Even at a fixed fuel-air ratio, the HC emissions increase and the NOx emissions decrease at the higher values of air temperature and humidity. Volume II contains the data taken at each of the individual test points.

  14. Effect of Air Temperature and Relative Humidity at Various Fuel-Air Ratios on Exhaust Emissions on a Per-Mode Basis of an AVCO Lycoming 0-320 Diad Light Aircraft Engine: Volume 1: Results and Plotted Data

    NASA Technical Reports Server (NTRS)

    Skorobatckyi, M.; Cosgrove, D. V.; Meng, P. R.; Kempe, E. E., Jr.

    1978-01-01

    A carbureted four cylinder air cooled 0-320 DIAD Lycoming aircraft engine was tested to establish the effects of air temperature and humidity at various fuel-air ratios on the exhaust emissions on a per-mode basis. The test conditions include carburetor lean out at air temperatures of 50, 59, 80, and 100 F at relative humidities of 0, 30, 60, and 80 percent. Temperature humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased. Even at a fixed fuel air ratio, the HC emissions increase and the NOx emissions decrease at the higher values of air temperature and humidity.

  15. Cabin-fuselage-wing structural design concept with engine installation

    NASA Technical Reports Server (NTRS)

    Ariotti, Scott; Garner, M.; Cepeda, A.; Vieira, J.; Bolton, D.

    1993-01-01

    The purpose of this project is to provide a fuselage structural assembly and wing structural design that will be able to withstand the given operational parameters and loads provided by Federal Aviation Regulation Part 23 (FAR 23) and the Statement of Work (SOW). The goal is to provide a durable lightweight structure that will transfer the applied loads through the most efficient load path. Areas of producibility and maintainability of the structure will also be addressed. All of the structural members will also meet or exceed the desired loading criteria, along with providing adequate stiffness, reliability, and fatigue life as stated in the SOW. Considerations need to be made for control system routing and cabin heating/ventilation. The goal of the wing structure and carry through structure is also to provide a simple, lightweight structure that will transfer the aerodynamic forces produced by the wing, tailboom, and landing gear. These forces will be channeled through various internal structures sized for the pre-determined loading criteria. Other considerations were to include space for flaps, ailerons, fuel tanks, and electrical and control system routing. The difficulties encountered in the fuselage design include expanding the fuselage cabin to accept a third occupant in a staggered configuration and providing ample volume for their safety. By adding a third person the CG of aircraft will move forward so the engine needs to be moved aft to compensate for the difference in the moment. This required the provisions of a ring frame structure for the new position of the engine mount. The difficulties encountered in the wing structural design include resizing the wing for the increased capacity and weight, and compensating for a large torsion produced by the tail boom by placing a great number of stiffeners inside the boom, which will result in the relocation of the fuel tank. Finally, an adequate carry through structure for the wing and fuselage interface will be

  16. Aircraft noise annoyance at three joint air carrier and general aviation airports

    NASA Technical Reports Server (NTRS)

    Fidell, S.; Horonjeff, R.; Mills, J.; Baldwin, E.; Teffeteller, S.; Pearsons, K.

    1985-01-01

    The results of social surveys conducted near three airports that support both general aviation and scheduled air carrier operations are presented and discussed. Inferences supported by these data include: (1) the nature of noise exposure and community reaction at smaller airports may differ from that at larger airports; (2) survey techniques are capable of identifying changes in annoyance associated with numerically small changes in noise exposure; (3) changes in the prevalence of annoyance are causally produced by changes in noise exposure; and (4) changes in annoyance associated with changes in exposure vary with time.

  17. Aircraft Level Air Temperature Derived From the High Accuracy Radiometric Observations of the Scanning HIS Interferometer During the AURA Validation Experiment (AVE-Houston 2004 and 2005)

    NASA Astrophysics Data System (ADS)

    Vinson, K. H.; Revercomb, H.; Dutcher, S.; Knuteson, R. O.; Turner, D. D.; Tobin, D.

    2005-12-01

    The University of Wisconsin-Madison Space Science and Engineering Center (UW-SSEC) has developed advanced instrumentation for aircraft platforms for weather and climate applications with an emphasis on absolute radiometric and spectral calibration. The Scanning High-resolution Interferometer Sounder (S-HIS) is a UW-SSEC aircraft instrument that measures upwelling (and down welling) thermal emission between 3.3 and 18 microns at 0.5 cm-1 spectral resolution (unapodized). The measured radiance can be used to obtain temperature and constituent profiles of the Earth's atmosphere and to characterize the infrared properties of the Earth's surface and cloud boundaries. S-HIS observations were obtained from the NASA WB-57 high altitude aircraft based in Houston, Texas during the Aura Validation Experiment in September/October 2004 and June 2005. The S-HIS upwelling and down welling radiance observations are being used in the creation of an aircraft level air temperature product. The Rodgers optimal estimation approach is used to physically retrieve the atmospheric temperature for a vertical profile two kilometers above and below the aircraft. Results will be presented that represent the current state of these measurements and comparisons with other in-situ temperature measurements on board the WB57.

  18. 14 CFR 23.841 - Pressurized cabins.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... predetermined value at the maximum rate of flow delivered by the pressure source. The combined capacity of the... intake or exhaust airflow, or both, for maintaining the required internal pressures and airflow rates. (5) Instruments to indicate to the pilot the pressure differential, the cabin pressure altitude, and the rate...

  19. Congress holds hearings on airliner cabin IAQ

    SciTech Connect

    Cox, J.E.; Miro, C.R.

    1993-11-01

    This article reports on congressional hearings on airliner cabin IAQ. The topics of the article include lax enforcement of existing standards, inadequate standards, proposed new standards, epidemiological investigations of the possibility of transmission of airborne infectious diseases, and comparison of FAA standards with ASHRAE standards for buildings.

  20. 14 CFR 25.841 - Pressurized cabins.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... feet after any probable failure condition in the pressurization system. (2) The airplane must be...) Fuselage structure, engine and system failures are to be considered in evaluating the cabin decompression... after decompression from any failure condition not shown to be extremely improbable: (i)...

  1. Assembly auxiliary system for narrow cabins of spacecraft

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Li, Shiqi; Wang, Junfeng

    2015-09-01

    Due to the narrow space and complex structure of spacecraft cabin, the existing asssembly systems can not well suit for the assembly process of cabin products. This paper aims to introduce an assembly auxiliary system for cabin products. A hierarchical-classification method is proposed to re-adjust the initial assembly relationship of cabin into a new hierarchical structure for efficient assembly planning. An improved ant colony algorithm based on three assembly principles is established for searching a optimizational assembly sequence of cabin parts. A mixed reality assembly environment is constructed with enhanced information to promote interaction efficiency of assembly training and guidance. Based on the machine vision technology, the inspection of left redundant objects and measurement of parts distance in inner cabin are efficiently performed. The proposed system has been applied to the assembly work of a spacecraft cabin with 107 parts, which includes cabin assembly planning, assembly training and assembly quality inspection. The application result indicates that the proposed system can be an effective assistant tool to cabin assembly works and provide an intuitive and real assembly experience for workers. This paper presents an assembly auxiliary system for spacecraft cabin products, which can provide technical support to the spacecraft cabin assembly industry.

  2. Tracking air-dropped drogues and dyes from aircraft in support of ERTS-1 circulation studies. [Delaware Bay

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Davis, G.; Wang, H.

    1974-01-01

    The author has identified the following significant results. For two years ERTS-1 has been employed to investigate current circulation patterns in Delaware Bay under different tidal, flow, and wind conditions. Since sufficient numbers of current meters and boats are not available, air-droppable drogues and dye packs have been developed and tested. The drogues consist of a styrofoam float and a line to which is attached a stainless steel biplane. The length of the line determines at what depth currents will be monitored. The floats are color coded to distinguish their movement and mark the depth of the biplanes. Simultaneously floating and anchored dye packs of fluorescein dye have been deployed from aircraft. The movement of the dye and drogues is tracked by sequential aerial photography, using fixed markers on shore or on buoys as reference points to calibrate the scale and direction of drogue movement. The current data obtained by this technique is then used to annotate current circulation maps derived from ERTS-1 imagery.

  3. Portable device for use in starting air-start-units for aircraft and having cable lead testing capability

    NASA Technical Reports Server (NTRS)

    Rosier, W. R.; Volk, G. G. (Inventor)

    1980-01-01

    A portable device for starting aircraft engines and the like is disclosed. The device includes a lead testing and motor starting circuit characterized by: (1) a direct current voltage source, (2) a pair of terminal plugs connected with the circuit (each being characterized by a first, second, and third terminal) (3) a pair of manually operable switches for connecting the first terminal of each plug of the pair to the positive side of the voltage source, (4) a circuit lead connecting to the second terminal of each plug the negative side of said source, (5) a pair of electrical cables adapted to connect said first and second terminals of each plug to an air-start unit, and means for connecting each cable of the pair of cables between the first terminal of one plug and the third terminal of the other plug of the pair, and (6) a second pair of manually operable switches for selectivity connecting the third terminal of each plug of the pair to the negative side of the voltage source.

  4. Neighborhood-scale air quality impacts of emissions from motor vehicles and aircraft

    NASA Astrophysics Data System (ADS)

    Choi, Wonsik; Hu, Shishan; He, Meilu; Kozawa, Kathleen; Mara, Steve; Winer, Arthur M.; Paulson, Suzanne E.

    2013-12-01

    A mobile monitoring platform (MMP) was used to measure real-time air pollutant concentrations in different built environments of Boyle Heights (BH, a lower-income community enclosed by several freeways); Downtown Los Angeles (DTLA, adjacent to BH with taller buildings and surrounded by several freeways); and West Los Angeles (WLA, an affluent community traversed by two freeways) in summer afternoons of 2008 and 2011 (only for WLA). Significant inter-community and less significant but observable intra-community differences in traffic-related pollutant concentrations were observed both in the residential neighborhoods studied and on their arterial roadways between BH, DTLA, and WLA, particularly for ultrafine particles (UFP). HEV, defined as vehicles creating plumes with concentrations more than three standard deviations from the adjusted local baseline, were encountered during 6-13% of sampling time, during which they accounted for 17-55% of total UFP concentrations both on arterial roadways and in residential neighborhoods. If instead a single threshold value is used to define HEVs in all areas, HEV's were calculated to make larger contributions to UFP concentrations in BH than other communities by factors of 2-10 or more. Santa Monica Airport located in WLA appears to be a significant source for elevated UFP concentrations in nearby residential neighborhoods 80-400 m downwind. In the WLA area, we also showed, on a neighborhood scale, striking and immediate reductions in particulate pollution (˜70% reductions in both UFP and, somewhat surprisingly, PM2.5), corresponding to dramatic decreases in traffic densities during an I-405 closure event (“Carmageddon”) compared to non-closure Saturday levels. Although pollution reduction due to decreased traffic is not unexpected, this dramatic improvement in particulate pollution provides clear evidence air quality can be improved through strategies such as heavy-duty-diesel vehicle retrofits, earlier retirement of HEV

  5. 19 CFR 122.64 - Other aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Other aircraft. 122.64 Section 122.64 Customs... AIR COMMERCE REGULATIONS Clearance of Aircraft and Permission To Depart § 122.64 Other aircraft. Clearance or permission to depart shall be requested by the aircraft commander or agent for aircraft...

  6. 19 CFR 122.64 - Other aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Other aircraft. 122.64 Section 122.64 Customs... AIR COMMERCE REGULATIONS Clearance of Aircraft and Permission To Depart § 122.64 Other aircraft. Clearance or permission to depart shall be requested by the aircraft commander or agent for aircraft...

  7. 19 CFR 122.64 - Other aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Other aircraft. 122.64 Section 122.64 Customs... AIR COMMERCE REGULATIONS Clearance of Aircraft and Permission To Depart § 122.64 Other aircraft. Clearance or permission to depart shall be requested by the aircraft commander or agent for aircraft...

  8. 19 CFR 122.64 - Other aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Other aircraft. 122.64 Section 122.64 Customs... AIR COMMERCE REGULATIONS Clearance of Aircraft and Permission To Depart § 122.64 Other aircraft. Clearance or permission to depart shall be requested by the aircraft commander or agent for aircraft...

  9. 19 CFR 122.64 - Other aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Other aircraft. 122.64 Section 122.64 Customs... AIR COMMERCE REGULATIONS Clearance of Aircraft and Permission To Depart § 122.64 Other aircraft. Clearance or permission to depart shall be requested by the aircraft commander or agent for aircraft...

  10. The effect of air flow, panel curvature, and internal pressurization on field-incidence transmission loss. [acoustic propagation through aircraft fuselage

    NASA Technical Reports Server (NTRS)

    Koval, L. R.

    1975-01-01

    In the context of sound transmission through aircraft fuselage panels, equations for the field-incidence transmission loss (TL) of a single-walled panel are derived that include the effects of external air flow, panel curvature, and internal fuselage pressurization. These effects are incorporated into the classical equations for the TL of single panels, and the resulting double integral for field-incidence TL is numerically evaluated for a specific set of parameters.

  11. 40 CFR 87.6 - Aircraft safety.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Aircraft safety. 87.6 Section 87.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.6 Aircraft safety. The provisions...

  12. 40 CFR 87.6 - Aircraft safety.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Aircraft safety. 87.6 Section 87.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.6 Aircraft safety. The provisions...

  13. Lake Michigan and Lake Superior air quality: The 1994-2003 LADCO Aircraft Project (LAP)

    NASA Astrophysics Data System (ADS)

    Foley, T. A.; Betterton, E. A.; Jacko, R.; Hillery, J.

    2011-12-01

    The goal of the 1994 to 2003 LADCO Airplane Project (LAP) was to study ozone formation over Lake Michigan so that equitable regional control strategies could be devised. During the ten year LAP campaign, a total of 328 flights were flown on 81 days over Lake Michigan and its southern and western boundaries. LAP also monitored air quality over Lake Superior and other areas in the Midwestern and southern United States. From 2001 to 2003, 117 flights were conducted over Lake Superior, Isle Royale National Park, Painted Rocks National Lakeshore and the Seeney National Wildlife Refuge in Michigan. 63 flights were conducted over St. Louis and 58 flights over the Dolly Sods Wilderness Area in West Virginia. We are looking for collaborators to help us analyze this vast data archive. Our first paper (Atmospheric Environment 45 (2011) 3192-3202) documented the project and presented results of our ozone analysis. Our results support the hypothesis of Dye et al. (1995), who found that the atmosphere over Lake Michigan is stable in the summer due to the air water temperature difference, which creates an efficient reaction chamber for ozone formation. They also hypothesized that the southwest winds characteristic of ozone-conducive conditions transport ozone further north over the lake before it crosses the shoreline onto land. We found that below 200 m above the lake, ozone formation is VOC-limited in the morning and becomes NOx limited in the afternoon. Above 200 m, ozone formation is NOx-limited throughout the day. The onshore NOx and VOC diurnal cycles peak during the early morning rush hour and are clearly linked to traffic patterns. Over the lake, VOC and NOy concentrations peak during the mid-morning rather than the early morning, supporting the hypothesis that the land breeze transports VOC and NOy over the lake. The diurnal NOx pattern over Lake Michigan is less clearly defined than the VOC pattern possibly as a result of emissions from five coal-burning power plants

  14. Source Attribution and Interannual Variability of Arctic Pollution in Spring Constrained by Aircraft (ARCTAS, ARCPAC) and Satellite (AIRS) Observations of Carbon Monoxide

    NASA Technical Reports Server (NTRS)

    Fisher, J. A.; Jacob, D. J.; Purdy, M. T.; Kopacz, M.; LeSager, P.; Carouge, C.; Holmes, C. D.; Yantosca, R. M.; Batchelor, R. L.; Strong, K.; Diskin, G. S.; Fuelberg, H. E.; Holloway, J. S.; McMillan, W. W.; Warner, J.; Streets, D. G.; Zhang, Q.; Wang, Y.; Wu, S.

    2009-01-01

    We use aircraft observations of carbon monoxide (CO) from the NASA ARCTAS and NOAA ARCPAC campaigns in April 2008 together with multiyear (2003-2008) CO satellite data from the AIRS instrument and a global chemical transport model (GEOS-Chem) to better understand the sources, transport, and interannual variability of pollution in the Arctic in spring. Model simulation of the aircraft data gives best estimates of CO emissions in April 2008 of 26 Tg month-1 for Asian anthropogenic, 9.1 for European anthropogenic, 4.2 for North American anthropogenic, 9.3 for Russian biomass burning (anomalously large that year), and 21 for Southeast Asian biomass burning. We find that Asian anthropogenic emissions are the dominant source of Arctic CO pollution everywhere except in surface air where European anthropogenic emissions are of similar importance. Synoptic pollution influences in the Arctic free troposphere include contributions of comparable magnitude from Russian biomass burning and from North American, European, and Asian anthropogenic sources. European pollution dominates synoptic variability near the surface. Analysis of two pollution events sampled by the aircraft demonstrates that AIRS is capable of observing pollution transport to the Arctic in the mid-troposphere. The 2003-2008 record of CO from AIRS shows that interannual variability averaged over the Arctic cap is very small. AIRS CO columns over Alaska are highly correlated with the Ocean Nino Index, suggesting a link between El Nino and northward pollution transport. AIRS shows lower-than-average CO columns over Alaska during April 2008, despite the Russian fires, due to a weakened Aleutian Low hindering transport from Asia and associated with the moderate 2007-2008 La Nina. This suggests that Asian pollution influence over the Arctic may be particularly large under strong El Nino conditions.

  15. Development and evaluation of an air quality modeling approach to assess near-field impacts of lead emissions from piston-engine aircraft operating on leaded aviation gasoline

    NASA Astrophysics Data System (ADS)

    Carr, Edward; Lee, Mark; Marin, Kristen; Holder, Christopher; Hoyer, Marion; Pedde, Meredith; Cook, Rich; Touma, Jawad

    2011-10-01

    Since aviation gasoline is now the largest remaining source of lead (Pb) emissions to the air in the United States, there is increased interest by regulatory agencies and the public in assessing the impacts on residents living in close proximity to these sources. An air quality modeling approach using U.S. Environmental Protection Agency's (EPA) American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was developed and evaluated for estimating atmospheric concentrations of Pb at and near general aviation airports where leaded aviation gasoline (avgas) is used. These detailed procedures were made to accurately characterize emissions and dispersion leading to improved model performance for a pollutant with concentrations that vary rapidly across short distances. The new aspects of this work included a comprehensive Pb emission inventory that incorporated sub-daily time-in-mode (TIM) activity data for piston-engine aircraft, aircraft-induced wake turbulence, plume rise of the aircraft exhaust, and allocation of approach and climb-out emissions to 50-m increments in altitude. To evaluate the modeling approach used here, ambient Pb concentrations were measured upwind and downwind of the Santa Monica Airport (SMO) and compared to modeled air concentrations. Modeling results paired in both time and space with monitoring data showed excellent overall agreement (absolute fractional bias of 0.29 winter, 0.07 summer). The modeling results on individual days show Pb concentration gradients above the urban background concentration of 10 ng m-3 extending downwind up to 900 m from the airport, with a crosswind extent of 400 m. Three-month average modeled concentrations above the background were found to extend to a maximum distance of approximately 450 m beyond the airport property in summer and fall. Modeling results show aircraft engine “run-up” is the most important source contribution to the maximum Pb concentration. Sensitivity analysis

  16. Propeller aircraft interior noise model

    NASA Technical Reports Server (NTRS)

    Pope, L. D.; Wilby, E. G.; Wilby, J. F.

    1984-01-01

    An analytical model was developed to predict the interior noise of propeller-driven aircraft. The fuselage model is that of a cylinder with a structurally-integral floor. The cabin sidewall is stiffened by stringers and ring frames, and the floor by longitudinal beams. The cabin interior is covered with a sidewall treatments consisting of layers of porous material and an impervious trim septum. Representation of the propeller pressure field is utilized as input data in the form of the propeller noise signature at a series of locations on a grid over the fuselage structure. Results obtained from the analytical model are compared with test data measured by NASA in a scale model cylindrical fuselage excited by a model propeller.

  17. Infectious Risks of Air Travel.

    PubMed

    Mangili, Alexandra; Vindenes, Tine; Gendreau, Mark

    2015-10-01

    Infectious diseases are still among the leading causes of death worldwide due to their persistence, emergence, and reemergence. As the recent Ebola virus disease and MERS-CoV outbreaks demonstrate, the modern epidemics and large-scale infectious outbreaks emerge and spread quickly. Air transportation is a major vehicle for the rapid spread and dissemination of communicable diseases, and there have been a number of reported outbreaks of serious airborne diseases aboard commercial flights including tuberculosis, severe acute respiratory syndrome, influenza, smallpox, and measles, to name a few. In 2014 alone, over 3.3 billion passengers (a number equivalent to 42% of the world population) and 50 million metric tons of cargo traveled by air from 41,000 airports and 50,000 routes worldwide, and significant growth is anticipated, with passenger numbers expected to reach 5.9 billion by 2030. Given the increasing numbers of travelers, the risk of infectious disease transmission during air travel is a significant concern, and this chapter focuses on the current knowledge about transmission of infectious diseases in the context of both transmissions within the aircraft passenger cabin and commercial aircraft serving as vehicles of worldwide infection spread. PMID:26542037

  18. Infectious Risks of Air Travel.

    PubMed

    Mangili, Alexandra; Vindenes, Tine; Gendreau, Mark

    2015-10-01

    Infectious diseases are still among the leading causes of death worldwide due to their persistence, emergence, and reemergence. As the recent Ebola virus disease and MERS-CoV outbreaks demonstrate, the modern epidemics and large-scale infectious outbreaks emerge and spread quickly. Air transportation is a major vehicle for the rapid spread and dissemination of communicable diseases, and there have been a number of reported outbreaks of serious airborne diseases aboard commercial flights including tuberculosis, severe acute respiratory syndrome, influenza, smallpox, and measles, to name a few. In 2014 alone, over 3.3 billion passengers (a number equivalent to 42% of the world population) and 50 million metric tons of cargo traveled by air from 41,000 airports and 50,000 routes worldwide, and significant growth is anticipated, with passenger numbers expected to reach 5.9 billion by 2030. Given the increasing numbers of travelers, the risk of infectious disease transmission during air travel is a significant concern, and this chapter focuses on the current knowledge about transmission of infectious diseases in the context of both transmissions within the aircraft passenger cabin and commercial aircraft serving as vehicles of worldwide infection spread.

  19. Vehicle and driving characteristics that influence in-cabin particle number concentrations.

    PubMed

    Hudda, Neelakshi; Kostenidou, Evangelia; Sioutas, Constantinos; Delfino, Ralph J; Fruin, Scott A

    2011-10-15

    In-transit microenvironments experience elevated levels of vehicle-related pollutants such as ultrafine particles. However, in-vehicle particle number concentrations are frequently lower than on-road concentrations due to particle losses inside vehicles. Particle concentration reduction occurs due to a complicated interplay between a vehicle's air-exchange rate (AER), which determines particle influx rate, and particle losses due to surfaces and the in-cabin air filter. Accurate determination of inside-to-outside particle concentration ratios is best made under realistic aerodynamic and AER conditions because these ratios and AER are determined by vehicle speed and ventilation preference, in addition to vehicle characteristics such as age. In this study, 6 vehicles were tested at 76 combinations of driving speeds, ventilation conditions (i.e., outside air or recirculation), and fan settings. Under recirculation conditions, particle number attenuation (number reduction for 10-1000 nm particles) averaged 0.83 ± 0.13 and was strongly negatively correlated with increasing AER, which in turn depended on speed and the age of the vehicle. Under outside air conditions, attenuation averaged 0.33 ± 0.10 and primarily decreased at higher fan settings that increased AER. In general, in-cabin particle number reductions did not vary strongly with particle size, and cabin filters exhibited low removal efficiencies. PMID:21928803

  20. Tracking Phragmites Australis Expansion in Bear River Migratory Bird Refuge using AggieAir Aircraft Data

    NASA Astrophysics Data System (ADS)

    Zaman, B.; McKee, M.

    2010-12-01

    This research examines the use of unmanned air vehicles (UAV), a cutting edge technology developed at the Utah Water research lab for acquiring airborne imagery using drones for the assessment of abundance of an invasive species Phragmites australis in a wetland vegetation setup. These UAV’s acquire multispectral data in the visible and near-infrared bands with a spatial resolution of 0.5 meters. The study area is the Bear River Migratory Bird Refuge (MBR) which lies in northern Utah, where the Bear River flows into the northeast arm of the Great Salt Lake. The Refuge protects the marshes found at the mouth of the Bear River; these marshes are the largest freshwater component of the Great Salt Lake ecosystem. A common reed, Phragmites australis, is a tall (1.5-4.0 m) coarse perennial grass found primarily in brackish and freshwater wetlands, growing at or above mean high water. The methodology is to build Bayesian statistical supervised classification model using relevance vector machine (RVM) employing the inexpensive and readily available UAV data. The UAV images of the bird refuge are processed to obtain calibrated reflectance imagery. Thereafter, the isodata clustering algorithm is applied to classify the multispectral imagery into different classes. Using ground sampling of the species, pixels containing the Phragmites australis are deduced. The training set for the supervised RVM classification model is prepared using the deduced pixel values. A separate set of ground sampling points containing the Phragmites australis are kept aside for validation. The distribution of Phragmites australis in the study area as obtained from RVM classification model is compared to the validation set. The RVM model results for tracking of Phragmites are encouraging and the new technique has promising real-time implementation for similar applications.

  1. Desiccant humidity control system. [for space shuttle cabins

    NASA Technical Reports Server (NTRS)

    Lunde, P. J.; Kester, F. L.

    1975-01-01

    A water vapor and carbon dioxide sorbent material (designated HS-C) was developed for potential application to the space shuttle and tested at full scale. Capacities of two percent for carbon dioxide and four percent for water vapor were achieved using space shuttle cabin adsorption conditions and a space vacuum for desorption. Performance testing shows that water vapor can be controlled by varying the air process flow, while maintaining the ability to remove carbon dioxide. A 2000 hour life test was successfully completed, as were tests for sensitivity to cleaning solvent vapors, vibration resistance, and flammability. A system design for the space shuttle shows a 200 pound weight advantage over competitive systems and an even larger advantage for longer missions.

  2. ICEPOD - Developing Ice Imaging Capabilities for the New York Air National Guard's LC-130 Aircraft

    NASA Astrophysics Data System (ADS)

    Detemple, J.; Frearson, N.; Zappa, C. J.; Turrin, M.; Bell, R. E.

    2010-12-01

    The ICEPOD program is a 5-year development effort to develop a polar instrumentation suite for the New York Air National Guard’s (NYANG) LC-130’s supported by the NSF American Reinvestment and Recovery Act (ARRA) Major Research Instrumentation program. The fundamental goal of the ICEPOD program is to develop an instrumentation package that can capture the dynamics of the changing polar regions, focusing on ice and ocean targets. The vision is for this instrumentation to be operated both on routine flights of the NYANG in the polar regions, such as missions between McMurdo and South Pole Station and on targeted science missions, such as mapping the sea ice and outlet glaciers surrounding Ross Island or the draining systems from large subglacial lakes in East Antarctica. We are in the process of finalizing the science requirements for the system. To provide support to the ICEPOD development, we are defining the goals for imaging the surface of the ice sheet with a scanning laser system and stereo-photogrammetry, the temperature of the ice surface using an IR camera and the internal structure of the ice sheet using a depth-sounding radar and an accumulation radar. The instrumentation will be positioned using an IMU and differential GPS. We also are working toward two operational modes - low-altitude flight operations to optimize the surface imaging systems, specifically the scanning laser, and a high-altitude flight operation to facilitate wide use of the instrumentation suite during a routine NYANG support mission flight envelope. The ICEPOD program is seeking input on the science goals of the instrumentation suite to ensure the system meets the community’s need for observations. The ultimate goal of the ICEPOD program is to provide the community with a facility for dedicated and routine measurements over the polar regions using the suite of instruments. The final ICEPOD system will also be capable of supporting instrumentation developed by other groups. The

  3. An in-flight study of cabin buzz-saw noise

    NASA Astrophysics Data System (ADS)

    Reed, David; Uellenberg, Stefan; Davis, Evan

    2002-11-01

    This paper examines the characteristics of multiple-pure-tone noise generated by high-speed turbofans under conditions of supersonic fan tip speeds, especially as it is observed in an aircraft passenger cabin. This phenomenon, also known as buzz-saw noise, is an important noise source in commercial airplane passenger cabins and has proved to be difficult to treat with sound-absorbing materials. Recent flight test experiments by The Boeing Company have demonstrated extraordinary success in suppressing cabin buzz-saw noise by strategic placement of engine inlet acoustic linings. The observed behavior is explained by a propagation and radiation model, which is validated by in-flight measurements made with a phased microphone array mounted on the fuselage skin of a Boeing 777. A structural acoustic model is also offered to explain the different transmission characteristics of buzz-saw noise and turbulent boundary layer excitation. Correlation length scales measured on the fuselage surface for these two noise sources are key inputs to the structural model.

  4. Health risk assessment of exposure to TriCresyl Phosphates (TCPs) in aircraft: a commentary.

    PubMed

    de Ree, Hans; van den Berg, Martin; Brand, Teus; Mulder, Gerard J; Simons, Ries; Veldhuijzen van Zanten, Brinio; Westerink, Remco H S

    2014-12-01

    Possible exposure to TriCresyl Phosphates (TCPs) has led to concerns among airline crew members. One isomer, Tri-ortho-Cresyl Phosphate (ToCP) is known to be neurotoxic and exposure to ToCP via contaminated cabin air has been suggested to be associated with the alleged Aerotoxic syndrome. The symptoms associated with Aerotoxic syndrome are diverse, including headaches, loss of balance, numbness and neurobehavioral abnormalities such as emotional instability, depression and cognitive dysfunction. Other ortho-isomers are toxic as well, but the non-ortho isomers are regarded as less toxic. In a collaborative effort to increase insight into the possible association between exposure to TCPs via contaminated cabin air and Aerotoxic syndrome, we performed an exposure- and toxicological risk assessment. Measurements in KLM 737 aircraft have demonstrated the presence of non-ortho isomers in low concentrations, though ToCP and other ortho-isomers could not be detected. Based on this exposure assessment, we established a toxicological risk model that also takes into account human differences in bioactivation and detoxification to derive a hazard quotient. From this model it appears unlikely that the health effects and alleged Aerotoxic syndrome are due to exposure to ToCP. Alternative explanations for the reported symptoms are discussed, but evaluation of the current findings in light of the criteria for occupational disease leads to the conclusion that the Aerotoxic Syndrome cannot be regarded as such. Additional research is thus required to unravel the underlying causes for the reported health complaints.

  5. Advanced Supported Liquid Membranes for Carbon Dioxide Control in Cabin Applications

    NASA Technical Reports Server (NTRS)

    Wickham, David T.; Gleason, Kevin J.; Engel, Jeffrey R.; Chullen, Cinda

    2016-01-01

    The development of new, robust, life support systems is critical to NASA's continued progress in space exploration. One vital function is maintaining the carbon dioxide (CO2) concentration in the cabin at levels that do not impair the health or performance of the crew. The CO2 removal assembly (CDRA) is the current CO2 control technology on-board the International Space Station (ISS). Although the CDRA has met the needs of the ISS to date, the repeated cycling of the molecular sieve sorbent causes it to break down into small particles that clog filters or generate dust in the cabin. This reduces reliability and increases maintenance requirements. Another approach that has potential advantages over the current system is a membrane that separates CO2 from air. In this approach, cabin air contacts one side of the membrane while other side of the membrane is maintained at low pressure to create a driving force for CO2 transport across the membrane. In this application, the primary power requirement is for the pump that creates the low pressure and then pumps the CO2 to the oxygen recovery system. For such a membrane to be practical, it must have high CO2 permeation rate and excellent selectivity for CO2 over air. Unfortunately, conventional gas separation membranes do not have adequate CO2 permeability and selectivity to meet the needs of this application. However, the required performance could be obtained with a supported liquid membrane (SLM), which consists of a microporous material filled with a liquid that selectively reacts with CO2 over air. In a recently completed Phase II SBIR project, Reaction Systems, Inc. fabricated an SLM that is very close to meeting permeability and selectivity objectives for use in the advanced space suit portable life support system. This paper describes work carried out to evaluate its potential for use in spacecraft cabin application.

  6. CABIN: Collective Analysis of Biological Interaction Networks

    SciTech Connect

    Singhal, Mudita; Domico, Kelly O.

    2007-06-01

    The importance of understanding biological interaction networks has fueled the development of numerous interaction data generation techniques, databases and prediction tools. However not all prediction tools and databases predict interactions with one hundred percent accuracy. Generation of high confidence interaction networks formulates the first step towards deciphering unknown protein functions, determining protein complexes and inventing drugs. The CABIN: Collective Analysis of Biological Interaction Networks software is an exploratory data analysis tool that enables analysis and integration of interactions evidence obtained from multiple sources, thereby increasing the confidence of computational predictions as well as validating experimental observations. CABIN has been written in JavaTM and is available as a plugin for Cytoscape – an open source network visualization tool.

  7. Computer program to predict noise of general aviation aircraft: User's guide

    NASA Technical Reports Server (NTRS)

    Mitchell, J. A.; Barton, C. K.; Kisner, L. S.; Lyon, C. A.

    1982-01-01

    Program NOISE predicts General Aviation Aircraft far-field noise levels at FAA FAR Part 36 certification conditions. It will also predict near-field and cabin noise levels for turboprop aircraft and static engine component far-field noise levels.

  8. Space Shuttle Hot Cabin Emergency Responses

    NASA Technical Reports Server (NTRS)

    Stepaniak, P.; Effenhauser, R. K.; McCluskey, R.; Gillis, D. B.; Hamilton, D.; Kuznetz, L. H.

    2005-01-01

    Methods: Human thermal tolerance, countermeasures, and thermal model data were reviewed and compared to existing shuttle ECS failure temperature and humidity profiles for each failure mode. Increases in core temperature associated with cognitive impairment was identified, as was metabolic heat generation of crewmembers, temperature monitoring, and communication capabilities after partial power-down and other limiting factors. Orbiter landing strategies and a hydration and salt replacement protocol were developed to put wheels on deck in each failure mode prior to development of significant cognitive impairment or collapse of crewmembers. Thermal tradeoffs for use of the Advanced Crew Escape Suit (ACES), Liquid Cooling Garment, integrated G-suit and Quick Don Mask were examined. candidate solutions involved trade-offs or conflicts with cabin oxygen partial pressure limits, system power-downs to limit heat generation, risks of alternate and emergency landing sites or compromise of Mode V-VIII scenarios. Results: Rehydration and minimized cabin workloads are required in all failure modes. Temperature/humidity profiles increase rapidly in two failure modes, and deorbit is recommended without the ACES, ICU and g-suit. This latter configuration limits several shuttle approach and landing escape modes and requires communication modifications. Additional data requirements were identified and engineering simulations were recommended to develop more current shuttle temperature and humidity profiles. Discussion: After failure of the shuttle ECS, there is insufficient cooling capacity of the ACES to protect crewmembers from rising cabin temperature and humidity. The LCG is inadequate for cabin temperatures above 76 F. Current shuttle future life policy makes it unlikely that major engineering upgrades necessary to address this problem will occur.

  9. Cancer incidence among Nordic airline cabin crew.

    PubMed

    Pukkala, Eero; Helminen, Mika; Haldorsen, Tor; Hammar, Niklas; Kojo, Katja; Linnersjö, Anette; Rafnsson, Vilhjálmur; Tulinius, Hrafn; Tveten, Ulf; Auvinen, Anssi

    2012-12-15

    Airline cabin crew are occupationally exposed to cosmic radiation and jet lag with potential disruption of circadian rhythms. This study assesses the influence of work-related factors in cancer incidence of cabin crew members. A cohort of 8,507 female and 1,559 male airline cabin attendants from Finland, Iceland, Norway and Sweden was followed for cancer incidence for a mean follow-up time of 23.6 years through the national cancer registries. Standardized incidence ratios (SIRs) were defined as ratios of observed and expected numbers of cases. A case-control study nested in the cohort (excluding Norway) was conducted to assess the relation between the estimated cumulative cosmic radiation dose and cumulative number of flights crossing six time zones (indicator of circadian disruption) and cancer risk. Analysis of breast cancer was adjusted for parity and age at first live birth. Among female cabin crew, a significantly increased incidence was observed for breast cancer [SIR 1.50, 95% confidence interval (95% CI) 1.32-1.69], leukemia (1.89, 95% CI 1.03-3.17) and skin melanoma (1.85, 95% CI 1.41-2.38). Among men, significant excesses in skin melanoma (3.00, 95% CI 1.78-4.74), nonmelanoma skin cancer (2.47, 95% CI 1.18-4.53), Kaposi sarcoma (86.0, 95% CI 41.2-158) and alcohol-related cancers (combined SIR 3.12, 95% CI 1.95-4.72) were found. This large study with complete follow-up and comprehensive cancer incidence data shows an increased incidence of several cancers, but according to the case-control analysis, excesses appear not to be related to the cosmic radiation or circadian disruptions from crossing multiple time zones.

  10. A new calcineurin inhibition domain in Cabin1

    SciTech Connect

    Jang, Hyonchol; Cho, Eun-Jung; Youn, Hong-Duk . E-mail: hdyoun@snu.ac.kr

    2007-07-20

    Calcineurin (CN), a calcium-activated phosphatase, plays a critical role in various biological processes including T cell activation. Cabin1, a calcineurin binding protein 1, has been shown to bind directly to CN using its C-terminal region and inhibit CN activity. However, no increase in CN activity has been found in Cabin1{delta}C T cells, which produce a truncated Cabin1 lacking the C-terminal CN binding region. Here, we report that Cabin1 has additional CN binding domain in its 701-900 amino acid residues. Cabin1 (701-900) blocked both CN-mediated dephosphorylation and nuclear import of NFAT and thus inhibited IL-2 production in response to PMA/ionomycin stimulation. This fact may explain why Cabin1{delta}C mice previously showed no significant defect in CN-mediated signaling pathway.

  11. Design Concept for a Minimal Volume Spacecraft Cabin to Serve as a Mars Ascent Vehicle Cabin and Other Alternative Pressurized Vehicle Cabins

    NASA Technical Reports Server (NTRS)

    Howard, Robert L., Jr.

    2016-01-01

    The Evolvable Mars Campaign is developing concepts for human missions to the surface of Mars. These missions are round-trip expeditions, thereby requiring crew launch via a Mars Ascent Vehicle (MAV). A study to identify the smallest possible pressurized cabin for this mission has developed a conceptual vehicle referred to as the minimal MAV cabin. The origin of this concept will be discussed as well as its initial concept definition. This will lead to a description of possible configurations to integrate the minimal MAV cabin with ascent vehicle engines and propellant tanks. Limitations of this concept will be discussed, in particular those that argue against the use of the minimal MAV cabin to perform the MAV mission. However, several potential alternative uses for the cabin are identified. Finally, recommended forward work will be discussed, including current work in progress to develop a full scale mockup and conduct usability evaluations.

  12. Small Aircraft RF Interference Path Loss

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Szatkowski, George N.; Mielnik, John J.; Salud, Maria Theresa P.

    2007-01-01

    Interference to aircraft radio receivers is an increasing concern as more portable electronic devices are allowed onboard. Interference signals are attenuated as they propagate from inside the cabin to aircraft radio antennas mounted on the outside of the aircraft. The attenuation level is referred to as the interference path loss (IPL) value. Significant published IPL data exists for transport and regional category airplanes. This report fills a void by providing data for small business/corporate and general aviation aircraft. In this effort, IPL measurements are performed on ten small aircraft of different designs and manufacturers. Multiple radio systems are addressed. Along with the typical worst-case coupling values, statistical distributions are also reported that could lead to better interference risk assessment.

  13. Small Aircraft RF Interference Path Loss Measurements

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Szatkowski, George N.; Mielnik, John J.; Salud, Maria Theresa P.

    2007-01-01

    Interference to aircraft radio receivers is an increasing concern as more portable electronic devices are allowed onboard. Interference signals are attenuated as they propagate from inside the cabin to aircraft radio antennas mounted on the outside of the aircraft. The attenuation level is referred to as the interference path loss (IPL) value. Significant published IPL data exists for transport and regional category airplanes. This report fills a void by providing data for small business/corporate and general aviation aircraft. In this effort, IPL measurements are performed on ten small aircraft of different designs and manufacturers. Multiple radio systems are addressed. Along with the typical worst-case coupling values, statistical distributions are also reported that could lead to more meaningful interference risk assessment.

  14. Aircraft empennage structural detail design

    NASA Technical Reports Server (NTRS)

    Meholic, Greg; Brown, Rhonda; Hall, Melissa; Harvey, Robert; Singer, Michael; Tella, Gustavo

    1993-01-01

    This project involved the detailed design of the aft fuselage and empennage structure, vertical stabilizer, rudder, horizontal stabilizer, and elevator for the Triton primary flight trainer. The main design goals under consideration were to illustrate the integration of the control systems devices used in the tail surfaces and their necessary structural supports as well as the elevator trim, navigational lighting system, electrical systems, tail-located ground tie, and fuselage/cabin interface structure. Accommodations for maintenance, lubrication, adjustment, and repairability were devised. Weight, fabrication, and (sub)assembly goals were addressed. All designs were in accordance with the FAR Part 23 stipulations for a normal category aircraft.

  15. 78 FR 34656 - Record of Decision for the F-15 Aircraft Conversion, 144th Fighter Wing, California Air National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ..., California Air National Guard, Fresno-Yosemite International Airport Final Environmental Impact Statement... Air National Guard at Fresno-Yosemite International Airport. The ROD states the Air Force decision...

  16. ERAST Program Proteus Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The unusual design of the Proteus high-altitude aircraft, incorporating a gull-wing shape for its main wing and a long, slender forward canard, is clearly visible in this view of the aircraft in flight over the Mojave Desert in California. In the Proteus Project, NASA's Dryden Flight Research Center, Edwards, California, is assisting Scaled Composites, Inc., Mojave, California, in developing a sophisticated station-keeping autopilot system and a Satellite Communications (SATCOM)-based uplink-downlink data system for aircraft and payload data under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. The ERAST Project is sponsored by the Office of Aero-Space Technology at NASA Headquarters, and is managed by the Dryden Flight Research Center. The Proteus is a unique aircraft, designed as a high-altitude, long-duration telecommunications relay platform with potential for use on atmospheric sampling and Earth-monitoring science missions. The aircraft is designed to be flown by two pilots in a pressurized cabin, but also has the potential to perform its missions semiautonomously or be flown remotely from the ground. Flight testing of the Proteus, beginning in the summer of 1998 at Mojave Airport through the end of 1999, included the installation and checkout of the autopilot system, including the refinement of the altitude hold and altitude change software. The SATCOM equipment, including avionics and antenna systems, had been installed and checked out in several flight tests. The systems performed flawlessly during the Proteus's deployment to the Paris Airshow in 1999. NASA's ERAST project funded development of an Airborne Real-Time Imaging System (ARTIS). Developed by HyperSpectral Sciences, Inc., the small ARTIS camera was demonstrated during the summer of 1999 when it took visual and near-infrared photos over the Experimental Aircraft Association's 'AirVenture 99' Airshow at Oshkosh, Wisconsin. The images were displayed on a computer

  17. Risk factors for skin cancer among Finnish airline cabin crew.

    PubMed

    Kojo, Katja; Helminen, Mika; Pukkala, Eero; Auvinen, Anssi

    2013-07-01

    Increased incidence of skin cancers among airline cabin crew has been reported in several studies. We evaluated whether the difference in risk factor prevalence between Finnish airline cabin crew and the general population could explain the increased incidence of skin cancers among cabin crew, and the possible contribution of estimated occupational cosmic radiation exposure. A self-administered questionnaire survey on occupational, host, and ultraviolet radiation exposure factors was conducted among female cabin crew members and females presenting the general population. The impact of occupational cosmic radiation dose was estimated in a separate nested case-control analysis among the participating cabin crew (with 9 melanoma and 35 basal cell carcinoma cases). No considerable difference in the prevalence of risk factors of skin cancer was found between the cabin crew (N = 702) and the general population subjects (N = 1007) participating the study. The mean risk score based on all the conventional skin cancer risk factors was 1.43 for cabin crew and 1.44 for general population (P = 0.24). Among the cabin crew, the estimated cumulative cosmic radiation dose was not related to the increased skin cancer risk [adjusted odds ratio (OR) = 0.75, 95% confidence interval (CI): 0.57-1.00]. The highest plausible risk of skin cancer for estimated cosmic radiation dose was estimated as 9% per 10 mSv. The skin cancer cases had higher host characteristics scores than the non-cases among cabin crew (adjusted OR = 1.43, 95% CI: 1.01-2.04). Our results indicate no difference between the female cabin crew and the general female population in the prevalence of factors generally associated with incidence of skin cancer. Exposure to cosmic radiation did not explain the excess of skin cancer among the studied cabin crew in this study. PMID:23316078

  18. Risk factors for skin cancer among Finnish airline cabin crew.

    PubMed

    Kojo, Katja; Helminen, Mika; Pukkala, Eero; Auvinen, Anssi

    2013-07-01

    Increased incidence of skin cancers among airline cabin crew has been reported in several studies. We evaluated whether the difference in risk factor prevalence between Finnish airline cabin crew and the general population could explain the increased incidence of skin cancers among cabin crew, and the possible contribution of estimated occupational cosmic radiation exposure. A self-administered questionnaire survey on occupational, host, and ultraviolet radiation exposure factors was conducted among female cabin crew members and females presenting the general population. The impact of occupational cosmic radiation dose was estimated in a separate nested case-control analysis among the participating cabin crew (with 9 melanoma and 35 basal cell carcinoma cases). No considerable difference in the prevalence of risk factors of skin cancer was found between the cabin crew (N = 702) and the general population subjects (N = 1007) participating the study. The mean risk score based on all the conventional skin cancer risk factors was 1.43 for cabin crew and 1.44 for general population (P = 0.24). Among the cabin crew, the estimated cumulative cosmic radiation dose was not related to the increased skin cancer risk [adjusted odds ratio (OR) = 0.75, 95% confidence interval (CI): 0.57-1.00]. The highest plausible risk of skin cancer for estimated cosmic radiation dose was estimated as 9% per 10 mSv. The skin cancer cases had higher host characteristics scores than the non-cases among cabin crew (adjusted OR = 1.43, 95% CI: 1.01-2.04). Our results indicate no difference between the female cabin crew and the general female population in the prevalence of factors generally associated with incidence of skin cancer. Exposure to cosmic radiation did not explain the excess of skin cancer among the studied cabin crew in this study.

  19. Further Evolution of Composite Doubler Aircraft Repairs Through a Focus on Niche Applications

    SciTech Connect

    ROACH,DENNIS P.

    2000-07-15

    The number of commercial airframes exceeding twenty years of service continues to grow. A typical aircraft can experience over 2,000 fatigue cycles (cabin pressurizations) and even greater flight hours in a single year. An unavoidable by-product of aircraft use is that crack and corrosion flaws develop throughout the aircraft's skin and substructure elements. Economic barriers to the purchase of new aircraft have created an aging aircraft fleet and placed even greater demands on efficient and safe repair methods. The use of bonded composite doublers offers the airframe manufacturers and aircraft maintenance facilities a cost effective method to safety extend the lives of their aircraft. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is now possible to bond a single Boron-Epoxy composite doubler to the damaged structure. The FAA's Airworthiness Assurance Center at Sandia National Labs (AANC) is conducting a program with Boeing and Federal Express to validate and introduce composite doubler repair technology to the US commercial aircraft industry. This project focuses on repair of DC-10 structure and builds on the foundation of the successful L-1011 door corner repair that was completed by the AANC, Lockheed-Martin, and Delta Air Lines. The L-1011 composite doubler repair was installed in 1997 and has not developed any flaws in over three years of service, As a follow-on effort, this DC-1O repair program investigated design, analysis, performance (durability, flaw containment, reliability), installation, and nondestructive inspection issues. Current activities are demonstrating regular use of composite doubler repairs on commercial aircraft. The primary goal of this program is to move the technology into niche applications and to streamline the design-to-installation process. Using the data accumulated to date, the team has designed, analyzed, and developed inspection techniques for an array of composite doubler repairs

  20. Redesign of Transjakarta Bus Driver's Cabin

    NASA Astrophysics Data System (ADS)

    Mardi Safitri, Dian; Azmi, Nora; Singh, Gurbinder; Astuti, Pudji

    2016-02-01

    Ergonomic risk at work stations with type Seated Work Control was one of the problems faced by Transjakarta bus driver. Currently “Trisakti” type bus, one type of bus that is used by Transjakarta in corridor 9, serving route Pinang Ranti - Pluit, gained many complaints from drivers. From the results of Nordic Body Map questionnaires given to 30 drivers, it was known that drivers feel pain in the neck, arms, hips, and buttocks. Allegedly this was due to the seat position and the button/panel bus has a considerable distance range (1 meter) to be achieved by drivers. In addition, preliminary results of the questionnaire using Workstation Checklist identified their complaints about uncomfortable cushion, driver's seat backrest, and the exact position of the AC is above the driver head. To reduce the risk level of ergonomics, then did research to design the cabin by using a generic approach to designing products. The risk analysis driver posture before the design was done by using Rapid Upper Limb Assessment (RULA), Rapid Entire Body Assessment (REBA), and Quick Exposure Checklist (QEC), while the calculation of the moment the body is done by using software Mannequin Pro V10.2. Furthermore, the design of generic products was done through the stages: need metric-matrix, house of quality, anthropometric data collection, classification tree concept, concept screening, scoring concept, design and manufacture of products in the form of two-dimensional. While the design after design risk analysis driver posture was done by using RULA, REBA, and calculation of moments body as well as the design visualized using software 3DMax. From the results of analysis before the draft design improvements cabin RULA obtained scores of 6, REBA 9, and the result amounted to 57.38% QEC and moment forces on the back is 247.3 LbF.inch and on the right hip is 72.9 LbF.in. While the results of the proposed improvements cabin design RULA obtained scores of 3, REBA 4, and the moment of force on

  1. 2. Onroom log cabin (right), log root cellar (center), tworoom ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. On-room log cabin (right), log root cellar (center), two-room log cabin (left), and post-and-beam garage (background). View to southwest. - William & Lucina Bowe Ranch, County Road 44, 0.1 mile northeast of Big Hole River Bridge, Melrose, Silver Bow County, MT

  2. 14 CFR 25.843 - Tests for pressurized cabins.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....843 Tests for pressurized cabins. (a) Strength test. The complete pressurized cabin, including doors... each door and emergency exit, to show that they operate properly after being subjected to the flight tests prescribed in paragraph (b)(3) of this section. Fire Protection...

  3. 2. View of immediate setting of Free Cabin along west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of immediate setting of Free Cabin along west side of State Route 121/U.S. Highway 25/Peach Orchard Road, facing north. - Free Cabin, State Route 121-U.S. Highway 25-Peach Orchard Road, Hephzibah, Richmond County, GA

  4. 6. View of immediate setting from behind Free Cabin looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. View of immediate setting from behind Free Cabin looking towards State Route 121/U.S. Highway 25/Peach Orchard Road, facing east. - Free Cabin, State Route 121-U.S. Highway 25-Peach Orchard Road, Hephzibah, Richmond County, GA

  5. 1. View of immediate setting of Free Cabin along east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of immediate setting of Free Cabin along east side of State Route 121/U.S. Highway 25/Peach Orchard Road, facing north. - Free Cabin, State Route 121-U.S. Highway 25-Peach Orchard Road, Hephzibah, Richmond County, GA

  6. 3. View of immediate setting of Free Cabin along west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View of immediate setting of Free Cabin along west side of State Route 121/U.S. Highway 25/Peach Orchard Road, facing south. - Free Cabin, State Route 121-U.S. Highway 25-Peach Orchard Road, Hephzibah, Richmond County, GA

  7. 4. View of immediate setting of Free Cabin along east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View of immediate setting of Free Cabin along east side of State Route 121/U.S. Highway 25/Peach Orchard Road, facing south. - Free Cabin, State Route 121-U.S. Highway 25-Peach Orchard Road, Hephzibah, Richmond County, GA

  8. 13. VIEW LOOKING AFT IN PILOTS' CABIN ON 'TWEEN DECK, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW LOOKING AFT IN PILOTS' CABIN ON 'TWEEN DECK, SHOWING BUNKS, CABIN SKYLIGHT, WOOD STOVE (WITHOUT CHIMNEY PIPE) LADDERWAY, AND OPEN DOOR IN STERN BULKHEAD, GIVING ACCESS TO INTERIOR OF COUNTER - Pilot Schooner "Alabama", Moored in harbor at Vineyard Haven, Vineyard Haven, Dukes County, MA

  9. The Effect of Golden Pothos in Reducing the Level of Volatile Organic Compounds in a Simulated Spacecraft Cabin

    NASA Technical Reports Server (NTRS)

    Ursprung, Matthew; Amiri, Azita; Kayatin, Matthew; Perry, Jay

    2016-01-01

    The impact of Golden Pothos on indoor air quality was studied against a simulated spacecraft trace contaminant load model, consistent with the International Space Station (ISS), containing volatile organic compounds (VOCs) and formaldehyde. Previous research provides inconclusive results on the efficacy of plant VOC removal which this projects seeks to rectify through a better experimental design. This work develops a passive system for removing common VOC's from spacecraft and household indoor air and decreasing the necessity for active cabin trace contaminant removal systems.

  10. a Survey on Health Effects due to Aircraft Noise on Residents Living around Kadena Air Base in the Ryukyus

    NASA Astrophysics Data System (ADS)

    Hiramatsu, K.; Yamamoto, T.; Taira, K.; Ito, A.; Nakasone, T.

    1997-08-01

    Results are reported of a questionnaire survey relating to a scale for general health, the Todai Health Index, in a town, bordering on a large U.S. airbase in the Ryukyus. The level of aircraft noise exposure, in the town, expressed by WECPNL, ranges from 75 to 95 or more. The sample size was 1200, including a 200 person “control” group. Results of the analysis of the responses in terms of the noise exposure suggest that the exposed residents suffer psychosomatic effects, especially perceived psychological disorders, due to the noise exposure to military aircraft, and that such responses increase with the level of noise exposure.

  11. Evaluating fungal populations by genera/species on wide body commercial passenger aircraft and in airport terminals.

    PubMed

    McKernan, Lauralynn Taylor; Burge, Harriet; Wallingford, Kenneth M; Hein, Misty J; Herrick, Robert

    2007-04-01

    Given the potential health effects of fungi and the amount of time aircrew and passengers spend inside aircraft, it is important to study fungal populations in the aircraft environment. Research objectives included documenting the genera/species of airborne culturable fungal concentrations and total spore concentrations on a twin-aisle wide body commercial passenger aircraft. Twelve flights between 4.5 and 6.5 h in duration on Boeing 767 (B-767) aircraft were evaluated. Two air cooling packs and 50% recirculation rate (i.e. 50:50 mix of outside air and filtered inside air) were utilized during flight operations. Passenger occupancy rates varied from 67 to 100%. N-6 impactors and total spore traps were used to collect sequential, triplicate air samples in the front and rear of coach class during six sampling intervals throughout each flight: boarding, mid-climb, early cruise, mid-cruise, late cruise and deplaning. Comparison air samples were also collected inside and outside the airport terminals at the origin and destination cities resulting in a total of 522 culturable and 517 total spore samples. A total of 45 surface wipe samples were collected using swabs onboard the aircraft and inside the airport terminals. A variety of taxa were observed in the culturable and total spore samples. A frequency analysis of the fungal data indicated that Cladosporium, Aspergillus and Penicillium were predominant genera in the culturable samples whereas Cladosporium, Basidiospores and Penicillium/Aspergillus were predominant in the total spore samples. Fungal populations observed inside the aircraft were comprised of similar genera, detected significantly less frequently and with lower mean concentrations than those observed in typical office buildings. Although sources internal to the aircraft could not be ruled out, our data demonstrate the importance of passenger activity as the source of the fungi observed on aircraft. Isolated fungal peak events occurred occasionally when

  12. Airplane transport isolators may loose leak tightness after rapid cabin decompression.

    PubMed

    Albrecht, Roland; Kunz, Andres; Voelckel, Wolfgang G

    2015-01-01

    Air medical transport of patients suffering of highly infectious diseases is typically performed employing portable isolation chambers. Although the likelihood of decompression flight emergencies is low, sustainability of the devices used is crucial. When a standard isolation unit was subjected to an explosive cabin decompression of 493 hPa, simulating a 32808 ft flight level accident, leak tightness of the unit was lost due to rupture of the bag caused by over expansion. When the pressure chamber experiment was repeated with a modified unit, distension was minimized by an additional compensation air bag, thus ensuring leak tightness. PMID:25887737

  13. 36 CFR 327.4 - Aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Aircraft. 327.4 Section 327.4... Aircraft. (a) This section pertains to all aircraft including, but not limited to, airplanes, seaplanes, helicopters, ultra-light aircraft, motorized hang gliders, hot air balloons, any non-powered flight devices...

  14. 36 CFR 327.4 - Aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Aircraft. 327.4 Section 327.4... Aircraft. (a) This section pertains to all aircraft including, but not limited to, airplanes, seaplanes, helicopters, ultra-light aircraft, motorized hang gliders, hot air balloons, any non-powered flight devices...

  15. 36 CFR 327.4 - Aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Aircraft. 327.4 Section 327.4... Aircraft. (a) This section pertains to all aircraft including, but not limited to, airplanes, seaplanes, helicopters, ultra-light aircraft, motorized hang gliders, hot air balloons, any non-powered flight devices...

  16. 36 CFR 327.4 - Aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Aircraft. 327.4 Section 327.4... Aircraft. (a) This section pertains to all aircraft including, but not limited to, airplanes, seaplanes, helicopters, ultra-light aircraft, motorized hang gliders, hot air balloons, any non-powered flight devices...

  17. 36 CFR 327.4 - Aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Aircraft. 327.4 Section 327.4... Aircraft. (a) This section pertains to all aircraft including, but not limited to, airplanes, seaplanes, helicopters, ultra-light aircraft, motorized hang gliders, hot air balloons, any non-powered flight devices...

  18. Does traffic-related air pollution explain associations of aircraft and road traffic noise exposure on children's health and cognition? A secondary analysis of the United Kingdom sample from the RANCH project.

    PubMed

    Clark, Charlotte; Crombie, Rosanna; Head, Jenny; van Kamp, Irene; van Kempen, Elise; Stansfeld, Stephen A

    2012-08-15

    The authors examined whether air pollution at school (nitrogen dioxide) is associated with poorer child cognition and health and whether adjustment for air pollution explains or moderates previously observed associations between aircraft and road traffic noise at school and children's cognition in the 2001-2003 Road Traffic and Aircraft Noise Exposure and Children's Cognition and Health (RANCH) project. This secondary analysis of a subsample of the United Kingdom RANCH sample examined 719 children who were 9-10 years of age from 22 schools around London's Heathrow airport for whom air pollution data were available. Data were analyzed using multilevel modeling. Air pollution exposure levels at school were moderate, were not associated with a range of cognitive and health outcomes, and did not account for or moderate associations between noise exposure and cognition. Aircraft noise exposure at school was significantly associated with poorer recognition memory and conceptual recall memory after adjustment for nitrogen dioxide levels. Aircraft noise exposure was also associated with poorer reading comprehension and information recall memory after adjustment for nitrogen dioxide levels. Road traffic noise was not associated with cognition or health before or after adjustment for air pollution. Moderate levels of air pollution do not appear to confound associations of noise on cognition and health, but further studies of higher air pollution levels are needed.

  19. Engine-induced structural-borne noise in a general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Unruh, J. F.; Scheidt, D. C.; Pomerening, D. J.

    1979-01-01

    Structural borne interior noise in a single engine general aviation aircraft was studied to determine the importance of engine induced structural borne noise and to determine the necessary modeling requirements for the prediction of structural borne interior noise. Engine attached/detached ground test data show that engine induced structural borne noise is a primary interior noise source for the single engine test aircraft, cabin noise is highly influenced by responses at the propeller tone, and cabin acoustic resonances can influence overall noise levels. Results from structural and acoustic finite element coupled models of the test aircraft show that wall flexibility has a strong influence on fundamental cabin acoustic resonances, the lightweight fuselage structure has a high modal density, and finite element analysis procedures are appropriate for the prediction of structural borne noise.

  20. Aircraft Wood Structures, Covering and Finishing Methods (Course Outline), Aviation Mechanics 2 (Air Frame): 9065.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with aircraft wood structures and related Federal Aviation Agency requirements. Topics outlined are identification of defects on wood samples, defining terms used on wood structures, inspecting wood structure together with servicing and repair of wood…

  1. Aircraft Landing Gear, Ice and Rain Control Systems (Course Outline), Aviation Mechanics 3 (Air Frame):9067.02.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with operation, inspection, troubleshooting, and repair of aircraft landing gear, ice and rain control systems. It is designed to help the trainee master the knowledge and skills necessary to become an aviation airframe mechanic. The aviation airframe…

  2. PAN AIR analysis of the NASA/MCAIR 279-3: An advanced supersonic V/STOL fighter/attack aircraft

    NASA Technical Reports Server (NTRS)

    Madson, Michael D.; Erickson, Larry L.

    1986-01-01

    PAN AIR is a computer program for predicting subsonic or supersonic linear potential flow about arbitrary configurations. The program was applied to a highly complex single-engine-cruise V/STOL fighter/attack aircraft. Complexities include a close-coupled canard/wing, large inlets, and four exhaust nozzles mounted directly under the wing and against the fuselage. Modeling uncertainties involving canard wake location and flow-through approximation through the inlet and the exhaust nozzles were investigated. The recently added streamline capability of the program was utilized to evaluate visually the predicted flow over the model. PAN AIR results for Mach numbers of 0.6, 0.9, and angles of attack of 0, 5, and 10 deg. were compared with data obtained in the Ames 11- by 11-Foot Transonic Wind tunnel, at a Reynolds number of 3.69 x 10 to the 6th power based on c bar.

  3. CABINS: Case-based interactive scheduler

    NASA Technical Reports Server (NTRS)

    Miyashita, Kazuo; Sycara, Katia

    1992-01-01

    In this paper we discuss the need for interactive factory schedule repair and improvement, and we identify case-based reasoning (CBR) as an appropriate methodology. Case-based reasoning is the problem solving paradigm that relies on a memory for past problem solving experiences (cases) to guide current problem solving. Cases similar to the current case are retrieved from the case memory, and similarities and differences of the current case to past cases are identified. Then a best case is selected, and its repair plan is adapted to fit the current problem description. If a repair solution fails, an explanation for the failure is stored along with the case in memory, so that the user can avoid repeating similar failures in the future. So far we have identified a number of repair strategies and tactics for factory scheduling and have implemented a part of our approach in a prototype system, called CABINS. As a future work, we are going to scale up CABINS to evaluate its usefulness in a real manufacturing environment.

  4. The Okinawa study: an estimation of noise-induced hearing loss on the basis of the records of aircraft noise exposure around Kadena Air Base

    NASA Astrophysics Data System (ADS)

    Hiramatsu, K.; Matsui, T.; Ito, A.; Miyakita, T.; Osada, Y.; Yamamoto, T.

    2004-10-01

    Aircraft noise measurements were recorded at the residential areas in the vicinity of Kadena Air Base, Okinawa in 1968 and 1972 at the time of the Vietnam war. The estimated equivalent continuous A-weighted sound pressure level LAeq for 24 h was 85 dB.The time history of sound level during 24 h was estimated from the measurement conducted in 1968, and the sound level was converted into the spectrum level at the centre frequency of the critical band of temporary threshold shift (TTS) using the results of spectrum analysis of aircraft noise operated at the airfield. With the information of spectrum level and its time history, TTS was calculated as a function of time and level change. The permanent threshold shift was also calculated by means of Robinson's method and ISO's method. The results indicate the noise exposure around Kadena Air Base was hazardous to hearing and is likely to have caused hearing loss to people living in its vicinity.

  5. [Air transport, aeronautic medicine, health].

    PubMed

    Cupa, Michel

    2009-10-01

    There were 3.2 billion airline passengers in 2006, compared to only 30 million in 1950. Intercontinental health disparities create a risk of pandemics such as SARS and so-called bird flu. Precautions are now being implemented both in airports and in aircraft, in addition to measures intended to prevent the spread of malaria and arboviral diseases, such as vector eradication, elimination of stagnant water, malaria prophylaxis, vaccination, and use of repellents. These measures are dealt with in international health regulations, which have existed since 1851 and were last updated on 15 June 2007. Flying on an airliner also carries a risk of hypobaria (cabin pressure at 2000 m), which can aggravate respiratory problems. Other problems include relative hypoxia, gas expansion, air dryness, ozone, cosmic rays, airsickness, jet lag, the effects of alcohol and tobacco, and, more recently, deep vein thrombosis (DVT) and pulmonary embolism (PE), collectively known as "coach class syndrome". A new type of medicine has appeared, in the form of on-board medical assistance. The European Civil Aviation Committee has recommended first-aid training for cabin crews and onboard medical equipment such as first-aid kits and defibrillators. Airline statistics show that one in-flight medical incident occurs per 20 000 passengers, as well as one death per 5 million passengers and one medical reroute per 20 000 flights (40% of reroutes turn out to be unjustified). More than 80% of long-haul flights have a physician travelling on board. However, depending on his or her specialty, problems of competence and legal responsibility may arise. Ground-based medical centers can provide help via satellite telephone, but this implies the need for airline staff training. International cooperation is the only way to minimize the health risks associated with the growth in global air travel.

  6. [Air transport, aeronautic medicine, health].

    PubMed

    Cupa, Michel

    2009-10-01

    There were 3.2 billion airline passengers in 2006, compared to only 30 million in 1950. Intercontinental health disparities create a risk of pandemics such as SARS and so-called bird flu. Precautions are now being implemented both in airports and in aircraft, in addition to measures intended to prevent the spread of malaria and arboviral diseases, such as vector eradication, elimination of stagnant water, malaria prophylaxis, vaccination, and use of repellents. These measures are dealt with in international health regulations, which have existed since 1851 and were last updated on 15 June 2007. Flying on an airliner also carries a risk of hypobaria (cabin pressure at 2000 m), which can aggravate respiratory problems. Other problems include relative hypoxia, gas expansion, air dryness, ozone, cosmic rays, airsickness, jet lag, the effects of alcohol and tobacco, and, more recently, deep vein thrombosis (DVT) and pulmonary embolism (PE), collectively known as "coach class syndrome". A new type of medicine has appeared, in the form of on-board medical assistance. The European Civil Aviation Committee has recommended first-aid training for cabin crews and onboard medical equipment such as first-aid kits and defibrillators. Airline statistics show that one in-flight medical incident occurs per 20 000 passengers, as well as one death per 5 million passengers and one medical reroute per 20 000 flights (40% of reroutes turn out to be unjustified). More than 80% of long-haul flights have a physician travelling on board. However, depending on his or her specialty, problems of competence and legal responsibility may arise. Ground-based medical centers can provide help via satellite telephone, but this implies the need for airline staff training. International cooperation is the only way to minimize the health risks associated with the growth in global air travel. PMID:20669640

  7. Civil air transport: A fresh look at power-by-wire and fly-by-light

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    Power-by-wire (PBW) is a key element under subsonic transport flight systems technology with potential savings of over 10 percent in gross take-off-weight and in fuel consumption compared to today's transport aircraft. The PBW technology substitutes electrical actuation in place of centralized hydraulics, uses internal starter-motor/generators and eliminates the need for variable engine bleed air to supply cabin comfort. The application of advanced fiber optics to the electrical power system controls, to built-in-test (BITE) equipment, and to fly-by-light (FBL) flight controls provides additional benefits in lightning and high energy radio frequency (HERF) immunity over existing mechanical or even fly-by-wire controls. The program plan is reviewed and a snapshot is given of the key technologies and their benefits to all future aircraft, both civil and military.

  8. Civil air transport: A fresh look at power-by-wire and fly-by-light

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1991-01-01

    Power-by-wire (PBW) is a key element under subsonic transport flight systems technology with potential savings of over 10 percent in operating empty weight and in fuel consumption compared to today's transport aircraft. The PBW technology substitutes electrical actuation in place of centralized hydraulics, uses internal starter-motor/generators and eliminates the need for variable engine bleed air to supply cabin comfort. The application of advanced fiber optics to the electrical power system controls, to built-in-test (BIT) equipment, and to fly-by-light (FBL) flight controls provides additional benefits in lightning and high energy radio frequency (HERF) immunity over existing mechanical or even fly-by-wire controls. The program plan is reviewed and a snapshot is given of the key technologies and their benefits to all future aircraft, both civil and military.

  9. Civil air transport: A fresh look at power-by-wire and fly-by-light

    NASA Astrophysics Data System (ADS)

    Sundberg, Gale R.

    1990-05-01

    Power-by-wire (PBW) is a key element under subsonic transport flight systems technology with potential savings of over 10 percent in gross take-off-weight and in fuel consumption compared to today's transport aircraft. The PBW technology substitutes electrical actuation in place of centralized hydraulics, uses internal starter-motor/generators and eliminates the need for variable engine bleed air to supply cabin comfort. The application of advanced fiber optics to the electrical power system controls, to built-in-test (BITE) equipment, and to fly-by-light (FBL) flight controls provides additional benefits in lightning and high energy radio frequency (HERF) immunity over existing mechanical or even fly-by-wire controls. The program plan is reviewed and a snapshot is given of the key technologies and their benefits to all future aircraft, both civil and military.

  10. Civil air transport - A fresh look at power-by-wire and fly-by-light

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    Power-by-wire (PBW) is a key element under subsonic transport flight systems technology, with potential savings of over 10 percent in gross take off weight and in fuel consumption compared to today's transport aircraft. The PBW technology substitutes electrical actuation in place of centralized hydraulics, uses internal starter-motor/generators, and eliminates the need for variable engine bleed air to supply cabin comfort. The application of advanced fiber optics to the electrical power system controls, to built-in-test (BITE) equipment, and to fly-by-light (FBL) flight controls provides additional benefits in lightning and high-energy radio frequency (HERF) immunity over existing mechanical or even fly-by-wire controls. The program plan is reviewed and a snapshot is given of the key technologies and their benefits to future aircraft, both civil and military.

  11. WATERCOLOR RENDERING OF CABIN JOHN BRIDGE SCAFFOLDING. CAPTAIN M.C. MEIGS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WATERCOLOR RENDERING OF CABIN JOHN BRIDGE SCAFFOLDING. CAPTAIN M.C. MEIGS, CHIEF ENGINEER; ALFRED RIVES, ASSISTANT ENGINEER, DELINEATOR. NOVEMBER 30, 1859 - Cabin John Aqueduct Bridge, MacArthur Boulevard, spanning Cabin John Creek at Parkway, Cabin John, Montgomery County, MD

  12. An evaluation of an airline cabin safety education program for elementary school children.

    PubMed

    Liao, Meng-Yuan

    2014-04-01

    The knowledge, attitude, and behavior intentions of elementary school students about airline cabin safety before and after they took a specially designed safety education course were examined. A safety education program was designed for school-age children based on the cabin safety briefings airlines given to their passengers, as well as on lessons learned from emergency evacuations. The course is presented in three modes: a lecture, a demonstration, and then a film. A two-step survey was used for this empirical study: an illustrated multiple-choice questionnaire before the program, and, upon completion, the same questionnaire to assess its effectiveness. Before the program, there were significant differences in knowledge and attitude based on school locations and the frequency that students had traveled by air. After the course, students showed significant improvement in safety knowledge, attitude, and their behavior intention toward safety. Demographic factors, such as gender and grade, also affected the effectiveness of safety education. The study also showed that having the instructor directly interact with students by lecturing is far more effective than presenting the information using only video media. A long-term evaluation, the effectiveness of the program, using TV or video accessible on the Internet to deliver a cabin safety program, and a control group to eliminate potential extraneous factors are suggested for future studies. PMID:24286820

  13. An evaluation of an airline cabin safety education program for elementary school children.

    PubMed

    Liao, Meng-Yuan

    2014-04-01

    The knowledge, attitude, and behavior intentions of elementary school students about airline cabin safety before and after they took a specially designed safety education course were examined. A safety education program was designed for school-age children based on the cabin safety briefings airlines given to their passengers, as well as on lessons learned from emergency evacuations. The course is presented in three modes: a lecture, a demonstration, and then a film. A two-step survey was used for this empirical study: an illustrated multiple-choice questionnaire before the program, and, upon completion, the same questionnaire to assess its effectiveness. Before the program, there were significant differences in knowledge and attitude based on school locations and the frequency that students had traveled by air. After the course, students showed significant improvement in safety knowledge, attitude, and their behavior intention toward safety. Demographic factors, such as gender and grade, also affected the effectiveness of safety education. The study also showed that having the instructor directly interact with students by lecturing is far more effective than presenting the information using only video media. A long-term evaluation, the effectiveness of the program, using TV or video accessible on the Internet to deliver a cabin safety program, and a control group to eliminate potential extraneous factors are suggested for future studies.

  14. Aircraft trace gas measurements during the London 2012 Olympics: Air quality and emission fluxes derived from sampling upwind and downwind of a megacity

    NASA Astrophysics Data System (ADS)

    Allen, G.; O'Shea, S.; Muller, J.; Jones, B.; O'Sullivan, D.; Lee, J. D.; Bauguitte, S.; Gallagher, M. W.; Percival, C.; Barratt, B.; McQuaid, J. B.; Illingworth, S.

    2013-12-01

    This study presents airborne in situ and remote sensing measurements recorded during July and August 2012, across the period of the London 2012 Summer Olympics and simultaneous with the Clear air for London (ClearfLo) ground-based measurement and modelling campaign. Through long-term (2-year) and intensive observation periods (Winter 2011 and Summer 2012), the ClearfLo programme aims to better understand emissions, as well as the chemical, dynamical and micro-meteorological processes which modulate air quality in the London urban environment - an important risk factor for both acute and chronic health effects. The work presented here focuses on two contrasting case studies within the summer ClearfLo period: 30 July 2012 and 9 August 2012, representing relatively clean background and polluted background cases, respectively, and characterised by well-mixed Atlantic westerly maritime inflow in the former and stagnant air (high pressure) in the latter. Measurements of CO, CO2, CH4, N2O, O3, HCN, and other gases measured on board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 aircraft will be presented and interpreted, with emphasis on observed concentration gradients and tracer-tracer correlations as well as airmass vertical structure and airmass history upwind and downwind of central London in each case. By applying a simple advective model and making use of vertically resolved thermodynamic and composition data, we are able to derive emission strengths for these gases that are representative of the total enclosed surface area. Example emissions for these two cases range between 6x105 kg(C)/hr and 9x105 kg(C)/hr for CO2, and ~0.6x105 kg(C)/hr for CH4. This airborne sampling methodology highlights the unique utility of aircraft measurements to routinely and climatologically characterise emissions from area sources such as cities, and points to future missions to target localised hotspots and distributed point sources.

  15. Cockpit-cabin communication: I. A tale of two cultures.

    PubMed

    Chute, R D; Wiener, E L

    1995-01-01

    Several dramatic accidents have emphasized certain deficiencies in cockpit-cabin coordination and communication. There are historical, organizational, environmental, psychosocial, and regulatory factors that have led to misunderstandings, problematic attitudes, and suboptimal interactions between the cockpit and cabin crews. Our research indicates the basic problem is that these two crews represent two distinct and separate cultures and that this separation serves to inhibit satisfactory teamwork. A survey was conducted at two airlines to measure attitudes of cockpit and cabin crews concerning the effectiveness of their communications. This article includes recommendations for the improvement of communications across the two cultures.

  16. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  17. An analysis on the detection of biological contaminants aboard aircraft.

    PubMed

    Hwang, Grace M; DiCarlo, Anthony A; Lin, Gene C

    2011-01-01

    The spread of infectious disease via commercial airliner travel is a significant and realistic threat. To shed some light on the feasibility of detecting airborne pathogens, a sensor integration study has been conducted and computational investigations of contaminant transport in an aircraft cabin have been performed. Our study took into consideration sensor sensitivity as well as the time-to-answer, size, weight and the power of best available commercial off-the-shelf (COTS) devices. We conducted computational fluid dynamics simulations to investigate three types of scenarios: (1) nominal breathing (up to 20 breaths per minute) and coughing (20 times per hour); (2) nominal breathing and sneezing (4 times per hour); and (3) nominal breathing only. Each scenario was implemented with one or seven infectious passengers expelling air and sneezes or coughs at the stated frequencies. Scenario 2 was implemented with two additional cases in which one infectious passenger expelled 20 and 50 sneezes per hour, respectively. All computations were based on 90 minutes of sampling using specifications from a COTS aerosol collector and biosensor. Only biosensors that could provide an answer in under 20 minutes without any manual preparation steps were included. The principal finding was that the steady-state bacteria concentrations in aircraft would be high enough to be detected in the case where seven infectious passengers are exhaling under scenarios 1 and 2 and where one infectious passenger is actively exhaling in scenario 2. Breathing alone failed to generate sufficient bacterial particles for detection, and none of the scenarios generated sufficient viral particles for detection to be feasible. These results suggest that more sensitive sensors than the COTS devices currently available and/or sampling of individual passengers would be needed for the detection of bacteria and viruses in aircraft. PMID:21264266

  18. An Analysis on the Detection of Biological Contaminants Aboard Aircraft

    PubMed Central

    Hwang, Grace M.; DiCarlo, Anthony A.; Lin, Gene C.

    2011-01-01

    The spread of infectious disease via commercial airliner travel is a significant and realistic threat. To shed some light on the feasibility of detecting airborne pathogens, a sensor integration study has been conducted and computational investigations of contaminant transport in an aircraft cabin have been performed. Our study took into consideration sensor sensitivity as well as the time-to-answer, size, weight and the power of best available commercial off-the-shelf (COTS) devices. We conducted computational fluid dynamics simulations to investigate three types of scenarios: (1) nominal breathing (up to 20 breaths per minute) and coughing (20 times per hour); (2) nominal breathing and sneezing (4 times per hour); and (3) nominal breathing only. Each scenario was implemented with one or seven infectious passengers expelling air and sneezes or coughs at the stated frequencies. Scenario 2 was implemented with two additional cases in which one infectious passenger expelled 20 and 50 sneezes per hour, respectively. All computations were based on 90 minutes of sampling using specifications from a COTS aerosol collector and biosensor. Only biosensors that could provide an answer in under 20 minutes without any manual preparation steps were included. The principal finding was that the steady-state bacteria concentrations in aircraft would be high enough to be detected in the case where seven infectious passengers are exhaling under scenarios 1 and 2 and where one infectious passenger is actively exhaling in scenario 2. Breathing alone failed to generate sufficient bacterial particles for detection, and none of the scenarios generated sufficient viral particles for detection to be feasible. These results suggest that more sensitive sensors than the COTS devices currently available and/or sampling of individual passengers would be needed for the detection of bacteria and viruses in aircraft. PMID:21264266

  19. Laser-based air data system for aircraft control using Raman and elastic backscatter for the measurement of temperature, density, pressure, moisture, and particle backscatter coefficient.

    PubMed

    Fraczek, Michael; Behrendt, Andreas; Schmitt, Nikolaus

    2012-01-10

    Flight safety in all weather conditions demands exact and reliable determination of flight-critical air parameters. Air speed, temperature, density, and pressure are essential for aircraft control. Conventional air data systems can be impacted by probe failure caused by mechanical damage from hail, volcanic ash, and icing. While optical air speed measurement methods have been discussed elsewhere, in this paper, a new concept for optically measuring the air temperature, density, pressure, moisture, and particle backscatter is presented, being independent on assumptions on the atmospheric state and eliminating the drawbacks of conventional aircraft probes by providing a different measurement principle. The concept is based on a laser emitting laser pulses into the atmosphere through a window and detecting the signals backscattered from a fixed region just outside the disturbed area of the fuselage flows. With four receiver channels, different spectral portions of the backscattered light are extracted. The measurement principle of air temperature and density is based on extracting two signals out of the rotational Raman (RR) backscatter signal of air molecules. For measuring the water vapor mixing ratio-and thus the density of the moist air-a water vapor Raman channel is included. The fourth channel serves to detect the elastic backscatter signal, which is essential for extending the measurements into clouds. This channel contributes to the detection of aerosols, which is interesting for developing a future volcanic ash warning system for aircraft. Detailed and realistic optimization and performance calculations have been performed based on the parameters of a first prototype of such a measurement system. The impact and correction of systematic error sources, such as solar background at daytime and elastic signal cross talk appearing in optically dense clouds, have been investigated. The results of the simulations show the high potential of the proposed system for

  20. Laser-based air data system for aircraft control using Raman and elastic backscatter for the measurement of temperature, density, pressure, moisture, and particle backscatter coefficient.

    PubMed

    Fraczek, Michael; Behrendt, Andreas; Schmitt, Nikolaus

    2012-01-10

    Flight safety in all weather conditions demands exact and reliable determination of flight-critical air parameters. Air speed, temperature, density, and pressure are essential for aircraft control. Conventional air data systems can be impacted by probe failure caused by mechanical damage from hail, volcanic ash, and icing. While optical air speed measurement methods have been discussed elsewhere, in this paper, a new concept for optically measuring the air temperature, density, pressure, moisture, and particle backscatter is presented, being independent on assumptions on the atmospheric state and eliminating the drawbacks of conventional aircraft probes by providing a different measurement principle. The concept is based on a laser emitting laser pulses into the atmosphere through a window and detecting the signals backscattered from a fixed region just outside the disturbed area of the fuselage flows. With four receiver channels, different spectral portions of the backscattered light are extracted. The measurement principle of air temperature and density is based on extracting two signals out of the rotational Raman (RR) backscatter signal of air molecules. For measuring the water vapor mixing ratio-and thus the density of the moist air-a water vapor Raman channel is included. The fourth channel serves to detect the elastic backscatter signal, which is essential for extending the measurements into clouds. This channel contributes to the detection of aerosols, which is interesting for developing a future volcanic ash warning system for aircraft. Detailed and realistic optimization and performance calculations have been performed based on the parameters of a first prototype of such a measurement system. The impact and correction of systematic error sources, such as solar background at daytime and elastic signal cross talk appearing in optically dense clouds, have been investigated. The results of the simulations show the high potential of the proposed system for

  1. Mortality from cancer and other causes among airline cabin attendants in Germany, 1960-1997.

    PubMed

    Blettner, Maria; Zeeb, Hajo; Langner, Ingo; Hammer, Gaël P; Schafft, Thomas

    2002-09-15

    Airline cabin attendants are exposed to several potential occupational hazards, including cosmic radiation. Little is known about the mortality pattern and cancer risk of these persons. The authors conducted a historical cohort study among cabin attendants who had been employed by two German airlines in 1953 or later. Mortality follow-up was completed through December 31, 1997. The authors computed standardized mortality ratios (SMRs) for specific causes of death using German population rates. The effect of duration of employment was evaluated with Poisson regression. The cohort included 16,014 women and 4,537 men (approximately 250,000 person-years of follow-up). Among women, the total number of deaths (n = 141) was lower than expected (SMR = 0.79, 95% confidence interval (CI): 0.67, 0.94). The SMR for all cancers (n = 44) was 0.79 (95% CI: 0.54, 1.17), and the SMR for breast cancer (n = 19) was 1.28 (95% CI: 0.72, 2.20). The SMR did not increase with duration of employment. Among men, 170 deaths were observed (SMR = 1.10, 95% CI: 0.94, 1.28). The SMR for all cancers (n = 21) was 0.71 (95% CI: 0.41, 1.18). The authors found a high number of deaths from acquired immunodeficiency syndrome (SMR = 40; 95% CI: 28.9, 55.8) and from aircraft accidents among the men. In this cohort, ionizing radiation probably contributed less to the small excess in breast cancer mortality than reproductive risk factors. Occupational causes seem not to contribute strongly to the mortality of airline cabin attendants. PMID:12226003

  2. Lightning hazards to aircraft

    NASA Technical Reports Server (NTRS)

    Corn, P. B.

    1978-01-01

    Lightning hazards and, more generally, aircraft static electricity are discussed by a representative for the Air Force Flight Dynamics Laboratory. An overview of these atmospheric electricity hazards to aircraft and their systems is presented with emphasis on electrical and electronic subsystems. The discussion includes reviewing some of the characteristics of lightning and static electrification, trends in weather and lightning-related mishaps, some specific threat mechanisms and susceptible aircraft subsystems and some of the present technology gaps. A roadmap (flow chart) is presented to show the direction needed to address these problems.

  3. Structure-borne noise estimates for the PTA aircraft

    NASA Technical Reports Server (NTRS)

    Unruh, James F.

    1990-01-01

    Estimates of the level of in-flight structure-borne noise transmission in the Propfan Test Assessment Aircraft were carried out for the first three blade passage frequencies. The procedure used combined the frequency response functions of wing strain to cabin sound pressure level (SPL) response obtained during ground test with in-flight measured wing strain response data. The estimated cabin average in-flight structure-borne noise levels varied from 64 to 84 dB, with an average level of 74 dB. The estimates showed little dependence on engine/propeller power, flight altitude, or flight Mach number. In general, the bare cabin noise levels decreased with increasing propeller tone, giving rise to a plausible structure-borne noise transmission problem at the higher blade passage tones. Without knowledge of the effects of a high insertion loss side wall treatment on structure-borne noise transmission, no quantitative conclusions could be made.

  4. 19 CFR 122.132 - Sealing of aircraft liquor kits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Sealing of aircraft liquor kits. 122.132 Section... OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Liquor Kits § 122.132 Sealing of aircraft liquor kits. (a) Sealing required. Aircraft liquor kits shall be sealed on board the aircraft by...

  5. 19 CFR 122.132 - Sealing of aircraft liquor kits.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Sealing of aircraft liquor kits. 122.132 Section... OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Liquor Kits § 122.132 Sealing of aircraft liquor kits. (a) Sealing required. Aircraft liquor kits shall be sealed on board the aircraft by...

  6. 19 CFR 122.32 - Aircraft required to land.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Aircraft required to land. 122.32 Section 122.32... TREASURY AIR COMMERCE REGULATIONS Landing Requirements § 122.32 Aircraft required to land. (a) Any aircraft... where aircraft entering the U.S. from a foreign area may land. As such, aircraft must land at...

  7. 19 CFR 122.32 - Aircraft required to land.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Aircraft required to land. 122.32 Section 122.32... TREASURY AIR COMMERCE REGULATIONS Landing Requirements § 122.32 Aircraft required to land. (a) Any aircraft... where aircraft entering the U.S. from a foreign area may land. As such, aircraft must land at...

  8. 19 CFR 122.132 - Sealing of aircraft liquor kits.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Sealing of aircraft liquor kits. 122.132 Section... OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Liquor Kits § 122.132 Sealing of aircraft liquor kits. (a) Sealing required. Aircraft liquor kits shall be sealed on board the aircraft by...

  9. 19 CFR 122.32 - Aircraft required to land.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Aircraft required to land. 122.32 Section 122.32... TREASURY AIR COMMERCE REGULATIONS Landing Requirements § 122.32 Aircraft required to land. (a) Any aircraft... where aircraft entering the U.S. from a foreign area may land. As such, aircraft must land at...

  10. 19 CFR 122.32 - Aircraft required to land.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Aircraft required to land. 122.32 Section 122.32... TREASURY AIR COMMERCE REGULATIONS Landing Requirements § 122.32 Aircraft required to land. (a) Any aircraft... where aircraft entering the U.S. from a foreign area may land. As such, aircraft must land at...

  11. 19 CFR 122.32 - Aircraft required to land.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Aircraft required to land. 122.32 Section 122.32... TREASURY AIR COMMERCE REGULATIONS Landing Requirements § 122.32 Aircraft required to land. (a) Any aircraft... where aircraft entering the U.S. from a foreign area may land. As such, aircraft must land at...

  12. 19 CFR 122.132 - Sealing of aircraft liquor kits.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Sealing of aircraft liquor kits. 122.132 Section... OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Liquor Kits § 122.132 Sealing of aircraft liquor kits. (a) Sealing required. Aircraft liquor kits shall be sealed on board the aircraft by...

  13. 32 CFR 855.15 - Detaining an aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Detaining an aircraft. 855.15 Section 855.15 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.15 Detaining an...

  14. 32 CFR 855.15 - Detaining an aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Detaining an aircraft. 855.15 Section 855.15 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.15 Detaining an...

  15. 32 CFR 855.15 - Detaining an aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Detaining an aircraft. 855.15 Section 855.15 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.15 Detaining an...

  16. 32 CFR 855.15 - Detaining an aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Detaining an aircraft. 855.15 Section 855.15 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.15 Detaining an...

  17. 32 CFR 855.15 - Detaining an aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Detaining an aircraft. 855.15 Section 855.15 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.15 Detaining an...

  18. Medical and safety monitoring system over an in-cabin optical wireless network

    NASA Astrophysics Data System (ADS)

    Marinos, D.; Leonidas, F.; Vlissidis, N.; Giovanis, C.; Pagiatakis, G.; Aidinis, C.; Vassilopoulos, C.; Pistner, T.; Schmitt, N.; Klaue, J.

    2011-02-01

    An integrated health and safety monitoring system for aircraft environments using commercially available medical sensor modules and custom made safety sensors in conjunction with an appropriate database supervised through a human-machine interface is implemented. The application described aims at preventing critical health- or safety-related situations during the flight. The health monitoring part of the system is capable of collecting all relevant data, essential in analysing a passenger's health profile. These data, comprising of body temperature, blood pressure, pulse oximetry and electrocardiogram, are throughput and transmitted over a wireless optical intra-cabin link to a server. Furthermore, and in order to reduce the cabin crew workload, along with the health data from a specific passenger group, seat-embedded safety sensors provide information for all passengers' flight safety parameters (such as table upright, seat-belt closed, etc.). The data gathered by the system in a central server can, in its entirety, be stored, processed or acted upon in real time.

  19. 19. UPPER STATION, FIRST FLOOR, OPERATOR'S CABIN, DOORS TO INCLINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. UPPER STATION, FIRST FLOOR, OPERATOR'S CABIN, DOORS TO INCLINE PLANE CARS, LOOKING WEST. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  20. 18. UPPER STATION, FIRST FLOOR, OPERATOR'S CABIN, LOOKING NORTH, NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. UPPER STATION, FIRST FLOOR, OPERATOR'S CABIN, LOOKING NORTH, NORTHEAST. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA