Science.gov

Sample records for aircraft cabin materials

  1. Full-scale aircraft cabin flammability tests of improved fire-resistant materials

    NASA Technical Reports Server (NTRS)

    Stuckey, R. N.; Surpkis, D. E.; Price, L. J.

    1974-01-01

    Full-scale aircraft cabin flammability tests to evaluate the effectiveness of new fire-resistant materials by comparing their burning characteristics with those of older aircraft materials are described. Three tests were conducted and are detailed. Test 1, using pre-1968 materials, was run to correlate the procedures and to compare the results with previous tests by other organizations. Test 2 included newer, improved fire-resistant materials. Test 3 was essentially a duplicate of test 2, but a smokeless fuel was used. Test objectives, methods, materials, and results are presented and discussed. Results indicate that the pre-1968 materials ignited easily, allowed the fire to spread, produced large amounts of smoke and toxic combustion products, and resulted in a flash fire and major fire damage. The newer fire-resistant materials did not allow the fire to spread. Furthermore, they produced less, lower concentrations of toxic combustion products, and lower temperatures. The newer materials did not produce a flash fire.

  2. Aircraft Cabin Environmental Quality Sensors

    SciTech Connect

    Gundel, Lara; Kirchstetter, Thomas; Spears, Michael; Sullivan, Douglas

    2010-05-06

    The Indoor Environment Department at Lawrence Berkeley National Laboratory (LBNL) teamed with seven universities to participate in a Federal Aviation Administration (FAA) Center of Excellence (COE) for research on environmental quality in aircraft. This report describes research performed at LBNL on selecting and evaluating sensors for monitoring environmental quality in aircraft cabins, as part of Project 7 of the FAA's COE for Airliner Cabin Environmental Research (ACER)1 effort. This part of Project 7 links to the ozone, pesticide, and incident projects for data collection and monitoring and is a component of a broader research effort on sensors by ACER. Results from UCB and LBNL's concurrent research on ozone (ACER Project 1) are found in Weschler et al., 2007; Bhangar et al. 2008; Coleman et al., 2008 and Strom-Tejsen et al., 2008. LBNL's research on pesticides (ACER Project 2) in airliner cabins is described in Maddalena and McKone (2008). This report focused on the sensors needed for normal contaminants and conditions in aircraft. The results are intended to complement and coordinate with results from other ACER members who concentrated primarily on (a) sensors for chemical and biological pollutants that might be released intentionally in aircraft; (b) integration of sensor systems; and (c) optimal location of sensors within aircraft. The parameters and sensors were selected primarily to satisfy routine monitoring needs for contaminants and conditions that commonly occur in aircraft. However, such sensor systems can also be incorporated into research programs on environmental quality in aircraft cabins.

  3. Aircraft Cabin Turbulence Warning Experiment

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.; Larcher, Kenneth

    2006-01-01

    New turbulence prediction technology offers the potential for advance warning of impending turbulence encounters, thereby allowing necessary cabin preparation time prior to the encounter. The amount of time required for passengers and flight attendants to be securely seated (that is, seated with seat belts fastened) currently is not known. To determine secured seating-based warning times, a consortium of aircraft safety organizations have conducted an experiment involving a series of timed secured seating trials. This demonstrative experiment, conducted on October 1, 2, and 3, 2002, used a full-scale B-747 wide-body aircraft simulator, human passenger subjects, and supporting staff from six airlines. Active line-qualified flight attendants from three airlines participated in the trials. Definitive results have been obtained to provide secured seating-based warning times for the developers of turbulence warning technology

  4. Douglas Aircraft cabin fire tests

    NASA Technical Reports Server (NTRS)

    Klinck, D.

    1978-01-01

    Program objectives are outlined as follows: (1) examine the thermal and environmental characteristics of three types of fuels burned in two quantities contained within a metal lavatory; (2) determine the hazard experienced in opening the door of a lavatory containing a developed fire; (3) select the most severe source fuel for use in a baseline test; and (4) evaluate the effect of the most severe source upon a lavatory constructed of contemporary materials. All test were conducted in the Douglas Cabin Fire Simulator.

  5. Full-scale aircraft cabin flammability tests of improved fire-resistant materials, test series 2

    NASA Technical Reports Server (NTRS)

    Stuckey, R. N.; Bricker, R. W.; Kuminecz, J. F.; Supkis, D. E.

    1976-01-01

    Full-scale aircraft flammability tests in which the effectiveness of new fire-resistant materials was evaluated by comparing their burning characteristics with those of other fire-resistant aircraft materials were described. New-fire-resistant materials that are more economical and better suited for aircraft use than the previously tested fire-resistant materials were tested. The fuel ignition source for one test was JP-4; a smokeless fuel was used for the other test. Test objectives, methods, materials, and results are presented and discussed. The results indicate that, similar to the fire-resistant materials tested previously, the new materials decompose rather than ignite and do not support fire propagation. Furthermore, the new materials did not produce a flash fire.

  6. [Aircraft cabin air quality: exposure to ozone].

    PubMed

    Uva, António De Sousa

    2002-01-01

    Ozone is the principal component involved in photochemical pollution of the air. As an irritant of the respiratory system, its effects on the health of those exposed to it are characterised essentially by coughing, shortness of breath, chest pain or tightness and alterations to the pulmonary mechanical function. Additionally, a higher frequency and severity of asthmatic exacerbation and the occurrence of eye irritation are linked to environmental exposure to O3. In the early 1960s the first studies on the exposure to O3 in aircraft cabins appeared, prompted by the occurrence of clinical complaints of irritation of the respiratory tract in crewmembers and passengers. The symptoms had hitherto been attributed to the action of other factors, such as the ventilation system and low level of humidity in the air. An updating is done by author of some factors related to the quality of air inside aircraft cabins, namely the exposure to ozone in crewmembers and passengers.

  7. Ozone contamination in aircraft cabins: Objectives and approach

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.

    1979-01-01

    Three panels were developed to solve the problem of ozone contamination in aircraft cabins. The problem is defined from direct in-flight measurements of ozone concentrations inside and outside airliners in their normal operations. Solutions to the cabin ozone problem are discussed under two areas: (1) flight planning to avoid high ozone concentrations, and (2) ozone destruction techniques installed in the cabin air systems.

  8. Aircraft cabin water spray disbenefits study

    NASA Technical Reports Server (NTRS)

    Reynolds, Thomas L.; Porter, Kent W.

    1993-01-01

    The concept of utilizing a cabin water spray system (CWSS) as a means of increasing passenger evacuation and survival time following an accident has received considerable publicity and has been the subject of testing by the regulatory agencies in both the United States and Europe. A test program, initiated by the CAA in 1987, involved the regulatory bodies in both Europe and North America in a collaborative research effort to determine the benefits and 'disbenefits' (disadvantages) of a CWSS. In order to obtain a balanced opinion of an onboard CWSS, NASA, and FAA requested the Boeing Commercial Airplane Group to investigate the potential 'disbenefits' of the proposed system from the perspective of the manufacturer and an operator. This report is the result of a year-long, cost-sharing contract study between the Boeing Commercial Airplane Group, NASA, and FAA. Delta Air Lines participated as a subcontract study team member and investigated the 'return to service' costs for an aircraft that would experience an uncommanded operation of a CWSS without the presence of fire. Disbenefits identified include potential delays in evacuation, introduction of 'common cause failure' in redundant safety of flight systems, physiological problems for passengers, high cost of refurbishment for inadvertent discharge, and potential to negatively affect other safety systems.

  9. Passenger aircraft cabin air quality: trends, effects, societal costs, proposals.

    PubMed

    Hocking, M B

    2000-08-01

    As aircraft operators have sought to substantially reduce propulsion fuel cost by flying at higher altitudes, the energy cost of providing adequate outside air for ventilation has increased. This has lead to a significant decrease in the amount of outside air provided to the passenger cabin, partly compensated for by recirculation of filtered cabin air. The purpose of this review paper is to assemble the available measured air quality data and some calculated estimates of the air quality for aircraft passenger cabins to highlight the trend of the last 25 years. The influence of filter efficiencies on air quality, and a few medically documented and anecdotal cases of illness transmission aboard aircraft are discussed. Cost information has been collected from the perspective of both the airlines and passengers. Suggestions for air quality improvement are given which should help to result in a net, multistakeholder savings and improved passenger comfort.

  10. Net in-cabin emission rates of VOCs and contributions from outside and inside the aircraft cabin

    NASA Astrophysics Data System (ADS)

    Guan, Jun; Li, Zheng; Yang, Xudong

    2015-06-01

    Volatile organic compounds (VOCs) are one of the most important types of air pollutants in aircraft cabin. Balancing source intensity of VOCs and ventilation strategies is an essential conducive way to obtain acceptable aircraft cabin environment. This paper intends to develop a simplified model by a case study to estimate the net VOC emission rates of cabin interior, and contributions from outside and inside the aircraft cabin. In-flight continuous measurements of total VOCs (TVOC) in cabin air were made in six domestic flights in March 2013. The results indicate that the concentrations of TVOC mostly ranged from 0.20 mg m-3 to 0.40 mg m-3 in cabin air, which first increased at ascent, and then kept elevated during cruise, and decreased at descent in general. For further ventilation information, carbon dioxide (CO2) in supply air and re-circulated air was simultaneously observed as a ventilation tracer to calculate the bleed air ratios, outside airflow rates and total airflow rates in these flights. And thus, the emission rates derived from cabin interior and contributions of TVOC from bleed air and cabin interior were estimated for the whole flight accordingly. Results indicate that during the cruise phase, TVOC in cabin air mainly came from cabin interiors. However, contributions from outside air also became significant during taxiing on the ground, ascent and descent phases. The simplified model would be useful for developing better control strategies of aircraft cabin air quality.

  11. 78 FR 52848 - Occupational Safety and Health Standards for Aircraft Cabin Crewmembers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... conditions of aircraft cabin crew while they are onboard aircraft in operation. DATES: This action becomes... the working conditions of aircraft cabin crewmembers while they are onboard aircraft in operation... enforcement onboard the aircraft. The FAA agrees with the proposed recommendation. Specific procedures...

  12. Calibration of the Ogawa passive ozone sampler for aircraft cabins

    NASA Astrophysics Data System (ADS)

    Bhangar, Seema; Singer, Brett C.; Nazaroff, William W.

    2013-02-01

    Elevated ozone levels in aircraft cabins would pose a health hazard to exposed passengers and crew. The Ogawa passive sampler is a potentially useful tool for measuring in-cabin ozone levels. Accurate interpretation of measured values requires knowing the effective collection rate of the sampler. To calibrate the passive sampler for the aircraft-cabin environment, ozone was measured simultaneously with an Ogawa sampler and an active ozone analyzer that served as a transfer standard, on 11 commercial passenger flights, during Feb-Apr 2007. An empirical pressure-independent effective collection rate that can be used to convert nitrate mass to ozone mixing ratio was determined to be 14.3 ± 0.9 atm cm3 min-1 (mean ± standard error). This value is similar to estimates from other applications where airflow rates are low, such as in personal monitoring and in chamber studies. This study represents the first field calibration of any passive sampler for the aircraft cabin environment.

  13. Modeling flight attendants' exposures to pesticide in disinsected aircraft cabins.

    PubMed

    Zhang, Yong; Isukapalli, Sastry; Georgopoulos, Panos; Weisel, Clifford

    2013-12-17

    Aircraft cabin disinsection is required by some countries to kill insects that may pose risks to public health and native ecological systems. A probabilistic model has been developed by considering the microenvironmental dynamics of the pesticide in conjunction with the activity patterns of flight attendants, to assess their exposures and risks to pesticide in disinsected aircraft cabins under three scenarios of pesticide application. Main processes considered in the model are microenvironmental transport and deposition, volatilization, and transfer of pesticide when passengers and flight attendants come in contact with the cabin surfaces. The simulated pesticide airborne mass concentration and surface mass loadings captured measured ranges reported in the literature. The medians (means ± standard devitions) of daily total exposure intakes were 0.24 (3.8 ± 10.0), 1.4 (4.2 ± 5.7), and 0.15 (2.1 ± 3.2) μg day(-1) kg(-1) of body weight for scenarios of residual application, preflight, and top-of-descent spraying, respectively. Exposure estimates were sensitive to parameters corresponding to pesticide deposition, body surface area and weight, surface-to-body transfer efficiencies, and efficiency of adherence to skin. Preflight spray posed 2.0 and 3.1 times higher pesticide exposure risk levels for flight attendants in disinsected aircraft cabins than top-of-descent spray and residual application, respectively.

  14. Indoor air quality: recommendations relevant to aircraft passenger cabins.

    PubMed

    Hocking, M B

    1998-07-01

    To evaluate the human component of aircraft cabin air quality the effects of respiration of a resting adult on air quality in an enclosed space are estimated using standard equations. Results are illustrated for different air volumes per person, with zero air exchange, and with various air change rates. Calculated ventilation rates required to achieve a specified air quality for a wide range of conditions based on theory agree to within 2% of the requirements determined using a standard empirical formula. These calculations quantitatively confirm that the air changes per hour per person necessary for ventilation of an enclosed space vary inversely with the volume of the enclosed space. However, they also establish that the ventilation required to achieve a target carbon dioxide concentration in the air of an enclosed space with a resting adult remains the same regardless of the volume of the enclosed space. Concentration equilibria resulting from the interaction of the respiration of a resting adult with various ventilation conditions are compared with the rated air exchange rates of samples of current passenger aircraft, both with and without air recirculation capability. Aircraft cabin carbon dioxide concentrations calculated from the published ventilation ratings are found to be intermediate to these sets of results obtained by actual measurement. These findings are used to arrive at recommendations for aircraft builders and operators to help improve aircraft cabin air quality at minimum cost. Passenger responses are suggested to help improve their comfort and decrease their exposure to disease transmission, particularly on long flights.

  15. Ozone contamination in aircraft cabins - Results from GASP data and analyses

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Nastrom, G. D.

    1981-01-01

    The paper reviews results from the NASA Global Atmospheric Sampling Program (GASP) pertaining to the problem of ozone contamination in commercial aircraft cabins. Specifically, analyses of GASP data have (1) confirmed the high ozone levels in aircraft cabins and documented the ratio of ozone inside and outside the cabins of two B747 airliners, including the effects of air conditioning modifications on that ratio; (2) defined ambient ozone climatology at commercial aircraft cruise altitudes, including tabulation of encounter frequency data; and (3) outlined procedures for estimating the frequency of flights encountering high cabin ozone levels using climatological ambient ozone data and verified these procedures against cabin measurements.

  16. Aircraft cabin noise prediction and optimization

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.

    1985-01-01

    Theoretical and experimental studies were conducted to determine the noise transmission into acoustic enclosures ranging from simple rectangular box models to full scale light aircraft in flight. The structural models include simple, stiffened, curved stiffened, and orthotropic panels and double wall windows. The theoretical solutions were obtained by model analysis. Transfer matrix and finite element procedures were utilized. Good agreement between theory and experiment has been achieved. An efficient acoustic add-on treatment was developed for interior noise control in a twin engine light aircraft.

  17. Ozone and ozone byproducts in the cabins of commercial aircraft.

    PubMed

    Weisel, Clifford; Weschler, Charles J; Mohan, Kris; Vallarino, Jose; Spengler, John D

    2013-05-01

    The aircraft cabin represents a unique indoor environment due to its high surface-to-volume ratio, high occupant density, and the potential for high ozone concentrations at cruising altitudes. Ozone was continuously measured and air was sampled on sorbent traps, targeting carbonyl compounds, on 52 transcontinental U.S. or international flights between 2008 and 2010. The sampling was predominantly on planes that did not have ozone scrubbers (catalytic converters). Peak ozone levels on aircraft without catalytic convertors exceeded 100 ppb, with some flights having periods of more than an hour when the ozone levels were >75 ppb. Ozone was greatly reduced on relatively new aircraft with catalytic convertors, but ozone levels on two flights whose aircraft had older convertors were similar to those on planes without catalytic convertors. Hexanal, heptanal, octanal, nonanal, decanal, and 6-methyl-5-hepten-2-one (6-MHO) were detected in the aircraft cabin at sub- to low ppb levels. Linear regression models that included the log transformed mean ozone concentration, percent occupancy, and plane type were statistically significant and explained between 18 and 25% of the variance in the mixing ratio of these carbonyls. Occupancy was also a significant factor for 6-MHO, but not the linear aldehydes, consistent with 6-MHO's formation from the reaction between ozone and squalene, which is present in human skin oils. PMID:23517299

  18. Airborne exposure patterns from a passenger source in aircraft cabins

    PubMed Central

    Bennett, James S.; Jones, Byron W.; Hosni, Mohammad H.; Zhang, Yuanhui; Topmiller, Jennifer L.; Dietrich, Watts L.

    2015-01-01

    Airflow is a critical factor that influences air quality, airborne contaminant distribution, and disease transmission in commercial airliner cabins. The general aircraft-cabin air-contaminant transport effect model seeks to build exposure-spatial relationships between contaminant sources and receptors, quantify the uncertainty, and provide a platform for incorporation of data from a variety of studies. Knowledge of infection risk to flight crews and passengers is needed to form a coherent response to an unfolding epidemic, and infection risk may have an airborne pathogen exposure component. The general aircraf-tcabin air-contaminant transport effect model was applied to datasets from the University of Illinois and Kansas State University and also to case study information from a flight with probable severe acute respiratory syndrome transmission. Data were fit to regression curves, where the dependent variable was contaminant concentration (normalized for source strength and ventilation rate), and the independent variable was distance between source and measurement locations. The data-driven model showed exposure to viable small droplets and post-evaporation nuclei at a source distance of several rows in a mock-up of a twin-aisle airliner with seven seats per row. Similar behavior was observed in tracer gas, particle experiments, and flight infection data for severe acute respiratory syndrome. The study supports the airborne pathway as part of the matrix of possible disease transmission modes in aircraft cabins. PMID:26526769

  19. Airborne exposure patterns from a passenger source in aircraft cabins.

    PubMed

    Bennett, James S; Jones, Byron W; Hosni, Mohammad H; Zhang, Yuanhui; Topmiller, Jennifer L; Dietrich, Watts L

    2013-01-01

    Airflow is a critical factor that influences air quality, airborne contaminant distribution, and disease transmission in commercial airliner cabins. The general aircraft-cabin air-contaminant transport effect model seeks to build exposure-spatial relationships between contaminant sources and receptors, quantify the uncertainty, and provide a platform for incorporation of data from a variety of studies. Knowledge of infection risk to flight crews and passengers is needed to form a coherent response to an unfolding epidemic, and infection risk may have an airborne pathogen exposure component. The general aircraf-tcabin air-contaminant transport effect model was applied to datasets from the University of Illinois and Kansas State University and also to case study information from a flight with probable severe acute respiratory syndrome transmission. Data were fit to regression curves, where the dependent variable was contaminant concentration (normalized for source strength and ventilation rate), and the independent variable was distance between source and measurement locations. The data-driven model showed exposure to viable small droplets and post-evaporation nuclei at a source distance of several rows in a mock-up of a twin-aisle airliner with seven seats per row. Similar behavior was observed in tracer gas, particle experiments, and flight infection data for severe acute respiratory syndrome. The study supports the airborne pathway as part of the matrix of possible disease transmission modes in aircraft cabins. PMID:26526769

  20. Incident-response monitoring technologies for aircraft cabin air quality

    NASA Astrophysics Data System (ADS)

    Magoha, Paul W.

    Poor air quality in commercial aircraft cabins can be caused by volatile organophosphorus (OP) compounds emitted from the jet engine bleed air system during smoke/fume incidents. Tri-cresyl phosphate (TCP), a common anti-wear additive in turbine engine oils, is an important component in today's global aircraft operations. However, exposure to TCP increases risks of certain adverse health effects. This research analyzed used aircraft cabin air filters for jet engine oil contaminants and designed a jet engine bleed air simulator (BAS) to replicate smoke/fume incidents caused by pyrolysis of jet engine oil. Field emission scanning electron microscopy (FESEM) with X-ray energy dispersive spectroscopy (EDS) and neutron activation analysis (NAA) were used for elemental analysis of filters, and gas chromatography interfaced with mass spectrometry (GC/MS) was used to analyze used filters to determine TCP isomers. The filter analysis study involved 110 used and 90 incident filters. Clean air filter samples exposed to different bleed air conditions simulating cabin air contamination incidents were also analyzed by FESEM/EDS, NAA, and GC/MS. Experiments were conducted on a BAS at various bleed air conditions typical of an operating jet engine so that the effects of temperature and pressure variations on jet engine oil aerosol formation could be determined. The GC/MS analysis of both used and incident filters characterized tri- m-cresyl phosphate (TmCP) and tri-p-cresyl phosphate (TpCP) by a base peak of an m/z = 368, with corresponding retention times of 21.9 and 23.4 minutes. The hydrocarbons in jet oil were characterized in the filters by a base peak pattern of an m/z = 85, 113. Using retention times and hydrocarbon thermal conductivity peak (TCP) pattern obtained from jet engine oil standards, five out of 110 used filters tested had oil markers. Meanwhile 22 out of 77 incident filters tested positive for oil fingerprints. Probit analysis of jet engine oil aerosols obtained

  1. Theoretical design of acoustic treatment for cabin noise control of a light aircraft

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Mixson, J. S.

    1984-01-01

    An analytical procedure has been used to design an acoustic treatment for cabin noise control of a light aircraft. Using this approach acoustic add-on treatments capable of reducing the average noise levels in the cabin by about 17 dB from the untreated condition are developed. The added weight of the noise control package is about 2 percent of the total gross take-off weight of the aircraft. The analytical model uses modal solutions wherein the structural modes of the sidewall and the acoustic modes of the receiving space are accounted for. The additional noise losses due to add-on treatments are calculated by the impedance transfer method. The input noise spectral levels are selected utilizing experimental flight data. The add-on treatments considered for cabin noise control include aluminum honeycomb panels, constrained layer damping tape, porous acoustic materials, noise barriers and limp trim panels. To reduce the noise transmitted through the double wall aircraft windows to acceptable levels, changes in the design of the aircraft window are recommended.

  2. Ozone-initiated chemistry in an occupied simulated aircraft cabin.

    PubMed

    Weschler, Charles J; Wisthaler, Armin; Cowlin, Shannon; Tamás, Gyöngyi; Strøm-Tejsen, Peter; Hodgson, Alfred T; Destaillats, Hugo; Herrington, Jason; Zhang, Junfeng; Nazaroff, William W

    2007-09-01

    We have used multiple analytical methods to characterize the gas-phase products formed when ozone was added to cabin air during simulated 4-hour flights that were conducted in a reconstructed section of a B-767 aircraft containing human occupants. Two separate groups of 16 females were each exposed to four conditions: low air exchange (4.4 (h-1)), <2 ppb ozone; low air exchange, 61-64 ppb ozone; high air exchange (8.8 h(-1)), <2 ppb ozone; and high air exchange, 73-77 ppb ozone. The addition of ozone to the cabin air increased the levels of identified byproducts from approximately 70 to 130 ppb at the lower air exchange rate and from approximately 30 to 70 ppb at the higher air exchange rate. Most of the increase was attributable to acetone, nonanal, decanal, 4-oxopentanal (4-OPA), 6-methyl-5-hepten-2-one (6-MHO), formic acid, and acetic acid, with 0.25-0.30 mol of quantified product volatilized per mol of ozone consumed. Several of these compounds reached levels above their reported odor thresholds. Most byproducts were derived from surface reactions with occupants and their clothing, consistent with the inference that occupants were responsible for the removal of >55% of the ozone in the cabin. The observations made in this study have implications for other indoor settings. Whenever human beings and ozone are simultaneously present, one anticipates production of acetone, nonanal, decanal, 6-MHO, geranyl acetone, and 4-OPA.

  3. Concentrations of selected contaminants in cabin air of airbus aircrafts.

    PubMed

    Dechow, M; Sohn, H; Steinhanses, J

    1997-07-01

    The concentrations of selected air quality parameters in aircraft cabins were investigated including particle numbers in cabin air compared to fresh air and recirculation air, the microbiological contamination and the concentration of volatile organic compounds (VOC). The Airbus types A310 of Swissair and A340 of Lufthansa were used for measurements. The particles were found to be mainly emitted by the passengers, especially by smokers. Depending on recirculation filter efficiency the recirculation air contained a lower or equal amount of particles compared to the fresh air, whereas the amount of bacteria exceeded reported concentrations within other indoor spaces. The detected species were mainly non-pathogenic, with droplet infection over short distances identified as the only health risk. The concentration of volatile organic compounds (VOC) were well below threshold values. Ethanol was identified as the compound with the highest amount in cabin air. Further organics were emitted by the passengers--as metabolic products or by smoking--and on ground as engine exhaust (bad airport air quality). Cleaning agents may be the source of further compounds.

  4. Quelling Cabin Noise in Turboprop Aircraft via Active Control

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.; Laba, Keith E.; Padula, Sharon L.

    1997-01-01

    Cabin noise in turboprop aircraft causes passenger discomfort, airframe fatigue, and employee scheduling constraints due to OSHA standards for exposure to high levels of noise. The noise levels in the cabins of turboprop aircraft are typically 10 to 30 decibels louder than commercial jet noise levels. However. unlike jet noise the turboprop noise spectrum is dominated by a few low frequency tones. Active structural acoustic control is a method in which the control inputs (used to reduce interior noise) are applied directly to a vibrating structural acoustic system. The control concept modeled in this work is the application of in-plane force inputs to piezoceramic patches bonded to the wall of a vibrating cylinder. The goal is to determine the force inputs and locations for the piezoceramic actuators so that: (1) the interior noise is effectively damped; (2) the level of vibration of the cylinder shell is not increased; and (3) the power requirements needed to drive the actuators are not excessive. Computational experiments for data taken from a computer generated model and from a laboratory test article at NASA Langley Research Center are provided.

  5. Ozone contamination in aircraft cabins: Results from GASP data and analyses

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Nastrom, G. D.

    1981-01-01

    The global atmospheric sampling program pertaining to the problem of ozone contamination in commercial airplane cabins is described. Specifically, analyses of GASP data have: confirmed the occurrence of high ozone levels in aircraft cabins and documented the ratio of ozone inside and outside the cabins of two B747 airliners, including the effects of air conditioning modifications on that ratio; defined ambient ozone climatology at commercial airplane cruise altitudes, including tabulation of encounter frequency data which were not available before GASP; and outlined procedures for estimating the frequency of flights encountering high cabin ozone levels using climatological ambient ozone data, and verified these procedures against cabin measurements.

  6. Development and testing of cabin sidewall acoustic resonators for the reduction of cabin tone levels in propfan-powered aircraft

    NASA Technical Reports Server (NTRS)

    Kuntz, H. L.; Gatineau, R. J.; Prydz, R. A.; Balena, F. J.

    1991-01-01

    The use of Helmholtz resonators to increase the sidewall transmission loss (TL) in aircraft cabin sidewalls is evaluated. Development, construction, and test of an aircraft cabin acoustic enclosure, built in support of the Propfan Test Assessment (PTA) program, is described. Laboratory and flight test results are discussed. Resonators (448) were located between the enclosure trim panels and the fuselage shell. In addition, 152 resonators were placed between the enclosure and aircraft floors. The 600 resonators were each tuned to a propfan fundamental blade passage frequency (235 Hz). After flight testing on the PTA aircraft, noise reduction (NR) tests were performed with the enclosure in the Kelly Johnson Research and Development Center Acoustics Laboratory. Broadband and tonal excitations were used in the laboratory. Tonal excitation simulated the propfan flight test excitation. The resonators increase the NR of the cabin walls around the resonance frequency of the resonator array. Increases in NR of up to 11 dB were measured. The effects of flanking, sidewall absorption, cabin absorption, resonator loading of trim panels, and panel vibrations are presented. Resonator and sidewall panel design and test are discussed.

  7. Simulations of ozone distributions in an aircraft cabin using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Rai, Aakash C.; Chen, Qingyan

    2012-07-01

    Ozone is a major pollutant of indoor air. Many studies have demonstrated the adverse health effect of ozone and the byproducts generated as a result of ozone-initiated reactive chemistry in an indoor environment. This study developed a Computational Fluid Dynamics (CFD) model to predict the ozone distribution in an aircraft cabin. The model was used to simulate the distribution of ozone in an aircraft cabin mockup for the following cases: (1) empty cabin; (2) cabin with seats; (3) cabin with soiled T-shirts; (4) occupied cabin with simple human geometry; and (5) occupied cabin with detailed human geometry. The agreement was generally good between the CFD results and the available experimental data. The ozone removal rate, deposition velocity, retention ratio, and breathing zone levels were well predicted in those cases. The CFD model predicted breathing zone ozone concentration to be 77-99% of the average cabin ozone concentration depending on the seat location. The ozone concentration at the breathing zone in the cabin environment can better assess the health risk to passengers and can be used to develop strategies for a healthier cabin environment.

  8. Experimental investigation of personal air supply nozzle use in aircraft cabins.

    PubMed

    Fang, Zhaosong; Liu, Hong; Li, Baizhan; Baldwin, Andrew; Wang, Jian; Xia, Kechao

    2015-03-01

    To study air passengers' use of individual air supply nozzles in aircraft cabins, we constructed an experimental chamber which replicated the interior of a modern passenger aircraft. A series of experiments were conducted at different levels of cabin occupancy. Survey data were collected focused on the reasons for opening the nozzle, adjusting the level of air flow, and changing the direction of the air flow. The results showed that human thermal and draft sensations change over time in an aircraft cabin. The thermal sensation response was highest when the volunteers first entered the cabin and decreased over time until it stablized. Fifty-one percent of volunteers opened the nozzle to alleviate a feeling of stuffiness, and more than 50% adjusted the nozzle to improve upper body comfort. Over the period of the experiment the majority of volunteers chose to adjust their the air flow of their personal system. This confirms airline companies' decisions to install the individual aircraft ventilation systems in their aircraft indicates that personal air systems based on nozzle adjustment are essential for cabin comfort. These results will assist in the design of more efficient air distribution systems within passenger aircraft cabins where there is a need to optimize the air flow in order to efficiently improve aircraft passengers' thermal comfort and reduce energy use. PMID:25479988

  9. Experimental investigation of personal air supply nozzle use in aircraft cabins.

    PubMed

    Fang, Zhaosong; Liu, Hong; Li, Baizhan; Baldwin, Andrew; Wang, Jian; Xia, Kechao

    2015-03-01

    To study air passengers' use of individual air supply nozzles in aircraft cabins, we constructed an experimental chamber which replicated the interior of a modern passenger aircraft. A series of experiments were conducted at different levels of cabin occupancy. Survey data were collected focused on the reasons for opening the nozzle, adjusting the level of air flow, and changing the direction of the air flow. The results showed that human thermal and draft sensations change over time in an aircraft cabin. The thermal sensation response was highest when the volunteers first entered the cabin and decreased over time until it stablized. Fifty-one percent of volunteers opened the nozzle to alleviate a feeling of stuffiness, and more than 50% adjusted the nozzle to improve upper body comfort. Over the period of the experiment the majority of volunteers chose to adjust their the air flow of their personal system. This confirms airline companies' decisions to install the individual aircraft ventilation systems in their aircraft indicates that personal air systems based on nozzle adjustment are essential for cabin comfort. These results will assist in the design of more efficient air distribution systems within passenger aircraft cabins where there is a need to optimize the air flow in order to efficiently improve aircraft passengers' thermal comfort and reduce energy use.

  10. Computational fluid dynamics modeling of transport and deposition of pesticides in an aircraft cabin

    NASA Astrophysics Data System (ADS)

    Isukapalli, Sastry S.; Mazumdar, Sagnik; George, Pradeep; Wei, Binnian; Jones, Byron; Weisel, Clifford P.

    2013-04-01

    Spraying of pesticides in aircraft cabins is required by some countries as part of a disinsection process to kill insects that pose a public health threat. However, public health concerns remain regarding exposures of cabin crew and passengers to pesticides in aircraft cabins. While large scale field measurements of pesticide residues and air concentrations in aircraft cabins scenarios are expensive and time consuming, Computational Fluid Dynamics (CFD) models provide an effective alternative for characterizing concentration distributions and exposures. This study involved CFD modeling of a twin-aisle 11 row cabin mockup with heated manikins, mimicking a part of a fully occupied Boeing 767 cabin. The model was applied to study the flow and deposition of pesticides under representative scenarios with different spraying patterns (sideways and overhead) and cabin air exchange rates (low and high). Corresponding spraying experiments were conducted in the cabin mockup, and pesticide deposition samples were collected at the manikin's lap and seat top for a limited set of five seats. The CFD model performed well for scenarios corresponding to high air exchange rates, captured the concentration profiles for middle seats under low air exchange rates, and underestimated the concentrations at window seats under low air exchange rates. Additionally, both the CFD and experimental measurements showed no major variation in deposition characteristics between sideways and overhead spraying. The CFD model can estimate concentration fields and deposition profiles at very high resolutions, which can be used for characterizing the overall variability in air concentrations and surface loadings. Additionally, these model results can also provide a realistic range of surface and air concentrations of pesticides in the cabin that can be used to estimate potential exposures of cabin crew and passengers to these pesticides.

  11. A critical review of reported air concentrations of organic compounds in aircraft cabins.

    PubMed

    Nagda, N L; Rector, H E

    2003-09-01

    This paper presents a review and assessment of aircraft cabin air quality studies with measured levels of volatile and semivolatile organic compounds (VOCs and SVOCs). VOC and SVOC concentrations reported for aircraft cabins are compared with those reported for residential and office buildings and for passenger compartments of other types of transportation. An assessment of measurement technologies and quality assurance procedures is included. The six studies reviewed in the paper range in coverage from two to about 30 flights per study. None of the monitored flights included any unusual or episodic events that could affect cabin air quality. Most studies have used scientifically sound methods for measurements. Study results indicate that under routine aircraft operations, contaminant levels in aircraft cabins are similar to those in residential and office buildings, with two exceptions: (1). levels of ethanol and acetone, indicators of bioeffluents and chemicals from consumer products are higher in aircraft than in home or office environments, and (2). levels of certain chlorinated hydrocarbons and fuel-related contaminants are higher in residential/office buildings than in aircraft. Similarly, ethanol and acetone levels are higher in aircraft than in other transportation modes but the levels of some pollutants, such as m-/p-xylenes, tend to be lower in aircraft.

  12. Prediction of air temperature in the aircraft cabin under different operational conditions

    NASA Astrophysics Data System (ADS)

    Volavý, F.; Fišer, J.; Nöske, I.

    2013-04-01

    This paper deals with the prediction of the air temperature in the aircraft cabin by means of Computational Fluid Dynamics. The simulations are performed on the CFD model which is based on geometry and cabin interior arrangement of the Flight Test Facility (FTF) located at Fraunhofer IBP, Germany. The experimental test flights under three different cabin temperatures were done in FTF and the various data were gathered during these flights. Air temperature in the cabin was measured on probes located near feet, torso and head of each passenger and also surface temperature and air temperature distributed from inlets were measured. The data were firstly analysed in order to obtain boundary conditions for cabin surfaces and inlets. Then the results of air temperature from the simulations were compared with measured data. The suitability and accuracy of the CFD approach for temperature prediction is discussed.

  13. Source apportionment of airborne particles in commercial aircraft cabin environment: Contributions from outside and inside of cabin

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Guan, Jun; Yang, Xudong; Lin, Chao-Hsin

    2014-06-01

    Airborne particles are an important type of air pollutants in aircraft cabin. Finding sources of particles is conducive to taking appropriate measures to remove them. In this study, measurements of concentration and size distribution of particles larger than 0.3 μm (PM>0.3) were made on nine short haul flights from September 2012 to March 2013. Particle counts in supply air and breathing zone air were both obtained. Results indicate that the number concentrations of particles ranged from 3.6 × 102 counts L-1 to 1.2 × 105 counts L-1 in supply air and breathing zone air, and they first decreased and then increased in general during the flight duration. Peaks of particle concentration were found at climbing, descending, and cruising phases in several flights. Percentages of particle concentration in breathing zone contributed by the bleed air (originated from outside) and cabin interior sources were calculated. The bleed air ratios, outside airflow rates and total airflow rates were calculated by using carbon dioxide as a ventilation tracer in five of the nine flights. The calculated results indicate that PM>0.3 in breathing zone mainly came from unfiltered bleed air, especially for particle sizes from 0.3 to 2.0 μm. And for particles larger than 2.0 μm, contributions from the bleed air and cabin interior were both important. The results would be useful for developing better cabin air quality control strategies.

  14. A simplified method for assessing particle deposition rate in aircraft cabins

    NASA Astrophysics Data System (ADS)

    You, Ruoyu; Zhao, Bin

    2013-03-01

    Particle deposition in aircraft cabins is important for the exposure of passengers to particulate matter, as well as the airborne infectious diseases. In this study, a simplified method is proposed for initial and quick assessment of particle deposition rate in aircraft cabins. The method included: collecting the inclined angle, area, characteristic length, and freestream air velocity for each surface in a cabin; estimating the friction velocity based on the characteristic length and freestream air velocity; modeling the particle deposition velocity using the empirical equation we developed previously; and then calculating the particle deposition rate. The particle deposition rates for the fully-occupied, half-occupied, 1/4-occupied and empty first-class cabin of the MD-82 commercial airliner were estimated. The results show that the occupancy did not significantly influence the particle deposition rate of the cabin. Furthermore, the simplified human model can be used in the assessment with acceptable accuracy. Finally, the comparison results show that the particle deposition rate of aircraft cabins and indoor environments are quite similar.

  15. Factors affecting ozone removal rates in a simulated aircraft cabin environment

    NASA Astrophysics Data System (ADS)

    Tamás, Gyöngyi; Weschler, Charles J.; Bakó-Biró, Zsolt; Wyon, David P.; Strøm-Tejsen, Peter

    Ozone concentrations were measured concurrently inside a simulated aircraft cabin and in the airstream providing ventilation air to the cabin. Ozone decay rates were also measured after cessation of ozone injection into the supply airstream. By systematically varying the presence or absence of people, soiled T-shirts, aircraft seats and a used HEPA filter, we have been able in the course of 24 experiments to isolate the contributions of these and other factors to the removal of ozone from the cabin air. In the case of this simulated aircraft, people were responsible for almost 60% of the ozone removal occurring within the cabin and recirculation system; respiration can only have been responsible for about 4% of this removal. The aircraft seats removed about 25% of the ozone; the loaded HEPA filter, 7%; and the other surfaces, 10%. A T-shirt that had been slept in overnight removed roughly 70% as much ozone as a person, indicating the importance of skin oils in ozone removal. The presence of the used HEPA filter in the recirculated airstream reduced the perceived air quality. Over a 5-h period, the overall ozone removal rate by cabin surfaces decreased at ˜3% h -1. With people present, the measured ratio of ozone's concentration in the cabin versus that outside the cabin was 0.15-0.21, smaller than levels reported in the literature. The results reinforce the conclusion that the optimal way to reduce people's exposure to both ozone and ozone oxidation products is to efficiently remove ozone from the air supply system of an aircraft.

  16. Experimental investigation of airborne contaminant transport by a human wake moving in a ventilated aircraft cabin

    NASA Astrophysics Data System (ADS)

    Poussou, Stephane B.

    The air ventilation system in jetliners provides a comfortable and healthy environment for passengers. Unfortunately, the increase in global air traffic has amplified the risks presented by infectious aerosols or noxious material released during flight. Inside the cabin, air typically flows continuously from overhead outlets into sidewall exhausts in a circular pattern that minimizes secondary flow between adjacent seat rows. However, disturbances frequently introduced by individuals walking along an aisle may alter air distribution, and contribute to spreading of contaminants. Numerical simulation of these convoluted transient flow phenomena is difficult and complex, and experimental assessment of contaminant distribution in real cabins often impractical. A fundamental experimental study was undertaken to examine the transport phenomena, to validate computations and to improve air monitoring systems. A finite moving body was modeled in a 10:1 scale simplified aircraft cabin equipped with ventilation, at a Reynolds number (based on body diameter) of the order of 10,000. An experimental facility was designed and constructed to permit measurements of the ventilation and wake velocity fields using particle image velocimetry (PIV). Contaminant migration was imaged using the planar laser induced fluorescence (PLIF) technique. The effect of ventilation was estimated by comparison with a companion baseline study. Results indicate that the evolution of a downwash predominant behind finite bodies of small aspect ratio is profoundly perturbed by the ventilation flow. The reorganization of vortical structures in the near-wake leads to a shorter longitudinal recirculation region. Furthermore, mixing in the wake is modified and contaminant is observed to convect to higher vertical locations corresponding to seated passenger breathing level.

  17. Transmission loss characteristics of aircraft sidewall systems to control cabin interior noise

    NASA Astrophysics Data System (ADS)

    Yesil, Oktay; Serati, Paul M.; Hofbeck, Eric V.; Glover, Billy M.

    We have explored the possibility of using new, light weight, and acoustically effective materials on aircraft interiors to control noise. The sidewall system elements were evaluated for increased TL in the laboratory. Measured TL for a given configuration, relative to a baseline, was used as an indication of the TL change to be expected for modifications. Test data were in good agreement with the predicted levels. The TL contributions due to all sidewall components were important for interior cabin noise control. Polyimide foam insulation was inferior to fiberglass in the mid-frequency range; however, foam was a better performer at high frequencies. Fiberglass/polyimide foam composite blankets, with less weight, provided noise reductions similar to fiberglass. 'Premium' fiberglass was slightly better performer than the standard fiberglass. Solid fiberglass interior trim panel provided adequate noise performance. Production-type trim attachment design could be improved to control flanking path for sound transmission.

  18. Trends in cabin air quality of commercial aircraft: industry and passenger perspectives.

    PubMed

    Hocking, Martin B

    2002-01-01

    The small air space available per person in a fully occupied aircraft passenger cabin accentuates the human bioeffluent factor in the maintenance of air quality. The accumulation of carbon dioxide and other contributions to poor air quality that can occur with inadequate ventilation, even under normal circumstances, is related to the volume of available air space per person and various ventilation rates. This information is compared with established air quality guidelines to make specific recommendations with reference to aircraft passenger cabins under both normal and abnormal operating conditions. The effects of respiration on the air quality of any enclosed space from the respiration of a resting adult are estimated using standard equations. Results are given for different volumes of space per person, for zero air exchange, and for various air change rates. The required ventilation rates estimated in this way compared closely with results calculated using a standard empirical formula. The results confirm that the outside air ventilation required to achieve a target carbon dioxide concentration in the air of an occupied enclosed space remains the same regardless of the volume of that space. The outside air ventilation capability of older and more recent aircraft is then reviewed and compared with the actual measurements of cabin air quality for these periods. The correlation between calculated and measured aircraft cabin carbon dioxide concentrations from other studies was very good. Respiratory benefits and costs of returning to the 30% higher outside air ventilation rates and 8% higher cabin pressures of the 1960s and 1970s are outlined. Consideration is given to the occasional occurrence of certain types of aircraft malfunction that can introduce more serious contaminants to the aircraft cabin. Recommendations and suggestions for aircraft builders and operators are made that will help improve aircraft cabin air quality and the partial pressure of oxygen that

  19. Optimum Noise Reduction Methods for the Interior of Vehicles and Aircraft Cabins

    NASA Astrophysics Data System (ADS)

    Tavossi, Ph. D., Hasson M.

    The most effective methods of noise reduction in vehicles and Aircraft cabins are investigated. The first goal is to determine the optimal means of noise mitigation without change in external shape of the vehicle, or aircraft cabin exterior such as jet engine or fuselage design, with no significant added weight. The second goal is to arrive at interior designs that can be retrofitted to the existing interiors, to reduce overall noise level for the passengers. The physical phenomena considered are; relaxation oscillations, forced vibrations with non-linear damping and sub-harmonic resonances. The negative and positive damping coefficients and active noise cancelations methods are discussed. From noise power-spectrum for a prototype experimental setup, the most energetic vibration modes are determined, that require the highest damping. The proposed technique will utilize the arrangement of uniformly distributed open Helmholtz resonators, with sound absorbing surface. They are tuned to the frequencies that correspond to the most energetic noise levels. The resonators dissipate noise energy inside the vehicle, or aircraft cabin, at the peak frequencies of the noise spectrum, determined for different vehicle or aircraft cabin, interior design models.

  20. Flight investigation of cabin noise control treatments for a light turboprop aircraft

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Oneal, R. L.; Mixson, J. S.

    1985-01-01

    The in-flight evaluation of noise control treatments for a light, twin-engined turboprop aircraft presents several problems associated with data analysis and interpretation. These problems include data repeatability, propeller synchronization, spatial distributions of the exterior pressure field and acoustic treatment, and the presence of flanking paths. They are discussed here with regard to a specific aeroplane configuration. Measurements were made in an untreated cabin and in a cabin fitted with an experimental sidewall treatment. Results are presented in terms of the insertion loss provided by the treatment and comparison made with predictions based on laboratory measurements.

  1. The influence of ozone on self-evaluation of symptoms in a simulated aircraft cabin.

    PubMed

    Strøm-Tejsen, Peter; Weschler, Charles J; Wargocki, Pawel; Myśków, Danuta; Zarzycka, Julita

    2008-05-01

    Simulated 4-h flights were carried out in a realistic model of a three-row, 21-seat section of an aircraft cabin that was reconstructed inside a climate chamber. Twenty-nine female subjects, age 19-27 years, were split into two groups; each group was exposed to four conditions: two levels of ozone (<2 and 60-80 p.p.b.) at two outside air supply rates (2.4 and 4.7 l/s per person). A companion study measured the chemicals present in the cabin air during each of the simulated flights. The subjects completed questionnaires to provide subjective assessments of air quality and symptoms typical of complaints experienced during actual flight. Additionally, the subjects' visual acuity, nasal peak flow and skin dryness were measured. Based on self-recorded responses after 3(1/4) h in the simulated aircraft cabin, they judged the air quality and 12 of the symptoms (including eye and nasal irritation, lip and skin dryness, headache, dizziness, mental tension, claustrophobia) to be significantly worse (P<0.05) for the "ozone" condition compared to the "no ozone" condition. The results indicate that ozone and products of ozone-initiated chemistry are contributing to such complaints, and imply previously unappreciated benefits when ozone is removed from the ventilation air supplied to an aircraft cabin.

  2. Laboratory test and acoustic analysis of cabin treatment for propfan test assessment aircraft

    NASA Technical Reports Server (NTRS)

    Kuntz, H. L.; Gatineau, R. J.

    1991-01-01

    An aircraft cabin acoustic enclosure, built in support of the Propfan Test Assessment (PTA) program, is described. Helmholtz resonators were attached to the cabin trim panels to increase the sidewall transmission loss (TL). Resonators (448) were located between the trim panels and fuselage shell. In addition, 152 resonators were placed between the enclosure and aircraft floors. The 600 resonators were each tuned to a 235 Hz resonance frequency. After flight testing on the PTA aircraft, the enclosure was tested in the Kelly Johnson R and D Center Acoustics Lab. Laboratory noise reduction (NR) test results are discussed. The enclosure was placed in a Gulfstream 2 fuselage section. Broadband (138 dB overall SPL) and tonal (149 dB overall SPL) excitations were used in the lab. Tonal excitation simulated the propfan flight test excitation. The fundamental tone was stepped in 2 Hz intervals from 225 through 245 Hz. The resonators increase the NR of the cabin walls around the resonance frequency of the resonator array. The effects of flanking, sidewall absorption, cabin adsorption, resonator loading of trim panels, and panel vibrations are presented. Increases in NR of up to 11 dB were measured.

  3. Aircraft cabin ozone measurements on B747-100 and B747-SP aircraft: Correlations with atmospheric ozone and ozone encounter statistics

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.; Holdeman, J. D.; Gauntner, D. J.

    1978-01-01

    Simultaneous measurements of atmospheric (outside) ozone concentration and ozone levels in the cabin of the B747-100 and B747-SP airliners were made by NASA to evaluate the aircraft cabin ozone contamination problem. Instrumentation on these aircraft measured ozone from an outside probe and at one point in the cabin. Average ozone in the cabin of the B747-100 was 39 percent of the outside. Ozone in the cabin of the B747-SP measured 82 percent of the outside, before corrective measures. Procedures to reduce the ozone in this aircraft included changes in the cabin air circulation system, use of the high-temperature 15th stage compressor bleed, and charcoal filters in the inlet cabin air ducting, which as separate actions reduced the ozone to 58, 19 and 5 percent, respectively. The potential for the NASA instrumented B747 aircraft to encounter high levels of cabin ozone was derived from atmospheric oxone measurements on these aircraft. Encounter frequencies for two B747-100's were comparable even though the route structures were different. The B747-SP encountered high ozone than did the B747-100's.

  4. Speech intelligibility and speech quality of modified loudspeaker announcements examined in a simulated aircraft cabin.

    PubMed

    Pennig, Sibylle; Quehl, Julia; Wittkowski, Martin

    2014-01-01

    Acoustic modifications of loudspeaker announcements were investigated in a simulated aircraft cabin to improve passengers' speech intelligibility and quality of communication in this specific setting. Four experiments with 278 participants in total were conducted in an acoustic laboratory using a standardised speech test and subjective rating scales. In experiments 1 and 2 the sound pressure level (SPL) of the announcements was varied (ranging from 70 to 85 dB(A)). Experiments 3 and 4 focused on frequency modification (octave bands) of the announcements. All studies used a background noise with the same SPL (74 dB(A)), but recorded at different seat positions in the aircraft cabin (front, rear). The results quantify speech intelligibility improvements with increasing signal-to-noise ratio and amplification of particular octave bands, especially the 2 kHz and the 4 kHz band. Thus, loudspeaker power in an aircraft cabin can be reduced by using appropriate filter settings in the loudspeaker system. PMID:25183056

  5. Speech intelligibility and speech quality of modified loudspeaker announcements examined in a simulated aircraft cabin.

    PubMed

    Pennig, Sibylle; Quehl, Julia; Wittkowski, Martin

    2014-01-01

    Acoustic modifications of loudspeaker announcements were investigated in a simulated aircraft cabin to improve passengers' speech intelligibility and quality of communication in this specific setting. Four experiments with 278 participants in total were conducted in an acoustic laboratory using a standardised speech test and subjective rating scales. In experiments 1 and 2 the sound pressure level (SPL) of the announcements was varied (ranging from 70 to 85 dB(A)). Experiments 3 and 4 focused on frequency modification (octave bands) of the announcements. All studies used a background noise with the same SPL (74 dB(A)), but recorded at different seat positions in the aircraft cabin (front, rear). The results quantify speech intelligibility improvements with increasing signal-to-noise ratio and amplification of particular octave bands, especially the 2 kHz and the 4 kHz band. Thus, loudspeaker power in an aircraft cabin can be reduced by using appropriate filter settings in the loudspeaker system.

  6. Cabin Noise Control for Twin Engine General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Slazak, M.

    1982-01-01

    An analytical model based on modal analysis was developed to predict the noise transmission into a twin-engine light aircraft. The model was applied to optimize the interior noise to an A-weighted level of 85 dBA. To achieve the required noise attenuation, add-on treatments in the form of honeycomb panels, damping tapes, acoustic blankets, septum barriers and limp trim panels were added to the existing structure. The added weight of the noise control treatment is about 1.1 percent of the total gross take-off weight of the aircraft.

  7. Wireless Local Area Network Performance Inside Aircraft Passenger Cabins

    NASA Technical Reports Server (NTRS)

    Whetten, Frank L.; Soroker, Andrew; Whetten, Dennis A.; Whetten, Frank L.; Beggs, John H.

    2005-01-01

    An examination of IEEE 802.11 wireless network performance within an aircraft fuselage is performed. This examination measured the propagated RF power along the length of the fuselage, and the associated network performance: the link speed, total throughput, and packet losses and errors. A total of four airplanes: one single-aisle and three twin-aisle airplanes were tested with 802.11a, 802.11b, and 802.11g networks.

  8. A composite system approach to aircraft cabin fire safety

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Gilwee, W. J., Jr.; Lerner, N. R.; Hilado, C. J.; Labossiere, L. A.; Hsu, M. T. S.

    1976-01-01

    The thermochemical and flammability characteristics of two polymeric composites currently in use and seven others being considered for use as aircraft interior panels are described. The properties studied included: (1) limiting oxygen index of the composite constituents; (2) fire containment capability of the composite; (3) smoke evolution from the composite; (4) thermogravimetric analysis; (5) composition of the volatile products of thermal degradation; and (6) relative toxicity of the volatile products of pyrolysis. The performance of high temperature laminating resins such as bismaleimides is compared with the performance of phenolics and epoxies. The relationship of increased fire safety with the use of polymers with high anaerobic char yield is shown. Processing parameters of one of the baremaleimide composites are detailed.

  9. Loss of cabin pressure in Canadian Forces ejection seat aircraft, 1962-1982.

    PubMed

    Brooks, C J

    1984-12-01

    A review of all aircraft accidents and incidents in the Canadian Forces over the last 20 years (1962-1982) has been carried out. There have been 47 cases of serious loss of cabin pressurization in ejection seat equipped aircraft. Altitudes varied from 15,000 to 54,000 ft (4,572-16,459 m). No one aircraft appears to be more vulnerable. The most common cause was problems with the canopy seal (25%). There were three cases of hypoxia and two cases of decompression sickness. No deaths or permanent injuries occurred. Loss of pressurization is an extremely low, but definite risk to the pilot and aeromedical training with practical demonstration in the hypobaric chamber should continue. PMID:6517823

  10. Corrosion protection of aerospace grade magnesium alloy Elektron 43(TM) for use in aircraft cabin interiors

    NASA Astrophysics Data System (ADS)

    Baillio, Sarah S.

    Magnesium alloys exhibit desirable properties for use in transportation technology. In particular, the low density and high specific strength of these alloys is of interest to the aerospace community. However, the concerns of flammability and susceptibility to corrosion have limited the use of magnesium alloys within the aircraft cabin. This work studies a magnesium alloy containing rare earth elements designed to increase resistance to ignition while lowering rate of corrosion. The microstructure of the alloy was documented using scanning electron microscopy. Specimens underwent salt spray testing and the corrosion products were examined using energy dispersive spectroscopy.

  11. Ozone-Initiated Chemistry in an Occupied Simulated AircraftCabin

    SciTech Connect

    Weschler, C.J.; Wisthaler, A.; Cowlind, S.; Tamas, G.; Strom-Tejsena, P.; Hodgson, A.T.; Destaillats, H.; Herrington, J.; Zhang,J.; Nazaroff, W.W.

    2007-07-01

    We have used multiple analytical methods to characterize the gas-phase products formed when ozone was added to cabin air during simulated 4-hour flights that were conducted in a reconstructed section of a B-767 aircraft containing human occupants. Two separate groups of 16 females were each exposed to four conditions: low air exchange (4.4 h-1), <2 ppb ozone; low air exchange, 61-64 ppb ozone; high air exchange (8.8 h-1), <2 ppb ozone; and high air exchange, 73-77 ppb ozone. The addition of ozone to the cabin air increased the levels of identified byproducts from {approx}70 to 130 ppb at the lower air exchange rate and from {approx}30 to 70 ppb at the higher air exchange rate. Most of the increase was attributable to acetone, nonanal, decanal, 4-oxopentanal (4-OPA), 6-methyl-5-hepten-2-one (6-MHO), formic acid, and acetic acid, with 0.25-0.30 mol of quantified product volatilized per mol of ozone consumed. Several of these compounds reached levels above their reported odor thresholds. Most byproducts were derived from surface reactions with occupants and their clothing, consistent with the inference that occupants were responsible for the removal of >55% of the ozone in the cabin. The observations made in this study have implications for other indoor settings. Whenever human beings and ozone are simultaneously present, one anticipates production of acetone, nonanal, decanal, 6-MHO, geranyl acetone, and 4-OPA.

  12. [The modelling of the composition of the thermal oxidative breakdown products of aviation oils determined in the cabin air of aircraft].

    PubMed

    Belkin, B I; Filippov, A F; Kozlovskaia, N N

    1994-01-01

    The authors suggested a method to obtain a mixture of chemicals from splitting thermo-oxidation of aviation oil. The qualitative and quantitative aspects of the mixture correspond to the concentration of the chemicals in the air of aircraft cabins. The possibility to obtain such mixtures helps to assess in hygienic laboratory conditions a level of air pollution with aviation oil in aircraft cabins.

  13. The influence of air duct geometry on air jet direction in aircraft cabin ventilated by mixing ventilation.

    NASA Astrophysics Data System (ADS)

    Fišer, J.; Jícha, M.

    2013-04-01

    The paper deals with instigation of influence of air duct geometry on air jet direction in aircraft cabin ventilated by mixing ventilation. CFD approach was used for investigation and model geometry was based on small aircraft cabin mock-up geometry. Model was also equipped by nine seats and five manikins that represent passengers. The air jet direction was observed for selected ambient environment parameters and several types of air duct geometry and influence of main air duct geometry on jets direction is discussed. The model was created in StarCCM+ ver. 6.04.014 software and polyhedral mesh was used.

  14. Furry pet allergens, fungal DNA and microbial volatile organic compounds (MVOCs) in the commercial aircraft cabin environment.

    PubMed

    Fu, Xi; Lindgren, Torsten; Guo, Moran; Cai, Gui-Hong; Lundgren, Håkan; Norbäck, Dan

    2013-06-01

    There has been concern about the cabin environment in commercial aircraft. We measured cat, dog and horse allergens and fungal DNA in cabin dust and microbial volatile organic compounds (MVOCs) in cabin air. Samples were collected from two European airline companies, one with cabins having textile seats (TSC) and the other with cabins having leather seats (LSC), 9 airplanes from each company. Dust was vacuumed from seats and floors in the flight deck and different parts of the cabin. Cat (Fel d1), dog (Can f1) and horse allergens (Equ cx) were analyzed by ELISA. Five sequences of fungal DNA were analyzed by quantitative PCR. MVOCs were sampled on charcoal tubes in 42 TSC flights, and 17 compounds were analyzed by gas chromatography mass spectrometry (GC-MS) with selective ion monitoring (SIM). MVOC levels were compared with levels in homes from Nordic countries. The weight of dust was 1.8 times larger in TSC cabins as compared to LSC cabins (p < 0.001). In cabins with textile seats, the geometric mean (GM) concentrations of Fel d1, Can f1 and Equ cx were 5359 ng g(-1), 6067 ng g(-1), and 13 703 ng g(-1) (GM) respectively. Levels of Fel d1, Can f1 and Equ cx were 50 times, 27 times and 75 times higher respectively, in TSC cabins as compared to LSC cabins (p < 0.001). GM levels of Aspergillus/Penicillium DNA, Aspergillus versicolor DNA, Stachybotrys chartarum DNA and Streptomyces DNA were all higher in TSC as compared to LSC (p < 0.05). The sum of MVOCs in cabin air (excluding butanols) was 3192 ng m(-3) (GM), 3.7 times higher than in homes (p < 0.001) and 2-methyl-1-butanol and 3-methyl-1-butanol concentrations were 15-17 times higher as compared to homes (p < 0.001). Concentrations of isobutanol, 1-butanol, dimethyldisulfide, 2-hexanone, 2-heptanone, 3-octanone, isobutyl acetate and ethyl-2-methylbutyrate were lower in cabin air as compared to homes (p < 0.05). In conclusion, textile seats are much more contaminated by pet allergens and fungal DNA than leather

  15. Furry pet allergens, fungal DNA and microbial volatile organic compounds (MVOCs) in the commercial aircraft cabin environment.

    PubMed

    Fu, Xi; Lindgren, Torsten; Guo, Moran; Cai, Gui-Hong; Lundgren, Håkan; Norbäck, Dan

    2013-06-01

    There has been concern about the cabin environment in commercial aircraft. We measured cat, dog and horse allergens and fungal DNA in cabin dust and microbial volatile organic compounds (MVOCs) in cabin air. Samples were collected from two European airline companies, one with cabins having textile seats (TSC) and the other with cabins having leather seats (LSC), 9 airplanes from each company. Dust was vacuumed from seats and floors in the flight deck and different parts of the cabin. Cat (Fel d1), dog (Can f1) and horse allergens (Equ cx) were analyzed by ELISA. Five sequences of fungal DNA were analyzed by quantitative PCR. MVOCs were sampled on charcoal tubes in 42 TSC flights, and 17 compounds were analyzed by gas chromatography mass spectrometry (GC-MS) with selective ion monitoring (SIM). MVOC levels were compared with levels in homes from Nordic countries. The weight of dust was 1.8 times larger in TSC cabins as compared to LSC cabins (p < 0.001). In cabins with textile seats, the geometric mean (GM) concentrations of Fel d1, Can f1 and Equ cx were 5359 ng g(-1), 6067 ng g(-1), and 13 703 ng g(-1) (GM) respectively. Levels of Fel d1, Can f1 and Equ cx were 50 times, 27 times and 75 times higher respectively, in TSC cabins as compared to LSC cabins (p < 0.001). GM levels of Aspergillus/Penicillium DNA, Aspergillus versicolor DNA, Stachybotrys chartarum DNA and Streptomyces DNA were all higher in TSC as compared to LSC (p < 0.05). The sum of MVOCs in cabin air (excluding butanols) was 3192 ng m(-3) (GM), 3.7 times higher than in homes (p < 0.001) and 2-methyl-1-butanol and 3-methyl-1-butanol concentrations were 15-17 times higher as compared to homes (p < 0.001). Concentrations of isobutanol, 1-butanol, dimethyldisulfide, 2-hexanone, 2-heptanone, 3-octanone, isobutyl acetate and ethyl-2-methylbutyrate were lower in cabin air as compared to homes (p < 0.05). In conclusion, textile seats are much more contaminated by pet allergens and fungal DNA than leather

  16. The possible effects on health, comfort and safety of aircraft cabin environments.

    PubMed

    Brown, T P; Shuker, L K; Rushton, L; Warren, F; Stevens, J

    2001-09-01

    A consultation was undertaken to investigate the views and concerns of stakeholders in the aircraft industry about the possible harmful effects on personal health, comfort and safety of aircraft cabin environments. Stakeholders were identified from a variety of sources including Government agencies, the Internet, House of Lords inquiry, and suggestions of interviewees. They represented: aircraft crews, aircraft constructors and engineers, government departments and authorities, holiday/flight companies, insurance companies, non-governmental organisations, occupational health physicians, passenger representatives, and independent researchers and consultants. Eighty-seven were contacted of which 57 were interviewed over the telephone using a semi-structured questionnaire. Their concerns were transcribed into a standard format and analysed qualitatively. Key stakeholders, along with Government officials, were invited to a workshop to discuss and prioritize the issues raised during the interviews. The main concerns expressed by the participants fell into five main areas: deep vein thrombosis, air quality, infection, cosmic radiation, and jet lag and work patterns. In addition, a number of safety concerns were raised as well as comments on the provision of appropriate advice to passengers. It was generally felt that further research was required on each of these subjects, as well as an improvement in the quality, quantity and availability of information provided for passengers prior to boarding a flight.

  17. Experimental Model of Contaminant Transport by a Moving Wake Inside an Aircraft Cabin

    NASA Astrophysics Data System (ADS)

    Poussou, Stephane; Sojka, Paul; Plesniak, Michael

    2008-11-01

    The air cabin environment in jetliners is designed to provide comfortable and healthy conditions for passengers. The air ventilation system produces a recirculating pattern designed to minimize secondary flow between seat rows. However, disturbances are frequently introduced by individuals walking along the aisle and may significantly modify air distribution and quality. Spreading of infectious aerosols or biochemical agents presents potential health hazards. A fundamental study has been undertaken to understand the unsteady transport phenomena, to validate numerical simulations and to improve air monitoring systems. A finite moving body is modeled experimentally in a 10:1 scale simplified aircraft cabin equipped with ventilation, at a Reynolds number (based on body height) of the order of 10,000. Measurements of the ventilation and wake velocity fields are obtained using PIV and PLIF. Results indicate that the evolution of the typical downwash behind the body is profoundly perturbed by the ventilation flow. Furthermore, the interaction between wake and ventilation flow significantly alters scalar contaminant migration.

  18. Numerical Modelling and Damage Assessment of Rotary Wing Aircraft Cabin Door Using Continuum Damage Mechanics Model

    NASA Astrophysics Data System (ADS)

    Boyina, Gangadhara Rao T.; Rayavarapu, Vijaya Kumar; Subba Rao, V. V.

    2016-08-01

    The prediction of ultimate strength remains the main challenge in the simulation of the mechanical response of composite structures. This paper examines continuum damage model to predict the strength and size effects for deformation and failure response of polymer composite laminates when subjected to complex state of stress. The paper also considers how the overall results of the exercise can be applied in design applications. The continuum damage model is described and the resulting prediction of size effects are compared against the standard benchmark solutions. The stress analysis for strength prediction of rotary wing aircraft cabin door is carried out. The goal of this study is to extend the proposed continuum damage model such that it can be accurately predict the failure around stress concentration regions. The finite element-based continuum damage mechanics model can be applied to the structures and components of arbitrary configurations where analytical solutions could not be developed.

  19. Impact of cabin ozone concentrations on passenger reported symptoms in commercial aircraft.

    PubMed

    Bekö, Gabriel; Allen, Joseph G; Weschler, Charles J; Vallarino, Jose; Spengler, John D

    2015-01-01

    Due to elevated ozone concentrations at high altitudes, the adverse effect of ozone on air quality, human perception and health may be more pronounced in aircraft cabins. The association between ozone and passenger-reported symptoms has not been investigated under real conditions since smoking was banned on aircraft and ozone converters became more common. Indoor environmental parameters were measured at cruising altitude on 83 US domestic and international flights. Passengers completed a questionnaire about symptoms and satisfaction with the indoor air quality. Average ozone concentrations were relatively low (median: 9.5 ppb). On thirteen flights (16%) ozone levels exceeded 60 ppb, while the highest peak level reached 256 ppb for a single flight. The most commonly reported symptoms were dry mouth or lips (26%), dry eyes (22.1%) and nasal stuffiness (18.9%). 46% of passengers reported at least one symptom related to the eyes or mouth. A third of the passengers reported at least one upper respiratory symptom. Using multivariate logistic (individual symptoms) and linear (aggregated continuous symptom variables) regression, ozone was consistently associated with symptoms related to the eyes and certain upper respiratory endpoints. A concentration-response relationship was observed for nasal stuffiness and eye and upper respiratory symptom indicators. Average ozone levels, as opposed to peak concentrations, exhibited slightly weaker associations. Medium and long duration flights were significantly associated with more symptoms compared to short flights. The relationship between ultrafine particles and ozone on flights without meal service was indicative of ozone-initiated chemistry.

  20. Impact of cabin ozone concentrations on passenger reported symptoms in commercial aircraft.

    PubMed

    Bekö, Gabriel; Allen, Joseph G; Weschler, Charles J; Vallarino, Jose; Spengler, John D

    2015-01-01

    Due to elevated ozone concentrations at high altitudes, the adverse effect of ozone on air quality, human perception and health may be more pronounced in aircraft cabins. The association between ozone and passenger-reported symptoms has not been investigated under real conditions since smoking was banned on aircraft and ozone converters became more common. Indoor environmental parameters were measured at cruising altitude on 83 US domestic and international flights. Passengers completed a questionnaire about symptoms and satisfaction with the indoor air quality. Average ozone concentrations were relatively low (median: 9.5 ppb). On thirteen flights (16%) ozone levels exceeded 60 ppb, while the highest peak level reached 256 ppb for a single flight. The most commonly reported symptoms were dry mouth or lips (26%), dry eyes (22.1%) and nasal stuffiness (18.9%). 46% of passengers reported at least one symptom related to the eyes or mouth. A third of the passengers reported at least one upper respiratory symptom. Using multivariate logistic (individual symptoms) and linear (aggregated continuous symptom variables) regression, ozone was consistently associated with symptoms related to the eyes and certain upper respiratory endpoints. A concentration-response relationship was observed for nasal stuffiness and eye and upper respiratory symptom indicators. Average ozone levels, as opposed to peak concentrations, exhibited slightly weaker associations. Medium and long duration flights were significantly associated with more symptoms compared to short flights. The relationship between ultrafine particles and ozone on flights without meal service was indicative of ozone-initiated chemistry. PMID:26011001

  1. Impact of Cabin Ozone Concentrations on Passenger Reported Symptoms in Commercial Aircraft

    PubMed Central

    Bekö, Gabriel; Allen, Joseph G.; Weschler, Charles J.; Vallarino, Jose; Spengler, John D.

    2015-01-01

    Due to elevated ozone concentrations at high altitudes, the adverse effect of ozone on air quality, human perception and health may be more pronounced in aircraft cabins. The association between ozone and passenger-reported symptoms has not been investigated under real conditions since smoking was banned on aircraft and ozone converters became more common. Indoor environmental parameters were measured at cruising altitude on 83 US domestic and international flights. Passengers completed a questionnaire about symptoms and satisfaction with the indoor air quality. Average ozone concentrations were relatively low (median: 9.5 ppb). On thirteen flights (16%) ozone levels exceeded 60 ppb, while the highest peak level reached 256 ppb for a single flight. The most commonly reported symptoms were dry mouth or lips (26%), dry eyes (22.1%) and nasal stuffiness (18.9%). 46% of passengers reported at least one symptom related to the eyes or mouth. A third of the passengers reported at least one upper respiratory symptom. Using multivariate logistic (individual symptoms) and linear (aggregated continuous symptom variables) regression, ozone was consistently associated with symptoms related to the eyes and certain upper respiratory endpoints. A concentration-response relationship was observed for nasal stuffiness and eye and upper respiratory symptom indicators. Average ozone levels, as opposed to peak concentrations, exhibited slightly weaker associations. Medium and long duration flights were significantly associated with more symptoms compared to short flights. The relationship between ultrafine particles and ozone on flights without meal service was indicative of ozone-initiated chemistry. PMID:26011001

  2. [The modelling of the composition of the thermal oxidative breakdown products of aviation oils determined in the cabin air of aircraft].

    PubMed

    Belkin, B I; Filippov, A F; Kozlovskaia, N N

    1994-01-01

    The authors suggested a method to obtain a mixture of chemicals from splitting thermo-oxidation of aviation oil. The qualitative and quantitative aspects of the mixture correspond to the concentration of the chemicals in the air of aircraft cabins. The possibility to obtain such mixtures helps to assess in hygienic laboratory conditions a level of air pollution with aviation oil in aircraft cabins. PMID:7834229

  3. The thematic structure of passenger comfort experience and its relationship to the context features in the aircraft cabin.

    PubMed

    Ahmadpour, Naseem; Lindgaard, Gitte; Robert, Jean-Marc; Pownall, Bernard

    2014-01-01

    This paper describes passenger comfort as an experience generated by the cabin interior features. The findings of previous studies are affirmed regarding a set of 22 context features. Passengers experience a certain level of comfort when these features impact their body and elicit subjective perceptions. New findings characterise these perceptions in the form of eight themes and outline their particular eliciting features. Comfort is depicted as a complex construct derived by passengers' perceptions beyond the psychological (i.e. peace of mind) and physical (i.e. physical well-being) aspects, and includes perceptual (e.g. proxemics) and semantic (e.g. association) aspects. The seat was shown to have a focal role in eliciting seven of those themes and impacting comfort through its diverse characteristics. In a subsequent study, a group of aircraft cabin interior designers highlighted the possibility of employing the eight themes and their eliciting features as a framework for design and evaluation of new aircraft interiors.

  4. A parametric study of influence of material properties on car cabin environment

    NASA Astrophysics Data System (ADS)

    Pokorny, Jan; Fiser, Jan; Jicha, Miroslav

    2014-03-01

    Recently the author presented the paper describing a car cabin heat load model for the prediction of the car cabin environment. The model allowed to simulate a transient behavior of the car cabin, i.e. radiant temperature of surfaces, air temperature and relative humidity. The model was developed in Dymola and was built on the basic principles of thermodynamics and heat balance equations. The model was validated by experiments performed on the Škoda Felicia during various operational conditions. In this paper the authors present a parametric study investigating influence of material properties on a car cabin environment. The Matlab version of the car cabin heat load model has been developed and used. The model was extended by simple graphical user interface and it was deployed into the stand alone executable application. The aim of this parametric study is to identify most important material properties and its effect on the cabin environment during specific operational conditions of car. By means of a sensitive analysis it can identified which material parameters have to be defined precisely and which parameters are not so important for the prediction of the air temperature inside cabin.

  5. Aircraft Instrument, Fire Protection, Warning, Communication, Navigation and Cabin Atmosphere Control System (Course Outline), Aviation Mechanics 3 (Air Frame): 9067.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with manipulative skills and theoretical knowledge concerning aircraft instrument systems like major flight and engine instruments; fire protection and fire fighting systems; warning systems and navigation systems; aircraft cabin control systems, such as…

  6. Organophosphates in aircraft cabin and cockpit air--method development and measurements of contaminants.

    PubMed

    Solbu, Kasper; Daae, Hanne Line; Olsen, Raymond; Thorud, Syvert; Ellingsen, Dag Gunnar; Lindgren, Torsten; Bakke, Berit; Lundanes, Elsa; Molander, Paal

    2011-05-01

    Methods for measurements and the potential for occupational exposure to organophosphates (OPs) originating from turbine and hydraulic oils among flying personnel in the aviation industry are described. Different sampling methods were applied, including active within-day methods for OPs and VOCs, newly developed passive long-term sample methods (deposition of OPs to wipe surface areas and to activated charcoal cloths), and measurements of OPs in high-efficiency particulate air (HEPA) recirculation filters (n = 6). In total, 95 and 72 within-day OP and VOC samples, respectively, have been collected during 47 flights in six different models of turbine jet engine, propeller and helicopter aircrafts (n = 40). In general, the OP air levels from the within-day samples were low. The most relevant OP in this regard originating from turbine and engine oils, tricresyl phosphate (TCP), was detected in only 4% of the samples (min-max cabin and cockpit air, was an order of magnitude higher as compared to after engine replacement (p = 0.02).

  7. Organophosphates in aircraft cabin and cockpit air--method development and measurements of contaminants.

    PubMed

    Solbu, Kasper; Daae, Hanne Line; Olsen, Raymond; Thorud, Syvert; Ellingsen, Dag Gunnar; Lindgren, Torsten; Bakke, Berit; Lundanes, Elsa; Molander, Paal

    2011-05-01

    Methods for measurements and the potential for occupational exposure to organophosphates (OPs) originating from turbine and hydraulic oils among flying personnel in the aviation industry are described. Different sampling methods were applied, including active within-day methods for OPs and VOCs, newly developed passive long-term sample methods (deposition of OPs to wipe surface areas and to activated charcoal cloths), and measurements of OPs in high-efficiency particulate air (HEPA) recirculation filters (n = 6). In total, 95 and 72 within-day OP and VOC samples, respectively, have been collected during 47 flights in six different models of turbine jet engine, propeller and helicopter aircrafts (n = 40). In general, the OP air levels from the within-day samples were low. The most relevant OP in this regard originating from turbine and engine oils, tricresyl phosphate (TCP), was detected in only 4% of the samples (min-max cabin and cockpit air, was an order of magnitude higher as compared to after engine replacement (p = 0.02). PMID:21399836

  8. Influence of cabin conditions on placement and response of contaminant detection sensors in a commercial aircraft.

    PubMed

    Mazumdar, Sagnik; Chen, Qingyan

    2008-01-01

    Potential causalities due to airborne disease transmission and risk of chem-bio terrorism in commercial airliner cabins can be reduced by fast responses. Fast responses are only possible by using sensors at appropriate locations in the cabins. Cost, size and weight factors restrict the number of sensors that could be installed inside a cabin. Since release locations and seating patterns of passengers can impact airborne contaminant transports, this study first addressed this impact by using a validated computational fluid dynamics (CFD) program in a four-row mockup of twin-aisle airliner cabin. It was observed that occupancy patterns and release locations have little influence on longitudinal contaminant transports though localized variations of contaminant concentrations may exist. The results show that response time of the sensors is considerably reduced with the increase in number of sensors. If only a single sensor is available across a cabin cross-section then it should be placed at the middle of the ceiling. A cabin model of a fully occupied twin-aisle airliner with 210 seats was also build to study the diverse contaminant distribution trends along cabin length. The results reveal that seating arrangements can make cross-sectional airflow pattern considerably asymmetrical. Similar airflow patterns make the longitudinal contaminant transport in the business and economy classes alike. The presence of galleys greatly affected the longitudinal transport of contaminants in a particular cabin section. The effects due to galleys were less significant if a multipoint sampling system was used. The multipoint sampling system can also reduce the number of sensors required in a cabin.

  9. Bower Cabin

    SciTech Connect

    Harold Drollinger

    2007-11-02

    The Bower Cabin, located in southern Nevada, was built and occupied by B.M. Bower and her family during the early 1920s. Bower, a prominent writer of western novels, had over 90 novels to her credit. She wrote 11 of the stories while living at the cabin and, at times, incorporated the surrounding landscape features, including the cabin site itself, into them. The site was subsequently used by a gang of rustlers and for a mining base camp. Archaeological research has identified the remnants of the main structures at the site as well as the artifact material and nearby mining activities associated with the Bower and later occupations.

  10. Ozone Contamination in Aircraft Cabins: Appendix B: Overview papers. Ozone destruction techniques

    NASA Technical Reports Server (NTRS)

    Wilder, R.

    1979-01-01

    Ozone filter test program and ozone instrumentation are presented. Tables on the flight tests, samll scale lab tests, and full scale lab tests were reviewed. Design verification, flammability, vibration, accelerated contamination, life cycle, and cabin air quality are described.

  11. Ozone Contamination in Aircraft Cabins. Appendix B: Overview papers. In-flight measurements

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.

    1979-01-01

    The NASA Global Atmospheric Sampling Program ozone measurements were obtained to establish to characteristics of the ambient ozone concentration during routine operations and to determine the attenuation of ambient concentrations of cabin air systems from simultaneous ambient and in cabin measurements. The characteristics of ambient ozone include: (1) maximum concentration; (2) duration of ozone encounters; (3) frequency of ozone during a flight; (4) variability of ozone during a flight; (5) in relation to routes, altitude, and meteorological conditions.

  12. An Approximate Method of Calculation of Relative Humidity Required to Prevent Frosting on Inside of Aircraft Pressure Cabin Windows, Special Report

    NASA Technical Reports Server (NTRS)

    Jones, Alun R.

    1940-01-01

    This report has been prepare in response to a request for information from an aircraft company. A typical example was selected for the presentation of an approximate method of calculation of the relative humidity required to prevent frosting on the inside of a plastic window in a pressure type cabin on a high speed airplane. The results of the study are reviewed.

  13. Innovative materials for aircraft morphing

    NASA Astrophysics Data System (ADS)

    Simpson, Joycelyn O.; Wise, Stephanie A.; Bryant, R. G.; Cano, R. J.; Gates, T. S.; Hinkley, J. A.; Rogowski, Robert S.; Whitley, K. S.

    1998-06-01

    Reported herein is an overview of the research being conducted within the materials division at NASA Langley Research Center on the development of smart material technologies for advanced airframe systems. The research is a part of the Aircraft Morphing Program which is a new six- year research program to develop smart components for self- adaptive airframe systems. The fundamental areas of materials research within the program are computational materials; advanced piezoelectric materials; advanced fiber optic sensing techniques; and fabrication of integrated composite structures. This paper presents a portion of the ongoing research in each of these areas of materials research.

  14. Innovative Materials for Aircraft Morphing

    NASA Technical Reports Server (NTRS)

    Simpson, J. O.; Wise, S. A.; Bryant, R. G.; Cano, R. J.; Gates, T. S.; Hinkley, J. A.; Rogowski, R. S.; Whitley, K. S.

    1997-01-01

    Reported herein is an overview of the research being conducted within the Materials Division at NASA Langley Research Center on the development of smart material technologies for advanced airframe systems. The research is a part of the Aircraft Morphing Program which is a new six-year research program to develop smart components for self-adaptive airframe systems. The fundamental areas of materials research within the program are computational materials; advanced piezoelectric materials; advanced fiber optic sensing techniques; and fabrication of integrated composite structures. This paper presents a portion of the ongoing research in each of these areas of materials research.

  15. Composite structural materials. [aircraft applications

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1981-01-01

    The development of composite materials for aircraft applications is addressed with specific consideration of physical properties, structural concepts and analysis, manufacturing, reliability, and life prediction. The design and flight testing of composite ultralight gliders is documented. Advances in computer aided design and methods for nondestructive testing are also discussed.

  16. Development of hybrid particle tracking algorithms and their applications in airflow measurement within an aircraft cabin mock-up

    NASA Astrophysics Data System (ADS)

    Yan, Wei

    Obtaining reliable experimental airflow data within an indoor environment is a challenging task and critical in studying and solving indoor air quality problems. The Hybrid Particle Tracking Velocimetry (HPTV) system is aimed at fulfilling this need. It was developed based on existing Particle Tracking Velocimety (PTV) and Volumetric Particle Tracking Velocimetry (VPTV) techniques. The HPTV system requires three charge-coupled device (CCD) cameras to view the illuminated flow field and capture the trajectories of the seeded particles. By adopting the hybrid spatial matching and object tracking algorithms, this system can acquire the 3-Dimensional velocity components within a large volume with relatively high spatial and temporal resolution. Synthetic images were employed to validate the performance of three components of the system: image processing, camera calibration and 3D velocity reconstruction. These three components are also the main error sources. The accuracy of the whole algorithm was analyzed and discussed through a back projection approach. The results showed that the algorithms performed effectively and accurately. The reconstructed 3D trajectories and streaks agreed well with the simulated streamline of the particles. As an overall testing and application of the system, HPTV was applied to measure the airflow pattern within a full-scale, five-row section of a Boeing 767-300 aircraft cabin mockup. A complete experimental procedure was developed and strictly followed throughout the experiment. Both global flow field at the whole cabin scale and the local flow field at the breathing zone of one passenger were studied. Each test case was also simulated numerically using a commercial computational fluid dynamic (CFD) package. Through comparison between the results from the numerical simulation and the experimental measurement, the potential model validation capability of the system was demonstrated. Possible reasons explaining the difference between

  17. 77 FR 72998 - Policy Statement on Occupational Safety and Health Standards for Aircraft Cabin Crewmembers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-07

    ..., 2000 (65 FR 19477-19478), as well as at http://DocketsInfo.dot.gov . Docket: Background documents or... they are onboard aircraft in operation. DATES: Send comments on or before January 7, 2013....

  18. Characterization of endotoxin and 3-hydroxy fatty acid levels in air and settled dust from commercial aircraft cabins.

    PubMed

    Hines, C J; Waters, M A; Larsson, L; Petersen, M R; Saraf, A; Milton, D K

    2003-06-01

    Endotoxin was measured in air and dust samples collected during four commercial aircraft flights. Samples were analyzed for endotoxin biological activity using the Limulus assay. 3-hydroxy fatty acids (3-OH FA) of carbon chain lengths C10:0-C18:0 were determined in dust by gas chromatography-ion trap tandem mass spectrometry. The geometric mean (geometric standard deviation) endotoxin air level was 1.5 EU/m3 (1.9, n = 28); however, significant differences were found by flight within aircraft type. Mean endotoxin levels were significantly higher in carpet dust than in seat dust (140 +/- 81 vs. 51 +/- 25 EU/mg dust, n = 32 each, P < 0.001). Airborne endotoxin levels were not significantly related to either carpet or seat dust endotoxin levels. Mean 3-OH FA levels were significantly higher in carpet dust than in seat dust for C10:2, C12:0, and C14:0 (P < 0.001 for each), while the mean level of C16:0 was significantly higher in seat dust than in carpet dust (P < 0.01). Carpet dust endotoxin was significantly, but moderately, correlated with 3-OH-C12:0 and 3-OH-C14:0 (Pearson r = 0.52 and 0.48, respectively), while correlation of seat dust endotoxin with individual 3-OH FAs depended on the test statistic used. Mean endotoxin potency was significantly higher for carpet dust than for seat dust (6.3 +/- 3.0 vs. 3.0 +/- 1.4 EU/pmol LPS, P < 0.0001). Mean endotoxin levels in the air and dust of commercial aircraft cabins were generally higher than mean levels reported in homes and office buildings. These results suggest that exposure route and dust source are important considerations when relating endotoxin exposure to specific health outcomes.

  19. Discussion of "Polybrominated diphenyl ethers in aircraft cabins--a source of human exposure?" by Anna Christiansson et al. [Chemosphere 73(10) (2008) 1654-1660].

    PubMed

    Schecter, Arnold; Colacino, Justin; Haffner, Darrah; Patel, Keyur; Opel, Matthias; Päpke, Olaf

    2010-01-01

    This paper presents new data on the levels of polybrominated diphenyl ethers (PBDEs) in American airline workers. This pilot study did not find elevated total PBDEs in the blood of nine flight attendants and one aircraft pilot who have worked in airplanes for at least the past 5 years. These findings are not consistent with the findings of elevated blood levels of PBDEs from the 2008 Christiansson et al. publication "Polybrominated diphenyl ethers in aircraft cabins - A source of human exposure?" We agree that more research needs to be done on larger, more representative samples of airline workers to better characterize exposure of airline workers and other frequent flyers to PBDEs.

  20. Ozone levels in passenger cabins of commercial aircraft on North American and transoceanic routes.

    PubMed

    Bhangar, Seema; Cowlin, Shannon C; Singer, Brett C; Sextro, Richard G; Nazaroff, William W

    2008-06-01

    Ozone levels in airplane cabins, and factors that influence them, were studied on northern hemisphere commercial passenger flights on domestic U.S., transatlantic, and transpacific routes. Real-time data from 76 flights were collected in 2006--2007 with a battery-powered UV photometric monitor. Sample mean ozone level, peak-hour ozone level, and flight-integrated ozone exposures were highly variable across domestic segments (N = 68), with ranges of < 1.5 to 146 parts per billion by volume (ppbv), 3--275 ppbv, and < 1.5 to 488 ppbv-hour, respectively. On planes equipped with ozone catalysts, the mean peak-hour ozone level (4.7 ppbv, N = 22)was substantially lower than on planes not equipped with catalysts (47 ppbv, N = 46). Peak-hour ozone levels on eight transoceanic flight segments, all on planes equipped with ozone catalysts, were in the range < 1.5 to 65 [corrected] ppbv. Seasonal variation on domestic routes without converters is reasonably modeled by a sinusoidal curve that predicts peak-hour levels to be approximately 70 ppbv higher in Feb--March than in Aug--Sept The temporal trend is broadly consistent with expectations, given the seasonal cycle in tropopause height. Episodically elevated (>100 ppbv) ozone levels on domestic flights were associated with winter-spring storms that are linked to enhanced exchange between the lower stratosphere and the upper troposphere.

  1. Composite structural materials. [aircraft structures

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1980-01-01

    The use of filamentary composite materials in the design and construction of primary aircraft structures is considered with emphasis on efforts to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, and reliability and life prediction. The redesign of a main spar/rib region on the Boeing 727 elevator near its actuator attachment point is discussed. A composite fabrication and test facility is described as well as the use of minicomputers for computer aided design. Other topics covered include (1) advanced structural analysis methids for composites; (2) ultrasonic nondestructive testing of composite structures; (3) optimum combination of hardeners in the cure of epoxy; (4) fatigue in composite materials; (5) resin matrix characterization and properties; (6) postbuckling analysis of curved laminate composite panels; and (7) acoustic emission testing of composite tensile specimens.

  2. From animal cage to aircraft cabin: an overview of evidence translation in jet lag research.

    PubMed

    Atkinson, Greg; Batterham, Alan M; Dowdall, Nigel; Thompson, Andrew; van Drongelen, Alwin

    2014-12-01

    Recent laboratory experiments on rodents have increased our understanding of circadian rhythm mechanisms. Typically, circadian biologists attempt to translate their laboratory-based findings to treatment of jet lag symptoms in humans. We aimed to scrutinise the strength of the various links in the translational pathway from animal model to human traveller. First, we argue that the translation of findings from pre-clinical studies to effective jet lag treatments and knowledge regarding longer-term population health is not robust, e.g. the association between circadian disruption and cancer found in animal models does not translate well to cabin crew and pilots, who have a lower risk of most cancers. Jet lag symptoms are heterogeneous, making the true prevalence and the effects of any intervention difficult to quantify precisely. The mechanistic chain between in vitro and in vivo treatment effects has weak links, especially between circadian rhythm disruption in animals and the improvement of jet lag symptoms in humans. While the number of animal studies has increased exponentially between 1990 and 2014, only 1-2 randomised controlled trials on jet lag treatments are published every year. There is one relevant Cochrane review, in which only 2-4 studies on melatonin, without baseline measures, were meta-analysed. Study effect sizes reduced substantially between 1987, when the first paper on melatonin was published, and 2000. We suggest that knowledge derived from a greater number of human randomised controlled trials would provide a firmer platform for circadian biologists to cite jet lag treatment as an important application of their findings. PMID:25342081

  3. From animal cage to aircraft cabin: an overview of evidence translation in jet lag research.

    PubMed

    Atkinson, Greg; Batterham, Alan M; Dowdall, Nigel; Thompson, Andrew; van Drongelen, Alwin

    2014-12-01

    Recent laboratory experiments on rodents have increased our understanding of circadian rhythm mechanisms. Typically, circadian biologists attempt to translate their laboratory-based findings to treatment of jet lag symptoms in humans. We aimed to scrutinise the strength of the various links in the translational pathway from animal model to human traveller. First, we argue that the translation of findings from pre-clinical studies to effective jet lag treatments and knowledge regarding longer-term population health is not robust, e.g. the association between circadian disruption and cancer found in animal models does not translate well to cabin crew and pilots, who have a lower risk of most cancers. Jet lag symptoms are heterogeneous, making the true prevalence and the effects of any intervention difficult to quantify precisely. The mechanistic chain between in vitro and in vivo treatment effects has weak links, especially between circadian rhythm disruption in animals and the improvement of jet lag symptoms in humans. While the number of animal studies has increased exponentially between 1990 and 2014, only 1-2 randomised controlled trials on jet lag treatments are published every year. There is one relevant Cochrane review, in which only 2-4 studies on melatonin, without baseline measures, were meta-analysed. Study effect sizes reduced substantially between 1987, when the first paper on melatonin was published, and 2000. We suggest that knowledge derived from a greater number of human randomised controlled trials would provide a firmer platform for circadian biologists to cite jet lag treatment as an important application of their findings.

  4. Low frequency cabin noise reduction based on the intrinsic structural tuning concept: The theory and the experimental results, phase 2. [jet aircraft noise

    NASA Technical Reports Server (NTRS)

    Sengupta, G.

    1978-01-01

    Low frequency cabin noise and sonically induced stresses in an aircraft fuselage may be reduced by intrinsic tuning of the various structural members such as the skin, stringers, and frames and then applying damping treatments on these members. The concept is also useful in identifying the key structural resonance mechanisms controlling the fuselage response to broadband random excitation and in developing suitable damping treatments for reducing the structural response in various frequency ranges. The mathematical proof of the concept and the results of some laboratory and field tests on a group of skin-stringer panels are described. In the so-called stiffness-controlled region, the noise transmission may actually be controlled by stiffener resonances, depending upon the relationship between the natural frequencies of the skin bay and the stiffeners. Therefore, cabin noise in the stiffness-controlled region may be effectively reduced by applying damping treatments on the stiffeners.

  5. Airborne aldehydes in cabin-air of commercial aircraft: Measurement by HPLC with UV absorbance detection of 2,4-dinitrophenylhydrazones.

    PubMed

    Rosenberger, Wolfgang; Beckmann, Bibiana; Wrbitzky, Renate

    2016-04-15

    This paper presents the strategy and results of in-flight measurements of airborne aldehydes during normal operation and reported "smell events" on commercial aircraft. The aldehyde-measurement is a part of a large-scale study on cabin-air quality. The aims of this study were to describe cabin-air quality in general and to detect chemical abnormalities during the so-called "smell-events". Adsorption and derivatization of airborne aldehydes on 2,4-dinitrophenylhydrazine coated silica gel (DNPH-cartridge) was applied using tailor-made sampling kits. Samples were collected with battery supplied personal air sampling pumps during different flight phases. Furthermore, the influence of ozone was investigated by simultaneous sampling with and without ozone absorption unit (ozone converter) assembled to the DNPH-cartridges and found to be negligible. The method was validated for 14 aldehydes and found to be precise (RSD, 5.5-10.6%) and accurate (recovery, 98-103 %), with LOD levels being 0.3-0.6 μg/m(3). According to occupational exposure limits (OEL) or indoor air guidelines no unusual or noticeable aldehyde pollution was observed. In total, 353 aldehyde samples were taken from two types of aircraft. Formaldehyde (overall average 5.7 μg/m(3), overall median 4.9 μg/m(3), range 0.4-44 μg/m(3)), acetaldehyde (overall average 6.5 μg/m(3), overall median 4.6, range 0.3-90 μg/m(3)) and mostly very low concentrations of other aldehydes were measured on 108 flights. Simultaneous adsorption and derivatization of airborne aldehydes on DNPH-cartridges to the Schiff bases and their HPLC analysis with UV absorbance detection is a useful method to measure aldehydes in cabin-air of commercial aircraft.

  6. Airborne aldehydes in cabin-air of commercial aircraft: Measurement by HPLC with UV absorbance detection of 2,4-dinitrophenylhydrazones.

    PubMed

    Rosenberger, Wolfgang; Beckmann, Bibiana; Wrbitzky, Renate

    2016-04-15

    This paper presents the strategy and results of in-flight measurements of airborne aldehydes during normal operation and reported "smell events" on commercial aircraft. The aldehyde-measurement is a part of a large-scale study on cabin-air quality. The aims of this study were to describe cabin-air quality in general and to detect chemical abnormalities during the so-called "smell-events". Adsorption and derivatization of airborne aldehydes on 2,4-dinitrophenylhydrazine coated silica gel (DNPH-cartridge) was applied using tailor-made sampling kits. Samples were collected with battery supplied personal air sampling pumps during different flight phases. Furthermore, the influence of ozone was investigated by simultaneous sampling with and without ozone absorption unit (ozone converter) assembled to the DNPH-cartridges and found to be negligible. The method was validated for 14 aldehydes and found to be precise (RSD, 5.5-10.6%) and accurate (recovery, 98-103 %), with LOD levels being 0.3-0.6 μg/m(3). According to occupational exposure limits (OEL) or indoor air guidelines no unusual or noticeable aldehyde pollution was observed. In total, 353 aldehyde samples were taken from two types of aircraft. Formaldehyde (overall average 5.7 μg/m(3), overall median 4.9 μg/m(3), range 0.4-44 μg/m(3)), acetaldehyde (overall average 6.5 μg/m(3), overall median 4.6, range 0.3-90 μg/m(3)) and mostly very low concentrations of other aldehydes were measured on 108 flights. Simultaneous adsorption and derivatization of airborne aldehydes on DNPH-cartridges to the Schiff bases and their HPLC analysis with UV absorbance detection is a useful method to measure aldehydes in cabin-air of commercial aircraft. PMID:26376451

  7. Plastics as structural materials for aircraft

    NASA Technical Reports Server (NTRS)

    Kline, G M

    1937-01-01

    The purpose here is to consider the mechanical characteristics of reinforced phenol-formaldehyde resin as related to its use as structural material for aircraft. Data and graphs that have appeared in the literature are reproduced to illustrate the comparative behavior of plastics and materials commonly used in aircraft construction. Materials are characterized as to density, static strength, modulus of elasticity, resistance to long-time loading, strength under repeated impact, energy absorption, corrosion resistance, and ease of fabrication.

  8. Testing of aircraft passenger seat cushion materials. Full scale, test description and results, volume 1

    NASA Technical Reports Server (NTRS)

    Schutter, K. J.; Gaume, J. G.; Duskin, F. E.

    1981-01-01

    Eight different seat cushion configurations were subjected to full-scale burn tests. Each cushion configuration was tested twice for a total of sixteen tests. Two different fire sources were used. They consisted of one liter of Jet A fuel for eight tests and a radiant energy source with propane flame for eight tests. Both fire sources were ignited by a propane flame. During each test, data were recorded for smoke density, cushion temperatures, radiant heat flux, animal response to combustion products, rate of weight loss of test specimens, cabin temperature, and for the type and content of gas within the cabin atmosphere. When compared to existing passenger aircraft seat cushions, the test specimens incorporating a fire barrier and those fabricated from advanced materials, using improved construction methods, exhibited significantly greater fire resistance.

  9. Advanced materials for aircraft engine applications.

    PubMed

    Backman, D G; Williams, J C

    1992-02-28

    A review of advances for aircraft engine structural materials and processes is presented. Improved materials, such as superalloys, and the processes for making turbine disks and blades have had a major impact on the capability of modern gas turbine engines. New structural materials, notably composites and intermetallic materials, are emerging that will eventually further enhance engine performance, reduce engine weight, and thereby enable new aircraft systems. In the future, successful aerospace manufacturers will combine product design and materials excellence with improved manufacturing methods to increase production efficiency, enhance product quality, and decrease the engine development cycle time.

  10. Advanced materials for aircraft engine applications.

    PubMed

    Backman, D G; Williams, J C

    1992-02-28

    A review of advances for aircraft engine structural materials and processes is presented. Improved materials, such as superalloys, and the processes for making turbine disks and blades have had a major impact on the capability of modern gas turbine engines. New structural materials, notably composites and intermetallic materials, are emerging that will eventually further enhance engine performance, reduce engine weight, and thereby enable new aircraft systems. In the future, successful aerospace manufacturers will combine product design and materials excellence with improved manufacturing methods to increase production efficiency, enhance product quality, and decrease the engine development cycle time. PMID:17817782

  11. Electronic materials testing in commercial aircraft engines

    NASA Astrophysics Data System (ADS)

    Brand, Dieter

    A device for the electronic testing of materials used in commercial aircraft engines is described. The instrument can be used for ferromagnetic, ferrimagnetic, and nonferromagnetic metallic materials, and it functions either optically or acoustically. The design of the device is described and technical data are given. The device operates under the principle of controlled self-inductivity. Its mode of operation is described.

  12. The shipboard exposure testing of aircraft materials

    NASA Astrophysics Data System (ADS)

    Tankins, E.; Kozol, J.; Lee, E. W.

    1995-09-01

    The aircraft carrier environment provides the most severe conditions to which naval aircraft materials are exposed. The combination of humidity, temperature, salt content from the water vapor, and sulfur dioxide from aircraft exhausts creates an extremely corrosive environment. Under these conditions, unprotected high-strength aluminum alloys exhibit extensive exfoliation during relatively short periods of exposure. Although various ASTM standards have been established to characterize corrosion (ranging from exfoliation to general corrosion and pitting), there is no laboratory test that compares with real-time aircraft exposure. Still, accelerated laboratory tests have been devised that well simulate the exposure of aluminum alloys in the natural environment, although there is no real correlation for aluminum-lithium alloys. Considering these factors, this paper compares the results of shipboard exposure testing with those obtained from laboratory accelerated tests.

  13. Refurbishment of NASA aircraft with fire-retardant materials. [aircraft compartments of commercial aircraft

    NASA Technical Reports Server (NTRS)

    Supkis, D. E.

    1975-01-01

    Selected fire-retardant materials for possible application to commercial aircraft are described. The results of flammability screening tests and information on the physical and chemical properties of both original and newly installed materials after extended use are presented in tabular form, with emphasis on wear properties, strength, puncture and tear resistances, and cleanability.

  14. Thermal/acoustical aircraft insulation material

    NASA Technical Reports Server (NTRS)

    Struzik, E. A.; Kunz, R.; Lin, R.

    1975-01-01

    Attempts made to improve the acoustical properties of low density Fiberfrax foam, an aircraft insulation material, are reported. Characterizations were also made of the physical and thermal properties. Two methods, optimization of fiber blend composition and modification of the foam fabrication process, were examined as possible means of improving foam acoustics. Flame impingement tests were also made; results show performance was satisfactory.

  15. Full-scale flammability test data for validation of aircraft fire mathematical models

    NASA Technical Reports Server (NTRS)

    Kuminecz, J. F.; Bricker, R. W.

    1982-01-01

    Twenty-five large scale aircraft flammability tests were conducted in a Boeing 737 fuselage at the NASA Johnson Space Center (JSC). The objective of this test program was to provide a data base on the propagation of large scale aircraft fires to support the validation of aircraft fire mathematical models. Variables in the test program included cabin volume, amount of fuel, fuel pan area, fire location, airflow rate, and cabin materials. A number of tests were conducted with jet A-1 fuel only, while others were conducted with various Boeing 747 type cabin materials. These included urethane foam seats, passenger service units, stowage bins, and wall and ceiling panels. Two tests were also included using special urethane foam and polyimide foam seats. Tests were conducted with each cabin material individually, with various combinations of these materials, and finally, with all materials in the cabin. The data include information obtained from approximately 160 locations inside the fuselage.

  16. Prediction of light aircraft interior sound pressure level from the measured sound power flowing in to the cabin

    NASA Technical Reports Server (NTRS)

    Atwal, Mahabir S.; Heitman, Karen E.; Crocker, Malcolm J.

    1986-01-01

    The validity of the room equation of Crocker and Price (1982) for predicting the cabin interior sound pressure level was experimentally tested using a specially constructed setup for simultaneous measurements of transmitted sound intensity and interior sound pressure levels. Using measured values of the reverberation time and transmitted intensities, the equation was used to predict the space-averaged interior sound pressure level for three different fuselage conditions. The general agreement between the room equation and experimental test data is considered good enough for this equation to be used for preliminary design studies.

  17. Estimation of absorption of aromatic hydrocarbons diffusing from interior materials in automobile cabins by inhalation toxicokinetic analysis in rats.

    PubMed

    Yoshida, Toshiaki

    2010-08-01

    Aromatic hydrocarbons, as well as aliphatic hydrocarbons, diffusing from interior materials in automotive cabins are the most common compounds contributing to interior air pollution. In this study, the amounts of seven selected aromatic hydrocarbons absorbed by a car driver were estimated by evaluating their inhalation toxicokinetics in rats. Measured amounts of these substances were injected into a closed chamber system containing a rat, and the concentration changes in the chamber were examined. The toxicokinetics of the substances were evaluated on the basis of the concentration-time course using a nonlinear compartment model. The amounts absorbed in humans at actual concentrations in automobile cabins without ventilation were extrapolated from the results obtained from rats. The absorbed amounts estimated for a driver during a 2 h drive were as follows (per 60 kg of human body weight): 30 microg for toluene (interior median concentration, 40 microg m(-3) in our previous study), 10 microg for ethylbenzene (12 microg m(-3)), 6 microg for o-xylene (10 microg m(-3)), 8 microg for m-xylene (11 microg m(-3)), 9 microg for p-xylene (11 microg m(-3)), 11 microg for styrene (11 microg m(-3)) and 27 microg for 1,2,4-trimethylbenzene (24 microg m(-3)). Similarly, in a cabin where air pollution was marked, the absorbed amount of styrene (654 microg for 2 h in a cabin with an interior maximum concentration of 675 microg m(-3)) was estimated to be much higher than those of other substances. This amount (654 microg) was approximately 1.5 times the tolerable daily intake of styrene (7.7 microg kg(-1) per day) recommended by the World Health Organization. PMID:20809541

  18. Aircraft gas turbine materials and processes.

    PubMed

    Kear, B H; Thompson, E R

    1980-05-23

    Materials and processing innovations that have been incorporated into the manufacture of critical components for high-performance aircraft gas turbine engines are described. The materials of interest are the nickel- and cobalt-base superalloys for turbine and burner sections of the engine, and titanium alloys and composites for compressor and fan sections of the engine. Advanced processing methods considered include directional solidification, hot isostatic pressing, superplastic foring, directional recrystallization, and diffusion brazing. Future trends in gas turbine technology are discussed in terms of materials availability, substitution, and further advances in air-cooled hardware. PMID:17772808

  19. Aircraft gas turbine materials and processes.

    PubMed

    Kear, B H; Thompson, E R

    1980-05-23

    Materials and processing innovations that have been incorporated into the manufacture of critical components for high-performance aircraft gas turbine engines are described. The materials of interest are the nickel- and cobalt-base superalloys for turbine and burner sections of the engine, and titanium alloys and composites for compressor and fan sections of the engine. Advanced processing methods considered include directional solidification, hot isostatic pressing, superplastic foring, directional recrystallization, and diffusion brazing. Future trends in gas turbine technology are discussed in terms of materials availability, substitution, and further advances in air-cooled hardware.

  20. A new laser vibrometry-based 2D selective intensity method for source identification in reverberant fields: part II. Application to an aircraft cabin

    NASA Astrophysics Data System (ADS)

    Revel, G. M.; Martarelli, M.; Chiariotti, P.

    2010-07-01

    The selective intensity technique is a powerful tool for the localization of acoustic sources and for the identification of the structural contribution to the acoustic emission. In practice, the selective intensity method is based on simultaneous measurements of acoustic intensity, by means of a couple of matched microphones, and structural vibration of the emitting object. In this paper high spatial density multi-point vibration data, acquired by using a scanning laser Doppler vibrometer, have been used for the first time. Therefore, by applying the selective intensity algorithm, the contribution of a large number of structural sources to the acoustic field radiated by the vibrating object can be estimated. The selective intensity represents the distribution of the acoustic monopole sources on the emitting surface, as if each monopole acted separately from the others. This innovative selective intensity approach can be very helpful when the measurement is performed on large panels in highly reverberating environments, such as aircraft cabins. In this case the separation of the direct acoustic field (radiated by the vibrating panels of the fuselage) and the reverberant one is difficult by traditional techniques. The work shown in this paper is the application of part of the results of the European project CREDO (Cabin Noise Reduction by Experimental and Numerical Design Optimization) carried out within the framework of the EU. Therefore the aim of this paper is to illustrate a real application of the method to the interior acoustic characterization of an Alenia Aeronautica ATR42 ground test facility, Alenia Aeronautica being a partner of the CREDO project.

  1. Noise control mechanisms of inside aircraft

    NASA Astrophysics Data System (ADS)

    Zverev, A. Ya.

    2016-07-01

    World trends in the development of methods and approaches to noise reduction in aircraft cabins are reviewed. The paper discusses the mechanisms of passive and active noise and vibration control, application of "smart" and innovative materials, new approaches to creating all fuselage-design elements, and other promising directions of noise control inside aircraft.

  2. Materials Aspects of Turboelectric Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.

    2009-01-01

    The turboelectric distributed propulsion approach for aircraft makes a contribution to all four "corners" of NASA s Subsonic Fixed Wing trade space, reducing fuel burn, noise, emissions and field length. To achieve the system performance required for the turboelectric approach, a number of advances in materials and structures must occur. These range from improved superconducting composites to structural composites for support windings in superconducting motors at cryogenic temperatures. The rationale for turboelectric distributed propulsion and the materials research and development opportunities that it may offer are outlined.

  3. Viper cabin-fuselage structural design concept with engine installation and wing structural design

    NASA Technical Reports Server (NTRS)

    Marchesseault, B.; Carr, D.; Mccorkle, T.; Stevens, C.; Turner, D.

    1993-01-01

    This report describes the process and considerations in designing the cabin, nose, drive shaft, and wing assemblies for the 'Viper' concept aircraft. Interfaces of these assemblies, as well as interfaces with the sections of the aircraft aft of the cabin, are also discussed. The results of the design process are included. The goal of this project is to provide a structural design which complies with FAR 23 requirements regarding occupant safety, emergency landing loads, and maneuvering loads. The design must also address the interfaces of the various systems in the cabin, nose, and wing, including the drive shaft, venting, vacuum, electrical, fuel, and control systems. Interfaces between the cabin assembly and the wing carrythrough and empennage assemblies were required, as well. In the design of the wing assemblies, consistency with the existing cabin design was required. The major areas considered in this report are materials and construction, loading, maintenance, environmental considerations, wing assembly fatigue, and weight. The first three areas are developed separately for the nose, cabin, drive shaft, and wing assemblies, while the last three are discussed for the entire design. For each assembly, loading calculations were performed to determine the proper sizing of major load carrying components. Table 1.0 lists the resulting margins of safety for these key components, along with the types of the loads involved, and the page number upon which they are discussed.

  4. Cabin air quality: an overview.

    PubMed

    Rayman, Russell B

    2002-03-01

    In recent years, there have been increasing complaints from cockpit crew, cabin crew, and passengers that the cabin air quality of commercial aircraft is deficient. A myriad of complaints including headache, fatigue, fever, and respiratory difficulties among many others have been registered, particularly by flight attendants on long-haul routes. There is also much concern today regarding the transmission of contagious disease inflight, particularly tuberculosis. The unanswered question is whether these complaints are really due to poor cabin air quality or to other factors inherent intlight such as lowered barometric pressure, hypoxia, low humidity, circadian dysynchrony, work/rest cycles, vibration, etc. This paper will review some aspects relevant to cabin air quality such as volatile organic compounds (VOCs), carbon dioxide (CO2), carbon monoxide (CO), ozone (O3), particulates, and microorganisms, as well as the cabin ventilation system, to discern possible causes and effects of illness contracted inflight. The paper will conclude with recommendations on how the issue of cabin air quality may be resolved.

  5. Consideration of Materials for Aircraft Brakes

    NASA Technical Reports Server (NTRS)

    Peterson, M. B.; Ho, T.

    1972-01-01

    An exploratory investigation was conducted concerning materials and their properties for use in aircraft brakes. Primary consideration was given to the heat dissipation and the frictional behavior of materials. Used brake pads and rotors were analyzed as part of the investigation. A simple analysis was conducted in order to determine the most significant factors which affect surface temperatures. It was found that where size and weight restrictions are necessary, the specific heat of the material, and maintaining uniform contact area are the most important factors. A criterion was suggested for optimum sizing of the brake disks. Bench friction tests were run with brake materials. It was found that there is considerable friction variation due to the formation and removal of surface oxide films. Other causes of friction variations are surface softening and melting. The friction behavior at high temperature was found to be more characteristic of the steel surface rather than the copper brake material. It is concluded that improved brake materials are feasible.

  6. Ultrasonic cold forming of aircraft sheet materials

    NASA Astrophysics Data System (ADS)

    Devine, J.; Krause, P. C.

    1981-01-01

    Ultrasonic forming was investigated as a means for shaping aircraft sheet materials, including titanium 6Al-4V alloy, nickel, and stainless steel AM355-CRT, into a helicopter rotor blade nosecap contour. Equipment for static forming of small coupons consisted of a modified 4000 watt ultrasonic spot welder provided with specially designed punch and die sets. The titanium alloy was successfully formed to a 60 degree angle in one step with ultrasonics, but invariably cracked under static force alone. Nickel had a low enough yield strength that it could be successfully formed either with or without ultrasonics. Insufficient ultrasonic power was available to produce beneficial effect with the high-strength steel. From analogy with commercially used ultrasonic tube drawing, it was postulated that dynamic forming of long lengths of the nosecap geometry could be achieved with an ultrasonic system mounted on a draw bench. It was recommended that the ultrasonic technique be considered for forming other aircraft sheet geometries, particularly involving titanium alloy.

  7. On the reverse flow ceiling jet in pool fire-ventilation crossflow interactions in a simulated aircraft cabin interior

    NASA Technical Reports Server (NTRS)

    Kwack, E. Y.; Bankston, C. P.; Shakkottai, P.; Back, L. H.

    1989-01-01

    The behavior of the reverse flow ceiling jet against the ventilation flow from 0.58 to 0.87 m/s was investigated in a 1/3 scale model of a wide body aircraft interior. For all tests, strong reverse-flow ceiling jets of hot gases were detected well upstream of the fire. Both thicknesses of the reverse-flow ceiling jet and the smoke layer increased with the fire-crossflow parameter. The thickness of the smoke layer where the smoke flows along the main flow below the reverse-flow ceiling jet was almost twice that of the reverse-flow ceiling jet. Detailed spatial and time-varying temperatures of the gas in the test section were measured, and velocity profiles were also measured using a temperature compensated hot film.

  8. Study of materials performance model for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Leary, K.; Skratt, J.

    1980-01-01

    A demonstration version of an aircraft interior materials computer data library was developed and contains information on selected materials applicable to aircraft seats and wall panels, including materials for the following: panel face sheets, bond plies, honeycomb, foam, decorative film systems, seat cushions, adhesives, cushion reinforcements, fire blocking layers, slipcovers, decorative fabrics and thermoplastic parts. The information obtained for each material pertains to the material's performance in a fire scenario, selected material properties and several measures of processability.

  9. Venous gas bubbles while flying with cabin altitudes of airliners or general aviation aircraft 3 hours after diving.

    PubMed

    Balldin, U I

    1980-07-01

    Decompression venous gas bubbles were detected with the precordial Doppler utrasound technique in humans at simulated altitudes of 1,000-3,000 m 3 h after no-stage decompression dives to 15 or 39 m. Bubbles were detected at 3,000 m in a total of 60% of the subjects: in 90% after the 100-min shallow dives to 15 m with some bubbles present in the first minutes (mean onset 12 min), and in only 30% after the 10-min deeper dives to 39 m with later appearances of bubbles (mean onset 28 min). At both 2,000 and 1,000 m bubbles could also be detected, sometimes in the first minutes. The risk of decompression sickness must be considered high with the amount of gas bubbles found, even though only uncertain symptoms appeared in this study. Thus, a safe interval between ordinary SCUBA-diving and flying in airliners or general aviation aircraft seems to be more than 3 h.

  10. Relative toxicity testing of spacecraft materials. 2: Aircraft materials

    NASA Technical Reports Server (NTRS)

    Lawrence, W. H.

    1980-01-01

    The relative toxicity of thermodegradation (pyrolysis/combustion) products of aircraft materials was studied. Two approaches were taken to assess the biological activity of the pyrolysis/combustion products of these materials: (1) determine the acute lethality to rats from inhalation of these pyrolysates and (2) examine the tendency for sublethal exposure to the pyrolysates to disrupt behavioral (shock avoidance) performance of exposed rats. The ralative importance of lethality vs. behavioral effects in selection of a material may be dictated by whether or not individuals potentially exposed to such products, would have an opportunity to escape if they were behaviorally capable of doing so. If so, the second parameter would assume greater importance, but if not the first parameter may be of much greater importance in selecting materials.

  11. A study of the effects on mice of smoke and gases from controlled fires in simulated aircraft cabins

    NASA Technical Reports Server (NTRS)

    Moreci, A. P.; Furst, A.; Parker, J. A.

    1975-01-01

    Male Swiss albino mice were exposed to the pyrolysis products of two fire-retardant materials, a chlorinated aromatic polyamide and a copolymer of vinylidine fluoride and hexafluoropropene. Comparison tests were made with cotton and a 50/50 cotton-polyester composite. In addition, tests were conducted under the presence of CO, and mice were injected intraperitoneally or intramuscularly with aqueous solutions containing dissolved effluents from the pyrolysis of cotton or of chlorinated aromatic polyamide. Results indicate that unique thermodecomposition products of the polymeric materials are more toxic to mice than are other products from cotton under similar controlled conditions.

  12. Study of aircraft crashworthiness for fire protection

    NASA Technical Reports Server (NTRS)

    Cominsky, A.

    1981-01-01

    Impact-survivable postcrash fire accidents were surveyed. The data base developed includes foreign and domestic accidents involving airlines and jet aircraft. The emphasis was placed on domestic accidents, airlines, and jet aircraft due principally to availability of information. Only transport category aircraft in commercial service designed under FAR Part 25 were considered. A matrix was prepared to show the relationships between the accident characteristics and the fire fatalities. Typical postcrash fire scenaries were identified. Safety concepts were developed for three engineering categories: cabin interiors - cabin subsystems; power plant - engines and fuel systems; and structural mechanics - primary and secondary structures. The parameters identified for concept evaluation are cost, effectiveness, and societal concerns. Three concepts were selected for design definition and cost and effectiveness analysis: improved fire-resistant seat materials; anti-misting kerosene; and additional cabin emergency exits.

  13. Fire-resistant materials for aircraft passenger seat construction

    NASA Technical Reports Server (NTRS)

    Fewell, L. L.; Tesoro, G. C.; Moussa, A.; Kourtides, D. A.

    1979-01-01

    The thermal response characteristics of fabric and fabric-foam assemblies are described. The various aspects of the ignition behavior of contemporary aircraft passenger seat upholstery fabric materials relative to fabric materials made from thermally stable polymers are evaluated. The role of the polymeric foam backing on the thermal response of the fabric-foam assembly is also ascertained. The optimum utilization of improved fire-resistant fabric and foam materials in the construction of aircraft passenger seats is suggested.

  14. Advanced organic composite materials for aircraft structures: Future program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  15. Cabin Pressure Monitors Notify Pilots to Save Lives

    NASA Technical Reports Server (NTRS)

    2015-01-01

    In 2013, San Diego-based Aviation Technology Inc. obtained an exclusive license for the technology behind the cabin pressure monitor invented at Kennedy Space Center and built its own version of the product. The Alt Alert is designed to save lives by alerting aircraft pilots and crews when cabin pressure becomes dangerously low.

  16. 14 CFR 23.571 - Metallic pressurized cabin structures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Metallic pressurized cabin structures. 23... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Fatigue Evaluation § 23.571 Metallic pressurized cabin structures. For normal, utility, and...

  17. 14 CFR 23.571 - Metallic pressurized cabin structures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Metallic pressurized cabin structures. 23... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Fatigue Evaluation § 23.571 Metallic pressurized cabin structures. For normal, utility, and...

  18. Discover Presidential Log Cabins. Teacher's Discussion Guide.

    ERIC Educational Resources Information Center

    National Park Service (Dept. of Interior), Washington, DC.

    Discover Presidential Log Cabins is a set of materials designed to help educate 6-8 grade students about the significance of three log cabin sites occupied by George Washington, Ulysses Grant, Abraham Lincoln, and Theodore Roosevelt. This teacher's discussion guide is intended for use as part of a larger, comprehensive social studies program, and…

  19. Low-Cost Composite Materials and Structures for Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Deo, Ravi B.; Starnes, James H., Jr.; Holzwarth, Richard C.

    2003-01-01

    A survey of current applications of composite materials and structures in military, transport and General Aviation aircraft is presented to assess the maturity of composites technology, and the payoffs realized. The results of the survey show that performance requirements and the potential to reduce life cycle costs for military aircraft and direct operating costs for transport aircraft are the main reasons for the selection of composite materials for current aircraft applications. Initial acquisition costs of composite airframe components are affected by high material costs and complex certification tests which appear to discourage the widespread use of composite materials for aircraft applications. Material suppliers have performed very well to date in developing resin matrix and fiber systems for improved mechanical, durability and damage tolerance performance. The next challenge for material suppliers is to reduce material costs and to develop materials that are suitable for simplified and inexpensive manufacturing processes. The focus of airframe manufacturers should be on the development of structural designs that reduce assembly costs by the use of large-scale integration of airframe components with unitized structures and manufacturing processes that minimize excessive manual labor.

  20. Advanced materials research for long-haul aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.; Blankenship, C. P.

    1978-01-01

    The status of research efforts to apply low to intermediate temperature composite materials and advanced high temperature materials to engine components is reviewed. Emerging materials technologies and their potential benefits to aircraft gas turbines were emphasized. The problems were identified, and the general state of the technology for near term use was assessed.

  1. Evaluation of materials and design modifications for aircraft brakes

    NASA Technical Reports Server (NTRS)

    Ho, T. L.; Kennedy, F. E.; Peterson, M. B.

    1975-01-01

    A test program is described which was carried out to evaluate several proposed design modifications and several high-temperature friction materials for use in aircraft disk brakes. The evaluation program was carried out on a specially built test apparatus utilizing a disk brake and wheel half from a small het aircraft. The apparatus enabled control of brake pressure, velocity, and braking time. Tests were run under both constant and variable velocity conditions and covered a kinetic energy range similar to that encountered in aircraft brake service. The results of the design evaluation program showed that some improvement in brake performance can be realized by making design changes in the components of the brake containing friction material. The materials evaluation showed that two friction materials show potential for use in aircraft disk brakes. One of the materials is a nickel-based sintered composite, while the other is a molybdenum-based material. Both materials show much lower wear rates than conventional copper-based materials and are better able to withstand the high temperatures encountered during braking. Additional materials improvement is necessary since both materials show a significant negative slope of the friction-velocity curve at low velocities.

  2. Status of candidate materials for full-scale tests in the 737 fuselage

    NASA Technical Reports Server (NTRS)

    Supkis, D.

    1979-01-01

    The test program has the objectives to: (1) increase passenger evacuation time to a minimum of five minutes from commercial aircraft in case of a fire; (2) prevent an external fire from entering closed cabins for five minutes by using fire barrier materials in the exterior wall; (3) demonstrate that a closed cabin will not reach 400 F; and (4) prove that a fire near a cabin opening will not propagate through the cabin for a minimum of five minutes. The materials status is outlined for seat cushions, upholstery and associated seat materials, wall and ceiling panels, floor panels, carpet and carpet underlay, windows, cargo bay liners, insulation bagging, and thermal acoustical insulation.

  3. Effects of commercial aircraft operating environment on composite materials

    NASA Technical Reports Server (NTRS)

    Chapman, A. J.; Hoffman, D. J.; Hodges, W. T.

    1980-01-01

    Long term effects of commercial aircraft operating environment on the properties and durability of composite materials are being systematically explored. Composite specimens configured for various mechanical property tests are exposed to environmental conditions on aircraft in scheduled airline service, on racks at major airports, and to controlled environmental conditions in the laboratory. Results of tests following these exposures will identify critical parameters affecting composite durability, and correlation of the data will aid in developing methods for predicting durability. Interim results of these studies show that mass change of composite specimens on commercial aircraft depends upon the regional climate and season, and that mass loss from composite surfaces due to ultraviolet radiation can be largely prevented by aircraft paint.

  4. Material Challenges and Opportunities for Commercial Electric Aircraft

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2014-01-01

    Significant reduction in carbon dioxide emission for future air transportation system will require adoption of electric propulsion system and more electric architectures. Various options for aircraft electric propulsion include hybrid electric, turboelectric, and full electric system. Realization of electric propulsion system for commercial aircraft applications will require significant increases in power density of electric motors and energy density of energy storage system, such as the batteries and fuel cells. In addition, transmission of MW of power in the aircraft will require high voltage power transmission system to reduce the weight of the power transmission system. Finally, there will be significant thermal management challenges. Significant advances in material technologies will be required to meet these challenges. Technologies of interest include materials with higher electrical conductivity than Cu, high thermal conductivity materials, and lightweight electrically insulating materials with high breakdown voltage, high temperature magnets, advanced battery and fuel cell materials, and multifunctional materials. The presentation will include various challenges for commercial electric aircraft and provide an overview of material improvements that will be required to meet these challenges.

  5. Materials research for aircraft fire safety

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Bricker, R. W.

    1976-01-01

    The thermochemical and flammability characteristics of two polymeric composites currently in use and seven others being considered for use as aircraft interior panels are described. The properties studied included: (1) limiting oxygen index of the composite constituents; (2) fire containment capability of the composite; (3) smoke evolution from the composite; (4) thermogravimetric analysis; (5) composition of the volatile products of thermal degradation; and (6) relative toxicity of the volatile products of pyrolysis. The performance of high-temperature laminating resins such as bismaleimides is compared with the performance of phenolics and epoxies. The relationship of increased fire safety with the use of polymers with high anaerobic char yield is shown. Processing parameters of the state-of-the-art and the advanced bismaleimide composites are detailed.

  6. Study to develop improved fire resistant aircraft passenger seat materials

    NASA Technical Reports Server (NTRS)

    Duskin, F. E.; Schutter, K. J.; Sieth, H. H.; Trabold, E. L.

    1980-01-01

    The Phase 3 study of the NASA 'Improved Fire Resistant Aircraft Seat Materials' involved fire tests of improved materials in multilayered combinations representative of cushion configurations. Tests were conducted to determine their thermal, smoke, and fire resistance characteristics. Additionally, a 'Design Guideline' for Fire Resistant Passenger Seats was written outlining general seat design considerations. Finally, a three-abreast 'Tourist Class' passenger seat assembly fabricated from the most advanced fire-resistant materials was delivered.

  7. Guidelines for composite materials research related to general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Dow, N. F.; Humphreys, E. A.; Rosen, B. W.

    1983-01-01

    Guidelines for research on composite materials directed toward the improvement of all aspects of their applicability for general aviation aircraft were developed from extensive studies of their performance, manufacturability, and cost effectiveness. Specific areas for research and for manufacturing development were identified and evaluated. Inputs developed from visits to manufacturers were used in part to guide these evaluations, particularly in the area of cost effectiveness. Throughout the emphasis was to direct the research toward the requirements of general aviation aircraft, for which relatively low load intensities are encountered, economy of production is a prime requirement, and yet performance still commands a premium. A number of implications regarding further directions for developments in composites to meet these requirements also emerged from the studies. Chief among these is the need for an integrated (computer program) aerodynamic/structures approach to aircraft design.

  8. New materials for manned spacecraft, aircraft, and other applications

    NASA Technical Reports Server (NTRS)

    Radnofsky, M. I.

    1971-01-01

    The application of fire resistant spacecraft materials to the interior design of commercial aircraft is discussed. The use of such materials for curtains, upholstery, carpets, decorative panels, cabinets, paper products, and oxygen lines is examined. It is concluded that the highest degree of nonflammability can be obtained with inorganic fibers such as asbestos and fiber glass. The application of various chemical compounds for specific purposes is presented.

  9. Development of aircraft brake materials. [evaluation of metal and ceramic materials in sliding tests simulation of aircraft braking

    NASA Technical Reports Server (NTRS)

    Ho, T. L.; Peterson, M. B.

    1974-01-01

    The requirements of brake materials were outlined and a survey made to select materials to meet the needs of high temperature brakes. A number of metals and ceramic materials were selected and evaluated in sliding tests which simulated aircraft braking. Nickel, molybdenum tungsten, Zr02, high temperature cements and carbons were tested. Additives were then incorporated into these materials to optimize their wear or strength behavior with particular emphasis on nickel and molybdenum base materials and a high temperature potassium silicate cement. Optimum materials were developed which improved wear behavior over conventional brake materials in the simulated test. The best materials are a nickel, aluminum oxide, lead tungstate composition containing graphite or molybdenum disulphite; a molybdenum base material containing LPA100 (an intermetallic compound of cobalt, molybdenum, and silicon); and a carbon material (P5).

  10. Cabin air filtration: helping to protect occupants from infectious diseases.

    PubMed

    Bull, Karen

    2008-05-01

    Presentation made at the Aviation Health Conference, London, November 2006. In modern aircraft, the air in the cabin is provided by the environmental control system (ECS) and consists of approximately 50% outside air (engine 'bleed air') mixed with approximately 50% filtered, recirculated air. This paper describes how modern aircraft cabin air filters are effective at removing airborne particulate contamination (such as bacteria and viruses) from the recirculated air system. It also describes one of the technological solutions that is currently available to treat any odours or volatile organic compounds (VOCs) that may be present in the aircraft ECS. PMID:18486070

  11. Release-rate calorimetry of multilayered materials for aircraft seats

    NASA Technical Reports Server (NTRS)

    Fewell, L. L.; Parker, J. A.; Duskin, F.; Speith, H.; Trabold, E.

    1980-01-01

    Multilayered samples of contemporary and improved fire-resistant aircraft seat materials were evaluated for their rates of heat release and smoke generation. Top layers with glass-fiber block cushion were evaluated to determine which materials, based on their minimum contributions to the total heat release of the multilayered assembly, may be added or deleted. The smoke and heat release rates of multilayered seat materials were then measured at heat fluxes of 1.5 and 3.5 W/cm2. Abrasion tests were conducted on the decorative fabric covering and slip sheet to ascertain service life and compatibility of layers

  12. Development of fire resistant, nontoxic aircraft interior materials

    NASA Technical Reports Server (NTRS)

    Haley, G.; Silverman, B.; Tajima, Y.

    1976-01-01

    All available newly developed nonmetallic polymers were examined for possible usage in developing fire resistant, nontoxic nonmetallic parts or assemblies for aircraft interiors. Specifically, feasibility for the development of clear films for new decorative laminates, compression moldings, injection molded parts, thermoformed plastic parts, and flexible foams were given primary considerations. Preliminary data on the flame resistant characteristics of the materials were obtained. Preliminary toxicity data were generated from samples of materials submitted from the contractor. Preliminary data on the physical characteristics of various thermoplastic materials to be considered for either compression molded, injection molded, or thermoformed parts were obtained.

  13. Environmental exposure effects on composite materials for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, Daniel J.; Bielawski, William J.

    1991-01-01

    A study was conducted to determine the effects of long term flight and ground exposure on three commercially available graphite-epoxy material systems: T300/5208, T300/5209, and T300/934. Sets of specimens were exposed on commercial aircraft and ground racks for 1, 2, 3, 5, and 10 years. Inflight specimen sites included both the interior and exterior of aircraft based in Hawaii, Texas, and New Zealand. Ground racks were located at NASA-Dryden and the above mentioned states. Similar specimens were exposed to controlled lab conditions for up to 2 years. After each exposure, specimens were tested for residual strength and a dryout procedure was used to measure moisture content. Both room and high temperature residual strengths were measured and expressed as a pct. of the unexposed strength. Lab exposures included the effects of time alone, moisture, time on moist specimens, weatherometer, and simulated ground-air-ground cycling. Residual strengths of the long term specimens were compared with residual strengths of the lab specimens. Strength retention depended on the exposure condition and the material system. Results showed that composite materials can be successfully used on commercial aircraft if environmental effects are considered.

  14. Environmental exposure effects on composite materials for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, D. J.

    1978-01-01

    Activities reported include completion of the program design tasks, resolution of a high fiber volume problem and resumption of specimen fabrication, fixture fabrication, and progress on the analysis methodology and definition of the typical aircraft environment. Program design activities including test specimens, specimen holding fixtures, flap-track fairing tailcones, and ground exposure racks were completed. The problem experienced in obtaining acceptable fiber volume fraction results on two of the selected graphite epoxy material systems was resolved with an alteration to the bagging procedure called out in BAC 5562. The revised bagging procedure, involving lower numbers of bleeder plies, produces acceptable results. All required laminates for the contract have now been laid up and cured. Progress in the area of analysis methodology has been centered about definition of the environment that a commercial transport aircraft undergoes. The selected methodology is analagous to fatigue life assessment.

  15. Aerospace toxicology overview: aerial application and cabin air quality.

    PubMed

    Chaturvedi, Arvind K

    2011-01-01

    Aerospace toxicology is a rather recent development and is closely related to aerospace medicine. Aerospace toxicology can be defined as a field of study designed to address the adverse effects of medications, chemicals, and contaminants on humans who fly within or outside the atmosphere in aviation or on space flights. The environment extending above and beyond the surface of the Earth is referred to as aerospace. The term aviation is frequently used interchangeably with aerospace. The focus of the literature review performed to prepare this paper was on aerospace toxicology-related subject matters, aerial application and aircraft cabin air quality. Among the important topics addressed are the following: · Aerial applications of agricultural chemicals, pesticidal toxicity, and exposures to aerially applied mixtures of chemicals and their associated formulating solvents/surfactants The safety of aerially encountered chemicals and the bioanalytical methods used to monitor exposures to some of them · The presence of fumes and smoke, as well as other contaminants that may generally be present in aircraft/space vehicle cabin air · And importantly, the toxic effects of aerially encountered contaminants, with emphasis on the degradation products of oils, fluids, and lubricants used in aircraft, and finally · Analytical methods used for monitoring human exposure to CO and HCN are addressed in the review, as are the signs and symptoms associated with exposures to these combustion gases. Although many agricultural chemical monitoring studies have been published, few have dealt with the occurrence of such chemicals in aircraft cabin air. However, agricultural chemicals do appear in cabin air; indeed, attempts have been made to establish maximum allowable concentrations for several of the more potentially toxic ones that are found in aircraft cabin air. In this article, I emphasize the need for precautionary measures to be taken to minimize exposures to aerially

  16. Aerospace toxicology overview: aerial application and cabin air quality.

    PubMed

    Chaturvedi, Arvind K

    2011-01-01

    Aerospace toxicology is a rather recent development and is closely related to aerospace medicine. Aerospace toxicology can be defined as a field of study designed to address the adverse effects of medications, chemicals, and contaminants on humans who fly within or outside the atmosphere in aviation or on space flights. The environment extending above and beyond the surface of the Earth is referred to as aerospace. The term aviation is frequently used interchangeably with aerospace. The focus of the literature review performed to prepare this paper was on aerospace toxicology-related subject matters, aerial application and aircraft cabin air quality. Among the important topics addressed are the following: · Aerial applications of agricultural chemicals, pesticidal toxicity, and exposures to aerially applied mixtures of chemicals and their associated formulating solvents/surfactants The safety of aerially encountered chemicals and the bioanalytical methods used to monitor exposures to some of them · The presence of fumes and smoke, as well as other contaminants that may generally be present in aircraft/space vehicle cabin air · And importantly, the toxic effects of aerially encountered contaminants, with emphasis on the degradation products of oils, fluids, and lubricants used in aircraft, and finally · Analytical methods used for monitoring human exposure to CO and HCN are addressed in the review, as are the signs and symptoms associated with exposures to these combustion gases. Although many agricultural chemical monitoring studies have been published, few have dealt with the occurrence of such chemicals in aircraft cabin air. However, agricultural chemicals do appear in cabin air; indeed, attempts have been made to establish maximum allowable concentrations for several of the more potentially toxic ones that are found in aircraft cabin air. In this article, I emphasize the need for precautionary measures to be taken to minimize exposures to aerially

  17. Release-rate calorimetry of multilayered materials for aircraft seats

    NASA Technical Reports Server (NTRS)

    Fewell, L. L.; Parker, J. A.; Duskin, F.; Spieth, H.; Trabold, E.

    1980-01-01

    Multilayered samples of contemporary and improved fire-resistant aircraft seat materials (foam cushion, decorative fabric, slip sheet, fire-blocking layer, and cushion-reinforcement layer) were evaluated for their rates of heat release and smoke generation. Top layers (decorative fabric, slip sheet, fire blocking, and cushion reinforcement) with glass-fiber block cushion were evaluated to determine which materials, based on their minimum contributions to the total heat release of the multilayered assembly, may be added or deleted. Top layers exhibiting desirable burning profiles were combined with foam cushion materials. The smoke and heat-release rate of multilayered seat materials were then measured at heat fluxes of 1.5 and 3.5 W/sq cm. Choices of contact and silicon adhesives for bonding multilayered assemblies were based on flammability, burn and smoke generation, animal toxicity tests, and thermal gravimetric analysis.

  18. Vibration attenuation of aircraft structures utilizing active materials

    NASA Astrophysics Data System (ADS)

    Agnes, Gregory S.; Whitehouse, Stephen R.; Mackaman, John R.

    1993-09-01

    The need for active vibration control for airborne laser systems was demonstrated during the late 1970s by the Airborne Laser Laboratory. Other possible applications include sonic fatigue alleviation, reduction of buffet induced fatigue, vibration control for embedded antennae, and active aeroelastic control. The purpose of this paper is to present an overview of active vibration control technology and its application to aircraft. Classification of classic aircraft vibration problems and currently available solutions are used to provide a framework for the study. Current solutions are classified as being either passive or active and by the methodology (modal modification or addition) used to reduce vibration. Possible applications for this technology in aircraft vibration control are presented within this framework to demonstrate the increased versatility active materials technologies provide the designer. An in- depth study of an active pylon to reduce wing/store vibration is presented as an example. Finally, perceived gaps in the existing technology base are identified and both on-going and future research plans in these areas are discussed.

  19. Lightning protection technology for small general aviation composite material aircraft

    NASA Technical Reports Server (NTRS)

    Plumer, J. A.; Setzer, T. E.; Siddiqi, S.

    1993-01-01

    An on going NASA (Small Business Innovative Research) SBIR Phase II design and development program will produce the first lightning protected, fiberglass, General Aviation aircraft that is available as a kit. The results obtained so far in development testing of typical components of the aircraft kit, such as the wing and fuselage panels indicate that the lightning protection design methodology and materials chosen are capable of protecting such small composite airframes from lightning puncture and structural damage associated with severe threat lightning strikes. The primary objective of the program has been to develop a lightening protection design for full scale test airframe and verify its adequacy with full scale laboratory testing, thus enabling production and sale of owner-built, lightning-protected, Stoddard-Hamilton Aircraft, Inc. Glasair II airplanes. A second objective has been to provide lightning protection design guidelines for the General Aviation industry, and to enable these airplanes to meet lightening protection requirements for certification of small airplanes. This paper describes the protection design approaches and development testing results obtained thus far in the program, together with design methodology which can achieve the design goals listed above. The presentation of this paper will also include results of some of the full scale verification tests, which will have been completed by the time of this conference.

  20. Short-crack growth behaviour in various aircraft materials

    NASA Technical Reports Server (NTRS)

    Edwards, P. R. (Compiler); Newman, James C., Jr. (Compiler)

    1990-01-01

    The results of the first phase of an AGARD Cooperative Test Program on the behavior and growth of short fatigue cracks are reviewed. The establishment of a common test method, means of data collection/analysis and crack growth modeling in an aircraft alloy AA 2024-T3 are described. The second phase allowed testing of various materials and loading conditions. The results of this second phase are described. All materials exhibited a short-crack effect to some extent. The effect was much less evident in 4340 steel than in the other materials. For the aluminum, aluminum-lithium, and titanium alloys, short cracks grew at stress-intensity factor ranges lower, in some cases much lower, than the thresholds obtained from long crack tests. Several laboratories used the same crack growth model to analyze the growth of short cracks. Reasonable agreement was found between measured and predicted short-crack growth rates and fatigue lives.

  1. Composite structural materials. [fiber reinforced composites for aircraft structures

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

    1981-01-01

    Physical properties of fiber reinforced composites; structural concepts and analysis; manufacturing; reliability; and life prediction are subjects of research conducted to determine the long term integrity of composite aircraft structures under conditions pertinent to service use. Progress is reported in (1) characterizing homogeneity in composite materials; (2) developing methods for analyzing composite materials; (3) studying fatigue in composite materials; (4) determining the temperature and moisture effects on the mechanical properties of laminates; (5) numerically analyzing moisture effects; (6) numerically analyzing the micromechanics of composite fracture; (7) constructing the 727 elevator attachment rib; (8) developing the L-1011 engine drag strut (CAPCOMP 2 program); (9) analyzing mechanical joints in composites; (10) developing computer software; and (11) processing science and technology, with emphasis on the sailplane project.

  2. The Weathering of Aluminum Alloy Sheet Materials Used in Aircraft

    NASA Technical Reports Server (NTRS)

    Mutchler, Willard

    1935-01-01

    This report presents the results of an investigation of the corrosion of aluminum alloy sheet materials used in aircraft. It has for its purpose to study the causes of corrosion embrittlement in duralumin-type alloys and the development of methods for its elimination. The report contains results, obtained in an extensive series of weather-exposure tests, which reveal the extent to which the resistance of the materials to corrosion was affected by variable factors in their heat treatment and by the application of various surface protective coatings. The results indicate that the sheet materials are to be regarded as thoroughly reliable, from the standpoint of their permanence in service, provided proper precautions are taken to render them corrosion-resistant.

  3. Approach to estimation of absorption of aliphatic hydrocarbons diffusing from interior materials in an automobile cabin by inhalation toxicokinetic analysis in rats.

    PubMed

    Yoshida, Toshiaki

    2010-01-01

    The interior air of an automobile cabin has been demonstrated in our previous studies to be contaminated by high concentrations of a large variety of aliphatic hydrocarbons diffusing from the interior materials. In the present study, the amounts of seven selected aliphatic hydrocarbons absorbed by the car driver were estimated by evaluating their inhalation toxicokinetics in rats. Measured amounts of the substances were injected into a closed chamber system in which a rat had been placed, and the concentration changes in the chamber were examined. The toxicokinetics of the substances were evaluated based on concentration-time courses using a nonlinear compartment model. Their absorption amounts in humans at the levels of actual concentrations in the cabins without ventilation were extrapolated from the results found with the rats. The absorption amounts estimated for a driver during a 2 h drive were as follows: 6 microg/60 kg of human body weight for methylcyclopentane (interior concentration 23 microg/m(3) as median value in previous study), 5 microg for 2-methylpentane (36 microg/m(3)), 13 microg for n-hexane (65 microg/m(3)), 51 microg for n-heptane (150 microg/m(3)), 26 microg for 2,4-dimethylheptane (97 microg/m(3)), 17 microg for n-nonane (25 microg/m(3)) and 49 microg for n-decane (68 microg/m(3)). An inverse relationship was found between the exposure and absorption among the substances (e.g. between n-decane and 2,4-dimethylheptane). These findings suggest that not only the exposure concentrations but also the absorption amounts should be taken into account to evaluate the health effects of exposure to low concentrations of volatile compounds as environmental contaminants. PMID:19743389

  4. Testing of aircraft passenger seat cushion material, full scale. Data, volume 2

    NASA Technical Reports Server (NTRS)

    Schutter, K. J.; Gaume, J. G.; Duskin, F. E.

    1980-01-01

    Burn characteristics of presently used and proposed seat cushion materials and types of constructions were determined. Eight different seat cushion configurations were subjected to full scale burn tests. Each cushion configuration was tested twice for a total of 16 tests. Two different fire sources were used: Jet A-fuel for eight tests, and a radiant energy source with propane flame for eight tests. Data were recorded for smoke density, cushion temperatures, radiant heat flux, animal response to combustion products, rate of weight loss of test specimens, cabin temperature, and type and content of gas within the cabin. When compared to existing seat cushions, the test specimens incorporating a fire barrier and those fabricated from advanced materials, using improved construction methods, exhibited significantly greater fire resistance. Flammability comparison tests were conducted upon one fire blocking configuration and one polyimide configuration.

  5. 58. View of Writer's Cabin (or Three Pines Cabin) and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. View of Writer's Cabin (or Three Pines Cabin) and path looking from the southeast (similar to HALS no. LA-1-35) - Briarwood: The Caroline Dormon Nature Preserve, 216 Caroline Dormon Road, Saline, Bienville Parish, LA

  6. Technical evaluation of Russian aircraft stealth coating and structural materials

    SciTech Connect

    Gac, F.D.; Young, A.T. Jr.; Migliori, A.

    1996-10-01

    Treating aircraft, missiles, and ships with materials that absorb electromagnetic energy continues to be an important technique for reducing a vehicle`s radar cross section (RCS) and improving tis combat effectiveness and survivability. Work at the Russian Scientific Center for Applied Problems in Electrodynamics (SCAPE) has produced and experimentally validated an accurate predictor of the interaction of electromagnetic radiation with discontinuous composite materials consisting of magnetic and/or dielectric particles dispersed in a non-conductive matrix (i.e. percolation systems). The primary purpose of this project was to analyze rf-absorbing coatings and validate manufacturing processes associated with the Russian percolation system designs. An additional objective was to apply the percolation methodology toward a variety of civilian applications by transferring the technology to US industry.

  7. Environmental exposure effects on composite materials for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Gibbins, M. N.; Hoffman, D. J.

    1982-01-01

    The effects of environmental exposure on composite materials are studied. The environments considered are representative of those experienced by commercial jet aircraft. Initial results have been compiled for the following material systems: T300/5208, T300/5209 and T300/934. Specimens were exposed on the exterior and interior of Boeing 737 airplanes of three airlines, and to continuous ground level exposure at four locations. In addition specimens were exposed in the laboratory to conditions such as: simulated ground-air-ground, weatherometer, and moisture. Residual strength results are presented for specimens exposed for up to two years at three ground level exposure locations and on airplanes from two airlines. Test results are also given for specimens exposed to the laboratory simulated environments. Test results indicate that short beam shear strength is sensitive to environmental exposure and dependent on the level of absorbed moisture.

  8. Environmental exposure effects on composite materials for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Coggeshall, R. L.

    1985-01-01

    The effects of environmental exposure on composite materials are determined. The environments considered are representative of those experienced by commercial jet aircraft. Initial results have been compiled for the following material systems: T300/5208, T300/5209, and T300/934. Future results will include AS-1/3501-6 and Kevlar 49/F161-188. Specimens are exposed on the exterior and interior of 737 airplanes of three airlines, and to continuous ground-level exposure at four locations. In addition, specimens are exposed in the laboratory to conditions such as: simulated ground-air-ground, weatherometer, and moisture. Residual strength results are presented for specimens exposed for up to five years at five ground-level exposure locations and on airplanes from one airline.

  9. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  10. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  11. Fourth Aircraft Interior Noise Workshop

    NASA Technical Reports Server (NTRS)

    Stephens, David G. (Compiler)

    1992-01-01

    The fourth in a series of NASA/SAE Interior Noise Workshops was held on May 19 and 20, 1992. The theme of the workshop was new technology and applications for aircraft noise with emphasis on source noise prediction; cabin noise prediction; cabin noise control, including active and passive methods; and cabin interior noise procedures. This report is a compilation of the presentations made at the meeting which addressed the above issues.

  12. Propeller aircraft interior noise model

    NASA Technical Reports Server (NTRS)

    Pope, L. D.; Wilby, E. G.; Wilby, J. F.

    1984-01-01

    An analytical model was developed to predict the interior noise of propeller-driven aircraft. The fuselage model is that of a cylinder with a structurally-integral floor. The cabin sidewall is stiffened by stringers and ring frames, and the floor by longitudinal beams. The cabin interior is covered with a sidewall treatments consisting of layers of porous material and an impervious trim septum. Representation of the propeller pressure field is utilized as input data in the form of the propeller noise signature at a series of locations on a grid over the fuselage structure. Results obtained from the analytical model are compared with test data measured by NASA in a scale model cylindrical fuselage excited by a model propeller.

  13. KSC inventor tests cabin pressure monitor

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Jan Zysko (left) and Rich Mizell (right) test a Personal Cabin Pressure Altitude Monitor in an altitude chamber at Tyndall Air Force Base in Florida. Zysko invented the pager-sized monitor that alerts wearers of a potentially dangerous or deteriorating cabin pressure altitude condition, which can lead to life- threatening hypoxia. Zysko is chief of the KSC Spaceport Engineering and Technology directorate's data and electronic systems branch. Mizell is a Shuttle processing engineer. The monitor, which has drawn the interest of such organizations as the Federal Aviation Administration for use in commercial airliners and private aircraft, was originally designed to offer Space Shuttle and Space Station crew members added independent notification about any depressurization.

  14. Divisible cabin for a windmill

    SciTech Connect

    Van Degeer, P. M.

    1985-07-02

    A cabin for a windmill comprises inherently rigid, self-supporting, relatively disengageable parts. Cabin parts which occasionally have to be submitted for repair and/or maintenance work are removable from the windmill. During the repair and/or maintenance work a part similar to the removed part of the cabin can be easily installed.

  15. Cabin fire simulator lavatory tests

    NASA Technical Reports Server (NTRS)

    Schutter, K. J.; Klinck, D. M.

    1980-01-01

    All tests were conducted in the Douglas Cabin Fire Simulator under in-flight ventilation conditions. All tests were allowed to continue for a period of one hour. Data obtained during these tests included: heat flux and temperatures of the lavatory; cabin temperature variations; gas analyses for O2, CO2, CO, HF, HC1, and HCN; respiration and electrocardiogram data on instrumented animal subjects (rats) exposed in the cabin; and color motion pictures. All tests resulted in a survivable cabin condition; however, occupants of the cabin would have been subjected to noxious fumes.

  16. Aviation Maintenance Technology. General. G102 Fundamentals of Aircraft Maintenance. Instructor Material.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    These instructor materials for an aviation maintenance technology course contain four instructional modules. The modules cover the following topics: identifying basic components of aircraft, performing aircraft cleaning and corrosion control, interpreting blueprints and drawing sketches, identifying structural materials, and performing basic…

  17. 10 CFR 150.21 - Transportation of special nuclear material by aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Transportation of special nuclear material by aircraft. 150.21 Section 150.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Transportation of special nuclear material by aircraft. Except as specifically approved by the Commission...

  18. 10 CFR 150.21 - Transportation of special nuclear material by aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Transportation of special nuclear material by aircraft. 150.21 Section 150.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Transportation of special nuclear material by aircraft. Except as specifically approved by the Commission...

  19. 10 CFR 150.21 - Transportation of special nuclear material by aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Transportation of special nuclear material by aircraft. 150.21 Section 150.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Transportation of special nuclear material by aircraft. Except as specifically approved by the Commission...

  20. 10 CFR 150.21 - Transportation of special nuclear material by aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Transportation of special nuclear material by aircraft. 150.21 Section 150.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Transportation of special nuclear material by aircraft. Except as specifically approved by the Commission...

  1. 10 CFR 150.21 - Transportation of special nuclear material by aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Transportation of special nuclear material by aircraft. 150.21 Section 150.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Transportation of special nuclear material by aircraft. Except as specifically approved by the Commission...

  2. Vehicle Cabin Atmosphere Monitor

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara; Darrach, Muray

    2007-01-01

    Vehicle Cabin Atmosphere Monitor (VCAM) identifies gases that are present in minute quantities in the International Space Station (ISS) breathing air that could harm the crew s health. If successful, instruments like VCAM could accompany crewmembers during long-duration exploration missions to the Moon or traveling to Mars.

  3. Material Distribution Optimization for the Shell Aircraft Composite Structure

    NASA Astrophysics Data System (ADS)

    Shevtsov, S.; Zhilyaev, I.; Oganesyan, P.; Axenov, V.

    2016-09-01

    One of the main goal in aircraft structures designing isweight decreasing and stiffness increasing. Composite structures recently became popular in aircraft because of their mechanical properties and wide range of optimization possibilities.Weight distribution and lay-up are keys to creating lightweight stiff strictures. In this paperwe discuss optimization of specific structure that undergoes the non-uniform air pressure at the different flight conditions and reduce a level of noise caused by the airflowinduced vibrations at the constrained weight of the part. Initial model was created with CAD tool Siemens NX, finite element analysis and post processing were performed with COMSOL Multiphysicsr and MATLABr. Numerical solutions of the Reynolds averaged Navier-Stokes (RANS) equations supplemented by k-w turbulence model provide the spatial distributions of air pressure applied to the shell surface. At the formulation of optimization problem the global strain energy calculated within the optimized shell was assumed as the objective. Wall thickness has been changed using parametric approach by an initiation of auxiliary sphere with varied radius and coordinates of the center, which were the design variables. To avoid a local stress concentration, wall thickness increment was defined as smooth function on the shell surface dependent of auxiliary sphere position and size. Our study consists of multiple steps: CAD/CAE transformation of the model, determining wind pressure for different flow angles, optimizing wall thickness distribution for specific flow angles, designing a lay-up for optimal material distribution. The studied structure was improved in terms of maximum and average strain energy at the constrained expense ofweight growth. Developed methods and tools can be applied to wide range of shell-like structures made of multilayered quasi-isotropic laminates.

  4. Thermal-mechanical fatigue crack growth in aircraft engine materials

    NASA Astrophysics Data System (ADS)

    Dai, Yi

    1993-05-01

    A thermal mechanical fatigue (TMF) testing rig was built which is capable of studying the fatigue behaviors of gas turbine engine materials under simultaneous changes of temperatures and strains or stress. An advance alternating current potential drop (ACPD) measurement system was also developed which is capable of performing on-line monitoring of fatigue crack initiation and growth in specimen testing under isothermal and TMF conditions. Fatigue crack initiation and short crack growth data were obtained for titanium alloy specimens designed with notch features associated with bolt holes of compressor discs. TMF data were also obtained for two titanium alloys used in aircraft engine components. Those data explained the material fatigue behavior encountered in full-scale component testing. A complete fractographic analysis was performed on the tested specimens enhancing the understanding of the fatigue crack growth mechanisms and helping to formulate an analytical crack growth model. The ACPD fatigue crack monitoring technique was applied to the low cycle fatigue testing of Pratt & Whitney 1480 monocrystalline nickel alloy. A completely automated, computer controlled test procedure was developed which could obtain crack initiation and growth data with greater speed, precision, and reliability than previous methods.

  5. Aircraft Radiation Shield Experiments--Preflight Laboratory Testing

    NASA Technical Reports Server (NTRS)

    Singleterry, Robert C., Jr.; Shinn, Judy L.; Wilson, John W.; Maiden, Donald L.; Thibeault, Sheila A.; Badavi, Francis F.; Conroy, Thomas; Braby, Leslie

    1999-01-01

    In the past, measurements onboard a research Boeing 57F (RB57-F) aircraft have demonstrated that the neutron environment within the aircraft structure is greater than that in the local external environment. Recent studies onboard Boeing 737 commercial flights have demonstrated cabin variations in radiation exposure up to 30 percent. These prior results were the basis of the present study to quantify the potential effects of aircraft construction materials on the internal exposures of the crew and passengers. The present study constitutes preflight measurements using an unmoderated Cf-252 fission neutron source to quantify the effects of three current and potential aircraft materials (aluminum, titanium, and graphite-epoxy composite) on the fast neutron flux. Conclusions about the effectiveness of the three selected materials for radiation shielding must wait until testing in the atmosphere is complete; however, it is clear that for shielding low-energy neutrons, the composite material is an improved shielding material over aluminum or titanium.

  6. An in-flight study of cabin buzz-saw noise

    NASA Astrophysics Data System (ADS)

    Reed, David; Uellenberg, Stefan; Davis, Evan

    2002-11-01

    This paper examines the characteristics of multiple-pure-tone noise generated by high-speed turbofans under conditions of supersonic fan tip speeds, especially as it is observed in an aircraft passenger cabin. This phenomenon, also known as buzz-saw noise, is an important noise source in commercial airplane passenger cabins and has proved to be difficult to treat with sound-absorbing materials. Recent flight test experiments by The Boeing Company have demonstrated extraordinary success in suppressing cabin buzz-saw noise by strategic placement of engine inlet acoustic linings. The observed behavior is explained by a propagation and radiation model, which is validated by in-flight measurements made with a phased microphone array mounted on the fuselage skin of a Boeing 777. A structural acoustic model is also offered to explain the different transmission characteristics of buzz-saw noise and turbulent boundary layer excitation. Correlation length scales measured on the fuselage surface for these two noise sources are key inputs to the structural model.

  7. Developments in new aircraft tire tread materials. [fatigue life of elastomeric materials

    NASA Technical Reports Server (NTRS)

    Yager, T. J.; Mccarty, J. L.; Riccitiello, S. R.; Golub, M. A.

    1976-01-01

    Comparative laboratory and field tests were conducted on experimental and state-of-the-art aircraft tire tread materials in a program aimed at seeking new elastomeric materials which would provide improved aircraft tire tread wear, traction, and blowout resistance in the interests of operational safety and economy. The experimental stock was formulated of natural rubber and amorphous vinyl polybutadiene to provide high thermal-oxidative resistance, a characteristic pursued on the premise that thermal oxidation is involved both in the normal abrasion or wear of tire treads and probably in the chain of events leading to blowout failures. Results from the tests demonstrate that the experimental stock provided better heat buildup (hysteresis) and fatigue properties, at least equal wet and dry traction, and greater wear resistance than the state-of-the-art stock.

  8. 89. Puckett Cabin. The cabin constructed by John Puckett around ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    89. Puckett Cabin. The cabin constructed by John Puckett around 1865 is a good example of the one-room log cabin once common to the mountains. This was the home of Mrs. Oleana Puckett who died in 1939 at the age of 102. She worked as a midwife in the surrounding area, assisting in the delivery of more than 1,000 children. View looking east. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  9. Spacecraft Crew Cabin Condensation Control

    NASA Technical Reports Server (NTRS)

    Carrillo, Laurie Y.; Rickman, Steven L.; Ungar, Eugene K.

    2013-01-01

    A report discusses a new technique to prevent condensation on the cabin walls of manned spacecraft exposed to the cold environment of space, as such condensation could lead to free water in the cabin. This could facilitate the growth of mold and bacteria, and could lead to oxidation and weakening of the cabin wall. This condensation control technique employs a passive method that uses spacecraft waste heat as the primary wallheating mechanism. A network of heat pipes is bonded to the crew cabin pressure vessel, as well as the pipes to each other, in order to provide for efficient heat transfer to the cabin walls and from one heat pipe to another. When properly sized, the heat-pipe network can maintain the crew cabin walls at a nearly uniform temperature. It can also accept and distribute spacecraft waste heat to maintain the pressure vessel above dew point.

  10. Development of a thermal acoustical aircraft insulation material

    NASA Technical Reports Server (NTRS)

    Lin, R. Y.; Struzik, E. A.

    1974-01-01

    A process was developed for fabricating a light weight foam suitable for thermal and acoustical insulation in aircraft. The procedures and apparatus are discussed, and the foam specimens are characterized by numerous tests and measurements.

  11. The optimization of aircraft seat cushion fire-blocking layers. Full Scale: Test description and results

    NASA Technical Reports Server (NTRS)

    Schutter, K. J.; Duskin, F. E.

    1982-01-01

    Full-scale burn tests were conducted on thirteen different seat cushion configurations in a cabin fire simulator. The fire source used was a quartz lamp radiant energy panel with a propane pilot flame. During each test, data were recorded for cushion temperatures, radiant heat flux, rate of weight loss of test specimens, and cabin temperatures. When compared to existing passenger aircraft seat cushions, the test specimens incorporating a fire barrier and those fabricated from advance materials, using improved construction methods, exhibited significantly greater fire resistance.

  12. 45. Peaks of Otter, Rosser Cabin. The cabin had been ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. Peaks of Otter, Rosser Cabin. The cabin had been interpreted by the National Park Service ad Polly Woods Ordinary since its relocation from the present location of Abbott Lake. Looking north. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  13. Cabin fuselage structural design with engine installation and control system

    NASA Technical Reports Server (NTRS)

    Balakrishnan, Tanapaal; Bishop, Mike; Gumus, Ilker; Gussy, Joel; Triggs, Mike

    1994-01-01

    Design requirements for the cabin, cabin system, flight controls, engine installation, and wing-fuselage interface that provide adequate interior volume for occupant seating, cabin ingress and egress, and safety are presented. The fuselage structure must be sufficient to meet the loadings specified in the appropriate sections of Federal Aviation Regulation Part 23. The critical structure must provide a safe life of 10(exp 6) load cycles and 10,000 operational mission cycles. The cabin seating and controls must provide adjustment to account for various pilot physiques and to aid in maintenance and operation of the aircraft. Seats and doors shall not bind or lockup under normal operation. Cabin systems such as heating and ventilation, electrical, lighting, intercom, and avionics must be included in the design. The control system will consist of ailerons, elevator, and rudders. The system must provide required deflections with a combination of push rods, bell cranks, pulleys, and linkages. The system will be free from slack and provide smooth operation without binding. Environmental considerations include variations in temperature and atmospheric pressure, protection against sand, dust, rain, humidity, ice, snow, salt/fog atmosphere, wind and gusts, and shock and vibration. The following design goals were set to meet the requirements of the statement of work: safety, performance, manufacturing and cost. To prevent the engine from penetrating the passenger area in the event of a crash was the primary safety concern. Weight and the fuselage aerodynamics were the primary performance concerns. Commonality and ease of manufacturing were major considerations to reduce cost.

  14. Evaluation of Materials and Concepts for Aircraft Fire Protection

    NASA Technical Reports Server (NTRS)

    Anderson, R. A.; Price, J. O.; Mcclure, A. H.; Tustin, E. A.

    1976-01-01

    Woven fiberglass fluted-core simulated aircraft interior panels were flame tested and structurally evaluated against the Boeing 747 present baseline interior panels. The NASA-defined panels, though inferior on a strength-to-weight basis, showed better structural integrity after flame testing, due to the woven fiberglass structure.

  15. Aviation Maintenance Technology. Airframe. A204. Aircraft Welding. Instructor Material.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This teacher's guide is designed to aid teachers in leading students through a module on aircraft welding on airframes. The module contains four units that cover the following topics: (1) gas welding and cutting; (2) brazing and soldering; (3) shielded metal arc welding; and (4) gas tungsten arc welding. Each unit follows a standardized format…

  16. Simultaneous measurements of ozone outside and inside cabins of two B-747 airliners and a Gates Learjet business jet

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.; Briel, D.

    1978-01-01

    The average amount of ozone measured in the cabins of two B-747 airliners varied from 40 percent to 80 percent of the atmospheric concentrations without special ozone destruction systems. A charcoal filter in the cabin air inlet system of one B-747 reduced the ozone to about 5 percent of the atmospheric concentration. A Learjet 23 was also instrumented with monitors to measure simultaneously the atmospheric and ozone concentrations. Results indicate that a significant portion of the atmospheric ozone is not destroyed in the pressurization system and remains in the aircraft cabin of the Learjet. For the two cabin configurations tested, the ozone retentions were 63 and 41 percent of the atmospheric ozone concentrations. Ozone concentrations measured in the cabin near the conditioned-air outlets were reduced only slightly from atmospheric ozone concentrations. It is concluded that a constant difference between ozone concentrations inside and outside the cabin does not exist.

  17. NASA technical advances in aircraft occupant safety. [clear air turbulence detectors, fire resistant materials, and crashworthiness

    NASA Technical Reports Server (NTRS)

    Enders, J. H.

    1978-01-01

    NASA's aviation safety technology program examines specific safety problems associated with atmospheric hazards, crash-fire survival, control of aircraft on runways, human factors, terminal area operations hazards, and accident factors simulation. While aircraft occupants are ultimately affected by any of these hazards, their well-being is immediately impacted by three specific events: unexpected turbulence encounters, fire and its effects, and crash impact. NASA research in the application of laser technology to the problem of clear air turbulence detection, the development of fire resistant materials for aircraft construction, and to the improvement of seats and restraint systems to reduce crash injuries are reviewed.

  18. Evaluation of Cabin Crew Technical Knowledge

    NASA Technical Reports Server (NTRS)

    Dunbar, Melisa G.; Chute, Rebecca D.; Jordan, Kevin

    1998-01-01

    Accident and incident reports have indicated that flight attendants have numerous opportunities to provide the flight-deck crew with operational information that may prevent or essen the severity of a potential problem. Additionally, as carrier fleets transition from three person to two person flight-deck crews, the reliance upon the cabin crew for the transfer of this information may increase further. Recent research (Chute & Wiener, 1996) indicates that light attendants do not feel confident in their ability to describe mechanical parts or malfunctions of the aircraft, and the lack of flight attendant technical training has been referenced in a number of recent reports (National Transportation Safety Board, 1992; Transportation Safety Board of Canada, 1995; Chute & Wiener, 1996). The present study explored both flight attendant technical knowledge and flight attendant and dot expectations of flight attendant technical knowledge. To assess the technical knowledge if cabin crewmembers, 177 current flight attendants from two U.S. carriers voluntarily :ompleted a 13-item technical quiz. To investigate expectations of flight attendant technical knowledge, 181 pilots and a second sample of 96 flight attendants, from the same two airlines, completed surveys designed to capture each group's expectations of operational knowledge required of flight attendants. Analyses revealed several discrepancies between the present level of flight attendants.

  19. Study to develop improved fire resistant aircraft passenger seat materials, phase 1

    NASA Technical Reports Server (NTRS)

    Trabold, E. L.

    1977-01-01

    The procurement and testing of a wide range of candidate materials is reported. Improved fire resistant nonmetallic materials were subjected to tests to evaluate their thermal characteristics, such as burn, smoke generation, heat release rate and toxicity. In addition, candidate materials were evaluated for mechanical, physical and aesthetic properties. Other properties considered included safety, comfort, durability and maintainability. The fiscal year 1977 and the projected 1980 cost data were obtained for aircraft seat materials.

  20. The response of smoke detectors to pyrolysis and combustion products from aircraft interior materials

    NASA Technical Reports Server (NTRS)

    Mckee, R. G.; Alvares, N. J.

    1976-01-01

    The following projects were completed as part of the effort to develop and test economically feasible fire-resistant materials for interior furnishings of aircraft as well as detectors of incipient fires in passenger and cargo compartments: (1) determination of the sensitivity of various contemporary gas and smoke detectors to pyrolysis and combustion products from materials commonly used in aircraft interiors and from materials that may be used in the future, (2) assessment of the environmental limitations to detector sensitivity and reliability. The tests were conducted on three groups of materials by exposure to the following three sources of exposure: radiant and Meeker burner flame, heated coil, and radiant source only. The first test series used radiant heat and flame exposures on easily obtainable test materials. Next, four materials were selected from the first group and exposed to an incandescent coil to provide the conditions for smoldering combustion. Finally, radiant heat exposures were used on advanced materials that are not readily available.

  1. Aircraft surface coatings study: Verification of selected materials

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Three liquid coatings and four films that might improve and/or maintain the smoothness of transport aircraft surfaces are considered. Laboratory tests were performed on the liquid coatings (elastomeric polyurethanes) exposed to synthetic type hydraulic fluid, with and without a protective topcoat. Results were analyzed of a 14-month flight service evaluation of coatings applied to leading edges of an airline 727. Two additional airline service evaluations were initiated. Labortory tests were conducted on the films, bonded to aluminum substrate with various adhesives, to determine the best film/adhesive combinations. A cost/benefits analysis was performed and recommendations made for future work toward the application of this technology to commercial transports.

  2. Investigation of acoustic properties of a rigid foam with application to noise reduction in light aircraft

    NASA Technical Reports Server (NTRS)

    Holmer, C. I.

    1972-01-01

    A analytic model of sound transmission into an aircraft cabin was developed as well as test procedures which appropriately rank order properties which affect sound transmission. The proposed model agrees well with available data, and reveals that the pertinent properties of an aircraft cabin for sound transmission include: stiffness of cabin walls at low frequencies (as this reflects on impedance of the walls) and cabin wall transmission loss and interior absorption at mid and high frequencies. Below 315 Hz the foam contributes substantially to wall stiffness and sound transmission loss of typical light aircraft cabin construction, and could potentially reduce cabin noise levels by 3-5 db in this frequency range at a cost of about 0:2 lb/sq. ft. of treated cabin area. The foam was found not to have significant sound absorbing properties.

  3. Development of fire-resistant, low smoke generating, thermally stable end items for aircraft and spacecraft

    NASA Technical Reports Server (NTRS)

    Gagliani, J.; Sorathia, U. A. K.; Wilcoxson, A. L.

    1977-01-01

    Materials were developed to improve aircraft interior materials by modifying existing polymer structures, refining the process parameters, and by the use of mechanical configurations designed to overcome specific deficiencies. The optimization, selection, and fabrication of five fire resistant, low smoke emitting open cell foams are described for five different types of aircraft cabin structures. These include: resilient foams, laminate floor and wall paneling, thermal/acoustical insulation, molded shapes, and coated fabrics. All five have been produced from essentially the same polyimide precursor and have resulted in significant benefits from transfer of technology between the various tasks.

  4. Wear of seal materials used in aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Ludwig, L. P.

    1980-01-01

    A review of various types of seal locations in a gas turbine engine and the significance of wear for each type are presented. Material selection guidelines and the PV (contact pressure times sliding velocity) criteria for seal materials are discussed, and examples of wear mechanisms in positive contact seals are given. It is suggested that improved wear, erosion, and oxidation resistant materials will be required for improved seal durability; finally, a correlation is proposed between wear characteristics and a factor that includes material strength, ductility, specific heat and hot-working temperature to attain low porosity metallic gas path seal materials.

  5. The relative fire resistance of select thermoplastic materials. [for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.

    1978-01-01

    The relative thermal stability, flammability, and related thermochemical properties of some thermoplastic materials currently used in aircraft interiors as well as of some candidate thermoplastics were investigated. Currently used materials that were evaluated include acrylonitrile butadiene styrene, bisphenol A polycarbonate, polyphenylene oxide, and polyvinyl fluoride. Candidate thermoplastic materials evaluated include: 9,9-bis(4-hydroxyphenyl)fluorene polycarbonate-poly(dimethylsiloxane) block polymer, chlorinated polyvinylchloride homopolymer, phenolphthalein polycarbonate, polyethersulfone, polyphenylene sulfide, polyarylsulfone, and polyvinylidene fluoride.

  6. Fungi and bacterial degradation of polyamide coated aircraft material

    SciTech Connect

    Trick, K.A.; Keil, G.

    1999-11-01

    Atmospheric chemical corrosion is a severe threat to metal aircraft structures. A study has been initiated to investigate the extent and mechanism of the contribution of microorganisms to degradation of coatings and corrosion of aluminum. The study involves investigation of the effects of three parameters: type of inhibitor present in primer coating, presence or absence of a biocide in primer coating, and inoculation with microorganisms. Three variations of inhibitor are being studied, chromate inhibitor, a non-chromate inhibitor, and no inhibitor. The study is also designed to investigate three microorganism inoculations: fungal consortium, bacterial consortium and sterile. Current findings from the study indicated that the presence of a biocide may reduce corrosion. There is also indication that panels inoculated with a bacterial consortium show more corrosion than those inoculated with a fungal consortium. Currently chromates, known to be both toxic and carcinogenic, are added to organic coatings to inhibit corrosion of aluminum alloys. The results of this investigation could provide direction in the development of environmentally safe coatings.

  7. Products of ozone-initiated chemistry in a simulated aircraft environment.

    PubMed

    Wisthaler, Armin; Tamás, Gyöngyi; Wyon, David P; Strøm-Tejsen, Peter; Space, David; Beauchamp, Jonathan; Hansel, Armin; Märk, Tilmann D; Weschler, Charles J

    2005-07-01

    We used proton-transfer-reaction mass spectrometry (PTR-MS) to examine the products formed when ozone reacted with the materials in a simulated aircraft cabin, including a loaded high-efficiency particulate air (HEPA) filter in the return air system. Four conditions were examined: cabin (baseline), cabin plus ozone, cabin plus soiled T-shirts (surrogates for human occupants), and cabin plus soiled T-shirts plus ozone. The addition of ozone to the cabin without T-shirts, at concentrations typically encountered during commercial air travel, increased the mixing ratio (v:v concentration) of detected pollutants from 35 ppb to 80 ppb. Most of this increase was due to the production of saturated and unsaturated aldehydes and tentatively identified low-molecular-weight carboxylic acids. The addition of soiled T-shirts, with no ozone present, increased the mixing ratio of pollutants in the cabin air only slightly, whereas the combination of soiled T-shirts and ozone increased the mixing ratio of detected pollutants to 110 ppb, with more than 20 ppb originating from squalene oxidation products (acetone, 4-oxopentanal, and 6-methyl-5-hepten-2-one). For the two conditions with ozone present, the more-abundant oxidation products included acetone/propanal (8-20 ppb), formaldehyde (8-10 ppb), nonanal (approximately 6 ppb), 4-oxopentanal (3-7 ppb), acetic acid (approximately 7 ppb), formic acid (approximately 3 ppb), and 6-methyl-5-hepten-2-one (0.5-2.5 ppb), as well as compounds tentatively identified as acrolein (0.6-1 ppb) and crotonaldehyde (0.6-0.8 ppb). The odor thresholds of certain products were exceeded. With an outdoor air exchange of 3 h(-1) and a recirculation rate of 20 h(-1), the measured ozone surface removal rate constant was 6.3 h(-1) when T-shirts were not present, compared to 11.4 h(-1) when T-shirts were present.

  8. Products of ozone-initiated chemistry in a simulated aircraft environment.

    PubMed

    Wisthaler, Armin; Tamás, Gyöngyi; Wyon, David P; Strøm-Tejsen, Peter; Space, David; Beauchamp, Jonathan; Hansel, Armin; Märk, Tilmann D; Weschler, Charles J

    2005-07-01

    We used proton-transfer-reaction mass spectrometry (PTR-MS) to examine the products formed when ozone reacted with the materials in a simulated aircraft cabin, including a loaded high-efficiency particulate air (HEPA) filter in the return air system. Four conditions were examined: cabin (baseline), cabin plus ozone, cabin plus soiled T-shirts (surrogates for human occupants), and cabin plus soiled T-shirts plus ozone. The addition of ozone to the cabin without T-shirts, at concentrations typically encountered during commercial air travel, increased the mixing ratio (v:v concentration) of detected pollutants from 35 ppb to 80 ppb. Most of this increase was due to the production of saturated and unsaturated aldehydes and tentatively identified low-molecular-weight carboxylic acids. The addition of soiled T-shirts, with no ozone present, increased the mixing ratio of pollutants in the cabin air only slightly, whereas the combination of soiled T-shirts and ozone increased the mixing ratio of detected pollutants to 110 ppb, with more than 20 ppb originating from squalene oxidation products (acetone, 4-oxopentanal, and 6-methyl-5-hepten-2-one). For the two conditions with ozone present, the more-abundant oxidation products included acetone/propanal (8-20 ppb), formaldehyde (8-10 ppb), nonanal (approximately 6 ppb), 4-oxopentanal (3-7 ppb), acetic acid (approximately 7 ppb), formic acid (approximately 3 ppb), and 6-methyl-5-hepten-2-one (0.5-2.5 ppb), as well as compounds tentatively identified as acrolein (0.6-1 ppb) and crotonaldehyde (0.6-0.8 ppb). The odor thresholds of certain products were exceeded. With an outdoor air exchange of 3 h(-1) and a recirculation rate of 20 h(-1), the measured ozone surface removal rate constant was 6.3 h(-1) when T-shirts were not present, compared to 11.4 h(-1) when T-shirts were present. PMID:16053080

  9. Aircraft Pneudraulic Repairman, 2-4. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    These military-developed curriculum materials consist of four volumes of individualized, self-paced texts and workbooks for use by those studying to become aircraft pneudraulic repairmen. Covered in the individual volumes are the following topics: pneudraulic functions and career program (housekeeping and safety practices, hydraulic fluids and…

  10. Analytical prediction of the interior noise for cylindrical models of aircraft fuselages for prescribed exterior noise fields. Phase 2: Models for sidewall trim, stiffened structures and cabin acoustics with floor partition

    NASA Technical Reports Server (NTRS)

    Pope, L. D.; Wilby, E. G.

    1982-01-01

    An airplane interior noise prediction model is developed to determine the important parameters associated with sound transmission into the interiors of airplanes, and to identify apropriate noise control methods. Models for stiffened structures, and cabin acoustics with floor partition are developed. Validation studies are undertaken using three test articles: a ring stringer stiffened cylinder, an unstiffened cylinder with floor partition, and ring stringer stiffened cylinder with floor partition and sidewall trim. The noise reductions of the three test articles are computed using the heoretical models and compared to measured values. A statistical analysis of the comparison data indicates that there is no bias in the predictions although a substantial random error exists so that a discrepancy of more than five or six dB can be expected for about one out of three predictions.

  11. Non-flammable polyimide materials for aircraft and spacecraft applications

    NASA Technical Reports Server (NTRS)

    Gagliani, J.; Supkis, D. E.

    1979-01-01

    Recent developments in polyimide chemistry show promise for producing materials with very low flammability and a wide range of mechanical properties. Polyimide foams can be synthesized to provide fire safety without detectable formation of smoke or toxic byproducts below 204 C (400 F), thus avoiding an environment which is lethal to human habitation. This work has been and is currently being performed under development programs, the objective of which is to provide cost effective processes for producing thermally stable, polyimide flexible resilient foams, thermal-acoustical insulating materials, rigid low density foam panels, and high strength foam structures. The chemical and physical properties demonstrated by these materials represent a technological advancement in the art of thermally stable polyimide polymers which are expected to insure fire protection of structures and components used in air transportation and space exploration. Data compiled to date on thermal, physical and functional properties of these materials are presented.

  12. Column and Plate Compressive Strengths of Aircraft Structural Materials: Extruded 24S-T Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Heimerl, George J.; Roy, J Albert

    1945-01-01

    Column and plate compressive strengths of extruded 24S-T aluminum alloy were determined both within and beyond the elastic range from tests of thin-strip columns and local-instability tests of H-, Z-,and channel-section columns. These tests are part of an extensive research investigation to provide data on the' structural strength of various aircraft materials. The results are presented in the form of curves and charts that are suitable for use in the design and analysis of aircraft structures.

  13. 14 CFR 45.27 - Location of marks; nonfixed-wing aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... attachment of the basket or cabin suspension cables. (e) Powered parachutes and weight-shift-control aircraft. Each operator of a powered parachute or a weight-shift-control aircraft must display the marks...

  14. 14 CFR 45.27 - Location of marks; nonfixed-wing aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... attachment of the basket or cabin suspension cables. (e) Powered parachutes and weight-shift-control aircraft. Each operator of a powered parachute or a weight-shift-control aircraft must display the marks...

  15. 14 CFR 45.27 - Location of marks; nonfixed-wing aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... attachment of the basket or cabin suspension cables. (e) Powered parachutes and weight-shift-control aircraft. Each operator of a powered parachute or a weight-shift-control aircraft must display the marks...

  16. 14 CFR 45.27 - Location of marks; nonfixed-wing aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... attachment of the basket or cabin suspension cables. (e) Powered parachutes and weight-shift-control aircraft. Each operator of a powered parachute or a weight-shift-control aircraft must display the marks...

  17. Wear of seal materials used in aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Ludwig, L. P.

    1978-01-01

    The various types of seal locations in a gas turbine engine are described, and the significance of wear to each type is reviewed. Starting with positive contact shaft seals, existing material selection guidelines are reviewed, and the existing PV (contact pressure X sliding velocity) criteria for selecting seal materials are discussed, along with the theoretical background for these criteria. Examples of wear mechanisms observed to operate in positive contact seals are shown. Design features that can extend the operating capabilities of positive contact seals, including pressure balancing and incorporation of hydrodynamic lift are briefly discussed. It is concluded that, despite the benefits arising from these design features, improved positive contact seal materials from the standpoint of wear, erosion and oxidation resistance will be necessary for further improvements in seal performance and durability, and to meet stringent future challenges.

  18. Environmental exposure effects on composite materials for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Gibbons, M. N.

    1982-01-01

    The data base for composite materials' properties as they are affected by the environments encountered in operating conditions, both in flight and at ground terminals is expanded. Absorbed moisture degrades the mechanical properties of graphite/epoxy laminates at elevated temperatures. Since airplane components are frequently exposed to atmospheric moisture, rain, and accumulated water, quantitative data are required to evaluate the amount of fluids absorbed under various environmental conditions and the subsequent effects on material properties. In addition, accelerated laboratory test techniques are developed are reliably capable of predicting long term behavior. An accelerated environmental exposure testing procedure is developed, and experimental results are correlated and compared with analytical results to establish the level of confidence for predicting composite material properties.

  19. NASA-UVa Light Aerospace Alloy and Structures Technology Program: Aluminum-Based Materials for High Speed Aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr. (Editor)

    1996-01-01

    This report is concerned with 'Aluminum-Based Materials for High Speed Aircraft' which was initiated to identify the technology needs associated with advanced, low-cost aluminum base materials for use as primary structural materials. Using a reference baseline aircraft, these materials concept will be further developed and evaluated both technically and economically to determine the most attractive combinations of designs, materials, and manufacturing techniques for major structural sections of an HSCT. Once this has been accomplished, the baseline aircraft will be resized, if applicable, and performance objectives and economic evaluations made to determine aircraft operating costs. The two primary objectives of this study are: (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials, and (2) to assess these materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT.

  20. Cabin Leader's Handbook: Environmental Education Program.

    ERIC Educational Resources Information Center

    Santa Barbara County Schools, CA.

    The cabin leaders for the Environmental Education Outdoor School program are selected by their high school and by the elementary school teachers of the children in their cabin. This handbook was developed to aid cabin leaders in their special role as "big brother" or "big sister" to 12 to 15 sixth graders. Not only is the handbook useful in…

  1. Environmental Exposure Effects on Composite Materials for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, D. J.

    1980-01-01

    The test program concentrates on three major areas: flight exposure; ground based exposure; and accelerated environmental effects and data correlation. Among the parameters investigated were: geographic location, flight profiles, solar heating effects, ultraviolet degradation, retrieval times, and test temperatures. Data from the tests can be used to effectively plan the cost of production and viable alternatives in materials selection.

  2. Formaldehyde Concentration Dynamics of the International Space Station Cabin Atmosphere

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    2005-01-01

    Formaldehyde presents a significant challenge to maintaining cabin air quality on board crewed spacecraft. Generation sources include offgassing from a variety of non-metallic materials as well as human metabolism. Because generation sources are pervasive and human health can be affected by continual exposure to low concentrations, toxicology and air quality control engineering experts jointly identified formaldehyde as a key compound to be monitored as part the International Space Station's (ISS) environmental health monitoring and maintenance program. Data acquired from in-flight air quality monitoring methods are the basis for assessing the cabin environment's suitability for long-term habitation and monitoring the performance of passive and active controls that are in place to minimize crew exposure. Formaldehyde concentration trends and dynamics served in the ISS cabin atmosphere are reviewed implications to present and future flight operations discussed.

  3. Experimental performance of an ablative material as an external insulator for a hypersonic research aircraft

    NASA Technical Reports Server (NTRS)

    Puster, R. L.; Chapman, A. J.

    1977-01-01

    An ablative material composed of silica-filled elastomeric silicone was tested to evaluate its thermal and structural performance as an external insulator, or heat shield, for a hypersonic research aircraft. The material was also tested to determine whether it would form a durable char layer when initially heated and thereafter function primarily as an insulator with little further pyrolysis or char removal. Aerothermal tests were representative of nominal Mach 6 cruise conditions of the aircraft, and additional tests were representative of Mach 8 cruise and interference heating conditions. Radiant heating tests were used to simulate the complete nominal Mach 6 surface-temperature history. The silica char that formed during aerothermal tests was not durable. The char experienced a general and preferential surface recession, with the primary mechanism for char removal being erosion. Tests revealed that radiant heating is not a valid technique for simulating aerodynamic heating of the material.

  4. Certification of Discontinuous Composite Material Forms for Aircraft Structures

    NASA Astrophysics Data System (ADS)

    Arce, Michael Roger

    New, high performance chopped, discontinuous, or short fiber composites (DFCs), DFCs, such as HexMC and Lytex, made by compression molding of randomly oriented pre-impregnated unidirectional tape, can be formed into complex geometry while retaining mechanical properties suitable for structural use. These DFCs provide the performance benefits of Continuous Fiber Composites (CFCs) in form factors that were previously unavailable. These materials demonstrate some notably different properties from continuous fiber composites, especially with respect to damage tolerance and failure behavior. These behaviors are not very well understood, and fundamental research efforts are ongoing to better characterize the material and to ease certification for future uses. Despite this, these new DFCs show such promise that they are already in service in the aerospace industry, for instance in the Boeing 787. Unfortunately, the relative novelty of these parts means that they needed to be certified by “point design”, an excess of physical testing, rather than by a mix of physical testing and finite element analysis, which would be the case for CFCs or metals. In this study, one particular approach to characterizing both linear-elastic and failure behaviors are considered. The Stochastic Laminate Analogy, which represents a novel approach to modeling DFCs, and its combination with a Ply Discount scheme. Owing to limited available computational resources, only preliminary results are available, but those results are quite promising and warrant further investigation.

  5. Thermal-mechanical fatigue crack growth in aircraft engine materials

    NASA Astrophysics Data System (ADS)

    Dai, Yi

    1993-08-01

    This thesis summarizes the major technical achievements obtained as a part of a collaborative research and development project between Ecole Polytechnique and Pratt & Whitney Canada. These achievements include: (1) a thermal-mechanical fatigue (TMF) testing rig which is capable of studying the fatigue behaviors of gas turbine materials under simultaneous changes of temperatures and strains or stress; (2) an advanced alternative current potential drop (ACPD) measurement system which is capable of performing on-line monitoring of fatigue crack initiation and growth in specimen testing under isothermal and TMF conditions; (3) fatigue crack initiation and short crack growth data for the titanium specimens designed with notch features associated with bolt holes of compressor discs; (4) thermal-mechanical fatigue crack growth data for two titanium alloys being used in PWC engine components, which explained the material fatigue behavior encountered in full-scale component testing; (5) a complete fractographic analysis for the tested specimens which enhanced the understanding of the fatigue crack growth mechanisms and helped to establish an analytical crack growth model; and (6) application of the ACPD fatigue crack monitoring technique to single tooth firtree specimen (STFT) LCF testing of PWA 1480 single crystal alloy. Finally, a comprehensive discussion concerning the results pertaining to this research project is presented.

  6. Computational Fluid Dynamic Analysis of Enhancing Passenger Cabin Comfort Using PCM

    NASA Astrophysics Data System (ADS)

    Purusothaman, M.; Valarmathi, T. N.; Dada Mohammad, S. K.

    2016-09-01

    The main purpose of this study is to determine a cost effective way to enhance passenger cabin comfort by analyzing the effect of solar radiation of a open parked vehicle, which is exposed to constant solar radiation on a hot and sunny day. Maximum heat accumulation occurs in the car cabin due to the solar radiation. By means of computational fluid dynamics (CFD) analysis, a simulation process is conducted for the thermal regulation of the passenger cabin using a layer of phase change material (PCM) on the roof structure of a stationary car when exposed to ambient temperature on a hot sunny day. The heat energy accumulated in the passenger cabin is absorbed by a layer of PCM for phase change process. The installation of a ventilation system which uses an exhaust fan to create a natural convection scenario in the cabin is also considered to enhance passenger comfort along with PCM.

  7. 4. LOWER NOTTINGHAM MINE. DETAIL OF OBJECTS ASSOCIATED WITH CABIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. LOWER NOTTINGHAM MINE. DETAIL OF OBJECTS ASSOCIATED WITH CABIN 'B'; PIPE, WOOD, STOVE MATERIALS, AND COLLAPSED ROOT CELLAR IN CENTRAL AREA. VERTICAL, DARK PIPE IS VISIBLE IN CENTER/UPPER THIRD. CAMERA POINTED EAST. - Florida Mountain Mining Sites, Lower Nottingham Mine, Western slope of Florida Mountain, Silver City, Owyhee County, ID

  8. Enhancing commerical aircraft explosion survivability via active venting

    NASA Astrophysics Data System (ADS)

    Veldman, Roger Lee

    2001-10-01

    well below the material strain limit, ultimate failure of the aircraft under blast loading may occur later than originally thought due to secondary explosive pressure reflections and the significant overall increase in cabin pressure after detonation. This delayed onset of failure indicates that an active venting system may indeed be capable of functioning rapidly enough to reduce significant fuselage explosive damage.

  9. Fire resistivity and toxicity studies of candidate aircraft passenger seat materials

    NASA Technical Reports Server (NTRS)

    Fewell, L. L.; Trabold, E. L.; Spieth, H.

    1978-01-01

    Fire resistivity studies were conducted on a wide range of candidate nonmetallic materials being considered for the construction of improved fire resistant aircraft passenger seats. These materials were evaluated on the basis of FAA airworthiness burn and smoke generation tests, colorfastness, limiting oxygen index, and animal toxicity tests. Physical, mechanical, and aesthetic properties were also assessed. Candidate seat materials that have significantly improved thermal response to various thermal loads corresponding to reasonable fire threats as they relate to in-flight fire situations, are identified.

  10. Fire resistivity and toxicity studies of candidate aircraft passenger seat materials

    NASA Technical Reports Server (NTRS)

    Fewell, L. L.; Trabold, E. L.; Spieth, H. H.

    1978-01-01

    This paper describes fire resistivity studies of a wide range of candidate nonmetallic materials for the construction of improved fire resistant aircraft passenger seats. These materials were evaluated on the basis of FAA airworthiness burn and smoke generation tests, colorfastness, and animal toxicity tests. Physical, mechanical, and aesthetic properties were also included in the evaluations. Candidate seat materials that have significantly improved thermal response to various thermal loads corresponding to reasonable fire threats, as they relate to in-fight fire situations, are identified.

  11. Cost benefit study of advanced materials technology for aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Hillery, R. V.; Johnston, R. P.

    1977-01-01

    The cost/benefits of eight advanced materials technologies were evaluated for two aircraft missions. The overall study was based on a time frame of commercial engine use of the advanced material technologies by 1985. The material technologies evaluated were eutectic turbine blades, titanium aluminide components, ceramic vanes, shrouds and combustor liners, tungsten composite FeCrAly blades, gamma prime oxide dispersion strengthened (ODS) alloy blades, and no coat ODS alloy combustor liners. They were evaluated in two conventional takeoff and landing missions, one transcontinental and one intercontinental.

  12. Application of smart materials for improved flight performance of military aircraft

    SciTech Connect

    Kudva, J.; Appa, K.; Martin, C.; Jardine, P.

    1995-12-31

    This paper discusses on-going work under an ARPA/WL contract to Northrop Grumman entitled {open_quotes}Smart Structures and Materials Development - Smart Wing.{close_quotes} The contract addresses the application of smart materials and smart Structures concepts to enhance the aerodynamic and maneuver performance of military aircraft. Various concepts for adaptive wing and control surfaces are being studied. Specifically, (a) wing span-wise twist control using built-in shape- memory alloy torquing mechanism and (b) cambered leading edge and trailing edge control surfaces using hybrid piezoelectric and SMA actuation, are being evaluated for a 20% model of a modem day fighter aircraft. The potential benefits of the designs include increased lift for short take-offs, improved high-speed maneuverability, and enhanced control surface effectiveness. These benefits will be quantified by testing the sub-scale model in a transonic wind tunnel next year.

  13. Prediction of car cabin environment by means of 1D and 3D cabin model

    NASA Astrophysics Data System (ADS)

    Fišer, J.; Pokorný, J.; Jícha, M.

    2012-04-01

    Thermal comfort and also reduction of energy requirements of air-conditioning system in vehicle cabins are currently very intensively investigated and up-to-date issues. The article deals with two approaches of modelling of car cabin environment; the first model was created in simulation language Modelica (typical 1D approach without cabin geometry) and the second one was created in specialized software Theseus-FE (3D approach with cabin geometry). Performance and capabilities of this tools are demonstrated on the example of the car cabin and the results from simulations are compared with the results from the real car cabin climate chamber measurements.

  14. Advanced composite structural concepts and material technologies for primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Jackson, Anthony

    1991-01-01

    Structural weight savings using advanced composites have been demonstrated for many years. Most military aircraft today use these materials extensively and Europe has taken the lead in their use in commercial aircraft primary structures. A major inhibiter to the use of advanced composites in the United States is cost. Material costs are high and will remain high relative to aluminum. The key therefore lies in the significant reduction in fabrication and assembly costs. The largest cost in most structures today is assembly. As part of the NASA Advanced Composite Technology Program, Lockheed Aeronautical Systems Company has a contract to explore and develop advanced structural and manufacturing concepts using advanced composites for transport aircraft. Wing and fuselage concepts and related trade studies are discussed. These concepts are intended to lower cost and weight through the use of innovative material forms, processes, structural configurations and minimization of parts. The approach to the trade studies and the downselect to the primary wing and fuselage concepts is detailed. The expectations for the development of these concepts is reviewed.

  15. Aircraft Environmental System Mechanic, 2-9. Block III--Aircraft Environmental Systems Units. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This publication contains a teaching guide and student instructional materials for conducting a high school or adult vocational education course to train persons to perform duties as an aircraft environmental systems mechanic. Course content has been adapted from a military course. The instructional design for this course is self-paced and/or…

  16. Thermoelectric Energy Harvesting Using Phase Change Materials (PCMs) in High Temperature Environments in Aircraft

    NASA Astrophysics Data System (ADS)

    Elefsiniotis, A.; Becker, Th.; Schmid, U.

    2014-06-01

    Wireless, energy-autonomous structural health-monitoring systems in aircraft have the potential of reducing total maintenance costs. Thermoelectric energy harvesting, which seems the best choice for creating truly autonomous health monitoring sensors, is the principle behind converting waste heat to useful electrical energy through the use of thermoelectric generators. To enhance the temperature difference across the two sides of a thermoelectric generator, i.e. increasing heat flux and energy production, a phase change material acting as thermal mass is attached on one side of the thermoelectric generators while the other side is placed on the aircraft structure. The application area under investigation for this paper is the pylon aft fairing, located near the engine of an aircraft, with temperatures reaching on the inside up to 350 °C. Given these harsh operational conditions, the performance of a device, containing erythritol as a phase change material, is evaluated. The harvested energy reaching values up to 81.4 J can be regulated by a power management module capable of storing the excess energy and recovering it from the medium powering a sensor node and a wireless transceiver.

  17. Design and material aspects for thermoelectric energy harvesting devices in aircrafts

    NASA Astrophysics Data System (ADS)

    Elefsiniotis, A.; Kokorakis, N.; Becker, Th.; Schmid, U.

    2013-05-01

    Greener, more power efficient technologies as well as cost reduction are driving forces in energy efficient systems. Energy autonomous wireless health monitoring systems can potentially reduce aircraft maintenance costs by requiring no conventional power supply or supervision and by providing information of the health of an aircraft without human interaction. Thermoelectric energy harvesting seems the best choice for aircraft related applications, since sufficient energy can be generated to power up a wireless sensor node. The general concept is based on an artificially enhanced temperature difference across a thermoelectric generator (TEG), which is created by attaching one side to the fuselage and the other side to a thermal mass, which, in this case, is a phase change material. In detail, two different geometries and three different container materials are evaluated. As input and output parameters, the temperature profiles as well as the voltage of the TEGs are given. The output power and the total energy are determined by connecting a load resistor in parallel. Furthermore, the power to weight ratio for each combination is provided according to theoretical considerations and experimental tests done in a climate chamber mimicking a real flight profile.

  18. The Further Development of Heat-Resistant Materials for Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Bollenrath, Franz

    1946-01-01

    The present report deals with the problems involved in the greater utilization and development of aircraft engine materials, and specifically; piston materials, cylinder heads, exhaust valves, and exhaust gas turbine blading. The blades of the exhaust gas turbine are likely to be the highest stressed components of modern power plants from a thermal-mechanical and chemical standpoint, even though the requirements on exhaust valves of engines with gasoline injection are in general no less stringent. For the fire plate in Diesel engines the specifications for mechanical strength and design are not so stringent, and the question of heat resistance, which under these circumstances is easier obtainable, predominates.

  19. X-ray inspection of composite materials for aircraft structures using detectors of Medipix type

    NASA Astrophysics Data System (ADS)

    Jandejsek, I.; Jakubek, J.; Jakubek, M.; Prucha, P.; Krejci, F.; Soukup, P.; Turecek, D.; Vavrik, D.; Zemlicka, J.

    2014-05-01

    This work presents an overview of promising X-ray imaging techniques employed for non-destructive defectoscopy inspections of composite materials intended for the Aircraft industry. The major emphasis is placed on non-tomographic imaging techniques which do not require demanding spatial and time measurement conditions. Imaging methods for defects visualisation, delamination detection and porosity measurement of various composite materials such as carbon fibre reinforced polymers and honeycomb sendwiches are proposed. We make use of the new large area WidePix X-ray imaging camera assembled from up to 100 edgeless Medipix type detectors which is highly suitable for this type of measurements.

  20. The Cleveland Aircraft Fire Tests

    NASA Technical Reports Server (NTRS)

    Brenneman, James J.; Heine, Donald A.

    1968-01-01

    On June 30 and July 1, 1966, tests were conducted to evaluate high expansion foam's ability to extend the time for which an aircraft passenger cabin environment would remain survivable during a post-crash fire. While some results tend to confirm those of similar tests, others may shed new light on the problem.

  1. Aircraft wing weight build-up methodology with modification for materials and construction techniques

    NASA Technical Reports Server (NTRS)

    York, P.; Labell, R. W.

    1980-01-01

    An aircraft wing weight estimating method based on a component buildup technique is described. A simplified analytically derived beam model, modified by a regression analysis, is used to estimate the wing box weight, utilizing a data base of 50 actual airplane wing weights. Factors representing materials and methods of construction were derived and incorporated into the basic wing box equations. Weight penalties to the wing box for fuel, engines, landing gear, stores and fold or pivot are also included. Methods for estimating the weight of additional items (secondary structure, control surfaces) have the option of using details available at the design stage (i.e., wing box area, flap area) or default values based on actual aircraft from the data base.

  2. Brominated flame retardant exposure of aircraft personnel.

    PubMed

    Strid, Anna; Smedje, Greta; Athanassiadis, Ioannis; Lindgren, Torsten; Lundgren, Håkan; Jakobsson, Kristina; Bergman, Åke

    2014-12-01

    The use of brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) in aircraft is the result of high fire safety demands. Personnel working in or with aircraft might therefore be exposed to several BFRs. Previous studies have reported PBDE exposure in flight attendants and in passengers. One other group that may be subjected to significant BFR exposure via inhalation, are the aircraft maintenance workers. Personnel exposure both during flights and maintenance of aircraft, are investigated in the present study. Several BFRs were present in air and dust sampled during both the exposure scenarios; PBDEs, hexabromocyclododecane (HBCDD), decabromodiphenyl ethane (DBDPE) and 1,2-bis (2,4,6-tribromophenoxy) ethane. PBDEs were also analyzed in serum from pilots/cabin crew, maintenance workers and from a control group of individuals without any occupational aircraft exposure. Significantly higher concentrations of PBDEs were found in maintenance workers compared to pilots/cabin crew and control subjects with median total PBDE concentrations of 19, 6.8 and 6.6 pmol g(-1) lipids, respectively. Pilots and cabin crew had similar concentrations of most PBDEs as the control group, except for BDE-153 and BDE-154 which were significantly higher. Results indicate higher concentrations among some of the pilots compared to the cabin crew. It is however, evident that the cabin personnel have lower BFR exposures compared to maintenance workers that are exposed to such a degree that their blood levels are significantly different from the control group. PMID:24745557

  3. Brominated flame retardant exposure of aircraft personnel.

    PubMed

    Strid, Anna; Smedje, Greta; Athanassiadis, Ioannis; Lindgren, Torsten; Lundgren, Håkan; Jakobsson, Kristina; Bergman, Åke

    2014-12-01

    The use of brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) in aircraft is the result of high fire safety demands. Personnel working in or with aircraft might therefore be exposed to several BFRs. Previous studies have reported PBDE exposure in flight attendants and in passengers. One other group that may be subjected to significant BFR exposure via inhalation, are the aircraft maintenance workers. Personnel exposure both during flights and maintenance of aircraft, are investigated in the present study. Several BFRs were present in air and dust sampled during both the exposure scenarios; PBDEs, hexabromocyclododecane (HBCDD), decabromodiphenyl ethane (DBDPE) and 1,2-bis (2,4,6-tribromophenoxy) ethane. PBDEs were also analyzed in serum from pilots/cabin crew, maintenance workers and from a control group of individuals without any occupational aircraft exposure. Significantly higher concentrations of PBDEs were found in maintenance workers compared to pilots/cabin crew and control subjects with median total PBDE concentrations of 19, 6.8 and 6.6 pmol g(-1) lipids, respectively. Pilots and cabin crew had similar concentrations of most PBDEs as the control group, except for BDE-153 and BDE-154 which were significantly higher. Results indicate higher concentrations among some of the pilots compared to the cabin crew. It is however, evident that the cabin personnel have lower BFR exposures compared to maintenance workers that are exposed to such a degree that their blood levels are significantly different from the control group.

  4. 14. View of front of privy associated with Free Cabin, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. View of front of privy associated with Free Cabin, facing south. Privy is located approximately 150' south of free cabin - Free Cabin, State Route 121-U.S. Highway 25-Peach Orchard Road, Hephzibah, Richmond County, GA

  5. Report on the general design of commercial aircraft

    NASA Technical Reports Server (NTRS)

    Warner, Edward P

    1922-01-01

    Given here are evaluations of six different European aircraft from the point of view of a passenger. The aircraft discussed are the DH 34, the Handley-Page W8B, the Farman Goliath, the Potez IX, the Spad 33 (Berline), and the Fokker F.III. The airplanes were evaluated with regard to seating comfort, ventilation, noise, seating arrangements, cabin doors, baggage accommodation, interior arrangement of cabins, pilot's position and communication with the pilot, pilot accommodations, view from the cabin, safety, and lavatory accommodations.

  6. System for monitoring UV radiation level in phototherapy cabins in Poland

    PubMed Central

    Narbutt, Joanna; Pawlaczyk, Mariola; Sysa-Jędrzejowska, Anna; Sobolewski, Piotr; Rajewska-Więch, Bonawentura; Lesiak, Aleksandra

    2014-01-01

    Introduction Ultraviolet phototherapy (UVP) is widely used in dermatological practice for the treatment of various skin diseases. Numerous studies support its beneficial curing effectiveness; however, overexposure to ultraviolet radiation can cause adverse health effects, such as sunburn reaction, erythema response, cataract, skin aging, etc. For these reasons, it is of special importance to monitor performance of UVP cabins using a calibration system to evaluate the UV doses incident upon the patient. Material and methods A mechanized cabin control system (CCS) is proposed. It consists of radiometers with a wide and narrow field of view to estimate the body irradiation and to identify malfunctioning cabin tubes. Quality control and quality assurance procedures are developed to keep high accuracy of the calibration procedure. The CCS has been used in the examination of two different types of UVP cabins routinely working in Poland. Results It allows precise calculation of UV doses and spatial variability of UV radiance inside the cabin, thus providing uncertainties of the doses assigned by medical staff. The CCS could potentially serve as a primary standard for monitoring various UVP cabins working in Poland. Conclusions The methodology developed to quantify UV doses in UVP cabins may be easily extended to any UV radiation source. PMID:25624865

  7. Advanced composites structural concepts and materials technologies for primary aircraft structures: Design/manufacturing concept assessment

    NASA Technical Reports Server (NTRS)

    Chu, Robert L.; Bayha, Tom D.; Davis, HU; Ingram, J. ED; Shukla, Jay G.

    1992-01-01

    Composite Wing and Fuselage Structural Design/Manufacturing Concepts have been developed and evaluated. Trade studies were performed to determine how well the concepts satisfy the program goals of 25 percent cost savings, 40 percent weight savings with aircraft resizing, and 50 percent part count reduction as compared to the aluminum Lockheed L-1011 baseline. The concepts developed using emerging technologies such as large scale resin transfer molding (RTM), automatic tow placed (ATP), braiding, out-of-autoclave and automated manufacturing processes for both thermoset and thermoplastic materials were evaluated for possible application in the design concepts. Trade studies were used to determine which concepts carry into the detailed design development subtask.

  8. Computer program for prediction of the deposition of material released from fixed and rotary wing aircraft

    NASA Technical Reports Server (NTRS)

    Teske, M. E.

    1984-01-01

    This is a user manual for the computer code ""AGDISP'' (AGricultural DISPersal) which has been developed to predict the deposition of material released from fixed and rotary wing aircraft in a single-pass, computationally efficient manner. The formulation of the code is novel in that the mean particle trajectory and the variance about the mean resulting from turbulent fluid fluctuations are simultaneously predicted. The code presently includes the capability of assessing the influence of neutral atmospheric conditions, inviscid wake vortices, particle evaporation, plant canopy and terrain on the deposition pattern.

  9. Aircraft fires, smoke toxicity, and survival.

    PubMed

    Chaturvedi, A K; Sanders, D C

    1996-03-01

    In-flight fires in modern aircraft are rare, but post-crash fires do occur. Cabin occupants frequently survive initial forces of such crashes but are incapacitated from smoke inhalation. According to an international study, there were 95 fire-related civil passenger aircraft accidents worldwide over a 26-yr period, claiming approximately 2400 lives. Between 1985 and 1991, about 16% (32 accidents) of all U.S. transport aircraft accidents involved fire and 22% (140 fatalities) of the deaths in these accidents resulted from fire/smoke toxicity. Our laboratory analyses of postmortem blood samples (1967-93) indicate that 360 individuals in 134 fatal fire-related civil aircraft (air carrier and general aviation) accidents had carboxyhemoglobin saturation levels (> or = 20%), with or without blood cyanide, high enough to impair performance. Combustion toxicology is now moving from a descriptive to a mechanistic phase. Methods for gas analyses have been developed and combustion/animal-exposure assemblies have been constructed. Material/fire-retardant toxicity and interactions between smoke gases are being studied. Relationships between gas exposure concentrations, blood levels, and incapacitation onset are being established in animal models. Continuing basic research in smoke toxicity will be necessary to understand its complexities, and thus enhance aviation safety and fire survival chances. PMID:8775410

  10. 14 CFR 25.841 - Pressurized cabins.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... altitude of not more than 8,000 feet at the maximum operating altitude of the airplane under normal... be designed so that occupants will not be exposed to cabin pressure altitudes in excess of 15,000... designed so that occupants will not be exposed to a cabin pressure altitude that exceeds the...

  11. 14 CFR 25.841 - Pressurized cabins.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... altitude of not more than 8,000 feet at the maximum operating altitude of the airplane under normal... be designed so that occupants will not be exposed to cabin pressure altitudes in excess of 15,000... designed so that occupants will not be exposed to a cabin pressure altitude that exceeds the...

  12. 14 CFR 25.841 - Pressurized cabins.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... altitude of not more than 8,000 feet at the maximum operating altitude of the airplane under normal... be designed so that occupants will not be exposed to cabin pressure altitudes in excess of 15,000... designed so that occupants will not be exposed to a cabin pressure altitude that exceeds the...

  13. 14 CFR 25.841 - Pressurized cabins.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... altitude of not more than 8,000 feet at the maximum operating altitude of the airplane under normal... be designed so that occupants will not be exposed to cabin pressure altitudes in excess of 15,000... designed so that occupants will not be exposed to a cabin pressure altitude that exceeds the...

  14. 14 CFR 23.841 - Pressurized cabins.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... maximum relief valve setting in combination with landing loads. (8) A means to stop rotation of the compressor or to divert airflow from the cabin if continued rotation of an engine-driven cabin compressor or continued flow of any compressor bleed air will create a hazard if a malfunction occurs....

  15. 14 CFR 23.841 - Pressurized cabins.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... maximum relief valve setting in combination with landing loads. (8) A means to stop rotation of the compressor or to divert airflow from the cabin if continued rotation of an engine-driven cabin compressor or continued flow of any compressor bleed air will create a hazard if a malfunction occurs....

  16. 14 CFR 23.841 - Pressurized cabins.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... maximum relief valve setting in combination with landing loads. (8) A means to stop rotation of the compressor or to divert airflow from the cabin if continued rotation of an engine-driven cabin compressor or continued flow of any compressor bleed air will create a hazard if a malfunction occurs. (c)...

  17. 14 CFR 23.841 - Pressurized cabins.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the positive pressure differential to a predetermined value at the maximum rate of flow delivered by... required internal pressures and airflow rates. (5) Instruments to indicate to the pilot the pressure differential, the cabin pressure altitude, and the rate of change of cabin pressure altitude. (6)...

  18. Orange County Outdoor School: Cabin Leader's Manual.

    ERIC Educational Resources Information Center

    Orange County Dept. of Education, Santa Ana, CA.

    Presented in five sections, the manual furnishes cabin leaders (high school students) with background information concerning philosophy, teaching, objectives, daily schedule, and cabin leader responsibilities in the Orange County Outdoor School program. The welcome section contains the history of the Outdoor School, staff responsibilities,…

  19. Cost/benefit analysis of advanced material technologies for small aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Comey, D. H.

    1977-01-01

    Cost/benefit studies were conducted on ten advanced material technologies applicable to small aircraft gas turbine engines to be produced in the 1985 time frame. The cost/benefit studies were applied to a two engine, business-type jet aircraft in the 6800- to 9100-Kg (15,000- to 20,000-lb) gross weight class. The new material technologies are intended to provide improvements in the areas of high-pressure turbine rotor components, high-pressure turbine rotor components, high-pressure turbine stator airfoils, and static structural components. The cost/benefit of each technology is presented in terms of relative value, which is defined as a change in life cycle cost times probability of success divided by development cost. Technologies showing the most promising cost/benefits based on relative value are uncooled single crystal MAR-M 247 turbine blades, cooled DS MAR-M 247 turbine blades, and cooled ODS 'M'CrAl laminate turbine stator vanes.

  20. Cabin Environment Physics Risk Model

    NASA Technical Reports Server (NTRS)

    Mattenberger, Christopher J.; Mathias, Donovan Leigh

    2014-01-01

    This paper presents a Cabin Environment Physics Risk (CEPR) model that predicts the time for an initial failure of Environmental Control and Life Support System (ECLSS) functionality to propagate into a hazardous environment and trigger a loss-of-crew (LOC) event. This physics-of failure model allows a probabilistic risk assessment of a crewed spacecraft to account for the cabin environment, which can serve as a buffer to protect the crew during an abort from orbit and ultimately enable a safe return. The results of the CEPR model replace the assumption that failure of the crew critical ECLSS functionality causes LOC instantly, and provide a more accurate representation of the spacecraft's risk posture. The instant-LOC assumption is shown to be excessively conservative and, moreover, can impact the relative risk drivers identified for the spacecraft. This, in turn, could lead the design team to allocate mass for equipment to reduce overly conservative risk estimates in a suboptimal configuration, which inherently increases the overall risk to the crew. For example, available mass could be poorly used to add redundant ECLSS components that have a negligible benefit but appear to make the vehicle safer due to poor assumptions about the propagation time of ECLSS failures.

  1. 14 CFR 382.67 - What is the requirement for priority space in the cabin to store passengers' wheelchairs?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false What is the requirement for priority space in the cabin to store passengers' wheelchairs? 382.67 Section 382.67 Aeronautics and Space OFFICE OF... NONDISCRIMINATION ON THE BASIS OF DISABILITY IN AIR TRAVEL Accessibility of Aircraft § 382.67 What is...

  2. 14 CFR 382.67 - What is the requirement for priority space in the cabin to store passengers' wheelchairs?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false What is the requirement for priority space in the cabin to store passengers' wheelchairs? 382.67 Section 382.67 Aeronautics and Space OFFICE OF... NONDISCRIMINATION ON THE BASIS OF DISABILITY IN AIR TRAVEL Accessibility of Aircraft § 382.67 What is...

  3. 14 CFR 382.67 - What is the requirement for priority space in the cabin to store passengers' wheelchairs?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false What is the requirement for priority space in the cabin to store passengers' wheelchairs? 382.67 Section 382.67 Aeronautics and Space OFFICE OF... NONDISCRIMINATION ON THE BASIS OF DISABILITY IN AIR TRAVEL Accessibility of Aircraft § 382.67 What is...

  4. Graphical and Statistical Analysis of Airplane Passenger Cabin RF Coupling Paths to Avionics

    NASA Technical Reports Server (NTRS)

    Jafri, Madiha; Ely, Jay; Vahala, Linda

    2003-01-01

    Portable wireless technology provides many benefits to modern day travelers. Over the years however, numerous reports have cited portable electronic devices (PEDs) as a possible cause of electromagnetic interference (EMI) to aircraft navigation and communication radio systems. PEDs may act as transmitters, both intentional and unintentional, and their signals may be detected by the various radio receiver antennas installed on the aircraft. Measurement of the radiated field coupling between passenger cabin locations and aircraft communication and navigation receivers, via their antennas is defined herein as interference path loss (IPL). IPL data is required for assessing the threat of PEDs to aircraft radios, and is very dependent upon airplane size, the interfering transmitter position within the airplane, and the location of the particular antenna for the aircraft system of concern. NASA Langley Research Center, Eagles Wings Inc., and United Airlines personnel performed extensive IPL measurements on several Boeing 737 airplanes.

  5. Simultaneous cabin and ambient ozone measurements on two Boeing 747 airplanes, volume 1

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.; Holdeman, J. D.; Nastrom, G. D.

    1979-01-01

    Measurements of zone concentrations both outside and in the cabin of an airline operated Boeing 747SP and Boeing 747-100 airliner are presented. Plotted data and the corresponding tables of observations taken at altitude between the departure and destination airports of each flight are arranged chronologically for the two aircraft. Data were taken at five or ten minute intervals by automated instrumentation used in the NACA Global Atmospheric Sampling Program.

  6. NASA/aircraft industry standard specification for graphite fiber toughened thermoset resin composite material

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A standard specification for a selected class of graphite fiber/toughened thermoset resin matrix material was developed through joint NASA/Aircraft Industry effort. This specification was compiled to provide uniform requirements and tests for qualifying prepreg systems and for acceptance of prepreg batches. The specification applies specifically to a class of composite prepreg consisting of unidirectional graphite fibers impregnated with a toughened thermoset resin that produce laminates with service temperatures from -65 F to 200 F when cured at temperatures below or equal to 350 F. The specified prepreg has a fiber areal weight of 145 g sq m. The specified tests are limited to those required to set minimum standards for the uncured prepreg and cured laminates, and are not intended to provide design allowable properties.

  7. Numerical studies of the deposition of material released from fixed and rotary wing aircraft

    NASA Technical Reports Server (NTRS)

    Bilanin, A. J.; Teske, M. E.

    1984-01-01

    The computer code AGDISP (AGricultural DISPersal) has been developed to predict the deposition of material released from fixed and rotary wing aircraft in a single-pass, computationally efficient manner. The formulation of the code is novel in that the mean particle trajectory and the variance about the mean resulting from turbulent fluid fluctuations are simultaneously predicted. The code presently includes the capability of assessing the influence of neutral atmospheric conditions, inviscid wake vortices, particle evaporation, plant canopy and terrain on the deposition pattern. In this report, the equations governing the motion of aerially released particles are developed, including a description of the evaporation model used. A series of case studies, using AGDISP, are included.

  8. The effect of material heterogeneity in curved composite beams for use in aircraft structures

    NASA Technical Reports Server (NTRS)

    Otoole, Brendan J.; Santare, Michael H.

    1992-01-01

    A design tool is presented for predicting the effect of material heterogeneity on the performance of curved composite beams for use in aircraft fuselage structures. Material heterogeneity can be induced during processes such as sheet forming and stretch forming of thermoplastic composites. This heterogeneity can be introduced in the form of fiber realignment and spreading during the manufacturing process causing a gradient in material properties in both the radial and tangential directions. The analysis procedure uses a separate two-dimensional elasticity solution for the stresses in the flanges and web sections of the beam. The separate solutions are coupled by requiring the forces and displacements match at the section boundaries. Analysis is performed for curved beams loaded in pure bending and uniform pressure. The beams can be of any general cross-section such as a hat, T-, I-, or J-beam. Preliminary results show that geometry of the beam dictates the effect of heterogeneity on performance. Heterogeneity plays a much larger role in beams with a small average radius to depth ratio, R/t, where R is the average radius of the beam and t is the difference between the inside and outside radius. Results of the analysis are in the form of stresses and displacements, and they are compared to both mechanics of materials and numerical solutions obtained using finite element analysis.

  9. NASA-UVa light aerospace alloy and structures technology program supplement: Aluminum-based materials for high speed aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr. (Editor)

    1995-01-01

    This report on the NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from July 1, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) Ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) Powder metallurgy 2XXX alloys, (3) Rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) Discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  10. Aircraft Materials, Processes, Cleaning and Corrosion Control (Course Outline), Aviation Mechanics 1 (Power and Frame): 9073.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the beginning student with the basic concepts common to aircraft materials and processes, together with the requirements of proper cleaning and corrosion control as outlined by the Federal Aviation Agency. The aviation airframe and powerplant maintenance technician is…

  11. Aircraft Environmental System Mechanic, 2-9. Block I--Fundamentals. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This publication contains a teaching guide and student instructional materials for conducting a high school or adult vocational education course to train persons to perform duties as an aircraft environmental systems mechanic. Course content has been adapted from a military course. The instructional design for this course is self-paced and/or…

  12. Advanced composite structural concepts and materials technologies for primary aircraft structures: Advanced material concepts

    NASA Technical Reports Server (NTRS)

    Lau, Kreisler S. Y.; Landis, Abraham L.; Chow, Andrea W.; Hamlin, Richard D.

    1993-01-01

    To achieve acceptable performance and long-term durability at elevated temperatures (350 to 600 F) for high-speed transport systems, further improvements of the high-performance matrix materials will be necessary to achieve very long-term (60,000-120,000 service hours) retention of mechanical properties and damage tolerance. This report emphasizes isoimide modification as a complementary technique to semi-interpenetrating polymer networks (SIPN's) to achieve greater processibility, better curing dynamics, and possibly enhanced thermo-mechanical properties in composites. A key result is the demonstration of enhanced processibility of isoimide-modified linear and thermo-setting polyimide systems.

  13. An apparatus and procedure for evaluating the toxic hazards of smoldering seating and bedding materials

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Brandt, D. L.; Brauer, D. P.

    1978-01-01

    An apparatus and procedure are described for evaluating the toxicity of the gases evolved from the smoldering combustion of seating and bedding materials. The method combines initiation of smoldering combustion in fabric/cushion combinations by a lighted cigarette and exposure of laboratory animals to the gases evolved. The ratio of the surface available for smoldering to the compartment volume in this apparatus is approximately five times the ratio expected in a California living room, and 100 times the ratio expected in a wide-body aircraft passenger cabin. Based on fabric/cushion combinations tested, the toxicity of gases from smoldering combustion does not appear to be a significant hazard in aircraft passenger cabins, but seems to be a basis for careful selection of materials for residential environments.

  14. Recent developments in analysis of crack propagation and fracture of practical materials. [stress analysis in aircraft structures

    NASA Technical Reports Server (NTRS)

    Hardrath, H. F.; Newman, J. C., Jr.; Elber, W.; Poe, C. C., Jr.

    1978-01-01

    The limitations of linear elastic fracture mechanics in aircraft design and in the study of fatigue crack propagation in aircraft structures are discussed. NASA-Langley research to extend the capabilities of fracture mechanics to predict the maximum load that can be carried by a cracked part and to deal with aircraft design problems are reported. Achievements include: (1) improved stress intensity solutions for laboratory specimens; (2) fracture criterion for practical materials; (3) crack propagation predictions that account for mean stress and high maximum stress effects; (4) crack propagation predictions for variable amplitude loading; and (5) the prediction of crack growth and residual stress in built-up structural assemblies. These capabilities are incorporated into a first generation computerized analysis that allows for damage tolerance and tradeoffs with other disciplines to produce efficient designs that meet current airworthiness requirements.

  15. Operational Philosophy Concerning Manned Spacecraft Cabin Leaks

    NASA Technical Reports Server (NTRS)

    DeSimpelaere, Edward

    2011-01-01

    The last thirty years have seen the Space Shuttle as the prime United States spacecraft for manned spaceflight missions. Many lessons have been learned about spacecraft design and operation throughout these years. Over the next few decades, a large increase of manned spaceflight in the commercial sector is expected. This will result in the exposure of commercial crews and passengers to many of the same risks crews of the Space Shuttle have encountered. One of the more dire situations that can be encountered is the loss of pressure in the habitable volume of the spacecraft during on orbit operations. This is referred to as a cabin leak. This paper seeks to establish a general cabin leak response philosophy with the intent of educating future spacecraft designers and operators. After establishing a relative definition for a cabin leak, the paper covers general descriptions of detection equipment, detection methods, and general operational methods for management of a cabin leak. Subsequently, all these items are addressed from the perspective of the Space Shuttle Program, as this will be of the most value to future spacecraft due to similar operating profiles. Emphasis here is placed upon why and how these methods and philosophies have evolved to meet the Space Shuttle s needs. This includes the core ideas of: considerations of maintaining higher cabin pressures vs. lower cabin pressures, the pros and cons of a system designed to feed the leak with gas from pressurized tanks vs. using pressure suits to protect against lower cabin pressures, timeline and consumables constraints, re-entry considerations with leaks of unknown origin, and the impact the International Space Station (ISS) has had to the standard Space Shuttle cabin leak response philosophy. This last item in itself includes: procedural management differences, hardware considerations, additional capabilities due to the presence of the ISS and its resource, and ISS docking/undocking considerations with a

  16. Development of a protective decorative fire resistant low smoke emitting, thermally stable coating material

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The development of suitable electrocoatings and subsequent application to nonconductive substrates are discussed. Substrates investigated were plastics or resin-treated materials such as FX-resin (phenolic-type resin) impregnated fiberglass mat, polyphenylene sulfide, polyether sulfone and polyimide-impregnated unidirectional fiberglass. Efforts were aimed at formulating a fire-resistant, low smoke emitting, thermally stable, easily cleaned coating material. The coating is to be used for covering substrate panels, such as aluminum, silicate foam, polymeric structural entities, etc., all of which are applied in the aircraft cabin interior and thus subject to the spillages, scuffing, spotting and the general contaminants which prevail in aircraft passenger compartments.

  17. Ozone Contamination in Aircraft Cabins. Appendix A: Ozone toxicity

    NASA Technical Reports Server (NTRS)

    Melton, C. E.

    1979-01-01

    The recommendation that at various altitudes the amount of air with which ozone has mixed changes, thus changing the volume per volume relationship is discussed. The biological effects of ozone on human health and the amount of ozone necessary to produce symptoms were investigated.

  18. Influence of Implementation of Composite Materials in Civil Aircraft Industry on reduction of Environmental Pollution and Greenhouse Effect

    NASA Astrophysics Data System (ADS)

    Beck, A. J.; Hodzic, A.; Soutis, C.; Wilson, C. W.

    2011-12-01

    Computer-based Life Cycle Analysis (LCA) models were carried out to compare lightweight composites with the traditional aluminium over their useful lifetime. The analysis included raw materials, production, useful life in operation and disposal at the end of the material's useful life. The carbon fibre epoxy resin composite could in some cases reduce the weight of a component by up to 40 % compared to aluminium. As the fuel consumption of an aircraft is strongly influenced by its total weight, the emissions can be significantly reduced by increasing the proportion of composites used in the aircraft structure. Higher emissions, compared to aluminium, produced during composites production meet their 'break even' point after certain number of time units when used in aircraft structures, and continue to save emissions over their long-term operation. The study highlighted the environmental benefits of using lightweight structures in aircraft design, and also showed that utilisation of composites in products without energy saving may lead to increased emissions in the environment.

  19. Thermochemical characterization of some thermoplastic materials. [flammability and toxicity properties for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Hilado, C. J.

    1977-01-01

    The thermochemical and flammability characteristics of some typical thermoplastic materials currently in use or being considered for use in aircraft interiors are described. The properties studied included thermomechanical properties such as glass-transition and melt temperature, changes in polymer enthalpy, thermogravimetric analysis in anerobic and oxidative environments, oxygen index, smoke evolution, relative toxicity of the volatile products of pyrolysis, and selected physical properties. The generic polymers evaluated included acrylonitrile butadiene styrene, bisphenol A polycarbonate, 9,9 bis (4-hydroxyphenyl) fluorene polycarbonate-poly (dimethylsiloxane) block polymer, phenolphthalein-bisphenol A polycarbonate, phenolphthalein polycarbonate, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, polyaryl sulfone, chlorinated polyvinyl chloride homopolymer, polyvinyl fluoride, and polyvinylidene fluoride. Processing parameters, including molding characteristics of some of the advanced polymers, are described. Test results and relative rankings of some of the flammability, smoke, and toxicity properties are presented. Under these test conditions, some of the advanced polymers evaluated were significantly less flammable and toxic than or equivalent to polymers in current use.

  20. 79. Rocky Knob Recreation area housekeeping cabin with stone chimney ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    79. Rocky Knob Recreation area housekeeping cabin with stone chimney mimicking the log cabins of the Southern Appalachians. Looking south. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  1. 5. View of immediate setting of Free Cabin across State ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View of immediate setting of Free Cabin across State Route 121/U.S. Highway 25/Peach Orchard Road, facing west. - Free Cabin, State Route 121-U.S. Highway 25-Peach Orchard Road, Hephzibah, Richmond County, GA

  2. NASA-UVA Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr.

    1997-01-01

    This is the final report of the study "Aluminum-Based Materials for High Speed Aircraft" which had the objectives (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials and (2) to assess the materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT. The research team consisted of ALCOA, Allied-Signal, Boeing, McDonnell Douglas, Reynolds Metals and the University of Virginia. Four classes of aluminum alloys were investigated: (1) I/M 2XXX containing Li and I/M 2XXX without Li, (2) I/M 6XXX, (3) two P/M 2XXX alloys, and (4) two different aluminum-based metal matrix composites (MMC). The I/M alloys were targeted for a Mach 2.0 aircraft and the P/M and MMC alloys were targeted for a Mach 2.4 aircraft. Design studies were conducted using several different concepts including skin/stiffener (baseline), honeycomb sandwich, integrally stiffened and hybrid adaptations (conventionally stiffened thin-sandwich skins). Alloy development included fundamental studies of coarsening behavior, the effect of stress on nucleation and growth of precipitates, and fracture toughness as a function of temperature were an integral part of this program. The details of all phases of the research are described in this final report.

  3. The shuttle orbiter cabin atmospheric revitalization systems

    NASA Technical Reports Server (NTRS)

    Ward, C. F.; Owens, W. L.

    1975-01-01

    The Orbiter Atmospheric Revitalization Subsystem (ARS) and Pressure Control Subsystem (ARPCS) are designed to provide the flight crew and passengers with a pressurized environment that is both life-supporting and within crew comfort limitations. The ARPCS is a two-gas (oxygen-nitrogen) system that obtains oxygen from the Power Reactant Supply and Distribution (PRSD) subsystem and nitrogen from the nitrogen storage tanks. The ARS includes the water coolant loop; cabin CO2, odor, humidity and temperature control; and avionics cooling. Baseline ARPCS and ARS changes since 1973 include removal of the sublimator from the water coolant loop, an increase in flowrates to accommodate increased loads, elimination of the avionics bay isolation from the cabin, a decision to have an inert vehicle during ferry flight, elimination of coldwall tubing around windows and hatches, and deletion of the cabin heater.

  4. Human Factors in Cabin Accident Investigations

    NASA Technical Reports Server (NTRS)

    Chute, Rebecca D.; Rosekind, Mark R. (Technical Monitor)

    1996-01-01

    Human factors has become an integral part of the accident investigation protocol. However, much of the investigative process remains focussed on the flight deck, airframe, and power plant systems. As a consequence, little data has been collected regarding the human factors issues within and involving the cabin during an accident. Therefore, the possibility exists that contributing factors that lie within that domain may be overlooked. The FAA Office of Accident Investigation is sponsoring a two-day workshop on cabin safety accident investigation. This course, within the workshop, will be of two hours duration and will explore relevant areas of human factors research. Specifically, the three areas of discussion are: Information transfer and resource management, fatigue and other physical stressors, and the human/machine interface. Integration of these areas will be accomplished by providing a suggested checklist of specific cabin-related human factors questions for investigators to probe following an accident.

  5. The microbiological composition of airliner cabin air.

    PubMed

    Wick, R L; Irvine, L A

    1995-03-01

    Hundreds of millions of passengers travel on U.S. airliners annually. These large numbers, together with the close proximity required onboard, raise a concern about microbiologic disease transmission in cabin air. Previous air quality surveys generally concentrated on environmental tobacco smoke and particulate matter. They largely ignored the microorganisms also present. We sampled the microbiologic climate of 45 domestic and international flights. We also sampled common locations in a major southwestern city. The concentration of microorganisms in airline cabin air is much lower than in ordinary city locations. We conclude that the small number of microorganisms found in U.S. airliner cabin environments does not contribute to the risk of disease transmission among passengers.

  6. Costs and benefits of composite material applications to a civil STOL aircraft

    NASA Technical Reports Server (NTRS)

    Logan, T. R.

    1974-01-01

    Costs and benefits of advanced composite primary airframe structure were studied to determine cost-effective applications to a civil STOL aircraft designed for introduction in the early 1980 time period. Applications were assessed by comparing costs and weights with a baseline metal aircraft which served as a basis of comparison throughout the study. Costs as well as weights were estimated from specific designs of principal airframe components, thus establishing a cost-data base for the study. Cost effectiveness was judged by an analysis that compared direct operating costs and return on investment of the composite and baseline aircraft. A systems operations analysis was performed to judge effects of the smaller, lighter composite aircraft. It was determined that broad applications of advanced composites to the airframe considered could be cost-effective, but this advantage is strongly influenced by structural configuration and several key cost categories.

  7. A Cabin Air Separator for EVA Oxygen

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    2011-01-01

    Presently, the Extra-Vehicular Activities (EVAs) conducted from the Quest Joint Airlock on the International Space Station use high pressure, high purity oxygen that is delivered to the Space Station by the Space Shuttle. When the Space Shuttle retires, a new method of delivering high pressure, high purity oxygen to the High Pressure Gas Tanks (HPGTs) is needed. One method is to use a cabin air separator to sweep oxygen from the cabin air, generate a low pressure/high purity oxygen stream, and compress the oxygen with a multistage mechanical compressor. A main advantage to this type of system is that the existing low pressure oxygen supply infrastructure can be used as the source of cabin oxygen. ISS has two water electrolysis systems that deliver low pressure oxygen to the cabin, as well as chlorate candles and compressed gas tanks on cargo vehicles. Each of these systems can feed low pressure oxygen into the cabin, and any low pressure oxygen source can be used as an on-board source of oxygen. Three different oxygen separator systems were evaluated, and a two stage Pressure Swing Adsorption system was selected for reasons of technical maturity. Two different compressor designs were subjected to long term testing, and the compressor with better life performance and more favorable oxygen safety characteristics was selected. These technologies have been used as the basis of a design for a flight system located in Equipment Lock, and taken to Preliminary Design Review level of maturity. This paper describes the Cabin Air Separator for EVA Oxygen (CASEO) concept, describes the separator and compressor technology trades, highlights key technology risks, and describes the flight hardware concept as presented at Preliminary Design Review (PDR)

  8. Accurate and high-resolution boundary conditions and flow fields in the first-class cabin of an MD-82 commercial airliner

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Wen, Jizhou; Chao, Jiangyue; Yin, Weiyou; Shen, Chen; Lai, Dayi; Lin, Chao-Hsin; Liu, Junjie; Sun, Hejiang; Chen, Qingyan

    2012-09-01

    Flow fields in commercial airliner cabins are crucial for creating a thermally comfortable and healthy cabin environment. Flow fields depend on the thermo-fluid boundary conditions at the diffusers, in addition to the cabin geometry and furnishing. To study the flow fields in cabins, this paper describes a procedure to obtain the cabin geometry, boundary conditions at the diffusers, and flow fields. This investigation used a laser tracking system and reverse engineering to generate a digital model of an MD-82 aircraft cabin. Even though the measuring error by the system was very small, approximations and assumptions were needed to reduce the workload and data size. The geometric model can also be easily used to calculate the space volume. A combination of hot-sphere anemometers (HSA) and ultrasonic anemometers (UA) were applied to obtain the velocity magnitude, velocity direction, and turbulence intensity at the diffusers. The measured results indicate that the flow boundary conditions in a real cabin were rather complex and the velocity magnitude, velocity direction, and turbulence intensity varied significantly from one slot opening to another. UAs were also applied to measure the three-dimensional air velocity at 20 Hz, which could also be used to determine the turbulence intensity. Due to the instability of the flow, it should at least be measured for 4 min to obtain accurate averaged velocity and turbulence information. It was found that the flow fields were of low speed and high turbulence intensity. This study provides high quality data for validating Computational Fluid Dynamics (CFD) models, including cabin geometry, boundary conditions of diffusers, and high-resolution flow field in the first-class cabin of a functional MD-82 commercial airliner.

  9. 36 CFR 13.118 - Cabin site compatibility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Cabin site compatibility. 13.118 Section 13.118 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Cabins General Provisions § 13.118 Cabin site...

  10. 36 CFR 13.118 - Cabin site compatibility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Cabin site compatibility. 13.118 Section 13.118 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Cabins General Provisions § 13.118 Cabin site...

  11. 36 CFR 13.118 - Cabin site compatibility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Cabin site compatibility. 13.118 Section 13.118 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Cabins General Provisions § 13.118 Cabin site...

  12. 36 CFR 13.118 - Cabin site compatibility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Cabin site compatibility. 13.118 Section 13.118 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Cabins General Provisions § 13.118 Cabin site...

  13. 36 CFR 13.118 - Cabin site compatibility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Cabin site compatibility. 13.118 Section 13.118 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Cabins General Provisions § 13.118 Cabin site...

  14. Cabin air quality. Aerospace Medical Association.

    PubMed

    Thibeault, C

    1997-01-01

    Cabin Air Quality has generated considerable public and workers' concern and controversy in the last few years. To clarify the situation, AsMA requested the Passenger Health Subcommittee of the Air Transport Medicine Committee to review the situation and prepare a position statement. After identifying the various sources of confusion, we review the scientifically accepted facts in the different elements involved in Cabin Air Quality: pressurization, ventilation, contaminants, humidity and temperature. At the same time, we identify areas that need more research and make recommendations accordingly.

  15. A directional spotlight baffle for control cabins

    NASA Astrophysics Data System (ADS)

    Anderson, K. W.; Clark, B. A. J.

    1980-10-01

    Direct overhead lighting in control cabins frequently gives rise to unwanted bright images of the luminaries in the windows and these images may degrade the cabin operator's view of the external world. A directional baffle incorporating light traps which allow a high ratio of wanted to unwanted illumination from a specific conventional spotlamp is described. In practical tests, images from the spotlamp baffle combination were practically inconspicuous both in day and night conditions. A general method of design is described for extension of the principle to other types of spotlamps.

  16. Cabin air quality: indoor pollutants and climate during intercontinental flights with and without tobacco smoking.

    PubMed

    Lindgren, T; Norbäck, D

    2002-12-01

    The aim was to determine cabin air quality and in-flight exposure for cabin attendants of specific pollutants during intercontinental flights. Measurements of air humidity, temperature, carbon dioxide (CO2), respirable particles, ozone (O3), nitrogen dioxide (NO2) and formaldehyde were performed during 26 intercontinental flights with Boeing 767-300 with and without tobacco smoking onboard. The mean temperature in cabin was 22.2 degrees C (range 17.4-26.8 degrees C), and mean relative air humidity was 6% (range 1-27%). The CO2 concentration during cruises was below the recommended limit of 1000 ppm during 96% of measured time. Mean indoor concentration of NO2 and O3, were 14.1 and 19.2 micrograms/m3, with maximum values of 37 and 66 micrograms/m3, respectively. The concentration of formaldehyde was below the detection limit (< 5 micrograms/m3), in most samples (77%), and the maximum value was 15 micrograms/m3. The mean concentration of respirable particles in the rear part of the aircraft (AFT galley area) was much higher (49 micrograms/m3) during smoking as compared with non-smoking conditions (3 micrograms/m3) (P < 0.001), with maximum values of 253 and 7 micrograms/m3. In conclusion, air humidity is very low on intercontinental flights, and the large variation of temperature shows a need for better temperature control. Tobacco smoking onboard leads to a significant pollution of respirable particles, particularly in the rear part of the cabin. The result supports the view that despite the high air exchange rate and efficient air filtration, smoking in commercial aircraft leads to a significant pollution and should be prohibited.

  17. Cabin-fuselage-wing structural design concept with engine installation

    NASA Technical Reports Server (NTRS)

    Ariotti, Scott; Garner, M.; Cepeda, A.; Vieira, J.; Bolton, D.

    1993-01-01

    The purpose of this project is to provide a fuselage structural assembly and wing structural design that will be able to withstand the given operational parameters and loads provided by Federal Aviation Regulation Part 23 (FAR 23) and the Statement of Work (SOW). The goal is to provide a durable lightweight structure that will transfer the applied loads through the most efficient load path. Areas of producibility and maintainability of the structure will also be addressed. All of the structural members will also meet or exceed the desired loading criteria, along with providing adequate stiffness, reliability, and fatigue life as stated in the SOW. Considerations need to be made for control system routing and cabin heating/ventilation. The goal of the wing structure and carry through structure is also to provide a simple, lightweight structure that will transfer the aerodynamic forces produced by the wing, tailboom, and landing gear. These forces will be channeled through various internal structures sized for the pre-determined loading criteria. Other considerations were to include space for flaps, ailerons, fuel tanks, and electrical and control system routing. The difficulties encountered in the fuselage design include expanding the fuselage cabin to accept a third occupant in a staggered configuration and providing ample volume for their safety. By adding a third person the CG of aircraft will move forward so the engine needs to be moved aft to compensate for the difference in the moment. This required the provisions of a ring frame structure for the new position of the engine mount. The difficulties encountered in the wing structural design include resizing the wing for the increased capacity and weight, and compensating for a large torsion produced by the tail boom by placing a great number of stiffeners inside the boom, which will result in the relocation of the fuel tank. Finally, an adequate carry through structure for the wing and fuselage interface will be

  18. 14 CFR 23.841 - Pressurized cabins.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... predetermined value at the maximum rate of flow delivered by the pressure source. The combined capacity of the... intake or exhaust airflow, or both, for maintaining the required internal pressures and airflow rates. (5) Instruments to indicate to the pilot the pressure differential, the cabin pressure altitude, and the rate...

  19. Congress holds hearings on airliner cabin IAQ

    SciTech Connect

    Cox, J.E.; Miro, C.R.

    1993-11-01

    This article reports on congressional hearings on airliner cabin IAQ. The topics of the article include lax enforcement of existing standards, inadequate standards, proposed new standards, epidemiological investigations of the possibility of transmission of airborne infectious diseases, and comparison of FAA standards with ASHRAE standards for buildings.

  20. 14 CFR 25.841 - Pressurized cabins.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... feet after any probable failure condition in the pressurization system. (2) The airplane must be...) Fuselage structure, engine and system failures are to be considered in evaluating the cabin decompression... after decompression from any failure condition not shown to be extremely improbable: (i)...

  1. NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-based materials for high speed aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr.

    1993-01-01

    This report on the NASA-UVa Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from January 1, 1992 to June 30, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) powder metallurgy 2XXX alloys, (3) rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  2. Assembly auxiliary system for narrow cabins of spacecraft

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Li, Shiqi; Wang, Junfeng

    2015-09-01

    Due to the narrow space and complex structure of spacecraft cabin, the existing asssembly systems can not well suit for the assembly process of cabin products. This paper aims to introduce an assembly auxiliary system for cabin products. A hierarchical-classification method is proposed to re-adjust the initial assembly relationship of cabin into a new hierarchical structure for efficient assembly planning. An improved ant colony algorithm based on three assembly principles is established for searching a optimizational assembly sequence of cabin parts. A mixed reality assembly environment is constructed with enhanced information to promote interaction efficiency of assembly training and guidance. Based on the machine vision technology, the inspection of left redundant objects and measurement of parts distance in inner cabin are efficiently performed. The proposed system has been applied to the assembly work of a spacecraft cabin with 107 parts, which includes cabin assembly planning, assembly training and assembly quality inspection. The application result indicates that the proposed system can be an effective assistant tool to cabin assembly works and provide an intuitive and real assembly experience for workers. This paper presents an assembly auxiliary system for spacecraft cabin products, which can provide technical support to the spacecraft cabin assembly industry.

  3. Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating

    SciTech Connect

    Wang, Mingyu; WolfeIV, Edward; Craig, Timothy; LaClair, Tim J; Gao, Zhiming; Abdelaziz, Omar

    2016-01-01

    Without the waste heat available from the engine of a conventional automobile, electric vehicles (EVs) must provide heat to the cabin for climate control using energy stored in the vehicle. In current EV designs, this energy is typically provided by the traction battery. In very cold climatic conditions, the power required to heat the EV cabin can be of a similar magnitude to that required for propulsion of the vehicle. As a result, the driving range of an EV can be reduced very significantly during winter months, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The system uses the stored latent heat of an advanced phase change material (PCM) to provide cabin heating. The PCM is melted while the EV is connected to the electric grid for charging of the electric battery, and the stored energy is subsequently transferred to the cabin during driving. To minimize thermal losses when the EV is parked for extended periods, the PCM is encased in a high performance insulation system. The electrical PCM-Assisted Thermal Heating System (ePATHS) was designed to provide enough thermal energy to heat the EV s cabin for approximately 46 minutes, covering the entire daily commute of a typical driver in the U.S.

  4. Aircraft Electrical Repairman, 2-1. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This three-volume textbook and three student workbooks for a secondary-postsecondary level course in aircraft electrical repair comprise one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. The purpose stated for the individualized, self-paced…

  5. Estimation of Flight Trajectories by Using GPS Data Measured in Airliner Cabin

    NASA Astrophysics Data System (ADS)

    Totoki, Hironori; Wickramasinghe, Navinda Kithmal; Hamada, Taturo; Miyazawa, Yoshikazu

    Flight trajectory of a passenger aircraft is critical for the research and development of future air traffic control system. Generally, though, flight data are closed to the public view. In this paper a simple method is introduced to estimate flight trajectories using a commercial GPS receiver at a cabin of an in-flight airplane and numerical weather data. Barometric pressure altitude and Mach number were evaluated at the study. Results prove that airplanes follow almost exactly the predetermined airway and cruising altitude. Maximum deviation was recorded only at a magnitude of several dozen meters.

  6. Controlled impact demonstration seat/cabin restraint systems: FAA

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.

    1986-01-01

    The FAA restraint system experiments consisted of 24 standard and modified seats, 2 standard galleys and 2 standard overhead compartments. Under the controlled impact demonstration (CID) program, the experimental objective was to demonstrate the effectiveness of individual restraint system designs when exposed to a survivable air-to-ground impact condition. What researchers were looking for was the performance exhibited by standard and modified designs, performance differences resulting from their installed cabin location, and interrelating performance demonstrated by test article and attaching floor and/or fuselage structure. The other restraint system experiment consisted of 2 standard overhead stowage compartments and 2 galley modules. Again, researchers were concerned with the retention of stowed equipment and carry-on articles. The overhead compartments were loaded with test weights up to their maximum capacity, and each of the galleys was filled with test articles: aft with normal galley equipment, forward with hazardous material test packages. A breakdown of instrumentation and distribution is given beginning with 11 instrumented type anthropomorphic dummies and 185 sensors which provided for acceleration and load measurements at the various experiment and associated structure locations. The onboard cameras provided additional coverage of these experiments, including the areas of cabin which were not instrumented. Test results showing the window-side leg forces versus pulse duration are given.

  7. Calibration of Virtual Testing Stand of the Car Cabin using climatic chamber tests

    NASA Astrophysics Data System (ADS)

    Pokorny, Jan; Fiser, Jan; Jicha, Miroslav

    2015-05-01

    The aim of our research is to calibrate and verify of the software Virtual Testing Stand of the Car Cabin using climatic chamber tests. The Virtual Testing Stand is standalone executable software developed in Matlab for prediction of the cabin environment and thermal heat load by using the time-efficient heat balance model. The main limitation of the simulation method is a simplified convection scheme inside a cabin using the empirical correlations instead of the CFD simulations. In this paper we present the first preliminary tests of the calibration process and verification of the simulation results. Tests were carried out for the car Skoda Octavia Combi with the silver metallic paint. The material composition of the test car was deeply explored and the material properties of the cabin were identified as accurate as possible. The car was exposed to the various environments inside a climate chamber. In this paper we report about two performed tests: summer solar soak test and winter heat-up test with the defined heat source.

  8. Synthesis and processing of intelligent cost-effective structures phase II (SPICES II): smart materials aircraft applications evaluation

    NASA Astrophysics Data System (ADS)

    Dunne, James P.; Jacobs, Steven W.; Baumann, Erwin W.

    1998-06-01

    The second phase of the synthesis and processing of intelligent cost effective structures (SPICES II) program sought to identify high payoff areas for both naval and aerospace military systems and to evaluate military systems and to evaluate the benefits of smart materials incorporation based on their ability to redefine the mission scenario of the candidate platforms in their respective theaters of operation. The SPICES II consortium, consisting of The Boeing Company, Electric Boat Corporation, United Technologies Research Center, and Pennsylvania State University, surveyed the state-of-the-art in smart structures and evaluated potential applications to military aircraft, marine and propulsion systems components and missions. Eleven baseline platforms comprising a wide variety of missions were chosen for evaluation. Each platform was examined in its field of operation for areas which can be improved using smart materials insertion. Over 250 smart materials applications were proposed to enhance the platforms. The applications were examined and, when possible, quantitatively analyzed for their effect on mission performance. The applications were then ranked for payoff, risk, and time frame for development and demonstration. Details of the efforts made in the SPICES II program pertaining to smart structure applications on military and transport aircraft will be presented. A brief discussion of the core technologies will be followed by presentation of the criteria used in ranking each application. Thereafter, a selection of the higher ranking proposed concepts are presented in detail.

  9. The new low nitrogen steel LNS -- A material for advanced aircraft engine and aerospace bearing applications

    SciTech Connect

    Berns, H.; Ebert, F.J.

    1998-12-31

    Development tendencies for future aircraft jet engines require new design concepts for rolling element bearings because of an overall increase of loads, temperatures, rotational speeds and the use of new high temperature lubricants. This paper reviews some of the key parameters which in the past led to the development and application of the known aircraft bearing steels such as M50, M50 NiL and recently Cronidur 30{reg_sign} (AMS 5898). The performance limits of the currently used aerospace bearing steels and the increasing demands on bearing performance for future aerospace applications gave the impact to the design of a new corrosion resistant steel grade of the nitrogen alloyed type, which is suitable for case hardening by nitrogen--the so called Low nitrogen steel (LNS). The development of the alloy (US pat. 5,503,797), the attainable properties and the corresponding heat treatment process are presented. Achievable hardness, case depth, residual stress pattern and corrosion resistance prove the new LNS to be a promising candidate for the next generation of aircraft engine bearings and for advanced, integrated bearing-gear-shaft design concepts.

  10. CABIN: Collective Analysis of Biological Interaction Networks

    SciTech Connect

    Singhal, Mudita; Domico, Kelly O.

    2007-06-01

    The importance of understanding biological interaction networks has fueled the development of numerous interaction data generation techniques, databases and prediction tools. However not all prediction tools and databases predict interactions with one hundred percent accuracy. Generation of high confidence interaction networks formulates the first step towards deciphering unknown protein functions, determining protein complexes and inventing drugs. The CABIN: Collective Analysis of Biological Interaction Networks software is an exploratory data analysis tool that enables analysis and integration of interactions evidence obtained from multiple sources, thereby increasing the confidence of computational predictions as well as validating experimental observations. CABIN has been written in JavaTM and is available as a plugin for Cytoscape – an open source network visualization tool.

  11. Computer program to predict noise of general aviation aircraft: User's guide

    NASA Technical Reports Server (NTRS)

    Mitchell, J. A.; Barton, C. K.; Kisner, L. S.; Lyon, C. A.

    1982-01-01

    Program NOISE predicts General Aviation Aircraft far-field noise levels at FAA FAR Part 36 certification conditions. It will also predict near-field and cabin noise levels for turboprop aircraft and static engine component far-field noise levels.

  12. Uncertain structural dynamics of aircraft panels and fuzzy structures analysis

    NASA Astrophysics Data System (ADS)

    Sparrow, Victor W.; Buehrle, Ralph D.

    2002-11-01

    Aircraft fuselage panels, seemingly simple structures, are actually complex because of the uncertainty of the attachments of the frame stiffeners and longitudinal stringers. It is clearly important to understand the dynamics of these panels because of the subsequent radiation into the passenger cabin, even when complete information is not available for all portions of the finite-element model. Over the last few years a fuzzy structures analysis (FSA) approach has been undertaken at Penn State and NASA Langley to quantify the uncertainty in modeling aircraft panels. A new MSC.Nastran [MSC.Software Corp. (Santa Ana, CA)] Direct Matrix Abstraction Program (DMAP) code was written and tested [AIAA paper 2001-1320, 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf., Seattle, WA, 16 April 2001] and was applied to simple fuselage panel models [J. Acoust. Soc. Am. 109, 2410(A) (2001)]. Recently the work has focused on understanding the dynamics of a realistic aluminum fuselage panel, typical of today's aircraft construction. This presentation will provide an overview of the research and recent results will be given for the fuselage panel. Comparison between experiments and the FSA results will be shown for different fuzzy input parameters. [Work supported by NASA Research Cooperative Agreement NCC-1-382.

  13. Space Shuttle Hot Cabin Emergency Responses

    NASA Technical Reports Server (NTRS)

    Stepaniak, P.; Effenhauser, R. K.; McCluskey, R.; Gillis, D. B.; Hamilton, D.; Kuznetz, L. H.

    2005-01-01

    Methods: Human thermal tolerance, countermeasures, and thermal model data were reviewed and compared to existing shuttle ECS failure temperature and humidity profiles for each failure mode. Increases in core temperature associated with cognitive impairment was identified, as was metabolic heat generation of crewmembers, temperature monitoring, and communication capabilities after partial power-down and other limiting factors. Orbiter landing strategies and a hydration and salt replacement protocol were developed to put wheels on deck in each failure mode prior to development of significant cognitive impairment or collapse of crewmembers. Thermal tradeoffs for use of the Advanced Crew Escape Suit (ACES), Liquid Cooling Garment, integrated G-suit and Quick Don Mask were examined. candidate solutions involved trade-offs or conflicts with cabin oxygen partial pressure limits, system power-downs to limit heat generation, risks of alternate and emergency landing sites or compromise of Mode V-VIII scenarios. Results: Rehydration and minimized cabin workloads are required in all failure modes. Temperature/humidity profiles increase rapidly in two failure modes, and deorbit is recommended without the ACES, ICU and g-suit. This latter configuration limits several shuttle approach and landing escape modes and requires communication modifications. Additional data requirements were identified and engineering simulations were recommended to develop more current shuttle temperature and humidity profiles. Discussion: After failure of the shuttle ECS, there is insufficient cooling capacity of the ACES to protect crewmembers from rising cabin temperature and humidity. The LCG is inadequate for cabin temperatures above 76 F. Current shuttle future life policy makes it unlikely that major engineering upgrades necessary to address this problem will occur.

  14. Cancer incidence among Nordic airline cabin crew.

    PubMed

    Pukkala, Eero; Helminen, Mika; Haldorsen, Tor; Hammar, Niklas; Kojo, Katja; Linnersjö, Anette; Rafnsson, Vilhjálmur; Tulinius, Hrafn; Tveten, Ulf; Auvinen, Anssi

    2012-12-15

    Airline cabin crew are occupationally exposed to cosmic radiation and jet lag with potential disruption of circadian rhythms. This study assesses the influence of work-related factors in cancer incidence of cabin crew members. A cohort of 8,507 female and 1,559 male airline cabin attendants from Finland, Iceland, Norway and Sweden was followed for cancer incidence for a mean follow-up time of 23.6 years through the national cancer registries. Standardized incidence ratios (SIRs) were defined as ratios of observed and expected numbers of cases. A case-control study nested in the cohort (excluding Norway) was conducted to assess the relation between the estimated cumulative cosmic radiation dose and cumulative number of flights crossing six time zones (indicator of circadian disruption) and cancer risk. Analysis of breast cancer was adjusted for parity and age at first live birth. Among female cabin crew, a significantly increased incidence was observed for breast cancer [SIR 1.50, 95% confidence interval (95% CI) 1.32-1.69], leukemia (1.89, 95% CI 1.03-3.17) and skin melanoma (1.85, 95% CI 1.41-2.38). Among men, significant excesses in skin melanoma (3.00, 95% CI 1.78-4.74), nonmelanoma skin cancer (2.47, 95% CI 1.18-4.53), Kaposi sarcoma (86.0, 95% CI 41.2-158) and alcohol-related cancers (combined SIR 3.12, 95% CI 1.95-4.72) were found. This large study with complete follow-up and comprehensive cancer incidence data shows an increased incidence of several cancers, but according to the case-control analysis, excesses appear not to be related to the cosmic radiation or circadian disruptions from crossing multiple time zones.

  15. A new calcineurin inhibition domain in Cabin1

    SciTech Connect

    Jang, Hyonchol; Cho, Eun-Jung; Youn, Hong-Duk . E-mail: hdyoun@snu.ac.kr

    2007-07-20

    Calcineurin (CN), a calcium-activated phosphatase, plays a critical role in various biological processes including T cell activation. Cabin1, a calcineurin binding protein 1, has been shown to bind directly to CN using its C-terminal region and inhibit CN activity. However, no increase in CN activity has been found in Cabin1{delta}C T cells, which produce a truncated Cabin1 lacking the C-terminal CN binding region. Here, we report that Cabin1 has additional CN binding domain in its 701-900 amino acid residues. Cabin1 (701-900) blocked both CN-mediated dephosphorylation and nuclear import of NFAT and thus inhibited IL-2 production in response to PMA/ionomycin stimulation. This fact may explain why Cabin1{delta}C mice previously showed no significant defect in CN-mediated signaling pathway.

  16. Design Concept for a Minimal Volume Spacecraft Cabin to Serve as a Mars Ascent Vehicle Cabin and Other Alternative Pressurized Vehicle Cabins

    NASA Technical Reports Server (NTRS)

    Howard, Robert L., Jr.

    2016-01-01

    The Evolvable Mars Campaign is developing concepts for human missions to the surface of Mars. These missions are round-trip expeditions, thereby requiring crew launch via a Mars Ascent Vehicle (MAV). A study to identify the smallest possible pressurized cabin for this mission has developed a conceptual vehicle referred to as the minimal MAV cabin. The origin of this concept will be discussed as well as its initial concept definition. This will lead to a description of possible configurations to integrate the minimal MAV cabin with ascent vehicle engines and propellant tanks. Limitations of this concept will be discussed, in particular those that argue against the use of the minimal MAV cabin to perform the MAV mission. However, several potential alternative uses for the cabin are identified. Finally, recommended forward work will be discussed, including current work in progress to develop a full scale mockup and conduct usability evaluations.

  17. Mortality from cancer and other causes among airline cabin attendants in Europe: a collaborative cohort study in eight countries.

    PubMed

    Zeeb, Hajo; Blettner, Maria; Langner, Ingo; Hammer, Gaël P; Ballard, Terri J; Santaquilani, Mariano; Gundestrup, Maryanne; Storm, Hans; Haldorsen, Tor; Tveten, Ulf; Hammar, Niklas; Linnersjö, Annette; Velonakis, Emmanouel; Tzonou, Anastasia; Auvinen, Anssi; Pukkala, Eero; Rafnsson, Vilhjálmur; Hrafnkelsson, Jón

    2003-07-01

    There is concern about the health effects of exposure to cosmic radiation during air travel. To study the potential health effects of this and occupational exposures, the authors investigated mortality patterns among more than 44,000 airline cabin crew members in Europe. A cohort study was performed in eight European countries, yielding approximately 655,000 person-years of follow-up. Observed numbers of deaths were compared with expected numbers based on national mortality rates. Among female cabin crew, overall mortality (standardized mortality ratio (SMR) = 0.80, 95% confidence interval (CI): 0.73, 0.88) and all-cancer mortality (SMR = 0.78, 95% CI: 0.66, 0.95) were slightly reduced, while breast cancer mortality was slightly but nonsignificantly increased (SMR = 1.11, 95% CI: 0.82, 1.48). In contrast, overall mortality (SMR = 1.09, 95% CI: 1.00, 1.18) and mortality from skin cancer (for malignant melanoma, SMR = 1.93, 95% CI: 0.70, 4.44) among male cabin crew were somewhat increased. The authors noted excess mortality from aircraft accidents and from acquired immunodeficiency syndrome in males. Among airline cabin crew in Europe, there was no increase in mortality that could be attributed to cosmic radiation or other occupational exposures to any substantial extent. The risk of skin cancer among male crew members requires further attention. PMID:12835285

  18. Small Aircraft RF Interference Path Loss

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Szatkowski, George N.; Mielnik, John J.; Salud, Maria Theresa P.

    2007-01-01

    Interference to aircraft radio receivers is an increasing concern as more portable electronic devices are allowed onboard. Interference signals are attenuated as they propagate from inside the cabin to aircraft radio antennas mounted on the outside of the aircraft. The attenuation level is referred to as the interference path loss (IPL) value. Significant published IPL data exists for transport and regional category airplanes. This report fills a void by providing data for small business/corporate and general aviation aircraft. In this effort, IPL measurements are performed on ten small aircraft of different designs and manufacturers. Multiple radio systems are addressed. Along with the typical worst-case coupling values, statistical distributions are also reported that could lead to better interference risk assessment.

  19. Small Aircraft RF Interference Path Loss Measurements

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Szatkowski, George N.; Mielnik, John J.; Salud, Maria Theresa P.

    2007-01-01

    Interference to aircraft radio receivers is an increasing concern as more portable electronic devices are allowed onboard. Interference signals are attenuated as they propagate from inside the cabin to aircraft radio antennas mounted on the outside of the aircraft. The attenuation level is referred to as the interference path loss (IPL) value. Significant published IPL data exists for transport and regional category airplanes. This report fills a void by providing data for small business/corporate and general aviation aircraft. In this effort, IPL measurements are performed on ten small aircraft of different designs and manufacturers. Multiple radio systems are addressed. Along with the typical worst-case coupling values, statistical distributions are also reported that could lead to more meaningful interference risk assessment.

  20. Material combinations and parametric study of thermal and mechanical performance of pyramidal core sandwich panels used for hypersonic aircrafts

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiping; Zhang, Xiaoqing; Lorenzini, Giulio; Xie, Gongnan

    2016-11-01

    A novel kind of lightweight integrated thermal protection system, named pyramidal core sandwich panel, is proposed to be a good safeguard for hypersonic aircrafts in the current study. Such system is considered as not only an insulation structure but also a load-bearing structure. In the context of design for hypersonic aircrafts, an efficient optimization should be paid enough attention. This paper concerns with the homogenization of the proposed pyramidal sandwich core panel using two-dimensional model in subsequent research for material selection. According to the required insulation performance and thermal-mechanical properties, several suitable material combinations are chosen as candidates for the pyramidal core sandwich panel by adopting finite element analysis and approximate response surface. To obtain lightweight structure with an excellent capability of heat insulation and load-bearing, an investigation on some specific design variables, which are significant for thermal-mechanical properties of the structure, is performed. Finally, a good balance between the insulation performance, the capability of load-bearing and the lightweight has attained.

  1. Material combinations and parametric study of thermal and mechanical performance of pyramidal core sandwich panels used for hypersonic aircrafts

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiping; Zhang, Xiaoqing; Lorenzini, Giulio; Xie, Gongnan

    2016-07-01

    A novel kind of lightweight integrated thermal protection system, named pyramidal core sandwich panel, is proposed to be a good safeguard for hypersonic aircrafts in the current study. Such system is considered as not only an insulation structure but also a load-bearing structure. In the context of design for hypersonic aircrafts, an efficient optimization should be paid enough attention. This paper concerns with the homogenization of the proposed pyramidal sandwich core panel using two-dimensional model in subsequent research for material selection. According to the required insulation performance and thermal-mechanical properties, several suitable material combinations are chosen as candidates for the pyramidal core sandwich panel by adopting finite element analysis and approximate response surface. To obtain lightweight structure with an excellent capability of heat insulation and load-bearing, an investigation on some specific design variables, which are significant for thermal-mechanical properties of the structure, is performed. Finally, a good balance between the insulation performance, the capability of load-bearing and the lightweight has attained.

  2. Maximum vehicle cabin temperatures under different meteorological conditions

    NASA Astrophysics Data System (ADS)

    Grundstein, Andrew; Meentemeyer, Vernon; Dowd, John

    2009-05-01

    A variety of studies have documented the dangerously high temperatures that may occur within the passenger compartment (cabin) of cars under clear sky conditions, even at relatively low ambient air temperatures. Our study, however, is the first to examine cabin temperatures under variable weather conditions. It uses a unique maximum vehicle cabin temperature dataset in conjunction with directly comparable ambient air temperature, solar radiation, and cloud cover data collected from April through August 2007 in Athens, GA. Maximum cabin temperatures, ranging from 41-76°C, varied considerably depending on the weather conditions and the time of year. Clear days had the highest cabin temperatures, with average values of 68°C in the summer and 61°C in the spring. Cloudy days in both the spring and summer were on average approximately 10°C cooler. Our findings indicate that even on cloudy days with lower ambient air temperatures, vehicle cabin temperatures may reach deadly levels. Additionally, two predictive models of maximum daily vehicle cabin temperatures were developed using commonly available meteorological data. One model uses maximum ambient air temperature and average daily solar radiation while the other uses cloud cover percentage as a surrogate for solar radiation. From these models, two maximum vehicle cabin temperature indices were developed to assess the level of danger. The models and indices may be useful for forecasting hazardous conditions, promoting public awareness, and to estimate past cabin temperatures for use in forensic analyses.

  3. Maximum vehicle cabin temperatures under different meteorological conditions.

    PubMed

    Grundstein, Andrew; Meentemeyer, Vernon; Dowd, John

    2009-05-01

    A variety of studies have documented the dangerously high temperatures that may occur within the passenger compartment (cabin) of cars under clear sky conditions, even at relatively low ambient air temperatures. Our study, however, is the first to examine cabin temperatures under variable weather conditions. It uses a unique maximum vehicle cabin temperature dataset in conjunction with directly comparable ambient air temperature, solar radiation, and cloud cover data collected from April through August 2007 in Athens, GA. Maximum cabin temperatures, ranging from 41-76 degrees C, varied considerably depending on the weather conditions and the time of year. Clear days had the highest cabin temperatures, with average values of 68 degrees C in the summer and 61 degrees C in the spring. Cloudy days in both the spring and summer were on average approximately 10 degrees C cooler. Our findings indicate that even on cloudy days with lower ambient air temperatures, vehicle cabin temperatures may reach deadly levels. Additionally, two predictive models of maximum daily vehicle cabin temperatures were developed using commonly available meteorological data. One model uses maximum ambient air temperature and average daily solar radiation while the other uses cloud cover percentage as a surrogate for solar radiation. From these models, two maximum vehicle cabin temperature indices were developed to assess the level of danger. The models and indices may be useful for forecasting hazardous conditions, promoting public awareness, and to estimate past cabin temperatures for use in forensic analyses. PMID:19234721

  4. In-cabin ultrafine particle dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Bin

    To assess the total human health risks associated with human exposure to ultrafine particle (UFP), the concentrations and fates of UFPs in the in-cabin atmospheres must be understood. In order to assess human exposure more accurately and further prevent adverse health effects from UFP exposure in the in-cabins, it is essential to gain insight into UFP transport dynamics between in-cabin and outside atmospheres and the factors that are able to affect them. In this dissertation, mathematical model are developed and formulated as tools to improve the understanding of UFP dynamics in the in-cabin atmosphere. Under three different ventilation conditions, (i) Fan off-recirculation (RC) off, (ii) Fan on-RC off, and (iii) Fan on-RC on, the average modeled UFP I/O ratios were found to be 0.40, 0.25 and 0.10, respectively, and agree with the experimental data very well. Then, analysis focused on how the factors, such as ventilation settings, vehicle speed, filtration, penetration, and deposition, affect I/O ratios in broader categories of vehicle cabin microenvironments. Ventilation is the only mechanical process of exchanging air between the in-cabin and the outside. Under condition (ii), I/O ratio that varies from 0.2 to 0.7 was proportional to the airflow rate in the range of 0-360 m3/h. Under condition (iii), the modeled I/O ratio was inversely proportional to the airflow rate from mechanical ventilation within the range of 0.15-0.45 depending on the particle size. Significant variability of the penetration factor (5˜20%) was found due to the pressure difference. A coefficient "B" was successfully introduced to account for the electric charge effect on penetration factors. The effect of penetration on the I/O ratio was then evaluated by substituting penetration factor into the model. Under condition (i), the modeled I/O ratios increased linearly, up to ˜20%, within the penetration factor range. Under condition (iii), the effect of penetration factor is less but still

  5. Temperature Coefficient of the Modulus of Rigidity of Aircraft Instrument Diaphragm and Spring Materials

    NASA Technical Reports Server (NTRS)

    Brombacher, W G; Melton, E R

    1931-01-01

    Experimental data are presented on the variation of the modulus of rigidity in the temperature range -20 to +50 degrees C. of a number of metals which are of possible use for elastic elements for aircraft and other instruments. The methods of the torsional pendulum was used to determine the modulus of rigidity and its temperature coefficient for aluminum, duralumin, monel metal, brass, phosphor bronze, coin silver, nickel silver, three high carbon steels, and three alloy steels. It was observed that tensile stress affected the values of the modulus by amounts of 1 per cent or less.

  6. Aircraft skin cooling system for thermal management of onboard high power electronic equipment

    SciTech Connect

    Hashemi, A.; Dyson, E.

    1996-12-31

    Integration of high-power electronic devices into existing aircraft, while minimizing the impact of additional heat load on the environmental control system of the aircraft, requires innovative approaches. One such approach is to reject heat through the aircraft skin by use of internal skin ducts with enhanced surfaces. This approach requires a system level consideration of the effect of cooling ducts, inlets and outlets on the performance of the electronic equipment and effectiveness of the heat rejection system. This paper describes the development of a system-level model to evaluate the performance of electronic equipment in an aircraft cabin and heat rejection through the skin. In this model, the outer surface of the fuselage is treated as a heat exchanger. Hot air from an equipment exhaust plenum is drawn into a series of baffled ducts within the fuselage support structure, where the heat is rejected, and then recirculated into the cabin. The cooler air form the cabin is then drawn into the electronic equipment. The aircraft air conditioning unit is also modeled to provide chilled air directly into the cabin. In addition, this paper describes a series of tests which were performed to verify the model assumptions for heat dissipation from and air flow through the equipment. The tests were performed using the actual electronic equipment in a representative cabin configuration. Results indicate very good agreement between the analytical calculations for the design point and model predictions.

  7. Advanced composites structural concepts and materials technologies for primary aircraft structures. Structural response and failure analysis: ISPAN modules users manual

    NASA Technical Reports Server (NTRS)

    Hairr, John W.; Huang, Jui-Ten; Ingram, J. Edward; Shah, Bharat M.

    1992-01-01

    The ISPAN Program (Interactive Stiffened Panel Analysis) is an interactive design tool that is intended to provide a means of performing simple and self contained preliminary analysis of aircraft primary structures made of composite materials. The program combines a series of modules with the finite element code DIAL as its backbone. Four ISPAN Modules were developed and are documented. These include: (1) flat stiffened panel; (2) curved stiffened panel; (3) flat tubular panel; and (4) curved geodesic panel. Users are instructed to input geometric and material properties, load information and types of analysis (linear, bifurcation buckling, or post-buckling) interactively. The program utilizing this information will generate finite element mesh and perform analysis. The output in the form of summary tables of stress or margins of safety, contour plots of loads or stress, and deflected shape plots may be generalized and used to evaluate specific design.

  8. Aircraft Environmental System Mechanic, 2-9. Block IV--Utility Systems and Flight Line Maintenance. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This publication contains a teaching guide and student instructional materials for conducting a high school or adult vocational education course to train persons to perform duties as an aircraft environmental systems mechanic. The instructional design for this course is self-paced and/or small group-paced. Instructor materials contained in the…

  9. Aircraft empennage structural detail design

    NASA Technical Reports Server (NTRS)

    Meholic, Greg; Brown, Rhonda; Hall, Melissa; Harvey, Robert; Singer, Michael; Tella, Gustavo

    1993-01-01

    This project involved the detailed design of the aft fuselage and empennage structure, vertical stabilizer, rudder, horizontal stabilizer, and elevator for the Triton primary flight trainer. The main design goals under consideration were to illustrate the integration of the control systems devices used in the tail surfaces and their necessary structural supports as well as the elevator trim, navigational lighting system, electrical systems, tail-located ground tie, and fuselage/cabin interface structure. Accommodations for maintenance, lubrication, adjustment, and repairability were devised. Weight, fabrication, and (sub)assembly goals were addressed. All designs were in accordance with the FAR Part 23 stipulations for a normal category aircraft.

  10. Desiccant humidity control system. [for space shuttle cabins

    NASA Technical Reports Server (NTRS)

    Lunde, P. J.; Kester, F. L.

    1975-01-01

    A water vapor and carbon dioxide sorbent material (designated HS-C) was developed for potential application to the space shuttle and tested at full scale. Capacities of two percent for carbon dioxide and four percent for water vapor were achieved using space shuttle cabin adsorption conditions and a space vacuum for desorption. Performance testing shows that water vapor can be controlled by varying the air process flow, while maintaining the ability to remove carbon dioxide. A 2000 hour life test was successfully completed, as were tests for sensitivity to cleaning solvent vapors, vibration resistance, and flammability. A system design for the space shuttle shows a 200 pound weight advantage over competitive systems and an even larger advantage for longer missions.

  11. Risk factors for skin cancer among Finnish airline cabin crew.

    PubMed

    Kojo, Katja; Helminen, Mika; Pukkala, Eero; Auvinen, Anssi

    2013-07-01

    Increased incidence of skin cancers among airline cabin crew has been reported in several studies. We evaluated whether the difference in risk factor prevalence between Finnish airline cabin crew and the general population could explain the increased incidence of skin cancers among cabin crew, and the possible contribution of estimated occupational cosmic radiation exposure. A self-administered questionnaire survey on occupational, host, and ultraviolet radiation exposure factors was conducted among female cabin crew members and females presenting the general population. The impact of occupational cosmic radiation dose was estimated in a separate nested case-control analysis among the participating cabin crew (with 9 melanoma and 35 basal cell carcinoma cases). No considerable difference in the prevalence of risk factors of skin cancer was found between the cabin crew (N = 702) and the general population subjects (N = 1007) participating the study. The mean risk score based on all the conventional skin cancer risk factors was 1.43 for cabin crew and 1.44 for general population (P = 0.24). Among the cabin crew, the estimated cumulative cosmic radiation dose was not related to the increased skin cancer risk [adjusted odds ratio (OR) = 0.75, 95% confidence interval (CI): 0.57-1.00]. The highest plausible risk of skin cancer for estimated cosmic radiation dose was estimated as 9% per 10 mSv. The skin cancer cases had higher host characteristics scores than the non-cases among cabin crew (adjusted OR = 1.43, 95% CI: 1.01-2.04). Our results indicate no difference between the female cabin crew and the general female population in the prevalence of factors generally associated with incidence of skin cancer. Exposure to cosmic radiation did not explain the excess of skin cancer among the studied cabin crew in this study. PMID:23316078

  12. Risk factors for skin cancer among Finnish airline cabin crew.

    PubMed

    Kojo, Katja; Helminen, Mika; Pukkala, Eero; Auvinen, Anssi

    2013-07-01

    Increased incidence of skin cancers among airline cabin crew has been reported in several studies. We evaluated whether the difference in risk factor prevalence between Finnish airline cabin crew and the general population could explain the increased incidence of skin cancers among cabin crew, and the possible contribution of estimated occupational cosmic radiation exposure. A self-administered questionnaire survey on occupational, host, and ultraviolet radiation exposure factors was conducted among female cabin crew members and females presenting the general population. The impact of occupational cosmic radiation dose was estimated in a separate nested case-control analysis among the participating cabin crew (with 9 melanoma and 35 basal cell carcinoma cases). No considerable difference in the prevalence of risk factors of skin cancer was found between the cabin crew (N = 702) and the general population subjects (N = 1007) participating the study. The mean risk score based on all the conventional skin cancer risk factors was 1.43 for cabin crew and 1.44 for general population (P = 0.24). Among the cabin crew, the estimated cumulative cosmic radiation dose was not related to the increased skin cancer risk [adjusted odds ratio (OR) = 0.75, 95% confidence interval (CI): 0.57-1.00]. The highest plausible risk of skin cancer for estimated cosmic radiation dose was estimated as 9% per 10 mSv. The skin cancer cases had higher host characteristics scores than the non-cases among cabin crew (adjusted OR = 1.43, 95% CI: 1.01-2.04). Our results indicate no difference between the female cabin crew and the general female population in the prevalence of factors generally associated with incidence of skin cancer. Exposure to cosmic radiation did not explain the excess of skin cancer among the studied cabin crew in this study.

  13. Assessment of risk to Boeing commerical transport aircraft from carbon fibers. [fiber release from graphite/epxoy materials

    NASA Technical Reports Server (NTRS)

    Clarke, C. A.; Brown, E. L.

    1980-01-01

    The possible effects of free carbon fibers on aircraft avionic equipment operation, removal costs, and safety were investigated. Possible carbon fiber flow paths, flow rates, and transfer functions into the Boeing 707, 727, 737, 747 aircraft and potentially vulnerable equipment were identified. Probabilities of equipment removal and probabilities of aircraft exposure to carbon fiber were derived.

  14. Redesign of Transjakarta Bus Driver's Cabin

    NASA Astrophysics Data System (ADS)

    Mardi Safitri, Dian; Azmi, Nora; Singh, Gurbinder; Astuti, Pudji

    2016-02-01

    Ergonomic risk at work stations with type Seated Work Control was one of the problems faced by Transjakarta bus driver. Currently “Trisakti” type bus, one type of bus that is used by Transjakarta in corridor 9, serving route Pinang Ranti - Pluit, gained many complaints from drivers. From the results of Nordic Body Map questionnaires given to 30 drivers, it was known that drivers feel pain in the neck, arms, hips, and buttocks. Allegedly this was due to the seat position and the button/panel bus has a considerable distance range (1 meter) to be achieved by drivers. In addition, preliminary results of the questionnaire using Workstation Checklist identified their complaints about uncomfortable cushion, driver's seat backrest, and the exact position of the AC is above the driver head. To reduce the risk level of ergonomics, then did research to design the cabin by using a generic approach to designing products. The risk analysis driver posture before the design was done by using Rapid Upper Limb Assessment (RULA), Rapid Entire Body Assessment (REBA), and Quick Exposure Checklist (QEC), while the calculation of the moment the body is done by using software Mannequin Pro V10.2. Furthermore, the design of generic products was done through the stages: need metric-matrix, house of quality, anthropometric data collection, classification tree concept, concept screening, scoring concept, design and manufacture of products in the form of two-dimensional. While the design after design risk analysis driver posture was done by using RULA, REBA, and calculation of moments body as well as the design visualized using software 3DMax. From the results of analysis before the draft design improvements cabin RULA obtained scores of 6, REBA 9, and the result amounted to 57.38% QEC and moment forces on the back is 247.3 LbF.inch and on the right hip is 72.9 LbF.in. While the results of the proposed improvements cabin design RULA obtained scores of 3, REBA 4, and the moment of force on

  15. 2. Onroom log cabin (right), log root cellar (center), tworoom ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. On-room log cabin (right), log root cellar (center), two-room log cabin (left), and post-and-beam garage (background). View to southwest. - William & Lucina Bowe Ranch, County Road 44, 0.1 mile northeast of Big Hole River Bridge, Melrose, Silver Bow County, MT

  16. 14 CFR 25.843 - Tests for pressurized cabins.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....843 Tests for pressurized cabins. (a) Strength test. The complete pressurized cabin, including doors... each door and emergency exit, to show that they operate properly after being subjected to the flight tests prescribed in paragraph (b)(3) of this section. Fire Protection...

  17. 2. View of immediate setting of Free Cabin along west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of immediate setting of Free Cabin along west side of State Route 121/U.S. Highway 25/Peach Orchard Road, facing north. - Free Cabin, State Route 121-U.S. Highway 25-Peach Orchard Road, Hephzibah, Richmond County, GA

  18. 6. View of immediate setting from behind Free Cabin looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. View of immediate setting from behind Free Cabin looking towards State Route 121/U.S. Highway 25/Peach Orchard Road, facing east. - Free Cabin, State Route 121-U.S. Highway 25-Peach Orchard Road, Hephzibah, Richmond County, GA

  19. 1. View of immediate setting of Free Cabin along east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of immediate setting of Free Cabin along east side of State Route 121/U.S. Highway 25/Peach Orchard Road, facing north. - Free Cabin, State Route 121-U.S. Highway 25-Peach Orchard Road, Hephzibah, Richmond County, GA

  20. 3. View of immediate setting of Free Cabin along west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View of immediate setting of Free Cabin along west side of State Route 121/U.S. Highway 25/Peach Orchard Road, facing south. - Free Cabin, State Route 121-U.S. Highway 25-Peach Orchard Road, Hephzibah, Richmond County, GA

  1. 4. View of immediate setting of Free Cabin along east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View of immediate setting of Free Cabin along east side of State Route 121/U.S. Highway 25/Peach Orchard Road, facing south. - Free Cabin, State Route 121-U.S. Highway 25-Peach Orchard Road, Hephzibah, Richmond County, GA

  2. 13. VIEW LOOKING AFT IN PILOTS' CABIN ON 'TWEEN DECK, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW LOOKING AFT IN PILOTS' CABIN ON 'TWEEN DECK, SHOWING BUNKS, CABIN SKYLIGHT, WOOD STOVE (WITHOUT CHIMNEY PIPE) LADDERWAY, AND OPEN DOOR IN STERN BULKHEAD, GIVING ACCESS TO INTERIOR OF COUNTER - Pilot Schooner "Alabama", Moored in harbor at Vineyard Haven, Vineyard Haven, Dukes County, MA

  3. Fire safety evaluation of aircraft lavatory and cargo compartments

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Hilado, C. J.; Anderson, R. A.; Tustin, E.; Arnold, D. B.; Gaume, J. G.; Binding, A. T.; Mikeska, J. L.

    1976-01-01

    A program of experimental fires has been carried out to assess fire containment and other fire hazards in lavatory and cargo compartments of wide-body jet aircraft by evaluation of ignition time, burn-through time, fire spread rate, smoke density, evolution of selected combustible and toxic gases, heat flux, and detector response. Two tests were conducted: one involving a standard Boeing 747 lavatory and one involving a simulated DC-10 cargo compartment. A production lavatory module was furnished with conventional materials and was installed in an enclosure. The ignition load was four polyethylene bags containing paper and plastic waste materials representive of a maximum flight cabin waste load. Standard aircraft ventilation conditions were utilized and the lavatory door was closed during the test. Lavatory wall and ceiling panels contained the fire spread during the 30-minute test. Smoke was driven into the enclosure primarily through the ventilation grille in the door and through the gaps between the bifold door and the jamb where the door distorted from the heat earlier in the test. The interior of the lavatory was almost completely destroyed by the fire.

  4. A preliminary design study of a laminar flow control wing of composite materials for long range transport aircraft

    NASA Technical Reports Server (NTRS)

    Swinford, G. R.

    1976-01-01

    The results of an aircraft wing design study are reported. The selected study airplane configuration is defined. The suction surface, ducting, and compressor systems are described. Techniques of manufacturing suction surfaces are identified and discussed. A wing box of graphite/epoxy composite is defined. Leading and trailing edge structures of composite construction are described. Control surfaces, engine installation, and landing gear are illustrated and discussed. The preliminary wing design is appraised from the standpoint of manufacturing, weight, operations, and durability. It is concluded that a practical laminar flow control (LFC) wing of composite material can be built, and that such a wing will be lighter than an equivalent metal wing. As a result, a program of suction surface evaluation and other studies of configuration, aerodynamics, structural design and manufacturing, and suction systems are recommended.

  5. Pre-crack fatigue life assessment of relevant aircraft materials using fractal analysis of eddy current test data

    NASA Astrophysics Data System (ADS)

    Schreiber, Jürgen; Cikalova, Ulana; Hillmann, Susanne; Meyendorf, Norbert; Hoffmann, Jochen

    2013-01-01

    Successful determination of residual fatigue life requires a comprehensive understanding of the fatigue related material deformation mechanism. Neither macroscopic continuum mechanics nor micromechanic observations provide sufficient data to explain subsequent deformation structures occurring during the fatigue life of a metallic structure. Instead mesomechanic deformation on different scaling levels can be studied by applying fractal analysis of various means of nondestructive inspection measurements. The resulting fractal dimension data can be correlated to the actual material damage states, providing an estimation of the remaining residual fatigue life before macroscopic fracture develops. Recent efforts were aimed to apply the fractal concept to aerospace relevant materials AA7075-T6 and Ti-6Al-4V. Proven and newly developed fractal analysis methods were applied to eddy current (EC) measurements of fatigued specimens, with the potential to transition this approach to an aircraft for an in-situ nondestructive inspection. The occurrence of mesomechanic deformation at the material surface of both AA7075-T6 and Ti-6Al-4V specimens could be established via topography images using confocal microscopy (CM). Furthermore, a pulsed eddy current (PEC) approach was developed, combined with a sophisticated new fractal analysis algorithm based on short pulse excitation and evaluation of EC relaxation behavior. This paper presents concept, experimental realization, fractal analysis procedures, and results of this effort.

  6. Energy absorption capability of foam-based composite materials and their applications as seat cushions in aircraft crashworthiness

    NASA Astrophysics Data System (ADS)

    Kh. Beheshti, Hamid

    This study is focusing on the application of foam materials in aviation. These materials are being used for acoustic purposes, as padding in the finished interior panels of the aircraft, and as seat cushions. Foams are mostly used in seating applications. Since seat cushion is directly interacting with the body of occupant, it has to be ergonomically comfortable beside of absorbing the energy during the impact. All the seats and seat cushions have to pass regulations defined by Federal Aviation Administration (FAA). In fact, all airplane companies are required to certify the subcomponents of aircrafts before installing them on the main structure, fuselage. Current Federal Aviation Administration Regulations require a dynamic sled test of the entire seat system for certifying the seat cushions. This dynamic testing is required also for replacing the deteriorated cushions with new cushions. This involves a costly and time-consuming certification process. AGATE group has suggested a procedure based on quasi-static testing in order to certify new seat cushions without conducting full-scale dynamic sled testing. AGATE subcomponent methodology involves static tests of the energy-absorbing foam cushions and design validation by conducting a full-scale dynamic seat test. Microscopic and macroscopic studies are necessary to provide a complete understanding about performance of foams during the crash. Much investigation has been done by different sources to obtain the reliable modeling in terms of demonstration of mechanical behavior of foams. However, rate sensitivity of foams needs more attention. A mathematical hybrid dynamic model for the cushion underneath of the human body will be taken into consideration in this research. Analytical and finite element codes such as MADYMO and LS-DYNA codes have the potential to greatly speed up the crashworthy design process, to help certify seats and aircraft to dynamic crash loads, to predict seat and occupant response to impact

  7. Lightning effects on aircraft

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Direct and indirect effects of lightning on aircraft were examined in relation to aircraft design. Specific trends in design leading to more frequent lightning strikes were individually investigated. These trends included the increasing use of miniaturized, solid state components in aircraft electronics and electric power systems. A second trend studied was the increasing use of reinforced plastics and other nonconducting materials in place of aluminum skins, a practice that reduces the electromagnetic shielding furnished by a conductive skin.

  8. Engine-induced structural-borne noise in a general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Unruh, J. F.; Scheidt, D. C.; Pomerening, D. J.

    1979-01-01

    Structural borne interior noise in a single engine general aviation aircraft was studied to determine the importance of engine induced structural borne noise and to determine the necessary modeling requirements for the prediction of structural borne interior noise. Engine attached/detached ground test data show that engine induced structural borne noise is a primary interior noise source for the single engine test aircraft, cabin noise is highly influenced by responses at the propeller tone, and cabin acoustic resonances can influence overall noise levels. Results from structural and acoustic finite element coupled models of the test aircraft show that wall flexibility has a strong influence on fundamental cabin acoustic resonances, the lightweight fuselage structure has a high modal density, and finite element analysis procedures are appropriate for the prediction of structural borne noise.

  9. CABINS: Case-based interactive scheduler

    NASA Technical Reports Server (NTRS)

    Miyashita, Kazuo; Sycara, Katia

    1992-01-01

    In this paper we discuss the need for interactive factory schedule repair and improvement, and we identify case-based reasoning (CBR) as an appropriate methodology. Case-based reasoning is the problem solving paradigm that relies on a memory for past problem solving experiences (cases) to guide current problem solving. Cases similar to the current case are retrieved from the case memory, and similarities and differences of the current case to past cases are identified. Then a best case is selected, and its repair plan is adapted to fit the current problem description. If a repair solution fails, an explanation for the failure is stored along with the case in memory, so that the user can avoid repeating similar failures in the future. So far we have identified a number of repair strategies and tactics for factory scheduling and have implemented a part of our approach in a prototype system, called CABINS. As a future work, we are going to scale up CABINS to evaluate its usefulness in a real manufacturing environment.

  10. Study to develop improved fire resistant aircraft passenger seat materials, phase 2

    NASA Technical Reports Server (NTRS)

    Duskin, F. E.; Shook, W. H.; Trabold, E. L.; Spieth, H. H.

    1978-01-01

    Fire tests are reported of improved materials in multilayered combinations representative of cushion configurations. Tests were conducted to determine their thermal, smoke, and fire resistance characteristics. Additionally, a source fire consisting of one and one-half pounds of newspaper in a tented configuration was developed. Finally, a preliminary seat specification was written based upon materials data and general seat design criteria.

  11. Aircraft Environmental System Mechanic, 2-9. Block II--Air Conditioning Systems. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This publication contains a teaching guide and student instructional materials for conducting a high school or adult vocational education course to train persons to perform duties as an aircraft environmental systems mechanic. Course content has been adapted from a military course. The instructional design for this course is self-pace and/or small…

  12. WATERCOLOR RENDERING OF CABIN JOHN BRIDGE SCAFFOLDING. CAPTAIN M.C. MEIGS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WATERCOLOR RENDERING OF CABIN JOHN BRIDGE SCAFFOLDING. CAPTAIN M.C. MEIGS, CHIEF ENGINEER; ALFRED RIVES, ASSISTANT ENGINEER, DELINEATOR. NOVEMBER 30, 1859 - Cabin John Aqueduct Bridge, MacArthur Boulevard, spanning Cabin John Creek at Parkway, Cabin John, Montgomery County, MD

  13. Enhanced radiographic imaging of defects in aircraft structure materials with the dehazing method

    NASA Astrophysics Data System (ADS)

    Yahaghi, Effat; Movafeghi, Amir; Mohmmadzadeh, Nooreddin

    2015-04-01

    The aircraft structures are made of aluminium alloys because of its various advantages, including ease of manufacture, high tolerance and ease of maintenance. Corrosions and cracks are often found in high-strength aluminium alloys. The industrial radiographic testing method and digital radiography are two most important tools for detecting different kinds of defects in aluminium structures. However, because of greater sensitivity and dynamic range of phosphor plates in computed radiography than in film, digital radiography can produce clear and high-contrast images, but digital radiography images appear foggy. In this study, a dehazing algorithm is implemented for the digital radiography images of airplane parts to remove fog. The used dehazing algorithm is based on the dark channel prior and it is based on the statistics of outdoor haze-free images. In most of the local regions of the radiography images, some pixels very often have very low intensity in at least one colour (RGB: red, green, blue) channel which are called dark pixels. In hazy radiography images, the intensity of these dark pixels in that channel is mainly contributed by scattering. Therefore, these dark pixels can directly provide an accurate estimation of the haze transmission and combining a haze imaging model and a soft matting interpolation method can be recovered a high-quality haze free in the radiography image and produce a good depth map and the defects. The results show that the fog-removed images have better contrast and the shapes of defects are very clear. In addition, some invisible cracks in the digital images can be seen in the defogged image.

  14. Lightning protection of aircraft

    NASA Technical Reports Server (NTRS)

    Fisher, F. A.; Plumer, J. A.

    1977-01-01

    The current knowledge concerning potential lightning effects on aircraft and the means that are available to designers and operators to protect against these effects are summarized. The increased use of nonmetallic materials in the structure of aircraft and the constant trend toward using electronic equipment to handle flight-critical control and navigation functions have served as impetus for this study.

  15. Cost/benefit analysis of advanced materials technologies for future aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Bisset, J. W.

    1976-01-01

    The cost/benefits of advance commercial gas turbine materials are described. Development costs, estimated payoffs and probabilities of success are discussed. The materials technologies investigated are: (1) single crystal turbine blades, (2) high strength hot isostatic pressed turbine disk, (3) advanced oxide dispersion strengthened burner liner, (4) bore entry cooled hot isostatic pressed turbine disk, (5) turbine blade tip - outer airseal system, and (6) advance turbine blade alloys.

  16. Safer Aviation Materials Tested

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    2001-01-01

    A series of thermally stable polymer samples were tested. These materials are called low heat release materials and are designed for aircraft interior decorative materials. The materials are designed to give off a minimum amount of noxious gases when heated, which increases the possibility that people can escape from a burning aircraft. New cabin materials have suitably low heat release so that fire does not spread, toxic chemicals are not given off, and the fire-emergency escape time for crew and passengers is lengthened. These low heat-release materials have a variety of advantages and applications: interiors for ground-based facilities, interiors of space vehicles, and many commercial fire-protection environments. A microscale combustion calorimeter at the Federal Aviation Administration's (FAA) Technical Center tested NASA Langley Research Center materials samples. The calorimeter is shown. A sharp, quantitative, and reproducible heat-release-rate peak is obtained in the microscale heat-release-rate test. The newly tested NASA materials significantly reduced the heat release capacity and total heat release. The thermal stability and flammability behavior of the samples was very good. The new materials demonstrated a factor of 4 reduction in total heat release over ULTEM (a currently used material). This information is provided in the following barchart. In other tests, the materials showed greater than a factor 9 reduction in heat-release capacity over ULTEM. The newly tested materials were developed for low dielectric constant, low color, and good solubility. A scale up of the material samples is needed to determine the repeatability of the performance in larger samples. Larger panels composed of the best candidate materials will be tested in a larger scale FAA Technical Center fire facility. The NASA Glenn Research Center, Langley (Jeff Hinkley), and the FAA Technical Center (Richard Lyon) cooperatively tested these materials for the Accident Mitigation

  17. Cockpit-cabin communication: I. A tale of two cultures.

    PubMed

    Chute, R D; Wiener, E L

    1995-01-01

    Several dramatic accidents have emphasized certain deficiencies in cockpit-cabin coordination and communication. There are historical, organizational, environmental, psychosocial, and regulatory factors that have led to misunderstandings, problematic attitudes, and suboptimal interactions between the cockpit and cabin crews. Our research indicates the basic problem is that these two crews represent two distinct and separate cultures and that this separation serves to inhibit satisfactory teamwork. A survey was conducted at two airlines to measure attitudes of cockpit and cabin crews concerning the effectiveness of their communications. This article includes recommendations for the improvement of communications across the two cultures.

  18. Mortality from cancer and other causes among airline cabin attendants in Germany, 1960-1997.

    PubMed

    Blettner, Maria; Zeeb, Hajo; Langner, Ingo; Hammer, Gaël P; Schafft, Thomas

    2002-09-15

    Airline cabin attendants are exposed to several potential occupational hazards, including cosmic radiation. Little is known about the mortality pattern and cancer risk of these persons. The authors conducted a historical cohort study among cabin attendants who had been employed by two German airlines in 1953 or later. Mortality follow-up was completed through December 31, 1997. The authors computed standardized mortality ratios (SMRs) for specific causes of death using German population rates. The effect of duration of employment was evaluated with Poisson regression. The cohort included 16,014 women and 4,537 men (approximately 250,000 person-years of follow-up). Among women, the total number of deaths (n = 141) was lower than expected (SMR = 0.79, 95% confidence interval (CI): 0.67, 0.94). The SMR for all cancers (n = 44) was 0.79 (95% CI: 0.54, 1.17), and the SMR for breast cancer (n = 19) was 1.28 (95% CI: 0.72, 2.20). The SMR did not increase with duration of employment. Among men, 170 deaths were observed (SMR = 1.10, 95% CI: 0.94, 1.28). The SMR for all cancers (n = 21) was 0.71 (95% CI: 0.41, 1.18). The authors found a high number of deaths from acquired immunodeficiency syndrome (SMR = 40; 95% CI: 28.9, 55.8) and from aircraft accidents among the men. In this cohort, ionizing radiation probably contributed less to the small excess in breast cancer mortality than reproductive risk factors. Occupational causes seem not to contribute strongly to the mortality of airline cabin attendants. PMID:12226003

  19. Cost/benefit analysis of advanced materials technologies for future aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Stephens, G. E.

    1980-01-01

    The materials technologies studied included thermal barrier coatings for turbine airfoils, turbine disks, cases, turbine vanes and engine and nacelle composite materials. The cost/benefit of each technology was determined in terms of Relative Value defined as change in return on investment times probability of success divided by development cost. A recommended final ranking of technologies was based primarily on consideration of Relative Values with secondary consideration given to changes in other economic parameters. Technologies showing the most promising cost/benefits were thermal barrier coated temperature nacelle/engine system composites.

  20. Computational Design of Materials: Planetary Entry to Electric Aircraft and Beyond

    NASA Technical Reports Server (NTRS)

    Thompson, Alexander; Lawson, John W.

    2014-01-01

    NASA's projects and missions push the bounds of what is possible. To support the agency's work, materials development must stay on the cutting edge in order to keep pace. Today, researchers at NASA Ames Research Center perform multiscale modeling to aid the development of new materials and provide insight into existing ones. Multiscale modeling enables researchers to determine micro- and macroscale properties by connecting computational methods ranging from the atomic level (density functional theory, molecular dynamics) to the macroscale (finite element method). The output of one level is passed on as input to the next level, creating a powerful predictive model.

  1. Materials science on parabolic aircraft: The FY 1987-1989 KC-135 microgravity test program

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A. (Editor)

    1993-01-01

    This document covers research results from the KC-135 Materials Science Program managed by MSFC for the period FY87 through FY89. It follows the previous NASA Technical Memorandum for FY84-86 published in August 1988. This volume contains over 30 reports grouped into eight subject areas covering acceleration levels, space flight hardware, transport and interfacial studies, thermodynamics, containerless processing, welding, melt/crucible interactions, and directional solidification. The KC-135 materials science experiments during FY87-89 accomplished direct science, preparation for space flight experiments, and justification for new experiments in orbit.

  2. Structure-borne noise estimates for the PTA aircraft

    NASA Technical Reports Server (NTRS)

    Unruh, James F.

    1990-01-01

    Estimates of the level of in-flight structure-borne noise transmission in the Propfan Test Assessment Aircraft were carried out for the first three blade passage frequencies. The procedure used combined the frequency response functions of wing strain to cabin sound pressure level (SPL) response obtained during ground test with in-flight measured wing strain response data. The estimated cabin average in-flight structure-borne noise levels varied from 64 to 84 dB, with an average level of 74 dB. The estimates showed little dependence on engine/propeller power, flight altitude, or flight Mach number. In general, the bare cabin noise levels decreased with increasing propeller tone, giving rise to a plausible structure-borne noise transmission problem at the higher blade passage tones. Without knowledge of the effects of a high insertion loss side wall treatment on structure-borne noise transmission, no quantitative conclusions could be made.

  3. Aircraft Electrical Repairman Technician, 2-2. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    These military-developed curriculum materials consist of a volume of text information; a student workbook containing objectives, reading assignments, chapter review exercises, and answers; a volume review exercise; and two illustration booklets for use with the student exercises. Covered in the course are the following topics: use and maintenance…

  4. FD-TD calculation with composite materials. Application to C160 aircraft measurements

    NASA Technical Reports Server (NTRS)

    Alliot, J. C.; Grando, J.; Issac, F.; Ferrieres, X.

    1991-01-01

    In a frequency domain in which a material thickness is smaller than the skin depth, a formalism based on the sheet impedance concept was developed and introduced in the FD-TD (finite difference-time domain) code ALICE. The predictive capabilities of the 3D code was evaluated by comparison to analytical and experimental data. The following subject areas are covered: low frequency electromagnetic penetration of loaded apertures; FD-TD modeling; and in-flight experiment modeling.

  5. Advanced composites structural concepts and materials technologies for primary aircraft structures: Structural response and failure analysis

    NASA Technical Reports Server (NTRS)

    Dorris, William J.; Hairr, John W.; Huang, Jui-Tien; Ingram, J. Edward; Shah, Bharat M.

    1992-01-01

    Non-linear analysis methods were adapted and incorporated in a finite element based DIAL code. These methods are necessary to evaluate the global response of a stiffened structure under combined in-plane and out-of-plane loading. These methods include the Arc Length method and target point analysis procedure. A new interface material model was implemented that can model elastic-plastic behavior of the bond adhesive. Direct application of this method is in skin/stiffener interface failure assessment. Addition of the AML (angle minus longitudinal or load) failure procedure and Hasin's failure criteria provides added capability in the failure predictions. Interactive Stiffened Panel Analysis modules were developed as interactive pre-and post-processors. Each module provides the means of performing self-initiated finite elements based analysis of primary structures such as a flat or curved stiffened panel; a corrugated flat sandwich panel; and a curved geodesic fuselage panel. This module brings finite element analysis into the design of composite structures without the requirement for the user to know much about the techniques and procedures needed to actually perform a finite element analysis from scratch. An interactive finite element code was developed to predict bolted joint strength considering material and geometrical non-linearity. The developed method conducts an ultimate strength failure analysis using a set of material degradation models.

  6. Medical and safety monitoring system over an in-cabin optical wireless network

    NASA Astrophysics Data System (ADS)

    Marinos, D.; Leonidas, F.; Vlissidis, N.; Giovanis, C.; Pagiatakis, G.; Aidinis, C.; Vassilopoulos, C.; Pistner, T.; Schmitt, N.; Klaue, J.

    2011-02-01

    An integrated health and safety monitoring system for aircraft environments using commercially available medical sensor modules and custom made safety sensors in conjunction with an appropriate database supervised through a human-machine interface is implemented. The application described aims at preventing critical health- or safety-related situations during the flight. The health monitoring part of the system is capable of collecting all relevant data, essential in analysing a passenger's health profile. These data, comprising of body temperature, blood pressure, pulse oximetry and electrocardiogram, are throughput and transmitted over a wireless optical intra-cabin link to a server. Furthermore, and in order to reduce the cabin crew workload, along with the health data from a specific passenger group, seat-embedded safety sensors provide information for all passengers' flight safety parameters (such as table upright, seat-belt closed, etc.). The data gathered by the system in a central server can, in its entirety, be stored, processed or acted upon in real time.

  7. 19. UPPER STATION, FIRST FLOOR, OPERATOR'S CABIN, DOORS TO INCLINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. UPPER STATION, FIRST FLOOR, OPERATOR'S CABIN, DOORS TO INCLINE PLANE CARS, LOOKING WEST. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  8. 18. UPPER STATION, FIRST FLOOR, OPERATOR'S CABIN, LOOKING NORTH, NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. UPPER STATION, FIRST FLOOR, OPERATOR'S CABIN, LOOKING NORTH, NORTHEAST. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  9. 19. View of interior of bridge operator's control cabin, with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. View of interior of bridge operator's control cabin, with manual control levers at left, and electrical equipment cabinet at right; looking west - India Point Railroad Bridge, Spanning Seekonk River between Providence & East Providence, Providence, Providence County, RI

  10. 18. VIEW OF STAIRCASE LEADING TO SOCIAL HALL ON CABIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF STAIRCASE LEADING TO SOCIAL HALL ON CABIN (POOP) DECK, LOCATED IN CENTER OF FORWARD END OF DINING SALOON - Steam Schooner WAPAMA, Kaiser Shipyard No. 3 (Shoal Point), Richmond, Contra Costa County, CA

  11. 18. VERTICAL VIEW. DETAIL, VIEW FROM LANDING ON CONTROL CABIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VERTICAL VIEW. DETAIL, VIEW FROM LANDING ON CONTROL CABIN LADDER, AT APPROXIMATELY BRIDGE DECK LEVEL, SHOWING PORTION OF GEAR TRAIN AT TURNTABLE. - Gianella Bridge, Spanning Sacramento River at State Highway 32, Hamilton City, Glenn County, CA

  12. 66. View across saloon toward open door of spare cabin, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    66. View across saloon toward open door of spare cabin, displayed as children's room, hanging bottle rack in foreground, beneath skylight. - Ship BALCLUTHA, 2905 Hyde Street Pier, San Francisco, San Francisco County, CA

  13. 13. CO'S STATEROOM (CABIN'S QUARTERS), PORT EXTERIOR. NOTE PORTHOLE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. CO'S STATEROOM (CABIN'S QUARTERS), PORT EXTERIOR. NOTE PORTHOLE AND WOODEN FRAME WINDOWS. - U.S. Coast Guard Cutter WHITE LUPINE, U.S. Coast Guard Station Rockland, east end of Tillson Avenue, Rockland, Knox County, ME

  14. 4. VIEW OF EMPIRE, STONE CABIN AND TIP TOP MINES. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF EMPIRE, STONE CABIN AND TIP TOP MINES. EMPIRE TAILING PILE IS VISIBLE IN LOWER CENTER (SLOPE WITH ORE CHUTE IS HIDDEN BY TREES ABOVE TAILINGS), TIP TOP IS VISIBLE IN RIGHT THIRD AND SLIGHTLY UPHILL IN ELEVATION FROM UPPER EMPIRE TAILINGS,(TO LOCATE, FIND THE V-SHAPED SPOT OF SNOW JUST BELOW THE RIDGE LINE ON FAR RIGHT OF IMAGE. TIP TOP BUILDING IS VISIBLE IN THE LIGHT AREA BELOW AND SLIGHTLY LEFT OF V-SHAPED SNOW SPOT), AND STONE CABIN II IS ALSO VISIBLE, (TO LOCATE, USE A STRAIGHT EDGE AND ALIGN WITH EMPIRE TAILINGS. THIS WILL DIRECT ONE THROUGH THE EDGE OF STONE CABIN II, WHICH IS THE DARK SPOT JUST BELOW THE POINT WHERE THE RIDGE LINE TREES STOP). STONE CABIN I IS LOCATED IN GENERAL VICINITY OF THE LONE TREE ON FAR LEFT RIDGE LINE. ... - Florida Mountain Mining Sites, Silver City, Owyhee County, ID

  15. Boat Deck, Cabin Deck, Bridge Deck, Flat House Top, Stage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Boat Deck, Cabin Deck, Bridge Deck, Flat House Top, Stage Top, Mast House Top, Upper Deck, Flat House Tops, Forecastle Deck, Main Deck - American Racer, Suisun Bay Reserve Fleet, Benicia, Solano County, CA

  16. 63. VIEW SHOWING THE RELATIONSHIP BETWEEN THE SWITCH CABIN AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. VIEW SHOWING THE RELATIONSHIP BETWEEN THE SWITCH CABIN AND THE LAMP/GENERATOR BUILDING FOUNDATION ADJACENT TO IT, LOOKING NORTHEAST - Independent Coal & Coke Company, Kenilworth, Carbon County, UT

  17. 17. DETAIL VIEW OF CUPOLA ATOP OPERATOR'S CABIN WHICH MOUNTS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. DETAIL VIEW OF CUPOLA ATOP OPERATOR'S CABIN WHICH MOUNTS SIGNAL HORNS, WEATHER VANE - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  18. 1. SOUTHEAST REAR WALL AND NORTHEAST SIDE WALL OF CABINS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SOUTHEAST REAR WALL AND NORTHEAST SIDE WALL OF CABINS FORGEMAN'S HOUSE NO. 1 AT RIGHT - Mount Etna Iron Works, Forgeman's House No. 1, Legislative Route 07020 between junctions of T.R. 461 & 463, Williamsburg, Blair County, PA

  19. 36 CFR 13.176 - Cabins in wilderness areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... wilderness area designated by ANILCA, a new public use cabin or shelter may be constructed, maintained and... visitor services, but not to the exclusion of the general public. Use of Temporary Facilities Related...

  20. 36 CFR 13.176 - Cabins in wilderness areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... wilderness area designated by ANILCA, a new public use cabin or shelter may be constructed, maintained and... visitor services, but not to the exclusion of the general public. Use of Temporary Facilities Related...

  1. A domain-specific design architecture for composite material design and aircraft part redesign

    NASA Technical Reports Server (NTRS)

    Punch, W. F., III; Keller, K. J.; Bond, W.; Sticklen, J.

    1992-01-01

    Advanced composites have been targeted as a 'leapfrog' technology that would provide a unique global competitive position for U.S. industry. Composites are unique in the requirements for an integrated approach to designing, manufacturing, and marketing of products developed utilizing the new materials of construction. Numerous studies extending across the entire economic spectrum of the United States from aerospace to military to durable goods have identified composites as a 'key' technology. In general there have been two approaches to composite construction: build models of a given composite materials, then determine characteristics of the material via numerical simulation and empirical testing; and experience-directed construction of fabrication plans for building composites with given properties. The first route sets a goal to capture basic understanding of a device (the composite) by use of a rigorous mathematical model; the second attempts to capture the expertise about the process of fabricating a composite (to date) at a surface level typically expressed in a rule based system. From an AI perspective, these two research lines are attacking distinctly different problems, and both tracks have current limitations. The mathematical modeling approach has yielded a wealth of data but a large number of simplifying assumptions are needed to make numerical simulation tractable. Likewise, although surface level expertise about how to build a particular composite may yield important results, recent trends in the KBS area are towards augmenting surface level problem solving with deeper level knowledge. Many of the relative advantages of composites, e.g., the strength:weight ratio, is most prominent when the entire component is designed as a unitary piece. The bottleneck in undertaking such unitary design lies in the difficulty of the re-design task. Designing the fabrication protocols for a complex-shaped, thick section composite are currently very difficult. It is in

  2. Thermal Storage System for Electric Vehicle Cabin Heating Component and System Analysis

    SciTech Connect

    LaClair, Tim J; Gao, Zhiming; Abdelaziz, Omar; Wang, Mingyu; WolfeIV, Edward; Craig, Timothy

    2016-01-01

    Cabin heating of current electric vehicle (EV) designs is typically provided using electrical energy from the traction battery, since waste heat is not available from an engine as in the case of a conventional automobile. In very cold climatic conditions, the power required for space heating of an EV can be of a similar magnitude to that required for propulsion of the vehicle. As a result, its driving range can be reduced very significantly during the winter season, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage from an advanced phase change material (PCM) has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The present paper focuses on the modeling and analysis of this electrical PCM-Assisted Thermal Heating System (ePATHS) and is a companion to the paper Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating. A detailed heat transfer model was developed to simulate the PCM heat exchanger that is at the heart of the ePATHS and was subsequently used to analyze and optimize its design. The results from this analysis were integrated into a MATLAB Simulink system model to simulate the fluid flow, pressure drop and heat transfer in all components of the ePATHS. The system model was then used to predict the performance of the climate control system in the vehicle and to evaluate control strategies needed to achieve the desired temperature control in the cabin. The analysis performed to design the ePATHS is described in detail and the system s predicted performance in a vehicle HVAC system is presented.

  3. Advanced Supported Liquid Membranes for Carbon Dioxide Control in Cabin Applications

    NASA Technical Reports Server (NTRS)

    Wickham, David T.; Gleason, Kevin J.; Engel, Jeffrey R.; Chullen, Cinda

    2016-01-01

    The development of new, robust, life support systems is critical to NASA's continued progress in space exploration. One vital function is maintaining the carbon dioxide (CO2) concentration in the cabin at levels that do not impair the health or performance of the crew. The CO2 removal assembly (CDRA) is the current CO2 control technology on-board the International Space Station (ISS). Although the CDRA has met the needs of the ISS to date, the repeated cycling of the molecular sieve sorbent causes it to break down into small particles that clog filters or generate dust in the cabin. This reduces reliability and increases maintenance requirements. Another approach that has potential advantages over the current system is a membrane that separates CO2 from air. In this approach, cabin air contacts one side of the membrane while other side of the membrane is maintained at low pressure to create a driving force for CO2 transport across the membrane. In this application, the primary power requirement is for the pump that creates the low pressure and then pumps the CO2 to the oxygen recovery system. For such a membrane to be practical, it must have high CO2 permeation rate and excellent selectivity for CO2 over air. Unfortunately, conventional gas separation membranes do not have adequate CO2 permeability and selectivity to meet the needs of this application. However, the required performance could be obtained with a supported liquid membrane (SLM), which consists of a microporous material filled with a liquid that selectively reacts with CO2 over air. In a recently completed Phase II SBIR project, Reaction Systems, Inc. fabricated an SLM that is very close to meeting permeability and selectivity objectives for use in the advanced space suit portable life support system. This paper describes work carried out to evaluate its potential for use in spacecraft cabin application.

  4. Effect of Wire Material on Productivity and Surface Integrity of WEDM-Processed Inconel 706 for Aircraft Application

    NASA Astrophysics Data System (ADS)

    Sharma, Priyaranjan; Chakradhar, D.; Narendranath, S.

    2016-07-01

    Inconel 706 is a recently developed superalloy for aircraft application, particularly in turbine disk which is among the most critical components in the gas turbine engines. Recently, wire electrical discharge machining (WEDM) attained success in machining of gas turbine components which require complex shape profiles with high precision. To achieve the feasibility in machining of these components, the research work has been conducted on Inconel 706 superalloy using WEDM process. And, the effect of different wire materials (i.e., hard brass wire, diffused wire, and zinc-coated wire) on WEDM performance characteristics such as cutting speed, surface topography, surface roughness, recast layer formation, residual stresses, and microstructural and metallurgical alterations have been investigated. Even though, zinc-coated wire exhibits improved productivity, hard brass wire was found to be beneficial in terms of improved surface quality of the machined parts. Additionally, lower tensile residual stresses were obtained with hard brass wire. However, diffused wire has a moderate effect on productivity and surface quality. Under high discharge energy, higher elemental changes were observed and also the white layer was detected.

  5. Challenges and Opportunities in Nde, Ishm and Material State Awareness for Aircraft Structures: us Air Force Perspective

    NASA Astrophysics Data System (ADS)

    Buynak, C. F.; Blackshire, J.; Lindgren, E. A.; Jata, K. V.

    2008-02-01

    As one of the primary data and information sources in the maintenance of USAF Aging Military Fleet, NDE plays a major role in the definition and operation of maintenance processes on these aircraft. To focus new NDE developmental efforts, the AFRL NDE R&D group has the charter to research, develop and transition new capabilities to the field and depot users. This multi-faceted task is achieved through a balanced NDE and on-board sensor development program with the ultimate goal to transition technology to the Air Force user Commands. Technology requirements for NDE and Material State Awareness emerge from Air Force Initiatives to realize Condition Based Maintenance and to develop the "Depot of the Future". This evening session will present an overview of Air Force Initiatives, emerging R&D issues for Structural Health Monitoring and NDE methodologies as well as basic research initiatives within the Air Force Research Laboratory. It is intended that the session provide an open forum to pursue paths for new technology development and application.

  6. Effect of Wire Material on Productivity and Surface Integrity of WEDM-Processed Inconel 706 for Aircraft Application

    NASA Astrophysics Data System (ADS)

    Sharma, Priyaranjan; Chakradhar, D.; Narendranath, S.

    2016-09-01

    Inconel 706 is a recently developed superalloy for aircraft application, particularly in turbine disk which is among the most critical components in the gas turbine engines. Recently, wire electrical discharge machining (WEDM) attained success in machining of gas turbine components which require complex shape profiles with high precision. To achieve the feasibility in machining of these components, the research work has been conducted on Inconel 706 superalloy using WEDM process. And, the effect of different wire materials (i.e., hard brass wire, diffused wire, and zinc-coated wire) on WEDM performance characteristics such as cutting speed, surface topography, surface roughness, recast layer formation, residual stresses, and microstructural and metallurgical alterations have been investigated. Even though, zinc-coated wire exhibits improved productivity, hard brass wire was found to be beneficial in terms of improved surface quality of the machined parts. Additionally, lower tensile residual stresses were obtained with hard brass wire. However, diffused wire has a moderate effect on productivity and surface quality. Under high discharge energy, higher elemental changes were observed and also the white layer was detected.

  7. Cabin Noise Studies for the Orion Spacecraft Crew Module

    NASA Technical Reports Server (NTRS)

    Dandaroy, Indranil; Chu, S. Reynold; Larson, Lauren; Allen, Christopher S.

    2010-01-01

    Controlling cabin acoustic noise levels in the Crew Module (CM) of the Orion spacecraft is critical for adequate speech intelligibility, to avoid fatigue and to prevent any possibility of temporary and permanent hearing loss. A vibroacoustic model of the Orion CM cabin has been developed using Statistical Energy Analysis (SEA) to assess compliance with acoustic Constellation Human Systems Integration Requirements (HSIR) for the on-orbit mission phase. Cabin noise in the Orion CM needs to be analyzed at the vehicle-level to assess the cumulative acoustic effect of various Orion systems at the crewmember's ear. The SEA model includes all major structural and acoustic subsystems inside the CM including the Environmental Control and Life Support System (ECLSS), which is the primary noise contributor in the cabin during the on-orbit phase. The ECLSS noise sources used to excite the vehicle acoustic model were derived using a combination of established empirical predictions and fan development acoustic testing. Baseline noise predictions were compared against acoustic HSIR requirements. Key noise offenders and paths were identified and ranked using noise transfer path analysis. Parametric studies were conducted with various acoustic treatment packages in the cabin to reduce the noise levels and define vehicle-level mass impacts. An acoustic test mockup of the CM cabin has also been developed and noise treatment optimization tests were conducted to validate the results of the analyses.

  8. Cost/benefit studies of advanced materials technologies for future aircraft turbine engines: Materials for advanced turbine engines

    NASA Technical Reports Server (NTRS)

    Stearns, M.; Wilbers, L.

    1982-01-01

    Cost benefit studies were conducted on six advanced materials and processes technologies applicable to commercial engines planned for production in the 1985 to 1990 time frame. These technologies consisted of thermal barrier coatings for combustor and high pressure turbine airfoils, directionally solidified eutectic high pressure turbine blades, (both cast and fabricated), and mixers, tail cones, and piping made of titanium-aluminum alloys. A fabricated titanium fan blisk, an advanced turbine disk alloy with improved low cycle fatigue life, and a long-life high pressure turbine blade abrasive tip and ceramic shroud system were also analyzed. Technologies showing considerable promise as to benefits, low development costs, and high probability of success were thermal barrier coating, directionally solidified eutectic turbine blades, and abrasive-tip blades/ceramic-shroud turbine systems.

  9. An experimental investigation of interfacial temperatures in blade-seal material rubbing of aircraft compressors

    NASA Technical Reports Server (NTRS)

    Emery, A. F.; Wolak, J.; Etemad, S.; Choi, S. R.

    1982-01-01

    Results are presented for the rubbing of rotating (100 m/s) titanium blade specimens, with different plasma-sprayed tip coating, against an abradable porous seal material at two different incursion rates. In general, there was a good correspondence between the average transverse force of rubbing and the seal specimen surface temperature. Instantaneous seal surface temperature measurement showed a significant temperature jump before and after each rubbing with a high rate of cooling during each revolution and a high overall temperature level. Numerical predictions of both blade and seal temperature agreed well for the bare blade tip experiments but were consistently high for the coated blades. This suggests that the thermal properties of the coatings may significantly affect the temperatures and hence the wear characteristics of the system.

  10. Loss of cabin pressure in a military transport: a mass casualty with decompression illnesses.

    PubMed

    Johnston, Mickaila J

    2008-04-01

    Presented here is the sudden cabin depressurization of a military C-130 aircraft carrying 66 personnel. They suffered a depressurization from 2134 to 7317 m, resulting in a potential 66-person mass casualty. The aircrew were able to descend to below 3049 m in less than 5 min. They landed in the Kingdom of Bahrain--the nearest hyperbaric recompression facility. Three cases of peripheral neurologic DCS and one case of spinal DCS were identified. Limited manning, unique host nation concerns, and limited available assets led to difficulties in triage, patient transport, and asset allocation. These led to difficult decisions regarding when and for whom to initiate ground level oxygen or hyperbaric recompression therapy.

  11. Aerodynamic Design and Computational Analysis of a Spacecraft Cabin Ventilation Fan

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2010-01-01

    Quieter working environments for astronauts are needed if future long-duration space exploration missions are to be safe and productive. Ventilation and payload cooling fans are known to be dominant sources of noise, with the International Space Station being a good case in point. To address this issue in a cost-effective way, early attention to fan design, selection, and installation has been recommended. Toward that end, NASA has begun to investigate the potential for small-fan noise reduction through improvements in fan aerodynamic design. Using tools and methodologies similar to those employed by the aircraft engine industry, most notably computational fluid dynamics (CFD) codes, the aerodynamic design of a new cabin ventilation fan has been developed, and its aerodynamic performance has been predicted and analyzed. The design, intended to serve as a baseline for future work, is discussed along with selected CFD results

  12. In-flight interior sound field mapping in propeller aircraft

    NASA Astrophysics Data System (ADS)

    van der Auweraer, H.; Gielen, L.; Otte, D.

    Interior noise in propeller aircraft is currently an important issue in the aerospace industry. Efficient noise control measures require a thorough understanding of the in-flight response of the vibro-acoustic system, formed by fuselage, trim panels and cabin cavity, to the propeller excitation. The cabin interior noise is dominated by the lower order blade pass tones of the propellers. It is therefore important to map the acoustic sound field and the trimpanel and fuselage vibration responses at these frequencies. It is further advantageous to estimate the separated contributions of the two propellers because it allows a better understanding of the coupling between the propeller sound fields, the fuselage and the cabin cavity. It also provides a convenient means to compare different flight tests, regardless of the synchrophasor setting or stability. This paper discusses the acquisition and analysis of operating data on a fully trimmed Saab 340, a twin-engine commuter aircraft. The estimation of each propeller's contribution by means of cross-spectrum and coherence analysis techniques is further explored, in relation with signal processing issues, as windowing and leakage. Some resulting in-flight cabin cavity sound field shapes and trimpanel deformations are presented and discussed.

  13. UV disinfection system for cabin air

    NASA Astrophysics Data System (ADS)

    Lim, Soojung; Blatchley, Ernest R.

    2009-10-01

    The air of indoor cabin environments is susceptible to contamination by airborne microbial pathogens. A number of air treatment processes are available for inactivation or removal of airborne pathogens; included among these processes is ultraviolet (UV) irradiation. The effectiveness of UV-based processes is known to be determined by the combined effects of UV dose delivery by the reactor and the UV dose-response behavior of the target microbe(s). To date, most UV system designs for air treatment have been based on empirical approaches, often involving crude representations of dose delivery and dose-response behavior. The objective of this research was to illustrate the development of a UV system for disinfection of cabin air based on well-defined methods of reactor and reaction characterization. UV dose-response behavior of a test microorganism was measured using a laboratory (bench-scale) system. Target microorganisms (bacterial spores) were first applied to membrane filters at sub-monolayer coverage. The filters were then transferred to a humidity chamber at fixed relative humidity (RH) and allowed to equilibrate with their surroundings. Microorganisms were then subjected to UV exposure under a collimated beam. The experiment was repeated at RH values ranging from 20% to 100%. UV dose-response behavior was observed to vary with RH. For example, at 100% RH, a UV dose of 20 mJ/cm 2 accomplished 99.7% (2.5 log10 U) of the Bacillus subtilis spore inactivation, whereas 99.94% (3.2 log10 U) inactivation was accomplished at this same UV dose under 20% RH conditions. To determine reactor behavior, UV dose-response behavior was combined with simulated results of computational fluid dynamics (CFD) and radiation intensity field models. This modeling approach allowed estimating the UV dose distribution delivered by the reactor. The advantage of this approach is that simulation of many reactor configurations can be done in a relatively short period of time. Moreover, by

  14. Why aircraft disinsection?

    PubMed Central

    Gratz, N. G.; Steffen, R.; Cocksedge, W.

    2000-01-01

    A serious problem is posed by the inadvertent transport of live mosquitoes aboard aircraft arriving from tropical countries where vector-borne diseases are endemic. Surveys at international airports have found many instances of live insects, particularly mosquitoes, aboard aircraft arriving from countries where malaria and arboviruses are endemic. In some instances mosquito species have been established in countries in which they have not previously been reported. A serious consequence of the transport of infected mosquitoes aboard aircraft has been the numerous cases of "airport malaria" reported from Europe, North America and elsewhere. There is an important on-going need for the disinsection of aircraft coming from airports in tropical disease endemic areas into nonendemic areas. The methods and materials available for use in aircraft disinsection and the WHO recommendations for their use are described. PMID:10994283

  15. Ozone concentration in the cabin of a Gates Learjet measured simultaneously with atmospheric ozone concentrations

    NASA Technical Reports Server (NTRS)

    Briehl, D.; Perkins, P. J.

    1978-01-01

    A Gates Learjet Model 23 was instrumented with monitors to measure simultaneously the atmospheric and the cabin concentrations of ozone at altitudes up to 13 kilometers. Six data flights were made in February 1978. Results indicated that only a small amount of the atmospheric ozone is destroyed in the cabin pressurization system. Ozone concentrations measured in the cabin near the conditioned-air outlets were only slightly lower than the atmospheric ozone concentration. For the two cabin configurations tested, the ozone retention in the cabin was 63 and 41 percent of the atmospheric ozone concentration. Maximum cabin ozone concentration measured during these flights was 410 parts per billion by volume.

  16. Aircraft Contrails

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Captured in this scene is a series of aircraft contrails in a high traffic region over the northern Gulf of Mexico (27.0N, 85.5W). Contrails are caused by the hot engine exhaust of high flying aircraft interacting with moisture in the cold upper atmosphere and are common occurrances of high flying aircraft.

  17. Preliminary results of water shielding effects for space radiation in ISS crew cabin by means of passive dosimeters

    NASA Astrophysics Data System (ADS)

    Kodaira, Satoshi; Shurshakov, Vyacheslav; Kawashima, Hajime; Kurano, Mieko; Yasuda, Nakahiro; Uchihori, Yukio; Nikolaev, Igor; Tolochek, Raisa; Ambrozova, Iva; Kitamura, Hisashi; Kobayashi, Ikuo; Suzuki, Akifumi; Kartsev, Ivan; Yarmanova, Eugenia

    2012-07-01

    The dose reduction rate for space radiation by the additional installation of water shielding (the hygienic wipes and towels containing water) in ISS crew cabin was measured with the passive dosimeter packages consisting of thermoluminescence detectors and CR-39 plastic nuclear track detectors. The water shieldings were stored into the protective curtain at 4 layers, which correspond to the additional shielding thickness of about 8 g/cm ^{2}. The protective curtains were installed along the outer wall of the starboard crew cabin in Russian Service Module; the total mass of the protective curtain is 65 kg. The dose reduction effect was experimentally measured with totally 12 passive dosimeter packages. Half of the packages were located on the protective curtain surface and the other half packages were located on the crew cabin wall behind or aside the protective curtain. Two experiments were carried out onboard ISS crew cabin, 1) from July 4 to November 29, 2010 and 2) from December 17, 2010 to May 5, 2011. The dose reduction rate by the protective curtain was ranging from 15 to 70 % in absorbed dose, depending on the shielding material thickness. The results will be also compared with the calculation based on Monte Carlo simulation. It is expected that the properly utilization of protective curtain would effectively reduce the radiation dose for crew living in space station.

  18. Effects of aircraft noise on flight and ground structures

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Mayes, W. H.; Willis, C. M.

    1976-01-01

    Acoustic loads measured on jet-powered STOL configurations are presented for externally blown and upper surface blown flap models ranging in size from a small laboratory model up to a full-scale aircraft model. The implications of the measured loads for potential acoustic fatigue and cabin noise are discussed. Noise transmission characteristics of light aircraft structures are presented. The relative importance of noise transmission paths, such as fuselage sidewall and primary structure, is estimated. Acceleration responses of a historic building and a residential home are presented for flyover noise from subsonic and supersonic aircraft. Possible effects on occupant comfort are assessed. The results from these three examples show that aircraft noise can induce structural responses that are large enough to require consideration in the design or operation of the aircraft.

  19. Application of advanced technologies to small, short-haul transport aircraft (STAT)

    NASA Technical Reports Server (NTRS)

    Kraus, E. F.; Mall, O. D.; Awker, R. W.; Scholl, J. W.

    1982-01-01

    The benefits of selected advanced technologies for 19 and 30 passenger, short-haul aircraft were identified. Advanced technologies were investigated in four areas: aerodynamics, propulsion, structures, and ride quality. Configuration sensitivity studies were conducted to show design tradeoffs associated with passenger capacity, cabin comfort level, and design field length.

  20. Full-Scale Structural and NDI Validation Tests of Bonded Composite Doublers for Commercial Aircraft Applications

    SciTech Connect

    Roach, D.; Walkington, P.

    1999-02-01

    Composite doublers, or repair patches, provide an innovative repair technique which can enhance the way aircraft are maintained. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is possible to bond a single Boron-Epoxy composite doubler to the damaged structure. Most of the concerns surrounding composite doubler technology pertain to long-term survivability, especially in the presence of non-optimum installations, and the validation of appropriate inspection procedures. This report focuses on a series of full-scale structural and nondestructive inspection (NDI) tests that were conducted to investigate the performance of Boron-Epoxy composite doublers. Full-scale tests were conducted on fuselage panels cut from retired aircraft. These full-scale tests studied stress reductions, crack mitigation, and load transfer capabilities of composite doublers using simulated flight conditions of cabin pressure and axial stress. Also, structures which modeled key aspects of aircraft structure repairs were subjected to extreme tension, shear and bending loads to examine the composite laminate's resistance to disbond and delamination flaws. Several of the structures were loaded to failure in order to determine doubler design margins. Nondestructive inspections were conducted throughout the test series in order to validate appropriate techniques on actual aircraft structure. The test results showed that a properly designed and installed composite doubler is able to enhance fatigue life, transfer load away from damaged structure, and avoid the introduction of new stress risers (i.e. eliminate global reduction in the fatigue life of the structure). Comparisons with test data obtained prior to the doubler installation revealed that stresses in the parent material can be reduced 30%--60% through the use of the composite doubler. Tests to failure demonstrated that the bondline is able to transfer plastic strains into the doubler and that the

  1. The application of EOQ and lead time crashing cost models in material with limited life time (Case study: CN-235 Aircraft at PT Dirgantara Indonesia)

    NASA Astrophysics Data System (ADS)

    Agustina Hidayat, Yosi; Ria Kasanah, Aprilia; Yudhistira, Titah

    2016-02-01

    PT. Dirgantara Indonesia, one of State Owned Enterprises engaging in the aerospace industry, targets to control 30% of world market for light and medium sized aircraft. One type of the aircrafts produced by PT. DI every year is CN-235. Currently, the cost of material procurement reaches 50% of the total cost of production. Material has a variety of characteristics, one of which is having a lifetime. The demand characteristic of the material with expiration for the CN-235 aircraft is deterministic. PT DI does not have any scientific background for its procurement of raw material policy. In addition, there are two methods of transportation used for delivering materials, i.e. by land and air. Each method has different lead time. Inventory policies used in this research are deterministic and probabilistic. Both deterministic and probabilistic single and multi-item inventory policies have order quantity, time to order, reorder point, and lead time as decision variables. The performance indicator for this research is total inventory cost. Inventory policy using the single item EOQ and considering expiration factor inventory results in a reduction in total costs up to 69.58% and multi item results in a decrease in total costs amounted to 71.16%. Inventory policy proposal using the model of a single item by considering expiration factor and lead time crashing cost results in a decrease in total costs amounted to 71.5% and multi item results in a decrease in total costs amounted to 71.62%. Subsequently, wasted expired materials, with the proposed models have been successfully decreased to 95%.

  2. Role of structural noise in aircraft pressure cockpit from vibration action of new-generation engines

    NASA Astrophysics Data System (ADS)

    Baklanov, V. S.

    2016-07-01

    The evolution of new-generation aircraft engines is transitioning from a bypass ratio of 4-6 to an increased ratio of 8-12. This is leading to substantial broadening of the vibration spectrum of engines with a shift to the low-frequency range due to decreased rotation speed of the fan rotor, in turn requiring new solutions to decrease structural noise from engine vibrations to ensure comfort in the cockpits and cabins of aircraft.

  3. RF Loading Effects of Aircraft Seats in an Electromagnetic Reverberating Environment

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.

    2000-01-01

    Loading effects of aircraft seats in an electromagnetic reverberating environment are investigated. The effects are determined by comparing the reverberation chamber's insertion losses with and without the seats. The average per-seat absorption cross-sections are derived for coach and first class seats, and the results are compared for several seat configurations. An example is given for how the seat absorption cross-sections can be used to estimate the loading effects on the RF environment in an aircraft passenger cabin.

  4. Comfort and health in commercial aircraft: a literature review.

    PubMed

    Brundrett, G

    2001-03-01

    Air travel is becoming increasingly more accessible to people both through the availability of cheap flights and because the airlines are now able to cater for individuals of all ages and disabilities. The wide bodies of many new aircraft permit the airlines to have very flexible seating options. Airline operators currently have an important role in determining the comfort and spaciousness of the seating in their aircraft. Passengers who remain seated for the bulk of a flight may risk oedema or deep vein thrombosis. This could be particularly important for larger people in certain economy class seats. The absence of smoking on planes has encouraged designers to cut back on the rate of cabin ventilation and hence introduce filtered recirculated air to the aircraft cabin. In new planes the ventilation rate is under pilot control and savings (economies) can be achieved by using decreased ventilation. A lower ventilation rate may lead to 'less comfortable air quality' in some parts of the plane and an increased risk of possible cross-infection from other passengers on the flight. Technological advances in jet engine design has permitted larger passenger planes to fly longer distances and at greater altitudes than ever before. The higher flying altitude is associated with a lower cabin pressure, which has an important physiological effect on oxygen saturation in the blood of both crew and passengers, particularly for the very young, the elderly and those who are less fit.

  5. The variation in pressure in the cabin of an airplane in flight

    NASA Technical Reports Server (NTRS)

    Gough, Melvin N

    1931-01-01

    The pressure in the cabin of a Fairchild cabin monoplane wa surveyed in flight, and was found to decrease with increased air speed over the fuselage and to vary with the number and location of openings in the cabin. The maximum depression of 2.2 inches of water (equivalent pressure altitude at sea level of 152 feet) occurred at the high speed of the airplane in level flight with the cabin closed.

  6. Cancer incidence in airline cabin crew: experience from Sweden

    PubMed Central

    Linnersjo, A; Hammar, N; Dammstrom, B; Johansson, M; Eliasch, H

    2003-01-01

    Aims: To determine the cancer incidence in Swedish cabin crew. Methods: Cancer incidence of cabin crew at the Swedish Scandinavian Airline System (SAS) (2324 women and 632 men) employed from 1957 to 1994 was determined during 1961–96 from the Swedish National Cancer Register. The cancer incidence in cabin crew was compared with that of the general Swedish population by comparing observed and expected number of cases through standardised incidence ratios (SIR). A nested case-control study was performed, including cancer cases diagnosed after 1979 and four controls per case matched by gender, age, and calendar year. Results: The SIR for cancer overall was 1.01 (95% CI 0.78 to 1.24) for women and 1.16 (95% CI 0.76 to 1.55) for men. Both men and women had an increased incidence of malignant melanoma of the skin (SIR 2.18 and 3.66 respectively) and men of non-melanoma skin cancer (SIR 4.42). Female cabin attendants had a non-significant increase of breast cancer (SIR 1.30; 95% CI 0.85 to 1.74). No clear associations were found between length of employment or cumulative block hours and cancer incidence. Conclusions: Swedish cabin crew had an overall cancer incidence similar to that of the general population. An increased incidence of malignant melanoma and non-melanoma skin cancer may be associated with exposure to UV radiation, either at work or outside work. An increased risk of breast cancer in female cabin crew is consistent with our results and may in part be due to differences in reproductive history. PMID:14573710

  7. 36 CFR 13.160 - Use of cabins for subsistence purposes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... may use an existing cabin or other structure or temporary facility or construct a new cabin or other structure, including temporary facilities, in a portion of a park area where subsistence use is allowed... by the Superintendent. However, the Superintendent may designate existing cabins or other...

  8. 36 CFR 13.160 - Use of cabins for subsistence purposes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... may use an existing cabin or other structure or temporary facility or construct a new cabin or other structure, including temporary facilities, in a portion of a park area where subsistence use is allowed... by the Superintendent. However, the Superintendent may designate existing cabins or other...

  9. 36 CFR 13.160 - Use of cabins for subsistence purposes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... may use an existing cabin or other structure or temporary facility or construct a new cabin or other structure, including temporary facilities, in a portion of a park area where subsistence use is allowed... by the Superintendent. However, the Superintendent may designate existing cabins or other...

  10. 8. EARLY PHOTO OF THE CABIN WITH DOG TROT SECOND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. EARLY PHOTO OF THE CABIN WITH DOG TROT SECOND PEN AND CHIMNEY, PORCH, STEPS AND COMPOSITION ROOF. J. T. Young Jr., Annie Ruth Young, Bonnie Marie Young and Nadine Young, relatives of the photograph's donor, appear in the foreground. The structure in front of the house and to the right of the tree is a cage for pet squirrels. 2-1/4 x 2-1/4 copy negative, courtesy of former resident Preston Young. Photographer unknown, 1923. - Thomas Jefferson Walling Log Cabin, Henderson, Rusk County, TX

  11. A Design Basis for Spacecraft Cabin Trace Contaminant Control

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.

    2009-01-01

    Successful trace chemical contamination control is one of the components necessary for achieving good cabin atmospheric quality. While employing seemingly simple process technologies, sizing the active contamination control equipment must employ a reliable design basis for the trace chemical load in the cabin atmosphere. A simplified design basis that draws on experience gained from the International Space Station program is presented. The trace chemical contamination control design load refines generation source magnitudes and includes key chemical functional groups representing both engineering and toxicology challenges.

  12. Preliminary design studies of an advanced general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Barrett, Ron; Demoss, Shane; Dirkzwager, AB; Evans, Darryl; Gomer, Charles; Keiter, Jerry; Knipp, Darren; Seier, Glen; Smith, Steve; Wenninger, ED

    1991-01-01

    The preliminary design results are presented of the advanced aircraft design project. The goal was to take a revolutionary look into the design of a general aviation aircraft. Phase 1 of the project included the preliminary design of two configurations, a pusher, and a tractor. Phase 2 included the selection of only one configuration for further study. The pusher configuration was selected on the basis of performance characteristics, cabin noise, natural laminar flow, and system layouts. The design was then iterated to achieve higher levels of performance.

  13. Alloy design for aircraft engines

    NASA Astrophysics Data System (ADS)

    Pollock, Tresa M.

    2016-08-01

    Metallic materials are fundamental to advanced aircraft engines. While perceived as mature, emerging computational, experimental and processing innovations are expanding the scope for discovery and implementation of new metallic materials for future generations of advanced propulsion systems.

  14. High Performance Diesel Fueled Cabin Heater

    SciTech Connect

    Butcher, Tom

    2001-08-05

    Recent DOE-OHVT studies show that diesel emissions and fuel consumption can be greatly reduced at truck stops by switching from engine idle to auxiliary-fired heaters. Brookhaven National Laboratory (BNL) has studied high performance diesel burner designs that address the shortcomings of current low fire-rate burners. Initial test results suggest a real opportunity for the development of a truly advanced truck heating system. The BNL approach is to use a low pressure, air-atomized burner derived form burner designs used commonly in gas turbine combustors. This paper reviews the design and test results of the BNL diesel fueled cabin heater. The burner design is covered by U.S. Patent 6,102,687 and was issued to U.S. DOE on August 15, 2000.The development of several novel oil burner applications based on low-pressure air atomization is described. The atomizer used is a pre-filming, air blast nozzle of the type commonly used in gas turbine combustion. The air pressure used can b e as low as 1300 Pa and such pressure can be easily achieved with a fan. Advantages over conventional, pressure-atomized nozzles include ability to operate at low input rates without very small passages and much lower fuel pressure requirements. At very low firing rates the small passage sizes in pressure swirl nozzles lead to poor reliability and this factor has practically constrained these burners to firing rates over 14 kW. Air atomization can be used very effectively at low firing rates to overcome this concern. However, many air atomizer designs require pressures that can be achieved only with a compressor, greatly complicating the burner package and increasing cost. The work described in this paper has been aimed at the practical adaptation of low-pressure air atomization to low input oil burners. The objective of this work is the development of burners that can achieve the benefits of air atomization with air pressures practically achievable with a simple burner fan.

  15. The Aircraft Morphing Program

    NASA Technical Reports Server (NTRS)

    Wlezien, R. W.; Horner, G. C.; McGowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J.; Simpson, J. O.

    1998-01-01

    In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest- payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.

  16. Aircraft Design

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H. (Inventor); Uden, Edward (Inventor)

    2016-01-01

    The present invention is an aircraft wing design that creates a bell shaped span load, which results in a negative induced drag (induced thrust) on the outer portion of the wing; such a design obviates the need for rudder control of an aircraft.

  17. Measurement of Aeroplane Takeoff Speed and Cabin Pressure.

    ERIC Educational Resources Information Center

    Wardle, D. A.

    1999-01-01

    Describes two experiments in which a pendulum was used to determine acceleration along the runway during the takeoff of a plane and the takeoff speed. Uses a water-filled nanometer to determines the drop in cabin pressure during the flight. (CCM)

  18. 17. VIEW FORWARD FROM THE CAPTAIN'S CABIN INTO THE ENGINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW FORWARD FROM THE CAPTAIN'S CABIN INTO THE ENGINE ROOM. THE OPENING IN THE BULKHEAD WAS CUT TO AID ENGINE REMOVAL. DECK BEAMS WERE ALSO CUT AWAY TO REMOVE ENGINE. PIPE IN FOREGROUND AT RIGHT IS ATTACHED TO A BOILER. - Auxiliary Fishing Schooner "Evelina M. Goulart", Essex Shipbuilding Museum, 66 Main Street, Essex, Essex County, MA

  19. 1. Postandbeam garage (far left), oneroom log cabin (left of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Post-and-beam garage (far left), one-room log cabin (left of center), house (right of center), garden shed and outhouse (far right). View to west-southwest. - William & Lucina Bowe Ranch, County Road 44, 0.1 mile northeast of Big Hole River Bridge, Melrose, Silver Bow County, MT

  20. 14 CFR 23.571 - Metallic pressurized cabin structures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Fatigue Evaluation § 23.571 Metallic pressurized cabin structures. Link to an amendment published at 76 FR... the following: (a) A fatigue strength investigation in which the structure is shown by tests, or by... both that catastrophic failure of the structure is not probable after fatigue failure, or...

  1. 36 CFR 13.1306 - Public use cabins.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Public use cabins. 13.1306 Section 13.1306 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions §...

  2. 36 CFR 13.1306 - Public use cabins.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Public use cabins. 13.1306 Section 13.1306 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions §...

  3. 36 CFR 13.1306 - Public use cabins.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Public use cabins. 13.1306 Section 13.1306 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions §...

  4. 36 CFR 13.1306 - Public use cabins.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Public use cabins. 13.1306 Section 13.1306 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions §...

  5. 36 CFR 13.1306 - Public use cabins.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Public use cabins. 13.1306 Section 13.1306 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions §...

  6. Magnetic analyses of powders from exhausted cabin air filters

    NASA Astrophysics Data System (ADS)

    Winkler, Aldo; Sagnotti, Leonardo

    2013-04-01

    The automotive cabin air filter is a pleated-paper filter placed in the outside-air intake for the car's passenger compartment. Dirty and saturated cabin air filters significantly reduce the airflow from the outside and introduce particulate matter (PM) and allergens (for example, pollen) into the cabin air stream. Magnetic measurements and analyses have been carried out on powders extracted from exhausted cabin air filters to characterize their magnetic properties and to compare them to those already reported for powders collected from disk brakes, gasoline exhaust pipes and Quercus ilex leaves. This study is also aimed at the identification and quantification of the contribution of the ultrafine fraction, superparamagnetic (SP) at room temperature, to the overall magnetic properties of these powders. This contribution was estimated by interpreting and comparing data from FORCs, isothermal remanent magnetization vs time decay curves, frequency and field dependence of the magnetic susceptibility and out-of-phase susceptibility. The magnetic properties and the distribution of the SP particles are generally homogenous and independent of the brand of the car, of the model of the filter and of its level of usage. The relatively high concentration of magnetic PM trapped in these filters poses relevant questions about the air quality inside a car.

  7. Effects of Cabin Upsets on Adsorption Columns for Air Revitalization

    NASA Technical Reports Server (NTRS)

    LeVan, Douglas

    1999-01-01

    The National Aeronautics and Space Administration (NASA) utilizes adsorption technology as part of contaminant removal systems designed for long term missions. A variety of trace contaminants can be effectively removed from gas streams by adsorption onto activated carbon. An activated carbon adsorption column meets NASA's requirements of a lightweight and efficient means of controlling trace contaminant levels aboard spacecraft and space stations. The activated carbon bed is part of the Trace Contaminant Control System (TCCS) which is utilized to purify the cabin atmosphere. TCCS designs oversize the adsorption columns to account for irregular fluctuations in cabin atmospheric conditions. Variations in the cabin atmosphere include changes in contaminant concentrations, temperature, and relative humidity. Excessively large deviations from typical conditions can result from unusual crew activity, equipment malfunctions, or even fires. The research carried out under this award focussed in detail on the effects of cabin upsets on the performance of activated carbon adsorption columns. Both experiments and modeling were performed with an emphasis on the roll of a change in relative humidity on adsorption of trace contaminants. A flow through fixed-bed apparatus was constructed at the NASA Ames Research Center, and experiments were performed there. Modeling work was performed at the University of Virginia.

  8. 21. VIEW TO SOUTH. INTERIOR OF CONTROL CABIN FROM DOORWAY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. VIEW TO SOUTH. INTERIOR OF CONTROL CABIN FROM DOORWAY. INVERTED 'TEE'-SHAPED OBJECT IN LEFT CORNER AND LARGE WHITE WOODEN BEAM BOLTED TOGETHER TO FORM CAPSTAN UTILIZED FOR HAND OPERATION OF THE SWING SPAN. - Gianella Bridge, Spanning Sacramento River at State Highway 32, Hamilton City, Glenn County, CA

  9. 2. NORTHWEST FRONT AND NORTHEAST SIDE OF CABINS (FORGEMAN'S HOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. NORTHWEST FRONT AND NORTHEAST SIDE OF CABINS (FORGEMAN'S HOUSE NO. 1 TO THE LEFT IS NOT VISIBLE IN PHOTOGRAPH) - Mount Etna Iron Works, Forgeman's House No. 1, Legislative Route 07020 between junctions of T.R. 461 & 463, Williamsburg, Blair County, PA

  10. A turning cabin simulator to reduce simulator sickness

    NASA Astrophysics Data System (ADS)

    Mourant, Ronald R.; Yin, Zhishuai

    2010-01-01

    A long time problem associated with driving simulators is simulator sickness. A possible cause of simulator sickness is that the optical flow experienced in driving simulators is much different from that experienced in real world driving. With the potential to reduce simulator sickness, a turning cabin driving simulator, whose cabin rotates around the yaw axis was built. In the multi-projector display system, algorithms were implemented to calibrate both geometric distortions and photometric distortions via software to produce a seamless high-resolution display on a cylindrical screen. An automotive seat was mounted on an AC servo actuator at the center of the cylindrical screen. The force feedback steering wheel, and gas and brake pedals, were connected to the simulator's computer. Experiments were conducted to study the effect of optical flow patterns on simulator sickness. Results suggested that the optical flow perceived by drivers in the fixed base simulator was greater than that in the turning cabin simulator. Also, drivers reported a higher degree of simulator sickness in the fixed base simulator. The lower amount of optical flow perceived in the turning cabin simulator is believed to be a positive factor in reducing simulator sickness.

  11. Crew Survivability After a Rapid Cabin Depressurization Event

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam J.

    2012-01-01

    Anecdotal evidence acquired through historic failure investigations involving rapid cabin decompression (e.g. Challenger, Columbia and Soyuz 11) show that full evacuation of the cabin atmosphere may occur within seconds. During such an event, the delta-pressure between the sealed suit ventilation system and the cabin will rise at the rate of the cabin depressurization; potentially at a rate exceeding the capability of the suit relief valve. It is possible that permanent damage to the suit pressure enclosure and ventilation loop components may occur as the integrated system may be subjected to delta pressures in excess of the design-to pressures. Additionally, as the total pressure of the suit ventilation system decreases, so does the oxygen available to the crew. The crew may be subjected to a temporarily incapacitating, but non-lethal, hypoxic environment. It is expected that the suit will maintain a survivable atmosphere on the crew until the vehicle pressure control system recovers or the cabin has otherwise attained a habitable environment. A common finding from the aforementioned reports indicates that the crew would have had a better chance at surviving the event had they been in a protective configuration, that is, in a survival suit. Making use of these lessons learned, the Constellation Program implemented a suit loop in the spacecraft design and required that the crew be in a protective configuration, that is suited with gloves on and visors down, during dynamic phases of flight that pose the greatest risk for a rapid and uncontrolled cabin depressurization event: ascent, entry, and docking. This paper details the evaluation performed to derive suit pressure garment and ventilation system performance parameters that would lead to the highest probability of crew survivability after an uncontrolled crew cabin depressurization event while remaining in the realm of practicality for suit design. This evaluation involved: (1) assessment of stakeholder

  12. Derivation of residual radioactive material guidelines for uranium in soil at the Former Associate Aircraft Tool and Manufacturing Company Site, Fairfield, Ohio

    SciTech Connect

    Faillace, E.R.; Nimmagadda, M.; Yu, C.

    1995-01-01

    Residual radioactive material guidelines for uranium in soil were derived for the former Associate Aircraft Tool and Manufacturing Company site in Fairfield, Ohio. This site has been identified for remedial action under the U.S. Department of Energy`s (DOE`s) Formerly Utilized Sites Remedial Action Program (FUSRAP). Single-nuclide and total-uranium guidelines were derived on the basis of the requirement that, after remedial action, the 50-year committed effective dose equivalent to a hypothetical individual living or working in the immediate vicinity of the site should not exceed (1) 30 mrem/yr for the current-use and likely future-use scenarios or (2) 100 mrem/yr for less likely future-use scenarios. The DOE residual radioactive material (RESRAD) computer code, which implements the methodology described in the DOE manual for establishing residual radioactive material guidelines, was used in this evaluation.

  13. Structureborne noise control in advanced turboprop aircraft

    NASA Astrophysics Data System (ADS)

    Loeffler, Irvin J.

    1987-01-01

    Structureborne noise is discussed as a contributor to propeller aircraft interior noise levels that are nonresponsive to the application of a generous amount of cabin sidewall acoustic treatment. High structureborne noise levels may jeopardize passenger acceptance of the fuel-efficient high-speed propeller transport aircraft designed for cruise at Mach 0.65 to 0.85. These single-rotation tractor and counter-rotation tractor and pusher propulsion systems will consume 15 to 30 percent less fuel than advanced turbofan systems. Structureborne noise detection methodologies and the importance of development of a structureborne noise sensor are discussed. A structureborne noise generation mechanism is described in which the periodic components or propeller swirl produce periodic torques and forces on downstream wings and airfoils that are propagated to the cabin interior as noise. Three concepts for controlling structureborne noise are presented: (1) a stator row swirl remover, (2) selection of a proper combination of blade numbers in the rotor/stator system of a single-rotation propeller, and the rotor/rotor system of a counter-rotation propeller, and (3) a tuned mechanical absorber.

  14. Graphical Analysis of Electromagnetic Coupling on B-737 and B-757 Aircraft for VOR and LOC IPL Data

    NASA Technical Reports Server (NTRS)

    Jafri, Madiha; Ely, Jay; Vahala, Linda

    2005-01-01

    Electromagnetic coupling measurements were performed from numerous passenger cabin locations to aircraft instrument landing system localizer (LOC) and VHF Omni-Ranging (VOR) systems. This paper presents and compares the data for B-757 and B-737 airplanes, and provides a basis for fuzzy modeling of coupling patterns in different types of airplanes and airplanes with different antenna locations.

  15. Impact analysis of composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Pifko, Allan B.; Kushner, Alan S.

    1993-01-01

    The impact analysis of composite aircraft structures is discussed. Topics discussed include: background remarks on aircraft crashworthiness; comments on modeling strategies for crashworthiness simulation; initial study of simulation of progressive failure of an aircraft component constructed of composite material; and research direction in composite characterization for impact analysis.

  16. Effect of advanced technology and fuel efficient engine on a supersonic-cruise executive jet with a small cabin

    NASA Technical Reports Server (NTRS)

    Beissner, F. L., Jr.; Lovell, W. A.; Robins, A. W.; Swanson, E. E.

    1983-01-01

    An analytical study of a supersonic-cruise, executive, jet aircraft indicated the effects of using advanced technology. The twin-engine, arrow-wing vehicle was configured with a cabin of minimum practical size to hold one pilot, eight passengers, and their baggage. The primary differences between this configuration that of a previous report were the reduction in cabin size and the use of engines that are more fuel-efficient. Both conceptual vehicles are capable of forming the same mission. The current vehicle has a range of 3,350 nautical miles at Mach 2.3 cruise and 2,700 nautical miles at Mach 0.9. The concept description includes configuration definition, aerodynamic and propulsion-system characteristics, and mass properties. Performance analyses are documented for intercontinental and transcontinental flight profiles. In the latter case, a reduction in sonic-boom overpressure from 1.3 to 1.0 pounds per square foot was achieved by varying the flight profile slightly from that for optimum performance.

  17. Flow and contaminant transport in an airliner cabin induced by a moving body: Model experiments and CFD predictions

    NASA Astrophysics Data System (ADS)

    Poussou, Stephane B.; Mazumdar, Sagnik; Plesniak, Michael W.; Sojka, Paul E.; Chen, Qingyan

    2010-08-01

    The effects of a moving human body on flow and contaminant transport inside an aircraft cabin were investigated. Experiments were performed in a one-tenth scale, water-based model. The flow field and contaminant transport were measured using the Particle Image Velocimetry (PIV) and Planar Laser-Induced Fluorescence (PLIF) techniques, respectively. Measurements were obtained with (ventilation case) and without (baseline case) the cabin environmental control system (ECS). The PIV measurements show strong intermittency in the instantaneous near-wake flow. A symmetric downwash flow was observed along the vertical centerline of the moving body in the baseline case. The evolution of this flow pattern is profoundly perturbed by the flow from the ECS. Furthermore, a contaminant originating from the moving body is observed to convect to higher vertical locations in the presence of ventilation. These experimental data were used to validate a Computational Fluid Dynamic (CFD) model. The CFD model can effectively capture the characteristic flow features and contaminant transport observed in the small-scale model.

  18. All-theoretical prediction of cabin noise due to impingement of propeller vortices on a wing structure

    NASA Technical Reports Server (NTRS)

    Martinez, R.; Cole, J. E., III; Martini, K.; Westagard, A.

    1987-01-01

    Reported calculations of structure-borne cabin noise for a small twin engine aircraft powered by tractor propellers rely on the following three-stage methodological breakup of the problem: (1) the unsteady-aerodynamic prediction of wing lift harmonics caused by the whipping action of the vortex system trailed from each propeller; (2) the associated wing/fuselage structural response; (3) the cabin noise field for the computed wall vibration. The first part--the estimate of airloads--skirts a full-fledged aeroelastic situation by assuming the wing to be fixed in space while cancelling the downwash field of the cutting vortices. The model is based on an approximate high-frequency lifting-surface theory justified by the blade rate and flight Mach number of application. Its results drive a finite-element representation of the wing accounting for upper and lower skin surfaces, spars, ribs, and the presence of fuel. The fuselage, modeled as a frame-stiffened cylindrical shell, is bolted to the wing.

  19. Towards an Integrated Approach to Cabin Service English Curriculum Design: A Case Study of China Southern Airlines' Cabin Service English Training Course

    ERIC Educational Resources Information Center

    Xiaoqin, Liu; Wenzhong, Zhu

    2016-01-01

    This paper has reviewed the history of EOP (training) development and then illustrated the curriculum design of cabin service English training from the three perspectives of ESP, CLIL and Business Discourse. It takes the cabin crew English training of China Southern Airlines (CZ) as the case and puts forward an operational framework composed of…

  20. Spacecraft Cabin Air Quality Control and Its Application to Tight Buildings

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Graf, J. C.

    1995-01-01

    Air quality is an important consideration not only for the external environment, but also for the indoor environment. Most people spend a majority of their lives indoors and the air that they breathe is important to their physical and emotional well being. Since most modern building designs have focused on energy efficiency, less fresh air is brought from the outside. As a result, pollutants from building materials, furniture, cleaning, and cooking have no place to go. To make matters worse, most ventilation systems do not include any means for removing pollutants from the recycled air. Unfortunately, pollution at even a small level can result in eye, throat, and lung irritation in addition to chronic headaches, nausea, and fatigue. A spacecraft cabin, which represents the worst case in tight building design, requires special consideration of air quality since any effects pollutants may have on a crewmember can potentially place a mission or other crewmembers at risk. A detailed approach has been developed by the National Aeronautics and Space Administration (NASA) to minimize cabin atmosphere pollution and provide the crew with an environment which is as free of pollutants as possible. This approach is a combination of passive and active contamination control concepts involving the evaluation and selection of materials to be used onboard the spacecraft, the establishment of air quality standards to ensure crew health, and the use of active control means onboard the spacecraft to further ensure an acceptable atmosphere. This approach has allowed NASA to prevent illness by providing crewmembers with a cabin atmosphere which contains pollutant concentrations up to 100 times lower than those specified for terrestrial indoor environments. Standard building construction, however, does not take into account the potentially harmful effects of materials used in the construction process on the health of future occupants and relies primarily on remedial rather than

  1. Aircraft engines. II

    SciTech Connect

    Smith, M.G. Jr.

    1988-01-01

    An account is given of the design features and prospective performance gains of ultrahigh bypass subsonic propulsion configurations and various candidate supersonic commercial aircraft powerplants. The supersonic types, whose enhanced thermodynamic cycle efficiency is considered critical to the economic viability of a second-generation SST, are the variable-cycle engine, the variable stream control engine, the turbine-bypass engine, and the supersonic-throughflow fan. Also noted is the turboramjet concept, which will be applicable to hypersonic aircraft whose airframe structure materials can withstand the severe aerothermodynamic conditions of this flight regime.

  2. Cockpit-cabin communication: II. Shall we tell the pilots?

    PubMed

    Chute, R D; Wiener, E L

    1996-01-01

    In a previous article (Chute & Wiener, 1995), we explored the coordination between the "two cultures" in an airliner's crew: cockpit and cabin. In this article, we discuss a particular problem: the dilemma facing the cabin crew when they feel that they have safety-critical information and must decide whether to take it to the cockpit. We explore the reasons for the reluctance of the flight attendant to come forward with the information, such as self-doubt about the accuracy or importance of the information, fear of dismissal or rebuke by the pilots, and misunderstanding of the sterile cockpit rule. Insight into crew attitudes was based on our examination of accident and incident reports and data from questionnaires submitted by pilots and flight attendants at two airlines. The results show confusion and disagreement about what is permissible to take to the cockpit when it is sterile, as well as imbalances in authority and operational knowledge. Possible remedies are proposed.

  3. Reduced bleed air extraction for DC-10 cabin air conditioning

    NASA Technical Reports Server (NTRS)

    Newman, W. H.; Viele, M. R.; Hrach, F. J.

    1980-01-01

    It is noted that a significant fuel savings can be achieved by reducing bleed air used for cabin air conditioning. Air in the cabin can be recirculated to maintain comfortable ventilation rates but the quality of the air tends to decrease due to entrainment of smoke and odors. Attention is given to a development system designed and fabricated under the NASA Engine Component Improvement Program to define the recirculation limit for the DC-10. It is shown that with the system, a wide range of bleed air reductions and recirculation rates is possible. A goal of 0.8% fuel savings has been achieved which results from a 50% reduction in bleed extraction from the engine.

  4. Aeroacoustic research in the Netherlands related to aircraft development

    NASA Astrophysics Data System (ADS)

    de Wolf, W. B.; Sarin, S. L.

    Noise reduction efforts undertaken with the RB 183-555-15H turbofan on the new F28 aircraft are described. Experiments were performed with jet noise suppressors and acoustic liner designs. Vibration absorbers were installed in the cabin walls. The suppressors were examined with a H2O2-fuelled model in a test facility, leading to selection of an 8-lobed exhaust nozzle. A new acoustic liner was devised which reduced nonlinearities by a factor of five when compared with wire mesh on perforated plate liners. The tests yielded designs for a system of dynamic vibration absorbers which were subsequently installed in the cabin walls of the F27 and produced a 7 dB noise reduction.

  5. Fire resistant aircraft seat program

    NASA Technical Reports Server (NTRS)

    Fewell, L. A.

    1979-01-01

    Foams, textiles, and thermoformable plastics were tested to determine which materials were fire retardant, and safe for aircraft passenger seats. Seat components investigated were the decorative fabric cover, slip covers, fire blocking layer, cushion reinforcement, and the cushioning layer.

  6. Fast roadway detection using car cabin video camera

    NASA Astrophysics Data System (ADS)

    Krokhina, Daria; Blinov, Veniamin; Gladilin, Sergey; Tarhanov, Ivan; Postnikov, Vassili

    2015-12-01

    We describe a fast method for road detection in images from a vehicle cabin camera. Straight section of roadway is detected using Fast Hough Transform and the method of dynamic programming. We assume that location of horizon line in the image and the road pattern are known. The developed method is fast enough to detect the roadway on each frame of the video stream in real time and may be further accelerated by the use of tracking.

  7. Preliminary thoughts on helicopter cabin noise prediction methods

    NASA Astrophysics Data System (ADS)

    Pollard, J. S.

    The problems of predicting helicopter cabin noise are discussed with particular reference to the Lynx helicopter. Available methods such as modal analysis adopted for propeller noise prediction do not cope with the higher frequency discrete tone content of helicopter gear noise, with the airborne and structureborne noise contributions. Statistical energy analysis methods may be the answer but until these are developed, one has to rely on classical noise transmission analysis and transfer function methods.

  8. Trending of Overboard Leakage of ISS Cabin Atmosphere

    NASA Technical Reports Server (NTRS)

    Schaezler, Ryan N.; Cook, Anthony J.; Leonard, Daniel J.; Ghariani, Ahmed

    2011-01-01

    The International Space Station (ISS) overboard leakage of cabin atmosphere is continually tracked to identify new or aggravated leaks and to provide information for planning of nitrogen supply to the ISS. The overboard leakage is difficult to trend with various atmosphere constituents being added and removed. Changes to nitrogen partial pressure is the nominal means of trending the overboard leakage. This paper summarizes the method of the overboard leakage trending and presents findings from the trending.

  9. Effects of Cabin Upsets on Adsorption Columns for Air Revitalization

    NASA Technical Reports Server (NTRS)

    LeVan, M. Douglas

    1999-01-01

    The National Aeronautics and Space Administration (NASA) utilizes adsorption technology as part of contaminant removal systems designed for long term missions. A variety of trace contaminants can be effectively removed from gas streams by adsorption onto activated carbon. An activated carbon adsorption column meets NASA's requirements of a lightweight and efficient means of controlling trace contaminant levels aboard spacecraft and space stations. The activated carbon bed is part of the Trace Contaminant Control System (TCCS) which is utilized to purify the cabin atmosphere. TCCS designs oversize the adsorption columns to account for irregular fluctuations in cabin atmospheric conditions. Variations in the cabin atmosphere include changes in contaminant concentrations, temperature, and relative humidity. Excessively large deviations from typical conditions can result from unusual crew activity, equipment malfunctions, or even fires. The research carried out under this award focussed in detail on the effects of cabin upsets on the performance of activated carbon adsorption columns. Both experiments and modeling were performed with an emphasis on the roll of a change in relative humidity on adsorption of trace contaminants. A flow through fixed-bed apparatus was constructed at the NASA Ames Research Center, and experiments were performed there by W. Scot Appel under the direction of Dr. John E. Finn. Modeling work was performed at the University of Virginia and at Vanderbilt University by W. Scot Appel under the direction of M. Douglas LeVan. All three participants collaborated in all of the various phases of the research. The most comprehensive document describing the research is the Ph.D. dissertation of W. Scot Appel. Results have been published in several papers and presented in talks at technical conferences. All documents have been transmitted to Dr. John E. Finn.

  10. 14 CFR 121.215 - Cabin interiors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... removable and other compartments must be placarded against smoking. (e) Each receptacle for used towels, papers, and wastes must be of fire-resistant material and must have a cover or other means of...

  11. Engineering and Technical Configuration Aspects of HIAPER, the new NSF/NCAR Research Aircraft

    NASA Astrophysics Data System (ADS)

    Friesen, R.; Laursen, K.

    2002-12-01

    The High-performance Instrumented Airborne Platform for Environmental Research, or HIAPER, is the new research aircraft presently being developed at the National Center for Atmospheric Research (NCAR) to serve the environmental research needs of the National Science Foundation (NSF) for the next several decades. The basic aircraft -- a Gulfstream V (G-V) business jet -- has been completed and will shortly undergo extensive modification to prepare it for future deployments in support of a variety of geosciences research missions. This presentation will focus on the many design and engineering considerations that have been made and are yet to come in converting a "green" business jet into a versatile research aircraft to serve the environmental research community. The project teams composed of engineers and scientists from NCAR and the scientific community at large are faced with trade offs involving costs of modifications, airframe structural integrity, aircraft performance (e.g. weight, drag), cabin environment, locations of inlet and sampling ports and FAA certification requirements. Many of the specific engineering specifications and modifications that have been made to date will be presented by way of engineering drawings, graphical depictions and actual photographs of the aircraft structure. Additionally, projected performance data of the modified-for-research aircraft will be presented along with some of the analyses performed to arrive at critical decisions (e.g. CFD airflow analysis). Finally, some of the details of the aircraft "infrastructure" such as signal and power wiring, generic cabin layout and data acquisition will be discussed.

  12. Alternative aircraft fuels technology

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1976-01-01

    NASA is studying the characteristics of future aircraft fuels produced from either petroleum or nonpetroleum sources such as oil shale or coal. These future hydrocarbon based fuels may have chemical and physical properties that are different from present aviation turbine fuels. This research is aimed at determining what those characteristics may be, how present aircraft and engine components and materials would be affected by fuel specification changes, and what changes in both aircraft and engine design would be required to utilize these future fuels without sacrificing performance, reliability, or safety. This fuels technology program was organized to include both in-house and contract research on the synthesis and characterization of fuels, component evaluations of combustors, turbines, and fuel systems, and, eventually, full-scale engine demonstrations. A review of the various elements of the program and significant results obtained so far are presented.

  13. Transport aircraft accident dynamics

    NASA Technical Reports Server (NTRS)

    Cominsky, A.

    1982-01-01

    A study was carried out of 112 impact survivable jet transport aircraft accidents (world wide) of 27,700 kg (60,000 lb.) aircraft and up extending over the last 20 years. This study centered on the effect of impact and the follow-on events on aircraft structures and was confined to the approach, landing and takeoff segments of the flight. The significant characteristics, frequency of occurrence and the effect on the occupants of the above data base were studied and categorized with a view to establishing typical impact scenarios for use as a basis of verifying the effectiveness of potential safety concepts. Studies were also carried out of related subjects such as: (1) assessment of advanced materials; (2) human tolerance to impact; (3) merit functions for safety concepts; and (4) impact analysis and test methods.

  14. Microbial assessment of cabin air quality on commercial airliners

    NASA Technical Reports Server (NTRS)

    La Duc, Myron T.; Stuecker, Tara; Bearman, Gregory; Venkateswaran, Kasthuri

    2005-01-01

    The microbial burdens of 69 cabin air samples collected from commercial airliners were assessed via conventional culture-dependent, and molecular-based microbial enumeration assays. Cabin air samples from each of four separate flights aboard two different carriers were collected via air-impingement. Microbial enumeration techniques targeting DNA, ATP, and endotoxin were employed to estimate total microbial burden. The total viable microbial population ranged from 0 to 3.6 x10 4 cells per 100 liters of air, as assessed by the ATP-assay. When these same samples were plated on R2A minimal medium, anywhere from 2% to 80% of these viable populations were cultivable. Five of the 29 samples examined exhibited higher cultivable counts than ATP derived viable counts, perhaps a consequence of the dormant nature (and thus lower concentration of intracellular ATP) of cells inhabiting these air cabin samples. Ribosomal RNA gene sequence analysis showed these samples to consist of a moderately diverse group of bacteria, including human pathogens. Enumeration of ribosomal genes via quantitative-PCR indicated that population densities ranged from 5 x 10 1 ' to IO 7 cells per 100 liters of air. Each of the aforementioned strategies for assessing overall microbial burden has its strengths and weaknesses; this publication serves as a testament to the power of their use in concert.

  15. Impact of cabin environment on thermal protection system of crew hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao Wei; Zhao, Jing Quan; Zhu, Lei; Yu, Xi Kui

    2016-05-01

    Hypersonic crew vehicles need reliable thermal protection systems (TPS) to ensure their safety. Since there exists relative large temperature difference between cabin airflow and TPS structure, the TPS shield that covers the cabin is always subjected to a non-adiabatic inner boundary condition, which may influence the heat transfer characteristic of the TPS. However, previous literatures always neglected the influence of the inner boundary by assuming that it was perfectly adiabatic. The present work focuses on studying the impact of cabin environment on the thermal performance. A modified TPS model is created with a mixed thermal boundary condition to connect the cabin environment with the TPS. This helps make the simulation closer to the real situation. The results stress that cabin environment greatly influences the temperature profile inside the TPS, which should not be neglected in practice. Moreover, the TPS size can be optimized during the design procedure if taking the effect of cabin environment into account.

  16. Determination of On-Orbit Cabin Air Loss from the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Williams, David E.; Leonard, Daniel J.; Smith, Patrick J.

    2004-01-01

    The International Space Station (ISS) loses cabin atmosphere mass at some rate. Due to oxygen partial pressures fluctuations from metabolic usage, the total pressure is not a good data source for tracking total pressure loss. Using the nitrogen partial pressure is a good data source to determine the total on-orbit cabin atmosphere loss from the ISS, due to no nitrogen addition or losses. There are several important reasons to know the daily average cabin air loss of the ISS including logistics planning for nitrogen and oxygen. The total average daily cabin atmosphere loss was estimated from January 14 to April 9 of 2003. The total average daily cabin atmosphere loss includes structural leakages, Vozdukh losses, Carbon Dioxide Removal Assembly (CDRA) losses, and other component losses. The total average daily cabin atmosphere loss does not include mass lost during Extra-Vehicular Activities (EVAs), Progress dockings, Space Shuttle dockings, calibrations, or other specific one-time events.

  17. Characteristics of cabin air quality in school buses in Central Texas

    NASA Astrophysics Data System (ADS)

    Rim, Donghyun; Siegel, Jeffrey; Spinhirne, Jarett; Webb, Alba; McDonald-Buller, Elena

    This study assessed in-cabin concentrations of diesel-associated air pollutants in six school buses with diesel engines during a typical route in suburban Austin, Texas. Air exchange rates measured by SF 6 decay were 2.60-4.55 h -1. In-cabin concentrations of all pollutants measured exhibited substantial variability across the range of tests even between buses of similar age, mileage, and engine type. In-cabin NO x concentrations ranged from 44.7 to 148 ppb and were 1.3-10 times higher than roadway NO x concentrations. Mean in-cabin PM 2.5 concentrations were 7-20 μg m -3 and were generally lower than roadway levels. In-cabin concentrations exhibited higher variability during cruising mode than frequent stops. Mean in-cabin ultrafine PM number concentrations were 6100-32,000 particles cm -3 and were generally lower than roadway levels. Comparison of median concentrations indicated that in-cabin ultrafine PM number concentrations were higher than or approximately the same as the roadway concentrations, which implied that, by excluding the bias caused by local traffic, ultrafine PM levels were higher in the bus cabin than outside of the bus. Cabin pollutant concentrations on three buses were measured prior to and following the phased installation of a Donaldson Spiracle Crankcase Filtration System and a Diesel Oxidation Catalyst. Following installation of the Spiracle, the Diesel Oxidation Catalyst provided negligible or small additional reductions of in-cabin pollutant levels. In-cabin concentration decreases with the Spiracle alone ranged from 24 to 37% for NO x and 26 to 62% and 6.6 to 43% for PM 2.5 and ultrafine PM, respectively. Comparison of the ranges of PM 2.5 and ultrafine PM variations between repetitive tests suggested that retrofit installation could not always be conclusively linked to the decrease of pollutant levels in the bus cabin.

  18. Flight Test Measurements From The Tu- 144LL Structure/Cabin Noise Experiment

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Rackl, Robert G.; Andrianov, Eduard V.

    2000-01-01

    During the period September 1997 to February 1998, the Tupolev 144 Supersonic Flyine Laboratory was used to obtain data for the purpose of enlarging the data base used by models for the prediction of cabin noise in supersonic passenger airplanes. Measured were: turbulent boundary layer pressure fluctuations on the fuselage in seven instrumented window blanks distributed over the length of the fuselage; structural response with accelerometers on skin panels close to those window blanks-, interior noise with microphones at the same fuselage bay stations as those window blanks. Flight test points were chosen to cover much of the TU- 144's flight envelope, as well as to obtain as large a unit Reynolds number range as possible at various Mach numbers: takeoff, landing, six subsonic cruise conditions, and eleven supersonic conditions up to Mach 2. Engine runups and reverberation times were measured with a stationary aircraft. The data in the form of time histories of the acoustic signals, together with auxiliary data and basic MATLAB processing modules, are available on CD-R disks.

  19. 14 CFR 125.113 - Cabin interiors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... containing possible fires started in the receptacles. (c) Thermal/acoustic insulation materials. For... September 2, 2005, when thermal/acoustic insulation is installed in the fuselage as replacements after.... (2) For airplanes manufactured after September 2, 2005, thermal/acoustic insulation...

  20. 14 CFR 125.113 - Cabin interiors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... containing possible fires started in the receptacles. (c) Thermal/acoustic insulation materials. For... September 2, 2005, when thermal/acoustic insulation is installed in the fuselage as replacements after.... (2) For airplanes manufactured after September 2, 2005, thermal/acoustic insulation...

  1. 14 CFR 121.163 - Aircraft proving tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Aircraft proving tests. 121.163 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.163 Aircraft proving...) Alterations to the aircraft or its components that materially affect flight characteristics. (e)...

  2. 14 CFR 121.163 - Aircraft proving tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft proving tests. 121.163 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.163 Aircraft proving...) Alterations to the aircraft or its components that materially affect flight characteristics. (e)...

  3. 14 CFR 121.163 - Aircraft proving tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Aircraft proving tests. 121.163 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.163 Aircraft proving...) Alterations to the aircraft or its components that materially affect flight characteristics. (e)...

  4. 14 CFR 121.163 - Aircraft proving tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Aircraft proving tests. 121.163 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.163 Aircraft proving...) Alterations to the aircraft or its components that materially affect flight characteristics. (e)...

  5. 14 CFR 121.163 - Aircraft proving tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Aircraft proving tests. 121.163 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.163 Aircraft proving...) Alterations to the aircraft or its components that materially affect flight characteristics. (e)...

  6. Cumulative Interference to Aircraft Radios from Multiple Portable Electronic Devices

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.

    2005-01-01

    Cumulative interference effects from portable electronic devices (PEDs) located inside a passenger cabin are conservatively estimated for aircraft radio receivers. PEDs' emission powers in an aircraft radio frequency band are first scaled according to their locations' interference path loss (IPL) values, and the results are summed to determine the total interference power. The multiple-equipment-factor (MEF) is determined by normalizing the result against the worst case contribution from a single device. Conservative assumptions were made and MEF calculations were performed for Boeing 737's Localizer, Glide-slope, Traffic Collision Avoidance System, and Very High Frequency Communication radio systems where full-aircraft IPL data were available. The results show MEF for the systems to vary between 10 and 14 dB. The same process was also used on the more popular window/door IPL data, and the comparison show the multiple-equipment-factor results came within one decibel (dB) of each other.

  7. Application of variable-sweep wings to commuter aircraft

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Beissner, F. L., Jr.; Lovell, W. A.; Price, J. E.; Turriiziani, R. V.; Washburn, F. F.

    1983-01-01

    The effects of using variable-sweep wings on the riding quality and mission-performance characteristics of commuter-type aircraft were studied. A fixed-wing baseline vehicle and a variable-sweep version of the baseline were designed and evaluated. Both vehicles were twin-turboprop, pressurized-cabin, 30-passenger commuter aircraft with identical mission requirements. Mission performance was calculated with and without various ride-quality constraints for several combinations of cruise altitude and stage lengths. The variable-sweep aircraft had a gross weight of almost four percent greater than the fixed-wing baseline in order to meet the design-mission requirements. In smooth air, the variable sweep configuration flying with low sweep had a two to three percent fuel-use penalty. However, the imposition of quality constraints in rough air can result in advantages in both fuel economy and flight time for the variable-sweep vehicle flying with high sweep.

  8. Acoustic boundary control for quieter aircraft

    NASA Astrophysics Data System (ADS)

    Hirsch, Scott Michael

    1999-08-01

    There is a strong interest in reducing the volume of low- frequency noise in aircraft cabins. Active noise control (ANC), in which loudspeakers placed in the cabin are used to generate a sound field which will cancel these disturbances, is now a commercially available solution. A second control approach is active structural acoustic control (ASAC), which uses structural control forces to reduce sound transmitted into the cabin through the fuselage. Some of the goals of current research are to reduce the cost, weight, and bulk of these control systems, along with improving global control performance. This thesis introduces an acoustic boundary control (ABC) concept for active noise control in aircraft. This control strategy uses distributed actuator arrays along enclosure boundaries to reduce noise transmitted into the enclosure through the boundaries and to reduce global noise levels due to other disturbances. The motivation is to provide global pressure attenuation with small, lightweight control actuators. Analytical studies are conducted of acoustic boundary in two-dimensional and three-dimensional rectangular enclosures and in a finite cylindrical enclosure. The simulations provide insight into the control mechanisms of ABC and demonstrate potential advantages of ABC over traditional ANC and ASAC implementations. A key component of acoustic boundary control is the ``smart'' trim panel, a structurally modified aircraft trim panel for use as an acoustic control source. A prototype smart trim panel is built and tested. The smart trim panel is used as the control source in a real-time active noise control system in a laboratory- scale fuselage model. It is shown that the smart trim panel works as well as traditional loudspeakers for this application. A control signal scheduling approach is proposed which allows for a reduction in the computational burden of the real-time controller used in active noise control applications. This approach uses off-line system

  9. Aircraft cybernetics

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.

  10. [Progress of biological air filter (BAF) development in manned spacecraft cabin].

    PubMed

    Tang, Yong-kang; Guo, Shuang-sheng; Ai, Wei-dang

    2005-06-01

    The contaminants originating from human metabolism, material off-gassing and waste processing, may influence human health and the growth and development of higher plants when they accumulate at some degree in the spacecraft cabin. So the contaminants concentrations must be controlled below the spacecraft maximum allowable concentration (SMAC). For the long manned space missions and planetary habitation, biological technique is available for the removal of the contaminants. The biological air filter, BAF, is a system that degrades the contaminants into carbon dioxide, water and salts. It holds many advantages such as small weight and volume, low power consumption, easy maintenance and good working performance under the condition of microgravity. Its wide application will be seen in the space field in near future.

  11. Perspectives on Highly Adaptive or Morphing Aircraft

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria R.; Vicroy, Dan D.; Busan, Ronald C.; Hahn, Andrew S.

    2009-01-01

    The ability to adapt to different flight conditions has been fundamental to aircraft design since the Wright Brothers first flight. Over a hundred years later, unconventional aircraft adaptability, often called aircraft morphing has become a topic of considerable renewed interest. In the past two decades, this interest has been largely fuelled by advancements in multi-functional or smart materials and structures. However, highly adaptive or morphing aircraft is certainly a cross-discipline challenge that stimulates a wide range of design possibilities. This paper will review some of the history of morphing aircraft including recent research programs and discuss some perspectives on this work.

  12. 77 FR 75600 - Policy Statement on Occupational Safety and Health Standards for Aircraft Cabin Crewmembers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ... April 11, 2000 (65 FR 19477-19478), as well as at http://DocketsInfo.dot.gov . Docket: Background...'' that published in the Federal Register on December 7, 2012 (77 FR 72998). Comments to that document...://www.gpoaccess.gov/fr/index.html . ] Copies may also be obtained by sending a request to the...

  13. 49 CFR 39.39 - How do PVOs ensure that passengers with disabilities are able to use accessible cabins?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... access to them. (b) You must, with respect to reservations made by any means (e.g., telephone, Internet... accessible cabin. (g) To prevent fraud in the assignment of accessible cabins (e.g., attempts by...

  14. The effects of ear protectors and hearing losses on sentence intelligibility in aircraft noise

    NASA Astrophysics Data System (ADS)

    Froehlich, G. R.

    1981-06-01

    Flight line personnel with hearing defects often complain that face-to-face speech communication in noise is considerably reduced when ear protectors are worn. Whether this could be confirmed or not was determined. An effective noise protecting flight helmet changes the flat aircraft cabin noise spectrum into a spectrum with predominance of lower frequencies. Whether the additional wearing of earplugs under the ear cups might improve speech perception was investigated.

  15. Major Constituents Analysis for the Vehicle Cabin Atmosphere Monitor

    NASA Technical Reports Server (NTRS)

    Mandrake, Lukas; Bornstein, Benjamin J.; Madzunkov, Stojan; Macaskill, John A.

    2011-01-01

    Vehicle Cabin Atmosphere Monitor (VCAM) can provide a means for monitoring the air within enclosed environments such as the International Space Station, the Crew Exploration Vehicle (CEV), a Lunar habitat, or another vehicle traveling to Mars. The software processes a sum total spectra (counts vs. mass channel) with the intention of computing abundance ratios for N2, O2, CO2, Ar2, and H2O. A brute-force powerset expansion compares a library of expected mass lines with those found within the data. Least squares error is combined with a penalty term for using small peaks.

  16. Stand-off detection of alcohol in car cabins

    NASA Astrophysics Data System (ADS)

    Młyńczak, Jarosław; Kubicki, Jan; Kopczyński, Krzysztof

    2014-01-01

    The results of experiments concerning detection of alcohol vapors in car cabins using a laboratory device, which was developed and built at the Institute of Optoelectronics at the Military University of Technology, are described. The work is a continuation of the investigations presented in an earlier paper. On the basis of those results, the whole device was designed and built. Then it was investigated using a car with special system simulating a driver under the influence of alcohol. To simulate the appropriate concentration of alcohol in human blood, a special method of generation of alcohol vapor was developed.

  17. Cabin Air Quality On Board Mir and the International Space Station: A Comparison

    NASA Technical Reports Server (NTRS)

    Macatangay, Ariel; Perry, Jay L.

    2007-01-01

    The maintenance of the cabin atmosphere aboard spacecraft is critical not only to its habitability but also to its function. Ideally, air quality can be maintained by striking a proper balance between the generation and removal of contaminants. Both very dynamic processes, the balance between generation and removal can be difficult to maintain and control because the state of the cabin atmosphere is in constant evolution responding to different perturbations. Typically, maintaining a clean cabin environment on board crewed spacecraft and space habitats is the central function of the environmental control and life support (ECLS) system. While active air quality control equipment is deployed on board every vehicle to remove carbon dioxide, water vapor, and trace chemical components from the cabin atmosphere, perturbations associated with logistics, vehicle construction and maintenance, and ECLS system configuration influence the resulting cabin atmospheric quality. The air-quality data obtained from the International Space Station (ISS) and NASA-Mir programs provides a wealth of information regarding the maintenance of the cabin atmosphere aboard long-lived space habitats. A comparison of the composition of the trace chemical contaminant load is presented. Correlations between ground-based and in-flight operations that influence cabin atmospheric quality are identified and discussed, and observations on cabin atmospheric quality during the NASA-Mir expeditions and the International Space Station are explored.

  18. Aircraft hydraulic systems. Third edition

    SciTech Connect

    Neese, W.A.

    1991-12-31

    The first nine chapters concern hydraulic components including: tubing, hoses, fittings, seals, pumps, valves, cylinders, and motors. General hydraulic system considerations are included in chapters five and nine, while pneumatic systems are covered in chapter ten. Chapters eleven through fifteen are devoted to aircraft-specific systems such as: landing gear, flight controls, brakes, etc. The material is rounded out with excerpts from the Canadair Challenger 601 training guide to illustrate the use of hydraulic systems in a specific aircraft application.

  19. The disposal of military aircraft

    NASA Technical Reports Server (NTRS)

    Warner, Edward P

    1922-01-01

    The end of the war saw every belligerent with vast stocks of aircraft and aircraft supplies in all stages of usefulness, much of the material being absolutely new. The question of the best method of getting rid of this accumulation is one which has been agitating those responsible for its disposal for more than three years now, but no wholly satisfactory solution has yet been reached.

  20. Advanced technology composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Walker, Thomas H.

    1991-01-01

    Work performed during the 25th month on NAS1-18889, Advanced Technology Composite Aircraft Structures, is summarized. The main objective of this program is to develop an integrated technology and demonstrate a confidence level that permits the cost- and weight-effective use of advanced composite materials in primary structures of future aircraft with the emphasis on pressurized fuselages. The period from 1-31 May 1991 is covered.

  1. Robots for Aircraft Maintenance

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Marshall Space Flight Center charged USBI (now Pratt & Whitney) with the task of developing an advanced stripping system based on hydroblasting to strip paint and thermal protection material from Space Shuttle solid rocket boosters. A robot, mounted on a transportable platform, controls the waterjet angle, water pressure and flow rate. This technology, now known as ARMS, has found commercial applications in the removal of coatings from jet engine components. The system is significantly faster than manual procedures and uses only minimal labor. Because the amount of "substrate" lost is minimal, the life of the component is extended. The need for toxic chemicals is reduced, as is waste disposal and human protection equipment. Users of the ARMS work cell include Delta Air Lines and the Air Force, which later contracted with USBI for development of a Large Aircraft Paint Stripping system (LARPS). LARPS' advantages are similar to ARMS, and it has enormous potential in military and civil aircraft maintenance. The technology may also be adapted to aircraft painting, aircraft inspection techniques and paint stripping of large objects like ships and railcars.

  2. Separation of airborne and structureborne noise radiated by plates constructed of conventional and composite materials with applications for prediction of interior noise paths in propeller driven aircraft. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.

    1986-01-01

    The anticipated application of advanced turboprop propulsion systems and use of composite materials in primary structure is expected to increase the interior noise of future aircraft to unacceptability high levels. The absence of technically and economically feasible noise source-path diagnostic tools has been a primer obstacle in the development of efficient noise control treatments for propeller driven aircraft. A new diagnostic method which permits the separation and prediction of the fully coherent airborne and structureborne components of the sound radiated by plates or thin shells has been developed. Analytical and experimental studies of the proposed method were performed on plates constructed of both conventional and composite materials. The results of the study indicate that the proposed method can be applied to a variety of aircraft materials, could be used in flight, and has fewer encumbrances than the other diagnostic tools currently available. The study has also revealed that the noise radiation of vibrating plates in the low frequency regime due to combined airborne and structureborne inputs possesses a strong synergistic nature. The large influence of the interaction between the airborne and structureborne terms has been hitherto ignored by researchers of aircraft interior noise problems.

  3. A Lightweight Loudspeaker for Aircraft Communications and Active Noise Control

    NASA Technical Reports Server (NTRS)

    Warnaka, Glenn E.; Kleinle, Mark; Tsangaris, Parry; Oslac, Michael J.; Moskow, Harry J.

    1992-01-01

    A series of new, lightweight loudspeakers for use on commercial aircraft has been developed. The loudspeakers use NdFeB magnets and aluminum alloy frames to reduce the weight. The NdFeB magnet is virtually encapsulated by steel in the new speaker designs. Active noise reduction using internal loudspeakers was demonstrated to be effective in 1983. A weight, space, and cost efficient method for creating the active sound attenuating fields is to use the existing cabin loudspeakers for both communication and sound attenuation. This will require some additional loudspeaker design considerations.

  4. Structureborne noise measurements on a small twin-engine aircraft

    NASA Technical Reports Server (NTRS)

    Cole, J. E., III; Martini, K. F.

    1988-01-01

    Structureborne noise measurements performed on a twin-engine aircraft (Beechcraft Baron) are reported. There are two overall objectives of the test program. The first is to obtain data to support the development of analytical models of the wing and fuselage, while the second is to evaluate effects of structural parameters on cabin noise. Measurements performed include structural and acoustic responses to impact excitation, structural and acoustic loss factors, and modal parameters of the wing. Path alterations include added mass to simulate fuel, variations in torque of bolts joining wing and fuselage, and increased acoustic absorption. Conclusions drawn regarding these measurements are presented.

  5. Structural Framework for Flight: NASA's Role in Development of Advanced Composite Materials for Aircraft and Space Structures

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.; Davis, John G., Jr.; Johnston, Norman J.; Pipes, R. Byron; McGuire, Jack F.

    2011-01-01

    This serves as a source of collated information on Composite Research over the past four decades at NASA Langley Research Center, and is a key reference for readers wishing to grasp the underlying principles and challenges associated with developing and applying advanced composite materials to new aerospace vehicle concepts. Second, it identifies the major obstacles encountered in developing and applying composites on advanced flight vehicles, as well as lessons learned in overcoming these obstacles. Third, it points out current barriers and challenges to further application of composites on future vehicles. This is extremely valuable for steering research in the future, when new breakthroughs in materials or processing science may eliminate/minimize some of the barriers that have traditionally blocked the expanded application of composite to new structural or revolutionary vehicle concepts. Finally, a review of past work and identification of future challenges will hopefully inspire new research opportunities and development of revolutionary materials and structural concepts to revolutionize future flight vehicles.

  6. 43 CFR 21.5 - Occupancy under permit of Government-owned cabins on public recreation and conservation areas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cabins on public recreation and conservation areas. 21.5 Section 21.5 Public Lands: Interior Office of the Secretary of the Interior OCCUPANCY OF CABIN SITES ON PUBLIC CONSERVATION AND RECREATION AREAS § 21.5 Occupancy under permit of Government-owned cabins on public recreation and conservation...

  7. 43 CFR 21.4 - Occupancy under permit of privately owned cabins on recreation areas and conservation areas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... cabins on recreation areas and conservation areas. 21.4 Section 21.4 Public Lands: Interior Office of the Secretary of the Interior OCCUPANCY OF CABIN SITES ON PUBLIC CONSERVATION AND RECREATION AREAS § 21.4 Occupancy under permit of privately owned cabins on recreation areas and conservation areas. (a) In...

  8. 43 CFR 21.5 - Occupancy under permit of Government-owned cabins on public recreation and conservation areas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... cabins on public recreation and conservation areas. 21.5 Section 21.5 Public Lands: Interior Office of the Secretary of the Interior OCCUPANCY OF CABIN SITES ON PUBLIC CONSERVATION AND RECREATION AREAS § 21.5 Occupancy under permit of Government-owned cabins on public recreation and conservation...

  9. 43 CFR 21.4 - Occupancy under permit of privately owned cabins on recreation areas and conservation areas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cabins on recreation areas and conservation areas. 21.4 Section 21.4 Public Lands: Interior Office of the Secretary of the Interior OCCUPANCY OF CABIN SITES ON PUBLIC CONSERVATION AND RECREATION AREAS § 21.4 Occupancy under permit of privately owned cabins on recreation areas and conservation areas. (a) In...

  10. 43 CFR 21.4 - Occupancy under permit of privately owned cabins on recreation areas and conservation areas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cabins on recreation areas and conservation areas. 21.4 Section 21.4 Public Lands: Interior Office of the Secretary of the Interior OCCUPANCY OF CABIN SITES ON PUBLIC CONSERVATION AND RECREATION AREAS § 21.4 Occupancy under permit of privately owned cabins on recreation areas and conservation areas. (a) In...

  11. 43 CFR 21.4 - Occupancy under permit of privately owned cabins on recreation areas and conservation areas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... cabins on recreation areas and conservation areas. 21.4 Section 21.4 Public Lands: Interior Office of the Secretary of the Interior OCCUPANCY OF CABIN SITES ON PUBLIC CONSERVATION AND RECREATION AREAS § 21.4 Occupancy under permit of privately owned cabins on recreation areas and conservation areas. (a) In...

  12. 43 CFR 21.5 - Occupancy under permit of Government-owned cabins on public recreation and conservation areas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... cabins on public recreation and conservation areas. 21.5 Section 21.5 Public Lands: Interior Office of the Secretary of the Interior OCCUPANCY OF CABIN SITES ON PUBLIC CONSERVATION AND RECREATION AREAS § 21.5 Occupancy under permit of Government-owned cabins on public recreation and conservation...

  13. 43 CFR 21.4 - Occupancy under permit of privately owned cabins on recreation areas and conservation areas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cabins on recreation areas and conservation areas. 21.4 Section 21.4 Public Lands: Interior Office of the Secretary of the Interior OCCUPANCY OF CABIN SITES ON PUBLIC CONSERVATION AND RECREATION AREAS § 21.4 Occupancy under permit of privately owned cabins on recreation areas and conservation areas. (a) In...

  14. 43 CFR 21.5 - Occupancy under permit of Government-owned cabins on public recreation and conservation areas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cabins on public recreation and conservation areas. 21.5 Section 21.5 Public Lands: Interior Office of the Secretary of the Interior OCCUPANCY OF CABIN SITES ON PUBLIC CONSERVATION AND RECREATION AREAS § 21.5 Occupancy under permit of Government-owned cabins on public recreation and conservation...

  15. 43 CFR 21.5 - Occupancy under permit of Government-owned cabins on public recreation and conservation areas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cabins on public recreation and conservation areas. 21.5 Section 21.5 Public Lands: Interior Office of the Secretary of the Interior OCCUPANCY OF CABIN SITES ON PUBLIC CONSERVATION AND RECREATION AREAS § 21.5 Occupancy under permit of Government-owned cabins on public recreation and conservation...

  16. Rib for blended wing-body aircraft

    NASA Technical Reports Server (NTRS)

    Hawley, Arthur V. (Inventor)

    1999-01-01

    Structural ribs for providing structural support for a structure, such as the pressure cabin of a blended-wing body aircraft. In a first embodiment, the ribs are generally Y-shaped, being comprised of a vertical web and a pair of inclined webs attached to the vertical web to extend upwardly and outwardly from the vertical web in different directions, with only the upper edges of the inclined webs being attached to a structural element. In a second embodiment, the ribs are generally trident-shaped, whereby the vertical web extends upwardly beyond the intersection of the inclined webs with the vertical web, with the upper edge of the vertical web as well as the upper edges of the inclined webs being attached to the same structural element.

  17. Propeller aircraft interior noise model: User's manual for computer program

    NASA Technical Reports Server (NTRS)

    Wilby, E. G.; Pope, L. D.

    1985-01-01

    A computer program entitled PAIN (Propeller Aircraft Interior Noise) has been developed to permit calculation of the sound levels in the cabin of a propeller-driven airplane. The fuselage is modeled as a cylinder with a structurally integral floor, the cabin sidewall and floor being stiffened by ring frames, stringers and floor beams of arbitrary configurations. The cabin interior is covered with acoustic treatment and trim. The propeller noise consists of a series of tones at harmonics of the blade passage frequency. Input data required by the program include the mechanical and acoustical properties of the fuselage structure and sidewall trim. Also, the precise propeller noise signature must be defined on a grid that lies in the fuselage skin. The propeller data are generated with a propeller noise prediction program such as the NASA Langley ANOPP program. The program PAIN permits the calculation of the space-average interior sound levels for the first ten harmonics of a propeller rotating alongside the fuselage. User instructions for PAIN are given in the report. Development of the analytical model is presented in NASA CR 3813.

  18. Development of a biaxial test facility for structural evaluation of aircraft fuselage panels

    SciTech Connect

    Roach, D.; Walkington, P.; Rice, T.

    1998-03-01

    The number of commercial airframes exceeding twenty years of service continues to grow. An unavoidable by-product of aircraft use is that crack and corrosion flaws develop throughout the aircraft`s skin and substructure elements. Economic barriers to the purchase of new aircraft have created an aging aircraft fleet and placed even greater demands on efficient and safe repair methods. Composite doublers, or repair patches, provide an innovative repair technique which can enhance the way aircraft are maintained. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is now possible to bond a single Boron-Epoxy composite doubler to the damaged structure. The composite doubler repair process produces both engineering and economic benefits. The FAA`s Airworthiness Assurance Center at Sandia National Labs completed a project to introduce composite doubler repair technology to the commercial aircraft industry. This paper focuses on a specialized structural test facility which was developed to evaluate the performance of composite doublers on actual aircraft structure. The facility can subject an aircraft fuselage section to a combined load environment of pressure (hoop stress) and axial, or longitudinal, stress. The tests simulate maximum cabin pressure loads and use a computerized feedback system to maintain the proper ratio between hoop and axial loads. Through the use of this full-scale test facility it was possible to: (1) assess general composite doubler response in representative flight load scenarios, and (2) verify the design and analysis approaches as applied to an L-1011 door corner repair.

  19. Fireworthiness of transport aircraft interior systems

    NASA Technical Reports Server (NTRS)

    Parker, J. A.; Kourtides, D. A.

    1982-01-01

    The fire worthiness of air transport interiors was evaluated. The effect of interior systems on the survival of passengers and crew in an uncontrolled transport aircraft fire is addressed. Modification of aircraft interior subsystem components which provide improvements in aircraft fire safety are examined. Three specific subsystem components, interior panels, seats and windows, offer the most immediate and highest payoff by modifying interior materials of existing aircrafts. It is shown that the new materials modifications reduce the fire hazards because of significant reduction in their characteristic flame spread, heat release, and smoke and toxic gas emissions.

  20. Airliner cabin ozone: An updated review. Final report

    SciTech Connect

    Melton, C.E.

    1989-12-01

    The recent literature pertaining to ozone contamination of airliner cabins is reviewed. Measurements in airliner cabins without filters showed that ozone levels were about 50 percent of atmospheric ozone. Filters were about 90 percent effective in destroying ozone. Ozone (0.12 to 0.14 ppmv) caused mild subjective respiratory irritation in exercising men, but 0.20 to 0.30 ppmv did not have adverse effects on patients with chronic heart or lung disease. Ozone (1.0 to 2.0 ppmv) decreased survival time of influenza-infected rats and mice and suppressed the capacity of lung macrophages to destroy Listeria. Airway responses to ozone are divided into an early parasympathetically mediated bronchoconstrictive phase and a later histamine-mediated congestive phase. Evidence indicates that intracellular free radicals are responsible for ozone damage and that the damage may be spread to other cells by toxic intermediate products: Antioxidants provide some protection to cells in vitro from ozone but dietary intake of antioxidant vitamins by humans has only a weak effect, if any. This review indicates that earlier findings regarding ozone toxicity do not need to be corrected. Compliance with existing FAA ozone standards appears to provide adequate protection to aircrews and passengers.

  1. Reduced Pressure Cabin Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy B.; Sweterlitsch, Jeffrey J.

    2013-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by United Technologies Corp. Aerospace Systems (UTAS, formerly Hamilton Sundstrand) and baselined for the Atmosphere Revitalization System for moderate duration missions of the Orion Multipurpose Crew Vehicle (MPCV). In previous years at this conference, reports were presented on extensive Johnson Space Center testing of this technology in a sea-level pressure environment with simulated and actual human metabolic loads in both open and closed-loop configurations. In 2011, the technology was tested in an open cabin-loop configuration at ambient and two sub-ambient pressures to compare the performance of the system to the results of previous tests at ambient pressure. The testing used a human metabolic simulator with a different type of water vapor generation than previously used, which added some unique challenges in the data analysis. This paper summarizes the results of: baseline and some matrix testing at all three cabin pressures, increased vacuum regeneration line pressure testing with a high metabolic load, a set of tests studying CO2 and water vapor co-adsorption effects relative to model-predicted performance, and validation tests of flight project computer model predictions with specific operating conditions.

  2. Reduced Pressure Cabin Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy; Sweterlitsch, Jeffrey

    2011-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Atmosphere Revitalization System for moderate duration missions of the Orion Multipurpose Crew Vehicle. In previous years at this conference, reports were presented on extensive Johnson Space Center testing of this technology in a sea-level pressure environment with simulated and actual human metabolic loads in both open and closed-loop configurations. In 2011, the technology was tested in an open cabin-loop configuration at ambient and two sub-ambient pressures to compare the performance of the system to the results of previous tests at ambient pressure. The testing used a human metabolic simulator with a different type of water vapor generation than previously used, which added some unique challenges in the data analysis. This paper summarizes the results of: baseline and some matrix testing at all three cabin pressures, increased vacuum regeneration line pressure with a high metabolic load, a set of tests studying CO2 and water vapor co-adsorption effects relative to model-predicted performance, and validation tests of flight program computer model predictions with specific operating conditions.

  3. Reduced Pressure Cabin Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy; Sweterlisch, Jeffery J.

    2013-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Atmosphere Revitalization System for moderate duration missions of the Orion Multipurpose Crew Vehicle. In previous years at this conference, reports were presented on extensive Johnson Space Center testing of this technology in a sea-level pressure environment with simulated and actual human metabolic loads in both open and closed-loop configurations. In 2011, the technology was tested in an open cabin-loop configuration at ambient and two sub-ambient pressures to compare the performance of the system to the results of previous tests at ambient pressure. The testing used a human metabolic simulator with a different type of water vapor generation than previously used, which added some unique challenges in the data analysis. This paper summarizes the results of: baseline and some matrix testing at all three cabin pressures, increased vacuum regeneration line pressure with a high metabolic load, a set of tests studying CO2 and water vapor co-adsorption effects relative to model-predicted performance, and validation tests of flight program computer model predictions with specific operating conditions.

  4. Fast response sequential measurements and modelling of nanoparticles inside and outside a car cabin

    NASA Astrophysics Data System (ADS)

    Joodatnia, Pouyan; Kumar, Prashant; Robins, Alan

    2013-06-01

    Commuters are regularly exposed to short-term peak concentration of traffic produced nanoparticles (i.e. particles <300 nm in size). Studies indicate that these exposures pose adverse health effects (i.e. cardiovascular). This study aims to obtain particle number concentrations (PNCs) and distributions (PNDs) inside and outside a car cabin whilst driving on a road in Guildford, a typical UK town. Other objectives are to: (i) investigate the influences of particle transformation processes on particle number and size distributions in the cabin, (ii) correlate PNCs inside the cabin to those measured outside, and (iii) predict PNCs in the cabin based on those outside the cabin using a semi-empirical model. A fast response differential mobility spectrometer (DMS50) was employed in conjunction with an automatic switching system to measure PNCs and PNDs in the 5-560 nm range at multiple locations inside and outside the cabin at 10 Hz sampling rate over 10 s sequential intervals. Two separate sets of measurements were made at: (i) four seats in the car cabin during ˜700 min of driving, and (ii) two points, one the driver seat and the other near the ventilation air intake outside the cabin, during ˜500 min of driving. Results of the four-point measurements indicated that average PNCs at all for locations were nearly identical (i.e. 3.96, 3.85, 3.82 and 4.00 × 104 cm-3). The modest difference (˜0.1%) revealed a well-mixed distribution of nanoparticles in the car cabin. Similar magnitude and shapes of PNDs at all four sampling locations suggested that transformation processes (e.g. nucleation, coagulation, condensation) have minimal effect on particles in the cabin. Two-point measurements indicated that on average, PNCs inside the cabin were about 72% of those measured outside. Time scale analysis indicated that dilution was the fastest and dominant process in the cabin, governing the variations of PNCs in time. A semi-empirical model was proposed to predict PNCs inside

  5. Measurement of dose equivalent distribution on-board commercial jet aircraft.

    PubMed

    Kubančák, J; Ambrožová, I; Ploc, O; Pachnerová Brabcová, K; Štěpán, V; Uchihori, Y

    2014-12-01

    The annual effective doses of aircrew members often exceed the limit of 1 mSv for the public due to the increased level of cosmic radiation at the flight altitudes, and thus, it is recommended to monitor them [International Commission on Radiation Protection. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann. ICRP 21: (1-3), (1991)]. According to the Monte Carlo simulations [Battistoni, G., Ferrari, A., Pelliccioni, M. and Villari, R. Evaluation of the doses to aircrew members taking into consideration the aircraft structures. Adv. Space Res. 36: , 1645-1652 (2005) and Ferrari, A., Pelliccioni, M. and Villari, R. Evaluation of the influence of aircraft shielding on the aircrew exposure through an aircraft mathematical model. Radiat. Prot. Dosim. 108: (2), 91-105 (2004)], the ambient dose equivalent rate Ḣ*(10) depends on the location in the aircraft. The aim of this article is to experimentally evaluate Ḣ*(10) on-board selected types of aircraft. The authors found that Ḣ*(10) values are higher in the front and the back of the cabin and lesser in the middle of the cabin. Moreover, total dosimetry characteristics obtained in this way are in a reasonable agreement with other data, in particular with the above-mentioned simulations. PMID:24344348

  6. Measurement of dose equivalent distribution on-board commercial jet aircraft.

    PubMed

    Kubančák, J; Ambrožová, I; Ploc, O; Pachnerová Brabcová, K; Štěpán, V; Uchihori, Y

    2014-12-01

    The annual effective doses of aircrew members often exceed the limit of 1 mSv for the public due to the increased level of cosmic radiation at the flight altitudes, and thus, it is recommended to monitor them [International Commission on Radiation Protection. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann. ICRP 21: (1-3), (1991)]. According to the Monte Carlo simulations [Battistoni, G., Ferrari, A., Pelliccioni, M. and Villari, R. Evaluation of the doses to aircrew members taking into consideration the aircraft structures. Adv. Space Res. 36: , 1645-1652 (2005) and Ferrari, A., Pelliccioni, M. and Villari, R. Evaluation of the influence of aircraft shielding on the aircrew exposure through an aircraft mathematical model. Radiat. Prot. Dosim. 108: (2), 91-105 (2004)], the ambient dose equivalent rate Ḣ*(10) depends on the location in the aircraft. The aim of this article is to experimentally evaluate Ḣ*(10) on-board selected types of aircraft. The authors found that Ḣ*(10) values are higher in the front and the back of the cabin and lesser in the middle of the cabin. Moreover, total dosimetry characteristics obtained in this way are in a reasonable agreement with other data, in particular with the above-mentioned simulations.

  7. Supersonic cruise aircraft research: An annotated bibliography

    NASA Technical Reports Server (NTRS)

    Tuttle, M. H.

    1980-01-01

    This bibliography, with abstracts, consists of 69 publications arranged in chronological order. The material may be useful to those interested in supersonic cruise fighter/penetrator/interceptor airplanes. Two pertinent conferences on military supercruise aircraft are considered as single items; one contains 37 papers and the other 29 papers. In addition, several related bibliographies are included which cover supersonic civil aircraft and military aircraft studies at the Langley Research Center. There is also an author index.

  8. Educating with Aircraft Models

    ERIC Educational Resources Information Center

    Steele, Hobie

    1976-01-01

    Described is utilization of aircraft models, model aircraft clubs, and model aircraft magazines to promote student interest in aerospace education. The addresses for clubs and magazines are included. (SL)

  9. Endurance and failure characteristics of modified Vasco X-2, CBS 600 and AISI 9310 spur gears. [aircraft construction materials

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Zaretsky, E. V.

    1980-01-01

    Gear endurance tests and rolling-element fatigue tests were conducted to compare the performance of spur gears made from AISI 9310, CBS 600 and modified Vasco X-2 and to compare the pitting fatigue lives of these three materials. Gears manufactured from CBS 600 exhibited lives longer than those manufactured from AISI 9310. However, rolling-element fatigue tests resulted in statistically equivalent lives. Modified Vasco X-2 exhibited statistically equivalent lives to AISI 9310. CBS 600 and modified Vasco X-2 gears exhibited the potential of tooth fracture occurring at a tooth surface fatigue pit. Case carburization of all gear surfaces for the modified Vasco X-2 gears results in fracture at the tips of the gears.

  10. The Fate of Trace Contaminants in a Crewed Spacecraft Cabin Environment

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Kayatin, Matthew J.

    2016-01-01

    Trace chemical contaminants produced via equipment offgassing, human metabolic sources, and vehicle operations are removed from the cabin atmosphere by active contamination control equipment and incidental removal by other air quality control equipment. The fate of representative trace contaminants commonly observed in spacecraft cabin atmospheres is explored. Removal mechanisms are described and predictive mass balance techniques are reviewed. Results from the predictive techniques are compared to cabin air quality analysis results. Considerations are discussed for an integrated trace contaminant control architecture suitable for long duration crewed space exploration missions.

  11. RFID Transponders' Radio Frequency Emissions in Aircraft Communication and Navigation Radio Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Williams, Reuben A.; Koppen, Sandra V.; Salud, Maria Theresa P.

    2006-01-01

    Radiated emissions in aircraft communication and navigation bands are measured from several active radio frequency identification (RFID) tags. The individual tags are different in design and operations. They may also operate in different frequency bands. The process for measuring the emissions is discussed, and includes tag interrogation, reverberation chamber testing, and instrument settings selection. The measurement results are described and compared against aircraft emission limits. In addition, interference path loss for the cargo bays of passenger aircraft is measured. Cargo bay path loss is more appropriate for RFID tags than passenger cabin path loss. The path loss data are reported for several aircraft radio systems on a Boeing 747 and an Airbus A320.

  12. Emergency in-flight egress for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1981-01-01

    A NASA program for development of an inflight egress system for the left (pilot) door of general aviation aircraft is described. The pyrotechnic release door was felt to be necessary because of pilot difficulty in reaching the right door when subjected to spin/stall centrifugal effects. A flexible, linear shaped charged of hexanitrostibene II and a lanyard actuated detonator are discussed, along with mock-up tests and instrumentation. The egress system was designed for minimum structural impact, mimimum pilot initiation procedures, low weight, and no egress interference, and to provide sufficient force to blow off the door, have low required maintenance, and high reliability. Results of 68 tests are reviewed, noting the inclusion of a screen to keep glass fragments from spraying the cabin. Certification was achieved, and uses in the F-111 and B-1 aircraft are noted.

  13. Survival of infectious microorganisms in space cabin environments

    NASA Technical Reports Server (NTRS)

    Vana, S. C.; Ehrlich, R.

    1974-01-01

    Aerosol survival and virulence of S. aureus and P. aeruginosa cultures isolated during exposure to simulated space cabin environment was studied using the microthread captured aerosol technique. The aerosol survival of P. aeruginosa isolates did not differ significantly from that of the original culture from which the isolates were obtained. The mean death rate of the isolates was 1.03%/min and that of the controls 1.10%/min. Similarly exposure to the 5 psi environment did not affect the virulence of P. aeruginosa. Both strains of S. aureus (IITRI and NASA) after exposure to 5 psi environment showed some degree of adaptation to this environmental stress. The aerosol death rates of the isolated organisms were 5 to 10-fold lower than of the original cultures. At the same time the virulence of the isolates was approximately 5-fold higher than that of the original culture.

  14. Dehydrohalogenation of atmospheric contaminants in the space cabin

    NASA Technical Reports Server (NTRS)

    Spain, M. A.; Middleditch, B. S.; Bafus, D. A.; Galen, T.

    1985-01-01

    A total of nine chlorinated ethanes and ethenes were circulated over lithium hydroxide in a laboratory scale closed system simulator. System volume and lithium hydroxide temperature were varied from that intended to maximize possible reactions to conditions approximating those of a space cabin environment. Of the nine compounds tested, seven were found to be dehydrohalogenated (viz., loss of hydrogen chloride) in the course of one or more experimental treatments. Of particular significance was the conversion of 1,2-dichloroethane to chloroethene, a known carcinogen, and of trichloroethene to dichloroethyne, a highly toxic substance. It is therefore concluded that a potentially hazardous situation exists for the inhabitants of closed ecological systems such as spacecraft, one for which precautions must continue to be taken.

  15. Cabin Air Quality Dynamics On Board the International Space Station

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Peterson, B. V.

    2003-01-01

    Spacecraft cabin air quality is influenced by a variety of factors. Beyond normal equipment offgassing and crew metabolic loads, the vehicle s operational configuration contributes significantly to overall air quality. Leaks from system equipment and payload facilities, operational status of the atmospheric scrubbing systems, and the introduction of new equipment and modules to the vehicle all influence air quality. The dynamics associated with changes in the International Space Station's (ISS) configuration since the launch of the U.S. Segment s laboratory module, Destiny, is summarized. Key classes of trace chemical contaminants that are important to crew health and equipment performance are emphasized. The temporary effects associated with attaching each multi-purpose logistics module (MPLM) to the ISS and influence of in-flight air quality on the post-flight ground processing of the MPLM are explored.

  16. Predictive Techniques for Spacecraft Cabin Air Quality Control

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Cromes, Scott D. (Technical Monitor)

    2001-01-01

    As assembly of the International Space Station (ISS) proceeds, predictive techniques are used to determine the best approach for handling a variety of cabin air quality challenges. These techniques use equipment offgassing data collected from each ISS module before flight to characterize the trace chemical contaminant load. Combined with crew metabolic loads, these data serve as input to a predictive model for assessing the capability of the onboard atmosphere revitalization systems to handle the overall trace contaminant load as station assembly progresses. The techniques for predicting in-flight air quality are summarized along with results from early ISS mission analyses. Results from groundbased analyses of in-flight air quality samples are compared to the predictions to demonstrate the technique's relative conservatism.

  17. The monitoring of gaseous contaminants in spacecraft cabin atmospheres.

    PubMed

    Tan, G B; Savage, C J; Bittner, H

    1997-02-01

    The accumulation of toxic or otherwise harmful trace gases in a spacecraft cabin is a very serious concern in terms of the health and safety of the crew. Although methods exist for controlling the evolution of such contaminants, techniques for monitoring the success of these methods, on board and in near- real-time, are still under development. One such technique, based on the use of FTIR interferometry, is being developed in Europe. A prototype instrument has been assembled, making extensive use of 'off-the-shelf' hardware and software, and tested for its ability to detect and quantify--within a maximum period of 1 minute and in the presence of water vapour and carbon dioxide 21 of the most frequently detected contaminants on past Shuttle and Spacelab flights. Results have confirmed that such contaminants can be detected and measured with an acceptable degree of precision.

  18. Determination of tricresyl phosphate air contamination in aircraft.

    PubMed

    Denola, G; Hanhela, P J; Mazurek, W

    2011-08-01

    Monitoring of tricresyl phosphate (TCP) contamination of cockpit air was undertaken in three types of military aircraft [fighter trainer (FT), fighter bomber (FB), and cargo transport (CT) aircraft]. The aircraft had a previous history of pilot complaints about cockpit air contamination suspected to originate from the engine bleed air supply through the entry of aircraft turbine engine oil (ATO) into the engine compressor. Air samples were collected in flight and on the ground during engine runs using sorbent tubes packed with Porapak Q and cellulose filters. A total of 78 air samples were analysed, from 46 different aircraft, and 48 samples were found to be below the limit of detection. Nine incidents of smoke/odour were identified during the study. The concentrations of toxic o-cresyl phosphate isomers were below the level of detection in all samples. The highest total TCP concentration was 51.3 μg m(-3), while most were generally found to be <5 μg m(-3) compared with the 8-h time-weighted average exposure limit of 100 μg m(-3) for tri-o-cresyl phosphate. The highest concentrations were found at high engine power. Although TCP contamination of cabin/cockpit air has been the subject of much concern in aviation, quantitative data are sparse. PMID:21730359

  19. Determination of tricresyl phosphate air contamination in aircraft.

    PubMed

    Denola, G; Hanhela, P J; Mazurek, W

    2011-08-01

    Monitoring of tricresyl phosphate (TCP) contamination of cockpit air was undertaken in three types of military aircraft [fighter trainer (FT), fighter bomber (FB), and cargo transport (CT) aircraft]. The aircraft had a previous history of pilot complaints about cockpit air contamination suspected to originate from the engine bleed air supply through the entry of aircraft turbine engine oil (ATO) into the engine compressor. Air samples were collected in flight and on the ground during engine runs using sorbent tubes packed with Porapak Q and cellulose filters. A total of 78 air samples were analysed, from 46 different aircraft, and 48 samples were found to be below the limit of detection. Nine incidents of smoke/odour were identified during the study. The concentrations of toxic o-cresyl phosphate isomers were below the level of detection in all samples. The highest total TCP concentration was 51.3 μg m(-3), while most were generally found to be <5 μg m(-3) compared with the 8-h time-weighted average exposure limit of 100 μg m(-3) for tri-o-cresyl phosphate. The highest concentrations were found at high engine power. Although TCP contamination of cabin/cockpit air has been the subject of much concern in aviation, quantitative data are sparse.

  20. New developments in aluminum for aircraft and automobiles

    NASA Technical Reports Server (NTRS)

    Petit, Jocelyn I.

    1994-01-01

    A common bond for the aircraft and automobile industry is the need for cost-efficient, lightweight structures such as provided by aluminum based materials. The topics are presented in viewgraph form and cover the following: new developments in aluminum for aircraft and automobiles; forces shaping future automotive materials needs; aluminum strength/weakness versus competitive materials; evolution of aluminum aerospace alloys; forces shaping future aircraft materials needs; fiber/metal structural laminates; and property requirements for jetliner and military transport applications.